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Background

• Asset prices are often used for assessing expectations:

◦ forward rates

◦ breakeven inflation

◦ CDS rates

◦ implied volatility

◦ . . .

• These are almost continuously observable

• Don’t need to rely on economists’ models

• And they embody the collective views of market participants

• But they may be distorted by risk: people will pay more for insurance/hedge assets

that pay off in scary states of the world
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The importance of risk considerations

For any payoff X :
1

Rf
E∗ [X] = E[MX](= price[X])

• Risk consideration is captured by the stochastic discount factor (SDF), M ,

◦ no arbitrage implies “linear pricing”

◦ let X = 1 (discount bond): E [M ] = 1/Rf

• If there is little variation in M , risk consideration is not that important...

• Hansen and Jagannathan (1991): variance of the SDF

var [MRf ] ≥ SR2
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Further characterization

• One “important direction” for future research (Hansen and Jagannathan, 1991): moving

beyond means and variances to characterize the SDF more fully

• Snow (1991): for θ < 0 or θ > 1, we have, for any asset return R

E
[
(MRf )

θ
]
≥

{
E

[(
R

Rf

) θ
θ−1

]}1−θ

◦ The θth moment of the SDF is related to the θ
θ−1 th moments of asset returns

◦ When θ → 1, the Snow bounds rely on extremely high moments of asset returns

• hard to measure in practice

• paradoxically, we know for sure that E[MRf ] = 1!
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What’s missing?

• The Snow bounds exploit the true return distribution

◦ can be estimated from historical realized return time series

• But they ignore the risk-neutral distribution completely!

◦ resolving the paradox: E[M ] is directly revealed by the riskless rate

◦ the risk-neutral first moment of returns

• We can exploit both the true and the risk-neutral distributions
◦ in addition to realized returns, we use information in option prices

• known issues for option returns (eg., Jackwerth, 2000; Coval and Shumway, 2001)

• and only a short history is available
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This paper

• We show how to understand all known bounds in a simple unifying framework

• We use the framework to derive new bounds

◦ that play off the true return distribution against the risk-neutral distribution

• We explain why the H-J bound should not be expected to be stable in theory

◦ our empirical results show that the moments of the SDF rise exceedingly rapidly as θ

rises above one, the H-J bound is perhaps ∞

• We show that certain bounds are stable and they convey nice intuitions

• For all our empirical results, the short option time series is not a problem

• But the “short” (150-year) realized return sample is a problem!
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The cumulant-generating function (CGF)

Fixing the asset return R, we consider the function

c(θ1, θ2) = logE

[
(MRf )

θ1

(
R

Rf

)θ2
]

• c(0, 0) = 0: trivial

• c(1, 0) = 0: because SDF prices the riskless asset

• c(1, 1) = 0: because SDF prices the return R

• c(θ1, θ2) is a convex function
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The cumulant-generating function (CGF)

• Observables from asset markets:

◦ Returns: c(0, θ2) = logE
[
(R/Rf )

θ2
]

◦ Options: c(1, θ2) = logE
[
(MRf ) (R/Rf )

θ2
]
= logE∗

[
(R/Rf )

θ2
]

• Recall that, for any cash flow X : price(X) = E[MX] =
1

Rf
E∗[X]; here, we consider

X = (R/Rf )
θ2

• Equilibrium models specify c(θ1, 0) = logE
[
(MRf )

θ1
]

• For now, think of all expectations as conditional on time t information

• Rich implications: c(0, 1) “equity premium”; Cboe VIX2 = −2 ∂c
∂θ2

(1, 0); CME CVOL is

such that log(1 + CVOL2) = c(1, 2); . . .
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Example 1: Lognormality (Black-Scholes)

• If MRf = e−
1
2
λ2−λZ and R/Rf = eµ−

1
2
σ2+σW , where Z and W are standard normal

with correlation ρ, then

c(θ1, θ2) = µθ2(1− θ1) +
1

2
λ2θ1(θ1 − 1) +

1

2
σ2θ2(θ2 − 1)

• The two observables

c(0, θ) = µθ +
1

2
σ2θ(θ − 1)

c(1, θ) =
1

2
σ2θ(θ − 1)

• We learn nothing interesting from option prices
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Example 2: Jump-diffusion (Merton ’76)

• If MRf = e−
1
2
λ2−λZ−J1ω (1 + J1)

N and R/Rf = eµ−
1
2
σ2+σW−J2ω (1 + J2)

N , where

N is Poisson with intensity ω and Ji are jump sizes, then

c(θ1, θ2) = µθ2(1− θ1) +
1

2
λ2θ1(θ1 − 1) +

1

2
σ2θ2(θ2 − 1) +

+ ω
[
(1 + J1)

θ1 (1 + J2)
θ2 − (1 + J1θ1)(1 + J2θ2)

]
• The two observables

c(0, θ) = µθ +
1

2
σ2θ(θ − 1) + ω

[
(1 + J2)

θ − θJ2 − 1
]

c(1, θ) =
1

2
σ2θ(θ − 1) + ω(1 + J1)

[
(1 + J2)

θ − θJ2 − 1
]

• We need to look at option prices to detect J1
10



Example 3: Parameter learning

In a pure jump (no diffusion) model, the agent update beliefs about the jump intensity ω

based on the observed N (the number of realized jumps) from the prior ω ∼ exp(1/ω)

ct(θ1, θ2) =θ1 log (1− ωJ1) + θ2 (µ+ log (1− ωJ2))

− log
(
1− ω

[
(1 + J1)

θ1 (1 + J2)
θ2 − 1

])
If jumps are disasters:

• The true and risk-neutral moments are unbounded for very negative θ

• The positive moments of the SDF also diverge for θs greater than some critical value

that is above one
• The “dismal” economy of Geweke (2001) and Weitzman (2007): every moment of the

SDF may be unbounded
11



Example 4: Heterogeneous beliefs (Martin and Papadimitriou 2022)

• In MP model, the two observables are both quadratic

c(0, θ) =
1 + δ

2δ
σ2θ +

1

2
σ2θ2

c(1, θ) =
1 + δ

2δ
σ2θ(θ − 1)

• σ is true return volatility and δ > 0 controls the amount of disagreement

• But true and risk-neutral volatility differ, so option prices contain information
• The whole surface is

c(θ1, θ2) =
1

2

[
1 + δ

δ
σ2 (θ2 − θ1) +

1 + δ

1 + δ − θ1
σ2 (θ2 − θ1)

2
+ log

1 + δ

1 + δ − θ1
− θ1 log

1 + δ

δ

]
• Explodes when θ1 ≥ 1 + δ: (1 + δ)th and higher moments of the SDF are unbounded
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How to derive traditional results using convexity

0 1 2

0

1

2

θ1

θ2

• 1
2c(2, 0) +

1
2c(0, 2) ≥ c(1, 1)

• But, as c(1, 1) = 0, this implies

E
[
(MRf )

2
]
≥ 1

E
[(

R
Rf

)2
]

• Gives the Hansen–Jagannathan bound

(the minimum second moment R is

such that 1/E[(R/Rf )
2]− 1 = the

maximal SR2)
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How to derive traditional results using convexity

0 1 2

0

1

2

θ1

θ2

• 1
θc(θ, 0) +

(
1− 1

θ

)
c
(
0, θ

θ−1

)
≥ c(1, 1)

• But, as c(1, 1) = 0, this implies

E
[
(MRf )

θ
]
≥

{
E

[(
R

Rf

) θ
θ−1

]}1−θ

• Gives the Snow bound

15



But we can do better

• Existing bounds connect the blue line

(SDF moments) to the green line

(historical time series) by looking

through the point (1, 1) where the CGF

is pinned to zero

• We don’t need to do this!

• We can look in any direction once we

realise that the red line (risk-neutral

distribution) is observable

16



But we can do better

0 1 θ

0

y

x

θ1

θ2

• Existing bounds connect the blue line

(SDF moments) to the green line

(historical time series) by looking

through the point (1, 1) where the CGF

is pinned to zero

• We don’t need to do this!

• We can look in any direction once we

realise that the red line (risk-neutral

distribution) is observable

16



But we can do better

0 1θ

0

y

x

θ1

θ2

• Existing bounds connect the blue line

(SDF moments) to the green line

(historical time series) by looking

through the point (1, 1) where the CGF

is pinned to zero

• We don’t need to do this!

• We can look in any direction once we

realise that the red line (risk-neutral

distribution) is observable

16



But we can do better

0 1θ

0

y

x

θ1

θ2

• Existing bounds connect the blue line

(SDF moments) to the green line

(historical time series) by looking

through the point (1, 1) where the CGF

is pinned to zero

• We don’t need to do this!

• We can look in any direction once we

realise that the red line (risk-neutral

distribution) is observable

16



Result (New moment bounds)

For θ < 0 or θ > 1, we have

E
[
(MRf )

θ
]
≥ sup

y∈R

{
E∗

[(
R

Rf

)y]}θ
{
E

[(
R

Rf

) θ
θ−1

y
]}1−θ

• Inequality is reversed for θ ∈ (0, 1)

• When y = 1, reduces to the Snow (1991) bound

• When y = 1 and θ = 2, equivalent to the Hansen–Jagannathan bound

• This result lets us derive nontrivial bounds even for a single fixed R (but we could also

optimize across R)
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Summary so far

• We have derived new bounds on the moments of the SDF that play the true and

risk-neutral distributions off against one another

• Couldn’t we just do this by plugging returns on option strategies into, say, the
Hansen–Jagannathan bound (Liu, 2021)?

◦ problem: we only observe option prices over a short time series

◦ this problem is particularly severe for option strategies: highly skewed and fat-tailed

◦ our approach allows us to sidestep this issue
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Conditional and unconditional CGFs

• Our bounds apply conditionally or unconditionally
• Conditional risk-neutral CGF ct(1, θ) is easy to measure

ct (1, θ) = logE∗
t

[
(Rt+1/Rf,t+1)

θ
]

= log

{
1 + θ(θ − 1)

[ ∫ 1

0

Kθ−2 putt(KRf,t+1) dK +

∫ ∞

1

Kθ−2 callt(KRf,t+1) dK︸ ︷︷ ︸
the price of a portfolio of options with different strikes K

]}
,

• But conditional true distribution of R is hard to measure, so we work unconditionally

• As we measure conditional risk-neutral distribution perfectly, most statistical

uncertainty is associated with the true distribution, not the risk-neutral distribution
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Conditional and unconditional CGFs

• Unconditional true CGF of R is

c(0, θ) = logE
[
(Rt+1/Rf,t+1)

θ
]

• Assuming stationarity and ergodicity, we approximate, for large T ,

c(0, θ) = log
1

T

T−1∑
t=0

(Rt+1/Rf,t+1)
θ

20



Conditional and unconditional CGFs

• Unconditional counterpart of risk-neutral CGF is

c(1, θ) = logE
[
Mt+1Rf,t+1 (Rt+1/Rf,t+1)

θ
]

= logE
(
Et

[
Mt+1Rf,t+1 (Rt+1/Rf,t+1)

θ
])

= logE
(
E∗
t

[
(Rt+1/Rf,t+1)

θ
]

︸ ︷︷ ︸
exp{ct(1,θ)}

)

• So we approximate, for large T , (replacing E with ET = 1/T
∑

t)

c(1, θ) = log
1

T

T∑
t=1

exp {ct(1, θ)}
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Data

• Market returns:

◦ Global Financial Data: 1871–1926

◦ CRSP: 1926–2022

Baseline sample is monthly from 1872 to 2022

• Jordà–Schularick–Taylor Macrohistory Database (1872–2020): annual returns from

Jordà, Knoll, Kuvshinov, Schularick, and Taylor (2019)

• S&P 500 index options from OptionMetrics
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The two observable slices of the CGF in the data
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The two observable slices of the CGF in the data
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Two special cases

Recall the object:

θ c(1, y) + (1− θ) c

(
0,

θ

θ − 1
y

)
Consider two special cases:

• θ = 2: the lower bound for logE
[
(MRf )

2
]
equals

sup
y

2c(1, y)− c(1, 2y)

i.e., the difference between two convex functions—badly behaved!

• θ = 1/2: the upper bound for logE
[√

MRf

]
inf
y

1

2
c(1, y) +

1

2
c (0, −y),

i.e., the sum of two convex functions—well behaved

24



Instability of volatility bounds

There is no good reason to expect the population volatility of the SDF to be well behaved
• It explains the familiar evidence that the Sharpe ratio of option strategies is unstable

(Jackwerth 2000; Coval and Shumway 2001; Goetzmann, Ingersoll, Spiegel and Welch

2007; Bondarenko 2003; Jones 2006; Driessen and Maenhout 2007; Santa-Clara and

Saretto 2009; Broadie, Chernov and Johannes 2009; . . . )

To make things worse, we have the following (simplified) results in the sample

Result

Fix θ > 1. If the most extreme put strike (of a put with positive bid price) in the dataset is lower

than the lowest observed return in sample, then the lower bound can be made arbitrarily large.

• The worst monthly return is −29% (September 1931)
• Put options with strikes more than 29% out of the money have positive bid prices on

73% of days in our sample 25



The convexity bounds for the SDF moments

Realized returns: 1872-2022
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The convexity bounds for the SDF moments

Realized returns: 1946-2022
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The singularity is near

Over the one-month horizon

sample est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

1872-2022 1.72 (1.52, 2.05) (1.50, 1.97) (1.62, 1.87)

1946-2022 1.38 (1.20, 1.60) (1.20, 1.56) (1.34, 1.45)

1996-2022 1.44 (1.23, 1.78) (1.23, 1.77) (1.39, 1.52)

• The singularity mostly emerges before two

• The majority of estimation uncertainty comes from the realized returns

27



The singularity is near

Over the one-year horizon

sample est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

1872-2022 1.67 (1.27, 2.50) (1.27, 2.05) (1.60, 2.10)

1946-2022 1.28 (1.15, 1.50) (1.14, 1.42) (1.23, 1.38)

1996-2022 1.36 (1.14, 1.92) (1.13, 1.73) (1.32, 1.52)

JKKST annual 1.36 (1.23, 1.56) (1.21, 1.52) (1.32, 1.51)

• The singularity mostly emerges before two

• The majority of estimation uncertainty comes from the realized returns

• Calendar year returns drop severe mid-year crashes (−65%, June 1931 to June 1932)

• Less observations, narrower CI: sensitivity to extreme market crashes
27



So what can we do?

Result

The moment bounds are well-behaved when θ ∈ (0, 1), in the sense that the minimization

problem over y on the right-hand side of the inequality has a unique interior minimum.

• The variance of the SDF is appealing because it relates the Sharpe ratio
◦ a measure of the attractiveness of investment opportunities

◦ ... from the perspective of a one-period investor with quadratic utility

Do these intermediate moments of the SDF hold similar properties?

• To do so, we adopt the perspective of a one-period CRRA-γ investor

• The attractiveness of investment opportunities can be quantified using the

willingness-to-pay (WTP)—the fraction of initial wealth—to be allowed to trade risky

assets, namely gγ
28



An WTP-based interpretation

Define

B(θ) = inf
y∈R

θc(1, y) + (1− θ)c

(
0,

θ

θ − 1
y

)
when θ ∈ (0, 1).

• Our previous results say c(θ, 0) = logE[(MRf )
θ] ≤ B(θ)

We also have the following result

Result

The lower bounds are informative about the attractiveness of the investment opportunity set:

gγ ≥
∣∣∣∣B(θ)

θ

∣∣∣∣ for θ = 1− 1

γ
, γ > 1

• For γ ∈ (0, 1), i.e., θ < 0, similar result (B(θ) = supy ...)
• A related result for γ = 1 (log investors, more on this later) 29



An economic interpretation for the well-behaved SDF moments

Realized return sample: 1872–2022
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Convexity bounds for the SDF: θ ∈ (0, 1) WTP to trade risky assets: γ > 1
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An economic interpretation for the well-behaved SDF moments

Realized return sample: 1946–2022
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In a lognormal world: c(θ, 0) = 1/2λ2θ(θ − 1): c(1/2, 0) = λ2/8 ≈ 3%
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Entropy as measures of variability

• Alternative measures of variability: E f(MRf )− f(EMRf ) for convex function f

• When f(x) = x2, variance

◦ Variance and, more generally, θth moment bound with θ ̸∈ (0, 1) are unstable

• When f(x) = x log x, we obtain Theil’s first entropy measure (Stutzer 1995): the

gradient of c(θ, 0) at θ = 1

L1(MRf ) = E∗ log(MRf )

• When f(x) = − log x, we obtain Theil’s second entropy measure (Bansal and Lehmann

1997, Alvarez and Jermann 2005): the absolute value of the gradient of c(θ, 0) at θ = 0

L2(MRf ) = −E log(MRf )

• Convexity of the CGF also supplies bounds on these quantities, and they behave well
31



Result (Entropy bounds)

L1(MRf ) ≥ sup
y∈R

y E∗ log
R

Rf
− logE

[(
R

Rf

)y]
︸ ︷︷ ︸

c(0, y)

L2(MRf ) ≥ sup
y∈R

y E log
R

Rf
− logE∗

[(
R

Rf

)y]
︸ ︷︷ ︸

c(1, y)

• RHSs: difference between a linear and a convex function, so well behaved
• First bound is completely new (impossible to derive without the risk-neutral CGFs)
• Second bound generalizes Alvarez–Jermann

◦ For y = 1: L2(MRf ) ≥ E[logR− logRf ]

◦ Expected log returns: attractiveness of investment opportunities for log investors

◦ Our lower bound is the smallest possible WTP to trade risky assets for log investors
32



Result (Entropy bounds)

L1(MRf ) ≥ sup
y∈R

y E∗ log
R

Rf
− logE

[(
R

Rf

)y]
︸ ︷︷ ︸

c(0, y)

L2(MRf ) ≥ sup
y∈R

y E log
R

Rf
− logE∗

[(
R

Rf

)y]
︸ ︷︷ ︸

c(1, y)

• Under lognormality, both LHSs are the same, and equal to 1
2 var log(MRf )

• Deviating from lognormality: let κn be the nth cumulant of log(MRf )

L(1)(MRf )− L(2)(MRf ) =

∞∑
n=3

n− 2

n!
κn =

κ3
6

+
κ4
12

+
κ5
40

+
κ6
180

+ · · · ,
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R

Rf
− logE

[(
R

Rf

)y]
︸ ︷︷ ︸

c(0, y)

L2(MRf ) ≥ sup
y∈R

y E log
R

Rf
− logE∗

[(
R

Rf

)y]
︸ ︷︷ ︸

c(1, y)

• The optimizing values y∗ have particularly nice interpretations (more on this later)
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Bounds for the first entropy measure

sample est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

Panel A: one month

1872-2022 0.088 (0.033, 0.175) (0.033, 0.177) (0.084, 0.093)

1946-2022 0.173 (0.070, 0.344) (0.071, 0.348) (0.165, 0.182)

1996-2022 0.157 (0.016, 0.445) (0.016, 0.439) (0.149, 0.165)

Panel B: one year

1872-2022 0.070 (0.026, 0.151) (0.027, 0.150) (0.062, 0.079)

1946-2022 0.143 (0.060, 0.301) (0.058, 0.313) (0.129, 0.158)

1996-2022 0.122 (0.013, 0.476) (0.013, 0.478) (0.110, 0.133)

JKKST annual 0.078 (0.028, 0.178) (0.028, 0.179) (0.068, 0.088)

• The majority of estimation uncertainty still comes from the realized returns

• Less observations, wider CI
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Bounds for the second entropy measure

A–J measure (y = 1)

sample est. bootstrap CI est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

(a) one-month horizon

1872-2022 0.052 (0.023, 0.080) 0.062 (0.023, 0.122) (0.023, 0.120) (0.060, 0.065)

1946-2022 0.066 (0.036, 0.100) 0.089 (0.038, 0.174) (0.038, 0.174) (0.084, 0.094)

1996-2022 0.067 (0.006, 0.125) 0.091 (0.009, 0.262) (0.009, 0.258) (0.087, 0.097)

(b) one-year horizon

1872-2022 0.049 (0.023, 0.072) 0.057 (0.023, 0.108) (0.023, 0.105) (0.053, 0.063)

1946-2022 0.063 (0.034, 0.093) 0.084 (0.035, 0.173) (0.035, 0.164) (0.076, 0.096)

1996-2022 0.067 (0.007, 0.118) 0.091 (0.010, 0.273) (0.010, 0.265) (0.083, 0.104)

JKKST annual 0.045 (0.018, 0.076) 0.050 (0.018, 0.117) (0.018, 0.114) (0.048, 0.055)

• L(2) < L(1): the SDF tends to be positively skewed, heavy-tailed, etc.
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Bounds for the intermediate moment θ = 1/2

sample est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

(a) one-month horizon

1872-2022 −0.018 (−0.036,−0.007) (−0.035,−0.007) (−0.018,−0.018)

1946-2022 −0.029 (−0.057,−0.012) (−0.057,−0.012) (−0.030,−0.029)

1996-2022 −0.029 (−0.081,−0.003) (−0.081,−0.003) (−0.029,−0.029)

(b) one-year horizon

1872-2022 −0.015 (−0.029,−0.006) (−0.029,−0.006) (−0.016,−0.015)

1946-2022 −0.026 (−0.052,−0.011) (−0.051,−0.011) (−0.026,−0.025)

1996-2022 −0.025 (−0.084,−0.003) (−0.083,−0.003) (−0.026,−0.025)

JKKST annual −0.015 (−0.033,−0.005) (−0.033,−0.005) (−0.015,−0.015)

• Similar patterns for all the intermediate moments when θ ∈ (0, 1)
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Multiple horizons
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• The optimizing values y∗ in the entropy bounds: measures of the market risk aversion
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Merton–Samuelson redux

• We can interpret the optimizing values of y in the entropy bounds when M ∝ R−γ

• The SDF of a myopic power utility investor holding the S&P 500

• If R/Rf is lognormal, the Merton–Samuelson (1969) calculation yields:

γ =
µ

σ2
≈ 2

• Under our framework, without any distributional assumptions:

◦ y∗ optimizing L1(MRf ): −γ

◦ y∗ optimizing L2(MRf ): γ
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Implied market risk aversion

first entropy measure L(1) second entropy measure L(2)

horizon in months estimate bootstrap CI estimate bootstrap CI

1 2.36 (1.42, 3.38) 1.69 (1.00, 2.48)

2 2.21 (1.41, 3.11) 1.67 (1.05, 2.40)

3 2.14 (1.38, 3.08) 1.65 (1.02, 2.36)

4 2.17 (1.43, 3.10) 1.63 (1.09, 2.27)

5 2.15 (1.40, 3.14) 1.62 (1.03, 2.35)

6 2.07 (1.34, 3.12) 1.63 (1.03, 2.39)

9 1.84 (1.06, 2.95) 1.66 (1.00, 2.50)

12 1.74 (0.96, 2.99) 1.66 (0.99, 2.65)
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Conclusion

• A unifying framework to understand SDF bounds
◦ Instead of hunting across the cross-section of assets, we optimally extract information

from the time series of, and option prices on, a fixed asset

• Even for the S&P 500, option prices point to very high Sharpe ratios, and to very high,
perhaps even infinite, SDF volatility

◦ Rethinking the mean-variance framework?

• The problem isn’t the short options time series

• The problem is that 150 years of market return realizations are not enough

• Higher moments of M are similarly fragile
• But the intermediate moments and entropy measures have good properties

◦ They are closely related to measures of market risk aversion and of the attractiveness of

investment opportunities
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