Internet Appendix

Results 4 and 5 of the main text characterized when disasters matter, but at the cost of
putting a certain amount of structure on the pricing problem: a conditional lognormality
assumption in the case of Result 4, and an assumption about the form of the stochastic
discount factor in the case of Result 5. This appendix relaxes these assumptions. The
first section remains in the conditionally lognormal framework, but allows for imperfectly
correlation between log returns and the log SDF, thereby allowing for unpriced as well as
priced risk. The second section presents a result that can be thought of as a litmus test for

whether disasters matter in more general frameworks.

Imperfect correlation between log R and log M

This section presents a result that addresses the case of imperfect correlation between log
returns and the log SDF, thereby allowing for some of the asset’s risk to be unpriced. In full
generality, there are certain obvious constraints on what can be said, since we can always add
idiosyncratic noise to a return without affecting pricing. My starting point is a factorization
of MR, into an idiosyncratic component I; and a systematic component S;. Having done
so we find, first, that large values of the systematic component, S;, can only be attributed
to bad news (given the empirically observed Sharpe ratio and volatility of the market) and,
second, that the fact that the market’s Sharpe ratio appears to be not just higher but
considerably higher than its volatility places tight limits on the importance of I; relative to
S for the edges of the distribution of X;. Intuitively, the fact that the market’s Sharpe ratio
is significantly higher than its volatility indicates that most of the market’s risk is priced
rather than unpriced.

Result 6. Suppose that the asset return and SDF are jointly lognormal, so that we
can write R; = Hri-17 30k 1 tOR 1 2R g M, = e HT2%h -1 =M1 20 where Zp and

Z, are standard Normal random variables with conditional correlation p;—;. Then we can



factorize M, - Ry = I - S; where, conditional on time ¢ — 1 information, (i) /; and S; each
have unit mean; (ii) I; and S; are independent of one another; (iii) /; is an idiosyncratic
component that is independent of M;; and (iv) log S; is a systematic component that is
perfectly correlated with log M,.

If \eoq > p?flaR,t_l then large values of S; correspond to large values of M;, i.e. to bad
news. An obvious sufficient condition is that A;_y > or,_1, which holds in the data if the
asset in question is the market.

If A1 > (P2 +pis \/1—7,0%_1)0'R¢,1 then S; has fatter tails than I, so sufficiently large

disasters are almost always associated with bad news as opposed to idiosyncratic shocks. A
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sufficient condition is that A\;_; > Opt—1 ~ 1.20p,1. Again, this holds in the data if

the asset in question is the market.

Proof. The pricing equation E; M;;1R:y1 = 1 implies that A\, = piop,. Since Zy; and
Zr are Normal with zero mean, unit variance and correlation p,_;, we can write Zr; =
Pi—1Zmt + /1 — p?ﬁlz, where Z is a Normal random variable that is independent of Zj;,

and has zero mean and unit variance. We can then define

~ 1
I; = exp {O'R,t_l\/ 1 —p;  Z — 50?2,1;—1(1 - P§—1)}

and

1

Sy = exp {—(UM,tl - ptflo'R,w%l)ZM,t - §(UM,t71 - ptlaR,tl)Q} .

If opri—1 > pi—10Rr4—1 then large values of S; correspond to large values of M;. Since
A\t = pioary, this condition is equivalent to \,_; > p?_lo'R,t—l-

St has fatter fails than I, if oari—1 — pr—10R -1 > 037,5_1\/1—7@52_1. This is equivalent to
Mot > (p2y + proa/1 = pi_y)ors; finally, note that p?_; + p,_11/1 — pi, < 122, O



A large deviations result

This section presents a result that characterizes whether disasters matter in more general

frameworks; the key object is
1
(0w, ) = tlgglo t log & | (M- Mt)eM (Ry--- Rt)aR (1)

which, in Hansen’s (2011) terminology, is the long-term growth rate of the multiplicative
functional (M, -+ M;)® (R, - -+ R;)’®. Hansen (2011) provides extensive discussion of how &
can be calculated in structural models, so I will take x as given.

A natural index of the extent to which explosions in X; reflect bad news rather than good
news is P,(¢,¢) =P (M -+ M, > "' | MRy - - - MyR; > "), the conditional probability that
M, ---M, > €% conditional on the event that X, > e?*. Here ¢ > 0 and ?» > 0 are
fixed parameters. We can say that bad news dominates consideration in the long run if
P,(¢,1) — 1 as t — oo. For fixed ¢, this criterion is more stringent the higher ¢ is. We can
focus on the most severe disasters by allowing ¢ and 9 to tend to infinity, and saying that
bad news is strongly dominant if limg o lim; o Pi(¢, ¢) = 1. This definition is appropriate
for risky assets, but is less appropriate for an insurance asset like a put option: when X,
explodes for an asset we will generally have contributions from both M; --- M; and Ry - - - Ry,
so Py(¢, ¢) will tend to be small. We can therefore make the less stringent definition that bad
news is weakly dominant if limy oo limy oo Pi(¢, ¢/2) = 1. This definition allows for some
contribution from high returns, so is more appropriate for insurance assets.

We need some technical conditions on x(-,-), namely that x(0y,0g) is (i) finite for
all 0y,0r € R, (ii) continuously differentiable for all 0,;,0r € R and (iii) steep (see
Dembo and Zeitouni (1998) for the definition of a steep function). I write rp(-,-) and
kg(-,-) for the partial derivatives of xk with respect to its first and second argument respec-
tively. If the vectors (log My, log R;) are i.i.d. for all ¢, then the definition (1) reduces to
K(Oy,0r) = logE (MfMR?R>, so K(-,-) is the cumulant-generating function of the random

vector (log My, log Ry).



Result 7. Let 0}, and 6% solve the equations

ra (O, 0p) = ¢
¢_

rr(Ohr, OR) =

()
Then Pi(¢,9) — 1 ast — oo if 0}, < 05, and Pi(¢p,v) — 0 as t — oo if 6}, > 05,.

Proof. By Bayes’ rule,

P (Gth > 1/1 and GM,t + GR,t > ¢) P(At)

Pi(¢, ) = P (Gt + Gt > 0) " P(A) +P(B,)’

where Gy, = % Zi log M;, Gt = % Zi log R;, and A; and B, are the disjoint events “Gp; >
Y and Gy + Gry > @7 and “Gyy < ¢ and Gy + Gry > @7

When ¢ > 0, P(A;)+P(B;) tends to zero ast — oo. (To see this, note that P(A;)+P(B;) =
P(M --- Ry > e?"). Now pick arbitrary e > 0. As a corollary of the first part of Result ??,
if we take T' large enough that e?? > 1/e, then P(M; --- R; > e?!) < ¢ for all t > T. That
is, P(A;) +P(B:) — 0.) Since P(A;) + P(B) tends to zero, P(A;) and P(B;) must each tend
to zero.

The goal is now to analyze the rates at which P(A;) and P(B;) tend to zero. We will have
Pi(¢p,1) — 1if P(B;) tends to zero at a faster rate than P(A;), and conversely P;(¢,1) — 0
if P(A;) tends to zero faster than P(B;). So we must find a condition that ensures that P(B;)
tends to zero faster than P(A;) in the sense that

1 — 1
lim sup i logP(B;) < 1i{n inf i log P(A,;). (2)
—00

t—o00

For technical reasons, we work with B;, the closure of By, i.e. the event “G vy < ¥ and G+
Grt > ¢”. The argument for the converse condition, which ensures that P(A;) — 0 faster
than P(B;) — 0, is very similar, so is omitted.

Let k*(zar, Tr) = Py, pper Trrbrr + TrOR — K(0ar, Or), the Fenchel-Legendre transform



of k(). By the Gértner-Ellis theorem,! the inequality (2) holds if

inf  k"(zpn2r) < inf KY(za,2R) . (3)
x> T <t
TpM+ETR>P Tp+TR>¢

The function x* has the following properties:
(i) it is convex (by Lemma 2.3.9 of Dembo and Zeitouni (1998, p. 46));
(i) k*(xpr,xR) > 0 (since it is at least as large as xp; - 0+ 2 - 0 — £(0,0) = 0);
(i) k*(xp,xR) > xpr+xR (since it is at least as large as xp - 14+ag-1—k(1,1) = 2y +2R);

(iv) k*(par, pr) = 0 where py = ky(0,0) and pr = kg(0,0), so k* attains its global

minimum at (pa, pg)-

From (iii) and (iv), pa + pr < 0, S0 (uar, pr) € {(xa, xR) : xr + xr > ¢} It follows
by convexity that £* attains its minimum over {(xy, zg) : Ty + g > ¢} on the boundary
of the set, i.e. on the line {(xp;,zRr) : zyr + xgr = ¢}. The question is then whether the
minimum is attained for x); greater than 1 or less than . Setting f(x) = k*(x, ¢ — x), (3)
is satisfied if f'(¢) < 0, or equivalently x},(¢), ¢ — ) < K5 (¢, ¢ — 1), where K}, denotes the
derivative of x* with respect to its first argument, and similarly for x}. The result follows

by the envelope theorem. O

For comparison with the other results of the paper, consider an example in which
k(0r,0r) = urOu + prbr + oarn03/2 + onrOmOr + orrO%/2. This occurs if (but not
only if) the vector (log M;,log R;) is i.i.d. bivariate Normal with mean (s, pg) and covari-
ance matrix (GMY 248 The fundamental asset pricing equation imposes k(1,1) = 0, which

implies in this case that py + oy /2 + i + 0rr/2 = —O MR-

1See Dembo and Zeitouni (1998, p. 44) for a proof of the theorem. The simplified version of the theorem
outlined in Remark (c) (p. 45) suffices, due to the assumption that x(0as,0r) < oo for all Ops,0r € R. For

another application of the Géartner-Ellis theorem in finance, see Stutzer (2003).



Applying Result 6, we find that P,(¢,v) — 1 if

ommM + OMR
oMM + 200k + ORR

)¢—MR—URR/2—UMR/2>¢-

Bad news is strongly dominant if this inequality holds in the limit as ¥ and ¢ tend to

infinity with ¢ = ¢, i.e. if
ovMm + OMR
ovm + 20MR + ORR

> 1,

or equivalently, if oyg + orr < 0. Bad news is weakly dominant if the inequality holds in

the limit as ¢ and ¢ tend to infinity with ¥ = ¢/2, i.e. if

oMM + OMR
oMM + 20MR + ORR

> 1/2,

or equivalently, if oy > ogg.

In the special case considered in the introduction, the log return and log SDF were
perfectly correlated. The condition for bad news to be strongly dominant simplifies to
A > o, and the condition for bad news to be weakly dominant simplifies to |A| > o. This
second condition allows for the possibility that the asset is an insurance asset with negative

Sharpe ratio.
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