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A Lucas orchard is a collection of Lucas trees

There is more comovement across markets at the level of returns than

there is at the level of fundamentals—Shiller (1989) and others

A representative agent with power utility consumes the fruits not of just

one fruit tree, but of the entire orchard

I investigate the properties of

Prices

Expected returns

Yield curve
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What changes with more than one tree? (1)

Consider the following simple example:

A rational individual holds two assets in 50:50 proportions

Suppose asset 1 does well

Higher proportion of wealth is now in asset 1—say, 70:30

If expected returns/ risk don’t change, the individual has no reason to

change from original optimized 50:50 portfolio. . .

. . . so rebalances: sells outperformer to buy underperformer
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What changes with more than one tree? (2)

This story doesn’t work in the aggregate!

Expected returns/ risk must change in order to leave the

representative investor happy to hold asset 1 as a larger proportion of

wealth

Imposing equilibrium leads to interesting dynamics

In this paper we argue for the importance of explicit

recognition of the essential interdependences of markets in

theoretical and empirical specifications of financial models. . .

—Brainard and Tobin (AER, 1968)
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A correlation decomposition (1)

Ammer and Mei (1996) do a Campbell decomposition to investigate links

between US and UK stock markets

ŨS = ŨSCF − ŨSDR

ŨK = ŨKCF − ŨKDR

ŨS : unexpected return on US stock market

ŨK : unexpected return on UK stock market

ŨSCF , ŨKCF : US, UK cashflow news

ŨSDR , ŨKDR : US, UK discount rate news
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A correlation decomposition (2)

corr ŨSCF ŨSDR

ŨKCF 0.30 0.36

ŨKDR −0.23 0.60

Table: Correlations between news variables, 1957:1–1989:12, backed out from

Ammer and Mei (1996).
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Roadmap

Theory

Intuition

Some empirics

The small asset limit
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Setup (1)
Tastes: the representative investor

Power utility with risk aversion γ and time preference rate ρ

max E
∫ ∞

t=0
e−ρt

C 1−γ
t

1− γ
dt
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Setup (2)
Technology: dividend processes

Two assets (“countries”) with dividend streams D1t ,D2t

Dividend growth is i.i.d. over time, but may be correlated across

assets; formally, log dividends follow a Lévy process

I Dividend growth is hard to forecast; i.i.d. assumption hard-wires this

into the model—like Campbell-Cochrane (1999)

The framework can handle situations in which, for example,

I Dividends follow geometric Brownian motions, or

I Dividends are subject to occasional disasters, or

I A combination of both, or many other possibilities
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Setup (3)
Technology: dividend processes

The technological side of the model (dividend growth) is summarized in

one object: the cumulant-generating function, c(θ1, θ2), defined by

c(θ1, θ2) = log E

[(
D1,t+1

D1,t

)θ1 (D2,t+1

D2,t

)θ2]

Example: if the two dividend streams are independent geometric

Brownian motions,

c(θ1, θ2) = µ1θ1 + µ2θ2 +
1

2
σ2

1θ
2
1 +

1

2
σ2

2θ
2
2
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Setup (4)
Closing the model

The representative investor holds the market

Ct = D1t + D2t
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Simple inputs

Representative agent, power utility, consumption Ct = D1t + D2t

i.i.d. dividend growth

Complicated, interesting, empirically relevant outputs

Price-dividend ratios

Excess returns

Riskless rate

Yield curve

Volatilities

Correlation between assets
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Related papers (1)

Lucas (JME, 1982): finds Euler equation in two-country case

Cole-Obstfeld (JME, 1991): simple representation of uncertainty,

focus on welfare calculations, no analytical results except in

Cobb-Douglas case

Brainard-Tobin (OEP, 1992): similar to Cole-Obstfeld—“Our

illustrative model is simple and abstract; nevertheless it is not easy to

analyze, and numerical simulations will be used”

Menzly-Santos-Veronesi (JPE, 2004), Santos-Veronesi (RFS, 2005):

dividend processes are reverse-engineered to make the model easy to

solve

Kyle-Xiong (JF, 2001): log utility + irrational traders

Kodres-Pritske (JF, 2002): CARA utility, two periods

Pavlova-Rigobon (2006, 2007): log-linear utility
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Related papers (2)

Most closely related paper is Cochrane, Longstaff & Santa-Clara’s “Two

Trees” (RFS, 2008). Different solution technique allows me to extend in

various directions

They only solve with γ = 1; I let γ ≥ 1

They assume lognormal dividends; I allow for jumps

They assume two assets; I allow for the general N-asset case

I solve for the term structure of interest rates

(Imperfect substitution between goods: Ct = (Dχ
1t + Dχ

2t)
1/χ

)

(“Two Trees, Two Agents”)
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One asset is easy

Define the CGF c(θ) = log E
[
(Dt+1/Dt)θ

]

P0 =

∫ ∞
t=0

E

[
e−ρt

(
Dt

D0

)−γ
· Dt

]
dt

= D0

∫ ∞
t=0

e−[ρ−c(1−γ)]t dt

=
D0

ρ− c(1− γ)

Dividend yield D0/P0 = ρ− c(1− γ)

Riskless rate ρ− c(−γ)

Risk premium c(1) + c(−γ)− c(1− γ)
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Why so difficult with two assets?

Lucas’s Euler equation: P1,0 = E
∫ ∞

0
e−ρt

(
Ct

C0

)−γ
· D1,t dt

Consider the log utility case:

P1,0 = (D10 + D20)

∫ ∞
0

e−ρt E
[

D1t

D1t + D2t

]
dt

= (D10 + D20)

∫ ∞
0

e−ρtE
[

1

1 + D2t/D1t

]
dt

The expectation is hard (eg, consider lognormal D2t/D1t)
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A suggestive special case (1)

Suppose D1t ≡ 1 and D2t is always smaller than 1 (eg asset 2 is subject to

random downward jumps at random times). Then,

E
[

1

1 + D2t

]
= E

[
1− D2t + D2

2t − . . .
]

=
∞∑

n=0

(−1)nDn
20 E

[(
D2t

D20

)n]

=
∞∑

n=0

(−1)nDn
20ec(0,n)t
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A suggestive special case (2)

Substituting back, we find that

P1,0/D1,0 =
1√

s(1− s)

∞∑
n=0

(−1)n
(

1−s
s

)n+1/2

ρ− c(0, n)
,

where the state variable

s ≡ D1,0

D1,0 + D2,0

is the dividend share of asset 1, which by assumption starts out greater

than 0.5 and increases towards 1 over time

Ian Martin (Stanford GSB) The Lucas Orchard October 15, 2009 18 / 57



Solution method (1)

Four tricks are needed to handle the general case

E
[

D1t

(D1t + D2t)γ

]
Cumulant-generating function

CGFs are convex—used in many proofs

Symmetrize

Preparing for the Fourier transform

Change of measure

Takes care of the dividend; not like the usual “risk-neutral” or

“martingale” measure which handles stochastic discount factor

Fourier transform

Analog of “geometric series” trick that worked in special case
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Solution method (2)

Prices: The price-dividend ratio of asset 1 is

P1

D1
(s) =

1√
sγ(1− s)γ

∫ ∞
−∞

Fγ(v)
(

1−s
s

)iv
ρ− c(1− γ/2− iv ,−γ/2 + iv)

dv

where

Fγ(v) ≡ 1

2π
· B(γ/2 + iv , γ/2− iv) (B is the beta function)

Similar “integral formulas” for expected returns

Can be evaluated numerically—effectively instantly—or analytically in

special cases

In the one-tree case, we had P1/D1 = 1/[ρ− c(1− γ)]
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Interest rates: The yield to time T , Y (T ), is

− 1

T
log

{
1√

sγ(1− s)γ

∫ ∞
−∞

Fγ(v)

(
1− s

s

)iv

e−[ρ−c(−γ/2−iv ,−γ/2+iv)]T dv

}
.

The instantaneous riskless rate is

1√
sγ(1− s)γ

∫ ∞
−∞

Fγ(v)

(
1− s

s

)iv

[ρ− c(−γ/2− iv ,−γ/2 + iv)] dv .

The long rate is a constant, independent of the current state s:

Y (∞) = max
θ∈[−γ/2,γ/2]

ρ− c(−γ/2 + θ,−γ/2− θ).

Symmetric case: Y (∞) = ρ− c(−γ/2,−γ/2)

Ian Martin (Stanford GSB) The Lucas Orchard October 15, 2009 21 / 57



Solution method (3)

Can solve these integrals analytically. . .

. . . if dividends follow geometric Brownian motion

. . . or in small asset limit

“The shortest path between two truths in the real domain passes

through the complex domain.” (Jacques Hadamard)
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Solution method (4)

Solution uses Cauchy’s residue theorem

Residue of f (·) at a: coefficient on (z − a)−1 in a series expansion of

a function f (z) at a point a where f (a) =∞

In GBM case, sum of the residues takes on a neat form

For a very small asset, only nearest residue to real axis matters
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The Brownian motion case

P/D1(s) =
1

B(λ1 − λ2)

[
1

(γ/2 + λ1) sγ
F

(
γ,
γ

2
+ λ1; 1 +

γ

2
+ λ1;

s − 1

s

)
+

1

(γ/2− λ2) (1− s)γ
F

(
γ,
γ

2
− λ2; 1 +

γ

2
− λ2;

s

s − 1

)]

where B, λ1, λ2 are constants determined by ρ, γ and dividend processes, and

F (a, b; c; z) is Gauss’s hypergeometric function

This expression generalizes the result of Cochrane, Longstaff and Santa-Clara

(2008) to allow for γ ≥ 1
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A calibration

I’ll show some pictures using the following parameter values in an economy

with two independent but fundamentally identical assets

time preference rate, ρ 0.03

risk aversion, γ 4

mean log dividend growth 2%

dividend volatility 10%
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Implied moments of consumption growth
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Figure: Left: Mean consumption growth against dividend share, s. Right:

standard deviation of consumption growth against dividend share, s.

In the middle, there is a diversification benefit.

At the edges, all eggs are in one basket
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The riskless rate

0.2 0.4 0.6 0.8 1
s

2

4

6

8
Rf

Figure: The riskless rate plotted against s.

The riskless rate is highest at intermediate values of the dividend

share because the diversification effect lowers precautionary saving
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Excess returns

0.2 0.4 0.6 0.8 1
s

1

2

3

4

XS H%L

Figure: Excess returns on asset 1 and aggregate market.

When asset 1 has a small share, it has low correlation with overall

consumption—that is, low risk
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Price-dividend ratio

0.2 0.4 0.6 0.8 1
s

20

40

60

80

100
PD

Figure: P/D for asset 1 and aggregate market.

All else equal, small assets have low risk and high valuations

The extreme case s ↓ 0 is of particular interest
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A value-growth effect

1 2 3 4 5 6 7
D�P H%L

2

4

6

8

10

H%L

Figure: Expected returns and risk premia against dividend yield

High D/P is associated with high expected returns (solid) and high

expected excess returns (dashed)
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The yield spread and excess returns on bonds
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Figure: Left: The yield spread. Right: The risk premium on a perpetuity.

High yield spreads forecast high excess returns on bonds and on the

market
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Comovement (1)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure: Correlation between returns of assets 1 and 2. Dotted: γ = 1.

The correlation is strikingly high, given that the two assets have

independent fundamentals
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Comovement (2)

Intuition:

Suppose asset 2 has good news

Asset 2 is now a larger share of consumption

Asset 1 is a smaller share of consumption

Asset 1 requires a lower expected return

So asset 1 also appreciates now, and will earn a lower expected return

in future

Ian Martin (Stanford GSB) The Lucas Orchard October 15, 2009 33 / 57



Comovement (3)
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Figure: The response of asset 1 and asset 2 to a +1% increase in the dividend of

asset 1.

Ian Martin (Stanford GSB) The Lucas Orchard October 15, 2009 34 / 57



Excess volatility (1)

P = D × P

D

Lucas one-tree model: P/D is constant −→ volatility puzzle

Here, P/D is time-varying while dividends are unforecastable—we can

expect to see excess volatility
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Excess volatility (2)

0 0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

Figure: Ratio of market’s return vol to its dividend vol. Dotted: γ = 1.

This is a failure of the model: not enough excess volatility
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Disasters (1)

Now consider a calibration, based on Barro (2007), which is intended to

highlight the effects of disasters

Preferences as before, ρ = 0.03, γ = 4

2% mean log dividend growth, 2% volatility

Disasters hit each asset at rate 0.017: shock log dividend by

N(−0.38, 0.252)

When a disaster occurs, with probability 0.5 it hits both assets

simultaneously
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Disasters (2)
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Figure: Left: The riskless rate. Right: Risk premia.

Disasters can make the riskless rate and equity premium puzzles go

away
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Disasters (3)
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Disasters (4)

When a large asset suffers a disaster

Excess return on other asset ↑, riskless rate ↑↑
=⇒ other asset’s price drops: contagion

When a small asset suffers a disaster

Excess return on other asset ↑, riskless rate ↓↓
=⇒ other asset’s price increases: flight-to-quality

Contagion effect is more robust than flight-to-quality effect

Another source of high risk premia even for assets with stable

fundamentals

Flight-to-quality effect is weaker with more assets
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Disasters (5)

Figure: One-year rolling correlation between assets 1 and 2.

Correlation spikes endogenously at times of crisis

+1: “contagion”. −1: “flight-to-quality”
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A correlation decomposition (1)

corr ŨSCF ŨSDR

ŨKCF 0.30 0.36

ŨKDR −0.23 0.60

Table: Correlations between news variables, 1957:1–1989:12, backed out from

Ammer and Mei (1996).

Considerable amount of comovement is purely due to comovement in

discount rates (bottom right)

There is an interesting asymmetry in the signs of off-diagonals
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A correlation decomposition (2)

I simulate a three-asset world: US, UK, rest of world

Dividend volatility of each asset is 11.2%

In the model, cashflow news = dividend growth

Pairwise dividend growth correlations are 0.30

Starting shares: US = 0.4, UK = 0.1, rest of world = 0.5

Ian Martin (Stanford GSB) The Lucas Orchard October 15, 2009 43 / 57



A correlation decomposition (3)

corr ŨSCF ŨSDR corr ÛSCF ÛSDR

ŨKCF 0.30 0.36 ÛKCF 0.30 0.26

(0.06) (0.10)

ŨKDR −0.23 0.60 ÛKDR −0.14 0.71

(0.24) (0.13)

Table: Left: Ammer-Mei estimated correlations. Right: means and (standard

deviations) of correlations in simulations.

Model is calibrated to match top-left correlation (0.30)

Other correlations emerge endogenously
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Momentum across size portfolios

Data s.d.(Nr) s.d.(Ncf) N-Corr Model s.d.(Nr) s.d.(Ncf) N-Corr

Small 0.202 0.409 0.575 Tree 1 0.182 0.409 0.928

4 0.126 0.289 0.348 Tree 2 0.109 0.286 0.845

7 0.094 0.227 0.226 Tree 3 0.069 0.227 0.649

Big 0.063 0.179 0.026 Tree 4 0.026 0.180 0.021

Table: Variance decomposition as a function of firm size. Left panel: standard

deviations and correlations from Vuolteenaho (2002). Right panel: values

generated by model.

ρ = 0.03; γ = 2; all trees have mean log dividend growth µ = 0.02

Volatility of dividend growth (middle column) differs across trees, chosen to

match Vuolteenaho’s cashflow volatilities

Left and right columns are determined endogenously
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Small assets (1)

To what extent do these interesting dynamics apply to very small assets,

as s ↓ 0? This limit is interesting because

It allows us to think about emerging technologies

It is the polar opposite of one-tree, constant-P/D case

And. . . does all this have any impact on individual assets?

In the limit as s ↓ 0, can get simple closed-form solutions—and

an interesting phenomenon emerges
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Small assets (2)

Step back from this particular model. How do you price a tiny,

idiosyncratic asset with i.i.d. dividend growth?

tiny, idiosyncratic =⇒ discount at riskless rate

Gordon GM: D/P = riskless rate − mean dividend growth

So, if riskless rate is 6% and mean dividend growth on the tiny asset is

4%, GGM gives D/P = 6%− 4% = 2%

With these parameters, this logic is correct

But what if the riskless rate is only 2%? GGM breaks down!
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Small assets (3)

Figure: Impatient: high ρ. “Subcritical” case.

P1

D1
(s) =

1√
sγ(1− s)γ

∫ ∞
−∞

Fγ(v)
(

1−s
s

)iv
ρ− c(1− γ/2− iv ,−γ/2 + iv)

dv
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Small assets (3)

Figure: Patient: low ρ. “Supercritical” case.

P1

D1
(s) =

1√
sγ(1− s)γ
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−∞

Fγ(v)
(

1−s
s
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dv
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Small assets (4)
Subcritical—mean dividend growth < real interest rate

When riskless rate−mean dividend growth > 0, we have

D/P1 → riskless rate−mean dividend growth

XS1 → 0

The small asset earns the riskless rate and is priced using GGM
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Small assets (5)
Subcritical—mean dividend growth < real interest rate

ρ = 0.05, γ = 4, µ = 0.02, σ = 0.1

Aggregate dividend D1 + D2 is normalized to 1

D1 P1 P/D1 XS1 (%)

0.1 1.72 17.2 1.29

0.01 0.288 28.8 0.60

0.001 0.0356 35.6 0.22

0.0001 0.00384 38.4 0.08

0.00001 0.000394 39.4 0.03
...

...
...

...

0 0 40 0
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Small assets (6)
Supercritical—mean dividend growth > real interest rate

When riskless rate−mean dividend growth < 0, the Gordon growth model

breaks down. But the asset’s price is still well-defined, and we have

D/P1 → 0

XS1 → c(0, θ∗) + c(0,−γ)− c(0, θ∗ − γ) > 0

where θ∗ ∈ (0, 1) is uniquely determined by preferences—ρ, γ—and

technology—c(·)—via

ρ− c(1− θ∗, θ∗ − γ) = 0
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Small assets (7)
Supercritical—mean dividend growth > real interest rate

ρ = 0.01, γ = 4, µ = 0.02, σ = 0.1

Aggregate dividend D1 + D2 is normalized to 1

D1 P1 P/D1 XS1 (%)

0.1 4.03 40.3 1.97

0.01 1.28 128.5 1.80

0.001 0.33 332.4 1.52

0.0001 0.077 765.8 1.39

0.00001 0.017 1674.2 1.33
...

...
...

...

0 0 ∞ 1.28
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Small assets (8)
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Figure: P/D and excess returns in the subcritical (ρ = 0.05) and supercritical

(ρ = 0.01) cases

Why the positive excess returns? Even tiny, totally idiosyncratic

assets can comove in equilibrium!

Expected returns are entirely due to expected capital gains in

supercritical case
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Small assets (9)
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Figure: P/D in the subcritical (ρ = 0.05) and supercritical (ρ = 0.01) cases

P/D against a rescaled state variable which moves at constant

(expected) “speed” on (−∞,∞)

Ian Martin (Stanford GSB) The Lucas Orchard October 15, 2009 54 / 57



Small assets (10)

In subcritical case, can analyze behavior near the small-asset limit, s ≈ 0.

To first order in s, we have

P/D = A− B · sα

riskless rate = C + D · s

excess return = E + F · sα

where A,B,C ,D,E ,F and α ∈ (0, 1) are constants determined by

preferences—ρ, γ—and the technological environment—c(·)

When s is tiny, sα is much bigger than s: much more movement in

excess returns and P/D than in riskless rate

In the time series, we have P/D = G − H · excess return
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Small assets (11)

Cochrane (in Asset Pricing, p. 400):

It is nonetheless an uncomfortable fact that almost all

variation in price/dividend ratios is due to variation in expected

excess returns. How nice it would be if high prices reflected

expectations of higher future cashflows. Alas, that seems not to

be the case. If not, it would be nice if high prices reflected lower

interest rates. Again, that seems not to be the case. High prices

reflect low risk premia, lower expected excess returns.
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Conclusions

Comovement is a robust feature of the neoclassical model

Betas are determined endogenously

Disasters spread across assets

Return correlations spike endogenously at times of disaster

Interesting pricing effects even for tiny, idiosyncratic assets

Methodology allows extensions to:

Imperfect substitution between goods

Cole-Obstfeld (1991) with jumps + non-Cobb-Douglas case

Heterogeneous agents

“Two Trees, Two Agents”
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