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Abstract

We study the properties of the yield curve under the assumptions that (i)

the fixed-income market is complete and (ii) the state vector that drives interest

rates follows a finite discrete-time Markov chain. We focus in particular on the

relationship between the behavior of the long end of the yield curve and the

recovered time discount factor and marginal utilities of a pseudo-representative

agent; and on the relationship between the “trappedness” of an economy and

the convergence of yields at the long end.
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In this paper, we present some theoretical results on the properties of the long

end of the yield curve. Our results relate to two literatures. The first is the Recovery

Theorem of Ross (2015). Ross showed that, given a matrix of Arrow–Debreu prices, it

is possible to infer the objective state transition probabilities and marginal utilities.

Although it is a familiar fact that sufficiently rich asset price data pins down the

risk-neutral probabilities, it is initially surprising that we can do the same for the

objective, or real-world, probabilities.

More precisely, the asset price matrix, A, can be decomposed as A = φDΠD−1,

where φ > 0 is a scalar,D is a diagonal matrix with positive entries along the diagonal,

and Π is a stochastic matrix (so its row sums all equal one). In Ross’s setting, with

assets priced by an expected-utility-maximizing investor, φ can be interpreted as the

investor’s time discount factor, and D and Π summarize, respectively, the investor’s

marginal utilities and subjective probabilities.

Here we emphasize that asset prices can be uniquely decomposed into objects

that can be interpreted as probabilities and marginal utilities whether or not there

is such an investor. We think of this result as establishing the existence of a pseudo-

representative agent. We hypothesize that the recovered probabilities are the real-

world probabilities. As Ross showed, this is true if there is a utility-maximizing

investor—in which case this investor is the pseudo-representative agent—but more

generally the question of whether the hypothesis holds is an empirical one. We dis-

cuss how to test it but do not settle the question here; instead we proceed on the

assumption that the hypothesis holds and develop some of its implications.

The first is that recovery can be partially effected, without knowledge of the

matrix A, by observing the behavior of the long end of the yield curve. The yield

on the (infinitely) long zero-coupon bond reveals the time preference rate of the

pseudo-representative agent, and the time-series of returns on the long bond reveals

the pseudo-representative agent’s marginal utilities. (These “marginal utilities” are

a convenient guide to intuition, but our analysis is based on the logic of no-arbitrage:
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we do not need to assume that the concept of expected utility is meaningful.)

These results connect the Recovery Theorem to earlier results of Backus, Gregory

and Zin (1989), Kazemi (1992), Bansal and Lehmann (1994, 1997), Dybvig, Ingersoll

and Ross (1996), Alvarez and Jermann (2005) and Hansen and Scheinkman (2009),

though unlike most of these authors we focus exclusively on bonds and interest-

rate derivatives rather than on the prices of claims to growing cashflows, for reasons

discussed further below. A side benefit is that we can avoid some of the technical

complication of this literature, and provide simple and short proofs of our results.

We derive several further results. First, we show that the yield curve must slope

upwards on average. This is an empirical regularity. Second, we provide a formula

for the expected excess return on the long bond in terms of the prices of options on

the long bond. The matrix of Arrow–Debreu prices is in the background of both

results, but we avoid the need to observe it directly. In Section 3, we define a notion

of “trappedness” for an economy, and relate it to the speed of convergence (in yields

and returns) at the long end of the yield curve. In Section 4, we address the question

of when the matrix of Arrow–Debreu prices can be inferred from plausibly observ-

able asset price data. We present several examples that illustrate the flexibility of

our framework and exhibit some potential opportunities—and pitfalls—for empirical

work.

1 The general framework

We work in discrete time. Our focus is on fixed-income assets, including fixed- or

floating-rate bonds, interest-rate swaps, and derivatives on them, including caps,

floors, bond options and swaptions. We assume that fixed-income markets are (i)

complete, and (ii) governed by a state variable that follows a Markov chain on

{1, 2, . . . ,m}.
The state variable will in general be multidimensional (so that if the state vector
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has J entries that can each take K values, the size of the state space is m = KJ).

Although we have in mind that the state vector might in principle comprise, say, the

current short rate, measures of the yield curve slope and curvature, the VIX index,

state of the business cycle—even, perhaps, some measure of “animal spirits”—we will

not need, in this paper, to be specific about its constituents. But as we assume that

the state variable follows a Markov chain, it is important that all elements of the

vector can reasonably be thought of as stationary.1

In a complete market, it is convenient to summarize all available asset-price data

in a matrix, A, of Arrow–Debreu prices

A =


A(1, 1) A(1, 2) · · · A(1,m)

A(2, 1) A(2, 2)
...

...
. . .

...

A(m, 1) · · · · · · A(m,m)

 ,

where we write A(i, j) for the price, in state i, of the Arrow–Debreu security that

pays off $1 if state j materializes next period. The absence of arbitrage requires that

the entries of A are nonnegative, and that A(i, j) is strictly positive if the transition

from state i to state j occurs with positive probability. The row sums of A are the

prices of one-period riskless bonds in each state. We assume that not all of these

row sums are equal, except where explicitly stated otherwise. This assumption is

inessential, but it lets us avoid constantly having to qualify statements to account for

the degenerate case in which interest rates are constant and the yield curve is flat.

We assume that for a sufficiently large time horizon, T , all Arrow–Debreu securi-

ties maturing in T periods have strictly positive prices in every state. This assump-

1It has also long been accepted that fixed income yields are stationary. Much effort has been
expended in statistical examination of this issue. But as Jon Ingersoll remarked during a seminar
more than twenty-five years ago in which the speaker was using spectral analysis to show that interest
rates were non-stationary, “Interest rates were about 5% 4000 years ago in Babylonian times and
they’re still about 5% today—seems pretty stationary to me.” (John Cochrane and others have
made the same point.)
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tion, which we maintain throughout the paper, ensures that A is a primitive matrix.

Our framework is extremely flexible: it allows the yield curve to take any shape con-

sistent with no arbitrage. For now, we think of the matrix A as directly observable;

we will address the issue that it may be hard to observe in practice below.

Example.—If there were a utility-maximizing investor with time discount factor

φ, marginal utility u′(i) in state i, and subjective transition probabilities π(i, j), then

the Arrow–Debreu prices would satisfy

A(i, j) = φπ(i, j)
u′(j)

u′(i)
. (1)

In terms of inverse marginal utility, v(i) ≡ 1/u′(i), we would haveA(i, j) = φv(i)π(i, j)/v(j)

for each i and j or, written more concisely as a matrix equation, A = φDΠD−1,

whereD is a diagonal matrix with positive diagonal elements {v(i)} and Π = {π(i, j)}
is a stochastic matrix, i.e. a matrix whose row sums all equal 1 (because they sum

over the probabilities of moving from the current state to any other state).

The next result shows quite generally that asset price data, A, can be decomposed

into a diagonal matrix D with positive diagonal entries and a stochastic matrix

Π. Since the decomposition exists whether or not there exists a utility-maximizing

investor, we prefer to think of this result as establishing the existence of a pseudo-

representative agent.

Result 1. Given asset price data represented by the primitive matrix A, there exists

a unique decomposition

A = φDΠD−1 (2)

where D is a diagonal matrix with positive entries along the diagonal and Π is a

transition matrix (up to economically irrelevant scalar multiples of D).

Proof. The Perron–Frobenius theorem states that A has a unique (up to scale) eigen-

vector, v, and real eigenvalue, φ, satisfying Av = φv, where φ and v are strictly
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positive and φ is the largest, in absolute value, of all the eigenvalues of A. Letting

D be the diagonal matrix with v along its diagonal and e be the vector of ones, so

that v = De,

Π ≡ 1

φ
D−1AD

is a transition matrix, i.e., it is positive and Πe = e.

Now suppose that there is a different decomposition of A as in (2) with a diagonal

matrix C. By the decomposition it follows that Ce is an eigenvector of A, and as

by the Perron–Frobenius theorem A has a unique positive eigenvector it follows that

Ce is proportional to De, and therefore that (up to scale) C = D, with φ as the

unique eigenvalue. It is immediate that Π is also unique.

Result 1 is a generalization of the Recovery Theorem of Ross (2015); if Π is

the true probability transition matrix and the stochastic pricing kernel is (in Ross’s

terminology) transition-independent then Result 1 assures that Π can be uniquely

recovered from A. But the decomposition is well defined and unique whether or

not there is a representative agent and there is no need to assume that there is

a representative agent. Rather, this result can be thought of as establishing the

existence and uniqueness of a pseudo-representative agent with marginal utilities and

time discount factor encapsulated inD and φ, respectively. We will take the following

hypothesis as a given.

Hypothesis 1. The probability distribution Π recovered in the above fashion is the

true objective probability distribution.

Whether this hypothesis holds is fundamentally an empirical question and is not

an issue to be determined on a priori theoretical grounds; it can only be resolved by

comparing the recovered distribution, Π, with observed realizations in the market.

In much of this paper, we will assume that the hypothesis holds, though in Result 5

we provide an interpretation of the probabilities Π that is valid even if Hypothesis 1

is false. There is a parallel here with the expectations hypothesis, one version of
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which asserts that bond pricing is risk-neutral. This has provided a useful way to

think about interest rates and related phenomena and is the basis for a substantial

literature.

We have now linked the eigenvector, v, and eigenvalue φ to, respectively, the

marginal utilities and time discount factor of the pseudo-representative agent. On

the face of it, we are still confronted with the difficult task of having to compute the

matrix A in order to find its eigenvalues and eigenvectors. It turns out, though, that

we can avoid this difficulty by connecting v and φ to the long end of the yield curve.

2 The yield curve

Let Bt(i) denote the price of a zero-coupon bond paying 1 in t periods if the current

(time zero) state is i. The continuously-compounded t-period yield, yt(i), and the

simple yield, Yt(i), are given by

Bt(i) = e−yt(i)t =
1

[1 + Yt(i)]
t .

By the law of iterated expectations, we have

Bt(i) =
∑
j

At(i, j) , (3)

where At(i, j) is the entry that appears in the ith row and jth column of the matrix

At ≡ A · · ·A︸ ︷︷ ︸
t times

. In other words, to calculate the price in state i of a t-period zero-

coupon bond, we sum the elements of the ith row of At. Another way to see this is to

observe that (given our Markov chain assumption) element (i, j) of At is the current

price, in state i, of a pure contingent security that pays 1 in t periods if the state is

then j; and the price of a riskless bond is the sum, over all states j, of the prices of

these contingent securities.
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It follows that

yt(i) = −1

t
log
∑
j

At(i, j)

and the short rate, in state i, is

rf (i) = y1(i) = − log
∑
j

A(i, j).

The long rate in state i is defined as

y∞(i) = − lim
t→∞

1

t
log
∑
j

At(i, j) .

The realized return on a t-period bond from a transition from state i to state j in

a single period is

Rt(i, j) ≡
Bt−1(j)

Bt(i)
,

and R∞(i, j) ≡ limt→∞Rt(i, j). We use lowercase letters for log returns,

rt(i, j) ≡ logRt(i, j) and r∞(i, j) ≡ logR∞(i, j).

We obtain expected returns by summing over transition probabilities. For exam-

ple, the conditionally expected return on the long bond in state i is

R∞(i) ≡
∑
j

π(i, j)R∞(i, j)

and the unconditional expected log return on the long bond is

r∞ ≡
∑
i,j

π(i)π(i, j)r∞(i, j). (4)

The quantity π(i) that appears in (4) is the long-run probability that the economy is

in state i—that is, the ith element of the stationary distribution π, which is the left
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eigenvector of Π that satisfies

π′Π = π′. (5)

While the focus above has been on v, a right-eigenvector of A, the corresponding

left-eigenvector w, which satisfies w′A = φw′, also has an interesting interpretation.

It follows from (2) and (5) that (up to a scalar multiple) w = D−1π, and hence that

w(i) = π(i)/v(i). We will see below that this can be interpreted as (proportional to)

the risk-neutral stationary distribution. An important limiting result (see Theorem

8.5.1 of Horn and Johnson (1990)) is that

lim
t→∞

At

φt
= vw′ = [v(i)w(j)] , (6)

where v and w are normalized so that w′v = 1. This fact is exploited in the next

result to give the eigenvector v another economic interpretation.

Result 2. Let the v-asset be the asset that pays off v(j) next period. Returns on the

v-asset are identical to the returns on the long bond.

Proof. The price of the v-asset is equal to

∑
j

A(i, j)v(j) = φv(i),

using the fact that v is an eigenvector of A. So the return on the v-asset is

v(j)/[φv(i)]. Using (6), the return on the long bond is

R∞(i, j) = lim
t→∞

∑
k

At−1(j, k)∑
k

At(i, k)
=

1

φ
lim
t→∞

∑
k

At−1(j, k)

φt−1∑
k

At(i, k)

φt

=

∑
k v(j)w(k)

φ
∑

k v(i)w(k)
=

v(j)

φv(i)
.

(7)

Empirically, then, if we could observe the return on the long bond Result 2 would

9



allow us to observe the kernel as well. (Kazemi (1992) was the first to observe a

connection of this type; he did so in a continuous-time diffusion model.) Below

we will see whether it is possible to approximate this return from the returns on

sufficiently long dated bonds. We now link the eigenvalue φ to the long end of the

yield curve.

Result 3. The long rate and unconditional expected log return on the long bond both

equal − log φ.

Proof. We have

y∞(i) = − lim
t→∞

1

t
log
∑
j

At(i, j)

= − lim
t→∞

1

t
log

[
φt
∑
j

At

φt
(i, j)

]

= − log φ− lim
t→∞

1

t
log
∑
j

At

φt
(i, j)

= − log φ,

where the final equality holds because, as noted in equation (6), At/φt tends to a

constant matrix.

From (7) we have r∞(i, j) = − log φ+ log[v(j)/v(i)], so

r∞ = − log φ+
∑
i,j

π(i)π(i, j) log
v(j)

v(i)
= − log φ+

∑
j

π(j) log v(j)−
∑
i

π(i) log v(i) = − log φ,

where we have exploited the fact that π′Π = π′.

Given the result of Dybvig, Ingersoll and Ross (1996), it is no surprise that the

long yield is a constant. Nonetheless, it might at first seem contradictory to have the

long rate converge to a constant while the return on the long bond is variable. But
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the return on a t-period bond is

rt(i, j) = yt(i)︸︷︷︸
yield

− (t− 1)︸ ︷︷ ︸
duration

× (yt−1(j)− yt(i))︸ ︷︷ ︸
realized yield change

.

While Result 3 shows that the realized yield change is very small for long-maturity

bonds (and zero in the limit), the duration, t − 1, is very large (and infinite for the

limiting long bond). When the two effects are multiplied, the result is that long-dated

bonds have volatile returns.

Summarizing the results so far, returns on the long bond reveal the eigenvector

v, i.e., the pricing kernel, and the long yield reveals the eigenvalue φ, and hence the

time discount factor of the pseudo-representative agent.

We now turn to the question of making inferences about the objective probability

distribution from observable data. As a crude example of the kind of thing we are

interested in, note that Result 3 implies (by Jensen’s inequality) that the expected

return on the long bond is at least as great as its simple yield, R∞ > 1 + Y∞. We

will shortly improve on this by deriving a formula that expresses the conditionally

expected return on the long bond in terms of option prices. The next result is a

stepping stone towards that goal.

Result 4. Within the class of fixed-income assets, the long bond is growth-optimal;

that is, in every state the long bond has the highest expected log return of all fixed-

income assets. Hence the long bond earns a positive risk premium in every state

(other than in states that evolve deterministically to a fixed successor state, in which

case the long bond is riskless).

Proof. The state-i price of an asset with payoffs x is

∑
j

A(i, j)x(j)
(a)
= φ

∑
j

π(i, j)
v(i)

v(j)
x(j)

(b)
=

∑
j

π(i, j)
x(j)

R∞(i, j)
(8)
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Equality (a) follows from Result 1, and equality (b) follows from Result 2. It follows

that the reciprocal of the return on the long bond is a stochastic discount factor. But

then the long bond’s return must be growth-optimal, as in a complete market the

reciprocal of the growth-optimal return is the unique stochastic discount factor.

The final statement follows because the long bond’s log expected return is weakly

greater than its expected log return, which is weakly greater than the log riskless rate

(by Jensen’s inequality and the growth-optimality of the long bond, in turn). If the

state evolution is nondeterministic, the equalities are strict.

Equation (8) shows that a fixed-income payoff can be priced either via state

prices—equivalently, by discounting at the short riskless rate and using risk-neutral

probabilities—as on the left-hand side, or by discounting at the long bond’s return

and using the true probabilities, as on the right-hand side. Loosely speaking, Re-

sult 4 can be thought of as saying that the cheapest way of generating a payoff in

the far-distant future is to buy the growth-optimal portfolio, or equivalently the long

bond.

A variant of the above result provides a more general interpretation of Π that

does not rely on Hypothesis 1.

Result 5. Whether or not Hypothesis 1 holds, the entries π(i, j) of Π represent

the risk-neutral probabilities with the long bond as numeraire.2 It follows that the

recovered probabilities Π can be interpreted as the true probabilities perceived by an

agent with log utility who chooses to invest his or her wealth fully in the long bond

(or, equivalently, in the v-asset).

Proof. The characterization of Π as the risk-neutral probabilities with the long bond

as numeraire follows immediately from equation (8). The second statement follows

2Probabilities π̂(i, j) are risk-neutral using the long bond as numeraire if any payoff x has price,

in state i, equal to
∑

j π̂(i, j) x(j)
R∞(i,j) . (For comparison, the conventional risk-neutral probabilities

π∗(i, j) are risk-neutral using the short riskless bond as numeraire, so the price can also be expressed

as
∑

j π
∗(i, j) x(j)

Rf (i)
.) The notion of risk-neutral probabilities defined relative to numeraires was first

explicitly introduced by Geman, El Karoui and Rochet (1995).
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because such an investor’s stochastic discount factor is 1/R∞.

Result 5 clarifies the implicit assumption that underlies our (and Ross’s (2015))

hypothesis that Π is the true probability transition matrix. The perspective of a

log investor was also adopted at various points in Martin (2017) and Kremens and

Martin (2018); but in those papers, the log investor was assumed to be fully invested

in the stock market. Given the work of Alvarez and Jermann (2005), who argue that

the average log return on the stock market is larger than that of the long bond, it is

doubtful that the perspective of the log investor who is fully invested in bonds—as

in Result 5—is consistent with equity pricing.

To see this another way, consider the matrix, A, used by Ross (2015, Table II,

Panel B) to illustrate recovery in the equity market. There are 11 states in the

example. The yield curves implied by A, in each of the states, are shown in Figure 1.

(By decomposing A into matrices D and Π as in Result 1, one can also check that

the economy spends more than 90% of its time in the three most extreme states, one

with short rate below −8% and two with short rates above 10%.) The figure provides

an alternative way to understand the points made by Alvarez and Jermann (2005)

and by Borovička, Hansen and Scheinkman (2017). In this framework, pricing is

risk-neutral if the riskless rate is constant, as was shown in Ross (2015). Conversely,

confronted with the large risk premium available in the equity market, the framework

is forced to conclude (counterfactually) that the riskless rate fluctuates wildly.

Whether or not the long bond prices all assets including equities, though, there is

nothing in this evidence that prevents it from being the projection of the economy-

wide stochastic discount factor on the fixed income market. In that sense, as there

is agreement that yields are stationary, we are comfortable of thinking of it as the

appropriate discount factor for stationary assets.

While the returns on the long bond replicate the pricing kernel, there are other

assets that also can serve as the pricing operator. The next result shows that the

(unique) infinitely-lived asset with a constant dividend yield is also a surrogate for
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Figure 1: Yield curves in each of the 11 states in an example estimated by Ross
(2015).

the stochastic discount factor. To see this, consider an infinitely lived asset that pays,

in every period, x(i) if the economy is in state i, for all i. (If x(i) is constant across

i then the asset is simply a consol.) The value, p∞, of the asset is

p∞ = Ax+A2x+ · · · = A∗x,

where

A∗ ≡ A+A2 + · · · = A(I −A)−1

converges because φ < 1 by assumption. Notice that A∗ inherits the same dominant

eigenvector as A, namely v, and that the associated maximal eigenvalue is φ
1−φ .

Result 6. There is a unique infinitely-lived, limited liability asset with a constant

dividend yield. Its dividend yield is D/P∞ ≡ 1/φ−1 and its returns perfectly replicate

the returns on the long bond and on the one-period v-asset. No asset can have a

uniformly higher or lower dividend yield than this asset.

Proof. Consider the perpetual v asset, which pays v every period. The price of this

asset is A∗v = φ
1−φv, so its dividend yield is constant at 1/φ − 1 = Y∞. Uniqueness

follows because any asset with constant dividend yield is an eigenvector of A∗; and
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we have seen that up to multiples there is a unique eigenvector that is positive (as

required for limited liability). The return on this asset, on moving from state i to

state j, is [v(j)+ φ
1−φv(j)]/[ φ

1−φv(i)] = v(j)/[φv(i)]. The last claim follows by applying

Theorem 8.1.26 of Horn and Johnson (1990) to A∗.

We emphasize that the asset with constant dividend yield is not a perpetuity

except in the special case in which interest rates are constant.

The above results allow us to uncover some new results on pricing in fixed income

markets. We define the t-period forward rate ft(i) = − logBt(i) + logBt−1(i).

Result 7. On average, the forward curve lies below the long yield.

Proof. Notice that ft(i) = rt(i, j) + logBt−1(i) − logBt−1(j). It follows—using the

fact that
∑

i,j π(i)π(i, j)(logBt−1(i) − logBt−1(j)) = 0, and Results 3 and 4—that∑
i π(i)ft(i) =

∑
i,j π(i)π(i, j)ft(i) =

∑
i,j π(i)π(i, j)rt(i, j) < r∞ = y∞.

As an immediate corollary, we have

Result 8. On average, the yield curve lies below the long yield.3 (But the yield curve

cannot always lie below the long yield.)

Proof. The first claim follows from Result 7, because yt(i) = −1
t

logBt(i) = 1
t

∑t
s=1 fs(i).

The second follows because mini
∑

jA
t(i, j) ≤ φt (see, for example, Theorem 8.1.22

of Horn and Johnson (1990)), and hence maxi yt(i) ≥ y∞.

Together with our earlier results, Result 8 implies that the time discount factor

φ < e−yt for any t: average yields provide an upper bound on the subjective time

discount factor of the pseudo-representative agent. This strengthens the finding in

Ross (2015) that the maximal short rate provides an upper bound on the time discount

factor.

3It is tempting to conjecture that the approach to the long run is monotone in Results 7 and 8—
for example, that the average t-period yield yt or forward rate f t is increasing in t. But this is not
true in general.
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We have already seen that the yield and expected log return of the long bond

are constant. But this does not imply that the expected arithmetic return on the

long bond is constant, as long-dated bonds have volatile returns due to their large

durations, which scale up the influence of tiny fluctuations in the yield curve. The

next result shows how conditional moments of the return on the long bond can in

principle be determined from option prices. It adapts the results of Martin (2017)

and Martin and Wagner (2018) (relating expected returns on the stock market or on

individual stocks to the prices of index or individual stock options) to the case of the

long bond, exploiting the fact that the long bond is growth-optimal in our framework.

Result 9. Options on the long bond reveal its conditional expected excess return:

R∞(i)−Rf (i) = 2

{∫ Rf (i)

0

put(K; i) dK +

∫ ∞
Rf (i)

call(K; i) dK

}
, (9)

where call(K; i) is the price, in state i, of a call option with strike K, maturing next

period, on the long bond return, and put(K; i) is the corresponding put price.

More generally, option prices reveal all the conditional moments of the return on

the long bond. The nth conditional moment of the long bond return, Rn
∞(i), satisfies

Rn
∞(i)−Rf (i)

n = n(n+ 1)

{∫ Rf (i)

0

Kn−1 put(K; i) dK +

∫ ∞
Rf (i)

Kn−1 call(K; i) dK

}
.

Proof. The first statement is a special case of the second, which we now prove. Sup-

pose we are in state i. Substitute x(j) = R∞(i, j)n+1 in equation (8):

∑
j

A(i, j)R∞(i, j)n+1 =
∑
j

π(i, j)R∞(i, j)n. (10)

The right-hand side is the desired conditional moment, Rn
∞(i). The left-hand side is

the price of a claim to the (n+1)-th power of the long bond return, settled next period.

If options on the long bond return are traded, this payoff can be priced by a static no-
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arbitrage argument. To do so, note that xn+1 = n(n+1)
∫∞

0
Kn−1 max {0, x−K} dK

for arbitrary x ≥ 0. Setting x = R∞(i, j), multiplying on both sides by A(i, j),

summing over j, and interchanging sum and integral, this implies that

∑
j

A(i, j)R∞(i, j)n+1 = n(n+ 1)

∫ ∞
0

Kn−1
∑
j

A(i, j) max {0, R∞(i, j)−K}︸ ︷︷ ︸
call(K;i)

dK.

The result follows by splitting the range of integration and using the put–call

parity relation call(K; i)− put(K; i) = 1−K/Rf (i).

Unfortunately it is difficult to test the above result directly because options on

the long bond are not observable in practice. We therefore view it as indicative of a

direction that empirical work might take.4 The question then becomes: how fast do

returns on bonds of long-but-finite maturity approach the returns on the long bond?

We now turn to this issue.

3 Traps and convergence at the long end

We have seen that the long end of the yield curve appropriately defined converges

to the unknown pricing kernel, v(i). In this section we will explore the speed of this

convergence. We start by introducing the metric

Q ≡ log
maxk v(k)

mink v(k)
≥ 0.

4Bakshi, Chabi-Yo and Gao (2018) attempt to test the prediction (9) of Result 9 using what they
describe as “options on the 30-year Treasury bond futures.” This characterisation is potentially
misleading, however, as (i) the deliverables for a Treasury bond futures contract are bonds with
maturities between 15 and 25 years, and (ii) these are coupon bonds, so have durations shorter than
their maturities: a 15-year bond trading at par with a 5% coupon has a modified duration of about
10 years. Their analysis implicitly assumes that the returns on such bonds accurately reflect the
returns on an infinite-duration bond; it also neglects the cheap-to-deliver option, which gives the
futures contract negative convexity.
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We can loosely think of Q as measuring the extent to which risk aversion matters

for pricing. If pricing is risk-neutral then the pricing kernel v = e and Q = 0. Put

another way, if Q = 0 then e is an eigenvector of A which implies that interest rates

are constant. This means that the yield curve is flat so that pricing (of fixed-income

securities) is risk-neutral and the risk-neutral and objective probabilities coincide.

From Result 2 we can see that Q is also a measure of the dispersion of long bond

returns, as from equation (7) we have mini,j r∞(i, j) = y∞ −Q and maxi,j r∞(i, j) =

y∞ +Q. This allows us to prove the following convergence result.

Result 10. Q bounds the difference between the t-period yield and the long yield:

|yt(i)− y∞| ≤
Q

t
.

It therefore bounds the difference in yields of any two bonds of maturities t1 and t2,

|yt1(i)− yt2(i)| ≤ Q

(
1

t1
+

1

t2

)
.

Fixing the maturity t, we can bound the change in the yield uniformly across states,

|yt(i)− yt(j)| ≤
2Q

t
.

Proof. The price of a t-period bond in state i is Bt(i) =
∑

jA
t(i, j). Now, for all i,

φt min
k
v(k) ≤ φtv(i) =

∑
j

At(i, j)v(j) ≤ max
k
v(k)

∑
j

At(i, j),

and similarly

φt max
k
v(k) ≥ φtv(i) =

∑
j

At(i, j)v(j) ≥ min
k
v(k)

∑
j

At(i, j).
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It follows that φte−Q ≤ Bt(i) ≤ φteQ for all i, and hence that

y∞ −
Q

t
≤ yt(i) ≤ y∞ +

Q

t
,

which establishes all three results.

To summarize, Q controls the rate at which finite-maturity yields approach the

long yield. If Q is small, then the yield curve must be fairly flat and yield volatility

low. Conversely, if there is substantial variation in yields either across maturities

or across states of the world—if the yield curve has significant slope, or if yields

are volatile—then Q is large and risk considerations are important for fixed-income

pricing.

The next result provides an analogous bound on the returns of long-dated zero-

coupon bonds and, indeed, on any long-dated asset with a single payoff at time T .

Result 11. The return on a long-dated asset paying x(j) in state j at time T (and

zero for t 6= T ) approaches the return on the long bond as T →∞. More precisely,

RT (i, j) = R∞(i, j) +O
(
δT
)
, (11)

where ψ/φ < δ < 1, ψ is the second-largest of the absolute values of the eigenvalues

of A, and δ can be chosen arbitrarily close to ψ/φ. Thus the eigenvalue gap ψ/φ

determines how rapidly long-dated assets’ returns converge to the return on the long

bond.

Proof. The price of the asset in state i is (ATx)i. We can conclude from Theorem

8.5.1 of Horn and Johnson (1990) that AT (i, j) = φTv(i)w(j)+O(ζT ) where ζ, which

satisfies ψ < ζ < φ, can be chosen to be arbitrarily close to ψ. Therefore the asset’s
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price in state i is

price = φT︸︷︷︸
time

× v(i)︸︷︷︸
state

×
∑
j

w(j)x(j)︸ ︷︷ ︸
asset-specific risk

+O(ζT ).

Writing K =
∑

j w(j)x(j) for the asset-specific risk term, the asset’s return equals

RT (i, j) =
KφT−1v(j) +O(ζT−1)

KφTv(i) +O(ζT )
.

Since R∞(i, j) = v(j)/[φv(i)], this simplifies to (11) after defining δ = ζ/φ.

Thus, in principle, the realized return on any sufficiently long-dated fixed-income

asset can proxy for the return on the long bond. For very large T , the decomposition

in Result 11, which is related to results of Hansen and Scheinkman (2009), allows us

to interpret pricing as the product of a time discount factor, φT , the economy-wide

kernel, v(i), which captures risk considerations, and a term specific to the asset, K.

More precisely, by Result 11, the difference in returns on maturity-T1 assets and

maturity-T2 assets is of order O(δmin{T1,T2}), where δ can be taken arbitrarily close to

ψ/φ, the ratio of the second-largest and largest absolute values of the eigenvalues of

A. If, say, returns on 20-year and 30-year bonds are sufficiently far apart, then we

can conclude that ψ/φ is close to 1. We will refer, in this case, to slow convergence

at the long end.

Our next result characterizes a topological feature of the Markov chain driving the

economy. Specifically, we will define a quantitative measure of the extent to which

the economy features traps, and show how our measure can be computed empirically.

In order to state our key definition in a streamlined way, it will be convenient to

write, for an arbitrary set of states S ⊆ {1, . . . ,m},

P (in S) =
∑
i∈S

π(i) and P (outside S) =
∑
i 6∈S

π(i).
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These represent the fraction of time the economy spends inside or outside S, respec-

tively. We will also be interested in the fraction of time the economy spends exiting

and entering S:

P (exit S) =
∑
i∈S
j 6∈S

π(i)π(i, j) and P (enter S) =
∑
i 6∈S
j∈S

π(i)π(i, j). (12)

Finally, we define the conditional probabilities

P (exit S | start in S) =
P (exit S)

P (in S)
and P (enter S | start outside S) =

P (enter S)

P (outside S)
.

The first of these represents the probability that the economy exits the set of states S

next period, conditional on starting inside S this period.

A trap is a collection of states that is hard to exit, once entered, so that P (exit S)

is small in some appropriate sense. But we will want to rule out two ways in which

P (exit S) can be small for trivial reasons. First, the set S may very small, so that

the economy rarely exits S simply because it is rarely in S. We will deal with this

issue by requiring that the probability of exiting S is small, conditional on starting

in S. Second, if the set S is very large—almost the entire set of states {1, . . . ,m},
say—then it will rarely be exited, but for an uninteresting reason.5 We deal with this

case by requiring that the probability of entering S is small, conditional on starting

outside S.

Definition 1. The economy has an ε-trap if there is a collection of states, S ⊆
{1, . . . ,m}, such that

P (exit S | in S) ≤ ε and P (enter S | outside S) ≤ ε. (13)

5There is another relatively uninteresting way in which an economy can have an ε-trap: if there
are two states and the probability of exiting either one is ε then they are both ε-traps. We will
see a more interesting example below. (It is possible, however, that the possibility we have labelled
relatively uninteresting is relevant in practice.)
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The property of having an ε-trap is stronger the closer ε is to zero; ε can therefore

be thought of as an index of the extent to which a given economy experiences traps.

A 1-trap is not a trap at all: every set of states satisfies (13) with ε = 1. A 0-trap

is the extreme case with a set of states that can neither be escaped nor entered from

outside: we have ruled out this possibility, in which the state space is disconnected,

with our assumption that A is a primitive matrix. We will sometimes say loosely

that the economy has a trap if it has an ε-trap for small ε. A routine calculation

shows that if S is an ε-trap, then the expected amount of time needed to escape the

trap is at least 1/ε.

If the matrix A is known, the optimal (that is, smallest possible) value of ε for

a given economy can in principle be computed mechanically by computing entry

and exit probabilities for all subsets of states. This exercise may be computationally

infeasible if there are many states, however—with, say, 100 states there are 2100 > 1030

subsets—and if the matrix A is not observed, then this approach is not feasible even

in principle.

Our next result therefore shows how ε can be linked to the data without direct

knowledge of A. It exploits the Cheeger inequality for directed graphs, which was

proved by Chung (2005) and which, we believe, is new to the finance and economics

literature.

Result 12. Let x be a vector that takes the values x(1), . . . , x(m) in states 1, . . . ,m,

and define

σ2(∆x) ≡
∑
i,j

π(i)π(i, j) [x(i)− x(j)]2 and σ2(x) ≡
∑
i

π(i)x(i)2−

(∑
i

π(i)x(i)

)2

,

so that σ(∆x) is the volatility of changes in x and σ(x) is the volatility of the level of

x. Then the economy has an ε-trap with

ε =
σ(∆x)

σ(x)
.
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Proof. Note first that the definition (13) of an ε-trap is equivalent to the condition

that P (exit S) /min {P (in S) , 1− P (in S)} ≤ ε. (This follows because P(exit S) =

P(enter S), as can be seen from the definition (12) using the fact that
∑

i π(i)π(i, j) =

π(j). Intuitively, it is clear that in a stationary model the long-run proportions of

time spent entering and exiting any collection of states S must equal one another.)

By the Cheeger inequality for directed graphs (Chung, 2005, Theorem 5.1),

λ

2
≤ inf

S

P (exit S)

min {P (in S) , 1− P (in S)}
≤
√

2λ, (14)

where λ is the second-smallest eigenvalue of the Laplacian L defined as

L = I − 1

2

(
D1/2
π ΠD−1/2

π +D−1/2
π Π′D1/2

π

)
;

here Dπ is a diagonal matrix with the entries of π along its diagonal. Our interest is

in the right-hand inequality in (14). By Corollary 4.2 of Chung (2005), λ satisfies

λ = inf
x

sup
c

∑
i,j π(i)π(i, j) (x(i)− x(j))2

2
∑

j π(j) (x(j)− c)2 .

The inner supremum is attained if we set c =
∑

k π(k)x(k), so we can rewrite

λ = inf
x

σ2(∆x)

2σ2(x)
,

with σ2(∆x) and σ2(x) as defined above. In conjunction with (14), this implies that

there is a collection of states S such that

P (exit S)

min {P (in S) , 1− P (in S)}
≤ σ(∆x)

σ(x)

for all vectors x. The result follows.

Result 12 is very flexible, and can be applied using any vector x that takes val-
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ues x(1), . . . , x(m). As σ(∆x)
σ(x)

=
√

2 [1− corr(xt+1, xt)], the relevant quantity is the

maximal possible autocorrelation over all random variables that are measurable with

respect to the state. Thus, given a collection of historical time series of variables rele-

vant for fixed income pricing, the optimal choice of xt (among linear combinations of

the time series) is the maximal autocorrelation factor that can be constructed from

the time series, as introduced by Switzer and Green (1984). This is somewhat similar

to the first principal component in conventional principal component analysis (PCA),

but has certain attractive properties. Unlike PCA, it is invariant to rescalings of the

input time series. Moreover, it exploits the time-series nature of the data in a central

way, whereas PCA generates the same factor definitions if the time series is randomly

re-ordered.

To pursue one direction in which empirical work might proceed, suppose that

we are given a collection of N time series Z(t) = {Zj(t)}j=1,...,N , observed at times

t = 1, . . . , T , that the N × N covariance matrix of the N time series is Σ, and that

the N × N covariance matrix of the differenced time series is Σ∆. Then to find the

optimal (i.e. lowest) possible value of ε among linear combinations of the time series

x = w′Z, we must choose w to solve6

min
w

var(w′(Zt+1 −Zt))

var(w′Zt)
= min

w

w′Σ∆w

w′Σw
or equivalently min

u

u′Σ−1/2Σ∆Σ−1/2u

u′u
,

where u = Σ1/2w. The latter problem is solved by setting u equal to the eigenvector

of Σ−1/2Σ∆Σ−1/2 with smallest eigenvalue (as the matrix is positive definite, all of

its eigenvalues are positive). Having done so, w = Σ−1/2u.

For example, if Z = (y3mo, y1, y5, y10, y20)′, where y3mo, y1, y5, y10 and y20 are the 3-

month, 1-year, 5-year, 10-year, and 20-year log yields from the St. Louis Fed’s FRED

database (observed monthly from October 1993 to June 2017), then the optimal choice

of weights is w = (0.499, 0.285, 0.300,−1.569, 1.486)′, with monthly autocorrelation

6See Haugen, Rajaratnam and Switzer (2015) for further detail on the maximum autocorrelation
factor approach.
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0.997 and implied ε = 0.0716, for an expected time trapped of at least 1/0.0716 = 14.0

months. By contrast, the corresponding univariate calculations imply an expected

time trapped of at least 12.1, 11.7, 8.3, 7.3, or 7.6 months for the 3-month, . . . ,

20-year log yields, respectively.

Our next result links back to the speed of convergence at the long end.

Result 13. Define χ to be the second-largest of the real parts of the eigenvalues of A.

Then the economy has an ε-trap where

ε =

√
2

(
1− χ

φ

)
.

Proof. By the Cheeger inequality (14), there is an ε-trap for any ε ≥
√

2λ, where λ is

the second-smallest eigenvalue of the Laplacian L defined in the proof of Result 12.

The result follows because

1− χ/φ = min(1− Re ρi) ≥ λ ,

where ρi are the eigenvalues of Π and the minimization is over all the eigenvalues

of Π other than the largest (which equals one). The equality follows directly from

the fact that the eigenvalues of A equal the eigenvalues of Π multiplied by φ (as, by

the decomposition (2) of Result 1, A/φ and Π are similar matrices). The inequality

follows from Theorem 4.3 of Chung (2005).

To interpret Result 13, note that if we restrict to economies in which all eigenvalues

are real and positive7 (as in the example shown in Figure 1), then the eigenvalue-gap

measures ψ/φ and χ/φ defined in Results 11 and 13 coincide. Then, slow convergence

7It is an empirical matter whether eigenvalues of A—or equivalently Π—are real and positive in
practice, but from a theoretical perspective it would be guaranteed if, say, Π were symmetric and
the economy persistent in the sense that the diagonal entries of Π are larger than 1/2. [Proof: The
eigenvalues of 2Π− I are real (by symmetry) and lie in (−1, 1] (by the Perron–Frobenius theorem,
2Π− I being stochastic). It follows that the eigenvalues of Π lie in (0, 1].]
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at the long end implies the existence of a trap. Even without the assumption that

eigenvalues are real and positive, we can still say that if χ/φ ≈ 1—so that there is a

trap with small ε, by Result 13—then ψ/φ ≈ 1, because ψ ≥ χ; so that convergence

at the long end is slow, by Result 11.

An example.—Consider two economies. There are eight states of the world in

each, and the short rate is 0% in states 1 through 4, and 10% in states 5 through 8.8

But the evolution of the state variable differs across the two economies.

5.26
-4.76

5.81
-5.261-4 5-8

8.27

-7.1
26.2

-17.2

65.

-28.3

149.
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-32.1

-2.24
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-6.64
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-15.3
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Figure 2: The state space in Economy A (left) and Economy B (right). The short
rate is 0% in states 1 through 4 and 10% in states 5 through 8. There is a 50%
probability of a transition along any arrow. The excess return on the long bond in
each possible transition (in %) is indicated at the mid point of each arrow.

In Economy A, the economy transitions with equal probability between any two

states. Thus states 1 through 4 are essentially indistinguishable, and can be com-

pressed into one super-state, as shown in Figure 2; and similarly for states 5 through 8.

In Economy B, the two super-states have a non-trivial internal structure. Starting in

state 1, the economy remains in state 1 or transitions to state 2. From state 2, the

economy transitions to state 3, or back to state 1; from state 3, to state 4 or back

to state 1; from state 4, to state 5—in which case the short rate jumps to 10%—or

back to state 1 (yet again). The situation is symmetrical in states 5 through 8 (with

state 6 playing the corresponding role to state 1). Thus interest rates get stuck for

8The Arrow–Debreu matrices A that represent asset prices in the two economies are given in the
Appendix.
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extended periods. States 1 through 4 can be thought of as a liquidity trap, while

states 5 through 8 represent a high-interest-rate regime.

states 1-4

states 5-8
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Figure 3: Yield curves in Economy A (left) and Economy B (right).

The yield curves in each economy are shown in Figure 3. In Economy A, yields

converge fairly rapidly to the long rate. In Economy B, the long end of the yield curve

does not converge (in the sense of approximating the infinitely long yield) at horizons

that are plausibly observable; and in the depths of a liquidity trap—in state 1—the

yield curve is flat, at zero, over a range of shorter maturities. Yields are more variable

across states and over time. The risk metric, Q, of Result 10 is therefore substantially

larger than in Economy A. Correspondingly, the long bond’s excess return (indicated

at the mid point of each of the arrows in Figure 2) is substantially more volatile in

Economy B than in Economy A. The long bond’s Sharpe ratio is constant, and just

below 5%, in Economy A, whereas it is more than 15% on average in Economy B and

state-dependent (with a conditional Sharpe ratio of 39%, 60%, and 41% in states 3,

4, and 5 respectively).

If we let S be the collection of states 1 through 4, then9

PA (exit S | start in S) =
1

2
and PA (enter S | start outside S) =

1

2

9This choice of S is optimal for each economy, as is easily checked. The stationary distributions
in each economy are given by the positive left eigenvectors of the transition matrices, namely π′A =(
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8

)′
and π′B =

(
1
4 ,

1
8 ,

1
16 ,

1
16 ,

1
16 ,

1
4 ,

1
8 ,

1
8

)′
.
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and

PB (exit S | start in S) =
1

16
and PB (enter S | start outside S) =

1

16
,

so there is an ε-trap with ε = 1/2 in Economy A, and with ε = 1/16 in economy B.

The latter, lower, value formalizes the sense in which economy B is more trapped

than economy A.

Finally, we note that Economy A is time-reversible: it looks the same whether

run forwards or backwards in time. In contrast, there is an arrow of time in Economy

B (for example, the economy never transitions from state 3 to state 2). This is a

feature of our framework that is not shared by stationary Gaussian models, which are

time-reversible (Weiss, 1975).

4 What is needed for recovery?

Most of our results thus far have avoided the need to observe A directly: we have

shown, for example, how to infer the time preference rate φ, the kernel v, and the

excess return on the long bond, from specific—if idealized—asset prices. To recover

the probability matrix Π, however, we must assume (as Ross, 2015, did) that the

entire matrix of Arrow–Debreu prices, A, is directly observable. But is it possible to

infer A from asset prices that are clearly easily observable—for example, from yield

curve information alone?

A related concern is that it is not clear that the econometrician observes asset

prices in all states of the world. Can the cross-section substitute for the time series?

To sharpen the question: can A can be inferred from perfect knowledge of all Arrow–

Debreu prices, at all maturities, in a single state?10

We now address these questions by considering some intentionally stylized exam-

10This possibility was outlined by Ross (2015) and explored more formally by Jensen, Lando and
Pedersen (2018).
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ples. These examples are as simple as we could make them, with few states of the

world and Arrow–Debreu prices set to zero wherever possible. But they illustrate the

flexibility of our framework and exhibit some potential pitfalls for empirical work.

We will repeatedly exploit the following fact. Suppose we observe the prices, in

each state, of assets with payoff vectors x1, . . . ,xm: that is, we know Ax1, . . . , Axm.

Then this information uniquely determines A if and only if x1, . . . , xm are linearly

independent (i.e., span Rm). As a trivial example, if ej denotes the jth unit vector

then knowledge of Ae1 (that is, of the price, in each state, of the Arrow–Debreu

security that pays off in state 1), of Ae2, and so on, is sufficient to reveal A.

For a less trivial example, suppose that yields out to maturity m are observable

in every state. Then we need the vectors x1 = e, x2 = Ae, . . . , xm = Am−1e—that

is, bond prices at maturities from 0 to m− 1—to be linearly independent.

The question is whether this assumption is plausible. In practice, it might be the

case that (say) a 4-year zero-coupon bond trades close to the midpoint of 3- and 5-year

zero-coupon bond prices in every state of the world; if so, A3e, A4e, and A5e will be

approximately collinear even if not perfectly linearly dependent. More generally, the

literature has documented that bond yields approximately obey a low-dimensional

factor structure. In such circumstances, estimates of A may be unstable in practice.

Result 14 (What can go wrong). Suppose we observe bond prices at maturities

1, . . . , m in every state. If e, . . . , Am−1e (that is, the vectors of bond prices at

maturities up to m − 1, together with the vector of ones) are linearly independent

then A is identified. Otherwise it is not—even if we observe bond prices at all matu-

rities in every state.

Proof. If the given collection of vectors is linearly independent then it is a basis for

Rm, and any matrix can be identified from its action on a basis. Conversely, suppose

e, . . . , Am−1e are linearly dependent. Then e, . . . , ANe are linearly dependent for

any N ≥ m− 1 (and hence longer maturities will not help, as we do not observe the

action of A on any basis). This follows because, by the Cayley–Hamilton theorem,

29



there is a linear dependence between the matrix Am and the matrices I, A, . . . ,

Am−1.

Example 1 (Nonrecoverability despite perfect knowledge of yield curves in all states).—

Knowledge of the entire yield curve in every state of the world—that is, knowledge of

bond prices at all maturities in all states—need not determine A. The simplest pos-

sible nontrivial illustration of this fact requires at least three states (for with m = 2

states, nonrecoverability of A from knowledge of yield curves requires that e and Ae

are linearly dependent, and hence that interest rates are constant). Thus, consider

two economies with different Arrow–Debreu price matrices,

A1 =


0 0.5 0.5

0.45 0 0.5

0.4 0.5 0

 and A2 =


0.25 0 0.75

0 0.9 0.05

0.4 0.5 0

 .

The row sums of each matrix are 1, 0.95 and 0.9, so in each economy the one-period

interest rate is zero in state 1, about 5% in state 2, and about 10% in state 3; thus

knowledge of the values taken by the short rate does not distinguish between the two

economies. In fact an easy calculation shows that the entire yield curve is identical

for both economies in every state: see Figure 4a. And yet the risk premium on the

long bond differs across the two economies in every state. (We compute the bond

risk premium using the probabilities recovered in Proposition 1.) The key property

of the example is that the vectors e, Aie and A2
ie are not linearly independent for

i = 1 or 2, so do not constitute a basis for R3.

Note, however, that by Result 1, if the yield curve is observed in every state then

we can at least observe φ and v from the evolution of the long bond. What we cannot

infer, if A itself is not known, is the transition matrix Π.

If bond yields alone are not enough, will a richer cross-section of asset prices

permit identification of A? The answer, trivially, is yes if the prices of all one-period
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(a) Yield curves in Example 1.
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(b) Yield curves in Example 4.

Figure 4: In Example 1, two different economies generate the same yield curves in
each of the states, but risk premia differ in the two economies. In Example 4, there is
just one economy; the yield curve is identical in states 1 and 2, but bond risk premia
are different in the two states. (The jaggedness of the yield curves is inessential: it
arises because we chose to give examples that are easily described in words.)

Arrow–Debreu securities are observed in all states. But it is not necessarily enough

to observe all Arrow–Debreu securities in a single state, even if they are observed at

all possible maturities.

Result 15 (What can go wrong, part 2). Suppose we observe the prices of all Arrow–

Debreu securities at maturities 1, . . . , m in a single state—call it state 1. This is

equivalent to observing A′e1, . . . , (A′)me1. If e1, . . . , (A
′)m−1e1 span Rm then A

is identified. Otherwise it is not, even if we observe (in state 1) the prices of all

Arrow–Debreu securities at all maturities.

Proof. As in the preceding result, if e1, . . . , (A
′)m−1e1 span Rm then they are a basis

and we observe the action of A′ on this basis. Thus A′ is identified, and hence also A.

The converse direction also proceeds as before: by the Cayley–Hamilton theorem, if

e1, . . . , (A
′)m−1e1 are linearly dependent then so are e1, . . . , (A

′)Ne1 for any N .

Example 2 (Nonrecoverability from all asset prices in a single state).—Suppose we

observe, in state 1, the prices of every possible Arrow–Debreu security at every pos-

sible maturity. Result 15 shows that A is identified if and only if e1, . . . , (A′)
m−1

e1
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are linearly independent. For a simple example in which this fails, let

A3 =


0 0.5 0.5

0.45 0.5 0

0.4 0 0.5

 .

In state 1, the price of a state-i Arrow–Debreu security maturing at time T is the

same in this economy as in the economy A1 of Example 1 for every i and T . (As a

corollary, the yield curve is identical in state 1 in the two economies.) Hence, even

given perfect knowledge of all possible asset prices in state 1, the matrix A cannot

be identified.

The proofs of Results 14 and 15 exploited the Cayley–Hamilton theorem, which

implies that Am can be written as a linear combination of lower order powers of A.11

But there may be an even lower order relationship between powers of A. In this

case A is neither identifiable from the term structure (as in Result 14) nor from all

Arrow–Debreu prices in a single state (as in Result 15).

Example 3 (What can go wrong: the quadratic case).—The simplest nontrivial

example12 of this phenomenon—and, in a sense, the worst-case scenario, because the

dependence is of the lowest possible order—arises if A2 = φA for some φ. Then

(A/φ)2 = A/φ, so A/φ is a projection matrix. This projection must be onto a line:

a projection onto a higher-dimensional subspace would have a repeated maximal

eigenvalue equal to 1, which is not possible by the Perron–Frobenius theorem (A

being primitive). Such a projection can be written in the form A/φ = vv′, where

v is a unit vector (i.e., satisfies v′v = 1) that determines the line onto which the

11As matrices of dimension m inhabit an m2-dimensional vector space, the matrices I, A, . . . ,

Am2

are linearly dependent. The Cayley–Hamilton theorem strengthens this fact considerably.
12The two simpler cases—linear dependence between A and I, or between A2 and I—are incon-

sistent with primitivity of A. For example, A2 = λI implies that all even powers of A have zero
off-diagonal terms. More generally, note that matrix quadratic equations exhibit richer properties
than their scalar counterparts. For example the equation A2 = I has uncountably many solutions
even in the case m = 2.
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projection takes place. The converse also holds: if the Arrow–Debreu price matrix

satisfies

A = φvv′, (15)

where v′v = 1 and we require that φ > 0 and v has all positive entries to avoid

arbitrage opportunities, then A2 = φA and (consistent with previous notation) v is

an eigenvector of A with eigenvalue φ.

The problem of recovery is then particularly stark: as At = φt−1A for all t, there

is no information in the term structure of any asset that is not present in the price

of a short-dated asset (other than learning the value of φ itself which, as always, can

be inferred from the long yield in any state). Moreover, the price of a t-period bond

is Ate = φt−1Ae so in every state of the world, i, the yield curve satisfies

yt(i)− y∞ =
1

t
(y1(i)− y∞).

The characterization (15) and Result 1 together imply thatDΠD−1 = vv′, where

D has the vector v along its diagonal. This implies that πi,j = v2
j , so that the

probability of transitioning to state j is the same in every state: that is, the economy

evolves in an i.i.d. fashion.

Now suppose that A obeys a more general quadratic equation. Its eigenvalues

must satisfy the scalar version of the same equation so there are two, φ1 and φ2, and

by the Perron–Frobenius theorem they must satisfy φ1 > |φ2|, with the former having

multiplicity 1 and the latter multiplicity m − 1. As φ1 is real, φ2 must also be real,

because the eigenvalue sum equals the trace of A (which is manifestly real).

We can therefore write A2 − (φ1 + φ2)A+ φ1φ2I = 0, or equivalently

(
A− φ2I

φ1 − φ2

)2

=
A− φ2I

φ1 − φ2

.

It follows that A−φ2I
φ1−φ2 is a projection matrix with 0 and 1 as its only eigenvalues.
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Moreover, it can only have one maximal eigenvalue (because A has one maximal

eigenvalue) so represents a projection onto a line. Thus A−φ2I
φ1−φ2 = vv′, that is, A =

(φ1 − φ2)vv′ + φ2I, where v′v = 1 (and v is the Perron eigenvector).

In conjunction with Result 1 this implies that

φ1 − φ2

φ1

vv′ = D

(
Π− φ2

φ1

I

)
D−1.

As D is diagonal (with v along the diagonal) it follows that πi,j = φ1−φ2
φ1

v2
j + φ2

φ1
1i=j.

This is similar to the i.i.d. case, as in the first part of the present example, but with

transition probabilities distorted to allow for stickiness in (if φ2 > 0) or repulsion

from (if φ2 < 0) the current state.

Our final example makes a different point. The yield curve distinguishes between

states in Examples 1 and 2, so can act as the state variable. If, in addition to price

information, one also observes time series information about the evolution of the

yield curve, then the transition matrix Π can be determined in principle, and hence

identification of A is possible (in fact, by Result 1, we would only need to observe

the time-series properties of the long end of the yield curve and hence φ and v). But

the yield curve is not a suitable state variable in general.

Example 4 (Hidden factors; and the importance of lags).—Two different states

may have different bond risk premia but identical yield curves. Suppose that

A =


0.5 0 0 0.5

0 0 1 0

0.45 0 0.5 0

0 0.9 0 0

 .

Figure 4b plots the yield curve in each of the four states. The short rate is 0% in

states 1 and 2; about 5% in state 3; and about 10% in state 4.

We have chosen to specify that A has several zero entries so that it is possible to
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give a simple description of the states:

• In state 1, interest rates are low and volatility is high. The economy may either

remain in state 1 or transition to state 4. The risk premium on the long bond

is positive.

• In state 2, interest rates are low, and the economy transitions deterministically

to state 3. The risk premium on the long bond is zero.

• In state 3, interest rates are intermediate and volatility is high. The economy

may either remain in state 3 or transition to state 1. The risk premium on the

long bond is positive.

• In state 4, interest rates are high, and the economy transitions deterministically

to state 2. The risk premium on the long bond is zero.

(The presence of the zero entries inA explains the jagged shapes of the yield curves in

Figure 4b. For an example that generates smooth yield curves, raise A to the fifth13

power—and, if desired, multiply by a scalar—to generate a matrix whose entries are

all positive and which has all the relevant properties exhibited in this example.)

As in Example 1, e, Ae, A2e, and A3e are linearly dependent, so knowledge of

the yield curve in every state is not sufficient to recover A. In fact, we have set up

the example so that the yield curve is identical in states 1 and 2. But the long bond

risk premium is positive in state 1 and zero in state 2: thus bond prices need not

“span” the uncertainty in fixed income markets. Duffee (2011) and Joslin, Priebsch

and Singleton (2014) have argued (in a Gaussian context) that this is the empirically

relevant case.

The example—though stylized—also illustrates another interesting phenomenon.

While the yield curve itself is not a satisfactory state variable, knowledge of the cur-

rent and lagged yield curves reveals the state perfectly (the economy is in state 2 if

13Our maintained assumption that A is primitive ensures that above some time horizon T all
Arrow–Debreu prices are strictly positive; in this example T = 5 is enough.
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and only if it was in state 4 last period). Intriguingly, Cochrane and Piazzesi (2005)

find that information in the lagged term structure is indeed useful in forecasting bond

risk premia. They interpret their empirical finding as evidence of measurement er-

ror, and write, “Bond prices are time-t expected values of future discount factors, so

a full set of time-t bond yields should drive out lagged yields in forecasting regres-

sions. . . Bond prices reveal all other important state variables. For this reason, term

structure models do not include lags.” Example 4 shows that lags may in fact assist

in forecasting even if yields are perfectly observed.14

5 Conclusions

We have studied the framework of Ross (2015), in which the state of the economy fol-

lows a discrete-time, finite-state Markov chain and markets are complete; and shown

that recovery can be partially effected by studying the long end of the yield curve,

without knowledge of the full matrix of Arrow–Debreu prices which Ross assumed to

be directly observable. More precisely, we show that it is possible to infer the time

discount factor and marginal utilities of what we call a pseudo-representative investor

from the behavior of the long bond alone.

Our results place Ross’s Recovery Theorem in a broader context that has been

explored by authors including Backus, Gregory and Zin (1989), Kazemi (1992), Bansal

and Lehmann (1994, 1997), Alvarez and Jermann (2005) and Hansen and Scheinkman

(2009), and clarify that the key property implied by Ross’s structural assumptions is

that the long bond is growth-optimal relative to the set of assets under consideration.

We acknowledge that if the goal is recovery in equity markets, this property is

implausible (as argued by Borovička, Hansen and Scheinkman, 2017). We suggest,

however, that the critique has less force in the context of fixed income markets,

where the relevant state variables are more plausibly stationary. If one restricts

14Expanding the set of observables in other ways can also help. For example, states 1 and 2 could
also be distinguished from one another using the implied volatility of short-dated bonds.
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attention to fixed income markets, it remains an open empirical question whether the

set of probabilities that emerge in the decomposition of Result 1 are in fact the true

probabilities—or, equivalently, whether the long bond is growth-optimal among fixed-

income assets. Assuming that the recovered probabilities are the true probabilities,

various interesting facts follow, notably that the yield curve is upward-sloping on

average, and that long bond option prices reveal expected returns on the long bond.

There are nontrivial empirical issues that must be confronted if our theoretical

results are to be implemented in practice. Most notably, the speed of convergence of

long-but-finite bonds to the idealized long bond is of central importance. We derive

various results that bear on this issue, and which we hope are interesting in their own

right: we introduce, for example, a measure of the “trappedness” of an economy and

relate it to the speed of convergence at the long end of the yield curve and to the

eigenvalue gap (between the largest and second-largest eigenvalues) of A.

Aside from issues related to recovery, our framework is well suited to studying

situations in which interest rates exhibit cycles or traps; or, more generally, to cases

in which the topology of the state space is nontrivial (whether due to reputational

considerations on the part of monetary policymakers, to liquidity traps, to techno-

logical or other forms of irreversibility, or to something else). As a result it can be

used to address certain issues that are assumed away in Gaussian models. Stationary

Gaussian models are time-reversible (Weiss, 1975), for example, so the conclusions

reached by an econometrician living in a stationary Gaussian world would be the same

whether time runs forwards or backwards. Such models exclude the possibility that,

say, interest rates “go up by the stairs and down by the elevator” (or the converse).

This is a highly restrictive assumption, and one that is empirically dubious.15

15See, for example, Neftçi (1984) and Ramsey and Rothman (1996).
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A Appendix

The Arrow–Debreu price matrices for the example at the end of Section 3 are



0.119 0.119 0.119 0.119 0.131 0.131 0.131 0.131

0.119 0.119 0.119 0.119 0.131 0.131 0.131 0.131

0.119 0.119 0.119 0.119 0.131 0.131 0.131 0.131

0.119 0.119 0.119 0.119 0.131 0.131 0.131 0.131

0.107 0.107 0.107 0.107 0.119 0.119 0.119 0.119

0.107 0.107 0.107 0.107 0.119 0.119 0.119 0.119

0.107 0.107 0.107 0.107 0.119 0.119 0.119 0.119

0.107 0.107 0.107 0.107 0.119 0.119 0.119 0.119


in Economy A, and



0.462 0.538 0 0 0 0 0 0

0.396 0 0.604 0 0 0 0 0

0.303 0 0 0.697 0 0 0 0

0.201 0 0 0 0.799 0 0 0

0 0 0 0.267 0 0.638 0 0

0 0 0 0 0 0.462 0.443 0

0 0 0 0 0 0.481 0 0.423

0 0 0 0 0.380 0.525 0 0


in Economy B.
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