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1. Introduction

In this paper, we present some theoretical results on
the properties of the long end of the yield curve. Our re-
sults relate to two literatures. The first is the recovery the-
orem of Ross (2015). Ross showed that, given a matrix
of Arrow-Debreu prices, it is possible to infer the objec-
tive state transition probabilities and marginal utilities. Al-
though it is a familiar fact that sufficiently rich asset price
data pins down the risk-neutral probabilities, it is initially
surprising that we can do the same for the objective, or
real-world, probabilities.

More precisely, the asset price matrix, A, can be decom-
posed as A = ¢DIID', where ¢ >0 is a scalar, D is a di-
agonal matrix with positive entries along the diagonal, and
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IT is a stochastic matrix (so its row sums all equal one).
In Ross’s setting, with assets priced by an expected-utility-
maximizing investor, ¢ can be interpreted as the investor’s
time discount factor, and D and IT summarize, respectively,
the investor’s marginal utilities and subjective probabili-
ties.

Here we emphasize that asset prices can be uniquely
decomposed into objects that can be interpreted as proba-
bilities and marginal utilities whether or not there is such
an investor. We think of this result as establishing the ex-
istence of a pseudo-representative agent. We hypothesize
that the recovered probabilities are the real-world proba-
bilities. As Ross showed, this is true if there is a utility-
maximizing investor—in which case this investor is the
pseudo-representative agent—but more generally the ques-
tion of whether the hypothesis holds is an empirical one.
We discuss how to test it but do not settle the question
here; instead, we proceed on the assumption that the hy-
pothesis holds and develop some of its implications.

The first is that recovery can be partially effected, with-
out knowledge of the matrix A, by observing the behav-
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ior of the long end of the yield curve. The yield on the
(infinitely) long zero-coupon bond reveals the time prefer-
ence rate of the pseudo-representative agent, and the time
series of returns on the long bond reveals the pseudo-
representative agent’s marginal utilities. (These “marginal
utilities” are a convenient guide to intuition, but our anal-
ysis is based on the logic of no-arbitrage: we do not need
to assume that the concept of expected utility is meaning-
ful.)

These results connect the recovery theorem to ear-
lier results of Backus et al. (1989), Kazemi (1992), Bansal
and Lehmann (1994), Bansal and Lehmann (1997), Dybvig
et al. (1996), Alvarez and Jermann (2005), and Hansen and
Scheinkman (2009), though, unlike most of these authors,
we focus exclusively on bonds and interest-rate derivatives
rather than on the prices of claims to growing cashflows,
for reasons discussed further below. A side benefit is that
we can avoid some of the technical complication of this lit-
erature and provide simple and short proofs of our results.

We derive several further results. First, we show that
the yield curve must slope upwards on average. This is an
empirical regularity. Second, we provide a formula for the
expected excess return on the long bond in terms of the
prices of options on the long bond. The matrix of Arrow-
Debreu prices is in the background of both results, but we
avoid the need to observe it directly. In Section 4, we de-
fine a notion of “trappedness” for an economy, and relate it
to the speed of convergence (in yields and returns) at the
long end of the yield curve. In Section 5, we address the
question of when the matrix of Arrow-Debreu prices can
be inferred from plausibly observable asset price data. We
present several examples that illustrate the flexibility of
our framework and exhibit some potential opportunities—
and pitfalls—for empirical work.

2. The general framework

We work in discrete time. Our focus is on fixed-
income assets, including fixed- or floating-rate bonds, in-
terest rate swaps, and derivatives on them, including caps,
floors, bond options, and swaptions. We assume that fixed-
income markets are (i) complete and (ii) governed by a
state variable that follows a Markov chain on {1, 2, ..., m}.

The state variable will in general be multidimensional
(so that if the state vector has J entries that can each take
K values, the size of the state space is m = K/). Although
we have in mind that the state vector might, in principle,
comprise, say, the current short rate, measures of the yield
curve slope and curvature, the VIX index, state of the busi-
ness cycle, and so on, we will not need, in this paper, to be
specific about its constituents. But as we assume that the
state variable follows a Markov chain, it is important that
all elements of the vector can reasonably be thought of as
stationary.'

1 It has also long been accepted that fixed-income yields are stationary.
Much effort has been expended in statistical examination of this issue.
But as Jon Ingersoll remarked during a seminar more than 25 years ago
in which the speaker was using spectral analysis to show that interest
rates were nonstationary, “Interest rates were about 5% 4000 years ago in

In a complete market, it is convenient to summarize
all available price data in a matrix, A, of Arrow-Debreu
prices

A1) A(.2) A1 m)
a_|Aen a2 |
A(m. 1) A(m,m)

where we write A(i, j) for the price, in state i, of the
Arrow-Debreu security that pays off $1 if state j materi-
alizes next period. The absence of arbitrage requires that
the entries of A are nonnegative, and that A(i, j) is strictly
positive if the transition from state i to state j occurs with
positive probability. The row sums of A are the prices of
one-period riskless bonds in each state. We assume that
not all of these row sums are equal, except where explic-
itly stated otherwise. This assumption is inessential, but it
lets us avoid constantly having to qualify statements to ac-
count for the degenerate case in which interest rates are
constant and the yield curve is flat.

We assume that for a sufficiently large time horizon,
T, all Arrow-Debreu securities maturing in T periods have
strictly positive prices in every state. This assumption,
which we maintain throughout the paper, ensures that A
is a primitive matrix. Our framework is extremely flexible:
it allows the yield curve to take any shape consistent with
no-arbitrage. For now, we think of the matrix A as directly
observable; we will address the issue that it may be hard
to observe in practice below.

Example. If there were a utility-maximizing investor
with time discount factor ¢, marginal utility /(i) in state
i, and subjective transition probabilities m (i, j), then the
Arrow-Debreu prices would satisfy
u'(j)

w(i)’

In terms of inverse marginal utility, v(i) = 1/u/(i), we would
have A(i, j) = ¢v(i)m (i, j)/v(j) for each i and j or, written
more concisely as a matrix equation, A = ¢DIID™!, where
D is a diagonal matrix with positive diagonal elements
{v(i)} and II = {7 (i, j)} is a stochastic matrix, i.e., a ma-
trix whose row sums all equal 1 (because they sum over
the probabilities of moving from the current state to any
other state).

The next result shows quite generally that asset price
data, A, can be decomposed into a diagonal matrix D with
positive diagonal entries and a stochastic matrix II. Since
the decomposition exists whether or not there exists a
utility-maximizing investor, we prefer to think of this re-
sult as establishing the existence of a pseudo-representative
agent.

A, j) = ¢ (i. j) (1)

Result 1. Given asset price data represented by the primi-
tive matrix A, there exists a unique decomposition

A=¢DID !, (2)

Babylonian times and they’re still about 5% today—seems pretty station-
ary to me.” (John Cochrane and others have made the same point.)
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where D is a diagonal matrix with positive entries along
the diagonal, and II is a transition matrix (up to economi-
cally irrelevant scalar multiples of D).

Proof. The Perron-Frobenius theorem states that A has a
unique (up to scale) eigenvector, v, and real eigenvalue, ¢,
satisfying Av = ¢v, where ¢ and v are strictly positive, and
¢ is the largest, in absolute value, of all the eigenvalues of
A. Letting D be the diagonal matrix with v along its diago-
nal and e be the vector of ones, so that v = De,

—Lpap
¢

is a transition matrix, i.e., it is positive and ITe = e.

Now suppose that there is a different decomposition of
A as in Eq. (2) with a diagonal matrix C. By the decom-
position, it follows that Ce is an eigenvector of A, and as
by the Perron-Frobenius theorem A has a unique positive
eigenvector, it follows that Ce is proportional to De, and
therefore that (up to scale) C = D, with ¢ as the unique
eigenvalue. It is immediate that IT is also unique. O

Result 1 is a generalization of the recovery theorem of
Ross (2015); if IT is the true probability transition ma-
trix and the stochastic pricing kernel is (in Ross’s termi-
nology) transition-independent, then Result 1 assures that
IT can be uniquely recovered from A. But the decomposi-
tion is well defined and unique whether or not there is a
representative agent, and there is no need to assume that
there is a representative agent. Rather, this result can be
thought of as establishing the existence and uniqueness of
a pseudo-representative agent with marginal utilities and
time discount factor encapsulated in D and ¢, respectively.
We will take the following hypothesis as a given.

Hypothesis 1. The probability distribution IT recovered in
the above fashion is the true objective probability distribu-
tion.

Whether this hypothesis holds is fundamentally an em-
pirical question and is not an issue to be determined on
a priori theoretical grounds; it can only be resolved by
comparing the recovered distribution, IT, with observed re-
alizations in the market. In much of this paper we will
assume that the hypothesis holds, though in Result 5 we
provide an interpretation of the probabilities IT that is
valid even if Hypothesis 1 is false. There is a parallel here
with the expectations hypothesis, one version of which as-
serts that bond pricing is risk-neutral. This has provided a
useful way to think about interest rates and related phe-
nomena and is the basis for a substantial literature.

We have now linked the eigenvector, v, and eigenvalue
¢ to, respectively, the marginal utilities and time discount
factor of the pseudo-representative agent. On the face of it,
we are still confronted with the difficult task of having to
compute the matrix A to find its eigenvalues and eigenvec-
tors. It turns out, though, that we can avoid this difficulty
by connecting v and ¢ to the long end of the yield curve.

3. The yield curve

Let B(i) denote the price of a zero-coupon bond paying
1 in t periods if the current (time zero) state is i. The con-

tinuously compounded t-period yield, y((i), and the simple
yield, Y(i), are given by

o
1+Y0)]

By the law of iterated expectations, we have

Be(i) =) A'(i.)), 3)
i

B:(i) = e et _

where Al(i, j) is the entry that appears in the ith row
and jth column of the matrix A =A---A. In other words,
——
t times
to calculate the price in state i of a t-period zero-coupon
bond, we sum the elements of the ith row of Af. Another
way to see this is to observe that (given our Markov chain
assumption) element (i, j) of A is the current price, in state
i, of a pure contingent security that pays 1 in t periods if
the state is then j, and the price of a riskless bond is the
sum, over all states j, of the prices of these contingent se-
curities.
It follows that

yeli) = ¢ log Y A'G )
j

and the short rate, in state i, is

rp(i) =y (i) = —log ) _A(, j).
J
The long rate in state i is defined as
. .1 £
Yoo (i) = = lim £ log 3 JA'(L. ) -
J

The realized return on a t-period bond from a transition
from state i to state j in a single period is

Br-1(j)

B(i) ~
and Ruo(i, j)=lim;_, »R:(i, j). We use lowercase letters for
log returns,

R, j) =

re(i, j) =logR:(i,j) and r.(i,j) =logR,(, j).

We obtain expected returns by summing over transition
probabilities. For example, the conditionally expected re-
turn on the long bond in state i is

Ruo(® =) 7 (i, )R, ),
i

and the unconditional expected log return on the long
bond is

Too = Y (D7 (A, oo, ). (4)
ij

The quantity (i) that appears in Eq. (4) is the long-run

probability that the economy is in state i—that is, the ith

element of the stationary distribution s, which is the left
eigenvector of II that satisfies

all=mn. (5)

While the focus above has been on v, a right-
eigenvector of A, the corresponding left-eigenvector w,
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which satisfles w/A = ¢w’, also has an interesting in-
terpretation. It follows from Eqs. (2) and (5) that (up
to a scalar multiple) w=D"'mx and hence that w(i) =
7 (i)/v(i). We will see below that this can be interpreted
as (proportional to) the risk-neutral stationary distribution.
An important limiting result (see Theorem 8.5.1 of Horn
and Johnson (1990) is that

11m E =
where v and w are normalized so that w'v = 1. This fact is
exploited in the next result to give the eigenvector v an-
other economic interpretation.

= [vOwW()I. (6)

Result 2. Let the v-asset be the asset that pays off v(j) next
period. Returns on the v-asset are identical to the returns
on the long bond.

Proof. The price of the v-asset is equal to

YA v(j) = gu(),
i

using the fact that v is an eigenvector of A. So the return
on the v-asset is v(j)/[¢v(i)]. Using Eq. (6), the return on
the long bond is

DA 1 Tt
r—m > AL k) T P oo Z{M: k)
SkvOwk)  v()

= oy vOwl) ~ gui) )

Reo (i, )

O

Empirically, then, if we could observe the return on the
long bond, Result 2 would allow us to observe the kernel
as well. (Kazemi, 1992 was the first to observe a connec-
tion of this type; he did so in a continuous-time diffusion
model.) Below we will see whether it is possible to ap-
proximate this return from the returns on sufficiently long-
dated bonds. We now link the eigenvalue ¢ to the long
end of the yield curve.

Result 3. The long rate and unconditional expected log re-
turn on the long bond both equal —log¢.

Proof. We have

. 1 e
Yeo(i) = — lim — logZA (i. j)
J

= _flil?c log [WZ (i, 1)]

=—log¢—tlim logz (1 i

= —log¢,

where the final equality holds because, as noted in Eq. (6),
At[¢t tends to a constant matrix.

From Eq. (7) we have r (i, j) = —log ¢ + log[v(j)/v(i)],
o)

v(Jj)

Too = —loggp+ > m(i)m (i, j)log —= 0

ij

—logg + Y7 (j) logv(j)
J

- Y m(i)logv(i) = —log ¢,

where we have exploited the fact that z’/ Il = /. O

Given the result of Dybvig et al. (1996), it is no surprise
that the long yield is a constant. Nonetheless, it might at
first seem contradictory to have the long rate converge to
a constant while the return on the long bond is variable.
But the return on a t-period bond is

(i, j) = ye (@) = (= 1) x Ye1(G) —ye (D).
~ S—— S——

yield duration realized yield change

While Result 3 shows that the realized yield change is very
small for long-maturity bonds (and zero in the limit), the
duration, t — 1, is very large (and infinite for the limiting
long bond). When the two effects are multiplied, the result
is that long-dated bonds have volatile returns.

Summarizing the results so far, returns on the long
bond reveal the eigenvector v, i.e., the pricing kernel, and
the long yield reveals the eigenvalue ¢ and hence the time
discount factor of the pseudo-representative agent.

We now turn to the question of making inferences
about the objective probability distribution from observ-
able data. As a crude example of the kind of thing we
are interested in, note that Result 3 implies (by Jensen’s
inequality) that the expected return on the long bond is
at least as great as its simple yield, Ry, > 1+ Yoo. We will
shortly improve on this by deriving a formula that ex-
presses the conditionally expected return on the long bond
in terms of option prices. The next result is a stepping
stone toward that goal.

Result 4. Within the class of fixed-income assets, the long
bond is growth optimal; that is, in every state the long
bond has the highest expected log return of all fixed-
income assets. Hence, the long bond earns a positive risk
premium in every state (other than in states that evolve
deterministically to a fixed successor state, in which case
the long bond is riskless).

Proof. The state-i price of an asset with payoffs x is

SOAG, j)x(j) @ $ 3. s
J

(b) . x())
= Xj:n(l’])Rw(i,j)' (8)

Equality (a) follows from Result 1, and equality (b) follows
from Result 2. It follows that the reciprocal of the return
on the long bond is a stochastic discount factor. But then
the long bond’s return must be growth optimal, as in a
complete market the reciprocal of the growth optimal re-
turn is the unique stochastic discount factor.

The final statement follows because the long bond’s log
expected return is weakly greater than its expected log re-
turn, which is weakly greater than the log riskless rate (by

x(J)
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Jensen’s inequality and the growth optimality of the long
bond, in turn). If the state evolution is nondeterministic,
the equalities are strict. O

Eq. (8) shows that a fixed-income payoff can be priced
either via state prices—equivalently, by discounting at the
short riskless rate and using risk-neutral probabilities—as
on the left-hand side, or by discounting at the long bond’s
return and using the true probabilities, as on the right-
hand side. Loosely speaking, Result 4 can be thought of as
saying that the cheapest way of generating a payoff in the
far-distant future is to buy the growth optimal portfolio or,
equivalently, the long bond.

A variant of the above result provides a more general
interpretation of IT that does not rely on Hypothesis 1.

Result 5. Whether or not Hypothesis 1 holds, the entries
(i, j) of II represent the risk-neutral probabilities with
the long bond as numeraire.? It follows that the recovered
probabilities IT can be interpreted as the true probabili-
ties perceived by an agent with log utility who chooses to
invest his or her wealth fully in the long bond (or, equiva-
lently, in the v-asset).

Proof. The characterization of IT as the risk-neutral proba-
bilities with the long bond as numeraire follows immedi-
ately from Eq. (8). The second statement follows because
such an investor’s stochastic discount factor is 1/R.. O

Result 5 clarifies the implicit assumption that underlies
our (and Ross’s, 2015) hypothesis that IT is the true prob-
ability transition matrix. The perspective of a log investor
was also adopted at various points in Martin (2017) and
Kremens and Martin (2019), but in those papers, the log
investor was assumed to be fully invested in the stock mar-
ket. Given the work of Alvarez and Jermann (2005), who
argue that the average log return on the stock market is
larger than that of the long bond, it is doubtful that the
perspective of the log investor who is fully invested in
bonds—as in Result 5—is consistent with equity pricing.

To see this another way, consider the matrix, A, used
by Ross (2015 Table II, Panel B) to illustrate recovery in
the equity market. There are 11 states in the example.
The yield curves implied by A, in each of the states, are
shown in Fig. 1. (By decomposing A into matrices D and
I1, as in Result 1, one can also check that the economy
spends more than 90% of its time in the three most ex-
treme states, one with short rate below —8% and two with
short rates above 10%.) The figure provides an alternative
way to understand the points made by Alvarez and Jer-
mann (2005) and by Borovicka et al. (2017). In this frame-
work, pricing is risk-neutral if the riskless rate is constant,
as was shown in Ross (2015). Conversely, confronted with
the large risk premium available in the equity market, the

2 Probabilities 7 (i, j) are risk-neutral using the long bond as numeraire
if any payoff ¥ has price, in state i, equal to Zjﬁ(i. j)%. (For com-
parison, the conventional risk-neutral probabilities 7*(i, j) are risk-neutral
using the short riskless bond as numeraire, so the price can also be ex-
pressed as Y * (i, j) ,;’/({i)).) The notion of risk-neutral probabilities de-
fined relative to numeraires was first explicitly introduced by Geman
et al. (1995).

yield
10F

2 5

: : : : -~ maturit

10 20 50 100 200 Y
Fig. 1. Yield curves in each of the 11 states in the example estimated by
Ross (2015).

framework is forced to conclude (counterfactually) that the
riskless rate fluctuates wildly.

Whether or not the long bond prices all assets includ-
ing equities, though, there is nothing in this evidence that
prevents it from being the projection of the economy-wide
stochastic discount factor on the fixed-income market. In
that sense, as there is agreement that yields are station-
ary, we are comfortable of thinking of it as the appropriate
discount factor for stationary assets.

While the returns on the long bond replicate the pric-
ing kernel, there are other assets that also can serve as the
pricing operator. The next result shows that the (unique)
infinitely lived asset with a constant dividend yield is also
a surrogate for the stochastic discount factor. To see this,
consider an infinitely lived asset that pays, in every period,
x(i) if the economy is in state i, for all i. (If x(i) is constant
across i, then the asset is simply a consol.) The value, p,
of the asset is

Doo =AX+ A% + ... = A*X,
where
A =A+A*+.. . =AI-A)"

converges because ¢ <1 by assumption. Notice that A* in-
herits the same dominant eigenvector as A, namely v, and
that the associated maximal eigenvalue is %

Result 6. There is a unique infinitely lived, limited liability
asset with a constant dividend yield. Its dividend yield is
D/Px, =1/¢ — 1, and its returns perfectly replicate the re-
turns on the long bond and on the one-period v-asset. No
asset can have a uniformly higher or lower dividend yield
than this asset.

Proof. Consider the perpetual v-asset, which pays v every
period. The price of this asset is A*v = %v, so its div-
idend yield is constant at 1/¢p — 1 =Y. Uniqueness fol-
lows because any asset with constant dividend yield is an
eigenvector of A*, and we have seen that up to multiples
there is a unique eigenvector that is positive (as required
for limited liability). The return on this asset, on mov-
ing from state i to state j, is [v(j) + %v(j)]/[%v(i)] =
v(j)/[¢v(i)]. The last claim follows by applying Theorem
8.1.26 of Horn and Johnson (1990) to A*. O
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We emphasize that the asset with constant dividend
yield is not a perpetuity except in the special case in which
interest rates are constant.

The above results allow us to uncover some new results
on pricing in fixed-income markets. We define the t-period
forward rate f; (i) = —logB; (i) + log B;_1 (i).

Result 7. On average, the forward curve lies below the long
yield.

Proof. Notice that f;(i) = (i, j) + logB;_1 (i) — log B;_1 (j).
It follows—using the fact that }~; ;7 (i)7 (i, j) (log By (i) —
logB;_1(j)) =0 and Results 3 and 4—that Y ;7 (i) f; (i) =
YO D@ =3 ;w O Pred, j) < Too = Yoo-

O
As an immediate corollary, we have

Result 8. On average, the yield curve lies below the long
yield.? But the yield curve cannot always lie below the
long yield.

Proof. The first claim follows from Result 7 because
ye(i) = T logB: (i) = 1 3¢ fs(i). The second follows be-
cause min;%;A'(i, j) <" (see, for example, Theorem 8.1.22
of Horn and Johnson (1990), and hence max ;y:(i)>Yye. O

Together with our earlier results, Result 8 implies that
the time discount factor ¢ < eY for any t: average yields
provide an upper bound on the subjective time discount
factor of the pseudo-representative agent. This strengthens
the finding in Ross (2015) that the maximal short rate pro-
vides an upper bound on the time discount factor.

We have already seen that the yield and expected log
return of the long bond are constant. But this does not im-
ply that the expected arithmetic return on the long bond
is constant, as long-dated bonds have volatile returns due
to their large durations, which scale up the influence of
tiny fluctuations in the yield curve. The next result shows
how conditional moments of the return on the long bond
can, in principle, be determined from option prices. It
adapts the results of Martin (2017) and Martin and Wag-
ner (2019) (relating expected returns on the stock market
or on individual stocks to the prices of index or individual
stock options) to the case of the long bond, exploiting the
fact that the long bond is growth optimal in our frame-
work.

Result 9. Options on the long bond reveal its conditional
expected excess return:

Roo(i)—Rf(i)=2{ /0

Ry (i) o0

put(K; i) dK + /

call(K; i) dK},
Ry (i)

(9)

where call(K; i) is the price, in state i, of a call option with
strike K, maturing next period, on the long bond return,
and put(K;i) is the corresponding put price.

3 It is tempting to conjecture that the approach to the long run is
monotone in Results 7 and 8—for example, that the average t-period yield
¥, or forward rate f; is increasing in t. But this is not true in general.

More generally, option prices reveal all the conditional
moments of the return on the long bond. The nth condi-
tional moment of the long bond return, RZ (i), satisfies

R, (i) - R; ()"

Ry (i)
=n(n+ 1){ / K™ put(K; i) dK
0

oo
+ / K™ call(K; i) dK}.
Ry (i)
Proof. The first statement is a special case of the second,
which we now prove. Suppose we are in state i. Substitute
X(j) = Reo (i, )™ in Eq. (8):

Y AG DR D™ =Y PR, )™ (10)
i i

The right-hand side is the desired conditional moment,
R (i). The left-hand side is the price of a claim to the
(n + 1)th power of the long bond return, settled next pe-
riod. If options on the long bond return are traded, this
payoff can be priced by a static no-arbitrage argument. To
do so, note that ™! =n(n+1) 3° K" ! max {0,x — K} dK
for arbitrary x > 0. Setting x = R (i, j), multiplying on both
sides by A(i, j), summing over j, and interchanging sum and
integral, this implies that

Y A, R, H™!
i

—n(n+1) /Ow K™ A, j) max {0, R i, j) — K} dK.
J

call(K;i)
The result follows by splitting the range of integra-
tion and using the put-call parity relation call(K;i) —
put(K;i) =1 -K/R¢(i). O

Unfortunately, it is difficult to test the above result di-
rectly because options on the long bond are not observable
in practice. We therefore view it as indicative of a direc-
tion that empirical work might take.* The question then
becomes: how fast do returns on bonds of long, but finite,
maturity approach the returns on the long bond? We now
turn to this issue.

4. Traps and convergence at the long end

We have seen that the long end of the yield curve ap-
propriately defined converges to the unknown pricing ker-
nel, v(i). In this section, we will explore the speed of this
convergence. We start by introducing the metric

. max;, v(k)
Q=log o Vo =%

4 Bakshi et al. (2018) attempt to test the prediction (9) of Result 9 us-
ing what they describe as “options on the 30-year Treasury bond futures.”
This characterization is potentially misleading, however, as (i) the deliver-
ables for a Treasury bond futures contract are bonds with maturities be-
tween 15 and 25 years, and (ii) these are coupon bonds, so they have du-
rations shorter than their maturities: a 15-year bond trading at par with
a 5% coupon has a modified duration of about 10 years. Their analysis
implicitly assumes that the returns on such bonds accurately reflect the
returns on an infinite-duration bond; it also neglects the cheap-to-deliver
option, which gives the futures contract negative convexity.
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We can loosely think of Q as measuring the extent to
which risk aversion matters for pricing. If pricing is risk-
neutral, then the pricing kernel v =e and Q = 0. Put an-
other way, if Q =0, then e is an eigenvector of A, which
implies that interest rates are constant. This means that
the yield curve is flat so that pricing (of fixed-income
securities) is risk-neutral and the risk-neutral and objec-
tive probabilities coincide. From Result 2, we can see that
Q is also a measure of the dispersion of long bond re-
turns as, from Eq. (7), we have min; ;7 (i, j) = Yoo — Q and
max; j e (i, j) = Yoo + Q. This allows us to prove the fol-
lowing convergence result.

Result 10. Q bounds the difference between the t-period
yield and the long yield:

i)~y = &

It therefore bounds the difference in yields of any two
bonds of maturities t; and t,,
. . 1 1
Y@ -y @l =7+ )-
1 2
Fixing the maturity t, we can bound the change in the
yield uniformly across states,

et~y = 22,

Proof. The price of a t-period bond in state i is B:(i) =
Y ;A (i, j). Now, for all i,

¢ minv(k) < ¢'v(i)
= YA () = maxvk) YA G ),
J J

and similarly,

¢ maxv(k) = ¢'v(i)
=Y AG () = minv(k) DAL ).
j j

It follows that ¢fe~Q < B (i) < ¢p'e? for all i and hence
that

Voo — % <y (D) syw+%
which establishes all three results. O

To summarize, Q controls the rate at which finite ma-
turity yields approach the long yield. If Q is small, then
the yield curve must be fairly flat and yield volatility low.
Conversely, if there is substantial variation in yields either
across maturities or across states of the world—if the yield
curve has significant slope or if yields are volatile—then
Q is large and risk considerations are important for fixed-
income pricing.

The next result provides an analogous bound on the re-
turns of long-dated zero-coupon bonds and, indeed, on any
long-dated asset with a single payoff at time T.

Result 11. The return on a long-dated asset paying x(j) in
state j at time T (and zero for t#T) approaches the return
on the long bond as T— co. More precisely,

Rr(i, j) = R ) + 0(37). (11)

where /¢ <§ <1, Y is the second-largest of the absolute
values of the eigenvalues of A, and § can be chosen arbi-
trarily close to ¥r/¢. Thus, the eigenvalue gap /¢ deter-
mines how rapidly long-dated assets’ returns converge to
the return on the long bond.

Proof. The price of the asset in state i is (ATx);. We
can conclude from Theorem 8.5.1 of Horn and Johnson
(1990) that AT (i, j) = ¢Tv()w(j) + 0(¢T), where ¢, which
satisfies ¥ < ¢ < ¢, can be chosen to be arbitrarily close to
Y. Therefore, the asset’s price in state i is

price = ¢" x v(i) x Y w(x(j) +0(¢").
S~—————

asset-specific risk

time state

Writing K = >";w(j)x(j) for the asset-specific risk term,
the asset’s return equals
K¢™'v(j)+0@"™ )

K¢Tv(i) + 0(¢T)

Since R (i, j) = v(j)/[¢v(i)], this simplifies to Eq. (11) af-
ter defining § =¢/¢. O

Rr(i. j) =

Thus, in principle, the realized return on any suffi-
ciently long-dated fixed-income asset can proxy for the re-
turn on the long bond. For very large T, the decomposi-
tion in Result 11, which is related to results of Hansen and
Scheinkman (2009), allows us to interpret pricing as the
product of a time discount factor, ¢, the economy-wide
kernel, v(i), which captures risk considerations, and a term
specific to the asset, K.

More precisely, by Result 11, the difference in returns
on maturity-T; assets and maturity-T, assets is of order
0(smin{hi.2}) " where § can be taken arbitrarily close to
¥ [¢, the ratio of the second-largest and largest absolute
values of the eigenvalues of A. If, say, returns on 20-year
and 30-year bonds are sufficiently far apart, then we can
conclude that /¢ is close to one. We will refer, in this
case, to slow convergence at the long end.

Our next result characterizes a topological feature of
the Markov chain driving the economy. Specifically, we will
define a quantitative measure of the extent to which the
economy features traps and show how our measure can be
computed empirically.

To state our key definition in a streamlined way, it will
be convenient to write, for an arbitrary set of states S <
{1,...,m},

P(in S) =) m(i) and P(outside S) = 7 (i).

ieS igS
These represent the fraction of time the economy spends
inside or outside S, respectively. We will also be interested
in the fraction of time the economy spends exiting and en-
tering S:

P(exit S) =Y mw (i) (i, j) and
3
P(enter S) =Y m ()7 (i, j). (12)
igS
jes
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Finally, we define the conditional probabilities

P(exit S)

Pins) °nd

P(exit S| start in S) =

P(enter S)
P(outside S)°

The first of these represents the probability that the econ-
omy exits the set of states S next period, conditional on
starting inside S this period.

A trap is a collection of states that is hard to exit,
once entered, so that P(exit S) is small in some appropri-
ate sense. But we will want to rule out two ways in which
P(exit S) can be small for trivial reasons. First, the set S
may very small so that the economy rarely exits S simply
because it is rarely in S. We will deal with this issue by
requiring that the probability of exiting S is small, condi-
tional on starting in S. Second, if the set S is very large—
almost the entire set of states {1, ..., m}, say—then it will
rarely be exited but for an uninteresting reason. We deal
with this case by requiring that the probability of enter-
ing S is small, conditional on starting outside S.

P(enter S | start outside S) =

Definition 1. The economy has an e-trap if there is a col-
lection of states, S € {1,..., m}, such that

P(exit S|in S) <& and P(enter S| outside S) <e. (13)

The property of having an e-trap is stronger the closer
€ is to zero; € can therefore be thought of as an index of
the extent to which a given economy experiences traps.
A 1-trap is not a trap at all: every set of states satisfies
Eq. (13) with ¢ =1. A O-trap is the extreme case with a
set of states that can neither be escaped nor entered from
outside: we have ruled out this possibility, in which the
state space is disconnected, with our assumption that A
is a primitive matrix. We will sometimes say loosely that
the economy has a trap if it has an e-trap for small €. A
routine calculation shows that if S is an e-trap, then the
expected amount of time needed to escape the trap is at
least 1/e.

If the matrix A is known, the optimal (that is, small-
est possible) value of ¢ for a given economy can, in
principle, be computed mechanically by computing entry
and exit probabilities for all subsets of states. This exer-
cise may be computationally infeasible if there are many
states, however—with, say, 100 states, there are 2100 > 1030
subsets—and if the matrix A is not observed, then this ap-
proach is not feasible even in principle.

Our next result therefore shows how ¢ can be linked
to the data without direct knowledge of A. It exploits the
Cheeger inequality for directed graphs, which was proved
by Chung (2005) and which, we believe, is new to the fi-
nance and economics literature.

Result 12. Let x be a vector that takes the values
x(1),..., x(m) in states 1, ..., m, and define

0% (AX) = Z?T(i)]‘[ @, px@) — X(])]2 and
ij
2

o?(x) = 2:n(i)x(i)2 - Zn(i)x(i)

so that o(Ax) is the volatility of changes in x and
o(x) is the volatility of the level of x. Then the economy
has an e-trap with

_0(AXx)

T o)

Proof. Note first that the definition (13) of an e-trap is
equivalent to the condition that P(exit S)/ min{P(in S),
1-P(in S)} <e. (This follows because P(exit S)=
P(enter S), as can be seen from the definition (12) using
the fact that }°; 7w ()7 (i, j) = 7 (j). Intuitively, it is clear
that in a stationary model, the long-run proportions of
time spent entering and exiting any collection of states S
must equal one another.)

By the Cheeger inequality for directed graphs (Chung,
2005, Theorem 5.1),

A P(exit S) Nen

7 U P s, 1-ran sy = VN (14)
where A is the second-smallest eigenvalue of the Laplacian
¢ defined as

1
£ =1- 5 (DI, + D2 IU'D):

here, Dy is a diagonal matrix with the entries of & along
its diagonal. Our interest is in the right-hand inequality in
Eq. (14). By Corollary 4.2 of Chung (2005), A satisfies

> (G, ) —x())?
2y (D)~

The inner supremum is attained if we set c = Y, 7 (k)x(k),
SO we can rewrite

. 0%(Ax)
A=inf =——=2
. 202(x)’
with o2(Ax) and o2(x) as defined above. In conjunction

with Eq. (14), this implies that there is a collection of
states S such that

P(exit S) - o (Ax)
min{P(inS),1-P(inS)} = o(x)

for all vectors x. The result follows. O

A= 1§<1fSLclp

Result 12 is very flexible and can be applied using

any vector x that takes values x(1),...,x(m). As ";(AX’)‘) =

\/2[1 — corr(Xq41,X¢)], the relevant quantity is the maxi-
mal possible autocorrelation over all random variables that
are measurable with respect to the state. Thus, given a col-
lection of historical time series of variables relevant for
fixed-income pricing, the optimal choice of x; (among lin-
ear combinations of the time series) is the maximal au-
tocorrelation factor that can be constructed from the time
series, as introduced by Switzer and Green (1984). This
is somewhat similar to the first principal component in
conventional principal component analysis (PCA) but has
certain attractive properties. Unlike PCA, it is invariant to
rescalings of the input time series. Moreover, it exploits the
time series nature of the data in a central way, whereas
PCA generates the same factor definitions if the time se-
ries is randomly re-ordered.

To pursue one direction in which empirical work might
proceed, suppose that we are given a collection of N time
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series Z(t) = {Zj(t)}j=1 lllll \» Observed at times t =1,..., T,
that the N x N covariance matrix of the N time series is
Y, and that the N x N covariance matrix of the differenced
time series is X . Then to find the optimal (i.e., lowest)
possible value of ¢ among linear combinations of the time
series x = W'Z, we must choose w to solve®

var(wW' (Z 1 — Z:)) wIw '
w var(w'Z;) =mn-osw O equivalently
. WYy, ey
min — ~4% 7
u u'u

where u = X?w. The latter problem is solved by setting
u equal to the eigenvector of £ 2%,¥"1/? with small-
est eigenvalue (as the matrix is positive definite, all of its
eigenvalues are positive). Having done so, w = > 12y,

For example, if Z = (Y3mo, 1,5, Y10, Y20)’, Where y3po,
Y1, Vs, Y10, and y,q are the 3-month, 1-year, 5-year, 10-
year, and 20-year log yields from the St. Louis Fed’s
FRED database (observed monthly from October 1993 to
June 2017), then the optimal choice of weights is w=
(0.499, 0.285,0.300, —1.569, 1.486)’, with monthly auto-
correlation 0.997 and implied & = 0.0716, for an expected
time trapped of at least 1/0.0716 = 14.0 months. By con-
trast, the corresponding univariate calculations imply an
expected time trapped of at least 12.1, 11.7, 8.3, 7.3, or 7.6
months for the 3-month,...,, 20-year log yields, respectively.

Our next result links back to the speed of convergence
at the long end.

Result 13. Define x to be the second-largest of the real
parts of the eigenvalues of A. Then the economy has an
g-trap where

05

Proof. By the Cheeger inequality (14), there is an e-trap for
any & > +/2X, where A is the second-smallest eigenvalue
of the Laplacian .# defined in the proof of Result 12. The
result follows because

1-x/¢ =min(1 -Rep;) > A,

where p; are the eigenvalues of I1, and the minimization is
over all the eigenvalues of IT other than the largest (which
equals one). The equality follows directly from the fact that
the eigenvalues of A equal the eigenvalues of IT multiplied
by ¢ (as, by the decomposition (2) of Result 1, A/¢ and II
are similar matrices). The inequality follows from Theorem
4.3 of Chung (2005). O

To interpret Result 13, note that if we restrict to
economies in which all eigenvalues are real and positive®

5 See Haugen et al. (2015) for further detail on the maximum autocor-
relation factor approach.

6 It is an empirical matter whether eigenvalues of A—or equivalently
II—are real and positive in practice, but from a theoretical perspective,
it would be guaranteed if, say, Il were symmetric and the economy per-
sistent in the sense that the diagonal entries of IT are larger than 1/2.
[Proof: the eigenvalues of 2IT1 — I are real (by symmetry) and lie in (-1, 1]
(by the Perron-Frobenius theorem, 2IT —I being stochastic). It follows
that the eigenvalues of II lie in (0,1].]

(as in the example shown in Fig. 1), then the eigenvalue-
gap measures ¥ /¢ and x /¢ defined in Results 11 and
13 coincide. Then, slow convergence at the long end im-
plies the existence of a trap. Even without the assump-
tion that eigenvalues are real and positive, we can still say
that if y/¢ ~1—so that there is a trap with small ¢, by
Result 13—then /¢~ 1, because ¥ > x, and hence that
convergence at the long end is slow, by Result 11.

An example. Consider two economies. There are eight
states of the world in each, and the short rate is 0% in
states 1 through 4 and 10% in states 5 through 8.” The
short rate spends half the time at 0% and half the time
at 10% in both economies. But the evolution of the state
variable differs across the two economies.

In Economy A, the economy transitions with equal
probability between any two states. Thus, states 1 through
4 are essentially indistinguishable and can be compressed
into one superstate, as shown in Fig. 2, and similarly for
states 5 through 8. In Economy B, the two superstates have
a nontrivial internal structure. Starting in state 1, the econ-
omy remains in state 1 or transitions to state 2. From state
2, the economy transitions to state 3, or back to state 1;
from state 3, to state 4 or back to state 1; from state 4,
to state 5—in which case the short rate jumps to 10%—or
back to state 1 (yet again). The situation is symmetrical in
states 5 through 8 (with state 6 playing the corresponding
role to state 1). Thus, interest rates get stuck for extended
periods. States 1 through 4 can be thought of as a liquid-
ity trap, while states 5 through 8 represent a high interest
rate regime.

The yield curves in each economy are shown in Fig. 3.
In Economy A, yields converge fairly rapidly to the long
rate. In Economy B, the long end of the yield curve does
not converge (in the sense of approximating the infinitely
long yield) at horizons that are plausibly observable, and in
the depths of a liquidity trap—in state 1—the yield curve is
flat, at zero, over a range of shorter maturities. Yields are
more variable across states and over time. The risk met-
ric, Q, of Result 10 is therefore substantially larger than in
Economy A. Correspondingly, the long bond’s excess return
(indicated at the mid-point of each of the arrows in Fig. 2)
is substantially more volatile in Economy B than in Econ-
omy A. The long bond’s Sharpe ratio is constant, and just
below 5%, in Economy A, whereas it is more than 15% on
average in Economy B and state dependent (with a condi-
tional Sharpe ratio of 39%, 60%, and 41% in states 3, 4, and
5, respectively).

If we let S be the collection of states 1 through 4,
then®

P4 (exit S | start in S) = % and

1

P* (enter S | start outside S) = 3

7 The Arrow-Debreu matrices A that represent asset prices in the two
economies are given in the Appendix.

8 This choice of S is optimal for each economy, as is easily
checked. The stationary distributions in each economy are given by
the positive left eigenvectors of the transition matrices, namely x, =

11111111y /(11 1 1 1 11 1Y
(33888888 amdr=(5 3% 6 w6 43 0)-
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Fig. 2. The state space in Economy A (left) and Economy B (right). The short rate is 0% in states 1 through 4 and 10% in states 5 through 8. There is a
50% probability of a transition along any arrow. The excess return on the long bond in each possible transition (in %) is indicated at the mid-point of each

arrow.
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Fig. 3. Yield curves in Economy A (left) and Economy B (right).

and

. . 1
PB(exit S | start in S) = G and

PB(enter S | start outside S) =

Es

so there is an e-trap with € = 1/2 in Economy A and with
& =1/16 in economy B. The latter, lower, value formalizes
the sense in which Economy B is more trapped than Econ-
omy A.

Finally, we note that Economy A is time-reversible: it
looks the same whether run forward or backward in time.
In contrast, there is an arrow of time in Economy B (for ex-
ample, the economy never transitions from state 3 to state
2). This is a feature of our framework that is not shared
by stationary Gaussian models, which are time reversible
(Weiss, 1975).

5. What is needed for recovery?

Most of our results thus far have avoided the need to
observe A directly: we have shown, for example, how to
infer the time preference rate ¢, the kernel v, and the ex-
cess return on the long bond, from specific—if idealized—
asset prices. To recover the probability matrix IT, however,
we must assume (as Ross, 2015 did) that the entire matrix
of Arrow-Debreu prices, A, is directly observable. But is it
possible to infer A from asset prices that are clearly eas-
ily observable—for example, from yield curve information
alone?

A related concern is that it is not clear that the econo-
metrician observes asset prices in all states of the world.
Can the cross-section substitute for the time series? To
sharpen the question: can A can be inferred from perfect
knowledge of all Arrow-Debreu prices, at all maturities, in
a single state??

We now address these questions by considering some
intentionally stylized examples. These examples are as
simple as we could make them, with few states of the
world and Arrow-Debreu prices set to zero wherever pos-
sible. But they illustrate the flexibility of our framework
and exhibit some potential pitfalls for empirical work.

We will repeatedly exploit the following fact. Suppose
we observe the prices, in each state, of assets with pay-
off vectors X1, ...,Xy: that is, we know Axj, .., AXy. Then
this information uniquely determines A if and only if xq,
..., Xp are linearly independent (i.e., span R™). As a trivial
example, if e; denotes the jth unit vector, then knowledge
of Ae; (that is, of the price, in each state, of the Arrow-
Debreu security that pays off in state 1), of Ae,, and so on,
is sufficient to reveal A.

For a less trivial example, suppose that yields out to
maturity m are observable in every state. Then we need
the vectors x; =e, X, = Ae,.., Xy =A™ 'e—that is, bond
prices at maturities from 0 to m — 1—to be linearly inde-
pendent.

9 This possibility was outlined by Ross (2015) and explored more for-
mally by Jensen et al. (2019).
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(a) Yield curves in Example 1.
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(b) Yield curves in Example 4.

Fig. 4. In Example 1, two different economies generate the same yield curves in each of the states, but risk premia differ in the two economies. In
Example 4, there is just one economy; the yield curve is identical in states 1 and 2, but bond risk premia are different in the two states. (The jaggedness
of the yield curves is inessential: it arises because we chose to give examples that are easily described in words.)

The question is whether this assumption is plausible.
In practice, it might be the case that (say) a four-year
zero-coupon bond trades close to the midpoint of three-
and five-year zero-coupon bond prices in every state of
the world; if so, A3e, A%e, and A%e will be approximately
collinear even if not perfectly linearly dependent. More
generally, the literature has documented that bond yields
approximately obey a low-dimensional factor structure. In
such circumstances, estimates of A may be unstable in
practice.

Result 14 (What can go wrong). Suppose we observe bond
prices at maturities 1, .., m in every state. If e, .., A" le
(that is, the vectors of bond prices at maturities up to
m — 1, together with the vector of ones) are linearly in-
dependent, then A is identified. Otherwise it is not, even if
we observe bond prices at all maturities in every state.

Proof. If the given collection of vectors is linearly indepen-
dent, then it is a basis for R™, and any matrix can be iden-
tified from its action on a basis. Conversely, suppose e, ...,
A™ le are linearly dependent. Then e, .., ANe are linearly
dependent for any N > m — 1 (and hence longer maturities
will not help, as we do not observe the action of A on any
basis). This follows because, by the Cayley—-Hamilton theo-
rem, there is a linear dependence between the matrix A™
and the matrices I, A, .., A", O

Example 1 (Nonrecoverability despite perfect knowledge of
yield curves in all states). Knowledge of the entire yield
curve in every state of the world—that is, knowledge of
bond prices at all maturities in all states—need not deter-
mine A. The simplest possible nontrivial illustration of this
fact requires at least three states (for with m =2 states,
nonrecoverability of A from knowledge of yield curves re-
quires that e and Ae are linearly dependent and hence that
interest rates are constant). Thus, consider two economies
with different Arrow-Debreu price matrices,

0 05 05 025 0 075
Ai={045 0 05) and A,=( O 0.9 0.05
04 05 O 04 05 0

The row sums of each matrix are 1, 0.95, and 0.9, so
in each economy, the one-period interest rate is zero in

state 1, about 5% in state 2, and about 10% in state 3; thus,
knowledge of the values taken by the short rate does not
distinguish between the two economies. In fact, an easy
calculation shows that the entire yield curve is identical
for both economies in every state: see Fig. 4a. And yet
the risk premium on the long bond differs across the two
economies in every state. (We compute the bond risk pre-
mium using the probabilities recovered in Proposition 1.)
The key property of the example is that the vectors e, A;e,
and A,-ze are not linearly independent for i = 1 or 2, so they
do not constitute a basis for R3.

Note, however, that by Result 1, if the yield curve is ob-
served in every state, then we can at least observe ¢ and v
from the evolution of the long bond. What we cannot infer,
if A itself is not known, is the transition matrix IT.

If bond yields alone are not enough, will a richer cross-
section of asset prices permit identification of A? The an-
swer, trivially, is yes if the prices of all one-period Arrow-
Debreu securities are observed in all states. But it is not
necessarily enough to observe all Arrow-Debreu securities
in a single state, even if they are observed at all possible
maturities.

Result 15 (What can go wrong, part 2) Suppose we ob-
serve the prices of all Arrow-Debreu securities at maturi-
ties 1,.., m in a single state—call it state 1. This is equiva-
lent to observing A’e, ..., (A')"e;. If ey, ..., (A')™ le; span
R™, then A is identified. Otherwise it is not, even if we ob-
serve (in state 1) the prices of all Arrow-Debreu securities
at all maturities.

Proof. As in the preceding result, if e,..., (A')™ le; span
R™, then they are a basis, and we observe the action of A’
on this basis. Thus A’ is identified and hence also A. The
converse direction also proceeds as before: by the Cayley-
Hamilton theorem, if e;, ..., (A)™ le; are linearly depen-
dent, then so are eq, ..., (A')Ne; forany N. O

Example 2 (Nonrecoverability from all asset prices in a sin-
gle state). Suppose we observe, in state 1, the prices of ev-
ery possible Arrow-Debreu security at every possible ma-
turity. Result 15 shows that A is identified if and only if

el .. (A/)m7]e1 are linearly independent. For a simple
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example in which this fails, let

0 05 05
A;=(045 05 O
0.4 0 05

In state 1, the price of a state-i Arrow-Debreu security ma-
turing at time T is the same in this economy as in the
economy A; of Example 1 for every i and T. (As a corol-
lary, the yield curve is identical in state 1 in the two
economies.) Hence, even given perfect knowledge of all
possible asset prices in state 1, the matrix A cannot be
identified.

The proofs of Results 14 and 15 exploited the Cayley-
Hamilton theorem, which implies that A™ can be written
as a linear combination of lower order powers of A.'° But
there may be an even lower order relationship between
powers of A. In this case, A is neither identifiable from the
term structure (as in Result 14) nor from all Arrow-Debreu
prices in a single state (as in Result 15).

Example 3 (What can go wrong: the quadratic case). The
simplest nontrivial example!! of this phenomenon—and,
in a sense, the worst-case scenario because the depen-
dence is of the lowest possible order—arises if A% = A for
some ¢. Then (A/(;S)2 =A/¢, so A/¢ is a projection matrix.
This projection must be onto a line: a projection onto a
higher-dimensional subspace would have a repeated max-
imal eigenvalue equal to one, which is not possible by the
Perron-Frobenius theorem (A being primitive). Such a pro-
jection can be written in the form A/¢ = vV, where v is a
unit vector (i.e., satisfies v'v = 1) that determines the line
onto which the projection takes place. The converse also
holds: if the Arrow-Debreu price matrix satisfies

A=¢w, (15)

where v'v=1, and we require that ¢ >0 and v has all
positive entries to avoid arbitrage opportunities, then A% =
¢A, and (consistent with previous notation) v is an eigen-
vector of A with eigenvalue ¢.

The problem of recovery is then particularly stark: as
A" = ¢t-1A for all t, there is no information in the term
structure of any asset that is not present in the price of a
short-dated asset (other than learning the value of ¢ itself
which, as always, can be inferred from the long yield in
any state). Moreover, the price of a t-period bond is A'e =
¢'~1Ae, so in every state of the world, i, the yield curve
satisfies

Yeli) =Yoo = 2010 ~ ).

The characterization (15) and Result 1 together imply
that DIID~! = v/, where D has the vector v along its di-
agonal. This implies that 7; ; = vjz so that the probability

10 As matrices of dimension m inhabit an m?-dimensional vector space,
the matrices I, A, ..., A™ are linearly dependent. The Cayley-Hamilton
theorem strengthens this fact considerably.

1 The two simpler cases—linear dependence between A and I or be-
tween A% and I-are inconsistent with primitivity of A. For example,
A% = M implies that all even powers of A have zero off-diagonal terms.
More generally, note that matrix quadratic equations exhibit richer prop-
erties than their scalar counterparts. For example, the equation A> = I has
uncountably many solutions even in the case m = 2.

of transitioning to state j is the same in every state: that
is, the economy evolves in an independent and identically
distributed (i.i.d.) fashion.

Now suppose that A obeys a more general quadratic
equation. Its eigenvalues must satisfy the scalar version of
the same equation, so there are two, ¢; and ¢,, and by
the Perron-Frobenius theorem, they must satisfy ¢1 > |¢3],
with the former having multiplicity 1 and the latter mul-
tiplicity m — 1. As ¢ is real, ¢, must also be real because
the eigenvalue sum equals the trace of A (which is mani-
festly real).

We can therefore write A> — (¢1 + ¢2)A + P11 = 0 or,
equivalently,

(A—¢21)2 Al

d—02)  dri—¢y

It follows that 21’?42): is a projection matrix with zero and
one as its only eigenvalues. Moreover, it can only have one
maximal eigenvalue (because A has one maximal eigen-
value) and so represents a projection onto a line. Thus,
gj’;g —w/, that is, A = (¢1 — ¢V + I, where vV'v = 1
(and v is the Perron eigenvector).

In conjunction with Result 1, this implies that

1=y _p(m— 220 )p.
* ¢>1

As D is diagonal (with v along the diagonal), it follows that
= %U? + %lj:j. This is similar to the i.i.d. case, as
in the first part of the present example but with transition
probabilities distorted to allow for stickiness in (if ¢, > 0)
or repulsion from (if ¢, <0) the current state.

Our final example makes a different point. The yield
curve distinguishes between states in Examples 1 and 2
and so can act as the state variable. If, in addition to
price information, one also observes time series informa-
tion about the evolution of the yield curve, then the tran-
sition matrix IT can be determined in principle, and hence
identification of A is possible (in fact, by Result 1, we
would only need to observe the time-series properties of
the long end of the yield curve and hence ¢ and v). But
the yield curve is not a suitable state variable in general.

Example 4 (Hidden factors and the importance of
lags). Two different states may have different bond
risk premia but identical yield curves. Suppose that

05 0 0 05

a_l o 0o 1 o0
“lo45 0 05 o0

0 09 0 0O

Fig. 4b plots the yield curve in each of the four states. The
short rate is 0% in states 1 and 2, about 5% in state 3, and
about 10% in state 4.

We have chosen to specify that A has several zero en-
tries so that it is possible to give a simple description of
the states:

- In state 1, interest rates are low and volatility is high.
The economy may either remain in state 1 or transition
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to state 4. The risk premium on the long bond is posi-
tive.

In state 2, interest rates are low, and the economy tran-
sitions deterministically to state 3. The risk premium on
the long bond is zero.

In state 3, interest rates are intermediate and volatil-
ity is high. The economy may either remain in state 3
or transition to state 1. The risk premium on the long
bond is positive.

In state 4, interest rates are high, and the economy
transitions deterministically to state 2. The risk pre-
mium on the long bond is zero.

(The presence of the zero entries in A explains the
jagged shapes of the yield curves in Fig. 4b. For an example
that generates smooth yield curves, raise A to the fifth!?
power—and, if desired, multiply by a scalar—to generate a
matrix with positive entries that has all the relevant prop-
erties exhibited in this example.)

As in Example 1, e, Ae, A%e, and A3e are linearly depen-
dent, so knowledge of the yield curve in every state is not
sufficient to recover A. In fact, we have set up the exam-
ple so that the yield curve is identical in states 1 and 2.
But the long bond risk premium is positive in state 1 and
zero in state 2: thus, bond prices need not “span” the un-
certainty in fixed-income markets. Duffee (2011) and Joslin
et al. (2014) have argued (in a Gaussian context) that this
is the empirically relevant case.

The example—though stylized—also illustrates another
interesting phenomenon. While the yield curve itself is not
a satisfactory state variable, knowledge of the current and
lagged yield curves reveals the state perfectly (the econ-
omy is in state 2 if and only if it was in state 4 last pe-
riod). Intriguingly, Cochrane and Piazzesi (2005) find that
information in the lagged term structure is indeed useful
in forecasting bond risk premia. They interpret their empir-
ical finding as evidence of measurement error, and write,
“Bond prices are time-t expected values of future discount
factors, so a full set of time-t bond yields should drive
out lagged yields in forecasting regressions..Bond prices
reveal all other important state variables. For this reason,
term structure models do not include lags.” Example 4 is
a counterexample to this claim: it shows that lags may, in
fact, assist in forecasting even if yields are perfectly ob-
served.”?

6. Conclusions

We have studied the framework of Ross (2015), in
which the state of the economy follows a discrete-time,
finite-state Markov chain and markets are complete, and
shown that recovery can be partially effected by study-
ing the long end of the yield curve, without knowledge of

12 Qur maintained assumption that A is primitive ensures that above
some time horizon T, all Arrow-Debreu prices are strictly positive; in this
example, T =5 is enough.

13 Expanding the set of observables in other ways can also help. For ex-
ample, states 1 and 2 could also be distinguished from one another using
the implied volatility of short-dated bonds.

the full matrix of Arrow-Debreu prices that Ross assumed
to be directly observable. More precisely, we show that it
is possible to infer the time discount factor and marginal
utilities of what we call a pseudo-representative investor
from the behavior of the long bond alone.

Our results place Ross’s recovery theorem in a broader
context that has been explored by authors including
Backus et al. (1989), Kazemi (1992), Bansal and Lehmann
(1994), Bansal and Lehmann (1997), Alvarez and Jermann
(2005), and Hansen and Scheinkman (2009) and clarify
that the key property implied by Ross’s structural assump-
tions is that the long bond is growth optimal relative to
the set of assets under consideration.

We acknowledge that if the goal is recovery in eq-
uity markets, this property is implausible (as argued by
Borovicka et al., 2017). We suggest, however, that the cri-
tique has less force in the context of fixed-income mar-
kets, where the relevant state variables are more plausibly
stationary. If one restricts attention to fixed-income mar-
kets, it remains an open empirical question whether the
set of probabilities that emerge in the decomposition of
Result 1 are in fact the true probabilities—or, equivalently,
whether the long bond is growth optimal among fixed-
income assets. Assuming that the recovered probabilities
are the true probabilities, various interesting facts follow,
notably that the yield curve is upward sloping on average,
and that long bond option prices reveal expected returns
on the long bond.

There are nontrivial empirical issues that must be con-
fronted if our theoretical results are to be implemented in
practice. Most notably, the speed of convergence of long,
but finite, bonds to the idealized long bond is of central
importance. We derive various results that bear on this is-
sue and which we hope are interesting in their own right:
we introduce, for example, a measure of the “trappedness”
of an economy and relate it to the speed of convergence
at the long end of the yield curve and to the eigenvalue
gap (between the largest and second-largest eigenvalues)
of A.

Aside from issues related to recovery, our framework is
well suited to studying situations in which interest rates
exhibit cycles or traps or, more generally, to cases in which
the topology of the state space is nontrivial (whether due
to reputational considerations on the part of monetary pol-
icymakers, liquidity traps, technological or other forms of
irreversibility, or something else). As a result, it can be
used to address certain issues that are assumed away in
Gaussian models. Stationary Gaussian models are time-
reversible (Weiss, 1975), for example, so the conclusions
reached by an econometrician living in a stationary Gaus-
sian world would be the same whether time runs forward
or backward. Such models exclude the possibility that, say,
interest rates “go up by the stairs and down by the eleva-
tor” (or the converse). This is a highly restrictive assump-
tion and one that is empirically dubious.'

4 See, for example, Neftci (1984) and Ramsey and Rothman (1996).
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Appendix

The Arrow-Debreu price matrices for the example at
the end of Section 4 are

0.119 0.119 0.119 0.119 0.131 0.131 0.131
0.119 0.119 0.119 0.119 0.131 0.131 0.131
0.119 0.119 0.119 0.119 0.131 0.131 0.131
0.119 0.119 0.119 0.119 0.131 0.131 0.131
0.107 0.107 0.107 0.107 0.119 0.119 0.119
0.107 0.107 0.107 0.107 0.119 0.119 0.119
0.107 0.107 0.107 0.107 0.119 0.119 0.119
0.107 0.107 0.107 0.107 0.119 0.119 0.119
in Economy A, and
0.462 0.538 0 0 0 0 0
0.396 0 0.604 0 0 0 0
0.303 0 0 0.697 0 0 0
0.201 0 0 0 0.799 0 0
0 0 0 0.267 0 0.638 0
0 0 0 0 0 0.462 044
0 0 0 0 0 0.481 0
0 0 0 0 0.380 0.525 0

in Economy B.
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