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Background

e Asset prices are often used for assessing expectations:

forward rates

o

breakeven inflation
CDS rates
implied volatility

[¢]

[¢]

o]

o ...
These are almost continuously observable
Don’t need to rely on economists’ models
And they embody the collective views of market participants

But they may be distorted by risk: people will pay more for insurance/hedge assets

that pay off in scary states of the world



Background

e Asset prices are often used for assessing expectations:

o

forward rates — risk-neutral expected future interest rates

[¢]

breakeven inflation — risk-neutral expected future inflation

[¢]

CDS rates — risk-neutral default probabilities

o]

implied volatility — risk-neutral volatility

o ...
These are almost continuously observable
Don’t need to rely on economists’ models
And they embody the collective views of market participants

But they may be distorted by risk: people will pay more for insurance/hedge assets

that pay off in scary states of the world



The importance of risk considerations

For any payoff X:
1
— E* [X] = E[M X](= price[X])
Ry
* Risk consideration is captured by the stochastic discount factor (SDF), M,
o no arbitrage implies “linear pricing”

o let X =1 (discount bond): E [M] = 1/Ry

e If there is little variation in M, risk consideration is not that important...
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R7f E* [X] = E[M X](= price[X])

* Risk consideration is captured by the stochastic discount factor (SDF), M,
o no arbitrage implies “linear pricing”
o let X =1 (discount bond): E [M] = 1/Ry

e If there is little variation in M, risk consideration is not that important...

e Hansen and Jagannathan (1991): variance of the SDF

var [M Ry] > SR?
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e One “important direction” for future research (Hansen and Jagannathan, 1991): moving

beyond means and variances to characterize the SDF more fully
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e One “important direction” for future research (Hansen and Jagannathan, 1991): moving

beyond means and variances to characterize the SDF more fully

® Snow (1991): for # < 0 or # > 1, we have, for any asset return R

&)

o The 0th moment of the SDF is related to the f%lth moments of asset returns

E [(MRf)ﬂ > {E

o When 6 — 1, the Snow bounds rely on extremely high moments of asset returns

* hard to measure in practice

« paradoxically, we know for sure that E[M R;] = 1!



What’s missing?

e The Snow bounds exploit the true return distribution
o can be estimated from historical realized return time series
e But they ignore the risk-neutral distribution completely!
o resolving the paradox: E[M] is directly revealed by the riskless rate
o the risk-neutral first moment of returns
¢ We can exploit both the true and the risk-neutral distributions
o in addition to realized returns, we use information in option prices

+ known issues for option returns (eg., Jackwerth, 2000; Coval and Shumway, 2001)

» and only a short history is available



This paper

We show how to understand all known bounds in a simple unifying framework
We use the framework to derive new bounds
o that play off the true return distribution against the risk-neutral distribution
We explain why the H-] bound should not be expected to be stable in theory
o our empirical results show that the moments of the SDF rise exceedingly rapidly as 6
rises above one, the H-J bound is perhaps oo
We show that certain bounds are stable and they convey nice intuitions

For all our empirical results, the short option time series is not a problem

But the “short” (150-year) realized return sample is a problem!



The cumulant-generating function (CGF)

Fixing the asset return R, we consider the function

R\"
c(fr, 02) = logE | (M Rs)™ <R>
f

e ¢(0,0) = 0: trivial

(
e ¢(1,0) = 0: because SDF prices the riskless asset
e ¢(1,1) = 0: because SDF prices the return R

(

e ¢(61,62) is a convex function



The cumulant-generating function (CGF)

Observables from asset markets:
o Returns: c(0, () = logE [(R/Rf)ﬂ

o Options: (1. 05) = logE [(MRf) (R/Rf)ez} — log E* {(R/Rf)“’z}

1

* Recall that, for any cash flow X: price(X) = E[MX] = = E*[X]; here, we consider
f

X = (R/Ry)"

Equilibrium models specify ¢(0;, 0) = logE {(MRf)el]

For now, think of all expectations as conditional on time ¢ information

Rich implications: ¢(0, 1) “equity premium”; Cboe VIX? =
such that log(1 + CVOL?) = ¢(1,2); ...

~2¢(1.0); CME CVOL is






Example 1: Lognormality (Black-Scholes)

e f MRy = e~ 2V and R/R; = et=27°+7W \where Z and W are standard normal

with correlation p, then
1o L o
6(91,92) = /Jﬁg(l — 91) + 5)\ 91(91 — 1) + 50‘ 92(92 — 1)
® The two observables

1
c(0,0) = pb + 5029(9 -1)

c(1,0) = %(729(9 —1)

¢ We learn nothing interesting from option prices



Example 2: Jump-diffusion (Merton '76)

o If MRy = e 2V A2 (14 7)Y and R/Ry = et 27" +W 2w (1 4 1)) where

N is Poisson with intensity w and J; are jump sizes, then

1 1
c(61,02) = ub2(1 —6;) + 5)\2«91(01 —-1)+ 50292(92 —-1)+

o [+ ) (1 B)% = (14 1001+ Ta6)]
e The two observables

1
¢(0.6) = b + 50°0(8 — 1) +w [(1 ) — 0y — 1}

c(1,0) = 3029(9 ~1) 4w+ ) [+ D) 05— 1]

¢ We need to look at option prices to detect .J;



Example 3: Parameter learning

In a pure jump (no diffusion) model, the agent update beliefs about the jump intensity w

based on the observed N (the number of realized jumps) from the prior w ~ exp(1/w)

Ct(el, 92) =60, log (1 — le) + 69 (,u + log (1 — wJQ))
“log (1 @ [(1 )" (14 )" - 1})

If jumps are disasters:
¢ The true and risk-neutral moments are unbounded for very negative 6
e The positive moments of the SDF also diverge for fs greater than some critical value
that is above one
¢ The “dismal” economy of Geweke (2001) and Weitzman (2007): every moment of the
SDF may be unbounded



Example 4: Heterogeneous beliefs (Martin and Papadimitriou 2022)

In MP model, the two observables are both quadratic
N 9 = — —_
c(0,0) 55 09—1—209

L0 gp— 1)

c(1,0) = 55

o is true return volatility and § > 0 controls the amount of disagreement

But true and risk-neutral volatility differ, so option prices contain information

The whole surface is

11456
6(91,92) = 5 TUZ (92 — 91) +

1+96

146 1406
1+0—6,°

%%gﬂgﬁﬂ%l+6imgﬁn%4§f

Explodes when #; > 1+ 6: (1 + 6)th and higher moments of the SDF are unbounded






How to derive traditional results using convexity

* 5¢(2,0) + 3¢(0,2) > ¢(1,1)
I e But, as ¢(1,1) = 0, this implies

. .

oz e

¢ Gives the Hansen-Jagannathan bound

(the minimum second moment R is
such that 1/ E[(R/Rf)*] — 1 = the

maximal SR?)

0



How to derive traditional results using convexity

0

o 50(0,0)+ (1-§) e (0,5%) = e(1,1)

e But, as ¢(1,1) = 0, this implies

&)

E [(MRf)ﬂ > {IE

¢ Gives the Snow bound



But we can do better

e Existing bounds connect the blue line
(SDF moments) to the green line
(historical time series) by looking
through the point (1,1) where the CGF

is pinned to zero
e We don’t need to do this!
¢ We can look in any direction once we

realise that the red line (risk-neutral

distribution) is observable
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But we can do better

e Existing bounds connect the blue line
(SDF moments) to the green line
(historical time series) by looking

0 2 through the point (1, 1) where the CGF

0>

is pinned to zero

e We don’t need to do this!

¢ We can look in any direction once we

o realise that the red line (risk-neutral

distribution) is observable



Result (New moment bounds)

For & < 0 or @ > 1, we have
y 0
E [(MRf)ﬂ > sup {E* KR) ]} E
yeR Ry

Inequality is reversed for 6 € (0,1)

When y = 1, reduces to the Snow (1991) bound

When y = 1 and 6 = 2, equivalent to the Hansen-Jagannathan bound

This result lets us derive nontrivial bounds even for a single fixed R (but we could also

optimize across R)
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0
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Result (New moment bounds)

For 8 < 0 or @ > 1, we have

0
c(0.0) 2 sup fc(l,y)+(1—-0)c (Ua ;L/)

e Inequality is reversed for 6 € (0, 1)

When y = 1, reduces to the Snow (1991) bound

When y = 1 and 6 = 2, equivalent to the Hansen-Jagannathan bound

This result lets us derive nontrivial bounds even for a single fixed R (but we could also

optimize across R)



Summary so far

* We have derived new bounds on the moments of the SDF that play the true and
risk-neutral distributions off against one another

e Couldn’t we just do this by plugging returns on option strategies into, say, the
Hansen-Jagannathan bound (Liu, 2021)?

o problem: we only observe option prices over a short time series

o this problem is particularly severe for option strategies: highly skewed and fat-tailed

o our approach allows us to sidestep this issue



Conditional and unconditional CGFs

Our bounds apply conditionally or unconditionally

Conditional risk-neutral CGF ¢;(1, 0) is easy to measure
ct (1,0) = log E; [(Rt+1/Rf,t+1)€]

1 oo
=log {1 +0(6—1) {/ K2 put,(KRyy1)dK + / K2 call,(K Ry 111) dK] }
0 1

the price of a portfolio of options with different strikes K

But conditional true distribution of R is hard to measure, so we work unconditionally

As we measure conditional risk-neutral distribution perfectly, most statistical

uncertainty is associated with the true distribution, not the risk-neutral distribution



Conditional and unconditional CGFs

¢ Unconditional true CGF of R is
¢(0,0) = 1og E [(Ris1/Ryi41)’

¢ Assuming stationarity and ergodicity, we approximate, for large 7',
T-1

1
C((), 9) = 10g T Z (Rt+1/Rf7t+1)9
t=0

20



Conditional and unconditional CGFs

¢ Unconditional counterpart of risk-neutral CGF is

¢(1,0) =logE [Mt+1Rf,t+1 (Rt-i-l/Rf,t—&-l)e}
= logE (Et [Mt+1Rf,t+1 (Rt+1/Rf7t+1)9D

= logE (E: [(Rt-i-l/Rf,t—l—l)a} )

exp{ed(1,0)}

* So we approximate, for large T', (replacing E with Ep =1/T"% "))

1 T
c(1,0) = log > exp{e(1,6)}
t=1

21



Data

e Market returns:

o Global Financial Data: 1871-1926
o CRSP: 1926-2022

Baseline sample is monthly from 1872 to 2022

e Jorda-Schularick-Taylor Macrohistory Database (1872-2020): annual returns from
Jorda, Knoll, Kuvshinov, Schularick, and Taylor (2019)

e S&P 500 index options from OptionMetrics

22



The two observable slices of the CGF in the data

1.0

CGFs
00 02 04 06 0.8
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The two observable slices of the CGF in the data

1
6> /

6,

23



Two special cases

Recall the object:

Oc(l,y)+(1-0)c ((), 7 ﬁ 1y>
Consider two special cases:
e 0 = 2: the lower bound for log E [(M Ry)?] equals
sup 2¢(1, y) — (1, 2y)
i.e., the difference between two Zonvex functions—badly behaved!
® () = 1/2: the upper bound for log E [ MRy
inf %C(l, y) + %C((L —Y),

i.e., the sum of two convex functions—well behaved

24



Instability of volatility bounds

There is no good reason to expect the population volatility of the SDF to be well behaved
¢ It explains the familiar evidence that the Sharpe ratio of option strategies is unstable
(Jackwerth 2000; Coval and Shumway 2001; Goetzmann, Ingersoll, Spiegel and Welch
2007; Bondarenko 2003; Jones 2006; Driessen and Maenhout 2007; Santa-Clara and
Saretto 2009; Broadie, Chernov and Johannes 2009; ...)

To make things worse, we have the following (simplified) results in the sample

Result

Fix 6 > 1. If the most extreme put strike (of a put with positive bid price) in the dataset is lower

than the lowest observed return in sample, then the lower bound can be made arbitrarily large.
e The worst monthly return is —29% (September 1931)

e Put options with strikes more than 29% out of the money have positive bid prices on

73% of days in our sample 2



The convexity bounds for the SDF moments

Realized returns: 1872-2022

[ T T T T I
0l 80 90 ¥0 TO 00
[o(/4 717)]@ So1 10§ spunog
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The convexity bounds for the SDF moments

Realized returns: 1946-2022

01
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The singularity is near

Over the one-month horizon

sample  est. bootstrap CI [E-bootstrap CI E*-bootstrap Cl

1872-2022 1.72 (1.52,2.05)  (1.50,1.97) (1.62,1.87)
1946-2022 1.38 (1.20,1.60)  (1.20,1.56) (1.34,1.45)
1996-2022 1.44 (1.23,1.78)  (1.23,1.77) (1.39,1.52)

¢ The singularity mostly emerges before two

e The majority of estimation uncertainty comes from the realized returns

27



The singularity is near

Over the one-year horizon

sample est. bootstrap CI E-bootstrap CI [E*-bootstrap Cl
1872-2022  1.67 (1.27,2.50) (1.27,2.05) (1.60,2.10)
1946-2022  1.28 (1.15,1.50)  (1.14,1.42) (1.23,1.38)
1996-2022  1.36  (1.14,1.92)  (1.13,1.73) (1.32,1.52)
JKKST annual  1.36  (1.23,1.56) (1.21,1.52) (1.32,1.51)

The singularity mostly emerges before two

The majority of estimation uncertainty comes from the realized returns

Calendar year returns drop severe mid-year crashes (—65%, June 1931 to June 1932)

Less observations, narrower Cl: sensitivity to extreme market crashes



So what can we do?

Result
The moment bounds are well-behaved when 6 € (0, 1), in the sense that the minimization
problem over y on the right-hand side of the inequality has a unique interior minimum.

¢ The variance of the SDF is appealing because it relates the Sharpe ratio

o a measure of the attractiveness of investment opportunities

o ... from the perspective of a one-period investor with quadratic utility
Do these intermediate moments of the SDF hold similar properties?
¢ To do so, we adopt the perspective of a one-period CRRA-v investor

¢ The attractiveness of investment opportunities can be quantified using the
willingness-to-pay (WTP)—the fraction of initial wealth—to be allowed to trade risky

assets, namely g,

28



An WTP-based interpretation

Define

0

B(9) = 5161]% Oc(l,y)+ (1 —0)c (0, Hy) when 6 € (0,1).
e Our previous results say ¢(6,0) = log E[(M R;)?] < B(0)

We also have the following result

Result

The lower bounds are informative about the attractiveness of the investment opportunity set:

B(6 1
972‘()‘ ford=1——, yv>1
0 gl

e For v €(0,1),i.e, 0 <O, similar result (B(¢) = sup,, ...)

¢ A related result for v = 1 (log investors, more on this later) 29



An economic interpretation for the well-behaved SDF moments

Realized return sample: 1872-2022
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Convexity bounds for the SDF: 0 € (0,1) WTP to trade risky assets: v > 1
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An economic interpretation for the well-behaved SDF moments

Realized return sample: 1946-2022

:

0.00 0.05 0.10 0.15 0.20

Upper bounds for log E[(M R;)?)
-0.06 -0.04 -0.02 0.00
9~
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Convexity bounds for the SDF: 0 € (0,1) WTP to trade risky assets: v > 1

In a lognormal world: ¢(6,0) = 1/2X20(0 — 1): ¢(1/2, 0) = \?/8 ~ 3%
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Entropy as measures of variability

Alternative measures of variability: E f(MRy) — f(EMRy) for convex function f
When f(z) = x?, variance

o Variance and, more generally, fth moment bound with 6 ¢ (0, 1) are unstable

When f(x) = xlog z, we obtain Theil’s first entropy measure (Stutzer 1995): the
gradient of ¢(0,0) at =1

Li(MRy) = E* log(MRy)

When f(z) = —log x, we obtain Theil's second entropy measure (Bansal and Lehmann

1997, Alvarez and Jermann 2005): the absolute value of the gradient of ¢(6,0) at # = 0

Ly(MRy) = —Elog(MRy)

Convexity of the CGF also supplies bounds on these quantities, and they behave well

31



Result (Entropy bounds)

R [/ R\"]
Li(MRy) > sup yE*log —— —logE (>
yeR Rf L |

R [/ R\"]
Loy(MRy) > sup yElog — — logE* ()
yeR Rf L |

c(1,y)
e RHSs: difference between a linear and a convex function, so well behaved
e First bound is completely new (impossible to derive without the risk-neutral CGFs)
e Second bound generalizes Alvarez-Jermann
o Fory =1: Lo(MRy) > E[log R — log R¢]
o Expected log returns: attractiveness of investment opportunities for log investors

o Our lower bound is the smallest possible WTP to trade risky assets for log investors
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Result (Entropy bounds)

R [/ R\
Li(MRy) > sup yE*log —— —logE (>
yeR Rf |

R [/ R\"]
Loy(MRy) > sup yElog — — logE* ()
yeR Rf L |

c(1,y)
e Under lognormality, both LHSs are the same, and equal to %V&I‘ log(MRy)
* Deviating from lognormality: let «,, be the nth cumulant of log(M Ry)
“n—2 K K K K
LOMRy) ~LOMRy) =Y ", = 2 ¢ 2 20
n=3

32



Result (Entropy bounds)

_ -
Li(MRy) > sup yE* logﬂ —logE ( >
yeR Rf |

R L0 RN
Lo(MRy) > sup yElog — —logE —
yeR Ry \By) |

c(L,y)

* The optimizing values y* have particularly nice interpretations (more on this later)
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Bounds for the first entropy measure

sample est.

bootstrap Cl

E-bootstrap Cl

E*-bootstrap Cl

Panel A: one month

1872-2022 0.088
1946-2022 0.173
1996-2022 0.157

(0.033,0.175)
(0.070,0.344)
(0.016,0.445)

(0.033,0.177)
(0.071,0.348)
(0.016,0.439)

(0.084,0.093)
(0.165,0.182)
(0.149, 0.165)

Panel B: one year

1872-2022 0.070
1946-2022 0.143
1996-2022 0.122
JKKST annual  0.078

(0.026,0.151)
(0.060, 0.301)
(0.013,0.476)
(0.028,0.178)

(0.027,0.150)
(0.058,0.313)
(0.013,0.478)
(0.028,0.179)

0.062, 0.079
0.129,0.158
0.110,0.133
0.068, 0.088

= D O

(
(
(
(

e The majority of estimation uncertainty still comes from the realized returns

® | ess observations, wider Cl

33



Bounds for the second entropy measure

A-] measure (y = 1)

sample est. bootstrap Cl est. bootstrap CI  E-bootstrap CI  E*-bootstrap Cl
(a) one-month horizon
1872-2022 0.052 (0.023,0.080) 0.062 (0.023,0.122) (0.023,0.120) (0.060, 0.065)
1946-2022 0.066  (0.036,0.100) 0.089 (0.038,0.174)  (0.038,0.174) (0.084,0.094)
1996-2022 0.067 (0.006,0.125) 0.091 (0.009,0.262)  (0.009,0.258) (0.087,0.097)
(b) one-year horizon
1872-2022 0.049 (0.023,0.072) 0.057 (0.023,0.108)  (0.023,0.105) (0.053,0.063)
1946-2022 0.063 (0.034,0.093) 0.084 (0.035,0.173)  (0.035,0.164) (0.076,0.096)
1996-2022 0.067 (0.007,0.118) 0.091 (0.010,0.273)  (0.010,0.265) (0.083,0.104)
JKKST annual  0.045 (0.018,0.076) 0.050 (0.018,0.117)  (0.018,0.114) (0.048,0.055)

o L® < LM: the SDF tends to be positively skewed, heavy-tailed, etc.



Bounds for the intermediate moment 6 = 1/2

sample est. bootstrap Cl E-bootstrap Cl E*-bootstrap Cl
(a) one-month horizon
1872-2022 —0.018 (—0.036,—0.007) (—0.035,—0.007) (—0.018,—0.018)
1946-2022 —0.029 (—0.057,—0.012) (—0.057,—0.012) (—0.030,—0.029)
1996-2022 —0.029 (—0.081,—0.003) (—0.081,—-0.003) (—0.029,—0.029)
(b) one-year horizon
1872-2022 —0.015 (—0.029,—-0.006) (—0.029,—-0.006) (—0.016,—0.015)
1946-2022 —0.026 (—0.052,—0.011) (—0.051,-0.011) (—0.026,—0.025)
1996-2022 —0.025 (—0.084,—0.003) (—0.083,-0.003) (—0.026,—0.025)
JKKST annual  —0.015  (—0.033,—0.005) (—0.033,—0.005) (—0.015,—0.015)

e Similar patterns for all the intermediate moments when 6 € (0, 1)



Lower Bounds for L(® (M Ry)

0.02
1

0.06 0.08 0.10
1 1

0.04
1

Multiple horizons

0.00

g s
- S -]
horizon (months) =) horizon (months) =}
— 1 < .
— 3 — “~ 00
B (gl S
6 = g3
9 =3 =
12 = =
= o8
Yo S
_ = o
=3 Q 1 A
e 3 <
2 g < A
'g =] horizon (months)
5 n m
o — — — 1
/M3 A 2 — 3
- 3 S+ -
8 23 6
5 ) ’
N - 12
T T T T 1 g T T T 1 g T T T 1
0 1 2 3 4 00 05 1.0 1.5 20 -4 -3 -2 -1 0
Y y

The

optimizing values y* in the entropy bounds: measures of the market risk aversion

36



Merton-Samuelson redux

We can interpret the optimizing values of y in the entropy bounds when M o« R™7
The SDF of a myopic power utility investor holding the S&P 500

If R/Ry is lognormal, the Merton-Samuelson (1969) calculation yields:

Under our framework, without any distributional assumptions:
o y* optimizing L1(MRy): —vy
o y* optimizing Lo(MRy): v

37



Implied market risk aversion

first entropy measure L)

second entropy measure L(2)

horizon in months estimate  bootstrap Cl estimate bootstrap Cl
1 2.36 (1.42,3.38) 1.69 (1.00,2.48)
2 2.21 (1.41,3.11) 1.67 (1.05,2.40)
3 2.14 (1.38,3.08) 1.65 (1.02,2.36)
4 2.17 (1.43,3.10) 1.63 (1.09,2.27)
5 2.15 (1.40,3.14) 1.62 (1.03,2.35)
6 2.07 (1.34,3.12) 1.63 (1.03,2.39)
9 1.84 (1.06,2.95) 1.66 (1.00,2.50)
12 1.74 (0.96,2.99) 1.66 (0.99,2.65)
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Conclusion

A unifying framework to understand SDF bounds
o Instead of hunting across the cross-section of assets, we optimally extract information

from the time series of, and option prices on, a fixed asset

Even for the S&P 500, option prices point to very high Sharpe ratios, and to very high,
perhaps even infinite, SDF volatility

o Rethinking the mean-variance framework?
The problem isn’t the short options time series
The problem is that 150 years of market return realizations are not enough

Higher moments of M are similarly fragile
But the intermediate moments and entropy measures have good properties

o They are closely related to measures of market risk aversion and of the attractiveness of

investment opportunities
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