
Internet Appendix

Results 4 and 5 of the main text characterized when disasters matter, but at the cost of

putting a certain amount of structure on the pricing problem: a conditional lognormality

assumption in the case of Result 4, and an assumption about the form of the stochastic

discount factor in the case of Result 5. This appendix relaxes these assumptions. The

first section remains in the conditionally lognormal framework, but allows for imperfectly

correlation between log returns and the log SDF, thereby allowing for unpriced as well as

priced risk. The second section presents a result that can be thought of as a litmus test for

whether disasters matter in more general frameworks.

Imperfect correlation between logR and logM

This section presents a result that addresses the case of imperfect correlation between log

returns and the log SDF, thereby allowing for some of the asset’s risk to be unpriced. In full

generality, there are certain obvious constraints on what can be said, since we can always add

idiosyncratic noise to a return without affecting pricing. My starting point is a factorization

of MtRt into an idiosyncratic component It and a systematic component St. Having done

so we find, first, that large values of the systematic component, St, can only be attributed

to bad news (given the empirically observed Sharpe ratio and volatility of the market) and,

second, that the fact that the market’s Sharpe ratio appears to be not just higher but

considerably higher than its volatility places tight limits on the importance of It relative to

St for the edges of the distribution of Xt. Intuitively, the fact that the market’s Sharpe ratio

is significantly higher than its volatility indicates that most of the market’s risk is priced

rather than unpriced.

Result 6. Suppose that the asset return and SDF are jointly lognormal, so that we

can write Rt ≡ eµR,t−1− 1
2
σ2
R,t−1+σR,t−1ZR,t and Mt ≡ e−rf,t−

1
2
σ2
M,t−1−σM,t−1ZM,t where ZR,t and

ZM,t are standard Normal random variables with conditional correlation ρt−1. Then we can
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factorize Mt · Rt = It · St where, conditional on time t − 1 information, (i) It and St each

have unit mean; (ii) It and St are independent of one another; (iii) It is an idiosyncratic

component that is independent of Mt; and (iv) logSt is a systematic component that is

perfectly correlated with logMt.

If λt−1 > ρ2t−1σR,t−1 then large values of St correspond to large values of Mt, i.e. to bad

news. An obvious sufficient condition is that λt−1 > σR,t−1, which holds in the data if the

asset in question is the market.

If λt−1 > (ρ2t−1 +ρt−1
√

1− ρ2t−1)σR,t−1 then St has fatter tails than It, so sufficiently large

disasters are almost always associated with bad news as opposed to idiosyncratic shocks. A

sufficient condition is that λt−1 >
1+
√
2

2
σR,t−1 ≈ 1.2σR,t−1. Again, this holds in the data if

the asset in question is the market.

Proof. The pricing equation EtMt+1Rt+1 = 1 implies that λt = ρtσM,t. Since ZM,t and

ZR,t are Normal with zero mean, unit variance and correlation ρt−1, we can write ZR,t =

ρt−1ZM,t +
√

1− ρ2t−1Z̃t, where Z̃t is a Normal random variable that is independent of ZM,t

and has zero mean and unit variance. We can then define

It = exp

{
σR,t−1

√
1− ρ2t−1Z̃t −

1

2
σ2
R,t−1(1− ρ2t−1)

}
and

St = exp

{
−(σM,t−1 − ρt−1σR,t−1)ZM,t −

1

2
(σM,t−1 − ρt−1σR,t−1)2

}
.

If σM,t−1 > ρt−1σR,t−1 then large values of St correspond to large values of Mt. Since

λt = ρtσM,t, this condition is equivalent to λt−1 > ρ2t−1σR,t−1.

St has fatter fails than It if σM,t−1 − ρt−1σR,t−1 > σR,t−1
√

1− ρ2t−1. This is equivalent to

λt−1 > (ρ2t−1 + ρt−1
√

1− ρ2t−1)σR,t−1; finally, note that ρ2t−1 + ρt−1
√

1− ρ2t−1 ≤ 1+
√
2

2
.
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A large deviations result

This section presents a result that characterizes whether disasters matter in more general

frameworks; the key object is

κ(θM , θR) ≡ lim
t→∞

1

t
logE

[
(M1 · · ·Mt)

θM (R1 · · ·Rt)
θR
]

(1)

which, in Hansen’s (2011) terminology, is the long-term growth rate of the multiplicative

functional (M1 · · ·Mt)
θM (R1 · · ·Rt)

θR . Hansen (2011) provides extensive discussion of how κ

can be calculated in structural models, so I will take κ as given.

A natural index of the extent to which explosions in Xt reflect bad news rather than good

news is Pt(φ, ψ) ≡ P
(
M1 · · ·Mt > eψt

∣∣M1R1 · · ·MtRt > eφt
)
, the conditional probability that

M1 · · ·Mt > eψt, conditional on the event that Xt > eφt. Here φ > 0 and ψ > 0 are

fixed parameters. We can say that bad news dominates consideration in the long run if

Pt(φ, ψ)→ 1 as t→∞. For fixed φ, this criterion is more stringent the higher ψ is. We can

focus on the most severe disasters by allowing φ and ψ to tend to infinity, and saying that

bad news is strongly dominant if limφ→∞ limt→∞ Pt(φ, φ) = 1. This definition is appropriate

for risky assets, but is less appropriate for an insurance asset like a put option: when Xt

explodes for an asset we will generally have contributions from both M1 · · ·Mt and R1 · · ·Rt,

so Pt(φ, φ) will tend to be small. We can therefore make the less stringent definition that bad

news is weakly dominant if limφ→∞ limt→∞ Pt(φ, φ/2) = 1. This definition allows for some

contribution from high returns, so is more appropriate for insurance assets.

We need some technical conditions on κ(·, ·), namely that κ(θM , θR) is (i) finite for

all θM , θR ∈ R, (ii) continuously differentiable for all θM , θR ∈ R and (iii) steep (see

Dembo and Zeitouni (1998) for the definition of a steep function). I write κM(·, ·) and

κR(·, ·) for the partial derivatives of κ with respect to its first and second argument respec-

tively. If the vectors (logMt, logRt) are i.i.d. for all t, then the definition (1) reduces to

κ(θM , θR) = logE
(
M θM

t RθR
t

)
, so κ(·, ·) is the cumulant-generating function of the random

vector (logMt, logRt).
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Result 7. Let θ∗M and θ∗R solve the equations

κM(θ∗M , θ
∗
R) = ψ

κR(θ∗M , θ
∗
R) = φ− ψ .

Then Pt(φ, ψ)→ 1 as t→∞ if θ∗M < θ∗R and Pt(φ, ψ)→ 0 as t→∞ if θ∗M > θ∗R.

Proof. By Bayes’ rule,

Pt(φ, ψ) =
P (GM,t > ψ and GM,t +GR,t > φ)

P (GM,t +GR,t > φ)
=

P(At)

P(At) + P(Bt)
,

where GM,t ≡ 1
t

∑t
1 logMi, GR,t ≡ 1

t

∑t
1 logRi, and At and Bt are the disjoint events “GM,t >

ψ and GM,t +GR,t > φ” and “GM,t < ψ and GM,t +GR,t > φ”.

When φ > 0, P(At)+P(Bt) tends to zero as t→∞. (To see this, note that P(At)+P(Bt) =

P(M1 · · ·Rt > eφt). Now pick arbitrary ε > 0. As a corollary of the first part of Result ??,

if we take T large enough that eφT > 1/ε, then P(M1 · · ·Rt > eφt) < ε for all t > T . That

is, P(At) + P(Bt)→ 0.) Since P(At) + P(Bt) tends to zero, P(At) and P(Bt) must each tend

to zero.

The goal is now to analyze the rates at which P(At) and P(Bt) tend to zero. We will have

Pt(φ, ψ)→ 1 if P(Bt) tends to zero at a faster rate than P(At), and conversely Pt(φ, ψ)→ 0

if P(At) tends to zero faster than P(Bt). So we must find a condition that ensures that P(Bt)

tends to zero faster than P(At) in the sense that

lim sup
t→∞

1

t
logP(Bt) ≤ lim inf

t→∞

1

t
logP(At). (2)

For technical reasons, we work with Bt, the closure of Bt, i.e. the event “GM,t ≤ ψ and GM,t+

GR,t ≥ φ”. The argument for the converse condition, which ensures that P(At) → 0 faster

than P(Bt)→ 0, is very similar, so is omitted.

Let κ∗(xM , xR) ≡ supθM ,θR∈R xMθM + xRθR − κ(θM , θR), the Fenchel-Legendre transform
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of κ(·, ·). By the Gärtner-Ellis theorem,1 the inequality (2) holds if

inf
xM>ψ

xM+xR≥φ

κ∗(xM , xR) ≤ inf
xM≤ψ

xM+xR≥φ

κ∗(xM , xR) . (3)

The function κ∗ has the following properties:

(i) it is convex (by Lemma 2.3.9 of Dembo and Zeitouni (1998, p. 46));

(ii) κ∗(xM , xR) ≥ 0 (since it is at least as large as xM · 0 + xR · 0− κ(0, 0) = 0);

(iii) κ∗(xM , xR) ≥ xM +xR (since it is at least as large as xM ·1+xR ·1−κ(1, 1) = xM +xR);

(iv) κ∗(µM , µR) = 0 where µM ≡ κM(0, 0) and µR ≡ κR(0, 0), so κ∗ attains its global

minimum at (µM , µR).

From (iii) and (iv), µM + µR ≤ 0, so (µM , µR) 6∈ {(xM , xR) : xM + xR ≥ φ}. It follows

by convexity that κ∗ attains its minimum over {(xM , xR) : xM + xR ≥ φ} on the boundary

of the set, i.e. on the line {(xM , xR) : xM + xR = φ}. The question is then whether the

minimum is attained for xM greater than ψ or less than ψ. Setting f(x) ≡ κ∗(x, φ− x), (3)

is satisfied if f ′(ψ) < 0, or equivalently κ∗M(ψ, φ−ψ) < κ∗R(ψ, φ−ψ), where κ∗M denotes the

derivative of κ∗ with respect to its first argument, and similarly for κ∗R. The result follows

by the envelope theorem.

For comparison with the other results of the paper, consider an example in which

κ(θM , θR) = µMθM + µRθR + σMMθ
2
M/2 + σMRθMθR + σRRθ

2
R/2. This occurs if (but not

only if) the vector (logMt, logRt) is i.i.d. bivariate Normal with mean (µM , µR) and covari-

ance matrix ( σMM σMR
σMR σRR ). The fundamental asset pricing equation imposes κ(1, 1) = 0, which

implies in this case that µM + σMM/2 + µR + σRR/2 = −σMR.

1See Dembo and Zeitouni (1998, p. 44) for a proof of the theorem. The simplified version of the theorem

outlined in Remark (c) (p. 45) suffices, due to the assumption that κ(θM , θR) < ∞ for all θM , θR ∈ R. For

another application of the Gärtner-Ellis theorem in finance, see Stutzer (2003).
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Applying Result 6, we find that Pt(φ, ψ)→ 1 if(
σMM + σMR

σMM + 2σMR + σRR

)
φ− µR − σRR/2− σMR/2 > ψ .

Bad news is strongly dominant if this inequality holds in the limit as ψ and φ tend to

infinity with ψ = φ, i.e. if
σMM + σMR

σMM + 2σMR + σRR
> 1,

or equivalently, if σMR + σRR < 0. Bad news is weakly dominant if the inequality holds in

the limit as ψ and φ tend to infinity with ψ = φ/2, i.e. if

σMM + σMR

σMM + 2σMR + σRR
> 1/2,

or equivalently, if σMM > σRR.

In the special case considered in the introduction, the log return and log SDF were

perfectly correlated. The condition for bad news to be strongly dominant simplifies to

λ > σ, and the condition for bad news to be weakly dominant simplifies to |λ| > σ. This

second condition allows for the possibility that the asset is an insurance asset with negative

Sharpe ratio.
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