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Abstract

We derive option-implied bounds on the probability of a crash in an individual
stock, and argue a priori that the lower bound should be close to the truth. The
lower bound successfully forecasts crashes both in and out of sample. Crucially,
our theory-based approach avoids the “crying wolf” problem faced by risk-neutral
crash probabilities, which severely overstate crash risk during crisis periods. Despite
having no free parameters, the lower bound outperforms elastic net, ridge, and Lasso
models that flexibly but atheoretically combine stock characteristics, risk-neutral

probabilities and the bound itself, because such models overfit during crisis periods.
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In this paper, we propose a new way of estimating the probability of a crash in an
individual stock. Our approach performs well in and out of sample, across industries and
over time, and it outperforms competitor models that exploit characteristics studied in
prior related literature. As our forecasts are based solely on asset prices—namely, the
prices of options on the stock in question, and of options on a broad stock index—they
are, in principle, available in real time.

Aside from the intrinsic interest of forecasting crashes, we would like to highlight
two further sources of motivation. First, we can use our predictor variable to generate
industry-level crash probability measures. Such series have many potential applications,
but a particularly important one is suggested by the work of Baron, Verner, and Xiong
(2021), who document a link between large declines in bank equity and macroeconomic
downturns. Instead of defining bank equity declines using ex post returns, our approach
supplies a measure of banks’ equity capital crash risk (plotted in the top panel of Figure 10)
that is forward-looking and observable in real time.

Second, our results relate to the issue of forecasting crashes at the aggregate level.
Wachter (2013) argues that the volatility of the stock market can be explained by time-
varying risk of a disaster in the sense of Barro (2006) and infers disaster probabilities from
the market price-dividend ratio. Martin (2017) shows how to use option prices to calculate
the probability of a crash in the market from the perspective of a log investor who holds
the market. Barro and Liao (2021) derive an option-pricing formula within an equilibrium
model and hence use index options to infer the probabilities of disasters. A fundamental
challenge for all these papers is that it is hard to test the predictive success of the resulting
implied market crash probability directly, given the relatively short available time series
and the fact that, by definition, crashes and disasters only occur rarely.! Expanding to the
international data does not fully solve this problem, in part because few countries have
long option prices series, and in part because, as Barro and Liao show, crashes are highly
correlated across countries (as theory would predict even if there is little or no correlation
in fundamentals, if financial markets are integrated, as in Martin (2013)). By exploiting
the cross-section, we gain statistical power that allows us to demonstrate the empirical

success of option-based measures, supporting the approach of these earlier papers.

!Backus et al. (2011) also study the relationship between option prices and disaster probabilities, but
they focus on the unconditional distribution whereas our goal is to quantify conditional crash probabilities.



From a theoretical point of view, forecasting crashes represents an interesting challenge
for two reasons. First, there is an obvious and widely used competitor for our approach,
namely, the risk-neutral probability of a crash, which can be calculated from asset prices
without any assumptions other than the absence of arbitrage. And yet it is natural to
worry that the risk-neutral probabilities, which put more weight on bad states of the
world, may overstate the true probabilities of crashes. Furthermore, standard theory
predicts (and we confirm empirically) that the risk-neutral probabilities will overstate
most dramatically—that is, will be prone to “crying wolf”—at times of high risk or high
risk aversion. This is unfortunate, given that policymakers are likely to be particularly
interested in accurate measurement of crash probabilities at such times.

Second, any attempt to forecast crashes in individual stocks using option prices seems
to run into the problem that the inferred crash probability ought to reflect the correlation
structure: the conclusions one would draw from a fixed set of prices should depend strongly
on whether the stock in question has, for example, a positive or negative beta. But the
prices of options on individual stocks and on the market reveal information only about
the marginal risk-neutral distributions of those stocks and of the market, and not about
their joint distribution.

We address these issues in two steps. To connect risk-neutral and true probabilities,
we take the perspective of a myopic investor with power utility who chooses to invest his
or her wealth fully in the S&P 500 index, which we treat as a proxy for “the market.”?
(While we think of this investor as a sensible benchmark, we do not need to assume
that all investors look the same: our investor may coexist with others who have different
beliefs, for rational or irrational reasons, and/or different preferences.) This implies that
the stochastic discount factor (SDF) is proportional to a power of the return on the S&P
500 index. In the special case in which risk aversion equals zero, the predictive variable
reduces to the risk-neutral probability of a crash, which can be inferred from out-of-the-
money put option prices, following Breeden and Litzenberger (1978): this is a widely used
indicator of crash probabilities but, as we will show, allowing for positive risk aversion

improves predictive performance.

2Related approaches have been adopted in the context of forecasting returns on the stock market
(Martin, 2017; Chabi-Yo and Loudis, 2020; Martin, 2021; Gao and Martin, 2021; Gandhi, Gormsen, and
Lazarus, 2022), individual stocks (Martin and Wagner, 2019; Kadan and Tang, 2020; Chabi-Yo, Dim,
and Vilkov, 2023), and currencies (Kremens and Martin, 2019; Della Corte, Gao, and Jeanneret, 2023).



Evidently, the power utility assumption is restrictive. In an ideal world we would
allow the SDF to depend on broader measures of wealth and potentially other state
variables. But option prices on the S&P 500 and on individual stocks are observable;
and they are forward-looking. The great strength of our approach is that it allows us
to avoid the alternative undesirable assumption, commonly made in the literature, that
backward-looking historical measures are good proxies for the forward-looking measures
that come out of theory. The empirical success of our approach suggests that the price of
our assumption is worth paying.

Having made the assumption, it is straightforward to infer the true distribution of
market returns from the risk-neutral distribution of market returns, as in Martin (2017).
To calculate the true distribution of a given stock’s returns, however, we would need to
observe the joint risk-neutral distribution of that stock’s and the market’s returns. The
problem is that observable option prices only allow us to infer the individual (that is,
marginal) risk-neutral distributions of the stock and of the market, without giving us any
control on the correlation structure. This is the central theoretical challenge.

We handle it by exploiting the theory of copulas and, more specifically, the Fréchet—
Hoeffding bounds. These allow us to derive upper and lower bounds on the true probabil-
ities of a crash that apply, under our maintained assumption on the form of the SDF, for
any correlation structure. As the bounds fully exploit information in the two marginal
distributions, they are tighter than naive bounds that only exploit the fact that correla-
tion must lie between plus and minus one. (This paper might more accurately be titled
“Forecasting Crashes with Two Smiles.”)

The resulting bounds vary substantially across firms and over time. Figure 1 illustrates
by plotting upper and lower bounds on the probability of a crash of at least 20% over
a one-month horizon for Apple and AIG. Figure 2 plots the time-series of the cross-
sectional median of the upper and lower bounds on crash probabilities, together with the
probability of a crash in the market (with the latter calculated based on the approach in
Martin (2017)). The market crash probability tends to be lower and less volatile than the
individual stock probabilities.

As we will show, the lower bound is tight if the stock’s return is a monotonic—and
potentially nonlinear—increasing function of the market return, while the upper bound

is tight if the stock’s return is a monotonic decreasing function of the market return. The
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Figure 1: Bounds on forward-looking probabilities of a crash (one month return less
than —20%) for Apple and AIG.
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Figure 2: Time series of cross-sectional medians of upper and lower bounds on crash
probabilities; and the crash probability of the S&P 500 index.



former case is more plausible, so we expect, of the two bounds, the lower bound to be a
better measure of the true crash probability.

To assess this prediction, we regress realized crash indicators onto the upper bound
and onto the lower bound. We consider crashes of size 10%, 20% and 30% over horizons
of one, three, six, and 12 months, and find that both bounds are statistically significant
predictors of crashes at all horizons and for all crash sizes. The same is true for the
risk-neutral probability of a crash (which, as we show, must always lie between the upper
and lower bounds).

If the lower bound were a perfect measure of the crash probability, we would find an
intercept equal to zero and slope coefficient equal to one in the associated regression. And
indeed we do find, for all 12 horizon/crash-size pairs, intercepts that are not significantly
different from zero and slope coefficients that are significantly positive and close to one.
The lower bound also outperforms the upper bound and the risk-neutral probability in
an R? sense for all 12 horizon/crash-size pairs.

The lower bound remains significant when we include 15 stock characteristics that
the prior literature has found useful in accounting for stock return variation, forecasting
crashes, or predicting bankruptcies: CAPM beta, firm size, the book-to-market ratio,
gross profits divided by total assets, three measures of trailing returns, realized volatil-
ity of market-adjusted returns, turnover, one-year sales growth, short interest scaled by
institutional ownership, leverage, net income to assets, cash to assets, and log price per
share. At horizons of one month and one quarter, the lower bound on its own achieves a
higher R? than all 15 stock characteristics do together.

We also test the validity and tightness of our bounds for stock crash probabilities,
following the approach of Back, Crotty, and Kazempour (2022). At all horizons and for
all crash sizes, we do not reject the null that the bounds are valid (that is, the lower
bounds are smaller and upper bounds are larger than the true crash probabilities). As
expected, we strongly reject the hypothesis that the upper bound is tight (with p-values
on the null hypothesis of tightness below 0.02 for 11 of the 12 horizon/crash-size pairs),
while the evidence is mixed on whether the lower bound is tight: we do not reject tightness
at the one-month and one-year horizons, but at the three-month and six-month horizons
we can reject tightness (with p-values between 0.02 and 0.12).

The lower bound successfully predicts crashes out of sample. We use it as a crash



forecaster with coefficient constrained to equal one, so that there are no parameters to es-
timate, and find that it outperforms the unadjusted risk-neutral probability at all horizons.
It also outperforms an approach that attempts to salvage the risk-neutral probabilities
by rescaling them, at each point in time ¢, by a stock- and time-specific parameter tuned
to match the historical relationship between that stock’s risk-neutral crash probability
and its realized crash probability. We carry out this exercise in two ways, using either an
expanding window or a rolling 3-year window to calibrate the historical relationship. In
both cases, the lower bound outperforms at all horizons.

We next compare the lower bound to a “kitchen sink” model that optimally combines
the 15 stock characteristics together with the risk-neutral probabilities and the lower
bound itself, using ridge, Lasso (Tibshirani, 1996) or elastic net (Zou and Hastie, 2005)
regularization with cross-validation to select models with the best out-of-sample perfor-
mance. The lower bound on its own outperforms the kitchen sink model at all horizons
for all three regularization methodologies, and for both rolling and expanding windows.

The problem with the kitchen sink model is that it chases performance by trying to
fit the recent historical experience. Following the financial crisis of 2008-9, for example,
the kitchen sink model puts extra weight on the risk-neutral probabilities, because their
excessively pessimistic predictions happen to have been correct during that period. But
this severely degrades the kitchen sink model’s subsequent performance. Our results show
that by imposing some theory-implied constraints, it is possible to alleviate this “crying
wolf” problem.

Related Literature. A large literature proposes methods to recover risk-neutral return
densities from option prices. An incomplete list includes Breeden and Litzenberger (1978);
Rubinstein (1994); Jackwerth and Rubinstein (1996); Ait-Sahalia and Lo (1998); Carr and
Madan (2001). Christoffersen, Jacobs, and Chang (2013) provide a survey. While the
starting point of our derivation relies on the insights of Breeden and Litzenberger (1978),
the major challenge of bounding the physical, as opposed to risk-neutral, expectations is
addressed by the new approach introduced in this paper.

Our work builds on a variety of papers that have studied the predictability of crashes.
At the level of market indices, Bates (1991) explores the behavior of S&P 500 futures
options prior to the stock market crash of 1987; more recently, Goetzmann, Kim, and

Shiller (2022) link “crash narratives” to volatility and investor expectations about crashes.



At the level of individual stocks, Chen, Hong, and Stein (2001) show that character-
istics such as turnover and past returns forecast negative return skewness in individual
stocks, Greenwood, Shleifer, and You (2019) use characteristics to forecast crashes at the
industry level conditional on past price rises, and Daniel, Klos, and Rottke (2023) docu-
ment that price run-ups combined with high short interest and low institutional ownership
forecast lower stock returns. These papers focus on returns over horizons of at least sev-
eral months: a distinctive feature of our approach is that it is empirically successful at
forecasting crashes at horizons as short as 1 month.

There is also a literature that focuses on how measures of skewness and tail- or
downside-risk are priced in the cross section of stock returns (see, for example, Ang,
Chen, and Xing (2006); Boyer, Mitton, and Vorkink (2009); Vilkov and Xiao (2013);
Kelly and Jiang (2014); Pederzoli (2021)) or option returns (see, for example, Bali and
Murray (2013)).

Elsewhere in the economics literature, the Fréchet—Hoeffding inequalities have been
applied by Heckman, Smith, and Clements (1997) and Manski (1997) in the context of
programme evaluation; and Dybvig (1988) uses similar ideas to derive bounds on contin-
gent claim prices in an economy with finitely many states. Fan and Patton (2014) review
the broader literature on the application of copulas in economics.

Organization of the paper. Section 1 introduces our approach and establishes various
theoretical properties of the bounds. Section 2 provides details of our data sample. Sec-
tions 3 and 4 present our empirical results, in and out of sample. Section 5 constructs
industry-level crash probability measures. Section 6 studies the relationship between our
measure of the crash probability and other characteristics. Section 7 concludes. All proofs

are in the Appendix.

1 Theory

We adopt the perspective of an investor (“the investor”) with power utility over next-
period wealth who is marginal in all markets, including option markets, but who chooses

to invest her wealth fully in the market, by which we mean the S&P 500 index. At time ¢,



the investor chooses portfolio weights w = [wy, ..., w,]" to solve the problem?

maxirgize E [u (wTR)} s.t. Zwi =1,
where u(z) = 2'77/(1—7), risk aversion equals v, and we write R = [Ry, ..., R,]" for the
vector of gross returns on the n assets from time ¢ to time t+ 1. The first-order conditions

for this problem are
E|(w'R)”R| =\ foralli,

where A is a Lagrange multiplier. By assumption, the investor chooses to invest fully in
the market, thus the market return, R,,, satisfies R,, = w' R. It follows that M = R /)
is a stochastic discount factor (SDF).

For any tradable payoff X, the risk-neutral expectation of X (which we denote with

an asterisk) satisfies, by definition,

1
—E*[X] = E[MX]
Ly
where Ry is the gross risk-free rate: the two sides of the above equation represent different
notational conventions for expressing the price at time ¢ of a claim to the payoff X paid

at time ¢t + 1. As MAR), =1, it follows that

E[X] = E[MAR), X] = AE[M(R,X)] = RAE* (R}, X]. (1)
f

Setting X = 1, we must have Ry = AE*[R],|, which allows us to eliminate A from (1):

E*[R) X]
EX] = —2—. 2
Hence we can infer the investor’s expectation of X if we can price a claim to R) X.
For the rest of the paper we will assume that the payoff X = h(R;) is a well-behaved
function of the return on a particular asset i, where h : Ry +— R is continuous almost

everywhere. We write @),,; for the joint risk-neutral cumulative distribution function

(CDF) of the market and individual stock return (R,,, R;), and @, and Q; for the marginal

3All expectations are conditional on current, time ¢, information. We suppress time subscripts to
streamline the notation.



CDFs of R,, and R;. Equation (2) can then be rewritten

fl"yh(y) del(l’, y)
JardQp(z)

E[h(R;)] = (3)

For example, if X = I(R; < q) is the indicator function for the event that stock i’s gross

return is less than ¢, then equation (2) implies that

B[R I(R: < q)]
ERL W

PlR; < q] =

because E[I(R; < ¢)] = P[R; < q]. Equation (4) shows that we can in principle infer
the true probability distribution of a particular stock return, as perceived by the power
utility investor who is holding the market, from risk-neutral distributions.

If stock i’s return were independent of the market return (under the joint risk-neutral
measure), then equation (4) would imply that the true and risk-neutral probabilities of a
crash in stock ¢ would be equal. In practice, however, we do not expect independence to

hold, as stocks are generally exposed to systematic risk. We can rewrite equation (4) as

cov* [RY  I(R; < q)]
B[R )

P[R; <q] =P[R, <q| +

As crashes are more likely to occur at times of market-wide bad news, the risk-neutral
covariance term in equation (5) will typically be negative, so that the risk-neutral proba-
bilities will overestimate actual crash probabilities.

Moreover, we should expect—and we will confirm, below—that the risk-neutral crash
probabilities overstate the truth most dramatically at scary moments in time (i.e., when
market-wide risk is high) and for scary stocks. This is unfortunate: it means that using
risk-neutral probabilities as forecasters of crashes is likely to be most problematic at
precisely the times (and for precisely those stocks for which) an accurate forecast would
be most valuable. We therefore view equation (4) as a disciplined way of adjusting the
risk-neutral probabilities to account for systematic (i.e., market) risk.

The challenge of implementing the equation, however, is that while index options
and individual stock options reveal risk-neutral expectations of univariate functions of
index or stock returns, they do not reveal risk-neutral expectations of two- (or higher-)

dimensional functions of index and stock returns simultaneously, as would be needed to
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Figure 3: Two joint distributions that are each consistent with the marginal risk-neutral
distributions in a 2 x 2 example.

calculate the numerators in (3) or (4).* Options on the market and on large-cap individual
stocks are liquid, but because they are written on a single underlying asset they reveal
only the marginal risk-neutral distributions, and not the correlation structure. To recover
the risk-neutral joint distribution, one would need to observe the prices of derivatives
whose payoffs are functions both of the stock index and of the stock of interest. But
such prices are not observable in practice. (By contrast the probability of a crash in the
market itself, as plotted in gray in Figure 2, is relatively easy to handle: when ¢ = m
the right-hand side of (4) is a ratio of risk-neutral expectations of functions of the single

random variable R,,, which can be calculated from index option prices in the usual way.)

An example. From the price of S&P 500 index options and options on Apple
stock, we can calculate the risk-neutral probability of a crash in the market and
in Apple, respectively. We might, for example, find that both Apple and the S&P
500 each have a risk-neutral crash probability equal to 5%. But these probabilities
are consistent with a continuum of joint distributions.

The two panels of Figure 3 indicate two possible scenarios that are in a sense
polar opposites. The left-hand panel describes a world in which Apple is risky,
crashing if—and only if—the market crashes. In this case Apple crashes are “scary”,
so the risk-neutral crash probability (which, in standard models, distorts the true
probability by a factor related to the marginal value of a dollar) should be expected
to overstate the true probability of a crash. In the right-hand panel, by contrast,
Apple crashes if and only if the market does not crash. In this case, Apple crashes
are relatively benign, so the standard logic predicts that the risk-neutral probability
should understate the true probability of an Apple crash.

1Ross (1976) showed in a finite-state setting that options on portfolios of assets could in principle be
used to recover risk-neutral joint densities. Martin (2018) points out that this result fails with continuous
states, and even with finite states given the assets that are traded in practice.
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More generally, although the observable one-dimensional risk-neutral distributions do
not make it possible to pin down the true crash probability precisely, we can nonetheless
derive bounds on the right-hand sides of (3) or (4): as in the 2 x 2 example, the marginals
place restrictions on the joint distribution.® To do so, we decompose the joint distribution
into two parts: the marginals and the dependence structure. The marginals can be
inferred from index and stock options, using the Breeden—Litzenberger approach. Roughly
speaking, we can then bound the integral in the numerator of (3) by minimizing and

maximizing over all possible dependence structures—more precisely, over all copulas.®
Definition 1. A (two-dimensional) copula is a function C : [0,1]? — [0, 1] such that
1. C is grounded: C(z,0) = C(0,y) =0 for any (z,y) in its domain;
2. C(z,1) =z and C(1,y) =y for any (z,y) in its domain;
3. C is two-increasing: for all rectangles B = [x1,y1] X [z2,y2] C [0,1]2, the “volume”
of B, which is defined by Vy(B) = C(x2,y2) — C(w2,91) — C(z1,32) + C(21,91) s

non-negative.

The following theorem of Sklar (1959) shows that any joint distribution can be asso-

ciated with a copula that “glues together” its marginals.

Theorem 1 (Sklar). Let Q be the joint CDF for the random vector (X,Y') with marginal
CDFs Fx and Fy. Then there exists a copula C, such that for all z,y € R,

Q(xay> = C(FX<1.>7 FY(?/))

We can therefore express the joint risk-neutral distribution of the market and stock
return as Qn;(z,y) = C(Qm(z), Qi(y)), where the risk-neutral index and individual stock
CDFs, @,, and @);, can be calculated from index and individual stock option prices.
Although C(-,-) is unknown, the following theorem supplies pointwise bounds that apply

to any copula.

Theorem 2 (Fréchet-Hoeffding). If C(u,v) is a copula, then

max(u +v — 1,0) < C(u,v) < min(u,v), (u,v) € [0, 1]

5Moreover, the diagonal and off-diagonal patterns visible in the two panels of Figure 3 are echoed in
the form of the lower and upper bounds: see the proof of Result 1 in Appendix A.1.
SFor a survey of the use of copulas in economics, see Fan and Patton (2014).
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Using the Fréchet—Hoeffding theorem, together with the work of Tchen (1980), we

have the following result, whose proof is in the Appendix.

Result 1. For a continuous and two-increasing’ function g defined on [0,00) x [0, 00),

we have the bounds

E* [g (B, Q7" (1 = Qu(Rn)))] < E'[g(Ru, Ri)] S E" [g (R, Q7' (Qu(Bw)))] - (6)

Result 1 provides bounds on the price of an asset whose payoff g(R,,, R;) can depend
in an arbitrary way on the correlation structure of R,, and R;. As the one-dimensional
risk-neutral distributions are observable from index and individual stock option prices,
we can treat ; and @), as observable functions. Thus the upper and lower bounds in
(6) are risk-neutral expectations of known functions of the single variable R,,. They can
therefore be calculated given observable index option prices.

Result 1 exhibits bounds that relate risk-neutral expectations of different random
variables to one another. It does not rely on any assumptions about the form of the SDF.
But, under our assumption on the power utility form of the SDF, we can set g(x,y) =

27h(y), as in equation (3), to derive the following result.®

Result 2. Let h be a continuous increasing function defined on [0, 00) that does not cross
the x-azis (that is, h(x)h(y) > 0 for any x,y > 0), and suppose the SDF is proportional
to R7. Then

E* [R,h (Q7 (1 = Qu(Rr)))]

These bounds are sharp, in the sense that the lower bound is achieved if R; and R,, are

countermonotonic, and the upper bound is achieved if R; and R,, are comonotonic.’

Note that the middle expectation above is a true—mnot a risk-neutral-—expectation. In
our application to crash probabilities, we set h(z) = —I(x < q) in Result 2. This delivers

the following variant of Result 2 on which our empirical work is based. As the bounds

"See Definition 1.

8In Appendix B, we show how to adapt Result 2 if h is Lipschitz continuous but not monotonic.

9Two random variables are said to be countermonotonic if one is a monotonically decreasing trans-
formation of the other, and comonotonic if one is a monotonically increasing transformation of the other.
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Figure 4: Left: an example of a comonotonic pair of random variables. Right: an
example of a lower comonotonic pair of random variables with thresholds (g, ¢).

depend only on tail outcomes for the stock, the lower bound is tight under the weaker
condition that the stock return and market return are comonotonic in the left tail.

More precisely, the condition for tightness of the lower bound is expressed in terms of
lower comonotonicity (a weaker assumption than comonotonicity). Specifically, (R,,, R;)
is lower comonotonic with threshold (g, ¢) if, in the terminology of Cheung (2009),
(=R, —R;) is upper comonotonic with threshold (—¢;, —q). Figure 4 illustrates.

Result 3. The probability of a crash in stock i, P[R; < q|, satisfies the bounds

E* [RLT (B < q1)]
E* [R)]

E* [RLT (B 2 qu)]
E* [R] ’

<P[R;, <¢q| <

where q = Q' (Qi(q)) and g = Q7' (1 — Qi(q))-
The lower bound is attained if the return on the market R,, and return on the stock
R; are lower comonotonic with thresholds (q;,q); this holds, in particular, if R, and R;
are comonotonic. The upper bound is attained if the two returns are countermonotonic.
The risk-neutral probability of a crash, P*[R; < ql, lies between the two bounds. It is

equal to the true crash probability if stock i’s return is independent of the market return.

As most stocks typically move with, rather than against, the market, we anticipate
that comonotonicity is closer to the truth than countermonotonicity. Hence, a priori, we
expect the lower bound to be tighter—closer to the true crash probability—than the upper

bound. As we will see below, our empirical results strongly support this expectation.
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Result 3 takes a particularly simple form in the special case in which asset ¢ is the
market index. As the market is comonotonic with itself, the lower bound holds with

equality, so that the probability of a market crash is

PR, < q = E* [R%]é{ [(gﬁ <4q] (7)

Equation (7) generalizes one of the results in Martin (2017), and we use it to calibrate the
level of risk aversion, v. We choose to calibrate risk aversion using market returns—rather
than by targeting forecasting performance for individual stocks—to minimize the effect of
in-sample information. As we show in Appendix C, setting v equal to two approximately
optimizes the predictive performance of our framework for movements in the market. For
the rest of the paper, we therefore set v = 2.

Our next result shows that the bounds in Result 3 widen as risk aversion rises.

Result 4. The lower bound s decreasing in v and the upper bound is increasing in .
When ~ = 0, the lower and the upper bounds are both equal to P*[R; < q|: this is the
case in which the true and risk-neutral expectations coincide, so that crash probabilities
can be inferred perfectly from option prices.
As v — o0, the bounds become trivial: for any q such that 0 < Q;(q) < 1, the lower
bound tends to 0 and the upper bound tends to 1.

It follows that higher risk aversion leads to more conservative bounds: increasing risk
aversion drives the lower bound down and the upper bound up.

It only remains to show how we calculate the bounds that appear in Result 3. Given a
chosen value of ¢, and hence of ¢; and ¢,, the risk-neutral expectations that appear in the
bounds can be calculated from index option prices. The only point at which the prices
of options on stock i itself are used is, therefore, in the calculation of ¢; and ¢,, which

are determined by the prices of index and of individual stock options via the risk-neutral
marginals Q,, () and Q;(+).

Result 5. For any v > 0, we can calculate the risk-neutral expectations in Result 3 using

observable option prices:

F 00
E*[R)] = R} + % [/0 (v — )K" ?put(K) dK —i—/F Y(y = K" ?call(K) dK | ,
0

14



t (K R
B (R (B < )] = Ryq) [put%m) _ wp“—“)] B

K
|t = 8 e (1) K,
0

I S
(K, R e
E* [RLI Ry > 0.)] = Ryd] %M - call’(Kuﬂ S [T - DRl () K,

where Sy is the spot price of the market index; F' = RSy is the forward price; put(K)
and call(K) are the prices of index put and call options; and K; = ¢Sy and K, = q,5.

1.1 Fréchet—Hoeffding vs. Cauchy—Schwarz

The bounds in Result 3 are stronger than the bounds that follow from the fact that
correlation lies between plus and minus one (that is, from the Cauchy—Schwarz inequality).

To compare the two approaches, note that equation (5) implies that

o [Ry o IR < )] _

P*[R; < q] — <P[R; < q| <P*[R; < m ,
(8)
where o* ] = y/var* || denotes risk-neutral volatility. These bounds depend only on

univariate risk-neutral expectations, so can be calculated from observable option prices.

But this approach is less efficient than the bounds derived above because, in general,
comonotonic random variables are not perfectly positively correlated and countermono-
tonic random variables are not perfectly negatively correlated. This is easily seen in our
application, because the stock crash indicator (a binary variable) cannot be a linear func-
tion of a power of the market return (a continuous variable).!’ Tt is thus impossible for
the risk-neutral correlation between the terms R, and I(R; < ¢) in equation (5) to reach
plus or minus one. We report Fréchet-Hoeffding-implied bounds on these risk-neutral
correlations for stocks in our sample in Table A2 of the appendix.

It therefore follows that bounds obtained by “setting correlation equal to one” (or to
minus one) will be looser than the bounds supplied by Result 3. Indeed, the upper and
lower bounds on crash probabilities implied by the Cauchy-Schwarz inequality need not
even lie between zero and one. Table A3, in the appendix, reports the relative widths of

our bounds compared with the Cauchy—Schwarz bounds across firms. For all crash sizes

10For an example in which both variables are continuous, suppose that Z is Normal. Then e? and
e?? are comonotonic if ¢ > 0 and countermonotonic if ¢ < 0. But as ¢ tends to plus or minus infinity,

the correlation between the two tends to zero.
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and horizons, the Cauchy—Schwarz bounds are substantially wider than the bounds based
on the Fréchet-Hoeffding theorem. In the case of the 1 month/20% pair, the Cauchy—
Schwarz bounds are, on average, more than three times wider than the Fréchet-Hoeffding
bounds, while for the more extreme 1 month/30% pair, the Cauchy-Schwarz bounds are

on the order of ten times wider on average.

2 Data

We focus on firms included in the S&P 500 index, using index constituent information
from CRSP. Our sample runs from January 1996 to December 2022. On the last trading
day of each month ¢, we obtain, from OptionMetrics, the volatility surfaces of the S&P 500
index and of all firms that are S&P 500 constituents during month ¢, together with risk-
free rates. We then obtain stock prices, returns, trading volumes and shares outstanding
from CRSP to construct a firm-month panel. We emphasize that, unlike much of the
literature, we do not drop financial firms from our sample, as our theory applies equally
well to financial firms as to other industries

We face the issue that individual stock options are American style rather than FEuro-
pean style. We deal with this issue, following the related literature (Carr and Wu, 2009;
Kelly, Lustig, and Van Nieuwerburgh, 2016; Christoffersen, Fournier, and Jacobs, 2018;
Martin and Wagner, 2019), by using volatility surfaces reported by OptionMetrics, who
use proprietary multinomial tree models to account for early exercise premia. This is not
a perfect solution, but we believe that the distinction is likely to be relatively minor for
our applications, as the calculations required by Results 3 and 5 depend on the prices of
out-of-the-money options.

When calculating the integrals in Result 5, we extrapolate a flat volatility smile outside
the range of observed strikes, as is also standard in the literature. We provide additional
computational details on the construction of our bounds in Section D of the Appendix.

We write R;¢ 4, for the gross return on stock ¢ from time ¢ to time ¢ + 7, Pft(r, q)
and Pgt(T, q) for the lower and upper bounds on the probability that R;; ;. is less than
or equal to ¢, and ]P)Z:t(T, q) for the corresponding risk-neutral probability.

Table 1 reports summary statistics for these measures with ¢ = 70%, 80% and 90%, at

1, 3, 6, and 12 month horizons. For comparison, we also report the realized frequencies of
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Table 1: Summary statistics

This table presents summary statistics of realized crash events, our crash probability bounds, and risk-
neutral crash probabilities. The sample data are monthly from January 1996 to December 2022. The crash
events (realized crashes) under consideration are I'(R;¢—¢1r < q) for ¢ =10.7,0.8,0.9 and 7 =1, 3, 6, 12
months. The bounds and risk-neutral probabilities are measures of the conditional probabilities of crash
events.

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)
horizon 1 3 6 12 1 3 6 12

Panel A: ¢ = 0.7, down by over 30%

mean  0.006 0.029 0.057 0.093 0.009 0.038 0.073 0.115
s.d. 0.019 0.064 0.100 0.120 0.025 0.067 0.103 0.147
mean  0.004 0.025 0.051 0.076 0.006 0.030 0.056 0.082
s.d. 0.007 0.019 0.023 0.023 0.013 0.032 0.042 0.049
mean  0.007 0.044 0.098 0.167 0.009 0.050 0.104 0.173
s.d. 0.012 0.037 0.050 0.056 0.017 0.045 0.061 0.071
mean  0.009 0.060 0.139 0.253 0.011 0.066 0.146 0.259
s.d. 0.016 0.053 0.077 0.094 0.020 0.056 0.078 0.093

realized
lower bound
risk-neutral

upper bound

Panel B: ¢ = 0.8, down by over 20%

mean  0.021 0.069 0.110 0.152 0.029 0.084 0.130 0.173
s.d. 0.048 0.107 0.140 0.158 0.059 0.092 0.129 0.165
mean  0.022 0.073 0.102 0.123 0.027 0.079 0.110 0.133
s.d. 0.020 0.028 0.027 0.027 0.029 0.046 0.052 0.056
mean  0.031 0.113 0.174 0.236 0.037 0.120 0.182 0.246
s.d. 0.031 0.050 0.053 0.058 0.036 0.058 0.065 0.072
mean  0.038 0.144 0.234 0.340 0.044 0.152 0.243 0.352
s.d. 0.040 0.071 0.082 0.097 0.042 0.069 0.079 0.089

realized
lower bound
risk-neutral

upper bound

Panel C: ¢ = 0.9, down by over 10%

mean  0.096 0.172 0.211 0.238 0.110 0.190 0.231 0.254
s.d. 0.123 0.170 0.184 0.193 0.089 0.119 0.152 0.182
mean  0.109 0.168 0.195 0.209 0.118 0.179 0.206 0.218
s.d. 0.036 0.031 0.027 0.023 0.050 0.055 0.056 0.056
mean  0.136 0.228 0.286 0.341 0.145 0.239 0.297 0.350
s.d. 0.050 0.051 0.051 0.049 0.056 0.061 0.063 0.063
mean  0.156 0.277 0.367 0.466 0.166 0.290 0.378 0.476
s.d. 0.064 0.074 0.080 0.085 0.062 0.070 0.073 0.073

realized
lower bound
risk-neutral

upper bound
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crashes. Specifically, for each month from January 1996 to December 2022, we calculate
cross-sectional averages of the realized crash indicator I(R;; 4, < ¢q) (which equals one
if the realized return is less than or equal to ¢, and zero otherwise), the upper and lower
bounds, and the risk-neutral crash probabilities. The first four columns of the table
report the means and standard deviations of these T = 324 observations at each of the
four horizons. Similarly, we calculate time-series averages of the same quantities for each
of the N = 1044 firms in our sample. The last four columns of Table 1 report the means
and standard deviations of these time-series averages. The sample means of cross-sectional
and time-series averages differ slightly because we have an unbalanced panel.

Consistent with the predictions of the theory and the discussion following Result 3, the
time-series and cross-sectional means of the lower bounds are close to the corresponding
mean realized crash frequencies, whereas the risk-neutral probabilities and (even more so)

the upper bounds overestimate the likelihood of crashes.

3 In-sample results

3.1 Regression tests

To test whether the option-implied bounds successfully measure the probability of a crash,

we run the regression

I(Riy1r < q) = a+ BXi(7,q) + €ipgr (9)

for a range of crash sizes ¢ and forecasting horizons 7 (measured in months). Here X, (7, q)
is the lower or upper bound on the crash probability (that is, Pﬁt(T, q) or ]P’gt(T, q)),
or the risk-neutral crash probability, P},(7,¢). Result 3 showed, under our maintained

assumptions, that the inequality
]P)lj;ut(T’ q) <P R < q) < ]P)gt(ﬂ q)

holds for any stock 4, forecasting horizon 7, and crash size ¢. If, moreover, one of the
bounds is close to the true crash probability, we should find « close to zero and /3 close

to one in the corresponding regression.
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Table 2: Regression tests of the option-implied crash probability measures

This table reports the results of running linear regressions
I(Rit—t4r < q) = a+ BXi(7,q) + €ittr,

in which ¢ = 0.7,0.8 and 0.9, and X stands for P (the lower bounds), PV (the upper bounds), or P*
(the risk-neutral probabilities). The data are monthly from January 1996 to December 2022. The stocks
under consideration are S&P 500 constituents. The return horizon 7 is one month, three months, six
months, or one year. Values in parentheses are firm-month two-way clustered standard errors following
Thompson (2011). Values in square brackets are standard errors following the panel bootstrap procedures

of Martin and Wagner (2019) using 2500 bootstrap samples.

lower bound risk-neutral upper bound
horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: ¢ = 0.70, down by over 30%
@ 0.00  0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01)
[0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01]
I} 0.95 1.03 1.09 1.05 0.66 0.60 0.59 0.56 0.51 0.43 0.39 0.35
(0.15) (0.12) (0.11) (0.10) (0.11) (0.08) (0.07) (0.07) (0.09) (0.06) (0.05) (0.05)
[0.16] [0.14] [0.18] [0.15] [0.11] [0.11] [0.11] [0.11] [0.10] [0.09] [0.08] [0.07]
R? 3.90% 5.37% 5.17% 3.91% 3.77% 4.56% 4.01% 3.06% 3.63% 4.16% 3.41% 247%
Panel B: ¢ = 0.80, down by over 20%
@ 0.00 —-0.01 -0.01 0.02 0.00 —-0.01 —0.02 0.00 0.00 —-0.01 -0.01 0.01
(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02)
[0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.02] [0.03]
I} 0.92 1.03 1.15 1.07 0.68 0.69 0.73 0.66 0.56 0.51 0.49 0.41
(0.11) (0.09) (0.09) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08) (0.06) (0.06) (0.06)
[0.11] [0.13] [0.15] [0.13] [0.09] [0.10] [0.11] [0.12] [0.07] [0.08] [0.10] [0.10]
R? 5.65% 5.15% 4.76% 3.69% 5.48% 4.50% 3.89% 2.96% 5.32% 4.11% 3.22% 2.30%
Panel C: ¢ = 0.90, down by over 10%
@ -0.02 —-0.01 -0.01 0.03 —-0.02 —-0.02 —-0.02 0.00 —0.02  0.00 0.01 0.05
(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.03) (0.01) (0.02) (0.02) (0.03)
[0.01] [0.02] [0.02] [0.03] [0.01] [0.02] [0.03] [0.04] [0.01] [0.03] [0.04] [0.05]
I} 1.05 1.07 1.12 1.01 0.88 0.83 0.80 0.68 0.75 0.63 0.54 0.41
(0.08) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08)
[0.08] [0.11] [0.12] [0.12] [0.07] [0.11] [0.12] [0.13] [0.08] [0.12] [0.12] [0.11]
R? 5.46% 3.71% 3.38% 2.41% 5.46% 3.39% 2.80% 1.83% 5.35% 3.03% 2.16% 1.23%
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Figure 5: Regression coefficients /3 for the lower bounds (OIB-LB) and the risk-neutral
(RN) probabilities in subsamples.

This figure presents the regression coeflicients of equation (9) in nine completely different subsamples,
when the independent variable is the lower bound, forecasting horizons are 7 = 1, 3,6, 12 months, and
the crash size ¢ = 0.8. The height of a blue bar represents the § estimate; error bars represent the 95%

confidence intervals calculated based on firm-month clustered standard errors.

The regression results are shown in Table 2, which reports two-way clustered standard
errors in parentheses, following Thompson (2011), and block bootstrapped standard errors
in square brackets, using the procedure of Martin and Wagner (2019). Across crash
sizes and forecasting horizons—and for all three right-hand side variables—the estimated
intercepts are close to zero, while the estimated slope coefficients are positive and strongly
significant.

The estimated slope coefficients exhibit a clear monotonic pattern'! that is consis-

tent with the theory. The estimated coefficients on the lower bound are largest (averaging

HRecall from Result 3 that the risk-neutral probability must lie between the upper and lower bounds.
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around 1.05 across crash sizes and horizons); the estimated coefficients on the risk-neutral
probability are significantly below one (averaging around 0.70); and the estimated coeffi-
cients on the upper bound are smallest (averaging around 0.50).

In the case of the lower bound, the estimated coefficients are insignificantly different
from one at all horizons and for all crash sizes. The lower bound also outperforms the
other two variables in an R? sense for almost all horizons and crash sizes. These results
are consistent with the discussion following Result 3.

Tables A4, A5 and A6, in the appendix, report the same regressions with time fixed
effects, firm fixed effects, and time and firm fixed effects, respectively. (Although such
specifications are not useful for prediction without prior knowledge of the values of the
fixed effects, they help us to understand where the success of the predictor variables comes
from.) Table A4 shows that the slope coefficients are little changed by the introduction of
time fixed effects: thus our measures successfully explain cross-sectional variation in crash
probabilities. Tables A5 and A6 show that the slope coefficients remain highly significant
at short horizons when firm fixed effects are included, either on their own or even jointly
with time fixed effects (but not at the 12 month horizon). For example, at the one-month
horizon with both time and firm fixed effects included, the coefficient on the lower bound
is 0.77 for the largest crashes (¢ = 0.7), 0.73 for intermediate crashes (¢ = 0.8), and 0.65
for the smallest crashes (¢ = 0.9), with standard errors in the range 0.05 to 0.13.

The good performance of the lower bound is not driven by any particular episode. Fig-
ure 5 plots the 3 coefficient estimates for equation (9) when the lower bounds P/,(7,0.8)
are used to forecast 20% crashes in nine non-overlapping three-year subsamples, at hori-
zons of 1, 3, 6, and 12 months. The coefficient estimates are significantly greater than
zero in all subsamples and across all forecasting horizons. The null § = 1 cannot be
rejected in 31 out of the 36 cases at the 95% confidence level. For comparison, the coeffi-
cient estimates for risk-neutral probabilities exhibit more pronounced variation over time.
Standard theory would suggest that risk-neutral probabilities are likely to overstate true
crash probabilities, particularly at times of heightened market risk or risk aversion and
for stocks that are highly exposed to systematic risk. Consistent with this view, we find
that the coefficients on the risk-neutral probabilities are closer to zero (and insignificantly
different from zero at horizons from 3 to 12 months) in subsamples covering the global

financial crisis and the Covid pandemic.
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The lower bound adjusts the risk-neutral probabilities to account for risk, and the
adjustment is disciplined by theory. By contrast, ad hoc adjustments to the risk-neutral
probabilities do not seem to work as well. To illustrate, consider the following simple

approach'? to “debiasing” the risk-neutral probabilities:

1. At time ¢, calculate firm 7’s mean historical realized crash probability, p;, and mean
historical risk-neutral crash probability, pf, by averaging, respectively, its histori-
cal crash event indicators and historical risk-neutral crash probabilities from the

beginning of the sample until time ¢.

2. Generate an adjusted crash probability measure for firm ¢ at time ¢ by multiplying

the time ¢ risk-neutral probability of a crash in firm ¢ by p;/p;.
3. Repeat for all time periods ¢ and firms «.

We repeat the in-sample regression analysis for these adjusted risk-neutral probabil-
ities and report the results in Table A7 in the appendix. For ease of comparability, the
table also reports the corresponding results for the lower bounds and the raw risk-neutral
probabilities (taken from Table 2). By construction, the adjusted risk-neutral probabili-
ties are close to the true crash probability when averaged over the entire sample. But they
are poor predictors of crashes, with low R?s; and the estimated coefficients on the adjusted
probabilities are significantly below one—and the associated intercepts significantly above
zero—for all horizons and crash sizes.

Sorting on correlation. Tables A8 and A9 report results of forecasting 20% crashes
at horizons of 1 and 12 months, respectively, in subsamples of stocks sorted on trailing
correlation. As elsewhere, the upper and lower bounds, and the risk-neutral probabilities,
are highly significant forecasters of crashes in all subsamples. We generally find that
the explanatory power (as measured by R?) is highest for the lower bound, and for high
correlation stocks.!?

Forecasting rallies. While we have focussed on forecasting crashes, it is also interesting
to forecast rallies: for example, Tsai and Wachter (2016) argue that growth stocks have a

higher probability of experiencing systematic booms. Result 7, in Appendix E, adapts the

12We consider other ways of adjusting the risk-neutral probabilities in the out-of-sample analysis
discussed in Section 4.
13Note, however, that high correlation is neither necessary nor sufficient for comonotonicity.
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approach of Section 1 to derive bounds on the probability of a rally, rather than a crash,
in a stock. In this case it is the upper bound that is attained if the return on the stock
and on the market are comonotonic (or under the weaker condition that the return on
the stock and on the market are comonotonic in the right tail), so a priori we expect the
upper bound to perform better in forecasting rallies. Tables A10 and A11 report summary
statistics and results of regressions of a realized rally indicator function onto the lower and
upper bounds, and onto the risk-neutral probability of a rally. While the upper bound
is a highly significant predictor of rallies, the coefficient is significantly smaller than 1 at
horizons above 1 month, which suggests that the comonotonicity assumption is further
from the truth in rally regimes than in crash regimes. This is broadly consistent with the
finding that stock return correlations are countercyclical (Campbell et al., 2001).
Forecasting returns. It is natural to wonder whether the success in forecasting crashes
documented in Table 2 translates directly into forecasting returns. It is not completely
clear what to expect, however. One possibility is that crashes are simply the consequence
of market mispricing. On this view, if our measure helps to detect stocks which are
overpriced, and hence likely to crash, then it might also forecast low realized returns on
average. At the opposite end of the spectrum, the market efficiency view would suggest
that stocks with a high probability of crashing should have high, not low, expected returns
in compensation for this risk. (A riskless bond is guaranteed not to crash, and earns no
risk premium as a result.) In practice we find that the evidence is not decisive, though it is
somewhat more favorable to the latter view. Table A12 reports the results of regressions
of returns onto the option-implied bounds and onto the risk-neutral crash probabilities.
At the 12-month horizon there is some evidence of a statistically significant and positive
relationship between crash probability and subsequent returns; at shorter horizons, the

relationship remains positive but is not statistically significant.

3.2 Validity and tightness tests

We now carry out formal tests of the validity and tightness of the crash probability bounds
based on conditional moment restrictions, following Back, Crotty, and Kazempour (2022)
(henceforth, BCK).

Let z; be a strictly positive vector of dimension d that incorporates conditioning
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variables known at time ¢. This vector includes a set of candidate variables that might

help to determine crash probabilities, and it determines another vector, of the same length,
A=E{I(Rits4r <q) — Xip(7,9)} 24,

where X represents lower or upper bounds. As each element of z; is strictly positive, we
can assess the validity of the lower bound!# by testing A > 0 against the alternative that
A € R? (that is, A is unrestricted). If the lower bound is valid, we can assess its tightness
by testing A = 0 against the alternative A > 0. Similarly, we can assess the validity of the
upper bound by testing A < 0 against the alternative A\ € R¢, and assess its tightness by
testing A = 0 against the alternative A < 0.

Following BCK, we include a constant in the vector z;, together with additional vari-
ables from Welch and Goyal (2008), transformed where necessary to guarantee positivity.

We then construct the estimator

T t
N 1 1
A= T tz:; N, 121 {I(Ri 1t < q) — Xit(1,0) } 24|

where NV, is the number of firms at time ¢, and estimate the variance-covariance matrix
of A using the Driscoll and Kraay (1998) estimator to account for heteroskedasticity and
serial correlation in the time series and cross sectional dependence across firms.

Table 3 reports the results of the BCK tests. The headline result is that we do not
reject validity of either the upper or the lower bound at any horizon or crash size.

For all horizons and crash sizes (except the extreme one month/30% scenario, where
we have lower power due to the relatively smaller number of crashes) we can, however,
strongly reject the hypothesis that the upper bound is tight. This was to be expected: the
upper bound is tight only if stock returns and the market return are countermonotonic—
that is, if all individual stock returns are monotonically decreasing functions of the market
return. This is implausible, even as an approximation, for a single stock; and it cannot
hold for all stocks given that the market return is a weighted average of individual stock

returns.

MIf the lower bound is valid then E; [I(R; - < q) — X;4(7,q)] > 0, where X, ;(7,q) = Pﬁt(
As z, is known at time ¢ and strictly positive, it follows that E; [{I(R;1—i+r < q¢) — Xi4(T,q)} 24
and hence that E [{I(R; -+ < q) — X;.4(7,¢)} 2¢] > 0 by the law of iterated expectations.

7,q).
>0,
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Table 3: Validity and tightness of the option-implied crash probability bounds: the Back,
Crotty, and Kazempour (2022) tests

This table reports the p-values for testing the validity and tightness of our proposed bounds, using the
methodology described in Back, Crotty, and Kazempour (2022). The data are monthly from January
1996 to December 2022. Firms under consideration are S&P 500 constituents. The return horizons,
denoted by 7, are one month, three months, six months, and one year. For ¢ = 0.7,0.8 and 0.9, define

A=E[{I(Rit—t+r < q) — Xit(T, )} 24,

where X stands for P¥ (the lower bounds), PV (the upper bounds), or P* (the risk-neutral probabilities);
the elements of z; are 1) a constant one, 2) the dividend yield of the market, 3) the earnings yield of the
market, 4) the spread between five-year and three-month treasury yields, 5) the net equity issuance scaled
by the market capitalization, 6) the month-to-month inflation rate, 7) the BAA-AAA credit spread, 8) the
book-to-market ratio of the market, 9) the three-month treasury yield and 10) the VIX index. Hy : A > 0
vs. Hy : A € R? tests if a lower bound is valid; Hy : A = 0 vs. H; : A > 0 tests if a lower bound is tight;
Hy: XA <0vs. Hi : X\ € R? tests if an upper bound is valid; Hy : A = 0 vs. H; : A < 0 tests if an upper
bound is tight.

lower bound upper bound
horizon 1 3 6 12 1 3 6 12

Panel A: ¢ = 0.70, down by over 30%

Validity 0.691 1.000 0.512 0.430 0.763 0.781 0.774 0.752
Tightness 0.414 0.118 0.039 0.157 0.316 0.009 0.000 0.016

Panel B: ¢ = 0.80, down by over 20%

Validity 0.462 0.375 0.621 0.502 1.000 1.000 0.751 0.754
Tightness 0.348 0.022 0.043 0.161 0.011 0.000 0.000 0.018

Panel C: ¢ = 0.90, down by over 10%

Validity 0.068 0.634 0.686 0.490 1.000 1.000 0.760 0.753
Tightness 0.134 0.059 0.058 0.116 0.000 0.000 0.000 0.019

25



By contrast, as noted above, we expect a priori that the lower bound should be closer
to the truth. Here the evidence of tightness is mixed. We do not reject tightness of the
lower bound for any crash size at the 1-month horizon (with p-values on the null varying
between 0.134 and 0.414) or 12-month horizon (p-values between 0.116 and 0.161), but at

the 3- and 6-month horizons we can generally reject tightness with moderate confidence.

3.3 Comparison with other predictor variables

The previous section established that the theoretically motivated quantity P£t<7', q) is
a strongly significant forecaster of crashes. We now investigate whether this empirical
success survives the introduction of various stock characteristics, and compare the lower
bound more directly with the forecasting performance of the risk-neutral probability of a
crash. From now on we focus on declines of at least 20% in the interest of brevity.

We consider several stock characteristics, including seven variables associated with
the cross-section of expected stock returns: CAPM beta, relative size (the logarithms of a
firm’s market capitalization scaled by that of the S&P 500 index), book-to-market ratio,
gross profitability (gross profits scaled by total assets), two momentum measures (stock
returns from month —6 to month —1 and month —12 to month —1), and the most recent
month’s return (as a reversal signal).

We also consider various characteristics studied by a prior literature that has studied
related (though not identical) topics: the volatility of market-adjusted returns and aver-
age monthly turnover (both of which are highlighted in Chen, Hong, and Stein (2001)),
sales growth (Greenwood, Shleifer, and You, 2019), short interest scaled by institutional
ownership (Asquith, Pathak, and Ritter, 2005; Daniel, Klos, and Rottke, 2023), and four
variables motivated by the approach of Campbell, Hilscher, and Szilagyi (2008) to fore-
casting corporate bankruptcies and failures: the leverage (debt-to-asset) ratio, net income
scaled by total assets, cash and short-term investment scaled by total assets, and log price
per share. Appendix F gives further detail on the construction of all 15 characteristics,
and Table Al presents summary statistics.

Table 4 reports results for a crash of at least 20% over the next month. To make it
easier to assess the economic significance of the forecasting variables, we rescale the lower

bound, the risk-neutral probability, and all stock characteristics to have unit standard
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Table 4: Regression tests of the option-implied crash probability bounds: adjusted re-
gressions for 20% crashes in one month

This table reports the results from the following regressions:
I(Ri,t—>t+1 < 08) = ﬂ . Xit(l, 08) + A COIItI’OlSit + Eit+1,

in which X stands for PX (the lower bounds), P* (the risk-neutral probability), or both. The controls
are 15 firm characteristics from the literature. All independent variables are transformed to have a unit
standard deviation. Regression coefficients are reported in percentage points, and their two-way clustered
standard errors are included in the parentheses. The first five columns are simple OLS estimates, and
the sixth column reports estimates with time fixed effects, with a projected (within) R? replacing the
standard ones. Asterisks indicate coefficients whose t-statistics exceed four in magnitude.

I(Ri 41 <038)
(1) (2) (3) (4) (5) (6)

PER; 11 <0.8] 3.40* 3.02* 4.41 2.72*
(0.41) (0.58) (3.08) (0.33)
P*[Ri—t+1 < 0.8] 2.81% —1.39
(0.66) (3.36)
beta 0.48 0.12 0.18 0.10 0.22
(0.15) (0.16) (0.17) (0.14) (0.13)
relative size 0.06 —0.02 —0.04 —0.00 0.09
(0.10) (0.10) (0.10) (0.10) (0.07)
book-to-market —0.18 —0.20 —0.20 —0.20 —0.07
(0.11) (0.10) (0.10) (0.10) (0.08)
gross profit —-0.13 —0.08 —0.10 —0.07 —0.04
(0.09) (0.09) (0.09) (0.08) (0.07)
T(t—1)—t —0.27 —0.08 —0.06 —0.09 —0.16
(0.18) (0.18) (0.18) (0.19) (0.13)
T(t—6)—>(t—1) —0.45 —0.26 —0.26 —0.27 —0.34
(0.20) (0.19) (0.20) (0.20) (0.16)
T(t—12)— (t—1) —0.06 —0.06 —0.05 —0.07 -0.14
(0.19) (0.19) (0.19) (0.18) (0.17)
CHS-volatility 2.27* 0.31 0.44 0.32 0.50
(0.31) (0.37) (0.44) (0.39) (0.18)
turnover 0.18 —0.06 —-0.07 —0.05 0.08
(0.26) (0.25) (0.24) (0.24) (0.15)
sales growth 0.21 0.19 0.20 0.19 0.12
(0.11) (0.10) (0.11) (0.10) (0.08)
short int. 0.39* 0.34* 0.37* 0.33* 0.27*
(0.09) (0.08) (0.08) (0.08) (0.06)
leverage —-0.14 —-0.10 —-0.13 —0.08 —0.06
(0.12) (0.12) (0.12) (0.10) (0.11)
net income-to-asset —0.20 —0.13 —0.17 —0.12 —0.13
(0.12) (0.12) (0.12) (0.11) (0.08)
cash-to-asset —0.09 —0.09 —0.08 —0.09 —0.03
(0.08) (0.08) (0.08) (0.08) (0.07)
log price —0.34 0.13 0.05 0.15 0.06
(0.16) (0.15) (0.15) (0.17) (0.13)
intercept 0.04 0.00 —0.02 —0.01 —0.03
(0.03) (0.00) (0.03) (0.03) (0.03)
R?/R%-proj. 4.49%  5.65% 5.82% 5.69% 5.83% 4.72%
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deviation, and we multiply coeflicient estimates by 100. Each coefficient therefore mea-
sures the influence, in percentage points, of a one standard deviation move in the relevant
variable. Asterisks indicate coefficients with t-statistics greater than 4 in absolute value.!®

The first column of the table reports results for a multivariate regression of the crash
indicator variable onto the stock characteristics described above. Together, the charac-
teristics achieve an R? of 4.51%. Two of the characteristics are highly significant: the
volatility measure of Chen, Hong, and Stein (2001) has a t-statistic around 7, and short
interest scaled by institutional ownership has a t-statistic above 4. From now on, we refer
to this volatility measure as CHS wvolatility.

The second column shows that the lower bound, on its own, performs better than the
stock characteristics do collectively. It explains more of the variation in crashes, with R?
of 5.66%, and is highly statistically significant, with a ¢-statistic above 8. (This regression
is identical, up to the rescaling, to the regression with an estimated coefficient of 0.92
reported in Panel A of Table 2.)

The third column reports results of a multivariate regression that uses both the lower
bound and the stock characteristics to forecast crashes. The lower bound remains highly
significant, with a t¢-statistic above 5. Of the stock characteristics, only short interest
remains statistically significant, and the collective marginal contribution to explanatory
power of the characteristics is small. The coefficient on the lower bound is roughly an
order of magnitude greater than that on short interest: a one standard deviation move in
the lower bound moves the implied crash probability by 3.02 percentage points, whereas
a one standard deviation move in short interest moves the implied crash probability by
0.34 percentage points.

Columns (4) and (5) of the tables include the risk-neutral probability of a crash, either
alone as an alternative to the lower bound, or together with it. At all three horizons, the
risk-neutral probability enters strongly significantly when included on its own, but achieves
a lower R? than the lower bound does. When both are included together, the coefficient
on the lower bound is positive while that on the risk-neutral probability is negative; but
the coefficients are imprecisely estimated, as the lower bound and risk-neutral probability
are highly correlated.

Tables A13 and A14, in the Appendix, report similar results over horizons of one quar-

15We choose a high threshold to avoid false positives, as recommended by Harvey, Liu, and Zhu (2016).
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ter and one year, respectively. As before, we rescale all right-hand side variables to have
unit standard deviation so that coefficient estimates indicate the economic importance
of the various potential predictors. The lower bound remains highly significant both in
statistical (the t-statistic is large) and economic (the estimated coefficient is large) terms.
In the univariate regression at the one-year horizon, for example, a one standard deviation
increase in the lower bound represents a 6.90 percentage point increase in the probability
of a crash, with a t-statistic above 12. When all stock characteristics are included, the
coefficient estimate drops to 5.17, with a t-statistic above 7. The stock characteristics
are more informative at this longer horizon: sales growth and short interest are highly

statistically significant with estimated coefficients of 1.76 and 2.32, respectively.

3.3.1 A “kitchen sink” approach

We conclude the in-sample section by trying a “kitchen sink” approach that also includes
15 squared characteristics (for example, book—to—marketit) and (125) = 105 interactions
between characteristics (for example, book-to-market;; x sales growth, ;).

Panel A of Table 5 reports the estimated coefficient on the lower bound across all
horizons. As in Table 4, we standardize all variables so that the reported coefficient
estimates can be interpreted as the effect of a 1 standard deviation move in the lower
bound on the forecast crash probability, measured in percentage points.

The left and middle blocks report results with no characteristics included, and with
the 15 characteristics included, at all horizons.'® The rightmost block reports results
when the characteristics, squared characteristics, and interaction terms are all included.
The estimated coefficient on the lower bound remains highly significant, and is reasonably
stable across specifications.

Panel B of the same table reports results when the risk-neutral probabilities are also
included. At the 1-month horizon, the relatively high correlation of the lower bound and
risk-neutral probabilities substantially increases the standard error on the lower bound
estimate; at other horizons, the lower bound remains highly significant. Meanwhile, the
coefficients on the risk-neutral probabilities are either insignificantly different from zero or

significantly negative, and the inclusion of the risk-neutral probabilities has little impact

16 At the 1-month horizon, the blocks with no controls and with the 15 characteristics repeat the
coefficient estimates reported in columns (2) and (3) of Table 4.
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Table 5: Regression tests of the option-implied crash probability bounds: additional
adjusted regressions for 20% crashes

This table reports the results from the following regressions:
I(Ri,t—>t+7 § 08) = ﬁ . Xit(’l', 08) + A controlsit + Eit+7 T = ]., 3, 6, 12

in which X stands for P¥ (the lower bounds), P* (the risk-neutral probability), or both. The first four
columns do not include controls. Columns 5-8 include the 15 firm characteristics as controls. Columns
9-12 include the 15 firm characteristics, 15 squared characteristics, and 105 pairwise interaction terms.
All independent variables are normalized to have unit standard deviation. Regression coefficients for
the lower bound (OIB-LB) and risk-neutral probabilities (RN) are reported in percentage points, and
two-way clustered standard errors are included in parentheses.

control: none control: characteristics control: “kitchen sink”
horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: the lower bound

OIB-LB 3.4 5.7 6.8 6.9 3.0 4.1 5.5 5.2 2.8 3.9 4.9 4.4
(0.4) (0.5) (0.5) (0.5) (0.6) (0.7) (0.8) (0.7) (0.7) (0.8) (0.8) (0.7)
R? 56% 5.1% 4.8% 3.7% 58% 5.6% 5.6% 5.0% 6.5% 6.8% 7.4% 7.5%

Panel B: the lower bound + risk-neutral probabilities

OIB-LB 4.7 11.3 11.9 9.5 44 10.8 120 9.1 2.1 103 121 9.1
(3.1) (2.7 (1.7) (2.0 (3.1) (2.8) (1.9 (2.0 (3.1) (3.00 (1.9 (1.9
RN —-1.3 —-57 —-53 -—-238 —-14 —-66 —-7.0 —4.5 07 —-64 -78 —-56
(3.2) (2.8) (1.8) (2.2) (34) (29) (1.9 (2.1) (34) (3.1) (2.0) (2.1)
R? 57% 5.4% 5.0% 3.8% 58% 5.9% 5.9% 5.2% 6.5% 7.0% T7.7% T7.7%

on the regression R?.

Summarizing, the risk-neutral probabilities do not contribute much incremental ex-
planatory power, whereas the characteristics contain useful information in sample, espe-
cially in the “kitchen sink” implementation and for crashes over longer horizons. As we
will now see, however, the characteristics and kitchen-sink approaches perform relatively

poorly out of sample.

4 Out-of-sample forecasts

The literature has shown that there can be large gaps between in-sample fit and out-
of-sample forecasting power, even if the true data generating process is stable over time

(Timmermann, 1993; Lewellen and Shanken, 2002; Martin and Nagel, 2022). In this
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Table 6: Diebold—Mariano tests of equal forecasting accuracy: the lower bound, the
risk-neutral and the adjusted risk-neutral forecasts

This table reports p-values from Diebold-Mariano tests (Diebold and Mariano, 1995) of the predictive
performance of the lower bound versus the risk-neutral probabilities and versus the adjusted risk-neutral
forecasts. We consider 20% crashes at horizons of 1, 3, 6 or 12 months. The competing forecaster in
Panel A is the risk-neutral probability without regression adjustments. Panel B and C adjust the risk-
neutral probabilities through trailing regressions using expanding windows (Panel B) or 3-year rolling
windows (Panel C). For a crash indicator y and a forecaster ¢, the squared error loss and cross entropy
loss are defined as (y — )% and —ylog ¢ — (1 — y) log(1 — 7)) respectively. The spectral density of the loss
differential is estimated using the Driscoll and Kraay (1998) estimator, accounting for general cross-firm
crash correlations.

horizon 1 3 6 12
Panel A: risk-neutral (o« =0,5=1)

Squared error 0.028 0.010 0.046 0.098
Cross entropy  0.059 0.007 0.053 0.189

Panel B: risk-neutral (expanding &, B)

Squared error  0.124 0.056 0.056 0.048
Cross entropy  0.005 0.015 0.007 0.015

Panel C: risk-neutral (3-year rolling &, ()

Squared error 0.045 0.120 0.046 0.004
Cross entropy  0.000 0.003 0.017 0.002

section, we assess the lower bound’s performance out of sample, using it to forecast crashes
with coefficients a and [ set equal to 0 and 1, respectively. This specification is well suited
to out-of-sample testing because there are no free parameters to be estimated.

We assess forecasting performance using the out-of-sample R? measure

p g o T (Bipr <08) — PE (Riyonir <08)}°
. Yo AI(Ritster <0.8) — pi,t}z ’

(10)

where 7 denotes the forecasting horizon, ]P’tL (Rit—t+r < 0.8) is the lower bound on the
probability of a 20% crash, and p;; is the historical average crash probability for firm ¢
estimated over the period from 1 to (t — 7). It follows from this definition that RZ_
increases if and only if the forecaster performs better in the newly included sample than
it does in the trailing sample.

For comparison, we calculate the corresponding out-of-sample R2s for the risk-neutral

probabilities, replacing P¥ (R; ;11 < 0.8) in equation (10) with P} (R; ;s < 0.8). We
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Panel A: Expanding-window adjustments for the risk-neutral probabilities
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Panel B: 3-year rolling-window adjustments for the risk-neutral probabilities
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Figure 6: Out-of-sample R2s: the lower bound, the risk-neutral, and the adjusted risk-
neutral forecasts

This figure presents the out-of-sample R%s (R2,,) for our option-implied lower bound (OIB-LB). At each
time point ¢, we compare the sum of squared forecasting errors from OIB-LB to those from a firm-
specific average probability of crashes, calculated over the period 1 : (¢ — 7) during which crash events
are observable at time t; 7(= 1,3,6,12) represents the forecasting horizon. The note (« = 0, 8 = 1)
emphasizes that no adjustments have been made for the lower bound. For comparison, RZ
also presented for the risk-neutral probabilities (RN, « = 0, § = 1) and their derived forecasts from
expanding-window (Panel A) or 3-year rolling-window (Panel B) linear regressions (RN, &, 8) in dark

blue.

values are

also report results for an adjusted risk-neutral probability forecast dt—i—BtPZ‘ (Ritstrr <0.8),
where (dy, Bt) are regression estimates, as in (9), to correct for the upward biases in the
risk-neutral probabilities. We report in Panel A the results based on expanding-window
regressions, and in Panel B based on 3-year rolling-window regressions.

Figure 6 shows that the lower bound outperforms the risk-neutral probabilities and
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the adjusted risk-neutral forecasts at all horizons. We note in particular that an attempt
to correct the upward bias in the risk-neutral probabilities by re-estimating & and B in
rolling-regressions substantially worsens forecasting performance at the longer horizons.
Simply chasing in-sample fittings on recent observations in search for more accurate crash
forecasts can be counterproductive. The decline in the forecasting performance of the
risk-neutral probabilities around 2008-2010 echoes our findings in Figure 5: consistent
with standard theory, the extent to which risk-neutral probabilities overstate true crash
risk is greatest at times of high market risk. Rolling regressions further exacerbate this
issue in the aftermath of a realized crash.

To compare the predictive performance of the lower bound versus the risk-neutral
probabilities and versus the adjusted risk-neutral forecasts formally, we report p-values
of Diebold-Mariano tests (Diebold and Mariano, 1995) in Table 6, using both squared
and cross-entropy loss functions (with the latter inducing heavier penalties on misaligned
forecasts). The p-values on the null of equal predictive accuracy range from 0.000 to
0.189, allowing us to reject this null at conventional significant levels in most cases. The
results are least favorable to our theory when we compare the lower bound to the raw
risk-neutral probabilities at the 12-month horizon, perhaps because this is the horizon at
which the comonotonic crash assumption underpinning the superior performance of the
lower bound is most likely to be loose.

To consider a priori more competitive forecasters, we design a procedure to emulate
an avid “data-snooper” that aggregates the 15 stock characteristics examined in Section
3.3—together with the risk-neutral probabilities and our lower bound—to construct crash
predictors. We select models using the elastic net estimator (minimizing OLS losses
subject to L, and Ly penalties as in Zou and Hastie (2005)). The degree of shrinkage is
determined from five-fold cross-validation using the training samples; we apply the same
tuning parameter for both penalty terms to avoid the well-known indeterminacy issues in
cross-validating the two elastic net penalties simultaneously.

Figure 7 presents the results, using expanding windows in Panel A and 3-year rolling
windows in Panel B. In both cases, the lower bound outperforms at all horizons. We
find similar results using Lasso (Tibshirani, 1996) or ridge regularization: see Figures A3
and A4 in the appendix.

Figure 8 summarizes the coefficient estimates at each point in time. To make it possible
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Panel A: Expanding-window regressions with the elastic-net penalties
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Figure 7: Out-of-sample R?s: the lower bound and the regression forecasts aggregating
all variables

This figure presents the out-of-sample R%s (R2,,) for our option-implied lower bound (OIB-LB). At each
time point ¢, we compare the sum of squared forecasting errors from OIB-LB to those from a firm-specific

average probability of crashes, calculated over the period 1: (¢t —7) (1 =1, 3,6,12). For comparison, we

2

osS for a forecaster that aggregates the 15 stock characteristics considered in Session 3.3, the

also report R,
lower bound, and the risk-neutral probabilities. The variables are combined through expanding-window
(Panel A) or 3-year rolling-window (Panel B) elastic-net regressions, the tuning parameters of which are

chosen through 5-fold cross-validations.

to compare the magnitudes of coefficients, all explanatory variables are standardized in
each regression; the coefficients can therefore be interpreted as showing the change in crash
probability (measured in percentage points) associated with a one standard deviation
move in the associated variable. Panel A shows that in expanding-window regressions,
the elastic net gradually “learns” that the lower bound is a useful predictor of crashes. At

the 1-month horizon, in particular, the model ends up relying almost exclusively on the
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Panel B: 3-year rolling-window regressions with the elastic-net penalty
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Regression coefficient estimates from the elastic-net regressions

This figure presents regression coefficient estimates using the elastic-net estimator for aggregating the 15

stock characteristics considered in Session 3.3 (their descriptions are presented in Appendix F), the lower

bound, and the risk-neutral probabilities. The training samples come from expanding windows (Panel A)

or 3-year rolling windows (Panel B). The tuning parameters are chosen through 5-fold cross-validations.

To compare across the seventeen features, the estimates are divided by the standard deviations of their

corresponding variables in the training samples. All values are in percentage points.

lower bound; at longer horizons, it loads positively on the lower bound and negatively

on the risk-neutral probabilities, with some further role for other characteristics at the 6-

and 12-month horizons.

During, and immediately following, the global financial crisis, the elastic nets switch

to favor the risk-neutral probabilities, whose pessimistic predictions appear correct in

hindsight. This pattern is particularly stark for the rolling window regressions shown in

Panel B. But by “chasing fit” in this way, the elastic nets underperform dramatically in

the aftermath of the crisis, as is visible in Figure 7, Panel B.

Figure A2, in the appendix, shows out-of-sample R? plots that document similarly
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Table 7: Diebold-Mariano tests of equal forecasting accuracy: the lower bound and the
regression forecasts aggregating all variables

This table reports the p-values from the Diebold-Mariano tests (Diebold and Mariano, 1995) of whether
the lower bound (without any regression adjustments) is generating the same crash forecasting losses as
the regression aggregates. We consider over 20% stock-level crashes in the next one, three, six or twelve
months. The competing forecaster in the first block is the lower bound, the risk-neutral probabilities,
and the 15 stock characteristics aggregated from trailing elastic net regressions (the tuning parameters
are selected from cross-validations). The second block also include the 15 squared terms and the 105
interaction terms of the characteristics. Coefficients for regression aggregates are estimated from expand-
ing windows (Panel A) or 3-year rolling windows (Panel B). For a crash indicator y and a forecaster ¢,
the squared error loss and cross entropy loss are defined as (y — §)? and —ylogg — (1 — y)log(1 — 7))
respectively. The spectral density of the loss differential is estimated using the Driscoll and Kraay (1998)
estimator, accounting for general cross-firm crash correlations.

OIB-LB+RN-char. OIB-LB+RN-fchar.+}char.?
horizon 1 3 6 12 1 3 6 12

Panel A: expanding-window regressions

Squared error  0.037 0.004 0.031 0.004 0.024 0.050 0.022 0.000
Cross entropy 0.000 0.000 0.031 0.001 0.000 0.001 0.000 0.000

Panel B: rolling 3-year window regressions

Squared error  0.001  0.010 0.049 0.030 0.001 0.009 0.035 0.024
Cross entropy 0.000 0.000 0.108 0.099 0.000 0.000 0.053 0.050

poor performance at all horizons using the “kitchen sink” approach of Section 3.3.1.
Table 7 reports the p-values of Diebold-Mariano tests. With characteristics included,

the null of equal forecasting accuracy is now always rejected. In sharp contrast to the in-

sample evidence reported in Table 5, out-of-sample forecasting performance deteriorates

when characteristics are included.

5 Crash probabilities across industries

In this section, we use our crash predictor variable to generate industry-specific crash
probability measures. As we noted in the introduction, motivation for this exercise is
provided by Baron, Verner, and Xiong (2021).

As a first step, however, we must check that the lower bound performs well within
industries. Figure 9 reports coefficient estimates in regressions of crash indicators onto the
lower bounds separately for stocks belonging to each of the 17 Fama—French industries. We

focus on 20% crashes over horizons of 1, 3, 6, and 12 months. The estimated coefficients
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Figure 9: Regression coefficients  for the lower bounds by industry

This figure shows beta estimates for our baseline regression (9), using the lower bound as a predictor of
20% crashes over forecasting horizons of 7 = 1, 3,6 and 12 months, within the 17 Fama-French industries.

Error bars indicate 95% confidence intervals based on two-way clustered standard errors.

are significant for almost all industries and horizons, and are close to 1.

We therefore generate industry crash probability measures by averaging individual
crash probabilities across stocks in a given industry. Figure 10 shows the average proba-
bilities of 20% crashes in one year for various industries, defined using the Fama-French
49 industry classification. The top panel represents the financial sector (recall that un-
like much of the cross-sectional asset pricing literature we do not remove financial firms
because our theory applies quite generally). The middle panel represents the information
technology sector, and the bottom panel the service sector. In each panel, we also in-
clude the average crash probabilities of stocks in the food industry as a relatively stable
comparison industry.

The three panels tell a coherent story. Related industries’ crash probabilities comove,
indicating that news about individual stocks’ crash risk is not simply idiosyncratic, and

there is substantial variation in crash probabilities over time and across industries.
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Figure 10: The average crash probabilities for stocks belonging to different industries

This figure presents the probabilities of 20% crashes in one year for three sets of industries. The crash
probabilities are measured using the lower bounds, and then averaged for stocks being to the same

industry. The industries are defined according to the 49 Fama—French industry classifications.
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6 Explaining the crash probabilities

As the empirical evidence suggests that we can treat the lower bound as a measure of the
true forward-looking crash probability, we now use it to explore which characteristics help
to explain the probability of a crash. To the extent that the lower bound is an accurate
measure of the probability of a crash, it “de-noises” the realized crash event indicator, and
this boosts the power of the exercise to detect variables that influence a stock’s likelihood
of crashing. We can therefore expect to find R? that are considerably higher than those
documented in Table 4.

Defining a crash event as a net return of —20% or less over 1 month, we regress the
lower bound on the 15 stock characteristics studied in Sections 3.3 and 4, normalized to
have zero mean and unit standard deviation. We estimate the regression using the full
pooled sample, and also for each of the 17 Fama-French industry subsamples.

Panel A of Figure 11 shows a heatmap of t-statistics in industry-by-industry and
pooled regressions (left), pooled coefficient estimates (middle), and R%s (right). Several
variables from the literature exhibit a consistent relationship with crash probabilities
across industries. In the pooled sample, stocks with higher beta, CHS volatility (chs.vol),
share turnover (tnover), and short interest (s.int) tend to have higher crash probabilities,
consistent with the work of Chen, Hong, and Stein (2001) and Hong and Stein (2003).
(Recall that these variables do not predict actual realized crashes when controlling for
the lower bound, as demonstrated in columns (3) and (6) of Table 4.) The thresholded
log share price variable, log.p, of Campbell, Hilscher, and Szilagyi (2008) enters with a
negative, and highly statistically significant, coefficient: penny stocks tend to have higher
crash risk. Similarly, crash risk is typically elevated for stocks with poor recent returns,
either over the past month (rlagl) or from month —6 to —1 (mom6).

The strong statistical significance of these characteristics reflects the point noted
above, that the lower bound filters out the noise in realized crash event indicators. (In
contrast, when we use realized crash indicators as the dependent variable, we do not
achieve the same level of significance due to reduced statistical efficiency, as shown in
column (1) of Table 4.) As also anticipated above, this means that the regression R%s
reported in Figure 11 are an order of magnitude larger than those in reported in Table 4.

Some variables have significant predictive power for crashes in certain industries but
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Panel A: Regressions of the lower bound onto 15 characteristics

chs.vol- i
e beta: - cos NN
eta-
tnover- o chems [l
tnover: ciins [N
snt- s 3 cnstr [
cash- he cnsum [
- i .
Faner [
saleg- L] X
rsize- - Food -
mom12- o machn [ NN
vl | vines
o
moms- | v oo S
lev- - stee! [N
gprof- . Trans [
ot | | s
e other [N
logp- e Pooted [N
-1 0 i 2 3 050 075 1.00
Coefficient Estimate (Pooled) % R?

Panel B: Regressions onto characteristics, squared characteristics, and interaction terms
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Figure 11: Explaining the crash probabilities

This figure presents the t-statistics, coefficient estimates with confidence intervals (for the entire sample),
and R?s from regressions of the lower bound—our proposed measure of expected crash probabilities—
on stock characteristics. The standard errors used to calculate the t-statistics and confidence intervals
are two-way clustered by firm and month. In Panel A, the independent variables are the 15 stock
characteristics; in Panel B, 15 squared and 105 interaction terms are added (but only the results for
individual variables are reported; the results for squared and interaction terms are reported in Figure A5
and Table A15 of the Appendix). In the heatmaps on the left, t-statistics between —2 and 2 are treated
as zero, while those with absolute magnitudes above four are winsorized to plus/minus four—for better
visualization—and marked with asterisks. Error bars in the middle plots indicate +2 standard errors.
On the right, the barplots display R2s; the increases in R?s after including squared and interaction terms

are shown in light blue in the lower panel.
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not in others. High short interest is strongly associated with higher crash probabilities in
financial firms. In the machinery and equipment industry, and in other capital-intensive
sectors such as oil, transport, and consumer goods, high leverage is associated with lower
crash risk.

We also run regressions that include all 15 squared characteristics and 105 interaction
terms in addition to the 15 characteristics, as in the kitchen sink approach of Section 3.3.1.
The left and middle sections of Panel B of Figure 11 report the t-statistics and full-sample
coefficient estimates for the linear terms in these regressions; the main patterns are broadly
consistent with Panel A. The right section reports the resulting R2s. Including the squared
and interaction terms increases R? fairly substantially in some industries (for example,
chemicals and food) but has a more marginal impact—increasing R? from around 70% to
around 75%—in the pooled regression.

Table A15, in the Appendix, reports coefficients and t-statistics for characteristics,
squared characteristics, and interaction terms in the pooled regression. Here we briefly
summarize some of the results, starting with the squared terms. Stocks with high CHS
volatility, or with low lagged returns, profitability, or six-month momentum tend to have
higher crash risk, as shown in Panel a; and the positive coefficients on the corresponding
squared characteristics, reported in Panel b, indicate that these patterns become stronger
as volatility rises or as lagged returns, profitability, or six-month momentum decline.

Turning to the interactions, reported in Panel ¢, we focus only on the most statis-
tically significant coefficients with t-statistics above 4 in the interest of brevity.!” The
signs of the coefficients on cashxlog.p, chs.volxlog.p, and r.sizexlog.p indicate that penny
stocks that are small, or volatile, or that have low cash holdings, tend to be particularly
exposed to crash risk. The positive coefficient on bmxgprof shows that an unprofitable
stock has even higher crash risk if it also has a low book-to-market ratio. The negative
coefficient on s.intxni indicates high crash risk for stocks with both high short interest
and low net income. Lastly, the positive sign on chs.volxbeta shows that the effects of
CHS volatility and beta—each of which is individually linked to higher crash risk—are
mutually reinforcing, so that volatile high-beta stocks have higher crash risk than would

be suggested by a linear specification.

Figure A5, in the Appendix, plots the t-statistics for all squared and interaction terms in industry-
specific and pooled regressions.
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7 Conclusion

We introduce a new, theoretically motivated, forecasting variable that successfully predicts
crashes in individual stocks by exploiting information in option prices. We do so as part
of a more general framework that supplies bounds on the expectation of a general function
of the market return and of an individual asset return.

We could, of course, have used option prices in a straightforward way to calculate
risk-neutral probabilities of crashes. This approach is widely used by practitioners, and
it has an appealing simplicity. Moreover, we find that the risk-neutral probability is a
highly significant forecaster of crashes in full-sample tests.

But standard theory suggests that risk-neutral probabilities should overstate the true
probability of a crash, and should overstate particularly dramatically at times of crisis,
when levels of risk, or of risk aversion, are high. We find that this is the case in the
data: the estimated coefficient on the risk-neutral probability is well below one, and at
horizons above one month the coefficient is insignificant or even negative in the subperiods
containing the subprime crisis and the Covid episode.

To move from risk-neutral probabilities to the true probabilities in which we are ul-
timately interested, we rely on an assumption on the form of the SDF that establishes
a strong link between the true probabilities and option prices. Even after making this
assumption, however, we face a further problem: to use option prices to measure the true
probability that a given stock crashes, we need to understand the joint risk-neutral distri-
bution of that stock and the market. But the prices we observe—of options on the market
and of options on individual stocks—only reveal the univariate risk-neutral distributions
of the market and of the individual stocks. We solve this problem with the final theoret-
ical ingredient of the paper, the Fréchet—Hoeffding theorem, which places bounds on the
relationship between the joint distribution and the marginal distributions that are tighter
than those derived from the Cauchy—Schwarz inequality. We use the theorem to derive
upper and lower bounds on the probability that an individual stock crashes, and show
theoretically (and confirm empirically) that the upper and lower bounds are, respectively,
higher and lower than the risk-neutral probability that the given stock crashes. We argue
that the lower bound is likely to be closer to the truth, and find, empirically, that the

lower bound is a highly statistically significant forecaster of crashes across crash sizes and
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forecasting horizons—even at horizons as short as one month—and across industries and
subperiods. We find, moreover, that the estimated coefficient is close to one, as it should
be if the lower bound is a good proxy for the true crash probability.

We compare the forecasting performance of the lower bound with a range of models
based on 15 stock characteristics suggested by the prior literature. When the characteris-
tics are included in multivariate regressions, the lower bound remains a highly statistically
significant forecaster of crashes at all horizons. At the one month horizon, it drives out
14 of the 15 characteristics, and all 15 characteristics together contribute almost no in-
cremental R? relative to the lower bound on its own. The one characteristic that is not
driven out is a measure of short interest. But even short interest’s economic importance
is limited by comparison with the lower bound: a one standard deviation increase in the
lower bound raises the forecast crash probability by 3 percentage points, whereas a one
standard deviation move in short interest raises the forecast probability by 0.3 percentage
points.

The lower bound performs similarly well out of sample. We compare it to elastic
net, ridge, and Lasso-regularized models that are allowed to exploit all 15 characteristics
together with the risk-neutral probabilities and even the lower bound itself; and a “kitchen
sink” approach that additionally includes squared characteristics and interactions of the
characteristics. These models have considerable flexibility: we fit them to the data using
both expanding-window and rolling regressions. In sharp contrast, the lower bound has
no free parameters at all, as we use it without an intercept and with coefficient fixed at 1.
And yet the lower bound outperforms at all horizons, for all three regularization methods,
and for both the expanding-window and rolling regression approaches. The competitor
models are led astray, in particular, by the financial crisis, which leads them to put too
much weight on the risk-neutral probabilities, and hence to “cry wolf” in the aftermath of

the crisis.
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Appendix A Proofs

A.1 Proof of Result 1

Proof. When g(z,y), defined on [0, 00) %[0, 00), is continuous and two-increasing, k(u,v) =

9 (Qnt(u), Q' (v)) is two-increasing in [0,1] x [0,1]. We therefore have

ceC cecC

inf/ k(u,v) dC(u,v) < /g(x,y) dQmi(z,y) < Sup/ k(u,v) dC(u,v), (A.1)
[0,1]2 (0,12
where we write C for the set of all two-dimensional copulas, and

k(u,v) = g (Qn' (u), Q7' (v)) - (A.2)

From Corollary 2.2 of Tchen (1980), we have
inf / k(u,v)dC(u,v) = / k(u,v)d (max(u+v —1, 0)),
“eC 012 [0.1)2

and

sup /[071]2 k(u,v) dC(u,v) :/ k(u,v)d (min(u,v)) .

cec [0,1]2
The probability densities of the Fréchet—Hoeffding lower bound, max(u +v — 1, 0), and
the Fréchet—Hoeffding upper bound, min(u,v), are uniformly distributed along the two
diagonals of the square [0, 1]* in R?, illustrated as follows:

(% (%

A

density of max(u +v —1,0)

0 1 0 1

Integrating the right-hand sides of the two equations above (with regard to these two

48



densities), we have

k(u,v)d (max(u+v—1, 0)) = k(u,1 —wu)du
[ ke dmastur o =1 0) = [Tt -

and

/{071]2 k(u,v)d (min(u,v)) = /01 (u, u) du.

Substituting these expressions back into (A.1) and using the definition (A.2) of k(u,v), it
follows that

1 1
/ 9 (Qn'(w), Q71 (1 —w)) du < /g(ﬂf,y) AQmi(, y) S/ 9(Q, (), Qi ' (v)) du.
0 0
(A.3)
The result follows on making the change of variable R,,, = Q,!(u) in the left- and right-

most integrals. |

A.2 Proof of Result 2

Proof. Under the stated assumptions, the function g(x,y) = x7h(y) is continuous and
two-increasing, as the product of two nondecreasing functions is two-increasing. From

equation (A.3), we have

/0 Q' ()] "1 (Q7 (1 — ) du < E*[R}h(R;)] < /0 (@ ()] h (@5 (w) du.

-1
m

But, making the change of variables R,, = Q..'(u), we have

/0 (@ (W] h(Q7' (1 —w)) du= / T RO (1L = Qu(Bn)) dQum(Ron)

and

/0 Q0] 1 (@ () du = [ T RLAQ (Qu(Ron)) dQun(Ro).

0

Combining these facts, we have the bounds stated in the result.

The lower bound is achieved when the copula linking @,, and Q; is C(u,v) = max(u+
v—1, 0). This implies that Q,,(R,)+ Qi(R;) = 1. Similarly, the upper bound is achieved
when the copula is C'(u,v) = min(u, v), that is, when Q;(R;) = Qum(Ry). O
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A.3 Proof of Result 3

Proof. Define h,,(R;) = —1/(1+ ¢ =) which converges pointwise to h(R;) = —I(R; <

q) almost everywhere. By equation (4) and the dominated convergence theorem (|h,| < 1),
E*[R) h(R; _
P[R; < ¢ = —E[h(R;)] = _ERL AR = — lim
Since h, is continuous and increasing, by Result 2,

B[R 1 (Qi ' (1 = Qu(Ri))] < B[R, hn(Ri)] < E*[R)1(QH(Qm(Bin))]. (A4)

Taking limits and applying the dominated convergence theorem again,

B[Ry (Q: (@ (Bo))]

B[R, (@7 (1 = Qu(Ra))]

— <PIR; <q] < — A5
AR B (] o)
Simplifying terms, we have
E* R I (B < q)] E* Ry I (R = qu)]
m <P[R; <q| <
7[R s ds = Ry,

The upper bound is attained when R; and R,, are countermonotonic according to Result
2, as the upper bound in (A.5) is the negative of the lower bound in (A.4).

Similarly, the lower bound is attained when R; and R,,, are comonotonic, which means
that Q;(R;) = Qm(R;) = U ~ Uniform(0, 1) almost everywhere.

Now, if R; and R, are lower comonotonic with thresholds (g, q;), Proposition 5 of
Cheung (2009) implies that the joint distribution of Q;(R;) and @Q,,,(R,,) has the following

distributional representation:
Qi(Ri) =UxI(U <p")+[1 - (1 =p")Vi] x I(U > p"),

Qm(Rpn) =U X I(U <p")+[1—=(1—=p")Va] x I(U > p*),

where p* = Q;(q) = Qm(q) by definition, and U, V;, V,, S Uniform(0, 1). (In the case in
which V; = V,, = U, R; and R,, are comonotonic.) It is easy to verify that Q;(R;) =
Qm(R;) = U when R; < ¢q and the lower bound can still hold as equality.
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To see that the risk-neutral crash probability lies between the lower and upper bounds,
note that by the continuous version of Chebyshev’s sum inequality,'® we have

E* (R (R < @) _ B [RY)E" (I (R < a0

B[Ry I (R > 0)] B[R] B [I (R > q.)]
E* [R7) - Ex [R)]

A.4 Proof of Result 4

Proof. When v = 0, the bounds become P*[R,, < ¢] < P[R; < ¢q] < P*[R,, > qu.]. By
definition, both the lower and upper bounds equal P*[R; < ¢.
To show that the lower bound is decreasing in 7, define the (decreasing) function

Y(x) = I(Qum(x) < Qi(q)). The lower bound is then E*[RY ¢(R,,)]/E*[R),] and

4 {E* [RMJ(Rm)]} _ B[R}, log (B )¢ (B )JE*[RY,] — B[R}, (R ) [E*[12), log (Ron)]
dy E*[Ryn] {E* (Rl }?

~ e ] [ R = )y oE()] 4Qu (£)4Q ()

i\ bg( ) a0nior10.0

= R”

n / /0 L )log< ) AQu(x )de<y)]
= e | ) s (2) 40 dau)

n / /0 L )log< ) AQu(x )de<y)]
—0.

(The inequality follows because () < ¥(y) if x > y.) Thus the lower bound is decreasing

with regard to the risk aversion parameter ~.

18This inequality states that for functions f and g which are 1ntegrable over [0, 1], both non-increasing

or both non-decreasing, then fol f@)g(z)dz > fol x)dx fo z)dz. If one function is non-increasing
and the other is non-decreasing, the inequality is reversed Lettlng f(z) = [Q,}(x)]” (a non-decreasing
function of z), we derive the first inequality by setting g(z) = I(x < @Q;(¢)) and the second by setting

g(x) = I(x > Qi(q)).
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Applying the same logic to the increasing function (z) = I(Q(z) > 1 — Qi(q)), we
can conclude that the upper bound is increasing with regard to +.

Next, note that the lower bound is such that

E* [R) I (Ry < qp)] < q
E* [R7] ~ B[R]

To show that the lower bound converges to zero as v — oo, we must show that E*[(R,,,/q;)"] —
oo as 7 — oo. This holds if P*[R,,/q > 1] > 0. If this condition does not hold,
R, < q = Q. (Qi(q)) with probability one, which violates the assumption that Q;(¢) < 1.
Thus, E*[(R,,/q)?] — oo and the lower bound converges to zero as 7 — 00.

To show that the upper bound goes to one as v — oo, note that

E* R} I(Ry, < qu)] + B[R} I(Ry > qu))
E*[R},]

1=

The result follows because E*[R) I(R,, < q.)]/E*[R},] — 0 as v — oo. This is satisfied
because P*[R,, < ¢,] < 1. (If not, we would have R,, < ¢, = Q,}(1 — Q:(g)), and hence
1 — Q;(q) = 1; but this violates the assumption that Q;(¢q) > 0.) ]

A.5 Proof of Result 5

Proof. By the Carr-Madan formula (Carr and Madan, 2001), for any smooth function
g(+) we have

g(S) = g(F)+g'(F)(S—F)+/O ¢"(K)max{K-S, 0} dK+/FOO ¢"(K)max{S—K, 0} dK.

Let Sy and I’ = SyRs be the spot and forward level of the market index, the function
g(S) be S7. Treating S, a random variable, as the level of market index next period,
taking the risk-neutral expectations on both sides of the equation above (changing orders

of integrals when needed), we have

E*[S7] =S3 R} + Sy R} (E*[S] - F)

F o)
+ / v(y = )K" 2Rput(K) dK + / vy — )K" ?Rycall(K) dK.
0 F
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Dividing both sides by S and noticing that R,, = S/Sy and that E*[S] = F', we have the
first equation.

Next, noticing that

E*[S"I(S<K)] Ry [
Sg S5 Jo

E*[S7I(S > K,)] Ry [~
S 5y Jk,

B[Ry, I (R < )] =

K'put’(K) dK,

E* Ry I(Rm = qu)] =

Kcall”(K) dK,

where the second equations follow from the static replication logic of Breeden and Litzen-
berger (1978). Integrating the last integrals above by parts and using the facts that
put(0) = put’(0) = 0 and that call(oco) = call’(co0) = 0, we have

K

K,
Kpwt”(K) dK = K'put/(K)| |

K
—/ yK" 'put’ (K) dK
0

0 0

K K
= K put/(K)) — (WKV_lput(K)‘ol —/ v(y — 1)K7_2put(K) dK)
0
K
= o (80) — (97 pun(i) = [ 50 = DR pun() ar )
0
and

Kcall’(K) dKzK”call’(K)j: . / VK Y eall (K) dK

Ky Ky

= —K)call(K,) — (WKV_lcall(K)

. / Ty = DE"2call(K) dK)

Ky Ky,

= —KJcall'(K,) + (yKl_lcall(Ku) +/ (v — 1) K" *call(K) dK) .

Multiplying these formulas by R;/S, yields the second and the third equations. m

Appendix B Bounds for general contingent payoffs

Result 1, which underpins our empirical work, requires that the function g(z,y) = 27h(y)
is two-increasing. When this is not the case, we can modify our approach by exploiting

a result of Hofer and Taco (2014). Specifically, for any well-behaved function k, we can
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approximate the optimization over the functional space of all copula functions C as follows:

cec

max/w k (u, v) dC/(u, v) ~ max lgk <i, @) | (A.6)

where P, is the set of permutations of {1,...,n}, and the approximate equality can be
made to hold up to arbitrarily small error by choosing n sufficiently large. The two
conditions for k to be well-behaved are that (i) it must be such that the integral is finite
and (i) it must be Lipschitz continuous almost everywhere.

The right-hand side of (A.6) is the canonical linear assignment problem in combinato-
rial optimization. The so-called Hungarian algorithm (Kuhn, 1955) reduces the complexity
of solving this problem from O(n!) (based on brute-force search) to O(n?), and offers the
upper bound. Similarly, to obtain lower bounds, we can apply the Hungarian algorithm
to the integral involving —k(u,v). Using this approach, together with Sklar’s theorem,

we have the following result.

Result 6. Let h be Lipschitz continuous almost everywhere. If myi s a permutation

of {1,...,n} that minimizes > ;_, k (i, ?) and Tmax 18 a permutation that maximizes

D i1 (l ”7(; ), then (up to errors that can be made arbitrarily small by choosing n
sufficiently large)

n

1 " 7 ﬂ—min(i) 1 1 Wmax(
— E{—,—— | <Eh —
nC ZZ:; (n7 n ) - nC' Z:: ( ) ’

where the constant C equals fol Q. (w)]” du and k(u,v) = g (Q,}(uv), Q; ' (v)).

7

As a simple example, if we are interested in evaluating the probability that a stock’s
return lies in some interval, Result 6 can be applied with A(R;) = I(q1 < R; < ¢2).

Appendix C Calibrating risk aversion

We use equation (7) (in which the risk-neutral expectations can be evaluated using option
prices according to Result 5) to compute the one-year-ahead crash probabilities P[RR, < ¢]

for a range of values of ¢, and for risk-aversion parameters v ranging from zero to four.
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Figure Al: The probability distribution of market returns: the left panel compares
the empirical CDFs of one-year-ahead market returns and our theory-based distribution
forecasts, recovered from option prices; the right panel shows two loss functions measuring
forecasting errors for when the crash probabilities are calculated using different +s.

We focus on the one-year horizon because of the limited number of market crash events
over shorter horizons in our sample (Jan. 1996-Dec. 2022).

The left panel of Figure Al shows the unconditional distributions of the gross S&P
500 return R, recovered from index option prices assuming risk-neutrality (v = 0) and
for v € {1,2,4}. The empirical CDF (1/7) Y, I(Rms41 < q) is also included. The
plot confirms the intuition that the risk-neutral probabilities overstate the likelihood of
market downturns.

The right panel of Figure A1 presents the loss functions for forecasting market “crashes”
Yi+1 = I(Rp1+1 < q) using their conditional expectations p; = E¢[yi41] = Pi[Riit1 <
calculated based on equation (7). The mean-squared, >, (yi+1 — pt)?, and cross-entropy,
Y=y logpe — (1 — yiy1) log(1l — py)], losses are both reported. All forecasting losses
are normalized by dividing by the realized loss when the risk-neutral distribution is used

to forecast. The best forecasting performance is achieved when v is around two.

Appendix D Calculating the Option-Implied Bounds

Here we provide further implementation details on calculating the option-implied bounds.
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Filtering. We applied four criteria to filter the implied volatility data in our sample: 1)
spot prices must be available from the CRSP database; 2) strike prices must be positive;
3) the OptionMetrics dispersion variable, a goodness-of-fit measure for OptionMetrics’
proprietary multinomial tree algorithm of constructing the volatility surface, must be
smaller than 0.05 and greater than zero; 4) for any firm-month-maturity combination, the
implied volatilities must be available at more than 10 different strike prices.

Interpolation and extrapolation. At time t, we denote by {oy (K1, 7),...,04(K,,7)}
the Black-Scholes implied volatilities of firm i’s options at strike prices K; < --- < K,
maturing at time (£4 7). These are observable volatility surface data from OptionMetrics.
We linearly interpolate implied volatility observations for any K such that K; < K < K.
For strikes outside the observable range [K;, K|, we extrapolate a flat volatility surface.
That is, for K < Ky, we set 04(K,7) = 04(K1,7), and, for K > K,,, we set 0, (K, T) =
oit(Kn, T).

Risk-free rates. All risk-free rates are sources from the OptionMetrics yield curve data.
At time t, for maturities at which the risk-free rates are not directly observable, we use
values linearly interpolated from the OptionMetrics yield curves.

The “clean” option prices. We construct option prices by applying the Black—Scholes
formula for a given strike K > 0, maturity 7, implied volatility o (K, 7), risk-free rate
r7+(7), and spot price S;;. These are European option prices assuming zero dividend yield.
We compute these prices on a grid of 2000 steps within the interval K/S;, € [1/L, L],
where L = 3 for one-, three-, and six-month horizons and L = 5 for the one-year horizon.
We only consider out-of-the-money options. That is, when K < S;; Ry, we compute put
prices, where Ry, = exp(rs.(7)7); when K > S;; R, we compute call prices.

The risk-neutral marginals. Given put and call option prices on the grid of strikes, we

numerically compute the following gradients to recover the risk-neutral marginals:

Q (K) o Rﬁtputgt(K), K S Rf’tSit
1\ S Rycall,(K) +1, K > Ry S

Only out-of-the-money option prices (derived from the corresponding implied volatilities)
are used to compute the risk-neutral marginals. We fit isotonic regressions to the raw
option-implied risk-neutral CDFs to guarantee monotonicity. We then winsorize the fitted

curve to ensure the CDFs are within [0, 1].

56



We use Result 3 to compute the quantiles ¢; and ¢,, which involves both the risk-
neutral marginals for individual stocks and those for the market index. When applying
Result 5 to compute the numerators and denominators of our bounds, we use the S&P
500 index option prices on the fine grid to numerically evaluate the integrals according to

the midpoint rule.

Appendix E Forecasting Rallies

Here we state our result on bounding rally probabilities in parallel to Result 3 on crashes,

prove this result, and tabulate our in-sample test results for forecasting rallies.

Result 7. The probability of a rally in stock i, P[R; > q|, satisfies the bounds

where ¢, = Q' (Qi(q)) and g = Q' (1 — Qi(q))-
The upper bound is attained if the return on the market R,, and return on the stock
R; are upper comonotonic with thresholds (q.,q); in particular this holds if R, and R;

are comonotonic. The lower bound is attained if the two returns are countermonotonic.

Proof. Define h,(R;) = 1/(1+e ™(#i=9)) which converges pointwise to h(R;) = I(R; > q)

almost everywhere. By equation (4) and the dominated convergence theorem (|h,| < 1),

_ E[RLA(R)]

P[R; > g = E[h(R,)] = lin ol ()]

B[R] noe Ef[Ra)

Since h,, is continuous and increasing, by Result 2,
E* [0, hn(Q7 (1 = Qu(Rn))] < B[R, hn(R)] < B[R], hn Q7 (@ua(Rn))]. (A7)

Taking limits and applying the dominated convergence theorem again,

E* [Ry,h(Q; (1 = Qu(Rn))]

E*[RL,MQ;  (Qm(Rim))]
E*[R)] '

E*[Ry]

<P[R; > ¢] < (A.8)
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Simplifying terms, we have

E*[RyI(Rm < q)]
E*[R}]

<P[R; > q] <

By Result 2, the lower and upper bounds are attained when R; and R,, are, respec-
tively, countermonotonic and comonotonic. In the latter case, Q;(R;) = Qum(Ry) = U ~
Uniform(0, 1) almost everywhere. Noticing that if R; and R, are upper comonotonic with

thresholds (g, ¢,), then their joint distribution can be characterized as
Qi(R;) =U x I(U 2 p") +p*Vi x I(U < p"),

Qun(Ry) =UxIU >p*)+pV,, x I(U < p*),

where U, V;, Vy, Uniform(0, 1) and p* = @Q;(q). Tt follows that Q;(R;) = Quu(Ry) = U
when R; > ¢, so that equality still holds for the upper bound under the weaker assumption

of upper comonotonicity. O]

We expect the upper bound to be tighter than the lower bound, as stock returns are
less likely to move in the opposite direction of the market. The summary statistics and

OLS test results in Tables A10 and A11 confirm this point.

Appendix F  Constructing Firm Characteristics

Firm characteristics used in the multiple regressions for crash probabilities are listed and
described below. All variables are constructed using a merged CRSP-Compustat firm-
month panel, unless otherwise noted.

Beta (beta). The stock betas are estimated using daily return data within the windows
of the last 12 months.

Relative size (rsize). The relative size is the difference between the market capitaliza-
tion of a firm and the total market capitalization of the S&P 500 index in logarithmic
terms.

Book to market ratio (bm). The ratio is firms’ book value of equities divided by their
market capitalization, calculated and updated at each fiscal quarter end.

Gross profitability (gprof). The numerator of this measure is the net revenue or the
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gross profit of a firm at the end of each fiscal quarter. If both of these quantities are miss-
ing, we use the sum of operating income and operating expenditures. The denominator is
the market value of assets, calculated as a firm’s market capitalization plus its book value
of debt. Dividing the market value of total assets creates measures that are more sensitive
to new firm-specific information (Campbell, Hilscher, and Szilagyi, 2008). Similarly, firm
characteristics such as leverage, net income to asset, and cash to asset ratios will also be
scaled by the market value of assets throughout our analysis, as will be discussed later.

Momentum and reversals (r—e)—t—1)s T(t—12)—>@—1) and 7—1)—¢, also named mom6,
mom12, and rlagl in figures). These variables are lagged (net) equity returns of firms
from month —6 to —1 and —12 to —1 (two momentum signals), as well as lagged one-
month returns (reversals).

CHS wolatility (chs.vol). This measure is proposed in Chen, Hong, and Stein (2001)
(thus the acronym CHS) for crash forecasting. The volatility is the rolling-window stan-
dard deviation of the excess of market returns (R; — R,,,), calculated based on daily return
samples spanning the last six month.

Turnover (tnover). The stock turnover variable is defined as the monthly trading
volume scaled by the number of shares outstanding. Following Chen, Hong, and Stein
(2001), we use the average turnover over the lagged six-month data samples as our turnover
characteristic. The trading volume on Nasdaq is adjusted according to the procedure
detailed in Appendix B of Gao and Ritter (2010). Specifically, we divide Nasdaq volume
by (1) 2.0 from January 1996 to January 2001; (2) 1.8 from February 2001 to December
2001; (3) 1.6 from January 2002 to December 2003; (4) 1.0 after January 2004 to the end
of our sample.

Sales growth (saleg). This variable is proposed for predicting industry-level stock
crashes by Greenwood, Shleifer, and You (2019). To be considered, firms must have at
least two consecutive years of revenue data. We calculate one-year sales growth based on
the most recent observations of the changes in revenue.

Short interest (s.int). The fraction of shares held by institutional investors that have
been sold short, as considered in Asquith, Pathak, and Ritter (2005); Daniel, Klos, and
Rottke (2023). We divide the number of shares held short (available from Compustat) by
the number of shares held by institutional investors (aggregated using Thomson-Reuters

Institutional 13-F filings).
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Leverage. (lev) We compute the leverage of a firm as its total liability (book value
of debt) divided by the market value of its total assets (calculated as a firm’s market
capitalization plus its book value of debt).

Net income over the market value of total assets (ni). This variable is an earnings-
based measure of profitability based on net income, proposed by Campbell, Hilscher, and
Szilagyi (2008) in the study of bankruptcy forecast.

Cash over the market value of total asset (cash). This characteristic is a liquidity mea-
sure with the numerator being cash and short-term investments. It is also incorporated in
the econometric model of Campbell, Hilscher, and Szilagyi (2008) to forecast bankruptcy.

Log price per share (log.p). We also include the log share prices, winsorized from above
at $15 per share (before taking logs) following Campbell, Hilscher, and Szilagyi (2008).
This variable is mainly used to isolate the tendency of firms traded at low prices to go
bankrupt or experience share price crashes.

To eliminate outliers, each of the 15 characteristics described above are winsorized
within a 2.5 to 97.5 percentile interval. Table A1l tabulates the summary statistics for all

the characteristics used in our sample.
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Appendix G Online Appendix: Tables and Figures

Table A1l: Summary statistics of firm characteristics in our sample

char. mean sd  median 25 q7d min max

beta 1.029 0.498 0.984 0.691 1.293 0.129 2.509
relative size —6.905 1.106 —=7.007 —-7.644 —-6.272 —10.779 —2.618
book-to-market 0.467 0.330 0.377 0.233 0.614 0.054 1.546
gross profit. 0.158 0.096 0.144 0.092 0.203 0.014 0.485
T(t—1)—t 0.011 0.087 0.011 —0.039 0.060 —0.210 0.247
T (t—6)—(t—1) 0.064 0.219 0.060 —0.066 0.183 —0.451 0.723
T(t—12)—(t—1) 0.136 0.334 0.117 —0.068 0.306  —0.564 1.232
CHS-volatility 0.018 0.009 0.015 0.011 0.021 0.007 0.053
turnover 0.184 0.135 0.144 0.095 0.225 0.037 0.717
sales growth 0.085 0.201 0.060 —0.009 0.141 —0.334 0.912
short int. 0.046 0.065 0.026 0.015 0.047 0.003 0.410
leverage 0.442 0.221 0.401 0.270 0.598 0.108 0.913
net income-to-asset 0.025 0.024 0.026 0.015 0.038 —0.075 0.080
cash-to-asset 0.070 0.074 0.046 0.020 0.089 0.002 0.340
log price 2.679 0.136 2.708 2.708 2.708 1.738 2.708
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Table A2: The risk-neutral correlation between R}, and the crash indicator I(R; < q):
bounds based on the Fréchet—Hoeffding inequalities

This table reports summary statistics of the bounds for risk-neutral correlation p*[R7,, I(R; < q)],
taking the marginal distributions of the market and stock returns as given (from the observed option
prices). The correlation bounds are calculated based on the Fréchet—Hoeffding inequalities, where the
lower bound is achieved when R, and R; are comonotonic and the upper bound is achieved when the
two are countermonotonic. We consider four different forecasting horizons and three crash sizes q. The
parameter -y is fixed to two according to our calibration exercise for the market returns, which is also the
value we use throughout our empirical analysis. The sample covers all S&P 500 firms for each month
(end) from January 1996 to December 2022.

lower bound upper bound

q horizon mean median min max mean median min max
30% 1 —-0.11  —-0.04 —-0.82 —0.00 0.09 0.03  0.00 0.79
30% 3 —-0.39 —-0.38 —0.86 —0.00 0.32 0.31  0.00 0.83
30% 6 —-0.58 —0.62 —0.88 —0.00 0.48 049  0.00 0.85
30% 12 -0.67 —-0.70 —0.89 —-0.00 0.61 0.62  0.00 0.85
20% 1 —-0.31 —-0.28 —-0.84 —-0.00 0.23 0.21  0.00 0.81
20% 3 —-0.64 —-0.68 —0.87 —0.00 0.48 049  0.00 0.84
20% 6 -0.73 —-0.74 —0.88 —0.00 0.59 0.59  0.00 0.87
20% 12 —-0.74 —-0.75 —0.89 —0.00 0.67 0.68  0.00 0.88
10% 1 -0.63 —0.60 —0.87 —0.00 0.46 0.46  0.00 0.82
10% 3 -0.76 —-0.77 —0.87 —0.00 0.60 0.60  0.00 0.84
10% 6 -0.78 —-0.79 —-0.88 —0.00 0.67 0.68  0.00 0.87
10% 12 —-0.78 —-0.78 —0.89 —-0.00 0.72 0.73  0.00 0.88

62



Table A3: Relative bound widths: Fréchet-Hoeffding vs. Cauchy—Schwarz

This table reports summary statistics of the relative widths of bounds calculated according to Result 3
(based on the Fréchet—Hoeffding theorem) and Equation 8 (based on the Cauchy—Schwarz inequality).
The ratios reported here are the ranges of the Fréchet—Hoeffding bounds divided by the ranges of the
Cauchy—Schwarz bounds. We consider four different forecasting horizons and three crash sizes. For every
month from January 1996 to December 2022, we compute the two types of bounds for each S&P 500 firm
and report the mean, standard deviation (sd), median, 25% and 75% sample quantile (q25 and q75), the

minimum and the maximum of the ratio in our full firm-month panel.

crash size (¢) horizon mean sd median 25 75 min  max
30% 1 0.099 0.138 0.036  0.005 0.138 0.000 0.799
30% 3 0.354 0.190 0.345 0.198 0.503 0.000 0.815
30% 6 0.531 0.148 0.558 0.438 0.645 0.000 0.812
30% 12 0.642 0.094 0.656 0.607 0.704 0.000 0.816
20% 1 0.271 0.184 0.247 0.113 0.410 0.000 0.800
20% 3 0.561 0.127 0.592 0.490 0.648 0.000 0.813
20% 6 0.658 0.075 0.662 0.623 0.706 0.000 0.811
20% 12 0.704 0.057 0.711  0.672 0.745 0.001 0.842
10% 1 0.544 0.108 0.565  0.487 0.618 0.000 0.848
10% 3 0.679 0.059 0.678 0.642 0.723 0.000 0.828
10% 6 0.727 0.043 0.733 0.698 0.761 0.000 0.812
10% 12 0.751 0.032 0.758 0.736 0.772 0.002 0.842
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Table A4: Regression tests of the option-implied crash probability bounds: OLS with
time fixed effects

This table reports the results of running linear regressions with time fixed effects
I(Rit—t4r < q) = ar + BXit(7,q) + €041

in which ¢ = 0.7,0.8 and 0.9, and X stands for P (the lower bounds), PV (the upper bounds), or P*
(the risk-neutral probabilities). The data are monthly from January 1996 to December 2022. The stocks
under consideration are S&P 500 constituents. The return horizon 7 is one month, three months, six
months, or one year. Values in parentheses are firm-month two-way clustered standard errors following
Thompson (2011). Values in square brackets are standard errors following the panel bootstrap procedures

of Martin and Wagner (2019) using 2500 bootstrap samples. Projected R?s are also reported.

lower bound risk-neutral upper bound
horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: ¢ = 0.7, down by over 30%
B8 0.93 1.05 1.11 1.14 0.68 0.70 0.74 0.78 0.55 0.55 0.58 0.60

(0.14) (0.10) (0.08) (0.08)  (0.10) (0.07) (0.05) (0.05)  (0.09) (0.05) (0.04) (0.04)
[0.16] [0.13] [0.12] [0.11]  [0.13] [0.09] [0.10] [0.07]  [0.09] [0.07] [0.06] [0.06]
R proj 3.27% 4.81% 506% 4.54%  3.21% 4.52% 4.87% 4.50%  3.16% 4.39% 4.74% 4.43%

Panel B: ¢ = 0.8, down by over 20%

B 093 103 113 110 073 080 089  0.87 062 067 074 071
(0.09) (0.07) (0.06) (0.06)  (0.07) (0.05) (0.05) (0.05)  (0.06) (0.04) (0.04) (0.04)
[0.10] [0.10] [0.09] [0.09]  [0.07] [0.07] [0.07] [0.06]  [0.07] [0.07] [0.07] [0.06]
R2:proj 4.49% 4.65% 4.55% 4.01%  4.39% 4.53% 4.48% 4.00%  4.33% 4.45% 4.40% 3.98%

Panel C: ¢ = 0.9, down by over 10%

B 099 099 1.05 1.05 088 089 094 093 080 079 083  0.82
(0.06) (0.05) (0.06) (0.06)  (0.05) (0.05) (0.05) (0.05)  (0.05) (0.04) (0.04) (0.05)
[0.06] [0.07] [0.08] [0.08]  [0.05] [0.07] [0.07] [0.08]  [0.05] [0.06] [0.06] [0.06]

R%*proj 4.02% 3.15% 3.14% 2.85% 3.99% 3.12% 3.12% 2.83% 3.96% 3.08% 3.09% 2.82%
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Table A5: Regression tests of the option-implied crash probability bounds: OLS with
firm fixed effects

This table reports the results of running linear regressions with firm fixed effects
I(Rit—st4r < q) = a; + BXit(T,q) + €ip4rs

in which ¢ = 0.7,0.8 and 0.9, and X stands for P (the lower bounds), PV (the upper bounds), or P*
(the risk-neutral probabilities). The data are monthly from January 1996 to December 2022. The stocks
under consideration are S&P 500 constituents. The return horizon 7 is one month, three months, six
months, or one year. Values in parentheses are firm-month two-way clustered standard errors following
Thompson (2011). Values in square brackets are standard errors following the panel bootstrap procedures

of Martin and Wagner (2019) using 2500 bootstrap samples. Projected R?s are also reported.

lower bound risk-neutral upper bound
horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: ¢ = 0.7, down by over 30%
B8 0.80 0.77 0.69 0.25 0.55 0.43 0.33 0.13 0.43 0.30 0.20 0.08

(0.15) (0.13) (0.13) (0.11)  (0.11) (0.08) (0.08) (0.07)  (0.09) (0.06) (0.05) (0.05)
(0.15] [0.21] [0.23] [0.15]  [0.13] [0.12] [0.11] [0.13]  [0.08] [0.10] [0.08] [0.08]
R2:proj 2.26% 2.03% 125% 0.13%  221% 1.63% 0.85% 0.12%  2.14% 1.48% 0.68% 0.10%

Panel B: ¢ = 0.8, down by over 20%

6] 0.78 0.73 064 025 0.57 046 036  0.15 046  0.33  0.23  0.09
(0.12) (0.12) (0.12) (0.11)  (0.10) (0.09) (0.09) (0.09)  (0.08) (0.07) (0.07) (0.06)
(0.12] [0.17] [0.18 [0.16]  [0.09] [0.12] [0.13] [0.14]  [0.08] [0.10] [0.11] [0.11]

R%proj 2.90% 1.58% 0.85% 0.11% 28™% 1.37% 0.66% 0.11% 2.82% 1.26% 0.51% 0.08%

Panel C: ¢ = 0.9, down by over 10%

6] 0.88 0.67 052  0.08 0.72 050 0.33  0.04 0.60 036 020 0.01
(0.10) (0.11) (0.11) (0.11)  (0.10) (0.11) (0.10) (0.11)  (0.09) (0.09) (0.08) (0.08)
(0.10] [0.14] [0.15] [0.16]  [0.10] [0.15] [0.16] [0.17]  [0.10] [0.13] [0.12] [0.14]

R%proj 2.46% 0.83% 0.39% 0.01% 2.58% 0.81% 0.31% 0.00% 2.58% 0.74% 0.21% 0.00%
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Table A6: Regression tests of the option-implied crash probability bounds: OLS with
both time and firm fixed effects

This table reports the results of running linear regressions with time and firm fixed effects
I(Ritst4r < q) = i + M+ BXit(7,9) + €it4rs

in which ¢ = 0.7,0.8 and 0.9, and X stands for P (the lower bounds), PV (the upper bounds), or P*
(the risk-neutral probabilities). The data are monthly from January 1996 to December 2022. The stocks
under consideration are S&P 500 constituents. The return horizon 7 is one month, three months, six
months, or one year. Values in parentheses are firm-month two-way clustered standard errors following
Thompson (2011). Values in square brackets are standard errors following the panel bootstrap procedures
of Martin and Wagner (2019) using 2500 bootstrap samples. Projected R?s are also reported.

lower bound risk-neutral upper bound
horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: ¢ = 0.7, down by over 30%
B8 0.77  0.71 0.55 0.16 0.56 0.47 0.38 0.13 0.45 0.37  0.29 0.10
(0.13) (0.09) (0.08) (0.07) (0.09) (0.06) (0.05) (0.05) (0.08) (0.05) (0.04) (0.04)
[0.12] [0.13] [0.10] [0.09] [0.10] [0.07] [0.07] [0.05] [0.08] [0.09] [0.05] [0.03]
R proj 1.74% 1.30% 0.64% 0.05% 1.711% 1.16% 0.60% 0.06% 1.68% 1.11% 0.58% 0.07%

Panel B: ¢ = 0.8, down by over 20%

8 073 059 038  0.05 057 046 030  0.06 049 038 024 0.6
(0.09) (0.07) (0.06) (0.06)  (0.07) (0.05) (0.05) (0.05)  (0.06) (0.04) (0.04) (0.04)
[0.10] [0.09] [0.07] [0.07]  [0.07] [0.07] [0.05] [0.05]  [0.06] [0.05] [0.05] [0.04]
R2proj 1.75% 0.73% 0.25% 0.00%  1.70% 0.70% 0.24% 0.01%  1.67% 0.68% 0.23% 0.01%

Panel C: ¢ = 0.9, down by over 10%

B 065 035 019 -0.03 058 031 018 —0.01 053 027 016 0.01
(0.05) (0.05) (0.05) (0.06)  (0.04) (0.04) (0.05) (0.05)  (0.04) (0.04) (0.04) (0.04)
[0.05] [0.05] [0.05] [0.06]  [0.04] [0.05] [0.06] [0.05]  [0.05] [0.05] [0.04] [0.05]

R%proj 0.89% 0.19% 0.05% 0.00% 0.88% 0.18% 0.05% 0.00% 0.87% 0.18% 0.05% 0.00%
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Table A7: Regression tests of the option-implied crash probability bounds: comparing
with the bias-adjusted risk-neutral probabilities

This table reports the results of linear regressions
I(Ritst4r < q) = a+ BXu(T,q) + €itgrs

in which ¢ = 0.7,0.8 and 0.9, and X stands for PL (the lower bounds), PV (the upper bounds), or P* (the
risk-neutral probabilities). Results for the lower bound and the raw risk-neutral probabilities are identical
to those shown in Table 2: they are shown here for comparison. The adjusted risk-neutral probabilities
are calculated by correcting for their biases, as examined in the new row of the average differences between
the outcome variable and the predictors (“mean diff.”). This is done by multiplying the trailing ratios
of the average realized crash events over the average risk-neutral probabilities. The data are monthly
from January 1996 to December 2022. Firms under consideration are S&P 500 constituents. The return
horizon 7 is one month, three months, six months, or one year. The values in parentheses are firm-month

two-way clustered standard errors following Thompson (2011).

lower bound risk-neutral (raw) risk-neutral (adjusted)
horizon 1 3 6 12 1 3 6 12 1 3 6 12

Panel A: ¢ = 0.70, down by over 30%
mean diff. —0.13% —-0.35% —0.69% —-1.72% 0.10% 1.52% 4.04% 7.38% 043% 0.77% 1.01% 1.44%

a 0.00 0.00 0.00 0.01 000 000 000  0.00 001 002 004 0.08
(0.00)  (0.00)  (0.00)  (0.01) (0.00) (0.00) (0.00) (0.01)  (0.00) (0.00) (0.01)  (0.01)
B 0.95 1.03 1.09 1.05 066 060 059  0.56 003 017  0.19 0.11
(0.15)  (0.12)  (0.11)  (0.10) (0.11)  (0.08) (0.07) (0.07)  (0.01) (0.03) (0.03)  (0.02)
R? 3.90%  537% 517%  3.91%  3.77% 4.56% 4.01% 3.06%  0.28% 1.46% 145% = 0.59%

Panel B: ¢ = 0.80, down by over 20%
mean diff.  0.14% 0.41% —0.83% —2.90% 1.03% 4.38% 6.30% 8.35% 0.36% 0.69%  0.53% 0.61%

a 000  —0.01 —001  0.02 000 —0.01 —0.02 0.00 002 004 008 0.13
(0.00)  (0.01)  (0.01)  (0.01) (0.00) (0.01) (0.01) (0.01)  (0.00) (0.01) (0.01)  (0.01)
8 0.92 1.03 1.15 1.07 068 069 073  0.66 021 036 027 0.13
(0.11)  (0.09)  (0.09)  (0.08) (0.09) (0.07) (0.07) (0.07)  (0.08) (0.04) (0.03)  (0.02)
R 565%  515%  4.76%  3.69%  548% 4.50% 3.89% 296%  1.66% 2.53% 164%  0.51%

Panel C: ¢ = 0.90, down by over 10%
mean diff.  1.31% —0.42% -1.56% —2.92% 3.98% 5.54% 7.52% 10.31% 0.15% 0.03% —0.28% —0.15%

« —0.02 —0.01 —0.01 0.03 —-0.02 —-0.02 -0.02 0.00 0.04 0.11 0.16 0.22
(0.01)  (0.01)  (0.01)  (0.02) (0.01) (0.02) (0.02) (0.03)  (0.01) (0.01) (0.01)  (0.01)
B 105 107 112 101 088 083 080  0.68 052 036 024 010
(0.08)  (0.07)  (0.07)  (0.08)  (0.08) (0.08) (0.08) (0.09)  (0.05) (0.04) (0.03)  (0.03)
R? 5.46% 3.711% 3.38% 2.41% 5.46% 3.39% 2.80% 1.83% 3.38% 1.72% 1.02% 0.23%
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Table A8: In-sample tests: sorting stocks into different correlation groups (one-month
horizon)

These tables report summary statistics and in-sample OLS results for one-month crash events (gross
return next month < —20%) in sub-samples of firms. Each month, firms are sorted into low/medium /high
groups by their trailing six-month stock-return correlation p with the S&P 500 index, calculated from
daily returns.

Top panel: For each group, we report the mean and standard deviation (s.d.) of (i) cross-sectional averages
(XS-avg.) and (ii) time-series averages (T'S-avg.) for the realized crash indicator (“1 if return next month
< —20%, else 0”), our lower bound (OIB-LB), the risk-neutral probability (RN), and our upper bound
(OIB-UB), as in Table 1. Differences between XS-avg. and TS-avg. means reflect the unbalanced panel.
The standard deviations of XS-avg. highlight time-series variation in crash probabilities; the standard
deviations of TS-avg. capture cross-sectional dispersion across firms.

Bottom panel: We report OLS intercepts (a, in percentage points), slopes (3), and R? as defined in
Table 2 with 7 = 1 and ¢ = 0.80. Standard errors—shown in parentheses and in brackets—are from
firm-month two-way clustering (Thompson, 2011) and a panel bootstrap (Martin and Wagner, 2019)
with 2500 resamples.

low p med. p high p
statistics XS-avg. TS-avg. XS-avg. TS-avg. XS-avg. TS-avg.
realized mean 0.024 0.034 0.021 0.025 0.019 0.030
s.d. 0.049 0.085 0.049 0.052 0.058 0.090
OIB-LB mean 0.025 0.031 0.022 0.025 0.020 0.025
s.d. 0.021 0.039 0.020 0.028 0.024 0.033
RN mean 0.035 0.043 0.031 0.035 0.029 0.035
s.d. 0.031 0.049 0.030 0.035 0.034 0.042
OIB-UB mean 0.042 0.051 0.038 0.042 0.035 0.042
s.d. 0.040 0.059 0.039 0.041 0.043 0.049
low p med. p high p
OIB-LB RN OIB-UB OIB-LB RN OIB-UB OIB-LB RN OIB-UB
a(%) 0.31 0.20 0.19 0.08 0.02 0.04 -0.31 -0.34 -0.30
(0.16)  (0.17)  (0.18) (0.16)  (0.17)  (0.18) (0.24)  (0.24)  (0.24)
[0.18] [0.21]  [0.19] [0.17] [0.18]  [0.1§] [0.20] [0.21]  [0.23]
B 0.82 0.63 0.52 0.90 0.66 0.53 1.08 0.77 0.62
(0.10)  (0.08)  (0.07) (0.12)  (0.09)  (0.08) (0.19)  (0.14)  (0.11)
[0.12]  [0.09]  [0.08] [0.12]  [0.09]  [0.07] [0.17]  [0.14]  [0.10]
R? 4.93% 4.99%  4.94% 4.71% 4.62%  4.50% 779%  713%  6.74%
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Table A9: In-sample tests: sorting stocks into different correlation groups (one-year
horizon)

These tables report summary statistics and in-sample OLS results for one-year crash events (gross return
next year < —20%) in sub-samples of firms. Each month, firms are sorted into low/medium /high groups
by their trailing six-month stock-return correlation p with the S&P 500 index, calculated from daily
returns.

Top panel: For each group, we report the mean and standard deviation (s.d.) of (i) cross-sectional averages
(XS-avg.) and (ii) time-series averages (TS-avg.) for the realized crash indicator (“1 if return next year
< —20%, else 0”), our lower bound (OIB-LB), the risk-neutral probability (RN), and our upper bound
(OIB-UB), the same as in Table 1. Differences between XS-avg. and TS-avg. means reflect the unbalanced
panel. The standard deviations of XS-avg. highlight time-series variation in crash probabilities; the
standard deviations of T'S-avg. capture cross-sectional dispersion across firms.

Bottom panel: We report OLS intercepts (a, in percentage points), slopes (3), and R? as defined in
Table 2 with 7 = 12 and ¢ = 0.80. Standard errors—shown in parentheses and in brackets—are from
firm-month two-way clustering (Thompson, 2011) and a panel bootstrap (Martin and Wagner, 2019) with
2500 resamples.

low p med. p high p
statistics XS-avg. TS-avg. XS-avg. TS-avg. XS-avg. TS-avg.
realized mean 0.165 0.168 0.151 0.166 0.139 0.180
s.d. 0.148 0.192 0.160 0.192 0.184 0.230
lower botnd mean 0.130 0.138 0.124 0.130 0.115 0.126
s.d. 0.025 0.063 0.026 0.054 0.036 0.060
risk-neutral mean 0.243 0.254 0.238 0.245 0.227 0.240
s.d. 0.055 0.085 0.057 0.071 0.067 0.080
wober bound  ean 0.348 0.362 0.343 0.352 0.330 0.346
PP s.d. 0.092  0.111 0.096  0.091 0.107  0.104
low p med. p high p
OIB-LB RN OIB-UB OIB-LB RN OIB-UB OIB-LB RN OIB-UB
a(%) 6.74 3.94 4.34 2.44 -4.29 -5.68 -2.96
(1.07)  (1.44)  (1.68) (1.16)  (1.70)  (1.98) (150)  (2.15)  (2.34)
[1.35]  [1.64]  [2.10] [1.65] [2.36]  [3.08] [2.11]  [3.34]  [3.55]
B 0.76 0.52 0.35 1.02 0.60 1.59 0.87 0.51
(0.08)  (0.07)  (0.06) (0.10)  (0.08)  (0.06) (0.14)  (0.11)  (0.08)
[0.11]  [0.09]  [0.07] [0.13]  [0.12]  [0.10] [0.20] [0.17]  [0.13]
R? 2.16% 2.00% 1.71% 297%  2.32%  1.74% 716% 5.01%  3.65%




Table A10: Summary statistics (rally probabilities)

This table presents summary statistics of realized rally events, our rally probability bounds defined in
Result 7, and risk-neutral crash probabilities. The sample data are monthly from January 1996 to
December 2022. The rally events (realized rallies) under consideration are I(R; iy, > ¢) for ¢ =
1.3,1.2, 1.1 and 7 = 1, 3, 6, 12 months. The bounds and risk-neutral probabilities are measures of the
conditional probabilities of these rally events.

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)
horizon 1 3 6 12 1 3 6 12

Panel A: ¢ = 1.3, up by over 30%

mean  0.008 0.046 0.115 0.238 0.011 0.055 0.122 0.230
s.d. 0.018 0.059 0.107 0.165 0.022 0.059 0.090 0.131
mean  0.006 0.025 0.046 0.072 0.008 0.030 0.053 0.079
s.d. 0.007 0.016 0.019 0.020 0.013 0.025 0.030 0.029
mean  0.009 0.044 0.092 0.163 0.012 0.052 0.102 0.173
s.d. 0.011 0.031 0.042 0.043 0.018 0.038 0.046 0.045
mean  0.012 0.061 0.132 0.249 0.015 0.070 0.144 0.261
s.d. 0.015 0.045 0.066 0.079 0.022 0.048 0.061 0.064

realized
lower bound
risk-neutral

upper bound

Panel B: ¢ = 1.2, up by over 20%

mean  0.027 0.112 0.221 0.355 0.032 0.123 0.223 0.347
s.d. 0.044 0.106 0.154 0.196 0.037 0.078 0.107 0.157
mean  0.021 0.063 0.098 0.131 0.027 0.071 0.107 0.137
s.d. 0.017 0.026 0.025 0.024 0.026 0.038 0.038 0.030
mean  0.030 0.100 0.169 0.248 0.037 0.110 0.179 0.255
s.d. 0.025 0.045 0.048 0.040 0.033 0.049 0.050 0.039
mean  0.037 0.129 0.229 0.357 0.045 0.141 0.241 0.365
s.d. 0.033 0.064 0.076 0.074 0.039 0.060 0.064 0.053

realized
lower bound
risk-neutral

upper bound

Panel C: ¢ = 1.1, up by over 10%

mean  0.127 0.290 0.401 0.500 0.136 0.293 0.393 0.490
s.d. 0.124 0.176 0.201 0.219 0.067 0.094 0.128 0.176
mean  0.097 0.177 0.218 0.231 0.108 0.186 0.222 0.232
s.d. 0.037 0.030 0.021 0.034 0.046 0.044 0.031 0.022
mean  0.123 0.239 0.312 0.367 0.134 0.247 0.317 0.367
s.d. 0.050 0.050 0.036 0.026 0.052 0.050 0.035 0.023
mean  0.142 0.290 0.397 0.497 0.1564 0.299 0.402 0.497
s.d. 0.063 0.073 0.063 0.051 0.058 0.058 0.043 0.031

realized
lower bound
risk-neutral

upper bound
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Table A11: Regression tests of the option-implied rally probability measures

This table reports the results of running linear regressions

I(Ri—t4r > q) = a+ BXu(7,q) + €it4r,

in which ¢ = 1.3,1.2 and 1.1, and X stands for P (the lower bounds), PV (the upper bounds), or P*
(the risk-neutral probabilities). The data are monthly from January 1996 to December 2022. The stocks

under consideration are S&P 500 constituents. The return horizon 7 is one month, three months, six

months, or one year. Values in parentheses are firm-month two-way clustered standard errors following

Thompson (2011). Values in square brackets are standard errors following the panel bootstrap procedures

of Martin and Wagner (2019) using 2500 bootstrap samples.

lower bound

risk-neutral

upper bound

horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: ¢ = 1.3, up by over 30%
@ 0.00 0.00 0.03 0.15 0.00 —-0.01 0.00 0.08 0.00 —0.01 0.00 0.07
(0.00) (0.00) (0.00) (0.01)  (0.00) (0.00) (0.01) (0.01)  (0.00) (0.00) (0.01) (0.02)
000 [0.00] [0.01] [0.02]  [0.00] [0.00] [0.01] [0.02]  [0.00] [0.00] [0.01] [0.03]
8 1.44 1.80 1.88 1.15 1.02 1.17 1.24 0.95 0.82 0.88 0.90 0.67
(0.19) (0.15) (0.14) (0.14)  (0.14) (0.11) (0.09) (0.11)  (0.12) (0.09) (0.07) (0.08)
017 [0.19] [0.22] [0.20]  [0.17] [0.15] [0.15] [0.16]  [0.12] [0.12] [0.09] [0.11]
R? 591% 6.76% 4.68% 1.03% 6.17% T7.70% 6.34% 2.28% 6.21% 7.81% 6.73% 2.70%
Panel B: ¢ = 1.2, up by over 20%
« 0.00 0.01 0.09 0.34 0.00 0.00 0.04 0.24 0.00 —-0.01 0.03 0.21
(0.00) (0.00) (0.01) (0.02)  (0.00) (0.01) (0.01) (0.03)  (0.00) (0.01) (0.01) (0.03)
000 [0.01] [0.01] [0.03  [0.00] [0.01] [0.02] [0.04  [0.00] [0.01] [0.02] [0.04]
8 1.35 1.58 1.32 0.12 1.03 1.17 1.08 0.46 0.85 0.91 0.82 0.42
(0.13) (0.11) (0.11) (0.15)  (0.10) (0.09) (0.09) (0.12)  (0.09) (0.08) (0.07) (0.09)
013 [0.14] [0.15] [0.21]  [0.11] [0.13] [0.15] [0.17]  [0.09] [0.10] [0.11] [0.13]
R? 6.95% 5.78% 2.51% 0.01% 7.28% 6.66% 3.79% 0.38% 7.36% 6.81% 4.21% 0.72%
Panel C: ¢ = 1.1, up by over 10%
«@ 0.00 0.12 0.38 0.66 —0.01  0.08 0.25 0.64 —0.01  0.08 0.21 0.49
(0.01) (0.01) (0.03) (0.04)  (0.01) (0.02) (0.03) (0.05)  (0.01) (0.02) (0.04) (0.06)
001 [0.02] [0.03 [0.06]  [0.01] [0.02] [0.05] [0.07]  [0.01] [0.03] [0.06] [0.10]
8 1.30 0.97 0.11  —-0.70 1.11 0.89 0.47 —0.38 0.96 0.74 0.47 0.01
(0.09) (0.08) (0.11) (0.17)  (0.08) (0.09) (0.12) (0.13)  (0.08) (0.08) (0.10) (0.13)
0.00] [0.12] [0.14] [0.24]  [0.09] [0.12] [0.17 [0.22]  [0.08] [0.11] [0.16] [0.20]
R? 6.16% 1.81% 0.01% 0.47% 6.58% 2.44% 0.34% 0.14% 6.71% 2.66% 0.67% 0.00%
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Table A12: Crash probability and returns: OLS tests

This table reports the results of running linear regressions

Ritstyr =+ BXi(7,q) + €t prs

in which ¢ = 0.7,0.8 and 0.9, and X stands for P (the lower bounds), PV (the upper bounds), or P*
(the risk-neutral probabilities). The data are monthly from January 1996 to December 2022. The stocks

under consideration are S&P 500 constituents. The return horizon 7 is one month, three months, six

months, or one year. Values in parentheses are firm-month two-way clustered standard errors following

Thompson (2011). Values in square brackets are standard errors following the panel bootstrap procedures

of Martin and Wagner (2019) using 2500 bootstrap samples.

lower bound

risk-neutral

upper bound

horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: ¢ = 0.7, down by over 30%
a 1.01 1.03 1.05 1.08 1.01 1.02 1.03 1.05 1.01 1.02 1.03 1.04
(0.00) (0.00) (0.01) (0.01)  (0.00) (0.00) (0.01) (0.02)  (0.00) (0.00) (0.01) (0.02)
000 [0.01] [0.01 [0.02]  [0.00] [0.01] [0.01] [0.03]  [0.00] [0.01] [0.01] [0.03]
8 0.19 0.17 0.23 0.43 0.16 0.16 0.24 0.39 0.14 0.14 0.21 0.31
(0.25) (0.16) (0.16) (0.20)  (0.20) (0.11) (0.11) (0.13)  (0.16) (0.09) (0.08) (0.09)
0.24] [023] [0.24] [0.31]  [0.19] [0.16] [0.16] [0.22]  [0.18] [0.11] [0.14] [0.15]
R? 0.10% 0.13% 0.19% 0.42% 0.13% 0.32% 0.61% 0.92% 0.16% 0.40% 0.87% 1.20%
Panel B: ¢ = 0.8, down by over 20%
e 1.01 1.02 1.04 1.08 1.01 1.02 1.02 1.04 1.01 1.01 1.02 1.03
(0.00) (0.01) (0.01) (0.01)  (0.00) (0.01) (0.01) (0.02)  (0.00) (0.01) (0.01) (0.03)
000 [0.01] [0.01] [0.02]  [0.00] [0.01] [0.02] [0.04]  [0.00] [0.01] [0.02] [0.04]
8 0.07 0.10 0.13 0.28 0.06 0.11 0.20 0.32 0.06 0.10 0.19 0.27
(0.10) (0.09) (0.12) (0.15)  (0.08) (0.07) (0.09) (0.12)  (0.07) (0.06) (0.07) (0.09)
0.11) [0.13] [0.18 [0.21]  [0.08] [0.11] [0.14] [0.200  [0.08] [0.09] [0.11] [0.15]
R? 0.07% 0.11% 0.10% 0.24% 0.10% 0.27% 0.45% 0.66% 0.12% 0.37% 0.72% 0.94%
Panel C: ¢ = 0.9, down by over 10%
« 1.01 1.02 1.04 1.07 1.01 1.01 1.01 1.00 1.01 1.00 0.99 0.97
(0.00) (0.01) (0.01) (0.02)  (0.00) (0.01) (0.02) (0.04)  (0.00) (0.01) (0.02) (0.04)
000 [0.01] [0.02] [0.03  [0.00] [0.01] [0.03] [0.06]  [0.00] [0.02] [0.03] [0.07]
8 0.03 0.07 0.08 0.21 0.03 0.10 0.18 0.34 0.03 0.10 0.18 0.31
(0.04) (0.06) (0.08) (0.12)  (0.04) (0.06) (0.08) (0.12)  (0.04) (0.05) (0.07) (0.10)
005 [0.09] [0.12] [0.19]  [0.04] [0.07] [0.12] [0.21]  [0.04] [0.08] [0.11] [0.17]
R? 0.04% 0.08% 0.05% 0.13% 0.06% 0.24% 0.36% 0.59% 0.08% 0.36% 0.66% 0.93%
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Table A13: Regression tests of the option-implied crash probability bounds: adjusted
regressions for 20% crashes in one quarter

This table reports the results from the following regressions:
I(Rivt_ng_t,.g § 08) = ﬂ . Xit(37 08) + A COIItI’OlSZ‘t + Ei,t+3,

in which X stands for PX (the lower bounds), P* (the risk-neutral probability), or both. The controls
are 15 firm characteristics from the literature. All independent variables are transformed to have a unit
standard deviation. Regression coefficients are reported in percentage points, and their two-way clustered
standard errors are included in the parentheses. The first five columns are simple OLS estimates, and
the sixth column reports estimates with time fixed effects, with a projected (within) R? replacing the
standard ones. Asterisks indicate coefficients whose t-statistics exceed four in magnitude.

I(R; 43 <0.8)
(1) (2) (3) (4) (5) (6)

PE[Ry 13 < 0.8] 5.72* 4.10* 10.76 3.56*
(0.51)  (0.74) (2.83)  (0.32)
P*[Ri—t4+3 < 0.8] 2.54 —6.63
(0.80) (2.91)
beta 1.15 0.36 0.75 0.12 0.90
(0.30) (0.34) (0.35) (0.31) (0.26)
relative size —0.30 -0.23 —0.31 —0.09 0.00
(0.26) (0.26) (0.26) (0.25) (0.17)
book-to-market —0.26 —0.30 —0.28 -0.33 0.14
(0.21) (0.21) (0.21) (0.21) (0.16)
gross profit —0.04 —0.04 —0.05 —0.01 0.09
(0.19) (0.18) (0.19) (0.18) (0.15)
T(t—1)—t —0.51 —0.31 —0.35 —0.40 —0.11
(0.37) (0.37) (0.38) (0.36) (0.20)
T(t—6)—(t—1) —0.74 —0.58 —0.61 —0.66 —0.49
(0.47) (0.47) (0.48) (0.45) (0.27)
T(t—12)—(t—1) —0.02 —0.10 —0.03 —0.19 —0.65
(0.47) (0.47) (0.47) (0.47) (0.31)
CHS-volatility 4.12% 1.47 2.42 1.59 1.12
(0.52) (0.67) (0.71) (0.65) (0.37)
turnover 0.55 0.15 0.30 0.15 0.69
(0.54) (0.51) (0.52) (0.50) (0.25)
sales growth 0.51 0.45 0.50 0.37 0.23
(0.20) (0.20)  (0.20)  (0.19)  (0.12)
short int. 1.06* 0.97* 1.04* 0.86* 0.70%
(0.19) (0.18) (0.19) (0.17) (0.14)
leverage -0.19 —0.06 —0.16 0.06 —0.06
(0.23) (0.23) (0.23) (0.21) (0.20)
net income-to-asset —0.49 —0.38 —0.48 —0.24 —0.34
(0.23) (0.23) (0.23) (0.22) (0.15)
cash-to-asset —0.25 —0.41 —0.33 —0.45 —0.15
(0.17) (0.17) (0.17) (0.16) (0.13)
log price 0.36 0.77 0.55 0.94 0.48
(0.22) (0.22)  (0.21)  (0.24)  (0.17)
intercept —0.12 —0.01 —0.18 —0.15 —0.20*
(0.05) (0.01) (0.05) (0.05) (0.05)
R?/R%-proj. 5.03%  5.15%  5.63%  5.30% 5.90% 5.20%
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Table A14: Regression tests of the option-implied crash probability bounds: adjusted
regressions for 20% crashes in one year

This table reports the results from the following regressions:
I(Riyt_ng_t,_12 S 08) = ﬂ . th(].Q, 08) + A COHtI‘OlSZ’t + Eit+12,

in which X stands for PZ (the lower bounds), P* (the risk-neutral probability), or both. The controls
are 15 firm characteristics from the literature. All independent variables are transformed to have a unit
standard deviation. Regression coefficients are reported in percentage points, and their two-way clustered
standard errors are included in the parentheses. The first five columns are simple OLS estimates, and
the sixth column reports estimates with time fixed effects, with a projected (within) R? replacing the
standard ones. Asterisks indicate coefficients whose t-statistics exceed four in magnitude.

I(Ri—1412 <0.8)
(1) (2) (3) (4) (5) (6)

PE(Ry 1112 < 0.8] 6.90* 5.17* 9.06* 4.24*
(0.53) (0.71) (2.01) (0.41)
P*[Ri—t412 < 0.8] 2.46 —4.54
(0.92) (2.14)
beta 0.91 —0.29 0.52 —0.46 1.12
(0.41) (0.42) (0.46) (0.41) (0.40)
relative size —0.98 —0.41 —0.82 —0.28 0.21
(0.43) (0.44) (0.45) (0.43) (0.33)
book-to-market —1.31 —1.36 —1.33 —1.36 —0.02
(0.40) (0.39) (0.40) (0.39) (0.32)
gross profit —0.60 —0.62 —0.62 —0.61 —0.01
(0.36) (0.36) (0.36) (0.35) (0.31)
T(t—1)—t —0.43 —-0.24 —0.30 —-0.34 —0.47
(0.53) (0.52) (0.54) (0.50) (0.24)
T(t—6)—(t—1) —1.46 —1.38 —1.38 —1.47 —0.72
(0.65) (0.63) (0.65) (0.60) (0.33)
r(t—12)—>(t—1) 1.21 0.95 1.15 0.86 0.33
(0.62) (0.62) (0.63) (0.60) (0.48)
CHS-volatility 5.30% 2.26 3.68 2.95 2.31
(0.76) (0.88) (0.91) (0.85) (0.55)
turnover 0.75 0.41 0.56 0.51 0.57
(0.80) (0.78) (0.77) (0.76) (0.41)
sales growth 1.90* 1.76* 1.88* 1.69* 0.85
(0.34) (0.33) (0.34) (0.33) (0.23)
short int. 2.45% 2.32% 2.44* 2.24* 2.06™
(0.40) (0.40) (0.40) (0.39) (0.31)
leverage —0.30 0.03 —0.22 0.12 —0.08
(0.42) (0.41) (0.42) (0.40) (0.36)
net income-to-asset —0.87 —0.68 —0.87 —0.54 —0.36
(0.38) (0.37) (0.38) (0.36) (0.30)
cash-to-asset —0.54 —0.81 —0.64 —0.82 —0.34
(0.31) (0.30) (0.32) (0.30) (0.25)
log price 1.43 1.97* 1.59* 2.08* 1.20
(0.35) (0.36) (0.35) (0.37) (0.30)
intercept —0.30 0.02 —0.39* —0.34* —-0.37*
(0.08) (0.01) (0.08) (0.08) (0.08)
R?/R%-proj. 4.49%  3.69% 5.03% 4.63% 5.19% 4.86%
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Table A15: Explaining the crash probabilities: the kitchen sink regression

This table reports the results from pooled regressions of the lower bound—our measure of expected
crash probabilities—onto the 15 stock characteristics, their squares, and all 105 interaction terms. Only
regression coefficients with ¢-statistics greater than two in magnitude are reported in Panel (c).

(a) Characteristics (c) Interaction terms

est. s.e. t-stat. est. s.e. t-stat.
chs.vol 1.674 0.109 15.29 cashxlog.p 0.113 0.014 8.10
beta 0.310  0.035 8.88 bmx gprof 0.108 0.015 7.32
log.p —0.465 0.060 —7.69 chs.volxlog.p —0.154 0.028 —5.52
rlagl —0.187 0.037 —5.10 s.int xni —0.056 0.011 —5.26
gprof —-0.073 0.022 —-3.35 chs.volxbeta 0.173  0.036 4.76
lev —0.057 0.019 -3.03 rsize xlog.p 0.088 0.022 4.07
tnover 0.248 0.084 2.96 levxrlagl —0.056 0.015 —3.81
s.int 0.114 0.039 2.90 betaxs.int 0.053 0.015 3.60
mom6 —-0.178 0.063 —2.82 chs.vol xrsize —0.103 0.029 —-3.49
ni —0.040 0.024 —1.68 cash xni —0.049 0.015 —-3.34
moml2 —0.076 0.068 —1.12 chs.volxbm —0.076 0.023 —3.34
cash 0.019 0.027 0.70 cashxrlagl 0.035 0.011 3.28
bm 0.013 0.024 0.54 chs.volxgprof  —0.078 0.024 —3.18
rsize —-0.014 0.033 —0.42 tnover xni 0.048 0.015 3.16
saleg —0.001 0.031 —0.02 chs.volxlev —-0.082 0.026 —3.11
chs.volxsaleg 0.070 0.023 3.09
s.intxbm 0.034 0.011 3.09
(b) Squared characteristics mom6 xlog.p 0.052 0.017 2.98
nixlog.p —-0.048 0.016 —2.94
est.  s.e. t-stat. chs.volxcash 0.056 0.019 2.88
5 chs.volxmom6 —0.110 0.040 —2.75
tlagl® = 01430022 6.34 s.intxlog.p 0.030 0.011  2.63
moml2% 0122 0.019 (.32 mom6xlev —0.068 0.027 —2.52
gerof? 0043 0.009 499 betaxrsize 0.050 0.020 247
momG 0.145 0.034 419 chs.vol xni —0.050 0.021 —2.36
b?taQ —0.105 0.027  —3.91 tnover X cash —0.040 0.017 =231
rsize” - 0.049 0013 3.66 s.int x gprof —0.023 0.010 —2.26
chs.vol 0.158 0.055  2.84 betaxgprof ~ —0.042 0.019 —2.21
log.p —0.032 0.012  —2.71 betaxrlagl —0.045 0.021 —2.16
s.int? —0.022 0.009 -—2.38
lev? 0.019 0.019 1.01
bm? —0.013 0.013 —0.99
ni? —0.008 0.008 —0.98
tnover? —0.010 0.021 —-0.48
cash? 0.001  0.009 0.13
saleg? 0.001  0.009 0.09
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Figure A2: Out-of-sample R?s: the lower bound and rolling-window regression forecasts
aggregating all variables (with squared and interaction terms aggregated through elastic
net regressions)

2 .s) for our option-implied lower bound (OIB-LB). At each
time point ¢, we compare the sum of squared forecasting errors from OIB-LB to those from a firm-specific

average probability of crashes, calculated over the period 1: (t —7) (r = 1,3,6,12).
2

00s

This figure presents the out-of-sample R?s (R2

For comparison, we also report RZ s for a forecaster that aggregates 137 variables that include [1] the
lower bound and the risk-neutral probabilities (two variables); [2] the 15 stock characteristics considered
in Session 3.3, their squared terms, and all their 105 interaction terms (15+15+105=135 variables in
total). The variables are combined through expanding-window (Panel A) or 3-year rolling-window (Panel

B) elastic net regressions, the tuning parameters of which are chosen through 5-fold cross-validations.
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Panel A: Expanding-window regressions with the Lasso penalty
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Figure A3: Out-of-sample R?s: the lower bound and rolling-window regression forecasts
aggregating all variables (Lasso version)

) for our option-implied lower bound (OIB-LB). At each

time point ¢, we compare the sum of squared forecasting errors from OIB-LB to those from a firm-specific

This figure presents the out-of-sample R2s (R2

00s

average probability of crashes, calculated over the period 1 : (t — 7) (7 = 1,3,6,12). For comparison,

2

cosS for a forecaster that aggregates the 15 stock characteristics considered in Session

we also report R
3.3, the lower bound, and the risk-neutral probabilities. The variables are combined through expanding-
window (Panel A) or 3-year rolling-window (Panel B) Lasso regressions, the tuning parameters of which

are chosen through 5-fold cross-validations.
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Figure A4: Out-of-sample R?s: the lower bound and rolling-window regression forecasts
aggregating all variables (ridge version)

This figure presents the out-of-sample R2s (R2

00s

) for our option-implied lower bound (OIB-LB). At each

time point ¢, we compare the sum of squared forecasting errors from OIB-LB to those from a firm-specific

average probability of crashes, calculated over the period 1: (¢t —7) (1 =1, 3,6,12). For comparison, we

also report R,

00Ss

2 s for a forecaster that aggregates the 15 stock characteristics considered in Session 3.3, the

lower bound, and the risk-neutral probabilities. The variables are combined through expanding-window

(Panel A) or 3-year rolling-window (Panel B) ridge regressions, the tuning parameters of which are chosen

through 5-fold cross-validations.
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Figure A5: Explaining the crash probabilities: adding squared and interaction terms to
the industry-specific and pooled regressions

This figure shows the ¢-statistics for interaction terms in regressions of the lower bound—our measure
of expected crash probabilities—on the 15 stock characteristics and their 105 interactions. The data is
divided into sub-samples based on the 17 Fama-French industries. The gray dots in the rightmost column
represent results from the entire pooled sample. We label all dots with t-statistics above 4 in absolute

value.
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Figure A6: Explaining the crash probabilities: squared and interaction terms

This figure shows the t-statistics for interaction terms in the full-sample regression of the lower bound—

our measure of expected crash probabilities—on the 15 stock characteristics, their squaring transforms,
and their 105 interactions. The last column, labeled “main”, reports the ¢-statistic for the coefficient on

the linear term for each variable, as previously reported in Table A15, Panel a.
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