Convexity Bounds for the Stochastic Discount Factor: Theory and Evidence

lan Martin Ran Shi

October, 2025

Background

- Asset prices are often used for assessing expectations:
 - o forward rates
 - o breakeven inflation
 - CDS rates
 - implied volatility
 - o ...
- These are almost continuously observable
- Don't need to rely on economists' models
- And they embody the collective views of market participants
- But they may be distorted by risk: people will pay more for insurance/hedge assets that pay off in scary states of the world

1

Background

- Asset prices are often used for assessing expectations:
 - o forward rates → risk-neutral expected future interest rates
 - \circ breakeven inflation \longrightarrow risk-neutral expected future inflation
 - CDS rates → risk-neutral default probabilities
 - implied volatility —> risk-neutral volatility
 - o ...
- These are almost continuously observable
- Don't need to rely on economists' models
- And they embody the collective views of market participants
- But they may be distorted by risk: people will pay more for insurance/hedge assets that pay off in scary states of the world

1

The importance of risk considerations

For any payoff X:

$$\frac{1}{R_f} \mathbb{E}^* [X] = \mathbb{E}[MX] (= \operatorname{price}[X])$$

- ullet Risk consideration is captured by the stochastic discount factor (SDF), M,
 - o no arbitrage implies "linear pricing"
 - \circ let X=1 (discount bond): $\mathbb{E}\left[M\right]=1/R_f$
- ullet If there is little variation in M, risk consideration is not that important...

The importance of risk considerations

For any payoff X:

$$\frac{1}{R_f} \mathbb{E}^* [X] = \mathbb{E}[MX] (= \operatorname{price}[X])$$

- ullet Risk consideration is captured by the stochastic discount factor (SDF), M,
 - o no arbitrage implies "linear pricing"
 - \circ let X=1 (discount bond): $\mathbb{E}\left[M
 ight]=1/R_f$
- If there is little variation in M, risk consideration is not that important...
- Hansen and Jagannathan (1991): variance of the SDF

$$\operatorname{var}\left[MR_f\right] \ge \operatorname{SR}^2$$

Further characterization

• One "important direction" for future research (Hansen and Jagannathan, 1991): moving beyond means and variances to characterize the SDF more fully

Further characterization

- One "important direction" for future research (Hansen and Jagannathan, 1991): moving beyond means and variances to characterize the SDF more fully
- Snow (1991): for $\theta < 0$ or $\theta > 1$, we have, for any asset return R

$$\mathbb{E}\left[\left(MR_f\right)^{\theta}\right] \geq \left\{\mathbb{E}\left[\left(\frac{R}{R_f}\right)^{\frac{\theta}{\theta-1}}\right]\right\}^{1-\theta}$$

 \circ The θ th moment of the SDF is related to the $\frac{\theta}{\theta-1}$ th moments of asset returns

3

Further characterization

- One "important direction" for future research (Hansen and Jagannathan, 1991): moving beyond means and variances to characterize the SDF more fully
- Snow (1991): for $\theta < 0$ or $\theta > 1$, we have, for any asset return R

$$\mathbb{E}\left[\left(MR_f\right)^{\theta}\right] \geq \left\{\mathbb{E}\left[\left(\frac{R}{R_f}\right)^{\frac{\theta}{\theta-1}}\right]\right\}^{1-\theta}$$

- The θ th moment of the SDF is related to the $\frac{\theta}{\theta-1}$ th moments of asset returns
- $\circ~$ When $\theta \rightarrow$ 1, the Snow bounds rely on extremely high moments of asset returns
 - · hard to measure in practice
 - paradoxically, we know for sure that $\mathbb{E}[MR_f] = 1!$

3

What's missing?

- The Snow bounds exploit the true return distribution
 - o can be estimated from historical realized return time series
- But they ignore the risk-neutral distribution completely!
 - \circ resolving the paradox: $\mathbb{E}[M]$ is directly revealed by the riskless rate
 - the risk-neutral first moment of returns
- We can exploit both the true and the risk-neutral distributions
 - o in addition to realized returns, we use information in option prices
 - known issues for option returns (eg., Jackwerth, 2000; Coval and Shumway, 2001)
 - and only a short history is available

This paper

- We show how to understand all known bounds in a simple unifying framework
- We use the framework to derive new bounds
 - o that play off the true return distribution against the risk-neutral distribution
- We explain why the H-J bound should not be expected to be stable in theory
 - \circ our empirical results show that the moments of the SDF rise exceedingly rapidly as θ rises above one, the H-J bound is perhaps ∞
- We show that certain bounds are stable and they convey nice intuitions
- For all our empirical results, the short option time series is not a problem
- But the "short" (150-year) realized return sample is a problem!

The cumulant-generating function (CGF)

Fixing the asset return R, we consider the function

$$c(\theta_1, \theta_2) = \log \mathbb{E}\left[(MR_f)^{\theta_1} \left(\frac{R}{R_f} \right)^{\theta_2} \right]$$

- c(0,0) = 0: trivial
- c(1,0) = 0: because SDF prices the riskless asset
- c(1,1) = 0: because SDF prices the return R
- $c(\theta_1, \theta_2)$ is a convex function

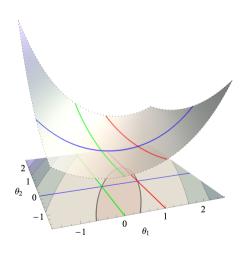
The cumulant-generating function (CGF)

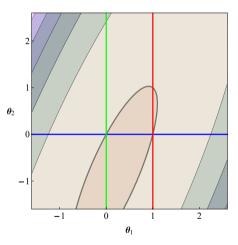
• Observables from asset markets:

$$\begin{array}{l} \circ \ \ \mathsf{Returns:} \ \boldsymbol{c}(0,\,\theta_2) = \log \mathbb{E}\left[(R/R_f)^{\theta_2} \right] \\ \circ \ \ \mathsf{Options:} \ \boldsymbol{c}(1,\,\theta_2) = \log \mathbb{E}\left[(MR_f) \, (R/R_f)^{\theta_2} \right] = \log \mathbb{E}^*\left[(R/R_f)^{\theta_2} \right] \end{array}$$

- Recall that, for any cash flow X: $\operatorname{price}(X) = \mathbb{E}[MX] = \frac{1}{R_f} \mathbb{E}^*[X]$; here, we consider $X = (R/R_f)^{\theta_2}$
- ullet Equilibrium models specify $oldsymbol{c}(heta_1,\,0) = \log \mathbb{E}\left[\left(MR_f
 ight)^{ heta_1}
 ight]$
- ullet For now, think of all expectations as conditional on time t information
- Rich implications: c(0,1) "equity premium"; Cboe $VIX^2 = -2\frac{\partial c}{\partial \theta_2}(1,0)$; CME CVOL is such that $\log(1 + CVOL^2) = c(1,2)$; ...

7





Example 1: Lognormality (Black-Scholes)

• If $MR_f=e^{-\frac{1}{2}\lambda^2-\lambda Z}$ and $R/R_f=e^{\mu-\frac{1}{2}\sigma^2+\sigma W}$, where Z and W are standard normal with correlation ρ , then

$$\mathbf{c}(\theta_1, \theta_2) = \mu \theta_2 (1 - \theta_1) + \frac{1}{2} \lambda^2 \theta_1 (\theta_1 - 1) + \frac{1}{2} \sigma^2 \theta_2 (\theta_2 - 1)$$

• The two observables

$$\mathbf{c}(0,\theta) = \mu\theta + \frac{1}{2}\sigma^2\theta(\theta - 1)$$
$$\mathbf{c}(1,\theta) = \frac{1}{2}\sigma^2\theta(\theta - 1)$$

• We learn nothing interesting from option prices

Example 2: Jump-diffusion (Merton '76)

• If $MR_f=e^{-\frac{1}{2}\lambda^2-\lambda Z-J_1\omega}\left(1+J_1\right)^N$ and $R/R_f=e^{\mu-\frac{1}{2}\sigma^2+\sigma W-J_2\omega}\left(1+J_2\right)^N$, where N is Poisson with intensity ω and J_i are jump sizes, then

$$\mathbf{c}(\theta_1, \theta_2) = \mu \theta_2 (1 - \theta_1) + \frac{1}{2} \lambda^2 \theta_1 (\theta_1 - 1) + \frac{1}{2} \sigma^2 \theta_2 (\theta_2 - 1) + \omega \left[(1 + J_1)^{\theta_1} (1 + J_2)^{\theta_2} - (1 + J_1 \theta_1) (1 + J_2 \theta_2) \right]$$

The two observables

$$\mathbf{c}(0,\theta) = \mu\theta + \frac{1}{2}\sigma^2\theta(\theta - 1) + \omega\left[(1 + J_2)^{\theta} - \theta J_2 - 1\right]$$
$$\mathbf{c}(1,\theta) = \frac{1}{2}\sigma^2\theta(\theta - 1) + \omega(1 + J_1)\left[(1 + J_2)^{\theta} - \theta J_2 - 1\right]$$

• We need to look at option prices to detect J_1

Example 3: Parameter learning

In a pure jump (no diffusion) model, the agent update beliefs about the jump intensity ω based on the observed N (the number of realized jumps) from the prior $\omega \sim \exp(1/\overline{\omega})$

$$c_{t}(\theta_{1}, \theta_{2}) = \theta_{1} \log (1 - \overline{\omega}J_{1}) + \theta_{2} (\mu + \log (1 - \overline{\omega}J_{2}))$$
$$-\log \left(1 - \overline{\omega} \left[(1 + J_{1})^{\theta_{1}} (1 + J_{2})^{\theta_{2}} - 1 \right] \right)$$

If jumps are disasters:

- ullet The true and risk-neutral moments are unbounded for very negative heta
- The positive moments of the SDF also diverge for θ s greater than some critical value that is above one
- The "dismal" economy of Geweke (2001) and Weitzman (2007): every moment of the SDF may be unbounded

Example 4: Heterogeneous beliefs (Martin and Papadimitriou 2022)

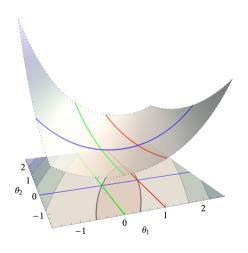
• In MP model, the two observables are both quadratic

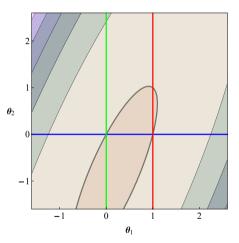
$$c(0,\theta) = \frac{1+\delta}{2\delta}\sigma^2\theta + \frac{1}{2}\sigma^2\theta^2$$
$$c(1,\theta) = \frac{1+\delta}{2\delta}\sigma^2\theta(\theta-1)$$

- σ is true return volatility and $\delta > 0$ controls the amount of disagreement
- But true and risk-neutral volatility differ, so option prices contain information
- The whole surface is

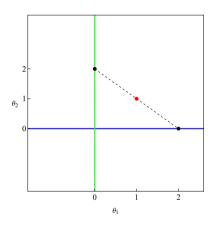
$$c(\theta_1, \theta_2) = \frac{1}{2} \left[\frac{1+\delta}{\delta} \sigma^2 \left(\theta_2 - \theta_1 \right) + \frac{1+\delta}{1+\delta - \theta_1} \sigma^2 \left(\theta_2 - \theta_1 \right)^2 + \log \frac{1+\delta}{1+\delta - \theta_1} - \theta_1 \log \frac{1+\delta}{\delta} \right]$$

• Explodes when $\theta_1 \ge 1 + \delta$: $(1 + \delta)$ th and higher moments of the SDF are unbounded





How to derive traditional results using convexity

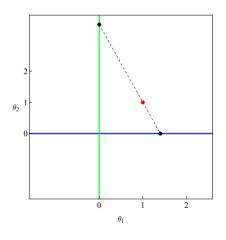


- $\frac{1}{2}c(2,0) + \frac{1}{2}c(0,2) \ge c(1,1)$
- But, as c(1,1) = 0, this implies

$$\mathbb{E}\left[(MR_f)^2\right] \ge \frac{1}{\mathbb{E}\left[\left(\frac{R}{R_f}\right)^2\right]}$$

• Gives the Hansen-Jagannathan bound (the minimum second moment R is such that $1/\mathbb{E}[(R/R_f)^2]-1=$ the maximal SR^2)

How to derive traditional results using convexity

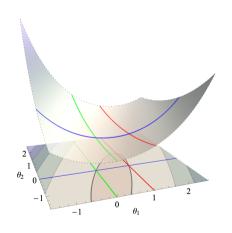


•
$$\frac{1}{\theta}c(\theta,0) + (1-\frac{1}{\theta})c(0,\frac{\theta}{\theta-1}) \ge c(1,1)$$

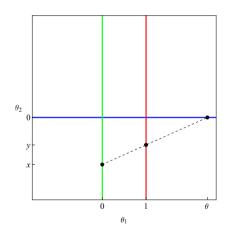
• But, as c(1,1) = 0, this implies

$$\mathbb{E}\left[\left(MR_f\right)^{\theta}\right] \ge \left\{\mathbb{E}\left[\left(\frac{R}{R_f}\right)^{\frac{\theta}{\theta-1}}\right]\right\}^{1-\theta}$$

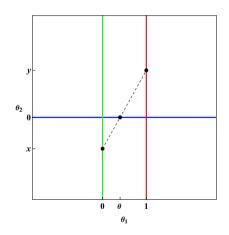
· Gives the Snow bound



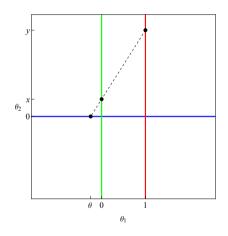
- Existing bounds connect the blue line (SDF moments) to the green line (historical time series) by looking through the point (1,1) where the CGF is pinned to zero
- We don't need to do this!
- We can look in any direction once we realise that the red line (risk-neutral distribution) is observable



- Existing bounds connect the blue line (SDF moments) to the green line (historical time series) by looking through the point (1,1) where the CGF is pinned to zero
- We don't need to do this!
- We can look in any direction once we realise that the red line (risk-neutral distribution) is observable



- Existing bounds connect the blue line (SDF moments) to the green line (historical time series) by looking through the point (1,1) where the CGF is pinned to zero
- We don't need to do this!
- We can look in any direction once we realise that the red line (risk-neutral distribution) is observable



- Existing bounds connect the blue line (SDF moments) to the green line (historical time series) by looking through the point (1,1) where the CGF is pinned to zero
- We don't need to do this!
- We can look in any direction once we realise that the red line (risk-neutral distribution) is observable

$$\mathbb{E}\left[\left(MR_f\right)^{\theta}\right] \ge \sup_{y \in \mathbb{R}} \left\{\mathbb{E}^*\left[\left(\frac{R}{R_f}\right)^y\right]\right\}^{\theta} \left\{\mathbb{E}\left[\left(\frac{R}{R_f}\right)^{\frac{\theta}{\theta-1}y}\right]\right\}^{1-\theta}$$

- Inequality is reversed for $\theta \in (0,1)$
- When y = 1, reduces to the Snow (1991) bound
- When y=1 and $\theta=2$, equivalent to the Hansen-Jagannathan bound
- This result lets us derive nontrivial bounds even for a single fixed R (but we could also
 optimize across R)

$$\mathbb{E}\left[\left(MR_f\right)^{\theta}\right] \ge \sup_{y \in \mathbb{R}} \left\{ \mathbb{E}^* \left[\left(\frac{R}{R_f}\right)^y \right] \right\}^{\theta} \left\{ \mathbb{E}\left[\left(\frac{R}{R_f}\right)^{\frac{\theta}{\theta-1}y} \right] \right\}^{1-\theta}$$

- Inequality is reversed for $\theta \in (0,1)$
- When y = 1, reduces to the Snow (1991) bound
- When y=1 and $\theta=2$, equivalent to the Hansen-Jagannathan bound
- This result lets us derive nontrivial bounds even for a single fixed R (but we could also
 optimize across R)

$$c(\theta, 0) \ge \sup_{y \in \mathbb{R}} \ \theta c(1, y) + (1 - \theta) c\left(0, \frac{\theta}{\theta - 1}y\right)$$

- Inequality is reversed for $\theta \in (0,1)$
- When y=1, reduces to the Snow (1991) bound
- When y=1 and $\theta=2$, equivalent to the Hansen-Jagannathan bound
- This result lets us derive nontrivial bounds even for a single fixed R (but we could also
 optimize across R)

$$c(\theta, 0) \ge \sup_{y \in \mathbb{R}} \theta c(1, y) + (1 - \theta) c\left(0, \frac{\theta}{\theta - 1}y\right)$$

- Inequality is reversed for $\theta \in (0,1)$
- When y=1, reduces to the Snow (1991) bound
- When y=1 and $\theta=2$, equivalent to the Hansen-Jagannathan bound
- This result lets us derive nontrivial bounds even for a single fixed R (but we could also
 optimize across R)

Summary so far

- We have derived new bounds on the moments of the SDF that play the true and risk-neutral distributions off against one another
- Couldn't we just do this by plugging returns on option strategies into, say, the Hansen–Jagannathan bound (Liu, 2021)?
 - o problem: we only observe option prices over a short time series
 - o this problem is particularly severe for option strategies: highly skewed and fat-tailed
 - o our approach allows us to sidestep this issue

Conditional and unconditional CGFs

- Our bounds apply conditionally or unconditionally
- ullet Conditional risk-neutral CGF $oldsymbol{c}_t(1, heta)$ is easy to measure

$$\begin{aligned} \boldsymbol{c}_t\left(1,\theta\right) &= \log \mathbb{E}_t^* \left[\left(R_{t+1}/R_{f,t+1}\right)^{\theta} \right] \\ &= \log \left\{ 1 + \theta(\theta - 1) \left[\underbrace{\int_0^1 K^{\theta - 2} \operatorname{put}_t(KR_{f,t+1}) \, \mathrm{d}K}_{t} + \int_1^\infty K^{\theta - 2} \operatorname{call}_t(KR_{f,t+1}) \, \mathrm{d}K \right] \right\}, \\ & \text{the price of a portfolio of options with different strikes } K \end{aligned}$$

- ullet But conditional true distribution of R is hard to measure, so we work unconditionally
- As we measure conditional risk-neutral distribution perfectly, most statistical uncertainty is associated with the true distribution, not the risk-neutral distribution

Conditional and unconditional CGFs

• Unconditional true CGF of R is

$$\boldsymbol{c}(0,\theta) = \log \mathbb{E}\left[\left(R_{t+1} / R_{f,t+1} \right)^{\theta} \right]$$

ullet Assuming stationarity and ergodicity, we approximate, for large T,

$$c(0,\theta) = \log \frac{1}{T} \sum_{t=0}^{T-1} (R_{t+1}/R_{f,t+1})^{\theta}$$

Conditional and unconditional CGFs

• Unconditional counterpart of risk-neutral CGF is

$$c(1,\theta) = \log \mathbb{E} \left[M_{t+1} R_{f,t+1} \left(R_{t+1} / R_{f,t+1} \right)^{\theta} \right]$$

$$= \log \mathbb{E} \left(\mathbb{E}_t \left[M_{t+1} R_{f,t+1} \left(R_{t+1} / R_{f,t+1} \right)^{\theta} \right] \right)$$

$$= \log \mathbb{E} \left(\underbrace{\mathbb{E}_t^* \left[\left(R_{t+1} / R_{f,t+1} \right)^{\theta} \right]}_{\exp\{c_t(1,\theta)\}} \right)$$

ullet So we approximate, for large T, (replacing $\mathbb E$ with $\mathbb E_T=1/T\sum_t$)

$$\boldsymbol{c}(1,\theta) = \log \frac{1}{T} \sum_{t=1}^{T} \exp \left\{ \boldsymbol{c}_t(1,\theta) \right\}$$

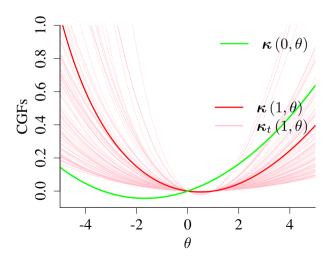
Data

- Market returns:
 - Global Financial Data: 1871–1926
 - o CRSP: 1926-2022

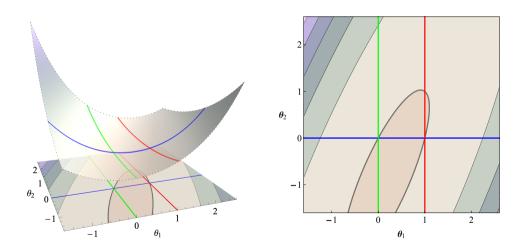
Baseline sample is monthly from 1872 to 2022

- Jordà-Schularick-Taylor Macrohistory Database (1872–2020): annual returns from Jordà, Knoll, Kuvshinov, Schularick, and Taylor (2019)
- S&P 500 index options from OptionMetrics

The two observable slices of the CGF in the data



The two observable slices of the CGF in the data



Two special cases

Recall the object:

$$\theta c(1, y) + (1 - \theta) c\left(0, \frac{\theta}{\theta - 1}y\right)$$

Consider two special cases:

• $\theta = 2$: the lower bound for $\log \mathbb{E}\left[(MR_f)^2\right]$ equals

$$\sup_{y} \ 2c(1, y) - c(1, 2y)$$

i.e., the difference between two convex functions—badly behaved!

• $\theta=1/2$: the upper bound for $\log \mathbb{E}\left[\sqrt{MR_f}\right]$

$$\inf_{y} \frac{1}{2} c(1, y) + \frac{1}{2} c(0, -y),$$

i.e., the sum of two convex functions—well behaved

Instability of volatility bounds

There is no good reason to expect the population volatility of the SDF to be well behaved

• It explains the familiar evidence that the Sharpe ratio of option strategies is unstable (Jackwerth 2000; Coval and Shumway 2001; Goetzmann, Ingersoll, Spiegel and Welch 2007; Bondarenko 2003; Jones 2006; Driessen and Maenhout 2007; Santa-Clara and Saretto 2009; Broadie, Chernov and Johannes 2009; ...)

To make things worse, we have the following (simplified) results in the sample

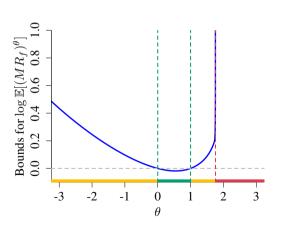
Result

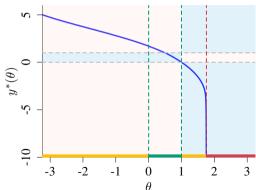
Fix $\theta > 1$. If the most extreme put strike (of a put with positive bid price) in the dataset is lower than the lowest observed return in sample, then the lower bound can be made arbitrarily large.

- The worst monthly return is -29% (September 1931)
- Put options with strikes more than 29% out of the money have positive *bid* prices on 73% of days in our sample

The convexity bounds for the SDF moments

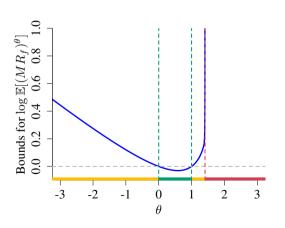
Realized returns: 1872-2022

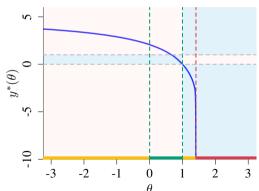




The convexity bounds for the SDF moments

Realized returns: 1946-2022





The singularity is near

Over the one-month horizon

sample	est.	bootstrap Cl	\mathbb{E} -bootstrap Cl	\mathbb{E}^* -bootstrap Cl
1872-2022	1.72	(1.52, 2.05)	(1.50, 1.97)	(1.62, 1.87)
1946-2022	1.38	(1.20, 1.60)	(1.20, 1.56)	(1.34, 1.45)
1996-2022	1.44	(1.23, 1.78)	(1.23, 1.77)	(1.39, 1.52)

- The singularity mostly emerges before two
- The majority of estimation uncertainty comes from the realized returns

The singularity is near

Over the one-year horizon

sample	est.	bootstrap Cl	\mathbb{E} -bootstrap Cl	\mathbb{E}^* -bootstrap Cl
1872-2022	1.67	(1.27, 2.50)	(1.27, 2.05)	(1.60, 2.10)
1946-2022	1.28	(1.15, 1.50)	(1.14, 1.42)	(1.23, 1.38)
1996-2022	1.36	(1.14, 1.92)	(1.13, 1.73)	(1.32, 1.52)
JKKST annual	1.36	(1.23, 1.56)	(1.21, 1.52)	(1.32, 1.51)

- The singularity mostly emerges before two
- The majority of estimation uncertainty comes from the realized returns
- Calendar year returns drop severe mid-year crashes (-65%, June 1931 to June 1932)
- Less observations, narrower Cl: sensitivity to extreme market crashes

So what can we do?

Result

The moment bounds are well-behaved when $\theta \in (0,1)$, in the sense that the minimization problem over y on the right-hand side of the inequality has a unique interior minimum.

- The variance of the SDF is appealing because it relates the Sharpe ratio
 - o a measure of the attractiveness of investment opportunities
 - ... from the perspective of a one-period investor with quadratic utility

Do these intermediate moments of the SDF hold similar properties?

- ullet To do so, we adopt the perspective of a one-period CRRA- γ investor
- The attractiveness of investment opportunities can be quantified using the willingness-to-pay (WTP)—the fraction of initial wealth—to be allowed to trade risky assets, namely g_{γ}

An WTP-based interpretation

Define

$$B(\theta) = \inf_{y \in \mathbb{R}} \; heta oldsymbol{c}(1,y) + (1- heta) oldsymbol{c}\left(0, rac{ heta}{ heta-1}y
ight) \quad ext{when } heta \in (0,1).$$

• Our previous results say $c(\theta, 0) = \log \mathbb{E}[(MR_f)^{\theta}] \leq B(\theta)$

We also have the following result

Result

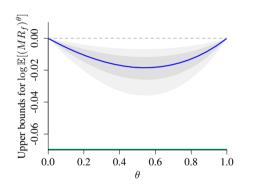
The lower bounds are informative about the attractiveness of the investment opportunity set:

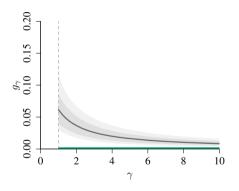
$$g_{\gamma} \geq \left| \frac{B(\theta)}{\theta} \right| \quad \text{for } \theta = 1 - \frac{1}{\gamma}, \ \gamma > 1$$

- For $\gamma \in (0,1)$, i.e., $\theta < 0$, similar result $(B(\theta) = \sup_{\eta} ...)$
- A related result for $\gamma=1$ (log investors, more on this later)

An economic interpretation for the well-behaved SDF moments

Realized return sample: 1872-2022



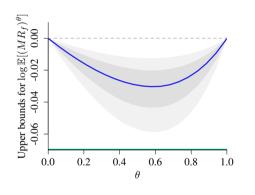


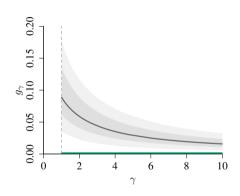
Convexity bounds for the SDF: $\theta \in (0,1)$

WTP to trade risky assets: $\gamma > 1$

An economic interpretation for the well-behaved SDF moments

Realized return sample: 1946-2022





Convexity bounds for the SDF: $\theta \in (0,1)$

WTP to trade risky assets: $\gamma > 1$

In a lognormal world: $c(\theta, 0) = 1/2\lambda^2\theta(\theta - 1)$: $c(1/2, 0) = \lambda^2/8 \approx 3\%$

Entropy as measures of variability

- Alternative measures of variability: $\mathbb{E} f(MR_f) f(\mathbb{E} MR_f)$ for convex function f
- When $f(x) = x^2$, variance
 - \circ Variance and, more generally, θ th moment bound with $\theta \not\in (0,1)$ are unstable
- When $f(x)=x\log x$, we obtain Theil's first entropy measure (Stutzer 1995): the gradient of $c(\theta,0)$ at $\theta=1$

$$L_1(MR_f) = \mathbb{E}^* \log(MR_f)$$

• When $f(x) = -\log x$, we obtain Theil's second entropy measure (Bansal and Lehmann 1997, Alvarez and Jermann 2005): the absolute value of the gradient of $c(\theta, 0)$ at $\theta = 0$

$$L_2(MR_f) = -\mathbb{E}\log(MR_f)$$

• Convexity of the CGF also supplies bounds on these quantities, and they behave well

Result (Entropy bounds)

$$L_1(MR_f) \ge \sup_{y \in \mathbb{R}} y \, \mathbb{E}^* \log \frac{R}{R_f} - \underbrace{\log \mathbb{E} \left[\left(\frac{R}{R_f} \right)^y \right]}_{c(0, y)}$$
$$L_2(MR_f) \ge \sup_{y \in \mathbb{R}} y \, \mathbb{E} \log \frac{R}{R_f} - \underbrace{\log \mathbb{E}^* \left[\left(\frac{R}{R_f} \right)^y \right]}_{c(1, y)}$$

- RHSs: difference between a linear and a convex function, so well behaved
- First bound is completely new (impossible to derive without the risk-neutral CGFs)
- Second bound generalizes Alvarez-Jermann
 - \circ For y = 1: $L_2(MR_f) \ge \mathbb{E}[\log R \log R_f]$
 - Expected log returns: attractiveness of investment opportunities for log investors
 - o Our lower bound is the smallest possible WTP to trade risky assets for log investors

Result (Entropy bounds)

$$L_1(MR_f) \ge \sup_{y \in \mathbb{R}} y \, \mathbb{E}^* \log \frac{R}{R_f} - \underbrace{\log \mathbb{E} \left[\left(\frac{R}{R_f} \right)^y \right]}_{c(0, y)}$$
$$L_2(MR_f) \ge \sup_{y \in \mathbb{R}} y \, \mathbb{E} \log \frac{R}{R_f} - \underbrace{\log \mathbb{E}^* \left[\left(\frac{R}{R_f} \right)^y \right]}_{c(1, y)}$$

- ullet Under lognormality, both LHSs are the same, and equal to $rac{1}{2} \operatorname{var} \log(MR_f)$
- ullet Deviating from lognormality: let κ_n be the nth cumulant of $\log(MR_f)$

$$L^{(1)}(MR_f) - L^{(2)}(MR_f) = \sum_{n=3}^{\infty} \frac{n-2}{n!} \kappa_n = \frac{\kappa_3}{6} + \frac{\kappa_4}{12} + \frac{\kappa_5}{40} + \frac{\kappa_6}{180} + \cdots,$$

Result (Entropy bounds)

$$L_1(MR_f) \ge \sup_{y \in \mathbb{R}} y \, \mathbb{E}^* \log \frac{R}{R_f} - \underbrace{\log \mathbb{E} \left[\left(\frac{R}{R_f} \right)^g \right]}_{c(0, y)}$$
$$L_2(MR_f) \ge \sup_{y \in \mathbb{R}} y \, \mathbb{E} \log \frac{R}{R_f} - \underbrace{\log \mathbb{E}^* \left[\left(\frac{R}{R_f} \right)^y \right]}_{c(1, y)}$$

• The optimizing values y^* have particularly nice interpretations (more on this later)

Bounds for the first entropy measure

sample	est.	bootstrap Cl	\mathbb{E} -bootstrap Cl	\mathbb{E}^* -bootstrap Cl			
Panel A: one month							
1872-2022	0.088	(0.033, 0.175)	(0.033, 0.177)	(0.084, 0.093)			
1946-2022	0.173	(0.070, 0.344)	(0.071, 0.348)	(0.165, 0.182)			
1996-2022	0.157	(0.016, 0.445)	(0.016, 0.439)	(0.149, 0.165)			
Pan	Panel B: one year						
1872-2022	0.070	(0.026, 0.151)	(0.027, 0.150)	(0.062, 0.079)			
1946-2022	0.143	(0.060, 0.301)	(0.058, 0.313)	(0.129, 0.158)			
1996-2022	0.122	(0.013, 0.476)	(0.013, 0.478)	(0.110, 0.133)			
JKKST annual	0.078	(0.028, 0.178)	(0.028, 0.179)	(0.068, 0.088)			

- The majority of estimation uncertainty still comes from the realized returns
- Less observations, wider Cl

Bounds for the second entropy measure

	A-J m	easure ($y=1$)				
sample	est.	bootstrap Cl	est.	bootstrap Cl	$\mathbb{E} ext{-bootstrap}$ Cl	\mathbb{E}^* -bootstrap Cl
(a) one-month horizon						
1872-2022	0.052	(0.023, 0.080)	0.062	(0.023, 0.122)	(0.023, 0.120)	(0.060, 0.065)
1946-2022	0.066	(0.036, 0.100)	0.089	(0.038, 0.174)	(0.038, 0.174)	(0.084, 0.094)
1996-2022	0.067	(0.006, 0.125)	0.091	(0.009, 0.262)	(0.009, 0.258)	(0.087, 0.097)
(b) one-year horizon						
1872-2022	0.049	(0.023, 0.072)	0.057	(0.023, 0.108)	(0.023, 0.105)	(0.053, 0.063)
1946-2022	0.063	(0.034, 0.093)	0.084	(0.035, 0.173)	(0.035, 0.164)	(0.076, 0.096)
1996-2022	0.067	(0.007, 0.118)	0.091	(0.010, 0.273)	(0.010, 0.265)	(0.083, 0.104)
JKKST annual	0.045	(0.018, 0.076)	0.050	(0.018, 0.117)	(0.018, 0.114)	(0.048, 0.055)

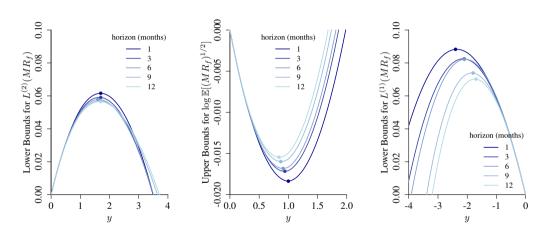
 $[\]bullet \ L^{(2)} < L^{(1)} :$ the SDF tends to be positively skewed, heavy-tailed, etc.

Bounds for the intermediate moment $\theta=1/2$

sample	est.	bootstrap Cl	\mathbb{E} -bootstrap Cl	\mathbb{E}^* -bootstrap Cl			
(a) one-month horizon							
1872-2022	-0.018	(-0.036, -0.007)	(-0.035, -0.007)	(-0.018, -0.018)			
1946-2022	-0.029	(-0.057, -0.012)	(-0.057, -0.012)	(-0.030, -0.029)			
1996-2022	-0.029	(-0.081, -0.003)	(-0.081, -0.003)	(-0.029, -0.029)			
(b) one-year horizon							
1872-2022	-0.015	(-0.029, -0.006)	(-0.029, -0.006)	(-0.016, -0.015)			
1946-2022	-0.026	(-0.052, -0.011)	(-0.051, -0.011)	(-0.026, -0.025)			
1996-2022	-0.025	(-0.084, -0.003)	(-0.083, -0.003)	(-0.026, -0.025)			
JKKST annual	-0.015	(-0.033, -0.005)	(-0.033, -0.005)	(-0.015, -0.015)			

 \bullet Similar patterns for all the intermediate moments when $\theta \in (0,\,1)$

Multiple horizons



ullet The optimizing values y^* in the entropy bounds: measures of the market risk aversion

Merton-Samuelson redux

- ullet We can interpret the optimizing values of y in the entropy bounds when $M \propto R^{-\gamma}$
- The SDF of a myopic power utility investor holding the S&P 500
- If R/R_f is lognormal, the Merton–Samuelson (1969) calculation yields:

$$\gamma = \frac{\mu}{\sigma^2} \approx 2$$

- Under our framework, without any distributional assumptions:
 - $\circ y^*$ optimizing $L_1(MR_f)$: $-\gamma$
 - $\circ y^*$ optimizing $L_2(MR_f)$: γ

Implied market risk aversion

	first entropy measure ${\cal L}^{(1)}$		second entropy measure ${\cal L}^{(2)}$	
horizon in months	estimate	bootstrap Cl	estimate	bootstrap Cl
1	2.36	(1.42, 3.38)	1.69	(1.00, 2.48)
2	2.21	(1.41, 3.11)	1.67	(1.05, 2.40)
3	2.14	(1.38, 3.08)	1.65	(1.02, 2.36)
4	2.17	(1.43, 3.10)	1.63	(1.09, 2.27)
5	2.15	(1.40, 3.14)	1.62	(1.03, 2.35)
6	2.07	(1.34, 3.12)	1.63	(1.03, 2.39)
9	1.84	(1.06, 2.95)	1.66	(1.00, 2.50)
12	1.74	(0.96, 2.99)	1.66	(0.99, 2.65)

Conclusion

- A unifying framework to understand SDF bounds
 - Instead of hunting across the cross-section of assets, we optimally extract information from the time series of, and option prices on, a fixed asset
- Even for the S&P 500, option prices point to very high Sharpe ratios, and to very high, perhaps even infinite, SDF volatility
 - Rethinking the mean-variance framework?
- The problem isn't the short options time series
- The problem is that 150 years of market return realizations are not enough
- ullet Higher moments of M are similarly fragile
- But the intermediate moments and entropy measures have good properties
 - They are closely related to measures of market risk aversion and of the attractiveness of investment opportunities