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ABSTRACT

This dissertation consists of three chapters linked by a common thread, namely

the impact of disasters on financial markets. In Chapter 1, I extend the Epstein-

Zin-lognormal consumption-based asset-pricing model to allow for general i.i.d. con-

sumption growth processes. Information about the higher moments—or, equiva-

lently, cumulants—of consumption growth is encoded in the cumulant-generating

function (CGF). The importance of higher cumulants is a double-edged sword:

those model parameters which are most important for asset prices, such as dis-

aster parameters, are also the hardest to calibrate. It is therefore desirable to make

statements which do not require calibration of a consumption process. First, I use

properties of the CGF to derive restrictions on the time-preference rate and elas-

ticity of intertemporal substitution in terms of the equity premium, riskless rate,

and consumption-wealth ratio. Second, I show that “good deal” bounds on the

maximal Sharpe ratio can be used to derive restrictions on preference parameters

without calibrating the consumption process. Third, given preference parameters,

I calculate the welfare cost of uncertainty directly from mean consumption growth

and the consumption-wealth ratio without having to estimate the amount of risk in

the economy. Fourth, I analyze heterogeneous-agent models with jumps.

In Chapter 2, I investigate the properties of a continuous-time endowment econ-

omy in which a representative agent with power utility consumes the dividends of

iii



multiple assets. The assets are Lucas trees; a collection of Lucas trees is a Lucas

orchard. Prices, expected returns, and interest rates are determined endogenously

on the basis of exogenous dividends. The model replicates various features of the

data. Assets with independent dividends exhibit comovement in returns. Jumps

spread across assets. Assets with high price-dividend ratios have low risk premia.

Small assets exhibit momentum. High yield spreads forecast high excess returns on

long term bonds and on the market. Special attention is paid to the behavior of very

small assets which, in the limit, may comove endogenously and hence earn positive

risk premia even if their dividends are independent of the rest of the economy.

In Chapter 3, I explore the long-run implications of the fundamental equation

of asset pricing, which states that the expected time- and risk-adjusted cumulative

return on any asset equals one at all horizons. I arrive, via a theorem of Kakutani,

at an apparently paradoxical result: for a typical asset, the realized time- and risk-

adjusted cumulative return tends to zero with probability one. As a special case, this

result strengthens the familiar fact that the growth-optimal portfolio outperforms

other assets at long horizons. The apparent paradox is resolved by a further result,

which shows that the long-run value of a non-growth-optimal asset is driven by the

possibility of extremely good news at the level of the individual asset or extremely

bad news at the aggregate level.
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1. CONSUMPTION-BASED ASSET PRICING WITH HIGHER

CUMULANTS

The combination of power utility and i.i.d. lognormal consumption growth makes

for a tractable benchmark model in which asset prices and expected returns can be

found in closed form.1 Introducing the consumption-based model, Cochrane (2005,

p. 12) writes, “The combination of lognormal distributions and power utility is one

of the basic tricks to getting analytical solutions in this kind of model.” A message of

this chapter is that the lognormality assumption can be relaxed without sacrificing

tractability.

Following Barro’s (2006a) rehabilitation of Rietz (1988), the ability to gener-

alize beyond the lognormal assumption is evidently desirable. Working under two

assumptions—that there is a representative agent with Epstein-Zin preferences2 and

that consumption growth is i.i.d.—I introduce, in Section 1, a mathematical object

(the cumulant-generating function) in terms of which four fundamental quantities

which are at the heart of consumption-based asset pricing can be simply expressed.

Those fundamental quantities, or fundamentals for short, are the equity premium,

1 I thank Dave Backus, Robert Barro, Emmanuel Farhi, Xavier Gabaix, Simon Gilchrist, Fran-
cois Gourio, Greg Mankiw, Anthony Niblett, Steve Ross, Jeremy Stein, Adrien Verdelhan, Martin
Weitzman and, in particular, John Campbell for their comments.

2 Epstein-Zin preferences nest the power utility case. Kocherlakota (1990) demonstrates that
when consumption growth is i.i.d., Epstein-Zin preferences and power utility are observationally
equivalent. For the sake of intuition, though, it is helpful to use Epstein-Zin preferences in order
to distinguish clearly between the effects of risk aversion, intertemporal elasticity of substitution,
and time discount rate.



riskless rate, consumption-wealth ratio3 and mean consumption growth.

The expressions derived relate the fundamentals directly to the cumulants (equiv-

alently, moments) of consumption growth, and show that familiar concepts such as

precautionary saving can be generalized in the presence of higher cumulants. The

lognormal assumption is equivalent to the assumption that all cumulants above the

second are zero; hence the title of the chapter.

The first few cumulants of consumption growth can in principle be estimated

from consumption data, though this approach is not taken here because, given the

sizes of the relevant samples in practice, estimates of higher cumulants (or moments)

have large standard errors. This is especially troubling because the higher cumulants

which are hardest to estimate are extremely influential for asset prices.

In Section 2, I show that these results carry over to a continuous-time setting. If

one is in the business of making up stochastic processes, many suggest themselves

most naturally in continuous time. Although there is an obvious discrete-time ana-

logue of Brownian motion—a random walk with Normally distributed increments—

it is less natural to map Poisson processes, say, into discrete time, and therefore

harder to deal with the possibility of jumps in consumption.4 The i.i.d. growth

assumption is replaced by its continuous-time analogue: log consumption is a Lévy

process. I specialize to power utility for simplicity.

I illustrate the CGF framework by investigating a continuous-time model fea-

turing rare disasters in the style of Rietz (1988) or Barro (2006a). By working

in continuous time, simple expressions are obtained without the need for Taylor

3 Or, depending on one’s preferred interpretation, the dividend-price ratio on the Lucas tree.

4 According to Kingman (1993), “In the theory of random processes there are two that are
fundamental, and occur over and over again, often in surprising ways. There is a real sense in
which the deepest results are concerned with their interplay. One, the Bachelier-Wiener model of
Brownian motion, has been the subject of many books. The other, the Poisson process, seems at
first sight humbler and less worthy of study in its own right . . . . This comparative neglect is ill
judged, and stems from a lack of perception of the real importance of the Poisson process.”
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series approximations. The model’s predictions are sensitively dependent on the

calibration assumed.

As a stark illustration, take a consumption-based model in which the represen-

tative agent has relative risk aversion equal to 4. Now imagine adding to the model

a certain type of disaster which strikes, on average, once every 100,000 years. When

the disaster strikes, it destroys 90 per cent of wealth. (Barro (2006a) documents

that Germany and Greece each suffered a 64 per cent fall in per capita real GDP in

the course of the Second World War, so such a disaster is not beyond the bounds

of possibility.) The introduction of the very rare, very severe disaster will drive the

riskless rate down by 10 percentage points—1000 basis points—and will increase the

equity premium by 9 per cent.5 Very rare, very severe events exert an extraordinary

influence on the benchmark model, and we do not expect to estimate their frequency

and intensity directly from the data.

We can, however, detect the influence of disaster events indirectly, by observing

asset prices. I argue, therefore, that the standard approach—calibrating a particular

model and trying to fit the fundamental quantities—is not the way to go. By turning

things round—viewing the fundamental quantities as observable and seeing what

they imply—it becomes possible to make statements which are robust to the details

of the consumption growth process.

My first application, presented in Section 3, exploits the fact that cumulant-

generating functions are convex. I derive robust restrictions on preference param-

eters which are valid in any Epstein-Zin-i.i.d. model which is consistent with the

observed fundamentals. My results restrict the time-preference rate, ρ, and elasticity

of intertemporal substitution, ψ, to lie in a certain subset of the positive quadrant.

(See Figure 1.4.) These restrictions depend only on the Epstein-Zin-i.i.d. assump-

5 I illustrate this point with more reasonable numbers in section 1.2.2 below, in which I consider
the effect of perturbing parameters in a continuous-time disaster model.
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tions and on observed values of the fundamentals. They are complementary to

econometric or experimental estimates of ψ and ρ, and are of particular interest

because there is little agreement about the value of ψ. (Campbell (2003) summa-

rizes the conflicting evidence.) I also show how good-deal bounds (Cochrane and

Saá-Requejo (2000)) can be used to provide upper bounds on risk aversion without

calibrating a consumption process.

The theme of making inferences from observable fundamentals recurs in Section

4, which takes up the question, surveyed by Lucas (2003), of the cost of consumption

risk. This cost turns out to depend on ρ and ψ and on two observables: mean

consumption growth and the consumption-wealth ratio. The cost does not depend

on risk aversion other than through the consumption-wealth ratio, which summarizes

all relevant information about the attitude to risk of the representative agent and

the amount of risk in the economy, as perceived by the representative agent.

In the power utility subcase of Epstein-Zin, the welfare calculations apply more

generally to any consumption growth process, i.i.d. or not. These results therefore

generalize Lucas (1987), Obstfeld (1994) and Barro (2006b). Unlike these authors,

I view the consumption-wealth ratio as an observable. Using Barro’s preferred

preference parameters, I find that the cost of consumption fluctuations is about

14 per cent. I also calculate the welfare gains from a reduction in the variance of

consumption growth, and show that the representative agent would sacrifice on the

order of one per cent of initial consumption to reduce the standard deviation of

consumption growth from 2% to 1%.

In Section 5, I exhibit the convenience of the CGF approach in a heterogeneous

agent model with jumps. The model is intended to resolve the tension between the

results of Grossman and Shiller (1982), who show that heterogeneity is irrelevant in

continuous time if consumption processes follow diffusions, and those of Constan-

tinides and Duffie (1996), who show that heterogeneity is important in discrete time.
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I show that in continuous-time i.i.d. models, heterogeneity matters to the extent that

it is present at times of aggregate jumps. Jumps lend a discrete-time flavor to the

model, which in a sense occupies a position intermediate between Grossman-Shiller

and Constantinides-Duffie.

There is a large body of literature that applies Lévy processes to derivative pric-

ing (Carr and Madan (1998), Cont and Tankov (2004)) and, more recently, port-

folio choice (Kallsen (2000), Cvitanić, Polimenis and Zapatero (2005), Aı̈t-Sahalia,

Cacho-Diaz and Hurd (2006)). Lustig, Van Nieuwerburgh and Verdelhan (2008)

present estimates of the wealth-consumption ratio. Backus, Foresi and Telmer

(2001), Shaliastovich and Tauchen (2005), and Lentzas (2007) derive expressions

that relate cumulants to risk premia, though the philosophy of these papers is very

different from the approach taken here.

1.1 Asset-pricing fundamentals and the CGF

Define Gt ≡ logCt/C0 and write G ≡ G1. I make two assumptions.

A1 There is a representative agent whose Epstein-Zin preferences have relative

risk aversion γ and elasticity of intertemporal substitution ψ.

A2 The consumption growth, logCt/Ct−1, of the representative agent is i.i.d.,6

and the moment-generating function of G (defined below) exists on the interval

[−γ, 1].7

Assumption A1 allows risk aversion γ to be disentangled from the elasticity of

intertemporal substitution ψ. To keep things simple, those calculations that appear

6 An alternative, weaker, assumption is that the representative agent perceives himself as having
i.i.d. consumption growth and prices assets accordingly; the results of the chapter then go through
without modification. For example, the cost of uncertainty, discussed in Section 1.4, depends on
the probability distribution perceived by the representative agent.

7 If this is not so, the consumption-based asset-pricing approach is invalid. This assumption
ensures that all moments of G are finite. See Billingsley (1995, Section 21).
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in the main text restrict to the power utility case in which ψ is constrained to equal

1/γ; in this case, the representative agent maximizes

E
∞∑
t=0

e−ρt
C1−γ
t

1− γ
if γ 6= 1 , or E

∞∑
t=0

e−ρt logCt if γ = 1 . (1.1)

Results for the more general Epstein-Zin case are reported and discussed in the main

text, but calculations and proofs are relegated to Appendix A.2.

Assumption A2 is strong, and it is essential for the calculations of this chapter.

Cogley (1990) and Barro (2006b) present evidence in support of A2 in the form of

variance-ratio statistics close to one, on average, across nine (Cogley) or 19 (Barro)

countries.

For the time being, I restrict to power utility. We need expected utility to be

well defined in that

E
∞∑
t=0

∣∣∣∣e−ρt C1−γ
t

1− γ

∣∣∣∣ <∞ if γ 6= 1. (1.2)

I discuss this requirement further below.

The Euler equation relates the price of an asset this period to the payoff next

period. Expectations are calculated with respect to the measure perceived by the

representative agent:

P0 = E0

(
e−ρ
(
C1

C0

)−γ

(D1 + P1)

)
.

Iterating forward, we get

P0 = E

(
T∑
t=1

e−ρt
(
Ct
C0

)−γ

Dt

)
+ E0e

−ρT
(
CT
C0

)−γ

PT .
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Finally, allowing T → ∞ (and imposing the no-bubble condition that the second

term in the above expression tends to zero in the limit) leads to the familiar equation

P (D) = E

(
∞∑
t=1

e−ρt
(
Ct
C0

)−γ

Dt

)
. (1.3)

I start by considering an asset which pays dividend stream Dt ≡ (Ct)
λ for some

constant λ (the λ-asset). The central cases of interest will later be λ = 0 (the riskless

bond) and λ = 1 (the wealth portfolio which pays consumption as its dividend), but,

as in Campbell (1986) and Abel (1999), it is possible to view values λ > 1 as a

tractable way of approximating levered equity claims. I write Pλ for the price of

this asset at time 0, and Dλ for the dividend at time 0.

From (1.3),

Pλ = E

(
∞∑
t=1

e−ρt
(
Ct
C0

)−γ

(Ct)
λ

)

= (C0)
λ

∞∑
t=1

e−ρtE

((
Ct
C0

)λ−γ)

= Dλ

∞∑
t=1

e−ρtE
(
e(λ−γ)Gt

)
= Dλ

∞∑
t=1

e−ρt
(
E
(
e(λ−γ)G

))t
. (1.4)

The last equality follows from the assumption that log consumption growth is i.i.d.

To make further progress, I now introduce a pair of definitions.

Definition 1.1. Given some arbitrary random variable, G, the moment-generating

function m(θ) and cumulant-generating function or CGF c(θ) are defined by

m(θ) ≡ E exp(θG) (1.5)

c(θ) ≡ logm(θ) , (1.6)

7



for all θ for which the expectation in (1.5) is finite.

In the particular application of this chapter, G is, of course, to be viewed as an

annual increment of log consumption, G = logCt+1 − logCt.

Notice that c(0) = 0 for any growth process and that c(1) is equal to log mean

gross consumption growth—so in practice we will want to ensure that c(1) ≈ 2%.

I expand further on the CGF in Appendix A.1; for now, it can be thought of as

capturing information about all moments of G. More precisely, we can expand c(θ)

as a power series in θ,

c(θ) =
∞∑
n=1

κnθ
n

n!
,

and define κn to be the nth cumulant of log consumption growth. A small amount

of algebra confirms that, for example, κ1 ≡ µ is the mean, κ2 ≡ σ2 the variance,

κ3/σ
3 the skewness and κ4/σ

4 the kurtosis of log consumption growth. Knowledge

of the cumulants of a random variable implies knowledge of the moments, and vice

versa.

With this definition, (1.4) becomes

Pλ = Dλ

∞∑
t=1

e−[ρ−c(λ−γ)]t

= Dλ ·
e−[ρ−c(λ−γ)]

1− e−[ρ−c(λ−γ)] ,

or,

Dλ

Pλ
= eρ−c(λ−γ) − 1

8



It is convenient to define the log dividend yield dλ/pλ ≡ log(1 +Dλ/Pλ).
8 Then,

dλ/pλ = ρ− c(λ− γ) (1.7)

Two special cases are of particular interest. The first is λ = 0, in which case

the asset in question is the riskless bond, whose dividend yield is the riskless rate.

The second is λ = 1, in which case the asset pays consumption as its dividend, and

can therefore be interpreted as aggregate wealth. The dividend yield is then the

consumption-wealth ratio.

This calculation also shows that the necessary restriction on consumption growth

for the expected utility to be well defined in (1.2) is that ρ > c(1 − γ), or equiva-

lently that the consumption-wealth ratio is positive. When the condition fails, the

standard consumption-based asset pricing approach is no longer valid.

The gross return on the λ-asset is (dropping λ subscripts for clarity)

1 +Rt+1 =
Dt+1 + Pt+1

Pt
(1.8)

=
Pt+1

Pt

(
1 +

Dt+1

Pt+1

)
=

Dt+1

Dt

(
eρ−c(λ−γ))

and thus the expected gross return is

1 + ERt+1 = E

((
Ct+1

Ct

)λ)
· eρ−c(λ−γ)

= E
(
eGλ
)
· eρ−c(λ−γ)

= eρ−c(λ−γ)+c(λ)

8 It is worth emphasizing that log dividend yield, as I have defined it, is a number close to D/P ,
since log(1 + x) ≈ x for small x. d/p is not the same as d − p as used elsewhere in the literature
to mean logD/P .
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Once again, it turns out to be more convenient to work with log expected gross

return, erλ ≡ log(1 + ERt+1) = ρ+ c(λ)− c(λ− γ).

The above calculations are summarized in

Proposition 1.1 (Fundamental quantities, power utility case). The riskless rate,

rf ≡ log(1+Rf ), consumption-wealth ratio, c/w ≡ log(1+C/W ), and risk premium

on aggregate wealth, rp ≡ er1 − rf , are given by

rf = ρ− c(−γ) (1.9)

c/w = ρ− c(1− γ) (1.10)

rp = c(1) + c(−γ)− c(1− γ) . (1.11)

Writing these quantities explicitly in terms of the underlying cumulants by ex-

panding c(θ) in power series form, we obtain

rf = ρ−
∞∑
n=1

κn(−γ)n

n!
(1.12)

c/w = ρ−
∞∑
n=1

κn(1− γ)n

n!
(1.13)

rp =
∞∑
n=2

κn
n!
·
{

1 + (−γ)n − (1− γ)n
}
. (1.14)

Writing the first few terms of the series out more explicitly, (1.12) implies that

rf = ρ+ κ1γ −
κ2

2
γ2 +

κ3

3!
γ3 − κ4

4!
γ4 + higher order terms .

By definition of the first four cumulants, this can be rewritten as

rf = ρ+ µγ − 1

2
σ2γ2 +

skewness

3!
σ3γ3 − excess kurtosis

4!
σ4γ4 + higher order terms .

(1.15)
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In the lognormal case, the skewness, excess kurtosis and all higher cumulants are

zero, so (1.15) reduces to the familiar rf = ρ + µγ − σ2γ2/2. More generally, the

riskless rate is low if mean log consumption growth µ is low (an intertemporal substi-

tution effect); if the variance of log consumption growth σ2 is high (a precautionary

savings effect); if there is negative skewness; or if there is a high degree of kurtosis.

Similarly, the consumption-wealth ratio (1.13) can be rewritten as

c/w = ρ+ µ(γ − 1)− 1

2
σ2(γ − 1)2 +

skewness

3!
σ3(γ − 1)3 −

− excess kurtosis

4!
σ4(γ − 1)4 + higher order terms . (1.16)

The log utility case, γ = 1, is evidently a special case, in which the consumption-

wealth ratio is determined only by the rate of time preference: c/w = ρ. If γ 6= 1,

the consumption-wealth ratio is low when cumulants of even order are large (high

variance, high kurtosis, and so on). The importance of cumulants of odd order

depends on whether γ is greater or less than 1. In the empirically more plausible

case γ > 1, the consumption-wealth ratio is low when odd cumulants are low:

when mean log consumption growth is low, or when there is negative skewness, for

example. If the representative agent is more risk-tolerant than log, the reverse is

true: the consumption-wealth ratio is high when mean log consumption growth is

low, or when there is negative skewness.

The risk premium (1.14) becomes

rp = γσ2 +
skewness

3!
σ3
(
1− γ3 − (1− γ)3

)
+

+
excess kurtosis

4!
σ4
(
1 + γ4 − (1− γ)4

)
+ higher order terms . (1.17)

In the lognormal case, this is just rp = γσ2. Since 1 + γn− (1− γ)n > 0 for even n,

the risk premium is increasing in variance, excess kurtosis and higher cumulants of
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even order. The effect of skewness and higher cumulants of odd order depends on

γ. For odd n, 1 − γn − (1 − γ)n is positive if γ < 1, zero if γ = 1, and negative if

γ > 1. If γ = 1, skewness and higher odd-order cumulants have no effect on the risk

premium. Otherwise, the risk premium is decreasing in skewness and higher odd

cumulants if γ > 1 and increasing if γ < 1.

The following result generalizes Proposition 1.1 to allow for Epstein-Zin prefer-

ences.

Proposition 1.2 (Fundamental quantities, Epstein-Zin case). Defining ϑ ≡ (1 −

γ)/(1− 1/ψ), we have

rf = ρ− c(−γ)− c(1− γ)
(

1

ϑ
− 1

)
(1.18)

c/w = ρ− c(1− γ)/ϑ (1.19)

rp = c(1) + c(−γ)− c(1− γ) , (1.20)

and the obvious counterparts of (1.12)–(1.14) which result on expanding the CGFs

in (1.18)–(1.20) as power series.

Proof. See Appendix A.2.

Equation (1.20) shows as expected that when the CGF is linear—that is, when

consumption growth is deterministic—there is no risk premium. Roughly speaking,

the CGF of the driving consumption process must have a significant amount of

convexity over the range [−γ, 1] to generate an empirically reasonable risk premium.

It also confirms that risk aversion alone influences the risk premium: the elasticity

of intertemporal substitution is not a factor.

An interesting feature of Propositions 1.1 and 1.2 is that expressions (1.12)–

(1.14), and their analogues in the Epstein-Zin case, can in principle be estimated

directly by estimating the cumulants of log consumption, given a sufficiently long
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data sample, without imposing any further structure on the model. If, say, the high

equity premium results from the occasional occurrence of severe disasters, this will

show up in the cumulants. No particular assumption—beyond (A1) and (A2)—need

be made about the arrival rate or distribution of disasters, nor of any other feature of

the consumption process. In practice, of course, we cannot estimate infinitely many

cumulants from a finite data set. One solution to this is to impose some particular

distribution on log consumption growth, and then to estimate the parameters of the

distribution.

An alternative approach, more in the spirit of model-independence, is to approx-

imate the equations by truncating after the first N cumulants, N being determined

by the amount of data available. (In this context it is worth noting that the assump-

tion that consumption growth is lognormal is equivalent to truncating at N = 2,

since, as noted above, when log consumption growth is Normal all cumulants above

the variance are equal to zero—that is, κn = 0 for n greater than 2.) Nonetheless,

for the reasons stated in the Introduction, I do not follow this route.

1.1.1 The Gordon growth model

From equations (1.18)–(1.20), we see that

c/w = rp+ rf − c(1) (1.21)

or, more generally, that

dλ/pλ = erλ − c(λ) . (1.22)

This is a version of the traditional Gordon growth model. (For example, the last

term of (1.21), c(1) = log ECt+1/Ct, measures mean consumption growth.)

The connection is even more explicit in levels rather than logs. To see this,

note that EtRt+1 ≡ R is constant, and write 1 + Γ for the gross growth rate of
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consumption, EtCt+1/Ct. Taking expectations of (1.8) and imposing a no-bubbles

condition, we get

Pt = Et

(
Dt+1 + Pt+1

1 +R

)
= Et

∞∑
k=1

Dt+k

(1 +R)k

= Dt ·
∞∑
k=1

(
1 + Γ

1 +R

)k
=

Dt(1 + Γ)

R− Γ

This can be expressed as

Dt/Pt = (R− Γ)/(1 + Γ) (1.23)

or, in classic Gordon growth model terms,

EtDt+1

Pt
= R− Γ. (1.24)

To recover (1.22) from (1.23), apply log(1 + ·) to both sides, and note that log(1 +

Γ) = c(λ).

Since the Gordon growth model holds in this framework, only three of the riskless

rate, risk premium, consumption-wealth ratio and mean consumption growth can

be independently specified: the fourth is then mechanically determined by (1.21).

This observation, in conjunction with equations (1.18)–(1.20), provides another

way to look at Kocherlakota’s (1990) point. In principle, given sufficient asset price

and consumption data, we could determine the riskless rate, the risk premium, and

CGF c(·) to any desired level of accuracy. (In view of (1.21), the consumption-

wealth ratio would contain no extra information.) Since γ is the only preference

14



parameter that determines the risk premium, it could be calculated from (1.20),

given knowledge of c(·). On the other hand, knowledge of the riskless rate leaves ρ

and ψ indeterminate in equation (1.18), even given knowledge of γ and c(·). That

is, the time discount rate and elasticity of intertemporal substitution cannot be

disentangled. On the other hand, as noted in footnote 2, the use of Epstein-Zin

preferences aids the interpretation of results.

1.1.2 The asymptotic lognormality of consumption

If G has mean µ and (finite) variance σ2, the central limit theorem shows that

consumption is asymptotically lognormal:9 as t→∞

Gt − µt√
t

d−→ N(0, σ2).

It therefore appears that if one measures over very long periods, only the first two

cumulants will be needed to capture information about consumption growth. Why,

then, does the representative agent care about cumulants of log consumption growth

other than mean and variance? To answer this question, it is helpful to define the

scale-free cumulants

SFCn ≡
κn
σn

9 Informally, Gt − µt is typically O(
√
t), so for positive α, P(Gt − µt ≥ αt) → 0 as t → ∞,

or equivalently, P(Ct ≥ C0e
(µ+α)t) → 0. The Cramér-Chernoff theorem tells us how fast this

probability decays to zero, and provides an opportunity to mention another context in which the
CGF arises. It implies that

1
t

log P
(
Ct ≥ C0e

αt
)
−→ inf

θ≥0
c(θ)− αθ

and
1
t

log P
(
Ct ≤ C0e

αt
)
−→ inf

θ≤0
c(θ)− αθ.

Van der Vaart (1998) has a proof.
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For example, SFC3 is skewness and SFC4 is kurtosis. These scale-free cumulants

are normalized to be invariant if the underlying random variable is scaled by some

constant factor. Since the (unscaled) cumulants of Gt are linear in t, the nth scale-

free cumulant of Gt is proportional to t · t−n/2 = t(2−n)/2 and so tends to zero for n

greater than 2. The asymptotic Normality of (Gt − µt)/
√
t is reflected in the fact

that its scale-free cumulants of orders greater than two tend to zero as t tends to

infinity. But in terms of the scale-free cumulants, the riskless rate (for example) can

be expressed as

rf = ρ−
∞∑
n=1

κn(−γ)n

n!

= ρ−
∞∑
n=1

SFCnσ
n(−γ)n

n!
(1.25)

Thus, even though skewness, kurtosis and higher scale-free cumulants tend to

zero as the period length is allowed to increase, the relevant asset-pricing equation

scales these variables by σ—and this tends to infinity as period length increases, in

such a way that higher cumulants remain relevant.

1.2 The continuous-time case

For the purposes of constructing concrete examples, it is convenient to confirm

that the simplicity of the above framework carries over to the continuous-time case.

Assumptions A1 and A2 are modified slightly. They become

A1c There is a representative agent with constant relative risk aversion γ, who
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therefore maximizes10

E
∫ ∞

t=0

e−ρt
C1−γ
t

1− γ
if γ 6= 1 , or E

∫ ∞

t=0

e−ρt logCt if γ = 1 (1.26)

A2c The log consumption path, Gt, of the representative agent follows a Lévy

process (defined in Appendix A.3), and m(θ) exists for θ in [−γ, 1].

As before, we need a condition that ensures finiteness of (1.26); as before, the

pricing calculation, below, yields the required condition.

The analysis is almost identical to that in the discrete-time case; all that is

needed is that an equality of the form

EeθGt =
(
EeθG

)t
(1.27)

holds, where Gt is now a continuous-time process. In the discrete time case, this

was an obvious consequence of the facts that

Gt = logC1/C0 + logC2/C1 + · · ·+ logCt/Ct−1

and that each of the terms logCi/Ci−1 was assumed i.i.d. with the same law as G.

In continuous time, (1.27) follows from Assumption A2c; see Sato (1999) for a proof.

The assumption that m(θ) exists over the appropriate interval has bite, for

example, in the case of Mandelbrot’s stable processes: since stable processes (other

than Brownian motion) do not have well-defined moments, I am excluding them

from consideration.

Example 1 Brownian motion with drift, Lt = ct + σBBt. These are the only

10 For simplicity, I restrict to the power utility case, although it should be clear that the analysis
can be easily generalized to allow for the continuous-time analogue of Epstein-Zin preferences
(Duffie and Epstein (1992)).
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continuous Lévy processes.

Example 2 The Poisson counting process, Lt = Nt: Nt counts the number of

jumps that have taken place by time t and is distributed according to a Poisson

distribution with parameter ωt for some ω > 0.

Example 3 A compound Poisson process, Lt =
∑Nt

i=1 Yi, where the random

variables Yi are i.i.d. Example 2 is the special case in which Y1 ≡ 1.

Example 4 There exist Lévy processes with L1 distributed according to any of

the following distributions (amongst others): the t-distribution, the Cauchy distri-

bution, the Pareto distribution, the F -distribution, the gamma distribution. Only

in the last case does the moment-generating function exist for some θ > 0, and thus

only in the last case can the techniques of standard consumption-based asset pricing

be brought to bear. (See Weitzman (2005).)

Example 5 The α-stable Paretian processes advocated by Mandelbrot (1963,

1967) are Lévy processes with the additional property that for any constant c > 0,

the law of {Lct}t≥0 is the same as the law of {c1/αLt}t≥0; α ∈ (0, 2] is the index of

the process. Loosely speaking, the sample paths of such a process look similar as

one “zooms in” on them. The case α = 2 gives Brownian motion; this is the only

α-stable process with finite variance.

Example 6 The time-change of one Lévy process with another independent

increasing Lévy process; that is, Lt = PQt is a Lévy process if P is a Lévy process

and Q is an increasing Lévy process. Thus BNt , for example, is a Lévy process.

Example 7 The sum of two independent Lévy processes is a Lévy process.

Iterating the steps in these last two examples produces a wide variety of Lévy

processes.11

11 It is tempting to think that given some arbitrary random variable X, a Lévy process Lt can
be defined such that L1 = X; this would be the continuous time analogue of an i.i.d. sequence
whose increments are distributed like X. This intuition is incorrect: for example, if X has bounded
support, such a Lévy process will never exist. (Sato (1999, section 24) has a proof.) This means, for
example, that there is no continuous time equivalent of the discrete time process whose increments
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1.2.1 Calculations

In continuous time, the price of a claim to the dividend stream {Dt} ≡ {(Ct)λ}

is

Pλ = E0

(∫ ∞

t=0

e−ρt
(
Ct
C0

)−γ

(Ct)
λ dt

)
=

Dλ

ρ− c(λ− γ)
(1.28)

Once again, the condition that ensures finiteness of expected utility is that ρ >

c(1− γ); if ρ > 0, this condition is satisfied for γ in some neighborhood of 1.

The instantaneous return, Rλ, and instantaneous expected return, ERλ, are

given by

Rλ dt ≡
dPλ
Pλ

+
Dλ

Pλ
dt

=
dDλ

Dλ

+
Dλ

Pλ
dt

ERλ dt ≡ E
(
dDλ

Dλ

)
+
Dλ

Pλ
dt

The following proposition shows that the discrete-time results go through almost

unchanged, except that the equations that previously held for log dividend yields, the

log riskless rate and the log risk premium now apply to the instantaneous dividend

yield, the instantaneous riskless rate and the instantaneous risk premium.

Proposition 1.3 (Reprise of earlier results). The riskless rate, Rf , consumption-

wealth ratio, C/W , and risk premium on aggregate wealth, RP ≡ ER1 − Rf , are

are uniformly distributed on [−1, 1]. This apparent defect is a flaw only if one believes that there is
a particular distinguishing feature of certain identifiable points in time that makes the discrete-time
approach valid; otherwise, it should be viewed as a desirable discipline imposed by the continuous
framework.
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given by

Rf = ρ− c(−γ)

C/W = ρ− c(1− γ)

RP = c(1) + c(−γ)− c(1− γ) .

The Gordon growth model holds:

Dλ/Pλ = ERλ − c(λ).

Proof. See Appendix A.3.

1.2.2 A concrete example: disasters

To aid intuition, it is helpful to demonstrate the above results in the context of a

particular model. In this section, I show how to derive a convenient continuous-time

version of Barro (2006a). I use the model to show that i.i.d. disaster models make

predictions for the fundamentals that are sensitively dependent on the parameter

values assumed. In particular, making disasters more frequent or more severe drives

the riskless rate down sharply.

Suppose that log consumption follows the jump-diffusion process

Gt = µ̃t+ σBBt +

N(t)∑
i=1

Yi (1.29)

where Bt is a standard Brownian motion, N(t) is a Poisson counting process with

parameter ω and Yi are i.i.d. random variables with some arbitrary distribution. The

significance of this example is that any Lévy process can be approximated arbitrarily
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accurately by a process of the form (1.29).12 I will assume that all moments of the

disaster size Y1 are finite, from which it follows that all moments of G are finite.

The CGF is c(θ) = logm(θ), where

m(θ) = EeθG1

= eeµθ · EeσBθB1 · Eeθ
PN(1)
i=1 Yi ;

separating the expectation into two separate products is legitimate since the Poisson

jumps and Yi are independent of the Brownian component Bt. The middle term is

the expectation of a lognormal random variable: EeθσBB1 = eσ
2
Bθ

2/2. The final term

is slightly more complicated, but can be evaluated by conditioning on the number

of Poisson jumps that take place before t = 1:

E exp

θ
N(1)∑
i=1

Yi

 =
∞∑
0

e−ωωn

n!
E exp

{
θ

n∑
1

Yi

}

=
∞∑
0

e−ωωn

n!
[E exp {θY1}]n

= exp
{
ω
(
EeθY1 − 1

)}
= exp {ω (mY1(θ)− 1)} ,

Finally, we have

m(θ) = exp
{
µ̃θ + σ2

Bθ
2/2 + ω (mY1(θ)− 1)

}
12 In fact a stronger result holds: for any Lévy process Lt, there exists a sequence of compound

Poisson processes {Ln
t }∞n=1 such that

P
[

lim
n→∞

sup
t≤u
|Lt − Ln

t | = 0,∀u ≥ 0
]

= 1.

See Sato (1999, Chapter 9) for a proof. In view of this, I could leave the drift term µ̃t and Brownian
term σBBt out of (1.29); I include them out of deference to the previous literature.
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and so

c(θ) = µ̃θ + σ2
Bθ

2/2 + ω (mY1(θ)− 1) . (1.30)

The cumulants can be read off from the CGF (1.30):

κn(G) = c(n)(0)

=


µ̃+ ω EY n = 1

σ2
B + ω EY 2 n = 2

ω EY n n ≥ 3

(1.31)

Turning off the Brownian motion component of consumption growth (σB = 0)

affects only the second cumulant (variance). Turning off jumps, on the other hand,

corresponds to setting ω = 0, which alters all the cumulants and in particular sets

κn = 0 for n ≥ 3. This illustrates how introducing jumps can significantly alter a

model’s asset-pricing implications.

Take the case in which Y ∼ N(−b, s2); b is assumed to be greater than zero, so

the jumps represent disasters. The CGF is then

c(θ) = µ̃θ +
1

2
σ2
Bθ

2 + ω
(
e−θb+

1
2
θ2s2 − 1

)
. (1.32)

Figure 1.1 shows the CGF of (1.32) plotted against θ. I set parameters which

correspond to Barro’s (2006a) baseline calibration—γ = 4, σB = 0.02, ρ = 0.03, µ̃ =

0.025, ω = 0.017—and choose b = 0.39 and s = 0.25 to match the mean and variance

of the distribution of jumps used in the same paper. I also plot the CGF that results

in the absence of jumps (ω = 0). In the latter case, I adjust the drift of consumption

growth to keep mean log consumption growth constant.

The riskless rate, consumption-wealth ratio and mean consumption growth can

be read directly off the graph, as indicated by the arrows. The risk premium can be

22



−4 −3 −2 −1 0 1

−0.05

0

0.05

0.1

θ

c
(θ

)

 

 

ρ
rf

(1− γ)(−γ)

c/w
c(1)

jumps

no jumps

Figure 1.1: The CGF in equation (1.32) shown with and without (ω = 0) jumps.
The figure assumes that γ = 4.

calculated from these three via the Gordon growth formula (rp = c/w + c(1)− rf ),

or read directly off the graph as follows. Draw one line from (−γ, c(−γ)) to (1, c(1))

and another from (1−γ, c(1−γ)) to (0, 0). The midpoint of the first line lies above

the midpoint of the second by convexity of the CGF. The risk premium is twice the

distance from one midpoint to the other. This procedure is illustrated in Figure 1.2.

The standard lognormal model predicts a counterfactually high riskless rate;

in Figure 1.1, this is reflected in the fact that the no-jumps CGF lies well below

ρ for reasonable values of θ. Similarly, the standard lognormal model predicts a

counterfactually low equity premium. In Figure 1.1, this manifests itself in a no-

jump CGF which is practically linear over the relevant range and which is upward-

sloping between −γ and 1 − γ. Conversely, the disaster CGF has a shape which

allows it to match observed fundamentals closely.

Zooming out on Figure 1.1, we obtain Figure 1.3, which further illustrates the

equity premium and riskless rate puzzles. With jumps, the CGF is visible at the

right-hand side of the figure; the CGF explodes so quickly as θ declines that it is only
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Figure 1.2: The risk premium. The figure assumes that γ = 4.
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Figure 1.3: Zooming out to see the equity premium and riskless rate puzzles. The
dashed box in the upper right-hand corner is the boundary of the region plotted in
Figure 1.1.
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visible for θ greater than about −5. The jump-free lognormal CGF has incredibly

low curvature. For a realistic riskless rate and equity premium, the model requires

a risk aversion above 80.

With the explicit expression (1.32) for the CGF in hand, it is easy to investigate

the sensitivity of a disaster model’s predictions to the parameter values assumed.

Table 1.1 shows how changes in the calibration of the distribution of disasters affect

the relevant fundamentals and the cost of consumption uncertainty, φ. As is evident

from the table, the predictions of the disaster model are sensitively dependent on

the precise calibration. In particular, small changes in any of the parameters ω,

b or s have large effects on the riskless rate and equity premium. For example,

increasing s (the standard deviation of disaster sizes) from 0.25 to 0.30 drives the

riskless rate down by more than three per cent. Given that these parameters are

hard to estimate—disasters happen very rarely—this is a significant difficulty.

ω b s Rf C/W RP

Baseline case 0.017 0.39 0.25 1.0 4.8 5.7
High ω 0.022 -2.4 3.1 7.4
Low ω 0.012 4.5 6.4 4.1
High b 0.44 -1.9 3.6 7.5
Low b 0.34 3.5 5.8 4.4
High s 0.30 -2.2 3.8 8.1
Low s 0.20 3.2 5.5 4.2

Table 1.1: The impact of different assumptions about the distribution of disasters.
All parameters other than ω, b and s are as before.

As before, the CGF can also be thought of as a power series in θ. Table 1.2

investigates the consequences of truncating this power series at the term of order

θn. When n = 2, this is equivalent to making a lognormality assumption, as noted

above. With n = 3, it can be thought of as an approximation which accounts for

the influence of skewness; n = 4 also allows for kurtosis. As is clear from the table,

however, much of the action is due to cumulants of fifth order and higher. This
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suggests that one should not expect calculations based on third- or fourth-order

approximations to capture fully the influence of disasters.

n Rf C/W RP

1 10.3 8.5 0.0 deterministic
2 7.1 6.7 1.6 lognormal
3 4.7 5.7 3.0
4 3.0 5.1 4.1
∞ 1.0 4.8 5.7 true model

Table 1.2: The impact of approximating the disaster model by truncating at the
nth cumulant. All parameters as in baseline case of Table 1.1.

1.3 Restrictions on preference parameters

Any three of the riskless rate, consumption-wealth ratio, risk premium and ex-

pected consumption growth pin down the value of the fourth, via the equation

c/w = rf + rp − c(1) of (1.21). I now assume that these quantities are observable,

and suppose for simplicity that the riskless rate and mean consumption growth are

specified by rf = 0.02 and c(1) = 0.02, and that the risk premium and consumption-

wealth are given by rp = 0.06 and c/w = 0.06. One interpretation is that we are

interested only in models which avoid the riskless rate and equity premium puzzles

and make a reasonable assumption about mean consumption growth. Table 1.3

summarizes these assumptions.

riskless rate rf 0.02
risk premium rp 0.06
consumption-wealth ratio c/w 0.06
mean consumption growth c(1) 0.02

Table 1.3: Assumed values of the observables.

We have seen, too, that the riskless rate, risk premium, consumption-wealth

ratio and mean consumption growth tell us information about the shape of the
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CGF. I now show how to exploit this observation to find restrictions on preference

parameters, in terms of observable fundamentals, that must hold in any Epstein-

Zin/i.i.d. model, no matter what pattern of (say) rare disasters we allow ourselves

to entertain.

Since for example rf = ρ − c(−γ) in the power utility case, observation of

the riskless rate tells us something about ρ and something about the value taken

by the CGF at −γ. Similarly, observation of the consumption-wealth ratio tells us

something about ρ and something about the value taken by the CGF at 1−γ. Next,

c(1) = log E(C1/C0) is pinned down by mean consumption growth, and c(0) = 0

by definition. How, though, can we get control on the enormous range of possible

consumption processes? One approach is to exploit the fact that the CGF of any

random variable is convex, a property that is so central in what follows that I record

it as

Fact 1.1. CGFs are convex.

Proof. Since c(θ) = logm(θ), we have

c′′(θ) =
m(θ) ·m′′(θ)−m′(θ)2

m(θ)2

=
EeθGEG2eθG −

(
EGeθG

)2
m(θ)2

.

The numerator of this expression is positive by a version of the Cauchy-Schwartz

inequality which states that EX2 · EY 2 ≥ E(|XY |)2 for any random variables X

and Y . In this case, we need to set X = eθG/2 and Y = GeθG/2. (See, for example,

Billingsley (1995), for further discussion of CGFs.)

The convexity of the CGF can be thought of as encoding useful inequalities

(those of Jensen and Lyapunov, for example) in a memorable and geometrically

intuitive form.
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I now state the main result, which takes full advantage of Fact 1.1.

Proposition 1.4. In the power utility case, we have

c(1)− rp ≤ c/w − ρ
γ − 1

≤ c(1) (1.33)

In the Epstein-Zin case, we have

c(1)− rp ≤ c/w − ρ
1/ψ − 1

≤ c(1) (1.34)

Proof. From equation (1.19) we have, in the Epstein-Zin case,

c/w − ρ
1/ψ − 1

=
c(1− γ)
1− γ

.

The convexity of c(θ) and the fact that c(0) = 0 imply that

c(−γ)
−γ

≤ c(1− γ)
1− γ

≤ c(1) ;

to see this, note that if f(θ) is a convex function passing through zero, then f(θ)/θ

is increasing. Putting the two facts together, we have

c(−γ)
−γ

≤ c/w − ρ
1/ψ − 1

≤ c(1) .

After some rearrangement of the left-hand inequality using (1.18) and (1.19), this

gives (1.34). Equation (1.33) follows since γ = 1/ψ in the power utility case.

The intuition for the result is that as ψ approaches one, the consumption-wealth

ratio approaches ρ. Therefore, when the consumption-wealth ratio is far from ρ,

ψ must be far from one. Using the empirically reasonable values rp = 6%, rf =
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2%, c/w = 6%, c(1) = 2%, we have the restriction that −0.04 ≤ (0.06− ρ)/(1/ψ −

1) ≤ 0.02, or equivalently

4− 1

ψ
≤ 50ρ ≤ 1 +

2

ψ
if ψ ≤ 1

1 +
2

ψ
≤ 50ρ ≤ 4− 1

ψ
if ψ ≥ 1 .

Figures 1.4a and 1.4b illustrate these constraints. Note, for example, that if ψ is

greater than one, ρ is constrained to lie between 0.02 and 0.08; if also ψ is less than

two, ρ must lie between 0.04 and 0.07.
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(a) Power utility case: γ and ρ
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(b) Epstein-Zin case: ψ and ρ

Figure 1.4: Parameter restrictions for i.i.d. models with rp = 6%, rf = 2% and log
expected consumption growth of 2%.

A pragmatic conclusion that might be drawn from these diagrams is that they

can be used to constrain ρ precisely—by setting it equal to the consumption-wealth

ratio, c/w—and that following this choice of ρ, ψ (or γ) can be chosen freely.

1.3.1 Hansen-Jagannathan and good-deal bounds

The restrictions in Proposition 1.4 are complementary to the bound derived by

Hansen and Jagannathan (1991), which relates the standard deviation and mean of
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the stochastic discount factor, M , to the Sharpe ratio on an arbitrary asset, SR:

SR ≤ σ(M)

EM
. (1.35)

In the Epstein-Zin-i.i.d. setting, the right-hand side of (1.35) becomes

σ(M)

EM
=

√
EM2

(EM)2 − 1

=
√
ec(−2γ)−2c(−γ) − 1 ; (1.36)

combining (1.35) and (1.36), we obtain a Hansen-Jagannathan bound translated

into CGF notation:

log
(
1 + SR2

)
≤ c(−2γ)− 2c(−γ) . (1.37)

Cochrane and Saá-Requejo (2000) observe that inequality (1.35) suggests a nat-

ural way to restrict asset-pricing models. Suppose that σ(M)/EM ≤ h; then (1.35)

implies that the maximal Sharpe ratio is less than h. The idea is that assets with

higher Sharpe ratios are “good deals”—deals which are in fact too good to be true.

In CGF notation, the good-deal bound is that

c(−2γ)− 2c(−γ) ≤ log
(
1 + h2

)
(1.38)

Suppose, for example, that we wish to impose the restriction that Sharpe ra-

tios above 100% are too good a deal to be available. Then the good-deal bound

is c(−2γ) − 2c(−γ) ≤ log 2. This expression can be evaluated under particular

parametric assumptions about the consumption process. In the case in which con-

sumption growth is lognormal, with volatility of log consumption equal to σ, it

supplies an upper bound on risk aversion: γ ≤
√

log 2/σ (which is about 42 if
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σ = 0.02). However, this upper bound is rather weak, and in any case the postu-

lated consumption process is inconsistent with observed features of asset markets

such as the high equity premium and low riskless rate.

Alternatively, one might model the consumption process as subject to disasters

in the sense of Section 1.2.2. In this case, the good-deal bound implies tighter

restrictions on γ, but these restrictions are sensitively dependent on the disaster

parameters.

In order to progress from (1.38) to a bound on γ and ρ which does not require

parametrization of the consumption process, we want to relate c(−2γ)− 2c(−γ) to

quantities which can be directly observed. For example, the Hansen-Jagannathan

bound (1.37) improves on a conclusion which follows from the convexity of the CGF,

namely, that

0 ≤ c(−2γ)− 2c(−γ) . (1.39)

This trivial inequality follows by considering the value of the CGF at the three

points c(0), c(−γ), and c(−2γ). Convexity implies that the average slope of the

CGF is more negative (or less positive) between −2γ and −γ than it is between −γ

and 0. To be precise, it implies that

c(−γ)− c(−2γ)

γ
≤ c(0)− c(−γ)

γ
(1.40)

from which (1.39) follows immediately, given that c(0) = 0. Combining (1.38) and

(1.39), we obtain the somewhat underwhelming result that

0 ≤ log
(
1 + h2

)
.

However, we can sharpen (1.39) by comparing the slope of the CGF between

−2γ and −γ to the slope between −γ and 1 − γ (as opposed to that between −γ
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and 0). Making this formal, we have by convexity of the CGF that

c(−γ)− c(−2γ)

γ
≤ c(1− γ)− c(−γ)

1
,

from which it follows that

c(−2γ)− 2c(−γ) ≥ (γ − 1)c(−γ)− γc(1− γ)

= (γ − 1)(c/w − rf ) + ϑ(c/w − ρ)

or equivalently

σ(M)

EM
≥
√
e(γ−1)(c/w−rf )+ϑ(c/w−ρ) − 1 . (1.41)

The good deal bound therefore implies that

(γ − 1)(c/w − rf ) + ϑ(c/w − ρ) ≤ log
(
1 + h2

)
. (1.42)

Working with the power utility case for simplicity (ϑ = 1) and setting c/w =

0.06, rf = 0.02, Figure 1.5 shows the upper bounds on γ that result for various

different h. Lower values of h imply tighter restrictions. When h = 1—ruling out

Sharpe ratios above 100%—we have γ ≤ 16.8 + 25ρ. So if ρ = 0.03, γ < 17.6.

Alternatively, we could take the approach suggested at the end of the previous

section, by setting ρ = c/w. In the general (Epstein-Zin) case, equation (1.42) then

implies the simple restriction

γ ≤ 1 +
log (1 + h2)

c/w − rf
. (1.43)

(To avoid unnecessary complication I have imposed the empirically relevant case

c/w ≥ rf .) Setting c/w = 0.06, rf = 0.02, and h = 1, this implies that γ < 18.4.

The important feature of the bounds (1.42) and (1.43) is that they do not require
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Figure 1.5: Restrictions on γ and ρ implied by good-deal bounds in the power utility
case with c/w = 0.06, rf = 0.02.

one to take a stand on the details of the higher cumulants of consumption growth.

By exploiting the observable consumption-wealth ratio and riskless rate, calibration

of the consumption process can be avoided.

1.4 The cost of consumption fluctuations

Continuing with the theme of extracting information from observable fundamen-

tals, I now explore the implications of the consumption-wealth ratio for estimates of

the cost of consumption fluctuations in the style of Lucas (1987), Obstfeld (1994) or

Barro (2006b). I work with power utility throughout this section and assume that

γ 6= 1, though results for log utility are stated in the Propositions.13

A starting point is the close correspondence between expected utility and the

13 Calculations in the Epstein-Zin case are in Appendix A.2.
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price of the consumption claim (that is, wealth):

U(γ) ≡ E

[
∞∑
t=0

e−ρt
C1−γ
t

1− γ

]
←→ E

[
∞∑
t=1

e−ρt
(
Ct
C0

)1−γ
]

=
W0

C0

.

In fact we have

U(γ) =
C1−γ

0

1− γ
·
(

1 +
W0

C0

)
. (1.44)

This correspondence between expected utility and the consumption-wealth ratio,

and hence (1.44), does not have a meaningful analogue in the log utility case. In a

sense, the consumption-wealth ratio is less informative in the log utility case since

it is pinned down by the time discount rate, C/W = eρ − 1.

Expected utility can also be expressed in terms of the CGF:

U(γ) =
C1−γ

0

1− γ

(
1 +

1

eρ−c(1−γ) − 1

)
, γ 6= 1 . (1.45)

When γ < 1 the representative agent prefers large values of c(1 − γ) and when

γ > 1 the representative agent prefers small values of c(1 − γ). When γ > 1, the

representative agent likes positive mean and positive skew and positive cumulants

of odd orders but dislikes large values of variance, kurtosis and cumulants of even

orders; when γ < 1 the representative agent likes large means, large variances, large

skewness, large kurtosis—large positive values of cumulants of all orders.14

Equation (1.44) gives expected utility under the status quo; expression (1.45)

permits the calculation of expected utility under alternative consumption processes

with their corresponding CGFs. I compare two quantities: expected utility with

initial consumption (1 + φ)C0 and the status quo consumption growth process,15

14 As always, these cumulants are the cumulants of log consumption growth. This explains
the result that risk-averse agents with γ < 1 prefer large variances, which may initially seem
counterintuitive.

15 Since the consumption growth process is unchanged, the consumption-wealth ratio remains

34



and expected utility with initial consumption C0 and the alternative consumption

growth process. The cost of uncertainty is the value of φ which equates the two.

This definition follows the lead of Lucas (1987) and Obstfeld (1994) and Section V

of Alvarez and Jermann (2004).

The following sections consider two possible counterfactuals: (i) a scenario in

which all uncertainty is eliminated, and (ii) a scenario in which the variance of

consumption growth is reduced by α2 but higher cumulants are unchanged. In each

case, mean consumption growth ECt+1/Ct is held constant.

1.4.1 The elimination of all uncertainty

Since

E
(
C1

C0

)
= EeG = ec(1) ,

keeping mean consumption growth constant is equivalent to holding c(1) = log E(C1/C0)

constant. If all uncertainty is also to be eliminated, log consumption follows the triv-

ial Lévy process Gt whose CGF is cG(θ) = c(1) · θ for all θ.

From (1.44) and (1.45), φ solves the equation

[(1 + φ)C0]
1−γ

1− γ
·
(

1 +
W0

C0

)
=
C1−γ

0

1− γ
· eρ−c(1)·(1−γ)

eρ−c(1)·(1−γ) − 1
. (1.46)

Simplifying, we have

φ =

(
1 +

W0

C0

) 1
γ−1

{
1− e−ρ

[
E
(
C1

C0

)]1−γ
} 1

γ−1

− 1 . (1.47)

What assumptions are required to derive (1.47)? The left-hand side of (1.46)

relies on the correspondence between expected utility and the consumption-wealth

constant. The increase in initial consumption therefore corresponds to an increase in initial wealth
by proportion φ.
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ratio that was noted at the beginning of section 1.4. This correspondence follows

directly from Lucas’s (1978) Euler equation with power utility: the assumption that

real-world consumption growth is i.i.d. is not required. The cost of all uncertainty

given in (1.47) depends only on the power utility assumption. The counterfactual

case of deterministic growth is trivially i.i.d., so it is convenient to work with a CGF,

though not necessary. (Below, I calculate the benefit associated with a reduction in

the variance of consumption growth, while higher moments remain constant. In this

case, the i.i.d. assumption is required and CGFs are central to my calculations.)

In the Epstein-Zin case it is also necessary to rely on the i.i.d. assumption. It

turns out that (1.47) is misleading in that the γ terms that appear in it are capturing

not risk aversion but the elasticity of intertemporal substitution, as the following

proposition shows.

Proposition 1.5. In the Epstein-Zin case with elasticity of intertemporal substitu-

tion ψ, the cost of uncertainty, φ, satisfies

φ =

(
1 +

W0

C0

) 1
1/ψ−1

{
1− e−ρ

[
E
(
C1

C0

)]1− 1
ψ

} 1
1/ψ−1

− 1 . (1.48)

With power utility and γ 6= 1, the above equation holds, even in the absence of

the i.i.d. assumption, with 1/ψ replaced by γ.

With log utility we do require the i.i.d. assumption, and have

φ = exp [(c(1)− µ) / (eρ − 1)]− 1

= exp

[
(c(1)− µ)

W0

C0

]
− 1 .

Proof. See appendix A.2 for the Epstein-Zin calculations.

Proposition 1.5 shows that if the mean consumption growth rate in levels, consumption-
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wealth ratio16 and preference parameters ρ and ψ can be estimated accurately, then

the gains notionally available from eliminating all uncertainty can be estimated

without needing to make assumptions about the particular stochastic process fol-

lowed by consumption. In particular, in the Epstein-Zin case, φ is not—directly—

dependent on γ, nor on estimates of the variance (and higher cumulants) of con-

sumption growth. The consumption-wealth ratio encodes all relevant information

about the amount of risk (that is, the cumulants κn, n ≥ 2) and the representative

agent’s attitude to risk (γ).

In the power utility case in particular, this result is rather general. It applies

to arbitrary consumption processes and so nests results obtained by Lucas (1987,

2003), Obstfeld (1994) and Barro (2006b).17 The important feature is that I treat

the consumption-wealth ratio as an observable. Lucas, Obstfeld and Barro postu-

late some particular consumption process and, implicitly or explicitly, calculate the

consumption-wealth ratio implied by that consumption process. For these authors,

a change in γ is accompanied by a change in C/W ; I, on the other hand, hold C/W

constant and view it as containing information about the underlying consumption

process.

The cost of all uncertainty with power utility

As before, suppose that c/w = 0.06 and c(1) = 0.02, and that ρ = 0.03 and

γ = 4. Substituting these values into (1.47) gives φ ≈ 14%.

This cost estimate is roughly two orders of magnitude higher than that ob-

tained by Lucas (1987, 2003), even allowing for the higher risk aversion assumed

16 If one is prepared to identify the consumption claim with the stock market, as in Mehra and
Prescott (1985), then the dividend yield on the market can be used in place of C/W .

17 There is a slight wrinkle in that Lucas (1987, 2003) assumes that current consumption C0 is
not known in the risky case. I follow Alvarez and Jermann (2004) in assuming that C0 is known.
The distinction turns out not to be quantitatively significant in practice.
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in this chapter. Although Lucas’s calculations do not make use of the observable

consumption-wealth ratio, it is possible to calculate the consumption-wealth ratio

implied by his assumptions on the consumption process and my assumptions on ρ

and γ; the result is an implied consumption-wealth ratio c/w = 0.0896. Substituting

this value back into (1.47), we recover the far lower cost estimate, φ ≈ 0.14%. Once

one considers the consumption-wealth ratio as an observable, the cost of uncertainty

appears to be considerably higher.

ρ γ c(1) c/w φ

Baseline case 0.03 4 0.02 0.06 14%
High ρ 0.04 18%
Low ρ 0.02 10%
High γ 5 16%
Low γ 3 7.7%
High growth 0.025 20%
Low growth 0.015 7.5%
High c/w 0.07 8.4%
Low c/w 0.05 21%

Table 1.4: The cost of consumption fluctuations with power utility.

Table 1.4 shows how different assumptions on preference parameters and on mean

consumption growth and the consumption-wealth ratio affect the estimate of the cost

of uncertainty. Apart from the last two lines of the table, the consumption-wealth

ratio c/w is held constant in the calculations.

The cost of uncertainty is higher when agents are more impatient (high ρ). When

ρ is low, the (relatively) high consumption-wealth ratio signals that there is not too

much risk in the economy. When ρ is high, the (relatively) low consumption-wealth

ratio signals that there is considerable risk in the economy, or that risk aversion is

high.

The case in which γ varies is somewhat more complicated. Suppose, first, that

ρ is low relative to c/w, as in the above table. If we imagine holding the level

of risk constant, then increasing γ from a low level will lead, first, to an increase
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in c/w because the representative agent is less inclined to substitute consumption

intertemporally. Ultimately, however, increasing γ must lead to a decrease in c/w,

once the precautionary saving motive starts to dominate. (These statements are

most easily understood if one keeps Figure 1.1 in mind.) Turning the logic around,

if γ increases but c/w remains constant, the level of risk in the economy must first

be increasing and then declining. It follows that we may expect increases in γ to

have ambiguous effects on the cost of uncertainty, holding c/w constant. In table

1.4, the former effect dominates.

When, on the other hand, ρ is large relative to c/w, the CGF must have signifi-

cant curvature—look at Figure 1.1. It follows that there is considerable risk in the

economy; in this case, for γ to increase while c/w remains constant, it can only be

that the level of risk is declining. Thus we expect to see that for low values of ρ,

the cost of uncertainty is first increasing and then decreasing in γ, while for larger

values of ρ, the cost is declining in γ.

These observations are borne out by Figure 1.6. When ρ = 0.03, the cost of

uncertainty is first increasing and then decreasing in γ. When ρ = 0.06 or 0.09, the

cost of uncertainty is decreasing in γ.

4 6 8 10
Γ

20

40

60

80
Cost H%L

Figure 1.6: The cost of consumption uncertainty plotted against risk aversion, γ,
when ρ = 0.03 (bottom), ρ = 0.06 (middle) and ρ = 0.09 (top). The cost of
uncertainty ultimately declines as γ increases: for very high values of γ, c/w can
only equal 0.06 if there is relatively little risk in consumption growth.
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Finally, when ρ equals 0.03, γ must be at least 2.5 to be consistent with the

assumed mean consumption growth and consumption-wealth ratio. In Figure 1.6,

the black line hits zero at γ = 2.5 because the only possibility consistent with

ρ = 0.03, γ = 2.5, c(1) = 0.02, c/w = 0.06 is that consumption is deterministic.

The cost of all uncertainty with Epstein-Zin preferences

With Epstein-Zin preferences, the intertemporal substitution parameter ψ in-

fluences the agent’s preference over the timing of resolution of uncertainty. When

ψ > 1/γ, the agent prefers early resolution of uncertainty; when ψ < 1/γ, the agent

prefers late resolution of uncertainty. In this sense, Epstein and Zin (1989) observe

that the elasticity of intertemporal substitution, ψ, “seems intertwined with both

substitutability and risk aversion.” This fact frustrates intuition in the Epstein-Zin

case.

The cost calculations made in the previous section can be mapped directly into

the Epstein-Zin case if ψ = 0.25. Figure 1.7a, which is the dual of Figure 1.6 but is

more general because it makes no restrictions on γ, illustrates the effects of changes

in ρ and ψ. When ρ is high, the cost is high—for the same reasons as above.
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(a) Against ψ, with ρ = 0.03
(bottom), ρ = 0.06 (middle)
and ρ = 0.09 (top).
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(b) Against ψ, with ρ = c/w =
0.06.
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(c) Against ρ, with ψ = 1.5.

Figure 1.7: The cost of uncertainty with Epstein-Zin preferences.

As before, it is not possible to set ψ and ρ arbitrarily while retaining consistency

with observed values of the consumption-wealth ratio. In Figure 1.7a, we see that we

cannot have ψ between 0.4 and 1 if ρ = 0.03. However, if (and only if) ρ = c/w, then
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ψ can take any value (specifically, any value around one). Figure 1.7b therefore sets

ρ = c/w and shows that the cost of uncertainty increases in ψ. When ψ is around

one, the implied cost of uncertainty is high, at about 40% of current wealth.

Finally, Figure 1.7c plots the cost of uncertainty against ρ, holding ψ fixed at

1.5. For consistency, ρ must lie between 0.0467 and 0.0667. The cost of uncertainty

is extraordinarily sensitively dependent on the relationship between ρ and c/w.

1.4.2 A reduction in the variance of consumption growth

The preceding section showed that there are significant costs due to uncertainty.

This section investigates the utility benefit of a reduction in variance, holding all

higher cumulants fixed; it requires the assumption that real-world consumption

growth is i.i.d. The counterfactual situation under consideration is one in which the

variance of log consumption growth is reduced by α2 from its current level, which

can remain unspecified.18

Under the new reduced-volatility process, the CGF is

c̃(θ) = c(θ) + α2θ/2− α2θ2/2 . (1.49)

The term of order θ2 decreases the variance of log consumption growth by α2.

The term of order θ adjusts the drift of log consumption growth to hold mean

consumption growth constant in levels, that is, to ensure that c̃(1) = c(1).

The cost of uncertainty, φα, solves

[(1 + φα)C0]
1−γ

1− γ
·
(

1 +
W0

C0

)
=
C1−γ

0

1− γ
· eρ−ec(1−γ)

eρ−ec(1−γ) − 1
.

18 It is possible to consider such an adjustment in variance alone—leaving higher cumulants
unchanged—because the Brownian component of log consumption growth only affects the second
cumulant. Conversely, it is not clear how to adjust, say, kurtosis without changing other cumulants.
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Substituting in from (1.49), and replacing ρ − c(1 − γ) with the observable c/w =

log(1 + C/W ), we obtain after some simplification

φα =

{
1 +

W0

C0

[
1− e−

1
2
α2γ(γ−1)

]}1/(γ−1)

− 1 . (1.50)

Carrying out similar calculations in the Epstein-Zin case, we find

Proposition 1.6. In the Epstein-Zin case with elasticity of intertemporal substitu-

tion ψ, a reduction in consumption variance of α2 is equivalent in utility terms to a

proportional increase in current consumption of φα, where

φα =

{
1 +

W0

C0

[
1− e−

1
2
α2γ( 1

ψ
−1)
]} 1

1/ψ−1

− 1 . (1.51)

In the power utility case, the above equation holds with 1/ψ replaced by γ.

With log utility, we have

φα = exp

[
1

2
α2/ (eρ − 1)

]
− 1

= exp

[
1

2
α2W0

C0

]
− 1 .

In all cases, we have the first-order approximation for small α2

φα ≈
W0

C0

γα2

2
. (1.52)

Proof. See appendix A.2 for the Epstein-Zin calculations.

Obstfeld (1994) observes that (1.52) holds in the power utility case with i.i.d. log-

normal consumption growth, but does not argue that it holds in the Epstein-Zin case

or for general i.i.d. consumption processes.
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With γ = 4, and setting c/w = 0.06 as usual, it follows from (1.52) that a reduc-

tion in variance of 0.0003—as would be associated with a decline in the standard

deviation of log consumption growth from 2% to 1%—is equivalent in welfare terms

to an increase in current consumption (or equivalently wealth) of 1.0%. While this is

a significant quantity, these calculations suggest that most of the cost of uncertainty

can be attributed to higher-order cumulants.

1.5 The multivariate case and heterogeneity

I now briefly describe how to extend the CGF framework to price assets whose

dividends are not a power of the stochastic discount factor. To be concise, I work

in continuous time. I assume that there is no arbitrage (in which case there exists a

stochastic discount factor to time t for arbitary t, labelled Mt/M0), and that there is

an asset under consideration with well-defined price whose dividend stream is {Dt}.

Motivated by the analysis above, I defineGt ≡ − logMt/M0 andHt ≡ logDt/D0,

G ≡ G1, H ≡ H1, and assume that (Gt, Ht) follows a two-dimensional Lévy pro-

cess. This assumption allows for the possibility that Gt and Ht are correlated; for

example, Gt and Ht may be correlated Brownian motions, or may be subject to

correlated jumps. As before, however, the increments of (Gt, Ht) are stationary and

independent. We can then define the bivariate CGF.

Definition 1.2. Given two random variables G and H, the bivariate moment- and

cumulant-generating functions are defined by

mG,H(θ) ≡mG,H(θ1, θ2) ≡ E eθ1G+θ2H

cG,H(θ) ≡ cG,H(θ1, θ2) ≡ logmG,H(θ)
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The bivariate cumulants of (G,H), written κrs, are defined by

cG,H(θ1, θ2) =
∞∑
r=0

∞∑
s=0

κrs
θr1
r!

θs2
s!

On the set for which the moment-generating function is defined, we have, as

before, that

mGt,Ht(θ) = (mG,H(θ))t (1.53)

Thus,

P0 ≡ E
∫ ∞

0

Mt

M0

Dtdt

= D0

∫ ∞

0

E
(
e−Gt+Ht

)
dt

= D0

∫ ∞

0

ecG,H(−1,1)tdt

=
D0

−cG,H(−1, 1)
,

or

D/P = −cG,H(−1, 1) ;

for the price to be well-defined, we require that cG,H(−1, 1) < 0. Thus pricing a

generic asset in an i.i.d. environment is a matter of analyzing the bivariate cumulants

of G and H. In Appendix A.4, I list the first few bivariate cumulants in terms of

the central moments of G and H.

The riskless rate is therefore Rf = −cG,H(−1, 0) = −cG(−1). The instantaneous
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expected return on a generic asset is

ERt ≡ D/P + lim
∆t→0

1

∆t
· E
(
Dλ,t+∆t −Dλ,t

Dλ,t

)
= −cG,H(−1, 1) + lim

∆t→0

1

∆t
·
{

E
(
eH1
)∆t − 1

}
= −cG,H(−1, 1) + lim

∆t→0

1

∆t
·
{
ecG,H(0,1)∆t − 1

}
= −cG,H(−1, 1) + cG,H(0, 1)

So,

ER = cG,H(0, 1)− cG,H(−1, 1)

The risk premium on a generic asset is

RP = cG,H(−1, 0) + cG,H(0, 1)− cG,H(−1, 1)

In the lognormal case, this expression becomes

RP = −EG+
1

2!
varG︸ ︷︷ ︸

cG,H(−1,0)

+ EH +
1

2!
varH︸ ︷︷ ︸

cG,H(0,1)

−E(−G+H)− 1

2!
var(−G+H)︸ ︷︷ ︸

cG,H(−1,1)

= cov(G,H)

as usual.

Proposition 1.7 (Multivariate results in continuous time).

D/P = −cG,H(−1, 1) (1.54)

Rf = −cG,H(−1, 0) (1.55)

RP = cG,H(0, 1) + cG,H(−1, 0)− cG,H(−1, 1) (1.56)
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The discrete-time case is very similar, and Proposition 1.7 holds with D/P , Rf

and RP replaced by their lower case counterparts—d/p ≡ log(1+D/P ), and so on.

Since dividend-price ratios are constant, the return on any asset is proportional to

its dividend growth. The H terms in Proposition 1.7 can therefore be replaced with

R, defined to be the logarithm of the asset’s one-period return.

Proposition 1.8 (Multivariate results in discrete time). Defining R to be the log-

arithm of the asset in question’s one period gross return, we have

d/p = −cG,R(−1, 1) (1.57)

rf = −cG,R(−1, 0) (1.58)

rp = cG,R(0, 1) + cG,R(−1, 0)− cG,R(−1, 1) (1.59)

We have expressions for dividend-price ratios and risk premia in terms of the

bivariate cumulants of the log SDF and log returns. In the presence of jumps, risk

premia are not determined by covariances alone, but by co-skewness, co-kurtosis

and “co-cumulants” of all orders.

1.5.1 Heterogeneity in the presence of disasters

This section illustrates the above calculations by presenting a simple model of

heterogeneity in the presence of rare disasters. Constantinides and Duffie (1996)

have shown that heterogeneity of consumption processes across individuals can

have asset pricing implications that appear surprising to an econometrician who

uses aggregate data; for example, they show that accounting for heterogeneity may

contribute to an understanding of the equity premium puzzle. On the other hand,

Grossman and Shiller (1982) have shown that in a continuous-time framework in
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which the (heterogeneous) consumption processes of different agents follow diffu-

sions, this effect disappears.

I attempt to resolve the tension between these two results by showing that het-

erogeneity matters to the extent that it is present at times of aggregate jumps. The

presence of jumps lends a discrete-time flavor to the model which, in a sense, occu-

pies a position intermediate between Constantinides-Duffie and Grossman-Shiller.

My starting point is an assumption that agents suffer idiosyncratic shocks to con-

sumption, though I make no serious attempt to explain why agents are unable to

insure against these shocks. One story would be that agents have labor income risk

which is uninsurable for moral hazard reasons.

The model is set up in such a way that all agents attach the same values to

“equity”, interpreted as a claim on aggregate consumption, which is subject to jumps

as modelled in section 1.2.2 above. All agents have power utility with relative risk

aversion γ.

Aggregate consumption, written Ct, is as in (1.29), so

log
Ct
C0

= µt+ σBt +
Nt∑
j=1

Yj (1.60)

where, for reference, Bt is a Brownian motion, Nt is the value taken by a Poisson

counting process at time t (distributed according to a Poisson distribution with

parameter ωt) and Yj are i.i.d. random variables with distribution currently left

unspecified (although I assume that disasters are bad news on average, so EeYj < 1).

Disasters occur at times when Nt increases.

The log consumption process of an individual agent, i, is determined by layering

idiosyncratic shocks on top of the aggregate process specified in (1.60). I allow for

three types of idiosyncratic shocks:

(i) a Brownian motion component, Bi,t,
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(ii) idiosyncratic jumps, Xi,k, which occur at times determined by an idiosyncratic

Poisson process, Ni,t, and

(iii) idiosyncratic jumps, Yi,k, which occur at times determined by the Poisson

process Nt, that is, at times of aggregate disaster.

Type (i) shocks are included only in order to demonstrate that they do not affect the

risk premium. (They do, however, affect the riskless rate and consumption-wealth

ratio.) Type (ii) shocks can be thought of as totally idiosyncratic shocks (to labor

income, say). Type (iii) shocks are idiosyncratic in size, but hit all agents at the

same time. This allows for the unarguable fact that when a major disaster occurs,

some agents are affected more than others. It will turn out that while all three types

of shock drive down the riskless rate and consumption-wealth ratio (relative to the

homogeneous case), only shocks of type (iii) affect the risk premium.

Formally, I assume that

log
Ci,t
Ci,0

= log
Ct
C0

+ σ1Bit −
1

2
σ2

1t︸ ︷︷ ︸
type (i)

+

Ni,t∑
j=1

Xi,j︸ ︷︷ ︸
type (ii)

+
Nt∑
k=1

Yi,k︸ ︷︷ ︸
type (iii)

(1.61)

where Xi,j and Yk,l are i.i.d. across i, j, k and l, and Ni,t is a Poisson process, in-

dependent across i, with arrival rate ω2. Finally, σ1 and ω2 are constant across all

agents i. The upshot of these assumptions is that any two agents attach the same

values to any asset whose payoffs are independent of the idiosyncratic components

of their consumption processes (in particular, to equity as defined above). As in

Constantinides and Duffie (1996), there is, therefore, a no-trade equilibrium with

equity in which agents consume {Ci,t}.

Aggregate quantities are computed by summing over agents i; I assume that a

law of large numbers holds so that this process is equivalent to taking an expectation

over i. With this assumption, (1.61) is consistent with the evolution of aggregate
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consumption in (1.60) under the maintained assumption that for all i and k,

EeXi,k = EeYi,k = 1 . (1.62)

(The drift term −σ2
1t/2 takes care of the type (i) piece.)

For the time being, I leave the distribution of jumps in aggregate log consumption

unspecified and, throughout this section, define m(θ) ≡ EeθYj .19 Similarly, the

relevant details of the distribution of jumps in idiosyncratic log consumption are

summarized by m2(θ) ≡ EeθXi,k and m3(θ) ≡ EeθYi,j .

The Euler equation holds for each agent i, so the price of equity, P , must satisfy

P = E
∫ ∞

0

e−ρt
(
Ci,t
Ci,0

)−γ

· Ct dt (1.63)

as usual. Heterogeneity matters: dropping the is in (1.63) is not valid.

The analysis of the previous section goes through unchanged. Any agent’s con-

sumption process gives rise to a valid stochastic discount factor,

Mi,t

Mi,0

= e−ρt
(
Ci,t
Ci,0

)−γ

,

so I define

Gi,t ≡ − log
Mi,t

Mi,0

= ρ+ γ · log
Ci,t
Ci,0

(1.64)

Ht ≡ log
Ct
C0

. (1.65)

We can apply the results of Proposition 1.7 directly; I retain the i subscript in Gi,t

as a reminder that individuals, not aggregates, price assets.

19 As already noted, it is assumed that m(1) < 1.
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By Proposition 1.7, we have

D/P = −cGi,H(−1, 1) (1.66)

Rf = −cGi,H(−1, 0) (1.67)

RP = cGi,H(0, 1) + cGi,H(−1, 0)− cGi,H(−1, 1) (1.68)

where as usual Gi = Gi,1 and H = H1. By the definition, the dividend on equity is

aggregate consumption, and the price of equity is aggregate wealth, so we can also

write D/P = C/W .

Computing the bivariate CGF of Gi and H is a simple exercise, which gives

cGi,H(θ1, θ2) = ρθ1 + µ (γθ1 + θ2) +
1

2
σ2 (γθ1 + θ2)

2 +
1

2
σ2

1γθ1(γθ1 − 1) +

+ ω [m (γθ1 + θ2)m3 (γθ1)− 1] + ω2 [m2(γθ1)− 1] (1.69)

The correct consumption-wealth ratio, riskless rate and risk premium on the

consumption claim can be obtained from (1.66)–(1.69). An econometrician who

incorrectly uses aggregate consumption in calculations of these fundamentals is im-

plicitly imposing σ1 = 0 and Yi,k ≡ Xi,j ≡ 0, or equivalently m2(θ) = m3(θ) = 1

for all θ, in (1.69). The discrepancies between true fundamentals and incorrect

predictions based on aggregate quantities (denoted by bars) are given by

C/W − C/W = −σ2
1γ(γ + 1)/2− ω2 [m2(−γ)− 1]− ωm(1− γ) [m3(−γ)− 1](1.70)

Rf −Rf = −σ2
1γ(γ + 1)/2− ω2 [m2(−γ)− 1]− ωm(−γ) [m3(−γ)− 1](1.71)

RP −RP = ω [m(−γ)−m(1− γ)] [m3(−γ)− 1] (1.72)

To get some hold on these unwieldy expressions, I now show that whatever

the distribution of idiosyncratic jumps, allowing for heterogeneity leads to a lower
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consumption-wealth ratio and riskless rate and to a higher risk premium than would

be predicted by the same naive econometrician. In other words, I show that the

expressions (1.70) and (1.71) are negative and that (1.72) is positive.

Proposition 1.9 (Asset pricing implications of heterogeneity). Heterogeneity drives

down the consumption-wealth ratio and riskless rate and increases the risk premium:

C/W ≤ C/W

Rf ≤ Rf

RP ≥ RP .

Proof. I show that (1) m(θ) > 0 for all θ, (2) mj(−γ) > 1 for j = 2, 3, and (3)

m(−γ) >m(1− γ). The result then follows by inspection of (1.70)–(1.72).

The first of these follows simply by observing that since eθY is positive for all

Y , the expectation m(θ) = EeθY must also be positive. To see the second in the

case j = 3, note first that the function f(x) = x−γ, where γ > 0, is convex on the

positive real line, and remember that EeYi,k = 1. Then, by Jensen’s inequality, we

have

m3(−γ) = Ee−γYi,k ≥
[
EeYi,k

]−γ
= 1

The case j = 2 follows by the same logic, since also EeXi,k = 1.

It remains to be shown that m(−γ) > m(1 − γ). Define ψ(θ) ≡ logm(θ)

to be the CGF of the aggregate jump random variable. We want to show that

ψ(−γ) > ψ(1−γ). Since I assume throughout that EeYj < 1, we havem(1) < 1 and

hence ψ(1) < 0. We also have ψ(0) = 0 as usual for CGFs. Since γ > 0, convexity

of the CGF implies that ψ(−γ) > 0. Suppose that ψ(1− γ) ≤ 0; then we’re done,

since ψ(−γ) > 0 ≥ ψ(1 − γ). If not, it must be the case that ψ(1 − γ) > 0. The
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convexity of ψ(·) then implies that 1−γ must be negative, so γ > 1. The convexity

of ψ(·) also entails that

ψ(−γ)
−γ

≤ ψ(1− γ)
1− γ

so

ψ(−γ) ≥ γ

γ − 1
ψ(1− γ) > ψ(1− γ)

as required; the last inequality follows from the fact that γ > 1 and ψ(1−γ) > 0.

To get a sense of the quantitative importance of heterogeneity, suppose that

aggregate and idiosyncratic—type (iii)—jumps in log consumption are Normally

distributed, Yj ∼ N(−b, s2) and Yi,k ∼ N(−s2
i /2, s

2
i ). Then m(θ) = e−bθ+s

2θ2/2 and

m3(θ) = es
2
i θ(θ−1)/2. From (1.72), this increases the equity premium by

ω
(
ebγ+s

2γ2/2 − eb(γ−1)+s2(γ−1)2/2
)(

es
2
i γ(γ+1)/2 − 1

)
= ∆RP (γ, si) . (1.73)

Using the now familiar parameter values ω = 0.017, b = 0.39, s = 0.25, Figure

1.8 plots the value of si that would boost the equity premium by 2 per cent, relative

to the homogeneous case, against γ. For γ ≈ 5, si = 0.1 is enough; in other words,

even if a typical idiosyncratic shock (standard deviation si = 0.1) is only 40% of the

magnitude of a typical aggregate shock (standard deviation s = 0.25), heterogeneity

is quantitatively important.

1.6 Conclusion

Cumulant-generating functions make Epstein-Zin- and power utility-i.i.d. models

tractable. The mere fact that they simplify notation makes them useful modelling

tools, as shown in the heterogeneous agent model of section 1.5.1. In more compli-

cated settings—as in Chapter 2—it may even be easier to work with a CGF than to

consider a special case such as lognormality, simply because the CGF’s progress can
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Figure 1.8: The value of si needed to give RP −RP = 2%, against γ.

be easily tracked through the algebra. In a sense, CGFs make it possible to carry

out tractable asset-pricing calculations and nonetheless “get jumps for free”.

More fundamentally, however, CGFs have useful mathematical properties. With-

out appealing to the convexity of a CGF, the proof, not just the notation, of Proposi-

tion 1.9 in section 1.5.1 would have been considerably more complicated. Convexity

arguments were also employed in section 1.3, which derives robust restrictions on

preference parameters based on observed values of the riskless rate, equity premium,

consumption-wealth ratio and mean consumption growth.

These robust restrictions also exemplify the other theme of this chapter, which

is that it is desirable, when thinking about disasters, to try to make statements

which are not sensitively dependent on the assumed pattern of higher cumulants.

Section 1.4 showed—under assumptions more general than those made by Lucas

(1987), Obstfeld (1994) or Barro (2006b)—that it is possible to use the observed

consumption-wealth ratio to estimate the welfare cost of uncertainty without spec-

ifying a consumption process; and argued also that the cost is high.
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2. THE LUCAS ORCHARD

This chapter investigates the properties of asset prices, risk premia, and the term

structure of interest rates in a continuous-time economy in which a representative

agent with power utility consumes the sum of the dividends of N assets.1 The assets

can be thought of as Lucas trees, so I call the collection of assets a Lucas orchard.

In applications, the assets may represent claims to the dividends of industries, asset

classes, or countries.

Each of the assets is assumed to have i.i.d. dividend growth over time, though

there may be correlation between the dividend growth rates of different assets. For-

mally, the vector of log dividends follows a Lévy process. This framework allows

for the case in which dividends follow geometric Brownian motions, but also allows

for a rich structure of jumps in dividends. Standard lognormal models make poor

predictions for key asset-pricing quantities such as the equity premium and riskless

rate (Mehra and Prescott (1985)), and recently there has been increased interest

in models which allow for the possibility of disasters (Rietz (1988), Barro (2006a),

Gabaix (2008)). By allowing for jumps in dividends, I avoid these puzzles without

relying on implausible levels of risk aversion or dividend growth volatility.

Despite its simple structure, the model exhibits surprisingly rich asset price be-

1 I am grateful to Tobias Adrian, Malcolm Baker, Thomas Baranga, Robert Barro, John
Cochrane, George Constantinides, Josh Coval, John Cox, Emmanuel Farhi, Xavier Freixas, , Xavier
Gabaix, Lars Hansen, Jakub Jurek, David Laibson, Robert Lucas, Greg Mankiw, Emi Nakamura,
Martin Oehmke, Lubos Pastor, Roberto Rigobon, David Skeie, Jeremy Stein, Jon Steinsson, Aleh
Tsyvinski, Pietro Veronesi, Luis Viceira, James Vickery, Jiang Wang and, in particular, John
Campbell and Chris Rogers for their comments on this chapter.



havior, including several phenomena that have been documented in the empirical

literature; it illustrates “the importance of explicit recognition of the essential in-

terdependences of markets in theoretical and empirical specifications of financial

models” (Brainard and Tobin (1968)).

Similarly, although the assumptions underlying the model are simple and nat-

ural, the interaction between multiplicative structure (induced by i.i.d. growth in

log dividends) and additive structure (consumption is the sum of dividends) makes

the model hard to solve. I use techniques from complex analysis to solve for prices,

returns, and interest rates in terms of integral formulas that can be evaluated nu-

merically. These integral formulas are valid for arbitrary i.i.d. dividend growth

processes, subject to conditions that ensure finiteness of the representative agent’s

expected utility (and hence of asset prices). When there are two assets whose divi-

dends follow geometric Brownian motions, the integrals can be solved in closed form.

It is hoped that these techniques may find application in other areas of economics.

In the general case considered here, dividends—and hence prices, expected re-

turns, and interest rates—can jump, and neither the conditional consumption-CAPM

(Breeden (1979)) nor the ICAPM (Merton (1973)) hold. In the special case in which

dividends follow geometric Brownian motions, asset prices follow diffusions, so the

ICAPM and conditional consumption-CAPM do hold.2 Here, though, price pro-

cesses are not taken as given but are determined endogenously based on exogenous

fundamentals, in the spirit of Cox, Ingersoll and Ross (1985).

The tractability of the model in the general i.i.d. case is due in part to the use of

cumulant-generating functions (CGFs). Chapter 1 expressed the riskless rate, risk

premium, and consumption-wealth ratio in terms of the CGF in the case N = 1, and

the expressions found there are echoed in the more complicated scenario considered

2 The conditional CAPM itself holds only if dividends follow geometric Brownian motions and
the representative agent has log utility, as in Cochrane, Longstaff and Santa-Clara (2008).
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here. In effect, working with CGFs makes the mathematics no harder than when

working with lognormal models; the advantage of doing so is that one then “gets

jumps for free”. In fact, the use of CGFs may even make things simpler because one

can follow the CGF’s progress through the algebra: the mathematical equivalent of

a barium meal! Furthermore, CGFs have useful properties that I use in various

proofs.

For simplicity, I introduce the model in the case N = 2. I present two cali-

brations, each intended to highlight different features of the model. In the first,

dividends follow geometric Brownian motions. In the second, I use a calibration

based on Barro (2006a) to highlight the impact of rare disasters in a multi-asset

framework.

A central feature of both calibrations is that assets whose dividends make up

a large proportion of consumption are riskier, all else equal, than assets that make

up a small proportion of consumption. Large assets have low price-dividend ratios;

small assets have high price-dividend ratios. (For simplicity, this discussion assumes

that assets are independent and have fundamentally the same prospects—the same

mean dividend growth rate, dividend volatility, susceptibility to disasters, and so

on.)

Various properties of the model spring from this fact. Since dividend growth is

i.i.d., it is not forecastable. High price-dividend ratios therefore cannot forecast high

dividend growth, and are instead associated with low expected returns. In calibra-

tions, I also show that assets with high price-dividend ratios also have low expected

excess returns: the value-growth effect of Fama and French (1993). Moreover, the

expected excess return on a value-minus-growth strategy is time-varying and moves

with the value spread (the difference in dividend yields between value and growth

assets), as has been found in the data by Cohen, Polk and Vuolteenaho (2003).

The model generates price comovement even between assets whose dividends are
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independent. To see why this happens, suppose that one asset’s price increases as

a result of a positive shock to dividends. The other asset now contributes a smaller

proportion of overall consumption, and therefore typically has a lower required re-

turn and hence a higher price.3 Such comovement is a feature of the data. Shiller

(1989) demonstrates that stock prices in the US and UK move together more closely

than do fundamentals; Forbes and Rigobon (2002) allow for heteroskedasticity in

returns and find consistently high levels of interdependence between markets.

In the model, high market price-dividend ratios forecast low market expected

returns. It follows that the market displays “excess” volatility, as documented by

Shiller (1981) and many others, in the sense that its returns are more volatile than

its dividends. It should be acknowledged, however, that in the calibrations presented

here the model does not generate as much excess volatility as is observed in the data.

The riskless rate varies over time, so the term structure of interest rates is not

flat. The term structure can be upward-sloping, downward-sloping or hump-shaped

(with medium-term bonds earning higher yields than short- and long-term bonds).

When the term structure slopes up—the more usual case in the scenarios I consider—

long-term bonds earn positive risk premia. High yield spreads forecast high excess

returns on the market and high excess returns on long-term bonds, replicating a

finding of the empirical literature (for example, Fama and French (1989)).

I decompose realized returns into dividend-driven returns and valuation-driven

returns. The latter are returns due to changes in price-dividend ratios—for example,

when one asset comoves with another that has received good news, it earns a posi-

tive valuation-driven return. Most of the variance in asset returns, particularly for

large assets, is dividend-driven. For small assets, however, valuation-driven returns

are more important. Small assets also exhibit momentum, in the sense that their

3 In some circumstances, discussed further below, movements in the riskless rate may partially
offset or reverse this effect.
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dividend-driven returns and valuation-driven returns are negatively correlated.

In the second calibration, occasional disasters afflict the two assets. The phe-

nomena described above are present, and there are now some new features. First,

the introduction of disasters enables the calibration, like that of Barro (2006a), to

avoid the equity premium and riskless rate puzzles. Second, jumps are transmit-

ted across assets. When a large asset experiences a disaster, the price of the other

(small) asset also jumps downwards. This corresponds to the “typical” case of co-

movement described above. When, on the other hand, a very small asset suffers a

disaster, interest rates drop and the other (large) asset’s price jumps up. I label

these phenomena “contagion” and “flight-to-quality”.

Contagion effects provide a new channel through which disasters can contribute

to high risk premia. For example, suppose that asset 1 has perfectly stable dividends,

but that asset 2 is subject to occasional disastrous declines in dividends. Contagion

leads to declines in the price of asset 1 at times when asset 2 experiences a disaster.

These occasional price drops may induce a substantial risk premium in asset 1, an

ostensibly perfectly safe asset.

I next consider the limit in which one of the two assets is negligibly small by

comparison with the other. This case is of special interest because it represents the

most extreme departure from simple models in which price-dividend ratios are con-

stant. Closed-form solutions are available without any restrictions on the dividend

growth process, and an unexpected phenomenon emerges.

To illustrate this, suppose that the two assets have independent dividend streams.

Intuition suggests that a small idiosyncratic asset earns no risk premium, that its

expected return is therefore equal to the riskless rate and that it can be valued using

a Gordon growth formula; in other words, its dividend yield should equal the riskless

rate minus expected dividend growth. I show that this intuition is correct whenever

the result of the calculation is meaningful, which is to say positive. What happens
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if the riskless rate (determined by the characteristics of the large asset) is less than

the mean dividend growth of the small asset? I show that the negligibly small asset

then has a well-defined price-consumption ratio that, as one would expect, tends to

zero in the limit. It has, however, an extremely high valuation in the sense that

its price-dividend ratio is infinite in the limit. This valuation effect is reminiscent

of, and complementary to, that present in the papers of Pástor and Veronesi (2003,

2006). Despite its independent fundamentals and negligible size, such an asset co-

moves endogenously, and hence earns a positive risk premium. In the general case, I

provide a precise characterization of when the Gordon growth model does and does

not work, and solve for limiting expected returns and price-dividend ratios in closed

form.

Various authors have investigated related models. Cole and Obstfeld (1991)

consider a similar framework, but focus on the welfare gains from international risk

sharing rather than the implications for asset prices, and they do not present any

analytical results in the case considered here, in which the the dividends of the two

assets are perfect substitutes. Brainard and Tobin (1992, section 8) investigate a

framework that is almost identical to the one presented here, differing only in that

the dividends of the two assets are very good, rather than perfect, substitutes, and

in that per-period endowments are specified by a Markov chain with a small num-

ber of states. They present limited numerical results, and—after noting that their

“model is simple and abstract; nevertheless it is not easy to analyze”—no analytical

results. Menzly, Santos and Veronesi (2004) and Santos and Veronesi (2006) present

models in which the dividend shares of assets are assumed to follow mean-reverting

processes. By picking convenient functional forms for these processes, closed-form

pricing formulas are available. Pavlova and Rigobon (2007) investigate the con-

sequences of demand shocks in an international asset pricing model, but impose

log-linear preferences, so price-dividend ratios are constant.
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A closely related paper is that of Cochrane, Longstaff and Santa-Clara (2008),

who solve a model in which a representative investor with log utility consumes

the dividends of two assets whose dividend processes follow geometric Brownian

motions. My solution technique is entirely different, and permits me to allow for

power utility, for jumps in dividends, and for N ≥ 2 assets. I also solve for bond

yields, and hence expand the set of predictions made by the model.

Section 2.1 sets up the model in the two-asset case. Section 2.2 explains why it is

hard to solve and introduces a suggestive special case that is easily solved. Section

2.3 presents integral formulas for prices, expected returns, and real interest rates.

Section 2.4 provides closed-form solutions in the Brownian motion case. Section 2.5

explores two calibrations. Section 2.6 investigates the small asset case. Section 2.7

provides integral formulas in the N -asset case. Section 2.8 concludes. Proofs are

collected in the appendices.

2.1 Setup

For the time being, I restrict to the two-asset case for clarity. General results in

the N -asset case are presented in Section 2.7.

Setting the model up amounts to making technological assumptions about div-

idend processes; making assumptions about the preferences of the representative

investor that, together with consumption, pin down the stochastic discount factor;

and closing the model by specifying that the representative investor’s consumption

is equal to the sum of the two assets’ dividends.

2.1.1 The stochastic discount factor

Time is continuous, and runs from 0 (the present) to infinity. I assume that there

is a representative agent with power utility over consumption Ct, with coefficient of
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relative risk aversion γ and time preference rate ρ. The Euler equation, derived by

Lucas (1978) and applied in the two-country context by Lucas (1982), states that

the price of an asset with dividend stream {Xt} is

PX = E
∫ ∞

0

e−ρt
(
Ct
C0

)−γ

·Xt dt . (2.1)

2.1.2 Dividend processes

The two assets, indexed i = 1, 2, throw off random dividend streams Dit. Divi-

dends are positive, which makes it natural to work with log dividends, yit ≡ logDit.

At time 0, the dividends (y10, y20) of the two assets are arbitrary. The vector

ỹt ≡ yt − y0 ≡ (y1t − y10, y2t − y20) is assumed to follow a Lévy process.

Definition 2.1. A stochastic process (Lt)t≥0 taking values in Rd is a Lévy process

if

(i) L0 = 0

(ii) With probability one, Lt is right continuous on [0,∞), with left limits on

(0,∞).

(iii) For any n ∈ N and 0 ≤ t0 < t1 < . . . < tn, the random variables Lt0 , Lt1 −

Lt0 , Lt2 − Lt1 , . . . , Ltn − Ltn−1 are independent.

(iv) The probability distribution of Lt+h − Lt does not depend on t.

(v) For all t ≥ 0 and ε > 0, lims→t P(|Xs −Xt| > ε) = 0.

This is the continuous-time analogue of the familiar discrete-time assumption

that dividend growth is i.i.d. It is helpful to keep in mind the special case in which

ỹ is a jump-diffusion, in which case we can write

yt = y0 + µt+AZt +

N(t)∑
k=1

Jk . (2.2)
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Here µ is a two-dimensional vector of “drifts”, A a 2× 2 matrix of factor loadings,

Zt a 2-dimensional Brownian motion, N(t) a Poisson process with arrival rate ω

that represents the number of jumps that have taken place by time t, and Jk are

two-dimensional random variables which are distributed like the random variable

J , and which are assumed to be i.i.d. across time. The covariance matrix of the

diffusion components of the two dividend processes is Σ ≡ AA′, whose elements I

write as σij.

As in Chapter 1, it is convenient to define the cumulant-generating function,

an object that turns out to capture all relevant information about the stochastic

processes driving dividend growth.

Definition 2.2. The cumulant-generating function c(θ) of the Lévy process ỹt is

defined by

c(θ) ≡ log E expθ′(ỹt+1 − ỹt) . (2.3)

By properties (i) and (iv) of the definition of a Lévy process, I could equivalently

have defined c(θ) = log E expθ′ỹ1, but the expression (2.3) emphasizes the fact that

the cumulant-generating function (CGF) summarizes information about dividend

growth. Specifically, the CGF summarizes information about the higher moments

of ỹ; see also Chapter 1 for more discussion of the role of CGFs in the standard

consumption-based framework with one asset.

Some conditions on the Lévy process ỹ are required to ensure that asset prices

are finite; these are discussed further below. In particular, they will ensure that the

CGF exists in an appropriate open set containing the origin.

If log dividends follow Brownian motions, the CGF takes the simple form

c(θ) = θ′µ+
1

2
θ′Σθ .
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If log dividends follow a jump-diffusion as in (2.2), then

c(θ) = θ′µ+
1

2
θ′Σθ + ω

(
Eeθ′J − 1

)
.

If the jump sizes are Normally distributed, J ∼ N(µJ ,ΣJ), then the CGF becomes

c(θ) = θ′µ+
1

2
θ′Σθ + ω

(
exp

{
θ′µJ +

1

2
θ′ΣJθ

}
− 1

)
.

2.1.3 Closing the model

Dividends are not storable, and the representative investor must hold the market,

so the model is closed by stipulating that the representative agent’s consumption

equals the sum of the two dividends: Ct = D1t +D2t.

2.2 A simple example

Consider the problem of pricing the claim to asset 1’s output in the simplest case

γ = 1: log utility. We have

P1 = E
∫ ∞

0

e−ρt
(
Ct
C0

)−1

·D1t dt

= E
∫ ∞

0

e−ρt
D10 +D20

D1t +D2t

·D1t dt

= (D10 +D20)

∫ ∞

0

e−ρtE
(

1

1 +D2t/D1t

)
dt ;

and, unfortunately, the expectation is not easily calculated. If, say, the Dit are

geometric Brownian motions, then we have to compute the expected value of the

reciprocal of one plus a lognormal random variable. This, essentially, is the major

analytical challenge confronted by Cochrane, Longstaff and Santa-Clara (2008).

Here, though, is an instructive case in which the expectation simplifies consider-
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ably. Suppose that D2t < D1t at all times t. Perhaps, for example, D1t is constant

and initially larger than D2t, which is subject to downward jumps at random times.4

(The jumps may be random in size, but they must always be downwards.) Then

D2t/D1t < 1 and so we can expand the expectation as a geometric sum. To make

things simple, set D1t ≡ 1: then,

E
(

1

1 +D2t

)
= E

[
1−D2t +D2

2t − . . .
]

(2.4)

=
∞∑
n=0

(−1)nDn
20E [(D2t/D20)

n]

=
∞∑
n=0

(−1)nDn
20e

c(0,n)t .

Substituting back, we find that

P1 = (1 +D20)

∫ ∞

t=0

e−ρt
∞∑
n=0

(−1)nDn
20e

c(0,n)t dt

= (1 +D20)
∞∑
n=0

(−1)nDn
20

∫ ∞

t=0

e−[ρ−c(0,n)]t dt

= (1 +D20)
∞∑
n=0

(−1)nDn
20

ρ− c(0, n)

If we define s ≡ D10/(D10 +D20) to be the share of asset 1 in global output—a

definition which is maintained throughout—we can rewrite this in a form that is

more directly comparable with subsequent results:

P/D1 =
1√

s(1− s)

∞∑
n=0

(−1)n
(

1−s
s

)n+1/2

ρ− c(0, n)
(2.5)

P/D1 is the price-dividend ratio of asset 1 at time 0. When time subscripts are

dropped, here and elsewhere, the relevant time is time 0.

4 This approach fails in the Brownian motion case, since if either D1t or D2t has a Brownian
component we cannot say that D2t < D1t with probability one.
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The expression (2.5) is not in closed form, but it is easy to evaluate numerically,

once the process driving the dividends of asset 2—and hence c(0, n)—is specified.

For example, if asset 2’s log dividend is subject to downward jumps of constant size

−b which occur at intervals dictated by a Poisson process with arrival rate ω, then

c(0, n) = ω(e−bn−1), so ρ−c(0, n)→ ρ+ω as n→∞. Meanwhile, (1−s)/s < 1 so

the terms in the numerator of the summand decline at geometric rate. A numerical

summation will therefore converge fast.

The extremely special structure of this example made it legitimate to write

1/(1 +D2t) as a geometric sum 1−D2t +D2
2t − . . . in (2.4). In the general case, it

will turn out to be possible to make an analogous move, writing the equivalent of

1/(1 +D2t) as a Fourier integral before computing the expectation.

2.3 General solution in the two-asset case

It is convenient to work with a generic asset with dividend stream Dα,t ≡

Dα1
1t D

α2
2t , where α ≡ (α1, α2) ∈ {(1, 0), (0, 1), (0, 0)}. The three alternatives rep-

resent asset 1, asset 2, and a riskless perpetuity respectively.

2.3.1 Prices

Asset prices turn out to depend on the value of a single state variable s ∈ [0, 1],

the share of aggregate consumption contributed by the dividend of asset 1:

s =
D10

D10 +D20

.

The following Proposition supplies an integral formula for the price-dividend

ratio on the α-asset. The formula is perfectly suited for numerical implementation

but also permits further analytical results to be derived.

Proposition 2.1 (The general pricing formula). The price-dividend ratio on a
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generic asset which pays dividend stream Dα,t ≡ Dα1
1t D

α2
2t is given by the expres-

sion5

Pα

Dα

(s) =
1√

sγ(1− s)γ

∫ ∞

−∞

Fγ(v)
(

1−s
s

)iv
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

dv , (2.6)

where Fγ(v) is defined by

Fγ(v) ≡
1

2π
· Γ(γ/2 + iv)Γ(γ/2− iv)

Γ(γ)
. (2.7)

Proof. See Appendix B.1.

The gamma function Γ(z) that appears in (2.7) is defined for complex numbers

z with positive real part by

Γ(z) =

∫ ∞

0

tz−1e−t dt .

For real v and integer γ > 0, Fγ(v) is a strictly positive function which is symmetric

about v = 0, where it attains its maximum, and decays exponentially fast towards

zero as v tends to plus or minus infinity.

In its present form, the pricing formula (2.6) appears rather complicated, but it

is worth emphasizing that it allows for different assets (α) and for the stochastic

process governing log outputs to be any Lévy process that leads to finite asset

prices—a class which includes, for example, constant deterministic growth, drifting

Brownian motion, compound Poisson processes, variance gamma processes, Normal

inverse Gaussian processes, and a host of others, including linear combinations of

the processes mentioned.

5 Wherever it appears, i is the complex number
√
−1.
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We do, however, require that expected utility and asset prices are finite. I show

in Appendix B.1.2 that finiteness of the prices of the two assets—which implies that

expected utility is finite—is assured by the finiteness condition that

ρ− c(1− γ/2,−γ/2) > 0 and ρ− c(−γ/2, 1− γ/2) > 0 . (2.8)

Given that perpetuities in zero net supply plausibly also have finite prices, we

may also want to impose a requirement that ensures that this is the case,

ρ− c(−γ/2,−γ/2) > 0 .

This restriction is not necessary from a mathematical point of view; I impose it

because it seems empirically plausible that real perpetuities in zero net supply have

finite prices. (If either of the assets in positive net supply is a perpetuity, then this

restriction is implied by (2.8).)

These assumptions ensure that aggregate wealth is finite for all s ∈ (0, 1). I

impose one final restriction, that aggregate wealth is finite at the one-tree limit

points, s = 0 and s = 1. Asset 1’s price-dividend ratio is finite as s→ 1 if and only

if ρ− c(1− γ, 0) > 0; asset 2’s price-dividend ratio is finite as s → 0 if and only if

ρ− c(0, 1− γ) > 0. These assumptions are summarized in Table 2.1.

Restriction Reason

ρ− c(1− γ/2,−γ/2) > 0 finite price of asset 1
ρ− c(−γ/2, 1− γ/2) > 0 finite price of asset 2
ρ− c(−γ/2,−γ/2) > 0 finite perpetuity price
ρ− c(1− γ, 0) > 0 finite aggregate wealth in limit s→ 1
ρ− c(0, 1− γ) > 0 finite aggregate wealth in limit s→ 0

Table 2.1: The restrictions imposed on the model.

For many practical purposes this is, in a sense, the end of the story, since the

integral formula is very well behaved and can be calculated effectively instantly
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in Mathematica or Maple. After providing similar integral formulas for expected

returns, the riskless rate, and bond yields, I take this simple and direct route in

section 2.5. Nonetheless, it is possible to push the pen-and-paper approach further

in the case in which log dividends follow drifting Brownian motions: the integral

(2.6) is then soluble in closed form. See section 2.4.

It is sometimes more convenient to work with the state variable u, a monotonic

transformation of s which is defined by

u = log

(
1− s
s

)
= y20 − y10

While s ranges between 0 and 1, u takes values between −∞ and +∞. As asset

1 becomes small, u tends to infinity; as asset 1 becomes large, u tends to minus

infinity.

Proposition 2.2 (The general pricing formula, alternative version). In terms of

the state variable u, the price-dividend ratio on a generic asset which pays dividend

stream Dα,t ≡ Dα1
1t D

α2
2t is given by the expression

Pα

Dα

(u) = [2 cosh(u/2)]γ ·
∫ ∞

−∞

eiuvFγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
dv (2.9)

or equivalently by

Pα

Dα

(u) =

∫ ∞

−∞

eiuvFγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
dv

∫ ∞

−∞
eiuvFγ(v) dv

(2.10)

Proof. See Appendix B.1.
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2.3.2 Returns

An expression for the expected return on a general asset paying dividend stream

Dα,t can be found in terms of integrals very similar to those that appear in the

general price-dividend formula. The instantaneous expected return is defined by

Rαdt ≡
EdPα

Pα︸ ︷︷ ︸
capital gains

+
Dα

Pα

dt︸ ︷︷ ︸
dividend yield

(2.11)

Proposition 2.3 (Expected returns). Rα, the instantaneous expected return on an

asset which pays dividend stream Dα1
1t D

α2
2t , is given by

Rα(u) =

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞

−∞
h(v)eiuv · c(wm(v)) dv

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞

−∞
h(v)eiuv dv

+
Dα

Pα

(u) . (2.12)

where

h(v) ≡ Fγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
, (2.13)

and

wm(v) ≡ (α1 − γ/2 +m− iv, α2 + γ/2−m+ iv) .

An analogous formula written in terms of the state variable s can be obtained by

setting u = log [(1− s)/s] throughout (2.12).

Proof. Appendix B.1 contains the details of the capital gains calculation. The div-

idend yield component is given by the reciprocal of (2.9).

2.3.3 Interest rates

The calculations of sections 2.3.1 and 2.3.2 deal with assets which pay a constant

stream of dividends. This section calculates zero coupon bond prices and yields.
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First, some notation. I write BT for the time-0 price of a zero-coupon bond

which pays one unit of the consumption good at time T . The (zero-coupon) yield

to time T > 0, Y (T ), is defined by

BT = e−Y (T )·T .

Interest rates are not constant in this economy unless the two assets have identical,

perfectly correlated, output processes. For example, the prices of perpetuities and

zero coupon bonds fluctuate over time. Define, therefore, the instantaneous riskless

rate, r, by

r ≡ lim
T↓0

Y (T ).

The following Proposition summarizes the behavior of real interest rates, in

terms of the state variable u. Depending on the particular stochastic process driving

dividends, the model can generate upward- or downward-sloping curves and humped

curves with a local maximum.

Proposition 2.4 (Real interest rates). The yield to time T is

Y (T ) = ρ− 1

T
log

{
[2 cosh(u/2)]γ

∫ ∞

−∞
Fγ(v)e

iuv · ec(−γ/2−iv,−γ/2+iv)T dv

}
. (2.14)

The instantaneous riskless rate is

r = [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)e

iuv · [ρ− c(−γ/2− iv,−γ/2 + iv)] dv . (2.15)

As before, we can set u = log [(1− s)/s] in (2.14) and (2.15) to express yields

and the riskless rate in terms of the output share s.

Proof. See Appendix B.1.
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2.4 The Brownian motion case

When dividends follow geometric Brownian motions,6 closed-form solutions can

be obtained for asset prices. Suppose, then, that log dividend processes are driven

by a pair of Brownian motions,

dyi = µi dt+
√
σii dzi , (2.16)

where dz1 and dz2 may be correlated:
√
σ11σ22 dz1 dz2 = σ12 dt.

The following result expresses the price-dividend ratio in terms of the hyperge-

ometric function F (a, b; c; z), which is defined in the region |z| < 1 by the power

series

F (a, b; c; z) = 1+
a · b
1! · c

z+
a(a+ 1) · b(b+ 1)

2! · c(c+ 1)
z2+

a(a+ 1)(a+ 2) · b(b+ 1)(b+ 2)

3! · c(c+ 1)(c+ 2)
z3+· · · ,

(2.17)

and in the region |z| ≥ 1 by the integral representation

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

wb−1(1−w)c−b−1(1−wz)−a dw if Re (c) > Re (b) > 0 .

Proposition 2.5 (The Brownian motion case). When log dividends are determined

by equation (2.16), the price-dividend ratio of the α-asset is given by

P/D1(s) =
1

B(λ1 − λ2)

[
1

(γ/2 + λ1) s
γ F

(
γ, γ/2 + λ1; 1 + γ/2 + λ1;

s− 1

s

)
+

+
1

(γ/2− λ2) (1− s)γ
F

(
γ, γ/2− λ2; 1 + γ/2− λ2;

s

s− 1

)]
(2.18)

As before, F (a, b; c; z) is Gauss’s hypergeometric function.

6 Under the Lévy process assumption, this is the unique case in which dividends are not subject
to jumps. See Rogers and Williams (2000, pp. 76–77) for a proof.
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The variables λ1, λ2, and B are given by

B ≡ 1

2
X2

λ1 ≡
√
Y 2 +X2Z2 − Y

X2

λ2 ≡ −
√
Y 2 +X2Z2 + Y

X2
,

where

X2 ≡ σ11 − 2σ12 + σ22

Y ≡ µ1 − µ2 + α1(σ11 − σ12)− α2(σ22 − σ12)−
γ

2
(σ11 − σ22)

Z2 ≡ 2(ρ− α1µ1 − α2µ2)− (α2
1σ11 + 2α1α2σ12 + α2

2σ22) +

+ γ [µ1 + µ2 + α1σ11 + (α1 + α2)σ12 + α2σ22]−
γ2

4
(σ11 + 2σ12 + σ22) .

and as the notation suggests, X2 and Z2 are strictly positive.

The instantaneous riskless rate is given by

r = ρ+ γ
[
s
(
µ1 +

σ11

2

)
+ (1− s)

(
µ2 +

σ22

2

)]
−

− γ(γ + 1)

2

[
s2σ11 + 2s(1− s)σ12 + (1− s)2σ22

]
. (2.19)

Proof. See Appendix B.3 for the price-dividend ratio calculation. In the Brownian

motion case, the riskless rate r is given by r dt = −E(dM/M), where Mt ≡ e−ρtC−γ
t ;

(2.19) follows by Itô’s lemma.

Since (2.18) is not obviously more informative than the more general (2.9), which

applies equally well to non-Brownian dividend processes, I do not supply a formula

for the expected return although, given the above result, this can be calculated,

after some algebra, along the same lines as the analogous calculation in Cochrane,

72



Longstaff and Santa-Clara (2008).

Equation (2.18) generalizes the result of Cochrane, Longstaff and Santa-Clara

(2008) (equation (50) in their paper) beyond the log utility special case. Intriguingly,

these authors show that in some circumstances the price-dividend ratio takes on a

simpler form. If, say, log dividends follow independent and symmetric Brownian

motions with volatility σ, the time discount rate of the representative agent happens

to equal σ2, and we are in the log utility case, then the price-dividend ratio of asset

1 is

P/D1 =
1

2ρs

[
1 +

(
1− s
s

)
log(1− s)−

(
s

1− s

)
log s

]
.

I show in Appendix B.3.1 how—and why—such simple expressions can be found in

the Brownian motion case when parameters are chosen judiciously.

2.5 Two calibrations

I now present two simple calibrations. In each, the representative agent has time

discount rate ρ = 0.03 and relative risk aversion γ = 4.

2.5.1 Dividends follow geometric Brownian motions

To explore the distinctive features of the model in a setting that is as simple as

possible, consider a calibration in which the two assets are independent and have

dividends which follow geometric Brownian motions. Each has mean log dividend

growth of 2% and dividend volatility of 10%. In the notation of equation (2.2),

µ1 = µ2 = 0.02, σ11 = σ22 = 0.12, and σ12 = 0.

Although the dividend processes for the individual assets are i.i.d., consumption

is not i.i.d., as documented in Figure 2.1. In this calibration, both assets have the

same mean dividend growth, so mean consumption growth does not vary with s.

But the standard deviation of consumption growth does vary: it is lower “in the
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Figure 2.1: Left: Mean consumption growth, E(dC/C), against asset 1’s dividend
share, s. Right: The standard deviation of consumption growth, σ(dC/C), against
s.

middle”, where there is most diversification. At the edges, where s is close to 0 or

to 1, one of the two assets dominates the economy, and consumption growth is more

volatile: the representative agent’s eggs are all in one basket.
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Figure 2.2: Left: The riskless rate against s. Right: The price-dividend ratio of
asset 1 (solid) and of the market (dashed) against s.

Time-varying consumption growth volatility leads to a time-varying riskless rate.

Figure 2.2a plots the riskless rate against asset 1’s share of output s. Riskless rates

are high for intermediate values of s because consumption volatility is low, which

diminishes the motive for precautionary saving.

The right-hand graph, Figure 2.2b, shows the price-dividend ratio of asset 1

(solid) and of the market (dashed).7 When asset 1 is a small part of the market,

7 The market price-dividend ratio is calculated by observing that

P1 + P2

D1 +D2
= s · P1

D1
+ (1− s) · P2

D2
.
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it has a high valuation—P/D shoots up to the left of the figure—because it has

very little systematic risk. As asset 1’s share increases from s = 0, its discount

rate increases both because the riskless rate increases and because its risk premium

increases, as discussed further below.

Another notable feature of figure 2.2b is that the model predicts the existence

of extreme growth assets (at the left of the figure) but not of extreme value assets.8

This extreme growth case, which occurs as an asset’s dividend share approaches

zero, is of particular interest because it represents the most radical departure from

a constant discount rate framework in which price-dividend ratios are constant; it

is explored in more detail in section 2.6.
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(a) Excess return on asset 1
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(b) Expected return decomposition

Figure 2.3: Left: The excess return on asset 1 (solid) and on the market (dashed),
against s. Right: Decomposition of expected returns (solid) into dividend yield
(dashed) and expected capital gains (dot-dashed).

Figure 2.3a shows how the risk premium on asset 1 and on the market depends

on the state variable s. Due to the diversification effect discussed above, the market

risk premium is smallest when the two assets are of equal size. The risk premium

on asset 1 increases as asset 1’s dividend share increases. In the limit as s tends to

zero, the risk premium on asset 1 tends to zero. The figure shows, however, that in

this calibration even very small assets earn economically significant risk premia. In

8 I use the term “growth” to refer to assets with high price-dividend ratios, and “value” to refer
to assets with low price-dividend ratios.
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other calibrations, idiosyncratic assets can earn strictly positive risk premia even in

the limit in which they become negligible.

A comparison of figures 2.2b and 2.3a reveals that there is a value-growth effect:

assets with high valuations earn low excess returns.9

Figure 2.3b decomposes expected returns into dividend yield plus expected cap-

ital gain. In this calibration, almost all cross-sectional variation in expected returns

can be attributed to cross-sectional differences in dividend yield.
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(a) Expected returns and expected ex-
cess returns on asset 1 against D/P .
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(b) Expected excess returns on the
value-minus-growth strategy, plotted
against the value spread.

Figure 2.4: Left: Expected returns (solid) and expected excess returns (dashed)
on asset 1 against its dividend yield. Right: Expected excess return on the value-
minus-growth strategy against the value spread.

Figure 2.4a makes this point in a different way, by plotting expected returns

and risk premia against dividend yield. Figure 2.4b demonstrates that the excess

return on a zero-cost investment in a value-minus-growth portfolio is increasing in

the value spread (that is, the difference in dividend yield between the value and the

growth asset). This echoes the empirical finding of Cohen, Polk and Vuolteenaho

(2003) that “the expected return on value-minus-growth strategies is atypically high

at times when their spread in book-to-market ratios is wide.”

It is also of interest to consider the behavior of assets in zero net supply, such

9 Of course, in this simple example, there are only two assets in the cross-section. But the
results of Section 2.7 confirm that price-dividend ratios are state-dependent with N assets. Since
dividend growth is i.i.d., high price-dividend ratios forecast low expected returns in the general
case. See Cochrane (2005), p. 399.
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(a) Excess returns on a perpetuity.
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(b) The yield spread.

Figure 2.5: A high yield spread, Y (30)−Y (0), signals high expected excess returns
on a perpetuity.

as perpetuities and zero coupon bonds. Figure 2.5a plots the risk premium on a

real perpetuity which pays one unit of consumption good per unit time. Figure

2.5b shows how the spread in yields between a 30-year zero-coupon bond and the

instantaneous riskless rate varies with s. A high yield spread forecasts high excess

returns on long-term bonds. Looking back at figure 2.3a, we see that a high yield

spread also forecasts high excess returns on the market.
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(a) Correlation between asset returns.
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(b) Excess volatility on the market.

Figure 2.6: Left: The correlation between the returns of asset 1 and asset 2 against
s. Right: The ratio of market return volatility to dividend volatility against s. Solid
lines, γ = 4; dashed lines, γ = 1.

Figure 2.6a demonstrates that the model generates significant comovement be-

tween the returns of the two assets, even though the two assets have independent

fundamentals.10 There is considerably more comovement when γ = 4 than in the

10 These figures, unlike the preceding ones, are calculated by Monte Carlo methods, as follows.
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log utility case. Figure 2.6b shows that the model generates excess volatility in the

aggregate market when γ > 1. (When γ = 1—the log utility case, indicated with

a dashed line—there is no excess volatility because the price-dividend ratio of the

aggregate market is constant. For the same reason, there is no excess volatility in

the γ = 4 case when s = 1/2: the market price-dividend ratio is locally flat, as a

function of s, at this point.)
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(a) Response to cashflow shock to asset
1.
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(b) A variance decomposition.

Figure 2.7: Left: The response of asset 1 (solid) and asset 2 (dashed) to a +1%
increase in the dividend of asset 1. Right: Decomposition of the variance of returns
(solid) into three parts: the variance of dividend-driven returns (circles), the variance
of valuation-driven returns (diamonds) and the covariance between the two types of
returns (squares).

What drives asset 1’s returns? In the two-asset case, two types of shock move an

asset’s price: a shock to its dividends, or a shock to the other asset’s dividends, which

changes the asset’s price by changing its price-dividend ratio. In the terminology

For each of 109 different starting values of s ∈ [0, 1], I generate 4000 sample paths of log dividends.
(The 109 different values are the points 0.01, 0.02, . . . , 0.99, five points between 0 and 0.01, and
five points between 0.99 and 1.) Each sample path simulates a drifting Brownian motion over a
very short time horizon: 3×10−5 years, slightly less than 16 minutes. Over this time horizon, each
drifting Brownian motion is simulated by dividing the interval into 600 time steps; Normal random
variables determine the evolution of log dividends between these time steps. Given a particular
sample path for dividends, prices can be calculated, given the price-dividend functions; and hence
also total returns, and the covariance matrix of realized returns on the two assets. Finally, I
estimate variances and covariance between the two assets, at each value of s, by averaging over
the covariance matrices estimated for each of the 4000 sample paths.

78



of Campbell (1991), the first type of shock corresponds to the arrival of “cashflow

news” and the second to the arrival of “discount-rate news”. Figure 2.7a plots the

percentage price response of asset 1 (solid) and asset 2 (dashed) to a 1% increase

in asset 1’s dividends. When asset 1 is small, it underreacts to good news about its

own cashflow shock: the price response is considerably less than 1%. At the same

time, asset 2 moves in the opposite direction. When asset 1 is large, it overreacts to

good news about its own cashflow shock, and asset 2 moves in the same direction.

Note also that asset 2’s price moves considerably more, in response to dividend news

for asset 1, when asset 1 is large than when asset 1 is small.

A better understanding of these effects can be gained by exploiting a simple

identity that breaks realized returns on any asset into two pieces:

Rt+1 =
Pt+1 +Dt+1

Pt

=
Dt+1

Dt

(
1 +

Dt

Pt

)
︸ ︷︷ ︸
dividend-driven

+
Dt+1

Dt

Dt

Pt

(
Pt+1

Dt+1

− Pt
Dt

)
︸ ︷︷ ︸

valuation-driven

≡ RD,t+1 +RV,t+1 . (2.20)

The last line defines the dividend-driven return RD,t+1 and the valuation-driven

return RV,t+1. In an economy in which price-dividend ratios are constant—for ex-

ample, one with a single Lucas tree with i.i.d. dividend growth and a representative

agent with power utility or Epstein-Zin preferences—the valuation-driven compo-

nent disappears, and returns are exclusively dividend-driven. The above identity

holds exactly, with no log-linearizations needed. It is similar to the decomposition

of Campbell (1991), but changes in price-dividend ratio appear on the right-hand

side of (2.20), as opposed to the changes in future returns that appear in Campbell’s

decomposition. It has the advantage that the two components can be estimated di-

rectly from historical data.
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Using the decomposition in (2.20), we have

vartRt+1 = vartRD,t+1 + vartRV,t+1 + 2 covt(RD,t+1, RV,t+1) , (2.21)

an equation that provides another way to think about the sources of variation in

expected returns.

In the continuous-time case relevant for my purposes here, the above equations

are modified slightly: we have

Rt+dt =
Dt+dt

Dt

(
1 +

Dt

Pt
dt

)
+
Dt+dt

Dt

Dt

Pt

(
Pt+dt
Dt+dt

− Pt
Dt

)
,

and again the first term on the right-hand side can be thought of as the dividend-

driven return RD,t+dt and the second as the valuation-driven return RV,t+dt.

I estimate the three components, vartRD,t+dt, vartRV,t+dt, and covt(RD,t+dt, RV,t+dt)

by simulating the underlying Brownian processes as described in Footnote 10. The

results are shown in figure 2.7b. The figure shows that (i) most of the variance in

asset returns is driven by cash-flow news, (ii) dividend-driven returns and valuation-

driven returns are negatively correlated for small assets and positively correlated for

large assets,11 (iii) for large assets, a far higher proportion of variation in expected

returns is due to cashflow news than to discount rate news, while (iv) for small

assets, valuation-driven returns are much more important: the variance of dividend-

driven returns is only about four times higher than the variance of valuation-driven

returns.

Figure 2.8 plots the probability that the dividend share at time t, st, remains

in the region [0.2, 0.8] for t between 0 and 200 years, and for starting shares s0 =

0.1, 0.3, 0.5. (The cases s0 = 0.7, 0.9 can also be read off the graph, because the

11 In the language of Campbell (1991), cashflow news and discount-rate news are positively cor-
related for small assets and negatively correlated for large assets.
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Figure 2.8: Left: In calibration 1, the probability that st lies between 0.2 and 0.8,
plotted against time t, measured in years, assuming starting shares s0 = 0.5 (solid),
s0 = 0.3 (dashed), and s0 = 0.1 (dot-dashed). Right: In calibration 1, the value
weight of asset 1 (solid), and the 45 degree line (dashed), against s.

world is symmetric.) It also plots the value weight of asset 1 in the aggregate

market against s.

2.5.2 Dividends are subject to occasional disasters

The second calibration is intended to highlight the effect of disasters. Again, the

two assets are symmetric for simplicity. In the notation of equation (2.2), the drifts

are µ1 = µ2 = 0.02. The two Brownian motions driving dividends are independent

and each has volatility of 2%, so σ11 = σ22 = 0.022 and σ12 = 0.

There are also jumps in dividends, caused by the arrival of disasters, of which

there are three types. One type affects only asset 1: it arrives at times dictated by a

Poisson process with rate 0.017/2. When the disaster strikes, it shocks log dividends

by a Normal random variable with mean −0.38 and standard deviation 0.25. The

second is exactly the same, except that it affects only asset 2. The third type arrives

at rate 0.017/2 and shocks the log dividends of both assets by the same amount,12

which is, again, a random variable with mean −0.38 and standard deviation of 0.25.

12 These disasters are therefore simultaneous and of perfectly correlated—in fact, identical—sizes;
the framework also easily handles the case in which disasters are simultaneous but uncorrelated or
imperfectly correlated.
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If the two assets are thought of as claims to a country’s output, then the first two

types are examples of local disasters while the third is a global disaster.

From the perspective of either asset, then, disasters occur at rate 0.017/2 +

0.017/2 = 0.017: on average, about once every 60 years. There is a 50-50 chance that

any given disaster is local or global. These disaster arrival rates—and the mean and

standard deviation of the disaster sizes—are chosen to match exactly the empirical

disaster frequency estimated by Barro (2006a), and to match approximately the

disaster size distribution documented in the same paper.

Taking everything into account, these parameter values imply an unconditional

mean dividend growth rate (in levels, not logs) of 1.6%. Conditional on disasters

not occurring, the mean dividend growth rate is 2.0%.
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(c) Excess returns on asset 1 and the
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(d) Excess returns on a perpetuity

Figure 2.9: The riskless rate; price-dividend ratio on asset 1 (solid) and on the
market (dashed); excess returns on asset 1 (solid) and on the market (dashed); and
excess returns on a perpetuity.

Figure 2.9 exhibits the central features of asset prices and returns in this calibra-

tion. In broad outline, the pictures are very similar to those presented previously—
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and for the same reasons—but some new features stand out. The riskless rate is

lower across the range of values of s. Also, despite considerably lower Brownian

volatility, the presence of jumps induces a higher risk premium, both at the indi-

vidual asset level and at the market level. As in Rietz (1988) and Barro (2006a),

incorporating rare disasters makes it easier to match the observed riskless rate and

equity premium. A more unusual feature is that disasters can propagate to appar-

ently safe assets: since the state variable can jump, interest rates can jump, and

hence bond prices can jump. Consequently, at times when the current riskless rate

is low (for s ≈ 0 or s ≈ 1), the risk premium on a perpetuity is significantly higher

than previously, despite the fact that disasters do not affect its cashflows. A per-

petuity earns a negative risk premium near s = 1/2, since in this state long-dated

bonds act as a hedge against disasters: when a disaster strikes one of the assets,

riskless rates drop and the price of a long-dated bond jumps up.

Figure 2.10 shows an expected return decomposition; expected returns and risk

premia against dividend yield; price responses to a 1% dividend shock to asset 1;

and the yield spread. The qualitative features are substantially the same as in the

previous calibration in each case.

In the presence of jumps, the cross-asset effects present in the previous calibration

become more pronounced. Notably, disasters propagate across assets.

This is shown graphically in Figure 2.11, which plots a single sample time series.

Time, along the x-axis, runs from 0 to 60 years. The sequence of figures should be

read clockwise, starting from the top left. Asset 1 (in red) is the small asset—with an

initial dividend share of 10%. Asset 2 is shown in black. From exogenous dividend

processes we calculate the dividend share of asset 1, and hence price-dividend ratios.

Finally, from dividends and price-dividend ratios, we calculate prices.

In the particular realization shown here, each asset suffers one negative shock to

fundamentals; there is no “global” shock. When the large asset suffers its disaster,
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(c) Responses to a 1% dividend shock to
asset 1
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Figure 2.10: Figure 2.10a decomposes expected returns (solid) into dividend yield
(dashed) and expected capital gains (dot-dashed). Figure 2.10b plots expected
returns (solid) and expected excess returns (dashed) on asset 1 against its dividend
yield. Figure 2.10c has the response of asset 1 (solid) and asset 2 (dashed) to a 1%
dividend shock to asset 1.
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Figure 2.11: Dividends, dividend share, prices, and price-dividend ratios against
time.
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after about 26 years, its dividend drops by 25% and its price drops by 28%. Two

forces act on the small asset. A disaster to the large asset makes the economy more

balanced, so riskless rates jump up; at the same time, the risk premium on the small

asset jumps up because it is a larger part of the economy. These effects act in the

same direction, and the small asset experiences a downward price jump of 8.2%:

contagion.

When the small asset suffers its disaster, after about 49 years, its dividend drops

by 39% and its price drops by 30%. Now, two opposing forces act on the large asset.

On one hand, its risk premium rises as it is a larger share of the market. On the

other, the riskless rate declines in response to the increasingly unbalanced world.

The riskless rate effect dominates, and the large asset experiences an upward price

jump of 5.7%: flight-to-quality.
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Figure 2.12: The one-year rolling correlation between assets 1 and 2, calculated
along the sample path of Figure 2.11.

We can also calculate rolling 1-year realized return correlations along this sample

path, as shown in Figure 2.12. During normal times, the correlation hovers around

0.3, despite the fact that, conditional on no jumps, the two assets have independent

dividend streams. When the first disaster (“contagion”) takes place, the measured

correlation spikes up almost as far as +1 due to the spectacular outlying return.
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When the second disaster (“flight-to-quality”) takes place, the measured correlation

spikes down almost as far as −1. Despite the fact that naively calculated correlations

display occasional spikes, the correlation between the two assets, conditional on some

given s, is constant over time—and is economically significant even if one conditions

on jumps not taking place. These results are therefore reminiscent of the findings

of Forbes and Rigobon (2002), who demonstrate that although naively calculated

correlations spike at times of crisis, once one corrects for the heteroskedasticity

induced by high market volatility at times of crisis, it can be seen that markets have

a high level of “interdependence” in all states of the world.
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Figure 2.13: Left: The riskless rate against s. Right: The price-dividend ratio of
asset 1 (solid) and of the market (dashed), against s. Log utility with jumps.
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Figure 2.14: Left: The excess return on asset 1 (solid) and on the market (dashed)
against s. Right: The excess return on a perpetuity against s. Log utility with
jumps.

Figures 2.13–2.18 explore the consequences of using log utility or removing jumps

from the second calibration. In Figures 2.13–2.14, γ = 1 and there are jumps; in
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Figure 2.15: Left: The riskless rate against s. Right: The price-dividend ratio on
asset 1 (solid) and on the market (dashed), against s. γ = 4, no jumps.
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(b) Excess return on a perpetuity

Figure 2.16: Left: The excess return on asset 1 (solid) and on the market (dashed),
against s. Right: The excess return on a perpetuity against s. γ = 4, no jumps.
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Figure 2.17: Left: The riskless rate against s. Right: The price-dividend ratio of
asset 1 (solid) and of the market (dashed), against s. Log utility, no jumps.

88



0.2 0.4 0.6 0.8 1
s

0.01

0.02

0.03

0.04

0.05
XS H%L

(a) Excess return on asset 1

0.2 0.4 0.6 0.8 1
s

0.00001

0.00002

0.00003

0.00004
XS H%L

(b) Excess return on a perpetuity

Figure 2.18: Left: The excess return on asset 1 (solid) and on the market (dashed)
against s. Right: The excess return on a perpetuity against s. Log utility, no jumps.

Figures 2.15–2.16, γ = 4 but there are no jumps; in Figures 2.17–2.18, γ = 1 and

there are no jumps.

In all cases, the results are quantitatively uninteresting: both high risk aversion

(γ ≈ 4) and occasional disasters are needed to generate interesting predictions

using parameter values normally considered reasonable in the consumption-based

asset pricing literature.

2.6 Equilibrium pricing of small assets

A distinctive qualitative prediction of the model is that there should exist ex-

treme growth assets, but not extreme value assets. (Look back at the left-hand side

of Figure 2.2b.) The extreme growth case also represents the starkest departure

from simple models in which price-dividend ratios are constant (as, for example, in

a one-tree model with power utility and i.i.d. dividend growth). Furthermore, it

is important to understand whether the complicated dynamics exhibited above are

relevant for small assets.13 These considerations lead me to investigate the price

behavior of asset 1 in the limit s → 0 in which it becomes tiny relative to the rest

of the market (that is, asset 2).

To preview the results, consider the problem of pricing a negligibly small asset,

13 This is analogous to the “small-country case” in international finance.
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whose fundamentals are independent of all other assets, in an environment in which

the (real) riskless rate is 6%. If the small asset has mean dividend growth rate of

4%, the following logic seems plausible. Since the asset is negligibly small, it need

not earn a risk premium, so the appropriate discount rate is the riskless rate. Next,

since dividends are supposed throughout to be i.i.d., it seems sensible to apply the

Gordon growth model to conclude that for this small asset,

dividend yield = riskless rate−mean dividend growth

= 6%− 4%

= 2% .

It turns out that this argument can be made formal; I do so below.

Now, consider the (more realistic) situation in which the riskless real rate is 2%.

If the asset does not earn a risk premium, Gordon growth logic seems to suggest that

the dividend yield should be 2%−4% = −2%, an obviously nonsensical result. I show

below how to value assets in situations such as these, in which the Gordon growth

model breaks down. In the limit, such an asset has a price-consumption ratio of zero,

as one would expect. More surprisingly, though, it has an infinite price-dividend

ratio—reminiscent of Pástor and Veronesi (2003, 2006)—and a strictly positive risk

premium. Moreover, since the dividend yield is zero, expected returns on the asset

are entirely attributable to expected capital gains.

I now return to the general setup in which the assets may have correlated divi-

dend growth and make a pair of definitions.

Definition 2.3. If the inequality

ρ− c(1,−γ) > 0 (2.22)
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holds then we are in the subcritical case.

If the reverse inequality

ρ− c(1,−γ) < 0 (2.23)

holds then we are in the supercritical case.14

In the supercritical case, define θ∗ to be the unique θ ∈ (0, 1) which satisfies

ρ− c(1− θ, θ − γ) = 0 . (2.24)

In the supercritical case we have θ∗ ∈ (0, 1) because equation (2.24) is negative at

θ = 0 by (2.23) and positive at θ = 1 by the finiteness assumptions in Table 2.1. In

the Brownian motion case, (2.24) is simply a quadratic equation in θ. More generally,

the fact that the solution is unique follows from the fact, proved in Appendix B.4,

that ρ− c(1− θ, θ − γ) is a concave function of θ.

The next two Propositions supply various asymptotics. To highlight the link

with the traditional Gordon growth formula, I write G1 ≡ c(1, 0) = log ED11/D10

and G2 ≡ c(0, 1) = log ED21/D20 for (log) mean dividend growth, and R1 and R2

for the expected instantaneous returns on assets 1 and 2.

Proposition 2.6. In the subcritical case, in the limit as s ↓ 0, we have

Rf = ρ− c(0,−γ) (2.25)

R1 = ρ− c(1,−γ) + c(1, 0) (2.26)

D/P1 = R1 −G1 (2.27)

14 There is also a third case, the critical case in which ρ − c(1,−γ) = 0; I omit it for the sake
of brevity. Briefly, price-dividend ratios are asymptotically infinite and excess returns asymptot-
ically zero, assuming independent dividend growth. The simple example presented in Section 1
of Cochrane, Longstaff and Santa-Clara (2008) is precisely critical. This is no coincidence: the
condition that implies criticality also ensures that the expression for the price-dividend ratio is
relatively simple. See Appendix B.3.1.
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If the two assets are independent, then in the limit Rf = R1 < R2.

Proof. See Appendix B.4.

The results of Proposition 2.6 correspond to the first example above. A small

idiosyncratic asset with i.i.d. dividend growth earns no risk premium, and can be

valued with the Gordon growth model (2.27). The next result shows that this is not

the whole story: more intriguing behavior may emerge.

Proposition 2.7. In the supercritical case, in the limit as s ↓ 0, we have

Rf = ρ− c(0,−γ) (2.28)

R1 = c(1− θ∗, θ∗) (2.29)

D/P1 = 0 (2.30)

If the two assets are independent, then in the limit Rf < R1 < R2. If G1 ≥ G2,

then in the limit R1 < G1, whether or not the assets are independent.

Proof. See Appendix B.4.

These results are much more surprising. To understand what is going on, consider

the case in which dividend growth is independent across assets, so that the risk in

question is both small and idiosyncratic. Proposition 2.7 demonstrates that in the

supercritical regime, such an asset has an enormous valuation ratio and earns a

strictly positive risk premium.

A naive attempt to apply the Gordon growth model breaks down in the supercrit-

ical case because (2.23) holds, so the riskless rate minus dividend growth is negative.

Nonetheless, the asymptotically small asset still has a well-defined dividend-price

ratio and expected return, as demonstrated in Proposition 2.7. What happens to

the price in the asymptotic limit?
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The first point is that this is not quite the right question. Suppose that we are

in the supercritical scenario, and imagine holding the dividend of asset 1 fixed while

allowing the dividend of asset 2 (and hence total consumption) to increase without

limit. Since s then tends to zero, this is one way asset 1 can become “small”.

Because D1 is held constant, the price of asset 1—measured, as always, in units of

consumption—is unbounded in this limit. A more informative question is to ask for

the asymptotic behavior of the price-consumption ratio.

Alternatively, imagine holding the dividend of asset 2 fixed while the dividend

of asset 1, and hence s, tends to zero. The price-dividend ratio goes to infinity, but

the dividend goes to zero: what happens to the price? The answer is that since

consumption remains finite in this example, the price is zero, finite or infinite in the

limit depending on whether the price-consumption ratio is zero, finite or infinite in

the limit.

In short, it is useful to focus on the price-consumption ratio, P/C = s · P/D.

Appendix B.4 shows that the fact that the price-consumption ratio is zero in the

limit follows from the fact that θ∗ < 1.

Examination of the subcritical condition (2.22) and supercritical condition (2.23)

reveals that the supercritical regime occurs whenever ρ is sufficiently small. More

generally, the supercritical regime is relevant in environments in which the riskless

rate is low.

I now exhibit these phenomena in the simple Brownian motion example consid-

ered earlier in the chapter. This will make it clear that, first, the supercritical case

is neither pathological nor dependent on extreme parameter values and, second, the

size of the strictly positive excess return earned on the small asset in the supercriti-

cal case is economically meaningful. To recap, the world is symmetric, and the two

assets are independent with 2% mean dividend growth and 10% dividend volatility.
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As usual, γ = 4. If ρ = 0.05, then we are in the subcritical case.15 If on the

other hand ρ = 0.01, we are in the supercritical case.
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(a) Asset 1’s price-dividend ratio
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(b) Asset 1’s excess return

Figure 2.19: Left: Price-dividend ratio of asset 1 against s. Right: Excess return of
asset 1 against s. Supercritical case is dashed, subcritical case is solid.

Figure 2.19 shows the price-dividend ratio and excess return of asset 1 against

s. The asymptotic limits are to the left of the graph, as s ↓ 0. In the subcritical

case, the price-dividend ratio remains below 40 for all s and the excess return tends

to zero. In the supercritical case, the price-dividend ratio explodes and the excess

return tends to roughly 1.3 per cent. (Notice also that for intermediate values of

the state variable, the risk premium on asset 1 is not sensitive to the value of ρ,

as would be the case in a standard one-tree model.) Asymptotically, the dividend

yield is zero, so all of the expected return of the small asset can be attributed to

expected capital gains.

Finally, to allay suspicions that something strange is going on in the background,

Figure 2.20 demonstrates that asset 1’s price-consumption ratio, the market price-

dividend ratio and the riskless rate are all well-behaved in the limit.

15 In the calibration presented earlier, I set ρ = 0.03. This case is also subcritical. I have chosen
to use ρ = 0.05 here in order to make the distinction between the two cases clearer in the figures.
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Figure 2.20: The price-consumption ratio of asset 1, market price-dividend ratio
and riskless rate plotted against asset 1’s share of output, s. Supercritical case is
dashed, subcritical case is solid.

2.7 N assets

The general results presented in Section 2.3 can be generalized to the case in

which the representative agent’s consumption stream is provided by the output of

N assets, Ct = D1t +D2t + · · ·+DNt.

With this modification, equations (2.1)–(2.3) are unchanged, except that bold-

face vectors are now understood to have N entries, as opposed to just two. The

fundamental ideas underlying the calculation are also the same. The main technical

difficulty lies in calculating FN
γ (v) ≡ FN

γ (v1, . . . , vN−1), the generalization of Fγ(v)

to the N -asset case. It turns out that we have

FN
γ (v) =

Γ (γ/N + iv1 + iv2 + . . .+ ivN−1)

(2π)N−1Γ(γ)
·
N−1∏
k=1

Γ (γ/N − ivk) . (2.31)

Before stating the main result, it will be useful to recall some old, and to define

some new, notation. Let ej be an N -vector with a one at the jth entry and zeros

elsewhere, and define the N -vectors y0 ≡ (y10, . . . , yN0)
′ and γ ≡ (γ, . . . , γ)′, and
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the (N − 1)×N matrix U and the (N − 1)-vector u by

U ≡



−1 1 0 · · · 0

−1 0 1
. . .

...

...
...

. . .
. . . 0

−1 0 · · · 0 1


and u ≡



u2

u3

...

uN


≡ Uy0 . (2.32)

In the two-asset case, there was one state variable. We worked with s, the

dividend share of asset one, or with u = log(1−s)/s = y20−y10. WithN assets, there

are N−1 state variables. One natural set of state variables is {si}, i = 1, . . . , N−1,

where

si =
Di0

D10 + · · ·+DN0

is the dividend share of asset i; in fact, though, it turns out to be more convenient

to work with the (N − 1)-dimensional state vector u. The first entry of u is u2 =

y20 − y10, which corresponds to the state variable u of previous sections. More

generally, uk = yk0 − y10 is a measure of the size of asset k relative to asset 1.

Consistent with this notation, I will also write u1 ≡ y10− y10 = 0 and define the N -

vector u+ ≡ (u1, u2, . . . , uN)′ = (0, u2, . . . , uN)′ to make subsequent formulas easier

to read.

The following Proposition generalizes earlier integral formulas to the N -asset

case. All integrals are over RN−1: v is an (N − 1)-vector. Again, they can be

evaluated on the computer. The condition that ensures finiteness of the price of

asset j is that

ρ− c(ej − γ/N) > 0 .

I assume that this condition holds for all assets j.

Proposition 2.8 (Integral formulas in the N -asset case). The price-dividend ratio
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on asset j is

P/D = e−γ′u+/N (eu1 + · · ·+ euN )γ
∫

FN
γ (v)eiu

′v

ρ− c(ej − γ/N + iU ′v)
dv . (2.33)

Defining the expected return by ERdt ≡ E(dP +Ddt)/P , we have

ER =
Φ

P/D
+D/P , (2.34)

where

Φ =
∑
m

(
γ

m

)
e(m−γ/N)′u+

∫
FN
γ (v)eiu

′vc(ej +m− γ/N + iU ′v)

ρ− c(ej − γ/N + iU ′v)
dv .

The summation is over all vectors m = (m1, . . . ,mN)′ whose entries are non-

negative and add up to γ. I have made use of the multinomial coefficient

(
γ

m

)
=

γ!

m1! · · ·mN !
.

The zero-coupon yield to time T is

Y (T ) = ρ− 1

T
log

[
e−γ′u+/N (eu1 + · · ·+ euN )γ

∫
FN
γ (v)eiu

′vec(−γ/N+iU ′v)T dv

]
.

(2.35)

The riskless rate is

r = e−γ′u+/N (eu1 + · · ·+ euN )γ
∫

FN
γ (v)eiu

′v [ρ− c(−γ/N + iU ′v)] dv . (2.36)

These formulas can be expressed in terms of the dividend shares {si} by making

the substitution uk = log(sk/s1).

Proof. See Appendix B.5.
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Figure 2.21: The price-dividend ratio of asset 1 against s1 and s2, in an example in
which the three assets have identical and independent fundamentals.

The integral formula (2.33), for example, is a generalization of (2.9). Figure 2.21

illustrates how the price-dividend ratio of asset 1 depends on the two state variables

s1 and s2 in a three-asset example.

2.7.1 The robustness of contagion and flight-to-quality

Above, I presented a two-asset calibration in which a small asset experiences a

negative shock (“contagion”) if a large asset has bad dividend news. On the other

hand, a sufficiently large asset experiences a positive shock when a sufficiently small

asset has bad dividend news; this was labelled “flight-to-quality”. This flight-to-

quality effect was dependent on a decrease in the riskless rate outweighing the effect

of an increase in the risk premium on the large asset.

How robust is this effect? Intuition suggests that when more assets are intro-

duced, the riskless rate effect will be muted, while the risk premium effect will

continue to matter for individual assets. This section evaluates that intuition.

In the two-asset case, an asset is subject to contagion when its price-dividend

ratio is decreasing in its dividend share, and to flight-to-quality when its price-

dividend ratio is increasing in its dividend share. In the calibration of Section 2.5.1,
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the share, s∗, at which the transition takes place occurs at the minimum point of

the price-dividend curve shown in Figure 2.2b: that is, at s∗ ≈ 0.61.

In the N -asset case, whether an asset experiences contagion or flight-to-quality

depends on the (N − 1)-dimensional state vector and also on which other asset is

assumed to experience a shock. Suppose, for example, that there are N − 1 equally

sized small assets and an Nth large asset, and that all assets have independent and

identically distributed dividend processes, following geometric Brownian motions

with µ = 0.02 and σ = 0.1. As in the two-asset case, we can calculate the critical

dividend share, s∗, above which the Nth asset exhibits flight-to-quality, and below

which the Nth asset exhibits contagion, following a negative dividend shock to any

one of the N − 1 small assets.

N Critical share, s∗ Relative share

2 0.61 1.56
3 0.48 1.83
4 0.41 2.11
5 0.37 2.38
6 0.35 2.66

Table 2.2: Above the critical share the large asset experiences flight-to-quality;
below, it experiences contagion. Relative share is the ratio of the large asset’s
dividend to the dividend of one of the small assets, at this critical share.

Table 2.2 demonstrates that s∗ is decreasing in N . An alternative measure of

the large asset’s relative size at this critical point is the ratio of the its dividend

to the dividend of any one of the N − 1 small assets. This quantity is reported as

“Relative share” in Table 2.2. The relative share is increasing in N : when N = 6,

an asset that has dividends two and a half times as large as any other asset will still

experience contagion rather than flight-to-quality, whereas such an asset experiences

flight-to-quality if N ≤ 5. On the basis of this evidence, it appears that when there

are several assets of broadly similar size, contagion, not flight-to-quality, is the norm.
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2.8 Conclusion

It seems worthwhile to summarize the solution method for readers who are not

inclined to look through the appendices. By means of a change of measure followed

by a Fourier transform, the Lucas asset-pricing equation (2.1) is converted into the

integral formulas (2.6) and (2.33) which can be evaluated numerically.

In the two-asset case, the integral formula (2.6) can be simplified further if divi-

dends follow geometric Brownian motions. Techniques from complex analysis enable

the integral to be expressed as an infinite sum of residues that can be evaluated in

closed form, leading to the expression (2.18). Closed forms are also available in the

limit as an asset becomes negligibly small, because only one residue is then relevant:

the tractable expressions (2.27) and (2.30) are valid for general dividend processes.

Complicated, interesting, and empirically relevant phenomena emerge from sim-

ple assumptions. In various regions of the parameter space, the model exhibits

momentum, mean-reversion, contagion, flight to quality, the value-growth effect,

and excess volatility. Notably, the model demonstrates that comovement is a robust

feature of the neoclassical model. As an extreme example, even a negligibly small

asset whose fundamentals are independent of the rest of the economy may comove

endogenously and hence earn a risk premium.
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3. ASSET RETURNS IN THE LONG RUN

Working in a rather general setting, this chapter explores the long run implica-

tions of the fundamental asset-pricing equation,

EtMt+1Rt+1 = 1 .

I have introduced a stochastic discount factor, Mt+1, that prices payoffs at time t+1

from the perspective of time t. Rt+1 is the gross return, from time t to t + 1, on

some arbitrary asset.1

The objects of interest are the martingale Xt ≡M1R1 · · ·MtRt, and the random

variable X∞ ≡ limt→∞Xt. The asset-pricing equation states that EXt = 1 for all

finite t, so it is natural to expect that EX∞ = 1, too. In Section 3.1, I show that this

may or may not be true; typically, in fact, it is not, and when it is not, X∞ = 0.2

This dichotomy, together with a diagnostic that determines which of the two cases

applies, is the main result of the chapter.

The result applies to any valid stochastic discount factor, but to understand

it better I consider, in Section 3.2, a particular stochastic discount factor: the

reciprocal of the return on the growth-optimal portfolio. In this special case, the

main result provides conditions under which the following statement can be made

precise: in the long run, the growth-optimal portfolio outperforms, and continues

1 I thank Brandon Bates, John Campbell, John Cochrane, and Lars Hansen for their comments.

2 To be precise, X∞ = 0 with probability one, or X∞ = 0 almost surely. Throughout the
chapter, I drop such qualifications in the interests of readability.



to outperform, any other asset by an arbitrarily large factor. The prior result can

then be interpreted as saying that X∞ = 0 for any asset that is not growth-optimal.

Under this interpretation, related results have been obtained by a variety of au-

thors. The assumption of this chapter is that random variables are independent, but

not necessarily identically distributed, across periods. Latané (1959) and Samuelson

(1971) make a stronger assumption—the world is i.i.d.—and prove a weaker result.

Breiman (1960) does not make an independence assumption, but requires that gross

returns are bounded away from 0 and from infinity, so his analysis does not apply to

situations in which returns are, say, lognormal. Markowitz (1976) uses the Strong

Law of Large Numbers to find the result presented here but, again, requires the

i.i.d. assumption. I discuss the distinctions between the various different results at

greater length below.

In Section 3.3, I return to the more general setting in which Mt is any valid

stochastic discount factor. I interpret Xt as a measure of the realized value of

an asset. How are we to square the fact that EXt = 1 with the fact that non-

growth-optimal assets have X∞ = 0? I show that such assets derive their value—

their EXt = 1—from low-probability events in which the realized value of Xt is

enormous. When such an event happens, either M1 · · ·Mt is large or R1 · · ·Rt is

large, or both. The former possibility, which is driven by extreme left-tail events,

can be thought of as representing the importance of rare disasters; this interpretation

becomes particularly clear when considering the riskless strategy in which R1 · · ·Rt

is deterministic. The latter possibility represents the importance of the extreme

right tail of the distribution of returns on the asset in question, and is particularly

clear in a risk-neutral world in which M1 · · ·Mt is deterministic.

Section 3.4 conducts simulations that illustrate the preceding results in the con-

text of a simple economy featuring two assets—one riskless, the other i.i.d. lognor-

mal. Section 3.5 concludes.
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3.1 The main result

Today is time 0. I make three assumptions:

(i) There is no arbitrage.

(ii) The asset of interest has limited liability.

(iii) All random variables are independent across periods.

Assumption (i) implies that for all t ≥ 1 we can define Mt to be a stochastic

discount factor which prices payoffs at time t from the perspective of time t−1, and

then we have

Mt > 0 and E (M1R1 ·M2R2 · . . . ·MtRt) = 1 . (3.1)

Assumption (ii) implies that for any t ≥ 1

Rt ≥ 0 , (3.2)

where Rt is the gross realized return from time t − 1 to time t on some arbitrary

asset or investment strategy. Mt and Rt are random variables that only become

known at time t.

To simplify notation, define the random variables Xt, t = 1, 2, . . ., by

Xt ≡M1R1 ·M2R2 · . . . ·MtRt .
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Xt is a non-negative martingale, because

Et−1Xt = Et−1 (M1R1 · · ·MtRt)

= M1R1 · · ·Mt−1Rt−1 Et−1 (MtRt)

= M1R1 · · ·Mt−1Rt−1

= Xt−1 .

Next, define

X∞ ≡ lim
t→∞

Xt = lim
t→∞

M1R1 ·M2R2 · . . . ·MtRt .

Since Xt is a non-negative martingale, the random variable X∞ exists almost surely.

Define also the constants {at}, for t = 1, 2, 3, . . ., by

at ≡ E
√
MtRt .

By Jensen’s inequality,

at = E
√
MtRt ≤

√
EMtRt =

√
1 = 1 ,

so 0 < at ≤ 1. Whenever MtRt is non-constant, the inequality is strict.

The main result of the chapter is the following dichotomy.

Proposition 3.1. Under assumptions (i)–(iii), either

∞∏
t=1

at > 0 and EX∞ = 1 (3.3)

or
∞∏
t=1

at = 0 and X∞ = 0 . (3.4)
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Proof. In view of assumptions (i)–(iii), the result follows directly from Kakutani’s

(1948) product martingale theorem, as presented in Williams (1995, pp. 144–5).

The quantity
∏
at is to be viewed as a diagnostic that tells us which of the two

cases applies. I will refer to assets for which
∏
at > 0 as Type 1 assets, and assets

for which
∏
at = 0 as Type 2 assets.

At first glance, one might have expected (3.3) always to apply since, for any

finite t,

EXt = 1,

and so it is tempting—but wrong—to conclude that in general

EX∞ = E lim
t→∞

Xt
?
= lim

t→∞
EXt = lim

t→∞
1 = 1.

The interchange of expectation and limit is the weak link in this chain. Proposition

3.1 shows that this interchange is legitimate only for Type 1 assets. I show below

that the case X∞ = 0 is relevant in many asset-pricing examples.

3.2 The growth-optimal portfolio

The return on the growth-optimal portfolio (G-OP) between t− 1 and t, which

I will write as R∗
t , solves the problem

max
Rt

Et−1 logRt s.t. Et−1MtRt = 1 .

If the market is complete, it follows (on “taking first-order conditions state-by-

state”) that the return on the G-OP satisfies R∗
t = 1/Mt. Since t was arbitrary, this

holds for all t.
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In the general case in which there are N assets with returns R
(i)
t , i = 1, . . . , N ,

the G-OP is obtained by picking αi, i = 1, . . . , N to solve

max
{αi}

E log
∑

αiR
(i)
t s.t.

∑
αi = 1 .

The first-order conditions are that, for each i,

E
R

(i)
t∑

αjR
(j)
t

= λ .

Multiplying both sides of this equation by αi and summing over i, we find λ = 1, so

E
R

(i)
t∑

αjR
(j)
t

= 1 for all i ,

which exhibits 1/
∑
αjR

(j)
t = 1/R∗

t as a valid stochastic discount factor.

If markets are complete, the stochastic discount factor is unique and, necessarily,

Mt = 1/R∗
t . In the incomplete market case, the main result applies to any valid

stochastic discount factor, but we can get further insight into Proposition 3.1 by

choosing to focus on the stochastic discount factor 1/R∗
t . Doing so, we have

XT =
R1 ·R2 · . . . ·RT

R∗
1 ·R∗

2 · . . . ·R∗
T

,

so in this case XT has a simple interpretation as the relative performance of the

asset in question by comparison with the G-OP.

We can conclude the section by rephrasing Proposition 3.1 as follows.

Proposition 3.2. Suppose that assumptions (i)–(iii) hold, and define at = E
√
Rt/R∗

t .

Either
∞∏
t=1

at > 0 and E
[

lim
T→∞

R1 ·R2 · . . . ·RT

R∗
1 ·R∗

2 · . . . ·R∗
T

]
= 1 (3.5)
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or
∞∏
t=1

at = 0 and lim
T→∞

R1 ·R2 · . . . ·RT

R∗
1 ·R∗

2 · . . . ·R∗
T

= 0 . (3.6)

Proof. Follows from Proposition 3.1, after setting Mt = 1/R∗
t .

3.2.1 Examples

Example 1: the G-OP. Suppose the asset in question is the G-OP. Then Rt/R
∗
t

is trivially equal to 1, so

at = 1 and hence
∞∏
t=1

at = 1 .

The growth-optimal portfolio is the archetypal Type 1 asset with EX∞ = 1.

Example 2: an i.i.d. world. Fix any asset other than the G-OP. Since the world

is i.i.d., at equals a, some constant. Since the asset in question is not the G-OP and

the world is nondeterministic, the mean-1 random variable MtRt is nonconstant, so

a Jensen’s inequality argument delivers the strict inequality a < 1. It follows that

∞∏
t=1

at =
∞∏
t=1

a = 0 .

Any fixed asset which is not the growth-optimal portfolio is of Type 2: X∞ = 0 and

equation (3.6) holds.

Example 3: an i.i.d. risk-neutral world. In this case, the stochastic discount

factor is deterministic, so the G-OP has deterministic returns and so must be in-

vested in the riskless asset. As a result of the previous example, we can say that

any strategy which invests in the same risky asset each period must eventually have

returns which satisfy

R1 ·R2 · · · · ·RT

Rf,1 ·Rf,2 · · · · ·Rf,T

< ε (3.7)
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where Rf,t indicates the riskless rate from time t− 1 to time t. The realized return

on any risky asset is ultimately negligible by comparison with the riskless return.

Example 4: eventually-growth-optimal strategies. Consider the strategy of in-

vesting in arbitrary fashion until some fixed finite time T ′ and then investing in the

G-OP. Such a strategy is eventually-growth-optimal. Since at = 1 for t larger than

T ′, we have
∞∏
t=1

at =
T ′∏
t=1

at > 0

and so eventually-growth-optimal strategies are of Type 1, and satisfy EX∞ = 1.

Example 5: fixed strategies that invest in the G-OP infinitely often. A trading

strategy which invests in the G-OP infinitely often may nonetheless be of Type 2.

Suppose, for example, that the strategy invests in the G-OP during time periods 1,

3, 5, . . . , and in some other i.i.d. asset during time periods 2, 4, 6, . . . ; write a for

the value of at during these even periods and note that a < 1 by Jensen’s inequality.

We have
∞∏
t=1

at =
∞∏
t=1

a2t =
∞∏
t=1

a = 0

and so X∞ = 0.

Example 6: strategies that are never growth-optimal but which satisfy EX∞ = 1.

If a trading strategy becomes increasingly similar to the G-OP over time, it may be

possible to sustain the case EX∞ = 1. Suppose for example that we have

at = 1− 1/t2

for all t. It follows that
∑∞

t=1(1− at) <∞; this condition implies that
∏∞

t=1 at > 0.
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3.2.2 Relationship with previous results

Various authors have obtained results similar to Proposition 3.2. Latané (1959)

and Samuelson (1971) assume that the world is i.i.d., and rely on the Weak Law of

Large Numbers and the Central Limit Theorem respectively. They show that

P
[
R1 ·R2 · · · · ·RT

R∗
1 ·R∗

2 · · · · ·R∗
T

< 1

]
−→ 1 as T →∞. .

This conclusion is weaker than the conclusion presented above for three reasons.

First, the result holds only at the time horizon T , and gives no guarantee about

what happens thereafter. Second, the result shows only that the G-OP outper-

forms, rather than that it overwhelmingly outperforms. Third, the result holds with

probability approaching one, rather than with probability equal to one.

Markowitz (1976) also assumes that the world is i.i.d., and shows that the Strong

Law of Large Numbers delivers the conclusion of Proposition 3.2,3

lim
T→∞

R1 ·R2 · . . . ·RT

R∗
1 ·R∗

2 · . . . ·R∗
T

= 0 .

Each result, weak or strong, can be derived by applying the appropriate Law of

Large Numbers, Weak or Strong, to the random variables logMt+logRt, which are

i.i.d. by assumption and which have mean E logMt + logRt ≡ µ < 0 by Jensen’s

inequality.

Breiman (1960) does not require that random variables are independent across

time. But he does assume that returns are bounded away from zero and from

infinity, thereby ruling out lognormality of returns or the possibility of bankruptcy,

3 In fact, under the i.i.d. assumption of Markowitz’s paper, a stronger result can be obtained,
namely that

lim
T→∞

(
R1 ·R2 · . . . ·RT

R∗1 ·R∗2 · . . . ·R∗T

)1/T

< 1 ,

where Rt is the return on a fixed non-growth-optimal asset.
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for example. Given this boundedness assumption, he shows that Proposition 3.2

holds if a condition equivalent to

∞∏
t=1

eEt−1 log(Rt/R∗
t ) = 0

holds.

3.3 Where’s the value in a Type 2 asset?

Who would buy a Type 2 asset, if a dollar placed in the growth-optimal portfolio

will outperform it, in the long run, with probability one? Why aren’t such assets

cheaper?

Fix, for the sake of argument, some particular Type 2 asset. How are we to

square the fact that Xt tends to zero with the fact that EXt = 1 for all finite t?

It seems intuitively clear that there must be some unlikely states of the world in

which Xt is very large, and that the value of the Type 2 asset in question is driven

by these unlikely states of the world.

The following Proposition makes this idea formal.

Proposition 3.3. For Type 1 assets, we have

E sup
t≥1

Xt <∞ , (3.8)

while for Type 2 assets, we have

E sup
t≥1

Xt =∞ and sup
t≥1

E
(
Xt log+Xt

)
=∞ , (3.9)

where log+(x) ≡ max {log x, 0}.

Proof. Equation (3.8) is established in the course of the proof of Kakutani’s product
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martingale theorem in Williams (1995, pp. 144–5). (It leads to the conclusion that

for Type 1 assets, the family {Xt} is uniformly integrable,4 from which Proposition

3.1 follows.)

Both parts of (3.9) can be established by contradiction. If E suptXt <∞ then

it would follow that the family of random variables {Xt}, being dominated by the

integrable random variable suptXt, would be uniformly integrable, and hence that

EX∞ = EX1 = 1. But this contradicts the conclusion of Proposition 3.1.

Similarly, if supt E
(
Xt log+Xt

)
<∞ it would follow, by Proposition IV-2-10 of

Neveu (1975, p. 70), that suptXt would be integrable, and hence, as in the previous

paragraph, that {Xt} would be a uniformly integrable family of random variables.

Again, this contradicts Proposition 3.1, and the result follows.

When contemplating (3.8) and (3.9), it is helpful to keep in mind the fact that

sup
t≥0

EXt = sup
t≥1

1 = 1 .

Although the expected value of Xt is equal to 1 for all t, and the expected value of

the supremum of Xt is finite for Type 1 assets, the expected value of the supremum

of Xt is infinite in the case of Type 2 assets: there are rare states of the world in

which Xt becomes very large indeed.

In such states, we have

M1R1 ·M2R2 · · ·MtRt very large,

and so we must have some combination of large M1 · · ·Mt and large R1 · · ·Rt. The

4 A family {Xt} of random variables is uniformly integrable if

sup
t≥1

E (|Xt|1[|Xt| > a]) −→ 0 as a→∞.
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former possibility, large M1 · · ·Mt, corresponds roughly to the realization of a disas-

trously bad state of the world. In a consumption-based model with time-separable

utility, for example, M1 · · ·Mt is large when marginal utility at time t is high. The

latter possibility, large R1 · · ·Rt, corresponds to a particularly favorable return re-

alization for the asset in question.

In some sense, therefore, the value in Type 2 assets derives either from aggregate

disasters (large M1 · · ·Mt) or asset-specific triumphs (large R1 · · ·Rt). At a general

level, we can say no more. Nonetheless, for the sake of intuition, it is interesting

to consider simple special cases that focus attention on each of the two channels

separately.

Suppose, first, that we are in a risk-neutral i.i.d. world, as in Example 3 above,

and consider a risky Type 2 asset. Since M1 · · ·Mt = (1/Rf )
t is deterministic, the

value of the asset is driven by very occasional asset-specific triumphs—explosions in

R1 · · ·Rt—that is, by extreme right-tail events.

Conversely, suppose that the world is i.i.d. but not risk-neutral, so that Mt is

not constant, and that we are considering the riskless strategy that rolls cash over

in the riskless asset. Now, R1 · · ·Rt = (Rf )
t is deterministic. Again, this is a Type 2

strategy, but now the value is derived from aggregate disasters—states of the world

which occur with very low probability, but in which M1 · · ·Mt is far larger than

its expected value. In other words, the value of this strategy, in the long run, is

driven by the presence of extreme left-tail events. Weitzman (2004) emphasizes the

importance of this effect.

3.4 An example

Consider an i.i.d. economy with two assets, a riskless asset which pays the certain

return Rf,t ≡ erf and a risky asset which pays the lognormal return Rt ≡ eµ−σ
2/2+σZt ,
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where Zt is a standard Normal random variable. It is easy to check that the stochas-

tic discount factor Mt ≡ e−rf−λ
2/2−λZt prices the assets, where λ is the Sharpe ratio

(µ − rf )/σ. (Notice that Mt so defined is not the reciprocal of the return on the

growth-optimal portfolio, since the latter is not lognormally distributed.) Each asset

is of Type 2, as is easily checked.

Writing Xf,t ≡M1Rf,1 · · ·MtRf,t and Xt ≡M1R1 · · ·MtRt, we have

Xf,t = e−λ(Z1+···+Zt)−λ2t/2 (3.10)

Xt = e(σ−λ)(Z1+···+Zt)−(σ−λ)2t/2 (3.11)

Notice that in this example with just one kind of shock, realistic values of σ and

λ imply that Xt is large when (Z1 + · · ·+Zt) is small: in the long run, only disasters

matter.
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(a) The evolution of Xt over time
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(b) The evolution of Xf,t over time
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Figure 3.1: Realizations of Xt and Xf,t on one particular sample path.
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Figure 3.1 plots a realization of Xt and Xf,t. Each time period represents one

quarter. I have set σ = 0.08 and λ = 0.25, which corresponds to an annualized

standard deviation of 16% and Sharpe ratio of 50% for the risky asset. Proposition

3.1 states that Xt and Xf,t tend to zero as t tends to infinity; along this particular

sample path, Xt and Xf,t are indistinguishable from zero, even in the zoomed-in

graphs, after about 700 quarters. Note also the occasional spikes, which Proposition

3.3 led us to expect.
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(a) 100 sample paths of Xt
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Figure 3.2: Realizations of Xt on 100 sample paths.

Figure 3.2 shows realizations of Xt along 100 different sample paths. As before,

each period represents one quarter. On two sample paths, Xt spikes above 250.

These spikes are so large, compared with the values of Xt attained on the vast

majority of sample paths, that only about six of the sample paths are visible on the

first, unzoomed, diagram. Despite these spikes, after 800 quarters only one sample

path remains above 0.5.

In the continuous-time limit, the analogue of Xt would follow a geometric Brow-

nian martingale of the form eαWt−α2t/2, where α is some constant and Wt is a Brow-

nian motion. In this special case, we can see directly that eαWt−α2t/2 → 0, because

αWt − α2t/2 → −∞ as t → ∞; this follows, in turn, from the fact that Wt/t → 0

as t→∞ (Karatzas and Shreve (1991, p. 104)).
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3.5 Conclusion

Although expected time- and risk-adjusted cumulative returns on any asset equal

one at all horizons, realized time- and risk-adjusted cumulative returns on Type 2

assets tend to zero with probability one.

This apparent paradox is resolved in Section 3.3, which demonstrates that the

value of such an asset is driven by the possibility of two types of rare events: spec-

tacular outperformance of the asset itself, and occasional aggregate disasters. Only

the first is relevant for the valuation of risky assets in a risk-neutral economy; only

the second is relevant for the valuation of riskless strategies in a risky, risk-averse

world.

Just three assumptions underpin these results. Two of these—no arbitrage and

limited liability—are uncontroversial. The third—independence across time of the

relevant random variables—is less desirable. Ritter (1979) presents a generalization

of Kakutani’s theorem that relaxes the independence assumption, and it may be

that the ideas in that paper can be used to improve Proposition 3.1; in the interests

of simplicity, I have not pursued such an extension here.
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A. APPENDIX TO CONSUMPTION-BASED ASSET PRICING

WITH HIGHER CUMULANTS

A.1 Cumulants and cumulant-generating functions

This section lays out some important properties of cumulant-generating func-

tions. It turns out that c(θ) can be thought of as a power series in θ that encodes

the cumulants (equivalently, moments) of consumption growth. To preview the main

result, we have

c(θ) = µ · θ
1!

+
σ2θ2

2!
+ skewness · σ

3θ3

3!
+ kurtosis · σ

4θ4

4!
+ . . .

Here, and throughout Chapter 1, µ and σ denote the unconditional mean and stan-

dard deviation of log consumption growth.

A.1.1 Definition and standard properties

Definition A.1. The cumulants of G are the coefficients κn in the power series

expansion of the CGF c(θ):

c(θ) =
∞∑
n=1

κn(G)θn

n!
. (A.1)

It turns out that cumulants have many appealing properties, which I collect in

a theorem.

Proposition A.1. We have the following properties.
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1. EG = κ1; varG = κ2 ≡ σ2; skewness (G) = κ3/σ
3; excess kurtosis (G) =

κ4/σ
4.

2. For any two independent random variables G and H, κn(G + H) = κn(G) +

κn(H) and cG+H(θ) = cG(θ) + cH(θ).

3. κ1(G) = c′G(0); κ2(G) = c′′G(0); κn(G) = c
(n)
G (0).

4. κn is a polynomial in the first n moments of G(and the nth moment of G is a

polynomial in the first n cumulants of G).

Proof. I only provide the outlines of proofs; for more details, see Billingsley (1995,

section 9). Property 2 follows from the definitions of moment- and cumulant-

generating functions, and the fact that when G and H are independent, Eeθ(G+H) =

EeθGEeθH . Property 3 follows from the definition of cumulants. Properties 1 and 4

follow by noting that

m(θ) = 1 +
∞∑
n=1

θn

n!
EGn

and hence that c(θ) can be expanded as a power series in θ

c(θ) = logm(θ)

=
∞∑
j=1

(−1)j−1

j

(
∞∑
n=1

θn

n!
EGn

)j

,

and then differentiating the requisite number of times with respect to θ and setting

θ = 0.

Thus, the CGF is a convex1 function which passes through the origin, at which

point it has slope equal to mean log consumption growth and second derivative equal

to the variance of log consumption growth.

1 As shown in the main text, Fact 1.1.
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A.2 Calculations with Epstein-Zin preferences

The Epstein-Zin first-order condition leads to the pricing formula

P = E
∞∑
1

e−ρϑt
(
Ct
C0

)−ϑ/ψ

(1 +Rm,0→t)
ϑ−1 (Ct)

λ ,

where ϑ = (1 − γ)/(1 − 1/ψ) and Rm,0→t is the cumulative return on the wealth

portfolio from period 0 to period t. I assume that ψ 6= 1 for convenience.

Now,

1 +Rm,s−1→s =
Cs +Ws

Ws−1

=
Cs
Cs−1

(
Cs−1

Ws−1

+
Ws

Cs

Cs−1

Ws−1

)
=

Cs
Cs−1

eν ,

where the last equality follows by making the assumption—provisional for the time

being, but subsequently shown to be correct—that the consumption-wealth ratio is

constant. I have defined 1 + C/W ≡ eν . It follows, then, that

1 +Rm,0→t =
Ct
C0

eνt ,

and hence that

P = (C0)
λ · E

∞∑
1

e−ρϑt
(
Ct
C0

)λ−ϑ/ψ (
Ct
C0

)ϑ−1

eν(ϑ−1)t

= (C0)
λ ·

∞∑
1

e−[ρϑ+ν(1−ϑ)−c(λ−γ)]t

=
(C0)

λ

eρϑ+ν(1−ϑ)−c(λ−γ) − 1
,
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and so, finally, that

D

P
= eρϑ+ν(1−ϑ)−c(λ−γ) − 1 .

Defining d/p as usual,

d/p = ρϑ+ ν(1− ϑ)− c(λ− γ) . (A.2)

Setting λ = 1, we get an expression for c/w ≡ ν which can be solved for ν:

ν = c/w = ρϑ+ ν(1− ϑ)− c(1− γ) ,

from which it follows that

ν = ρ− c(1− γ) · 1− ψ
ψ(γ − 1)

.

Note that this exercise confirms the provisional assumption made above that ν is

constant.

Substituting back into (A.2), we have

dp = ρ− 1− ψγ
ψ(γ − 1)

c(1− γ)− c(λ− γ) .

We also have, as before, that

1 +Rt+1 =
Dt+1

Dt

(
eρϑ+ν(1−ϑ)−c(λ−γ)) ,

so

er = ρϑ+ ν(1− ϑ) + c(λ)− c(λ− γ) .
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To summarize, we have

rf = ρ− c(−γ)− c(1− γ)
(

1

ϑ
− 1

)
c/w = ρ− c(1− γ)/ϑ

rp = c(1) + c(−γ)− c(1− γ) .

The objective function at time 0 satisfies

(U0)
(1−γ)/ϑ =

(
1− e−ρ

)
(C0)

(1−γ)/ϑ + e−ρ
(
E(U1)

1−γ)1/ϑ
or

a
(1−γ)/ϑ
0 = 1− e−ρ + e−ρE

[(
C1

C0

)1−γ

a1−γ
1

]1/ϑ

, (A.3)

where I have defined ai ≡ Ui/Ci.

I now conjecture that ai = a, some constant, solves (A.3). If so,

a(1−γ)/ϑ = 1− e−ρ + e−ρa(1−γ)/ϑec(1−γ)/ϑ ,

from which it follows that

a =

(
1− e−ρ

1− e−ρ+c(1−γ)/ϑ

)ϑ/(1−γ)
,

which confirms the conjecture that a was constant. Hence,

U0 = C0 ·
(

eρ − 1

eρ − ec(1−γ)/ϑ

)ϑ/(1−γ)
.

The cost of all uncertainty, φ, solves the equation

(1 + φ)C0 ·
(

eρ − 1

eρ − ec(1−γ)/ϑ

)ϑ/(1−γ)
= C0

(
eρ − 1

eρ − ec(1)·(1−γ)/ϑ

)ϑ/(1−γ)
,
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from which (1.48) follows.

Similarly, φα solves

(1 + φα)C0 ·
(

eρ − 1

eρ − ec(1−γ)/ϑ

)ϑ/(1−γ)
= C0 ·

(
eρ − 1

eρ − eec(1−γ)/ϑ

)ϑ/(1−γ)
,

and after substituting in for c̃(θ) from equation (1.49), we obtain the expression

(1.51).

A.3 Derivation of results in continuous time

Definition A.2. A real-valued stochastic process (Lt)t≥0 with L0 = 0 is a Lévy

process if

1. With probability one, Lt is right continuous on [0,∞), with left limits on

(0,∞).

2. For any n ∈ N and 0 ≤ t0 < t1 < . . . < tn, the random variables Ltj − Ltj−1

are independent for j = 1, . . . , n.

3. The probability distribution of Lt+h − Lt does not depend on t.

4. For all t ≥ 0 and ε > 0, lims→t P(|Xs −Xt| > ε) = 0.
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A.3.1 Asset pricing calculations

The price of a claim to the dividend stream {Dt} ≡ {(Ct)λ} is

Pλ = E0

(∫ ∞

t=0

e−ρt
(
Ct
C0

)−γ

(Ct)
λ dt

)

= Dλ E0

(∫ ∞

t=0

e−ρt
(
Ct
C0

)−(γ−λ)

dt

)

= Dλ

∫ ∞

t=0

e−ρtmGt(λ− γ) dt

(a)
= Dλ

∫ ∞

t=0

e−ρt
(
m(λ− γ)

)t
dt

= Dλ

∫ ∞

t=0

e−{ρ−c(λ−γ)}t dt

=
Dλ

ρ− c(λ− γ)

The critical property (1.27) satisfied by Lévy processes manifests itself in equality

(a). The riskless rate and consumption-wealth ratio can be calculated by substitut-

ing λ = 0 and λ = 1 respectively.

From the definition in the main text,

ERλ = lim
∆t→0

1

∆t
· E

((
Ct+∆t

Ct

)λ
− 1

)
+ ρ− c(λ− γ)

= lim
∆t→0

1

∆t
· E
(
eλG∆t − 1

)
+ ρ− c(λ− γ)

= lim
∆t→0

1

∆t
·
(
ec(λ)∆t − 1

)
+ ρ− c(λ− γ)

= c(λ) + ρ− c(λ− γ) (A.4)

A.4 The relationship between cumulants and moments

Stuart and Ord (1994) list the univariate and bivariate cumulants in terms of

central moments; I reproduce the first few of each below.
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A.4.1 The univariate case

Define µi ≡ E
[
(G− EG)i

]
.

κ2 = µ2

κ3 = µ3

κ4 = µ4 − 3(µ2)
2

κ5 = µ5 − 10µ3µ2

κ6 = µ6 − 15µ4µ2 − 10(µ3)
2 + 30(µ2)

3

A.4.2 The bivariate case

Define µij ≡ E
[
(G− EG)i (H − EH)j

]
. When i or j is equal to zero, the bivari-

ate cumulant reduces to a univariate cumulant.

κ00 = 0

κ11 = µ11

κ21 = µ21

κ31 = µ31 − 3µ20µ11 ; κ22 = µ22 − µ20µ02 − 2(µ11)
2

κ41 = µ41 − 4µ30µ11 − 6µ21µ20 ; κ32 = µ32 − µ30µ02 − 6µ21µ11 − 3µ20µ12

124



B. APPENDIX TO THE LUCAS ORCHARD

B.1 General solution in the two-asset case

B.1.1 Preliminary mathematical results

An expectation

This section contains a calculation which is used below. It may be helpful to

glance ahead to equation (B.13) for motivation. The goal is to evaluate

E ≡ E
(

eα1ey1t+α2ey2t
[ey10+ey1t + ey20+ey2t ]γ

)

for general α1, α2, γ > 0. First, I rewrite the expectation, noting that

E
(

eα1ey1t+α2ey2t
[ey10+ey1t + ey20+ey2t ]γ

)
= e−γ/2(y10+y20) ×

E
(

e(α1−γ/2)ey1t+(α2−γ/2)ey2t
[2 cosh((y20 − y10 + ỹ2t − ỹ1t)/2)]γ

)
(B.1)

To take care of the exponential in the numerator inside the expectation, I trans-

form the probability law, defining

Ẽ [Y ] ≡ e−tc(α1−γ/2,α2−γ/2) · E
[
e(α1−γ/2)ey1t+(α2−γ/2)ey2t · Y ] . (B.2)



This is an Esscher transform of the original law, and it has the property that

c̃(v1, v2) ≡ log Ẽ
[
ev1ey11+v2ey21] = c(α1−γ/2+v1, α2−γ/2+v2)−c(α1−γ/2, α2−γ/2) .

(B.3)

In terms of this transformed law, the right hand side of (B.1) equals

e−γ(y10+y20)/2+c(α1−γ/2,α2−γ/2)tẼ
(

1

[2 cosh((y20 − y10 + ỹ2t − ỹ1t)/2)]γ

)
(B.4)

To make further progress, we can now attack the expectation in (B.4) by ex-

ploiting the fact that 1/ [2 cosh(u/2)]γ has a Fourier transform which can be found

in closed form for integer γ > 0. Define the Fourier transform Fγ(v) by

1

[2 cosh(u/2)]γ
=

∫ ∞

−∞
eiuvFγ(v) dv (B.5)

We have, then,

E = e−γ(y10+y20)/2+c(α1−γ/2,α2−γ/2)t Ẽ
(∫ ∞

−∞
eiv(y20−y10+ey2t−ey1t)Fγ(v) dv

)
= e−γ(y10+y20)/2+c(α1−γ/2,α2−γ/2)t

(∫ ∞

−∞
eec(−iv,iv)t · eiv(y20−y10)Fγ(v) dv

)
= e−γ(y10+y20)/2

∫ ∞

−∞
ec(α1−γ/2−iv,α2−γ/2+iv)t · eiv(y20−y10)Fγ(v) dv . (B.6)

The Fourier transform Fγ(v)

By the Fourier inversion theorem, definition (B.5) implies that

Fγ(v) =
1

2π

∫ ∞

−∞

e−iuv

(2 cosh(u/2))γ
du

=
1

2π

∫ ∞

−∞

e−iuv

(eu/2 + e−u/2)
γ du . (B.7)
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Make the change of variable

u = log
t

1− t
. (B.8)

It follows that

du =
dt

t(1− t)

so on making this substitution in (B.7), we have

Fγ(v) =
1

2π

∫ 1

0

(
t

1−t

)−iv(√
t

1−t +
√

1−t
t

)γ dt

t(1− t)

=
1

2π

∫ 1

0

tγ/2−iv(1− t)γ/2+iv dt

t(1− t)
. (B.9)

This is a Dirichlet surface integral. As shown in Andrews, Askey and Roy (1999,

p. 34), it can be evaluated in terms of Γ-functions, giving

Fγ(v) =
1

2π

Γ(γ/2− iv)Γ(γ/2 + iv)

Γ(γ)
. (B.10)

For future reference, it is useful to note an equivalent representation of Fγ(v).

Contour integration reveals that F1(v) = 1
2
sechπv and F2(v) = 1

2
v cosechπv. From

these two facts, expression (B.10), and the fact that Γ(x) = (x − 1)Γ(x − 1), it

follows that for positive integer γ, we have

Fγ(v) =


v cosech(πv)

2(γ − 1)!
·
γ/2−1∏
n=1

(
v2 + n2

)
for even γ ,

sech(πv)

2(γ − 1)!
·

(γ−1)/2∏
n=1

(
v2 + (n− 1/2)2

)
for odd γ .

(B.11)
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An Itô calculation

Given a jump-diffusion y, with

dy = µdt+AdZ + JdN ,

this section seeks a simple formula for

Ed(ew′y)

where w is a constant vector.

First, define x ≡ w′y; then

dx = w′µdt+w′AdZ +w′JdN

We seek Ed(ex). By Itô ’s formula for jump-diffusions, we have

d(ex) = ex
[(
w′µ+

1

2
w′Σw

)
dt+w′AdZ +

(
ew′J − 1

)
dN

]

where Σ ≡ AA′; and so, after taking expectations,

Ed(ew′y) = ew′y ·
[
w′µ+

1

2
w′Σw + ω

(
Eew′J − 1

)]
dt

= ew′y · c(w)dt . (B.12)

In the case in which y is a general Lévy process, (B.12) holds by Proposition

8.20 of Cont and Tankov (2004).
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B.1.2 Prices

Proof of Proposition 2.1

The price of the α-asset is

Pα = E
∫ ∞

0

e−ρt
(
Ct
C0

)−γ

Dα1
1t D

α2
2t dt

= (C0)
γ

∫ ∞

0

e−ρt E
(
eα1(y10+ey1t)+α2(y20+ey2t)
[ey10+ey1t + ey20+ey2t ]γ

)
dt

It follows that

Pα

Dα

= (ey10 + ey20)γ
∫ ∞

t=0

e−ρt E
(

eα1ey1t+α2ey2t
[ey10+ey1t + ey20+ey2t ]γ

)
dt (B.13)

The expectation inside the integral was calculated above in Appendix B.1.1.

Substituting (B.6) into (B.13), interchanging the order of integration,1 and writing

u for y20 − y10, we get

Pα

Dα

= [2 cosh(u/2)]γ
∫ ∞

v=−∞

∫ ∞

t=0

e−ρtec(α1−γ/2−iv,α2−γ/2+iv)t · eiuvFγ(v) dt dv

(a)
= [2 cosh(u/2)]γ

∫ ∞

v=−∞

eiuvFγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
dv (B.14)

For equality (a) to hold, I have assumed that

ρ− Re[c(α1 − γ/2− iv, α2 − γ/2 + iv)] > 0 for all v ∈ R.

I show in Appendix B.2 that this follows from the apparently weaker assumption

that the inequality holds at v = 0:

ρ− c(α1 − γ/2, α2 − γ/2) > 0 (B.15)

1 Since the integrand is absolutely integrable, this is a legitimate application of Fubini’s theorem.
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In particular, for the problem under consideration to be well-defined, we must im-

pose a requirement that expected utility is finite. Finiteness of expected utility is

guaranteed by the finiteness of the prices of the two assets. Therefore I refer to the

two inequalities generated by substituting (α1, α2) = (1, 0) and (0, 1) into (B.15) as

the finiteness condition. It is assumed throughout that this condition holds. (See

equation (2.8) and Table 2.1.)

In terms of the state variable s, the price-dividend ratio is therefore

Pα

Dα

=
1√

sγ(1− s)γ
·
∫ ∞

−∞

(
1−s
s

)iv
Fγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
dv (B.16)

where I have defined s ≡ D10/(D10 +D20).

Proof of Proposition 2.2

Since u = log[(1− s)/s], we have

1− s
s

= eu

and

1√
sγ(1− s)γ

= [2 cosh(u/2)]γ .

Furthermore, Fγ(v) was defined by

1

[2 cosh(u/2)]γ
=

∫ ∞

−∞
eiuvFγ(v) dv .

Substituting these observations into the pricing formula (2.6), we find the expressions

of Proposition 2.2.
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B.1.3 Returns

Expected returns contain a dividend yield component and a capital gain com-

ponent:

Rαdt =
Dα

Pα

dt+
EdPα

Pα

The first term is supplied by the pricing formula derived in the previous section.

This section therefore focusses on calculating EdPα/Pα in the case in which γ is an

integer.

We have

Pα = (D10 +D20)
γ e(α1−γ/2)y10+(α2−γ/2)y20

∫ ∞

−∞

eiv(y20−y10)Fγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
dv

(B.17)

For convenience, I write

h(v) ≡ Fγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
and

(
n

m

)
≡ n!

m!(n−m)!

throughout this section.

Introducing this notation,

Pα =

∫ ∞

−∞
h(v) · (ey10 + ey20)γ e(α1−γ/2−iv)y10+(α2−γ/2+iv)y20 dv

=

∫ ∞

−∞
h(v) ·

γ∑
m=0

[(
γ

m

)
emy10 · e(γ−m)y20

]
e(α1−γ/2−iv)y10+(α2−γ/2+iv)y20 dv

=

γ∑
m=0

(
γ

m

)∫ ∞

−∞
h(v) · e(α1−γ/2+m−iv)y10+(α2+γ/2−m+iv)y20 dv

≡
γ∑

m=0

(
γ

m

)∫ ∞

−∞
h(v) · ewm(v)·y dv , (B.18)

where

wm(v) ≡ (α1 − γ/2 +m− iv, α2 + γ/2−m+ iv)′
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The calculation of Appendix B.1.1, above, can now be used in (B.18) to show

that

E(dPα) =

{
γ∑

m=0

(
γ

m

)∫ ∞

−∞
h(v) · ewm(v)·yc [wm(v)] dv

}
· dt (B.19)

Dividing (B.19) by (B.18) and rearranging, the expected capital gain is given by

the formula

EdPα

Pα

=

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞

−∞
h(v)eiuv · c(wm(v)) dv

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞

−∞
h(v)eiuv dv

· dt (B.20)

B.1.4 Real interest rates

From the Euler equation, we have

BT = E

[
e−ρT

(
CT
C0

)−γ
]

= e−ρTCγ
0 E
[

1

(D1T +D2T )γ

]

Using the result of Appendix B.1.1, we find that

BT = e−ρT (ey10 + ey20)γ e−γ(y10+y20)/2

∫ ∞

−∞
eiv(y20−y10)Fγ(v)e

c(−γ/2−iv,−γ/2+iv)T dv

= e−ρT [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)e

iuv · ec(−γ/2−iv,−γ/2+iv)T dv ,

as claimed. The yield, Y (T ), follows directly from this expression:

Y (T ) = ρ− 1

T
log

{
[2 cosh(u/2)]γ

∫ ∞

−∞
Fγ(v)e

iuv · ec(−γ/2−iv,−γ/2+iv)T dv

}
. (B.21)

The riskless rate is found by taking the limit as T ↓ 0 in (B.21). To calculate
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this limit, first use the fact that

[2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)e

iuv dv = 1

to rewrite equation (B.21) as

Y (T ) = ρ− 1

T
log

{
1 + [2 cosh(u/2)]γ

∫ ∞

−∞
Fγ(v)e

iuv
[
ec(−γ/2−iv,−γ/2+iv)T − 1

]
dv

}
.

It follows, after applying L’Hôpital’s rule, that

r = ρ− [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)e

iuvc(−γ/2− iv,−γ/2 + iv) dv

= [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)e

iuv · [ρ− c(−γ/2− iv,−γ/2 + iv)] dv

as required.

B.2 The ridge property

This section expands on two closely related issues. First, as mentioned in Ap-

pendix B.1.2, the required assumption that

ρ− Re[c(α1 − γ/2− iv, α2 − γ/2 + iv)] > 0 for all v ∈ R

follows from the apparently weaker assumption that the inequality holds at v = 0:

ρ− c(α1 − γ/2, α2 − γ/2) > 0 .
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Second, when considering the small-asset asymptotic (see Section 2.6 and Appendix

B.4), it is of interest to find the zero of

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

in the upper half-plane which is closest to the real axis (the minimal zero, in the

terminology of Appendix B.4).

In either case, we are led to explore the properties of c(α1−γ/2−iv, α2−γ/2+iv),

considered as a function of v. Recalling the change of measure of Appendix B.1.1,

we can exploit the fact that

c(α1 − γ/2− iv, α2 − γ/2 + iv) = c̃(−iv, iv) + c(α1 − γ/2, α2 − γ/2)

where c̃(v1, v2) is the cumulant-generating function under the changed measure.

Next, note that

c̃(−iv, iv) = log Ẽ eiv(ey21−ey11) ≡ logψ(v)

which defines ψ(v) as the characteristic function of the random variable ỹ21 − ỹ11.

The characteristic function ψ has the ridge property. That is, for real v and w,

we have

|ψ(v + iw)| ≤ |ψ(iw)| .

This follows because (writing X for ỹ21 − ỹ11)

|ψ(v + iw)| =
∣∣∣ Ẽ eiX(v+iw)

∣∣∣ ≤ Ẽ
∣∣eiX(v+iw)

∣∣ = Ẽ e−wX = ψ(iw) = |ψ(iw)| .

Figure B.1 illustrates the ridge property using the calibration of section 2.5.2.
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Figure B.1: The ridge property. The figure plots |ψ(v)| (on the z-axis) over a portion
of the complex plane around the origin. A ridge runs up the imaginary axis.

Proposition B.1. The assumption that

ρ− Re[c(α1 − γ/2− iv, α2 − γ/2 + iv)] > 0 for all v ∈ R.

follows from the apparently weaker assumption that the inequality holds at v = 0:

ρ− c(α1 − γ/2, α2 − γ/2) > 0 . (B.22)

Proof. Suppose the apparently weaker inequality holds. In terms of the character-

istic function ψ, we have

ρ− c(α1− γ/2− iv, α2− γ/2 + iv) = ρ− c(α1− γ/2, α2− γ/2)− logψ(v) ; (B.23)
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note that the middle term on the right is real. So, for v ∈ R, we have

ρ− Re[c(α1 − γ/2− iv, α2 − γ/2 + iv)] = ρ− c(α1 − γ/2, α2 − γ/2)− Re logψ(v)

= ρ− c(α1 − γ/2, α2 − γ/2)− log |ψ(v)|

≥ ρ− c(α1 − γ/2, α2 − γ/2)− log |ψ(0)|

= ρ− c(α1 − γ/2, α2 − γ/2)

> 0 by assumption,

which establishes the claim. The first inequality in this chain follows by the ridge

property.

Under assumption (B.22) this proposition implies, for example, that there are no

zeros of ρ−c(α1−γ/2−iv, α2−γ/2+iv) on the real axis. The following proposition

documents an important property of the closest zero above the real axis.

Proposition B.2. Consider

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv) (B.24)

as a function of v ∈ C, and suppose that the condition

ρ− c(α1 − γ/2, α2 − γ/2) > 0 (B.25)

holds. Then the zero of (B.24) in the upper half-plane which is closest to the real

axis lies on the imaginary axis.

Proof. Using equation (B.23) above, any zero, z, satisfies

ρ− c(α1 − γ/2, α2 − γ/2) = logψ(z) .
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Writing the left-hand side as ρ̂ ∈ R for convenience, any zero z must satisfy ψ(z) =

exp ρ̂. The fact that ρ̂ > 0 follows from (B.25).

Let z∗ be the zero in the upper half-plane with smallest imaginary part, and

suppose (for a contradiction) that Re z∗ 6= 0. Let z̃ = (Im z∗)i be the projection of

z∗ onto the imaginary axis. By the ridge property, we have ψ(z̃) > |ψ(z∗)| = exp ρ̂.

So, ψ(z̃) > exp ρ̂ > 1 = ψ(0). By continuity of ψ, there must be a purely imaginary

ẑ which lies between 0 and z̃ and satisfies ψ(ẑ) = exp ρ̂—but this contradicts the

assumption that z∗ had smallest imaginary part. Therefore the zero with smallest

imaginary part must, in fact, lie on the imaginary axis.

Condition (B.25) holds when (α1, α2) = (1, 0) or (0, 1) by the finiteness condition.
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Figure B.2: 1/|ρ − c(1 − γ/2 − iv,−γ/2 + iv)| plotted for v in a region of the
complex plane close to the origin. Zeros of ρ− c(1− γ/2− iv,−γ/2 + iv) occur at
the spikes. The pole nearest the real axis lies on the imaginary axis, at roughly 3i
in this example.

Figure B.2 illustrates Proposition B.2 (using the calibration of section 2.5.2) by

plotting the real-valued function 1/ |ρ− c(1− γ/2− iv,−γ/2 + iv)| over a region of

the complex plane close to the origin. When ρ − c(1 − γ/2 − iv,−γ/2 + iv) has a

zero, this function explodes. Proposition B.2 says that the spike which is closest to

the real axis should lie on the imaginary axis—and of course it does.
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B.3 The Brownian motion case

From (2.9), the price-dividend ratio on the α-asset is

P/D(u) = [2 cosh(u/2)]γ ·
∫ ∞

−∞

eiuvFγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
dv . (B.26)

In this Brownian motion case,

c(θ1, θ2) = µ1θ1 + µ2θ2 +
1

2
σ11θ

2
1 + σ12θ1θ2 +

1

2
σ22θ

2
2 .

There are two solutions to the equation ρ−c(α1−γ/2−iv, α2−γ/2+iv) = 0, each

of which lies on the imaginary axis. One—call it λ1i—lies in the upper half-plane;

the other—call it λ2i—lies in the lower half-plane. We can rewrite

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv) = B(v − λ1i)(v − λ2i)

for some B > 0, λ1 > 0, λ2 < 0. (I establish the claims made in this paragraph in

Step 5, below.)

The aim, then, is to evaluate

I ≡
∫ ∞

−∞

eiuvFγ(v)

B(v − λ1i)(v − λ2i)
dv , (B.27)

in terms of which the price-dividend ratio is

P/D = [2 cosh(u/2)]γ · I . (B.28)

The proof of Proposition 2.5, which amounts to evaluating the integral (B.27),

is somewhat involved, so I have divided it into several steps. Step 1 starts from

the assumption that the state variable u is positive—an assumption that will later
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be relaxed—and demonstrates that the integral (B.26) can be calculated via the

Residue Theorem. (Appendix B.6 defines residues and provides a statement of this

theorem.) Steps 2 and 3 carry out these calculations and simplify. Step 4 demon-

strates that the resulting expression is also valid for negative u. Step 5 calculates

B, λ1, and λ2 in terms of fundamental parameters, which concludes the proof.

Step 1. Let u > 0. Consider the case in which γ is even. Let Rn ≡ n + 1/2,

where n is an integer. Define the large semicircle Ωn to be the semicircle whose

base lies along the real axis from −Rn to Rn and which has a semicircular arc (ωn)

passing through the upper half-plane from Rn through Rni and back to −Rn. I will

first show that

I = lim
n→∞

∫
Ωn

eiuvFγ(v)

B(v − λ1i)(v − λ2i)
dv . (B.29)

Then, from the residue theorem, it will follow that

I = 2πi ·
∑

Res

{
eiuvFγ(v)

B(v − λ1i)(v − λ2i)
; vp

}
, (B.30)

where the sum is taken over all poles vp in the upper half-plane.

The first step is to establish that (B.29) holds. The right-hand side is equal to

lim
n→∞

∫ Rn

−Rn

eiuvFγ(v)

B(v − λ1i)(v − λ2i)
dv︸ ︷︷ ︸

In

+

∫
ωn

eiuvFγ(v)

B(v − λ1i)(v − λ2i)
dv︸ ︷︷ ︸

Jn

The integral In tends to I as n tends to infinity. The aim, then, is to establish

that the second term Jn tends to zero as n tends to infinity. Along the arc ωn, we

have v = Rne
iθ where θ varies between 0 and π.

At this point of the argument it is convenient to work with the representation
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of Fγ(v) of equation (B.11). Substituting from (B.11), we have

Jn =

∫ π

0

eiuRn cos θ−uRn sin θP (Rne
iθ)

Q(Rneiθ) (eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ))
·Rnie

iθ dθ

with P (·) and Q(·) polynomials.

To show that Jn tends to zero as n tends to infinity, I separate the range of

integration [0, π] into two parts: [π/2−δ, π/2+δ] and its complement in [0, π]. Here

δ will be chosen to be extremely small.

First, consider

J (1)
n ≡

∣∣∣∣∣
∫ π/2+δ

π/2−δ

P (Rne
iθ)eiuRn cos θ−uRn sin θRnie

iθ

Q(Rneiθ) (eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ))
dθ

∣∣∣∣∣
≤

∫ π/2+δ

π/2−δ

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn

|eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)|
dθ (B.31)

Pick δ sufficiently small that

∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣ ≥ 2− ε

for all θ ∈ [π/2− δ, π/2 + δ]; ε is some very small number close to but greater than

zero. This is possible because the left-hand side is continuous and equal to 2 when

θ = π/2. Then,

J (1)
n ≤

∫ π/2+δ

π/2−δ

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn

2− ε
dθ (B.32)

Since

(i) we can also ensure that δ is small enough that sin θ ≥ ε for θ in the range of

integration,

(ii) |P (Rne
iθ)| ≤ P2(Rn), where P2 is the polynomial obtained by taking absolute

values of the coefficients in P ,
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(iii) Q(Rne
iθ) tends to infinity as Rn becomes large, and

(iv) decaying exponentials decay faster than polynomials grow, in the sense that

for any positive k and λ, xke−λx → 0 as x→∞, x ∈ R,

we see, finally, that the right-hand side of (B.32), and hence J
(1)
n , tends to zero as

n tends to infinity,

It remains to be shown that

J (2)
n ≡

∣∣∣∣∫
[0,π/2−δ]∪[π/2+δ,π]

P (Rne
iθ)eiuRn cos θ−uRn sin θRnie

iθ

Q(Rneiθ) (eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ))
dθ

∣∣∣∣
is zero in the limit. Since δ > 0, for all θ in the range of integration we have that

| cos θ| ≥ ζ > 0, for some small ζ. We have

J (2)
n ≤

∫
[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn

|eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)|
dθ .

Now,

∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣

≥
∣∣∣∣eπRn(cos θ+i sin θ)

∣∣− ∣∣e−πRn(cos θ+i sin θ)
∣∣∣∣

= eπRn| cos θ| − e−πRn| cos θ|

≥ eπRnζ − e−πRnζ

for all θ in the range of integration. So,

J (2)
n ≤

∫
[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn

eπRnζ − e−πRnζ
dθ

≤
∫

[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ Rn

eπRnζ − e−πRnζ
dθ

which tends to zero as n tends to infinity.
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The case of γ odd is almost identical. The only important difference is that we

take Rn = n (as opposed to n+ 1/2) before allowing n to go to infinity. The reason

for doing so is that we must take care to avoid the poles of Fγ(v) on the imaginary

axis.

Step 2. From now on, I revert to the definition of Fγ(v) as

Fγ(v) =
1

2π

Γ(γ/2− iv)Γ(γ/2 + iv)

Γ(γ)
.

The integrand is

eiuvΓ(γ/2− iv)Γ(γ/2 + iv)

2π ·B · Γ(γ) · (v − λ1i)(v − λ2i)
, (B.33)

which has poles in the upper half-plane at λ1i and at points v such that γ/2+iv = −n

for integers n ≥ 0, since the Γ-function has poles at the negative integers and zero.

In other words, the integrand has poles at λ1i and at (n+ γ/2)i for n ≥ 0.

We can calculate the residue of (B.33) at v = λ1i directly, using the fact that if

f(z) = g(z)/h(z) has a pole at a, and g(a) 6= 0, h(a) = 0, and h′(a) 6= 0, then

Res {f(z); a} =
g(a)

h′(a)
.

The residue at λ1i is therefore

e−λ1uΓ(γ/2 + λ1)Γ(γ/2− λ1)

2πi ·B · Γ(γ) · (λ1 − λ2)
. (B.34)

Γ(z) has residue (−1)n/n! at z = −n. (See, for example, Andrews, Askey and

Roy (1999, p. 7).) Using this fact, it follows that the residue of (B.33) at v =

(n+ γ/2)i for integers n ≥ 0 is

−e−u(n+γ/2) · Γ(γ + n) · (−1)n

n!

2πi ·B · Γ(γ) · (n+ γ/2− λ1)(n+ γ/2− λ2)
(B.35)

142



Substituting (B.34) and (B.35) into (B.30), we find

I =
e−λ1uΓ(γ/2 + λ1)Γ(γ/2− λ1)

B · Γ(γ) · (λ1 − λ2)
−e−γu/2

∞∑
n=0

(−e−u)n · Γ(γ + n) · 1
n!

B · Γ(γ) · (n+ γ/2− λ1)(n+ γ/2− λ2)

Since | − e−u| < 1 under the assumption that u > 0, which for the time being is

still maintained, we can use the series definition of Gauss’s hypergeometric function

given in equation (2.17), together with the fact that Γ(γ+n)/Γ(γ) = γ(γ+1) · · · (γ+

n− 1), to obtain

I =
e−λ1u

B(λ1 − λ2)

Γ(γ/2− λ1)Γ(γ/2 + λ1)

Γ(γ)
+

+
e−γu/2

B(λ1 − λ2)

[
1

γ/2− λ2

F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)
−

− 1

γ/2− λ1

F
(
γ, γ/2− λ1; 1 + γ/2− λ1;−e−u

)]
(B.36)

Step 3. A final simplification follows from the fact that

e−λ1u
Γ(γ/2− λ1)Γ(γ/2 + λ1)

Γ(γ)
=

eγu/2

γ/2 + λ1

F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ1

F
(
γ, γ/2− λ1; 1 + γ/2− λ1;−e−u

)
,

which follows from equation (1.8.1.11) of Slater (1966, pp. 35–36).

Using this observation to substitute out the first term in (B.36), we have

I =
1

B(λ1 − λ2)

[
eγu/2

γ/2 + λ1

F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ2

F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)]
.
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Substituting this expression into (B.28) gives the formula

P/D1(u) =
[2 cosh(u/2)]γ

B(λ1 − λ2)

[
eγu/2

γ/2 + λ1

F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ2

F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)]
; (B.37)

thus far, however, the derivation is valid only under the assumption that u > 0.

Step 4. Suppose, now, that u < 0. Take the complex conjugate of equation

(B.27). (This leaves the left-hand side unaltered because the price-dividend ratio

is real.) Doing so is equivalent to reframing the problem with (u, λ1, λ2) replaced

by (−u,−λ2,−λ1). Since −u > 0,−λ2 > 0, and −λ1 < 0, the method of steps 1–4

applies unchanged. Since the formula (B.37) is invariant under (−u,−λ2,−λ1) 7→

(u, λ1, λ2), we can conclude that equation (B.37) is valid for all u. Substituting

u 7→ log(1− s)/s delivers (2.18).

Step 5. It only remains to find the values of B, λ1, and λ2 in terms of the

fundamental parameters. The CGF is given, in the general Brownian motion case,

by

c(θ1, θ2) = µ1θ1 + µ2θ2 +
1

2
σ11θ

2
1 + σ12θ1θ2 +

1

2
σ22θ

2
2

We can rewrite ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv) in the form

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv) =
1

2
X2v2 + iY v +

1

2
Z2 , (B.38)
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where, as in the main text, I have defined

X2 ≡ σ11 − 2σ12 + σ22

Y ≡ µ1 − µ2 + α1(σ11 − σ12)− α2(σ22 − σ12)−
γ

2
(σ11 − σ22)

Z2 ≡ 2(ρ− α1µ1 − α2µ2)− (α2
1σ11 + 2α1α2σ12 + α2

2σ22) +

+ γ [µ1 + µ2 + α1σ11 + (α1 + α2)σ12 + α2σ22]−
γ2

4
(σ11 + 2σ12 + σ22) .

I have chosen to writeX2 and Z2 to emphasize that these two quantities are positive.

The positivity ofX2 follows because it is the variance of the difference of two random

variables (y21 − y11). The positivity of Z2, on the other hand, follows from the

finiteness conditions, after setting v = 0 in (B.38).

From (B.38), we have, finally, that

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv) = B(v − λ1i)(v − λ2i)

where

B ≡ 1

2
X2

λ1 ≡
√
Y 2 +X2Z2 − Y

X2

λ2 ≡ −
√
Y 2 +X2Z2 + Y

X2
.

B.3.1 Simple special cases with symmetric Brownian motions

In some special subcases, it is possible to obtain considerably simpler expressions

for the price-dividend ratio. In this section, I consider the special case in which the

world is symmetrical and the log dividend processes of each asset follow independent

drifting Brownian motions with drift µ and volatility σ. It follows that the CGF is
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given by

c(θ1, θ2) = µ(θ1 + θ2) +
1

2
σ2(θ2

1 + θ2
2) (B.39)

Recall the general pricing formula, in the form of (2.9):

Pα

Dα

= [2 cosh(u/2)]γ ·
∫ ∞

−∞

eiuvFγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
dv

I will focus on pricing the claim to asset 1, so α1 = 1, α2 = 0. Substituting in

from (B.39), a little algebra confirms the fact that

ρ− c(1− γ/2− iv,−γ/2 + iv) = σ2
[
(v + i/2)2 + A2

]
,

where A2 ≡ (ρ+ µ(γ − 1))/σ2 − (γ − 1)2/4. The finiteness condition requires that

ρ− c(1− γ/2,−γ/2) > 0 and ρ− c(1− γ, 0) > 0

which amounts to the requirement that A > (γ − 1)/2.

The general pricing formula gives the price-dividend ratio of asset 1, written

P/D1, as

P/D1 = [2 cosh(u/2)]γ ·
∫ ∞

−∞

eiuvFγ(v)

σ2
[
(v + i/2)2 + A2

] dv . (B.40)

The question, as before, is where the poles of the integrand are. In the upper

half plane, Fγ(v) has infinitely many regularly spaced poles on the imaginary axis,

at (γ/2)i, (γ/2 + 1)i, (γ/2 + 2)i, . . . . The other pole is at the zero, in the upper

half-plane, of the denominator σ2
[
(v + i/2)2 + A2

]
—that is, at(A− 1/2)i. It turns

out that the integral takes on a relatively simple form if we ensure that the pole at

(A− 1/2)i is an integer distance from the poles (γ/2)i, (γ/2 + 1)i, etc. (The simple

example presented in Cochrane, Longstaff and Santa-Clara (2008) has ρ = σ2, so
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A = 1.) Thus, we want

A ∈ {(γ + 1)/2, (γ + 3)/2, (γ + 5)/2, . . .}

For example, if γ = 2 and A = 3/2, the price-dividend ratio of asset 1 is

P/D1(s) =
2(1− s)3 log(1− s) + 2s− 5s2 + 3s3 − s3 log s

3(1− s)2s3σ2
.

B.4 Small asset asymptotics

I start by establishing the claim made in the text that ρ − c(1 − θ, θ − γ) is a

concave function of θ. This fact follows directly from

Proposition B.3 (A convexity property of c(·, ·)). For arbitrary real numbers α

and β, the function c(α− θ, β + θ) is a convex function of θ.

Proof. Define the measure P̂ by

Ê(A) ≡ e−c(α,β)E
(
eαy11+βy21A

)
.

It follows that the CGF of y21 − y11, calculated with respect to P̂, is

ĉ(θ) = log Ê
(
eθy21−θy11

)
= −c(α, β) + log E

(
e(α−θ)y11+(β+θ)y21

)
= −c(α, β) + c(α− θ, β + θ) .

Therefore, c(α−θ, β+θ) = c(α, β)+ ĉ(θ). (Compare also equations (B.2) and (B.3)

of Appendix B.1.1.)

The convexity of c(α− θ, β + θ) follows immediately, because ĉ(θ), as a CGF, is

convex, as shown in Billingsley (1995, pp. 147–8).

147



The price-dividend ratio in the small asset limit is given by (2.10), which I

reproduce here for the situation in which asset 1 is small:

P/D1 = lim
u→∞

∫ ∞

−∞

eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
dv

∫ ∞

−∞
eiuvFγ(v) dv

. (B.41)

By the Riemann-Lebesgue lemma, both the numerator and denominator on the

right-hand side of (B.41) tend to zero in the limit as u tends to infinity. What

happens to their ratio? This section shows how to calculate limiting price-dividend

ratio, riskless rate and excess returns in the small-asset case. For clarity, I work

through the price-dividend ratio in detail; the techniques used also apply to the

riskless rate and to expected returns, and are very similar to those that were used

to provide the closed-form solution in the Brownian motion case.

The following definition provides a convenient label for the poles that will be

of interest when evaluating the relevant integrals in the asymptotic limit. (When

reading the definition, note that by the finiteness condition and Proposition B.1 of

Appendix B.2, the functions to which the definition will be applied will never have

poles on the real axis.)

Definition B.1. Let f be an arbitrary meromorphic function. A pole (resp. zero)

of f is minimal if it lies in the upper half-plane and no other pole (resp. zero) in

the upper half-plane has smaller imaginary part.

Step 1. Consider the integral which makes up the numerator of (B.41),

I ≡
∫ ∞

−∞

eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
dv .

If log dividends are drifting Brownian motions, Appendix B.3 showed that this
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integral could be approached by summing all residues in the upper half-plane. The

aim here is to show that the asymptotic behavior of this integral is determined

only by the minimal residue. Roughly speaking, this is because poles with larger

imaginary parts are rendered asymptotically irrelevant by the term eiuv.

To establish this fact, it is convenient to integrate around a contour which avoids

all poles except for the minimal pole. If the minimal pole occurs at the minimal

zero of ρ − c(1 − γ/2 − iv,−γ/2 + iv) then, by Proposition B.2 of Appendix B.2,

this pole occurs on the imaginary axis. Otherwise, the minimal pole occurs at the

minimal pole of Fγ(v), so is at iγ/2—which is also on the imaginary axis. In short,

we can assume that the minimal pole occurs at the point mi, where m > 0 is a real

number.

Let �N denote the rectangle in the complex plane with corners at −N , N ,

N + (m+ ε)i and −N + (m+ ε)i, with the understanding that integration will take

place in the anticlockwise direction. Since the integrand is meromorphic, all poles

are isolated, so ε > 0 can be chosen to be sufficiently small that the rectangle �N

only contains the pole at mi.

By the residue theorem, we have

J ≡
∫

�N

eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
dv

= 2πiRes

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
;mi

}

On the other hand, we can also decompose the integral into four pieces:

J =

∫ N

−N

eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
dv +

∫ m+ε

0

eiu(N+iv)Fγ(N + iv)

ρ− c(. . .)
i dv +

+

∫ −N

N

eiu(v+(m+ε)i)Fγ(v + (m+ ε)i)

ρ− c(. . .)
dv +

∫ 0

m+ε

eiu(−N+iv)Fγ(−N + iv)

ρ− c(. . .)
i dv

≡ J1 + J2 + J3 + J4
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In brief, the desired result follows on first letting N tend to infinity; then J2

and J4 go to zero. Subsequently letting u go to infinity, J3 becomes asymptotically

irrelevant compared to J1. By the residue theorem, the integral I = limN→∞ J1 is

therefore asymptotically equivalent2 to 2πi times the residue at mi:

I ∼ 2πi · Res

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
;mi

}
.

The following calculations justify these statements. Consider J2. Since the range

of integration is a closed and bounded interval, the function |ρ− c(. . .)| attains its

maximum and minimum on the range. Since also the function has no zeros on the

interval, we can write |ρ− c(. . .)| ≥ δ1 > 0 for all v in the range of integration. We

have

|J2| ≤
∫ m+ε

0

∣∣∣∣eiu(N+iv)Fγ(N + iv)

ρ− c(. . .)
i

∣∣∣∣ dv
=

∫ m+ε

0

e−uv |Fγ(N + iv)|
|ρ− c(. . .)|

dv

≤ 1

δ1

∫ m+ε

0

|Fγ(N + iv)| dv

→ 0

as N tends to infinity because |Fγ(N + iv)| converges to zero uniformly over v in

the range of integration. An almost identical argument shows that |J4| tends to zero

as N tends to infinity.

Now consider J3. Set δ2 = |ρ− c(1− γ/2 +m+ ε,−γ/2−m− ε)| > 0; then by

the ridge property discussed in Appendix B.2, |ρ−c(. . .)| ≥ δ2 for all v in the range

2 I write f(x) ∼ g(x)—“f(x) is asymptotically equivalent to g(x)”—to indicate that
limx→∞ f(x)/g(x) = 1. Below, I also use the “big-O” notation f(x) = O(g(x))—“f(x) is asymp-
totically of the same order as g(x)”—to indicate that limx→∞ f(x)/g(x) is finite.
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of integration. It follows that

|J3| ≤
∫ N

−N

e−(m+ε)u |Fγ(v + (m+ ε)i)|
|ρ− c(. . .)|

dv

≤ e−u(m+ε) · 1

δ2

∫ N

−N
|Fγ(v + (m+ ε)i)| dv

→ e−u(m+ε) ·X/δ2

where X is the (finite) limit of the integral
∫ N
−N |Fγ(v + (m+ ε)i)| dv as N tends

to infinity. (X is finite because Fγ(v + (m + ε)i) decays to zero exponentially fast

as v → ±∞.)

By the residue theorem,

J1 + J2 + J3 + J4 = 2πi× residue at mi = O(e−mu) .

Let N go to infinity; then J2 and J4 go to zero, J1 tends to I and J3 tends to

e−u(m+ε)X, so

I + e−u(m+ε)X = 2πi× residue at mi = O(e−mu) .

In the limit as u→∞, e−u(m+ε)X is exponentially smaller than e−mu, so

I ∼ 2πiRes

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
;mi

}

as u → ∞. The asymptotic behavior of the integral I is dictated by the residue

closest to the real line.

Essentially identical arguments can be made to show that the other relevant inte-

grals are asymptotically equivalent to 2πi times the minimal residue of the relevant

integrand; they are omitted to prevent an already complicated argument becoming

totally unreadable.
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Step 2. I now apply the logic of step 1 to (i) the price-dividend ratio, (ii) the

riskless rate and (iii) expected returns.

(i) In the price-dividend ratio case, we have to evaluate

lim
u→∞

P/D(u) = lim
u→∞

∫ ∞

−∞

eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
dv∫ ∞

−∞
eiuvFγ(v) dv

≡ lim
u→∞

In
Id
.

We have just seen that In and Id are asymptotically equivalent to 2πi times

the residue at the pole (of the relevant integrand) with smallest imaginary

part. Here, I take this fact as given and refer to the pole (or zero) with least

positive imaginary part as the minimal pole (or zero).

Consider, then, the more complicated integral In. The integrand has a pole at

iγ/2 due to a singularity in Fγ(v). The question is whether or not there is a

zero of ρ− c(1− γ/2− iv,−γ/2 + iv) for some v with imaginary part smaller

than γ/2. If there is, then this is the minimal pole. If not, then iγ/2 is the

minimal pole.

In Appendix B.2, it was shown that the minimal zero of ρ − c(1 − γ/2 −

iv,−γ/2 + iv) lies on the imaginary axis. Thus the zero in question is of the

form z∗i for some positive real z∗ satisfying

ρ− c(1− γ/2 + z∗,−γ/2− z∗) = 0 . (B.42)

If z∗ < γ/2, we are in the supercritical case; if z∗ > γ/2, we are in the

subcritical case. (At the end of the proof, I will define θ∗ = γ/2− z∗, simply

for notational convenience.)

(a) In the subcritical case, the minimal pole for both integrals is at iγ/2. We
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therefore have, asymptotically,

P/D −→
Res

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iγ/2

}
Res

{
eiuvFγ(v); iγ/2

}
=

1

ρ− c(1,−γ)
·
Res

{
eiuvFγ(v); iγ/2

}
Res

{
eiuvFγ(v); iγ/2

}
=

1

ρ− c(1,−γ)

(b) In the supercritical case, the minimal pole is at iz∗ for In and at iγ/2 for

Id. We therefore have

P/D −→
Res

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iz∗

}
Res

{
eiuvFγ(v); iγ/2

}
= eu(γ/2−z

∗) ·
Res

{
Fγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iz∗

}
Res {Fγ(v); iγ/2}

−→ ∞

as u tends to infinity because γ/2− z∗ > 0.

To see that the price-consumption ratio, P/C = s ·P/D, remains finite in

this limit, we must evaluate lims→0 s · P/D. Since s = 1/(1 + eu) ∼ e−u,

we have, asymptotically, that

P/C −→ eu(γ/2−z
∗−1) ·

Res

{
Fγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iz∗

}
Res {Fγ(v); iγ/2}

,

which tends to zero as u→∞ because γ/2− z∗ − 1 < 0.
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(ii) In the riskless rate case, we seek the limit of

r =

∫ ∞

−∞
Fγ(v)e

iuv · [ρ− c(−γ/2− iv,−γ/2 + iv)] dv

∫ ∞

−∞
Fγ(v)e

iuv dv

.

This is much simpler, because the minimal pole is iγ/2 for both numerator

and denominator. It follows that

r −→ ρ− c(−γ/2− i(iγ/2),−γ/2 + i(iγ/2)) = ρ− c(0,−γ) .

(iii) In the expected return case, we need the limit of the expected capital gain

expression which is the first term on the right-hand side of (2.12). This ex-

pression is asymptotically equivalent to

∫ ∞

−∞

eiuvFγ(v)c(1− γ/2− iv, γ/2 + iv)

ρ− c(1− γ/2− iv,−γ/2 + iv)
dv

∫ ∞

−∞

eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
dv

≡ Jn
Jd

since the higher-order exponential terms e−mu for m ≥ 1 which appear in

(2.12) become irrelevant exponentially fast as u tends to infinity. Again, there

are two subcases, depending on whether the minimal zero of ρ− c(1− γ/2−

iv,−γ/2 + iv) has imaginary part greater than or less than γ/2.

(a) In the subcritical case, the minimal pole of each of Jn and Jd occurs at
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iγ/2. Therefore we have

lim
u→∞

EdP/P =

Res

{
eiuvFγ(v)c(1− γ/2− iv, γ/2 + iv)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iγ/2

}
Res

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iγ/2

}
= c(1, 0) .

(b) In the supercritical case, the minimal pole of each of Jn and Jd occurs at

iz∗. Therefore, we have

lim
u→∞

EdP/P =

Res

{
eiuvFγ(v)c(1− γ/2− iv, γ/2 + iv)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iz∗

}
Res

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iz∗

}
= c(1− γ/2 + z∗, γ/2− z∗) .

Since instantaneous expected returns are the sum of expected capital gains

and the dividend-price ratio, expected returns in the asymptotic limit are

c(1, 0) + ρ− c(1,−γ)

in the subcritical case, and

c(1− γ/2 + z∗, γ/2− z∗)

in the supercritical case.

Subtracting the riskless rate, we have, finally, that excess returns are

c(1, 0) + c(0,−γ)− c(1,−γ)
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in the subcritical case, and

c(1− γ/2 + z∗, γ/2− z∗)− ρ+ c(0,−γ)

in the supercritical case. Recalling that ρ = c(1− γ/2 + z∗,−γ/2− z∗) by the

definition of z∗, the excess return in the supercritical case can be rewritten as

c(1− γ/2 + z∗, γ/2− z∗) + c(0,−γ)− c(1− γ/2 + z∗,−γ/2− z∗) .

This concludes the derivation of the various asymptotics in the general case.

Step 3. If dividends are also independent across assets then we can decompose

c(θ1, θ2) = c1(θ1) + c2(θ2)

where ci(θ) ≡ log E exp θyi1. It follows that in the subcritical case,

XS −→ c(1, 0) + c(0,−γ)− c(1,−γ) = 0

and in the supercritical case,

XS −→ c(1− γ/2 + z∗, γ/2− z∗) + c(0,−γ)− c(1− γ/2 + z∗,−γ/2− z∗)

= c2(γ/2− z∗) + c2(−γ)− c2(−γ/2− z∗) .

Step 4. I now show that this last expression is positive. First, note that because

c2(x)—as a CGF—is convex, we have that

c2(e)− c2(d)

e− d
<
c2(g)− c2(f)

g − f
whenever d < e < f < g .
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Next, observe that in the supercritical case, we have

−γ < −γ/2− z∗ < 0 < γ/2− z∗ .

It follows that

c2(−γ/2− z∗)− c2(−γ)
(−γ/2− z∗)− (−γ)

<
c2(γ/2− z∗)− c2(0)

(γ/2− z∗)− 0
,

or equivalently, because c2(0) = 0,

c2(−γ/2− z∗)− c2(−γ) < c2(γ/2− z∗) ;

and so

c2(γ/2− z∗) + c2(−γ)− c2(−γ/2− z∗) > 0

as required.

Step 5. The last step showed that R1 = Rf in the subcritical case and R1 >

Rf in the supercritical case. It only remains to show that the other bounds on

expected returns hold: that (i) R1 < R2, assuming independence, and that (ii) in

the supercritical case R1 < G1, assuming G1 ≥ G2.

Step 5(i). Proof that R1 < R2, assuming independence:

In the subcritical case, R1 = ρ+c(1, 0)−c(1,−γ) and R2 = ρ+c(0, 1)−c(0, 1−γ).

Since we are assuming independence, it remains to show that

−c2(−γ) < c2(1)− c2(1− γ) ,

or equivalently that

c2(1− γ) < c2(1) + c2(−γ) ,
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which follows immediately by convexity of c2(·).

In the supercritical case, R1 = c(1− γ/2 + z∗, γ/2− z∗) and R2 = c(1− γ/2 +

z∗,−γ/2− z∗)+c(0, 1)−c(0, 1− γ) (substituting in for ρ from the definition of z∗).

By independence, it remains to show that

c2(γ/2− z∗) < c2(−γ/2− z∗) + c2(1)− c2(1− γ) ,

or equivalently that

c2(1− γ) + c2(γ/2− z∗) < c2(1) + c2(−γ/2− z∗)

which also follows directly by convexity of c2(·), noting that γ/2− z∗ ∈ (0, 1).

Step 5(ii). Next, I show that in the supercritical case, R1 ≤ G1 if G1 ≥ G2.

We do not need the independence assumption here. It will be helpful to write

θ = γ/2−z∗ ∈ (0, 1). With this notation, the limiting R1 = c(1−θ, θ). The claim is

that c(1−θ, θ) ≤ c(1, 0). To show this, we make the same change of measure as was

used in the proof of Proposition B.3. We have R1 = c(1− θ, θ) = c(1, 0)+ ĉ(−θ). It

suffices to show that ĉ(−θ) ≤ 0 for all θ in (0, 1). We have c(0, 1) = c(1, 0)+ ĉ(−1),

and so by assumption ĉ(−1) ≤ 0. Since ĉ(0) = 0, the claim follows by convexity of

ĉ(·).

Finally, it is notationally convenient to set θ∗ = γ/2− z∗. It follows from (B.42)

that the defining property of θ∗ in the supercritical case is that

ρ− c(1− θ∗, θ∗ − γ) = 0 .
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B.5 The N -asset case

B.5.1 The Fourier transform FN
γ (v)

To make a start, we seek the integral

IN ≡
∫

RN−1

e−ix1v1−ix2v2−···−ixN−1vN−1

(ex1/N + · · ·+ exN−1/N + e−(x1+x2+...+xN−1)/N)
γ dx1 . . . dxN−1 . (B.43)

For notational convenience, write xN ≡ −x1 − · · · − xN−1—so
∑N

1 xi = 0—and,

for i = 1, . . . , N , define

ti =
exi/N

ex1/N + · · ·+ exN/N
. (B.44)

Note that the variables ti range between 0 and 1 (and, by construction, sum to

1) as the variables {xi} range around. Furthermore, we have

N∏
k=1

tk =
e(x1+···+xN )/N

(ex1/N + · · ·+ exN/N)
N

=
1

(ex1/N + · · ·+ exN/N)
N

and tNi =
exi

(ex1/N + · · ·+ exN/N)
N
,

so

exi =
tNi∏N
k=1 tk

.

Of course, because of the linear dependence
∑N

k=1 tk = 1, there are only N − 1

independent variables and tN = 1− t1 − · · · − tN−1, so we can rewrite

xi = N log ti −
N−1∑
k=1

log tk − log

(
1−

N−1∑
k=1

tk

)
, i = 1, . . . , N − 1 . (B.45)

To make the change of variables specified in (B.44), we have to calculate the
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Jacobian

J ≡
∣∣∣∣∂(x1, . . . , xN−1)

∂(t1, . . . , tN−1)

∣∣∣∣ .
From (B.45),

∂xi
∂tj

=
1

tN
− 1

tj
+
Nδij
ti

,

where δij equals one if i = j and zero otherwise, so we can write

∂(x1, . . . , xN−1)

∂(t1, . . . , tN−1)
=



N
t1

N
t2

. . .

N
tN−1


+



1
tN
− 1

t1
1
tN
− 1

t2
· · · 1

tN
− 1

tN−1

1
tN
− 1

t1
1
tN
− 1

t2
· · · 1

tN
− 1

tN−1

...
...

...
...

1
tN
− 1

t1
1
tN
− 1

t2
· · · 1

tN
− 1

tN−1



=



N
t1

N
t2

. . .

N
tN−1


+



1

1

...

1





1
tN
− 1

t1

1
tN
− 1

t2

...

1
tN
− 1

tN−1



′

≡ A + αβ′ .

The last line defines the (N − 1)× (N − 1) matrix A and the (N − 1)-dimensional

column vectors α and β. A is a diagonal matrix: blanks indicate zeros. The prime

symbol (′) denotes a transpose.

In order to calculate J = det (A+αβ′) we can use the following

Fact B.1 (Matrix determinant lemma). Suppose that A is an invertible square

matrix and that α and β are column vectors, each of length equal to the dimension

of A. Then

det (A+αβ′) =
(
1 + β′A−1α

)
detA .
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This fact is useful in the present case because A is diagonal, so its inverse and

determinant are easily calculated. To be specific,

detA =
NN−1

t1 · · · tN−1

and A−1 =



t1
N

t2
N

. . .

tN−1

N


.

It follows that

J =


1 +



1
tN
− 1

t1

1
tN
− 1

t2

...

1
tN
− 1

tN−1



′

t1
N

t2
N

. . .

tN−1

N





1

1

...

1




× NN−1

t1 · · · tN−1

=
NN−2

t1 · · · tN
.

We can now return to the integral IN . For typographical reasons, I write Π

for the product
∏N

k=1 tk and suppress the range of integration, which is [0, 1]N−1.

Making the substitution suggested in (B.44),

IN =

∫ (
tN1
Π

)−iv1 ( tN2
Π

)−iv2
· · ·
(
tNN−1

Π

)−ivN−1(
t1+t2+···+tN

Π1/N

)γ · J dt1 . . . dtN−1

= NN−2

∫
Πγ/N

(
tN1
Π

)−iv1

· · ·
(
tNN−1

Π

)−ivN−1 dt1 . . . dtN−1

t1 . . . tN−1tN

= NN−2

∫ (
t
γ/N+iv1+···+ivN−1−Niv1
1 t

γ/N+iv1+···+ivN−1−Niv2
2 · · ·

· · · tγ/N+iv1+···+ivN−1−NivN−1

N−1 · tγ/N+iv1+···+ivN−1

N

) dt1 . . . dtN−1

t1 . . . tN−1tN
.
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As in the two-asset case, this is a Dirichlet surface integral. As shown in Andrews,

Askey and Roy (1999, p. 34), it can be evaluated in terms of Γ-functions: we have

IN =
NN−2

Γ(γ)
·Γ (γ/N + iv1 + iv2 + . . .+ ivN−1)·

N−1∏
k=1

Γ (γ/N + iv1 + · · ·+ ivN−1 −Nivk) .

Defining G N
γ (v) = IN/(2π)N−1, where v = (v1, . . . , vN−1), we have

G N
γ (v) =

NN−2

(2π)N−1
·Γ (γ/N + iv1 + iv2 + . . .+ ivN−1)

Γ(γ)
·
N−1∏
k=1

Γ (γ/N + iv1 + · · ·+ ivN−1 −Nivk) .

(B.46)

It follows from this definition of G N
γ (v), by the Fourier inversion theorem, that

1

(ex1/N + ex2/N + . . .+ e−(x1+x2+...+xN−1)/N)
γ =

∫
RN−1

G N
γ (v)eiv

′x dv , (B.47)

where x = (x1, . . . , xN−1).

B.5.2 The expectation

We seek the expectation

E = E
[

eα′eyt
(ey10+ey1t + · · ·+ eyN0+eyNt)γ

]
,

where α ≡ (α1, . . . , αN)′ and ỹt ≡ (ỹ1t, . . . , ỹNt)
′.

The calculation is carried out by applying the same three tricks that were useful

in the two-asset case: namely, by putting the denominator in a form amenable to

a Fourier transform; then changing measure, to take care of the numerator; and

finally applying the Fourier transform.

The calculations below also use the vectors y0 and γ defined in the main text.
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In addition, define the (N − 1)×N matrix Q and vectors qi by

Q ≡



q′2

q′3
...

q′N


≡



−1 N − 1 −1 · · · −1

−1 −1 N − 1
. . .

...

...
...

. . .
. . . −1

−1 −1 · · · −1 N − 1


, (B.48)

and let q1 ≡ (N − 1, . . . ,−1,−1)′—the “missing” row which does not appear as

the top row of Q. (This definition is only introduced to make certain expressions

neater, since q1 = −
∑N

k=2 qk.)

We will also need to make a change of measure at one stage, as in the two asset

case. Define Ẽ by

Ẽ [Y ] ≡ e−tc(α−γ/N) · E
[
e(α−γ/N)′eyt · Y ] . (B.49)

It follows that

c̃(v) ≡ log Ẽ
[
eey′1v

]
= c(α− γ/N + v)− c(α− γ/N) . (B.50)

Using the new notation,

E = E
[

eα′eyt
(ey10+ey1t + · · ·+ eyN0+eyNt)γ

]
= E

[
eα′eyt−γ′(y0+eyt)/N(

eq′1(y0+eyt)/N + · · ·+ eq′N (y0+eyt)/N)γ
]

= e−γ′y0/Nec(α−γ/N)t Ẽ

[
1(

eq′1(y0+eyt)/N + · · ·+ eq′N (y0+eyt)/N)γ
]
.
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Now, Q(y0 + ỹt) plays the role of x in expression (B.47). It follows that

E = e−γ′y0/Nec(α−γ/N)t Ẽ
[∫

G N
γ (v)eiv

′Q(y0+eyt) dv
]

= e−γ′y0/Nec(α−γ/N)t

∫
G N
γ (v)eiv

′Qy0eec(iQ′v)t dv

= e−γ′y0/N

∫
G N
γ (v)eiv

′Qy0ec(α−γ/N+iQ′v)t dv . (B.51)

B.5.3 Prices

Now we proceed along the same lines as in the two-asset case. First, the price

of the α-asset is given by

P = E
∫ ∞

0

e−ρt
(
Ct
C0

)−γ

Dα1
1t · · ·D

αN
Nt dt

= Cγ
0

∫ ∞

0

e−ρtE
[
eα1(y10+ey1t)+···+αN (yN0+eyNt)
(ey10+ey1t + · · ·+ eyN0+eyNt)γ

]
dt .

The price-dividend ratio is therefore equal to

P/D = Cγ
0

∫ ∞

0

e−ρtE
[

eα1ey1t+···+αN eyNt
(ey10+ey1t + · · ·+ eyN0+eyNt)γ

]
dt ,

and the expectation was calculated, as E, in the previous section. Substituting in

from (B.51),

P/D = Cγ
0

∫ ∞

t=0

e−ρt
(
e−γ′y0/N

∫
G N
γ (v)eiv

′Qy0ec(α−γ/N+iQ′v)t dv

)
dt

= Cγ
0 e

−γ′y0/N

∫
G N
γ (v)eiv

′Qy0

(∫ ∞

t=0

e−[ρ−c(α−γ/N+iQ′v)]t dt

)
dv

= Cγ
0 e

−γ′y0/N

∫
G N
γ (v)eiv

′Qy0

ρ− c(α− γ/N + iQ′v)
dv (B.52)

=
(
eq′1y0/N + · · ·+ eq′Ny0/N

)γ ∫ G N
γ (v)eiv

′Qy0

ρ− c(α− γ/N + iQ′v)
dv . (B.53)

As in the two-asset case, I assume that Re [ρ− c(α− γ/N + iQ′v)] > 0; and
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as in the two-asset case, this follows from the apparently weaker condition that

ρ − c(α − γ/N) > 0. The proof follows exactly the same lines as in the two-asset

case, and is therefore omitted.

B.5.4 Returns

From (B.52), the price of the α-asset is

P = (ey10 + · · ·+ eyN0)γ e(α−γ/N)′y0

∫
G N
γ (v)eiv

′Qy0

ρ− c(α− γ/N + iQ′v)
dv .

Introducing the multinomial coefficient,

(
γ

m

)
≡ γ!

m1!m2! · · ·mN !
,

we can express the price as

P =
∑
m

(
γ

m

)∫
G N
γ (v)e(α−γ/N+m+iQ′v)′y0

ρ− c(α− γ/N + iQ′v)
dv .

The sum is taken over all N -dimensional vectors m whose entries are nonnegative

integers which add up to γ.

Using the result of Appendix B.1.1, it follows that

EdP =
∑
m

(
γ

m

)∫
G N
γ (v)e(α−γ/N+m+iQ′v)′y0c(α− γ/N +m+ iQ′v)

ρ− c(α− γ/N + iQ′v)
dv dt ,

and hence

EdP/D =
∑
m

(
γ

m

)∫
G N
γ (v)e(−γ/N+m+iQ′v)′y0c(α− γ/N +m+ iQ′v)

ρ− c(α− γ/N + iQ′v)
dv dt

=
∑
m

(
γ

m

)
em1q′1y0/N+···+mNq′Ny0/N

∫
G N
γ (v)eiv

′Qy0c(α− γ/N +m+ iQ′v)

ρ− c(α− γ/N + iQ′v)
dv dt .
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We then get expected capital gains by dividing through by the price-dividend

ratio, calculated above. The other component of expected return is the dividend

yield, which is the reciprocal of the price-dividend ratio.

B.5.5 Interest rates

The price of a time-T zero-coupon bond is

BT = Ee−ρT
(
CT
C0

)−γ

.

Using the expectation calculated in section B.5.2, we have

BT = e−ρTCγ
0 E

1

(ey10+ey1T + · · ·+ eyN0+eyNT )
γ

= e−ρTCγ
0 e

−γ′y0/N

∫
G N
γ (v)eiv

′Qy0ec(−γ/N+iQ′v)T dv

= e−ρT
(
eq′1y0/N + · · ·+ eq′Ny0/N

)γ ∫
G N
γ (v)eiv

′Qy0ec(−γ/N+iQ′v)T dv .

The yield Y (T ) = −(logBT )/T . Using the above expression,

Y (T ) = ρ− 1

T
log

{(
eq′1y0/N + · · ·+ eq′Ny0/N

)γ ∫
G N
γ (v)eiv

′Qy0ec(−γ/N+iQ′v)T dv

}
.

To calculate the riskless rate, rearrange this expression slightly, using (B.47)—

Y (T ) = ρ− 1

T
log

{
1 +

(
eq′1y0/N + · · ·+ eq′Ny0/N

)γ ∫
G N
γ (v)eiv

′Qy0

(
ec(−γ/N+iQ′v)T − 1

)
dv

}
.
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Using L’Hôpital’s rule, as in the two-asset case, we have

r = lim
T↓0

Y (T )

= ρ−
(
eq′1y0/N + · · ·+ eq′Ny0/N

)γ ∫
G N
γ (v)eiv

′Qy0c(−γ/N + iQ′v) dv

=
(
eq′1y0/N + · · ·+ eq′Ny0/N

)γ ∫
G N
γ (v)eiv

′Qy0 [ρ− c(−γ/N + iQ′v)] dv .

B.5.6 A final change of variables

The expressions so far obtained can be simplified by a final change of variables.

Define v̂ ≡ Bv, where B is the (N − 1)× (N − 1) square matrix

B ≡



N − 1 −1 · · · −1

−1 N − 1
. . .

...

...
. . .

. . . −1

−1 · · · −1 N − 1


.

With this definition, we have v̂k = Nvk − v1 − · · · − vN−1 and v̂1 + · · · + v̂N−1 =

v1 + · · ·+ vN−1. It is simple to verify that

B−1 =
1

N



2 1 · · · 1

1 2
. . .

...

...
. . .

. . . 1

1 · · · 1 2


.

Using the matrix determinant lemma (Fact B.1 above) it is easy to calculate the

Jacobian: detB−1 = 1/NN−2, so—since v = B−1v̂—dv is replaced by dv̂/NN−2.

Next, v̂ was defined in such a way that G N
γ (v), defined in equation (B.46), is equal

to NN−2FN
γ (v̂), defined in equation (2.31). Finally, noting that B−1Q = U and
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u ≡ Uy0, as defined in (2.32), we have

Q′v = Q′B−1v̂

= U ′v̂ ,

and

v′Qy0 = v̂′Uy0

= v̂′u

= u′v̂ .

Proposition 2.8 follows after making these substitutions throughout the various

integrals and dropping hats on the integration variables v̂.

B.6 Some results from complex analysis

This section provides a brief summary of the definitions and results from complex

analysis that were invoked in Appendix B.3. Proofs of the results cited will be found

in any introductory complex analysis textbook; I have drawn on Priestley (1995).

A complex-valued function f is said to be holomorphic in G, which is some subset

of the complex plane, if

lim
h→0

f(z + h)− f(z)

h

exists for every point z in some open set containing G. Note that the limit must be

the same no matter what direction h approaches 0 from: for example, it may be tend

to zero along the imaginary axis or along the real axis. Polynomials, convergent

power series, the exponential function, sine, and cosine are holomorphic, as are

compositions and finite sums and products of these functions. So, for example, the

168



hyperbolic cosine, cosh z ≡ (ez + e−z)/2 is holomorphic.

Result B.1 (Holomorphic iff analytic). A function f is holomorphic in the open

set {z ∈ C : |z − a| < r} if and only if it is analytic—that is, representable by a

power series:

f(z) =
∞∑
n=0

cn(z − a)n , for z such that |z − a| < r .

Proof. See Priestley (1995), pp. 20–21 and 69.

Complex integrals appear throughout Chapter 2. Real integration takes place

on subsets of the real line—for example,

∫ b

a

f(x) dx

is an integral “along the path from a to b.” Complex integration takes place over

paths in the complex plane. Since the complex plane is two-dimensional (as opposed

to the one dimension of the real line), these paths can be more complicated. For

example, an integral might be “around the unit circle defined by |z| = 1,” or “along

the real line from −R to R, then around a semicircular arc lying in the upper

half-plane from R back to −R.”

The integrals which occur in Chapter 2 (for example, (2.10)) feature integrands

which are holomorphic everywhere except for at certain singularities at which they

explode to infinity. (These singularities do not, of course, occur on the path of

integration.) It is an amazing—and powerful—fact that such integrals depend on

the behavior of the integrands at singularities elsewhere in the complex plane. I now

introduce the mathematical apparatus used in Chapter 2 that relates to this fact.

If f is holomorphic in some punctured disc {z ∈ C : 0 < |z − a| < r} but not at

the point a, then a is an isolated singularity. (Keep in mind the example f(z) = 1/z,
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which is holomorphic everywhere except for at an isolated singularity at the origin.)

In this case, f can be expanded as a unique power series of the form

f(z) =
∞∑

n=−∞

cn(z − a)n for z such that 0 < |z − a| < r . (B.54)

If cn = 0 for all n < 0, the point a is a removable singularity. (In other words, it is

not “really” a singularity at all. Consider the example f(z) = (sin z)/z, which has a

removable singularity at z = 0. If the function f is redefined slightly by specifying

that f(0) = 1, then the singularity has been removed.) If there is some positive m

such that c−m 6= 0 and ck = 0 for all k < −m then the point a is a pole of order m.3

These concepts are best illustrated with an example. Take the function

F2(v) =
v

2 sinh πv
.

Singularities occur whenever sinh πv = 0, in other words at v = 0,±i,±2i, . . ..4

However, it is easy to check that the singularity at the origin is removable. (By

L’Hôpital’s rule, f(v) tends to 1/2π as v tends to zero.) In fact, the only non-

removable singularities are poles of order 1 at ±i,±2i,±3i, . . ..

A function f which is holomorphic throughout the complex plane, except at

poles, is called meromorphic. If a meromorphic function f has a pole at a then the

residue of f at a, written Res {f(z); a}, is defined to be the coefficient on the term

(z − a)−1 in a power series expansion of the form (B.54). With this final piece of

notation, I now state the residue theorem.

Result B.2 (The Residue Theorem). Let Ω denote a closed path of integration which

is to be integrated around in an anticlockwise direction. Suppose f is holomorphic

3 If there are arbitrarily large m such that c−m 6= 0 then the point a is an isolated essential
singularity, but this case is not relevant for my purposes.

4 Remember that when z is real, we have sinh(iz) = i sin z and cosh(iz) = cos z.
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inside and on Ω, except for at a finite number of poles at points a1, . . . , am inside

Ω. Then ∫
Ω

f(z) dz = 2πi
m∑
j=1

Res {f(z); aj}

Proof. See Priestley (1995), chapter 7.
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