

Simple Variance Swaps

Ian Martin

ian.martin@stanford.edu

LSE/Stanford and NBER

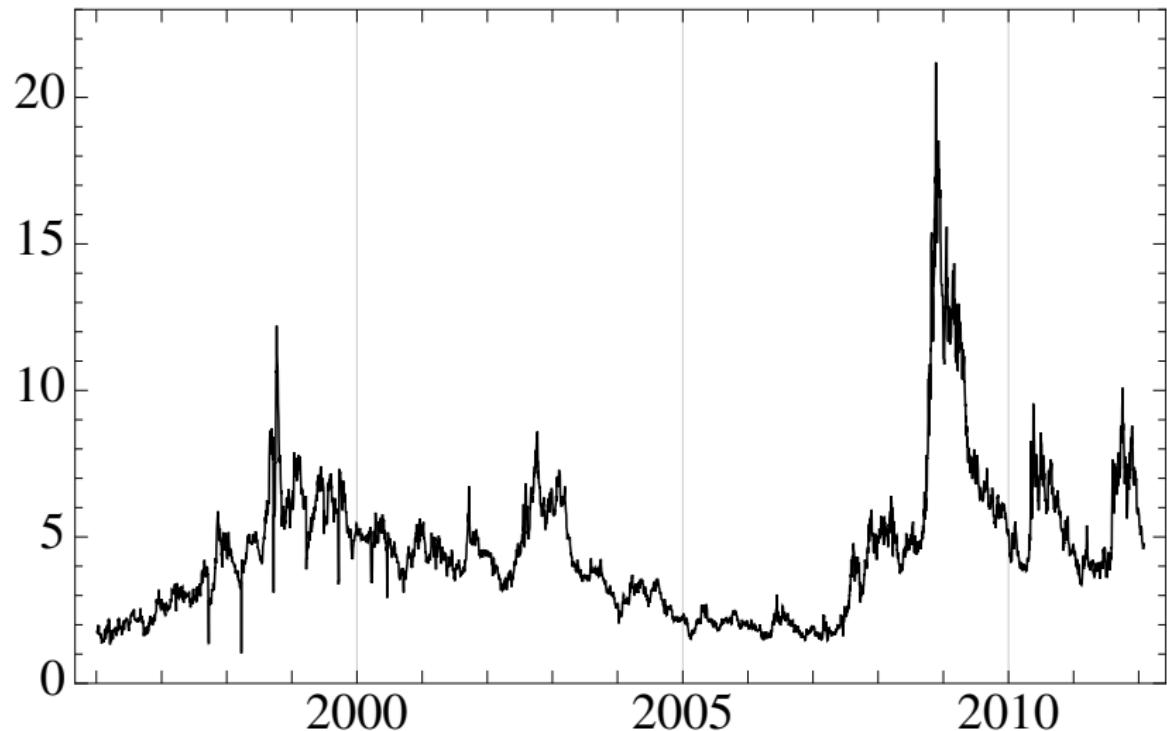
December 7, 2012

Outline

- Variance swaps and simple variance swaps
- VIX and SVIX
- A lower bound on the equity premium

A lower bound on the equity premium

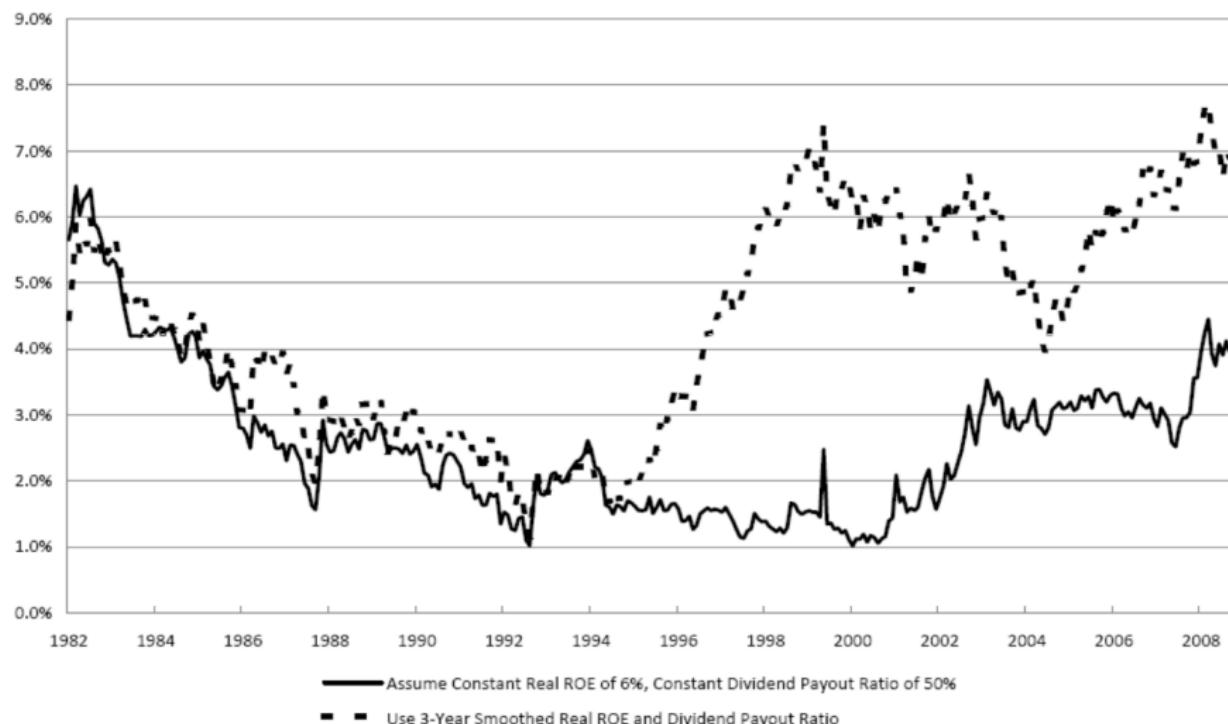
1 year horizon, in %



The equity premium

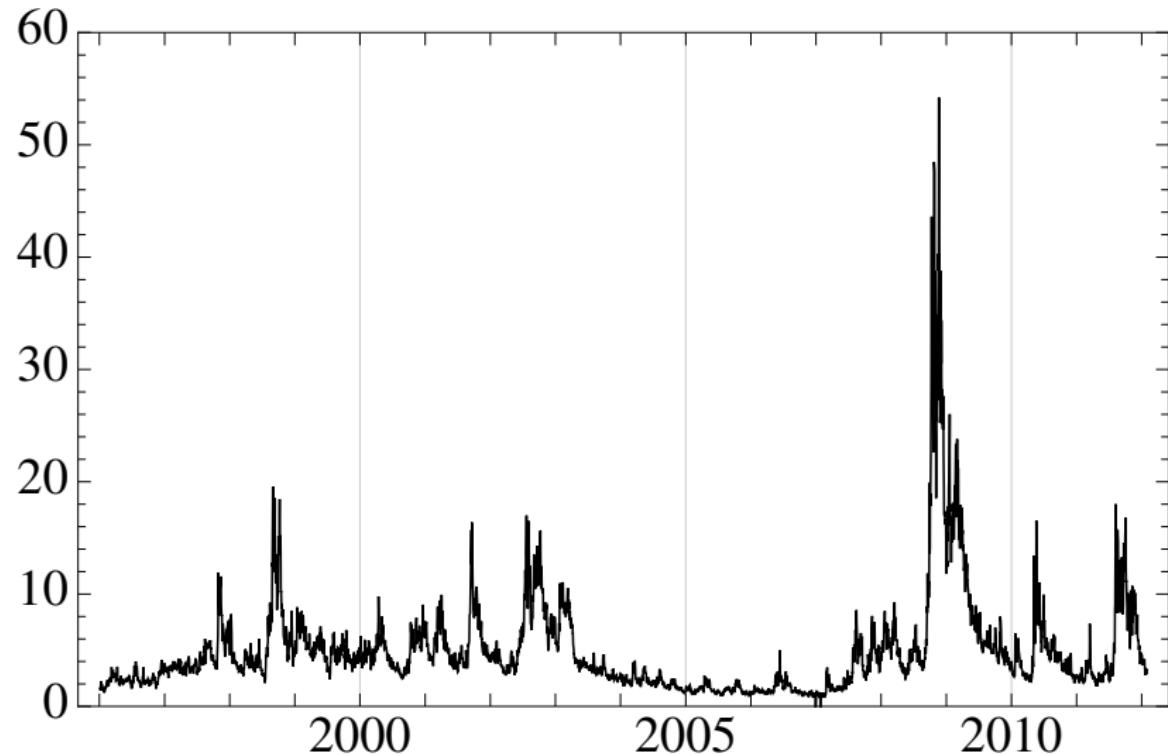
According to John Campbell's Princeton Lecture in Finance

Equity Premium -- US



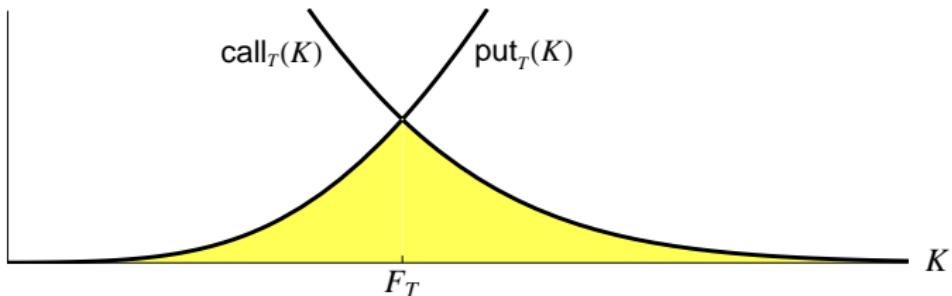
A lower bound on the equity premium

1 month horizon, annualized, in %



Assumptions

option prices

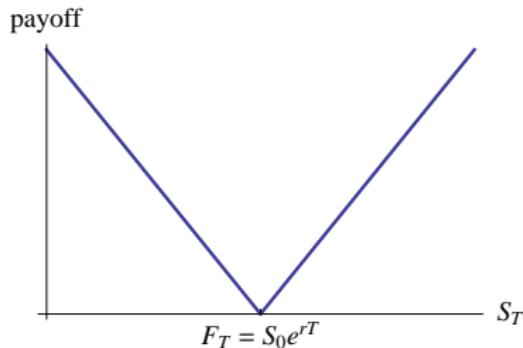


- No arbitrage
- Perfectly liquid market in options
- Underlying asset does not pay dividends (partially relaxed in paper)
- Constant riskless rate between now and time T (next few slides only)

Alternative ways to measure variance

- In a Black–Scholes world, straddles measure variance of log returns
 - ▶ How VIX used to be measured
- Once we acknowledge that **volatility is time-varying**, it is natural to look at variance swaps, which measure expected time-averaged instantaneous variance of log returns (... or do they?)
 - ▶ How VIX is now measured
- Once we also acknowledge that **there are jumps**, it is natural to look at simple variance swaps, which measure variance of simple returns
 - ▶ How VIX should be measured?

Ways to measure variance (1): straddles



- In Black–Scholes world, any option price reveals volatility, σ
- *At-the-money-forward straddles* are particularly convenient because the price of an ATMF straddle $\approx 0.8 \cdot S_0 \sigma \sqrt{T}$
 - ▶ To be precise, straddle price $= \sqrt{2/\pi} \cdot S_0 \sigma \sqrt{T} \cdot (1 + \text{error})$, where $|\text{error}| < \sigma^2 T / 24$
 - ▶ If $\sigma = 20\%$ and $T = 1/12$ then $|\text{error}| < 0.00014$

Ways to measure variance (2): variance swaps

- A *variance swap* is an agreement to exchange

$$\left(\log \frac{S_\Delta}{S_0} \right)^2 + \left(\log \frac{S_{2\Delta}}{S_\Delta} \right)^2 + \cdots + \left(\log \frac{S_T}{S_{T-\Delta}} \right)^2$$

for a pre-agreed “strike” \tilde{V} , at time T

- \tilde{V} is chosen so that no money needs to change hands up front:

$$\mathbb{E}^* \left[\left(\log \frac{S_\Delta}{S_0} \right)^2 + \left(\log \frac{S_{2\Delta}}{S_\Delta} \right)^2 + \cdots + \left(\log \frac{S_T}{S_{T-\Delta}} \right)^2 - \tilde{V} \right] = 0$$

- If the underlying asset price follows *any* diffusion, then as $\Delta \rightarrow 0$, we end up with $\tilde{V} = \mathbb{E}^* \left[\int_0^T \sigma_t^2 dt \right]$
- Asterisks indicate risk-neutral expectations etc. $\mathbb{E}^*(X) = e^{rT} \mathbb{E}(MX)$

Ways to measure variance (2): variance swaps

- Exploiting Itô's lemma,

$$\begin{aligned}\tilde{V} &= \mathbb{E}^* \left[\int_0^T \sigma_t^2 dt \right] \\ &= 2 \mathbb{E}^* \left[\int_0^T \frac{1}{S_t} dS_t - \int_0^T d \log S_t \right] \\ &= 2rT - 2 \mathbb{E}^* \log \frac{S_T}{S_0}\end{aligned}$$

- We could price the variance swap if a “log security” were traded (Neuberger 1994)
- Using Breeden–Litzenberger 1978 logic, can work out price of log security from European option prices (Carr–Madan 1998)

Ways to measure variance (2): variance swaps

- \tilde{V} is calculated from option prices

$$\tilde{V} = 2e^{rT} \left\{ \int_0^{F_T} \frac{1}{K^2} \text{put}_T(K) dK + \int_{F_T}^{\infty} \frac{1}{K^2} \text{call}_T(K) dK \right\}$$

- Hedge:
 - (i) a static position in options expiring at T : hold OTM puts and OTM calls in quantities proportional to $1/K^2$
 - (ii) a dynamic delta-hedge
- VIX is calculated from this formula
- The pricing and hedging of variance swaps is often referred to as model-free

Variance swap pricing is not model-free

The cataclysm that hit almost all financial markets in 2008 had particularly pronounced effects on volatility derivatives Dealers learned the hard way that the standard theory for pricing and hedging variance swaps is not nearly as model-free as previously supposed In particular, sharp moves in the underlying highlighted exposures to cubed and higher-order daily returns. This issue was particularly acute for single names, as the options are not as liquid and the most extreme moves are bigger. As a result, the market for single-name variance swaps has evaporated in 2009.

—Carr & Lee, *Annual Review of Financial Economics*, 2009

Ways to measure variance (3): simple variance swaps

- A *simple variance swap* is an agreement to exchange

$$\left(\frac{S_\Delta - S_0}{F_0} \right)^2 + \left(\frac{S_{2\Delta} - S_\Delta}{F_\Delta} \right)^2 + \cdots + \left(\frac{S_T - S_{T-\Delta}}{F_{T-\Delta}} \right)^2$$

for a pre-agreed strike V , at time T

- F_t is the forward price of the underlying to time t , known at time 0
- Any constants known at time 0 could be put in the denominator, but choosing forwards results in an important simplification

Ways to measure variance (3): simple variance swaps

Result (Pricing, version 1)

The strike on a simple variance swap is

$$V = \sum_{i=1}^{T/\Delta} \frac{e^{ri\Delta}}{F_{(i-1)\Delta}^2} [\Pi(i\Delta) - (2 - e^{-r\Delta})\Pi((i-1)\Delta)] \quad (1)$$

where $\Pi(t)$ is given by

$$\Pi(t) = 2 \int_0^{F_t} \text{put}_t(K) dK + 2 \int_{F_t}^{\infty} \text{call}_t(K) dK + S_0^2 e^{rt}$$

Ways to measure variance (3): simple variance swaps

- This result does not require the price process of the underlying asset to be continuous
- But the hedging portfolio requires holding portfolios of options of each maturity: $\Delta, 2\Delta, \dots, T - \Delta, T$
- Not a serious issue if Δ is large relative to T , but raises the concern that hedging a simple variance swap may be extremely costly in practice if Δ is very small relative to T ...?

Ways to measure variance (3): simple variance swaps

Result (Pricing, version 2)

In the limit as $\Delta \rightarrow 0$,

$$V = \frac{2e^{-rT}}{S_0^2} \left\{ \int_0^{F_T} \text{put}_T(K) dK + \int_{F_T}^{\infty} \text{call}_T(K) dK \right\}$$

- Hedge:
 - a static position in options expiring at T : hold OTM puts and OTM calls, equally weighted
 - a dynamic delta-hedge
- Hedging and pricing works even if the underlying asset's price can jump

A sample path

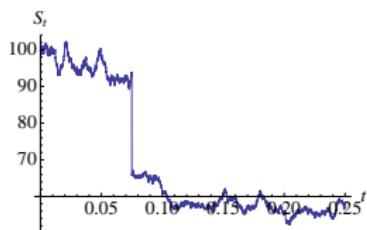
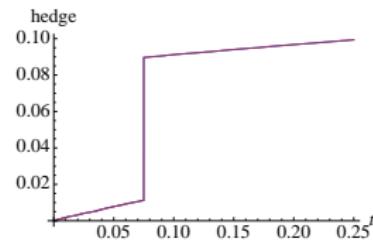
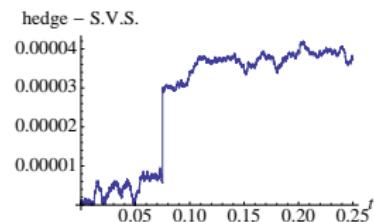


Figure: SVS: price process

Figure: Hedge vs. payoff

Figure: Hedge error

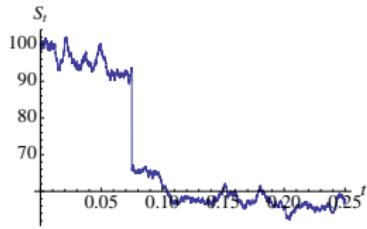
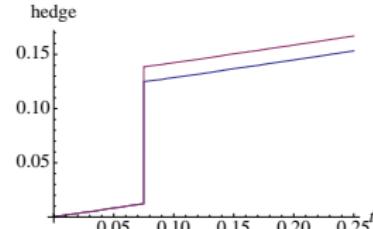
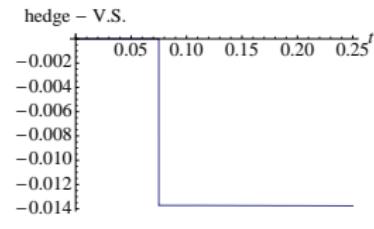


Figure: VS: price process

Figure: Hedge vs. payoff

Figure: Hedge error

Robustness of simple variance swaps

What if $\Delta > 0$?

- In the limit as $\Delta \rightarrow 0$, we saw that the fair strike on a simple variance swap is

$$V = \frac{2e^{-rT}}{S_0^2} \left\{ \int_0^{F_T} \text{put}_T(K) dK + \int_{F_T}^{\infty} \text{call}_T(K) dK \right\}$$

- In practice, contract has to stipulate $\Delta > 0$
- Paper derives analytic bound showing that the error in approximating $V(\Delta)$ by the above V is very small (even if there are jumps)
- Percentage error $\sim 0.008\%$ with daily sampling interval,
 $\Delta = 1/252$

Robustness of simple variance swaps

What if you can't trade deep out-of-the-money strikes?

- What if you can only trade strikes in the range (A, B) ?
- Modify payoff with a **correction term**

$$\left(\frac{S_\Delta - S_0}{S_0} \right)^2 + \left(\frac{S_{2\Delta} - S_\Delta}{F_\Delta} \right)^2 + \cdots + \left(\frac{S_T - S_{T-\Delta}}{F_{T-\Delta}} \right)^2 - \phi(S_T)$$

where

$$\phi(S_T) = \begin{cases} \left(\frac{A - S_T}{F_{T-\Delta}} \right)^2 & \text{if } S_T < A \\ 0 & \text{if } A \leq S_T \leq B \\ \left(\frac{S_T - B}{F_{T-\Delta}} \right)^2 & \text{if } S_T > B \end{cases}$$

- Can be replicated with strikes in the range (A, B)
- For 1-month simple variance swaps, correction term was zero on every date in my sample

Robustness of simple variance swaps

What if you can't trade deep out-of-the-money strikes?

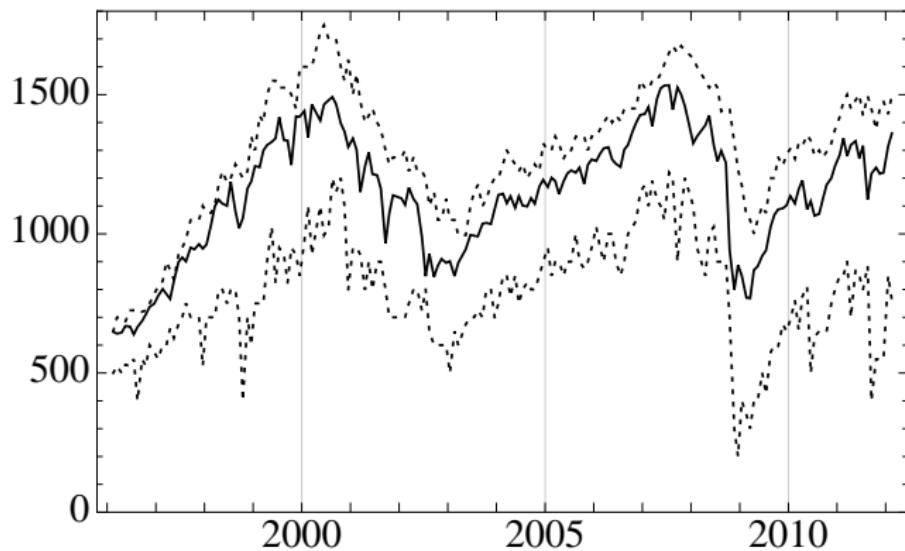


Figure: Dashed lines indicate strike range tradable on a given day. Solid line indicates where the market ended up 30 days later

What does VIX measure?

- The VIX index is based on the strike on a variance swap:

$$\text{VIX}^2 = \frac{2e^{rT}}{T} \left\{ \int_0^{F_T} \frac{1}{K^2} \text{put}_T(K) dK + \int_{F_T}^{\infty} \frac{1}{K^2} \text{call}_T(K) dK \right\}$$

- This is a *definition*, not a statement about pricing
- Generally interpreted as a measure of risk-neutral variance $\mathbb{E}^* \int_0^T \sigma_t^2 dt$
- In the presence of jumps...
 - ▶ ... the replicating portfolio doesn't replicate the variance swap payoff
 - ▶ ... the correctly priced strike \tilde{V} doesn't equal VIX^2
 - ▶ ... neither \tilde{V} nor VIX^2 has the interpretation $\mathbb{E}^* \int_0^T \sigma_t^2 dt$

What does VIX measure?

Result (Interpretation of VIX)

VIX measures the entropy of the simple return $R_T = S_T/S_0$,

$$VIX^2 = \frac{2}{T} (\log \mathbb{E}^* R_T - \mathbb{E}^* \log R_T)$$

If R_T is lognormal, then

$$VIX^2 = \frac{1}{T} \text{var}^* \log R_T \approx \frac{1}{T} \text{var}^* R_T$$

But, in general, with jumps and/or time-varying volatility, VIX depends on all of the (annualized, risk-neutral) cumulants of log returns,

$$VIX^2 = 2 \sum_{n=2}^{\infty} \frac{\kappa_n^*}{n!} = \kappa_2^* + \frac{\kappa_3^*}{3} + \frac{\kappa_4^*}{12} + \frac{\kappa_5^*}{60} + \dots$$

What does VIX measure?

- Initially surprising observation: negative skewness drives VIX **down**

$$\text{VIX}^2 = 2 \sum_{n=2}^{\infty} \frac{\kappa_n^*}{n!} = \kappa_2^* + \frac{\kappa_3^*}{3} + \frac{\kappa_4^*}{12} + \frac{\kappa_5^*}{60} + \dots$$

What does VIX measure?

- Initially surprising observation: negative skewness drives VIX **down**

$$\text{VIX}^2 = 2 \sum_{n=2}^{\infty} \frac{\kappa_n^*}{n!} = \kappa_2^* + \frac{\kappa_3^*}{3} + \frac{\kappa_4^*}{12} + \frac{\kappa_5^*}{60} + \dots$$

- But this is skewness *calculated with risk-neutral probabilities*
- To see how VIX is linked to real-world probabilities, suppose that there is a representative investor with log utility

What does VIX measure?

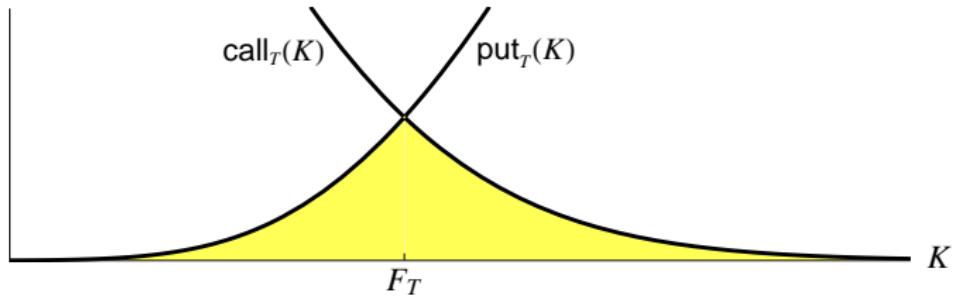
Result (VIX in equilibrium)

If there is a representative agent with log utility, then VIX can be expressed in terms of the cumulants of $\log R_T$ under the real-world probabilities,

$$VIX^2 = 2 \sum_{n=2}^{\infty} (-1)^n (n-1) \frac{\kappa_n}{n!} = \kappa_2 - \frac{2}{3} \kappa_3 + \frac{\kappa_4}{4} - \frac{\kappa_5}{15} + \dots$$

What does SVIX measure?

option prices



- Analogously, we can define an index, SVIX, based on the strike of a simple variance swap:

$$\text{SVIX}^2 = \frac{2e^{rT}}{T \cdot S_0^2} \left\{ \int_0^{F_T} \text{put}_T(K) dK + \int_{F_T}^{\infty} \text{call}_T(K) dK \right\}$$

What does SVIX measure?

Result (Interpretation of SVIX)

SVIX measures the risk-neutral variance of the simple return:

$$SVIX^2 = \frac{1}{T} \text{var}^* R_T$$

VIX and SVIX

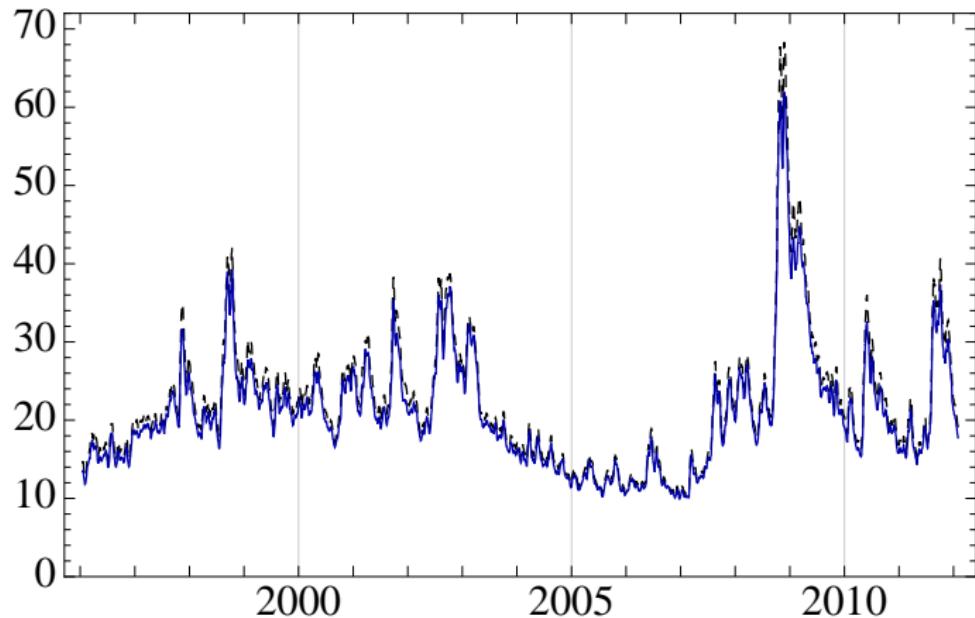


Figure: VIX (dotted) and SVIX (solid). Jan 4, 1996–Jan 31, 2012

Figure shows 10-day moving average. $T = 1$ month

VIX minus SVIX

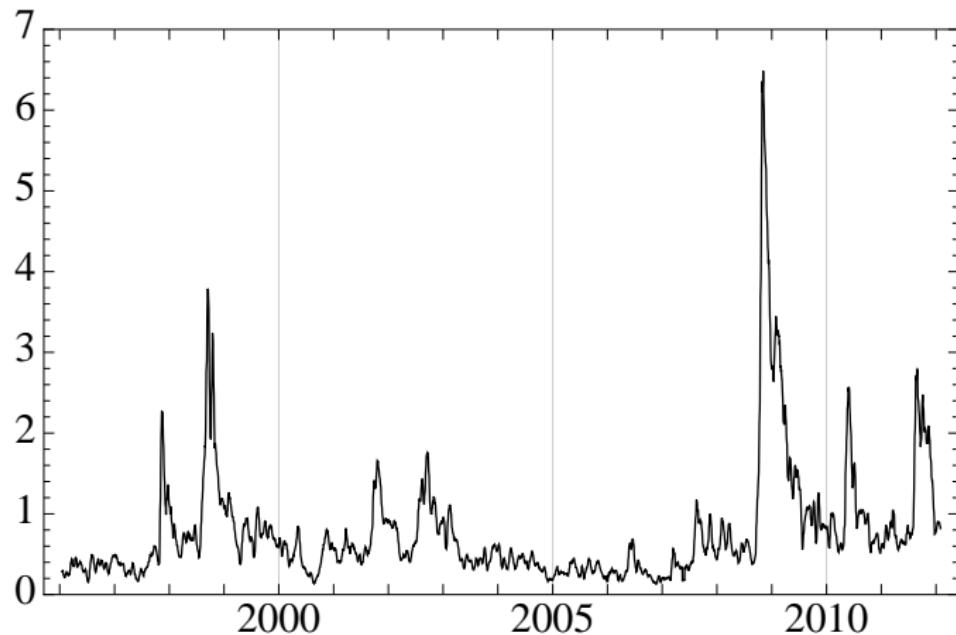


Figure: VIX minus SVIX. Jan 4, 1996–Jan 31, 2012

Figure shows 10-day moving average. $T = 1$ month

VIX minus SVIX

- If returns and the SDF are conditionally lognormal with return volatility σ_R then we can calculate VIX and SVIX in closed form:

$$\begin{aligned} \text{SVIX}^2 &= \frac{1}{T} e^{2rT} \left(e^{\sigma_R^2 T} - 1 \right) \\ \text{VIX}^2 &= \sigma_R^2 \end{aligned}$$

- VIX would be lower than SVIX
- No conditionally lognormal model can match the data

A lower bound on the equity premium

- SVIX gives a bound on the equity premium perceived by an investor
 - ▶ who is unconstrained,
 - ▶ who holds the market over the horizon of interest, and
 - ▶ whose relative risk aversion (which need not be constant) is at least one
- I have nothing to say about
 - ▶ Constrained investors
 - ▶ Irrational investors
 - ▶ Investors who don't hold the market
 - ▶ The connection between prices and cashflows or consumption

A lower bound on the equity premium

- Notation: $\frac{1}{R_{f,T}} \mathbb{E}^* X_T = \mathbb{E} M_T X_T$
- Start from the following identity:

$$\begin{aligned}\frac{\text{var}^* R_T}{R_{f,T}} &= \frac{1}{R_{f,T}} \mathbb{E}^* R_T^2 - \frac{1}{R_{f,T}} (\mathbb{E}^* R_T)^2 \\ &= \mathbb{E}(M_T R_T^2) - R_{f,T} \\ &= \mathbb{E} R_T - R_{f,T} + \mathbb{E}(M_T R_T^2) - \mathbb{E} R_T \\ &= \mathbb{E} R_T - R_{f,T} + \underbrace{\text{cov}(M_T R_T, R_T)}_{\leq 0}\end{aligned}$$

- This connects **something we can measure** to **something interesting** plus **something we can control**

A lower bound on the equity premium

Result (A bound on the equity premium, version 1)

If there is a one-period investor who holds the market from time 0 to time T , and whose risk aversion $\gamma(c) \equiv -cu''(c)/u'(c) \geq 1$, then

$$\mathbb{E} [R_T - R_{f,T}] \geq \frac{\text{var}^* R_T}{R_{f,T}}$$

With log utility, $\gamma(x) \equiv 1$, this holds with equality

- Equivalently, $\frac{1}{T} \mathbb{E} [R_T - R_{f,T}] \geq \frac{\text{SVIX}^2}{R_{f,T}}$
- Does not require power utility: γ doesn't have to be constant
- Does not require lognormality

A lower bound on the equity premium

Proof.

- The given assumption implies that the SDF is proportional to $u'(R_T)$, so we must show that $\text{cov}(R_T u'(R_T), R_T) \leq 0$
- This holds because $R_T u'(R_T)$ is decreasing in R_T : its derivative is $u'(R_T) + R_T u''(R_T) = -u'(R_T) [\gamma(R_T) - 1] \leq 0$

A lower bound on the equity premium

- Paper extends to the case of an intertemporal consumer-investor:

$$V[W] = \max_{C, w_i} u(C) + \beta \mathbb{E} V \left[(W - C) \sum_i w_i R_T^{(i)} \right]$$

- The right coefficient of risk aversion is not $-\frac{Cu''(C)}{u'(C)}$ but $-\frac{WV''(W)}{V'(W)}$
- The envelope condition, $u'(C) = V'(W)$, implies that

$$\underbrace{-\frac{WV''(W)}{V'(W)}}_{\text{must be } \geq 1} = -\frac{Cu''(C)}{u'(C)} \times \frac{\partial \log C}{\partial \log W}$$

A lower bound on the equity premium

- If your preferred model is Bansal–Yaron or Campbell–Cochrane, the above does not apply: it requires separable utility
- But we can (approximately) deal with these cases too: under conditional lognormality,

$$\frac{1}{T} \mathbb{E} [R_T - R_{f,T}] \geq \frac{\text{SVIX}^2}{R_{f,T}}$$

if and only if the conditional Sharpe ratio is greater than the conditional volatility of the market—which holds in the data

- The inequality also holds with Epstein–Zin preferences whenever $\gamma \geq 1$ and EIS is sufficiently close to 1 (no need for lognormality)

A lower bound on the equity premium

$$\frac{\text{var}^* R_T}{R_{f,T}} \leq \mathbb{E} R_T - R_{f,T} \leq R_{f,T} \cdot \sigma(M) \cdot \sigma(R_T)$$

- Left-hand inequality is the **new result**
 - ▶ Good: relates unobservable equity premium to an observable quantity
 - ▶ Bad: requires an economic assumption
- Right-hand inequality is the Hansen–Jagannathan bound
 - ▶ Good: no assumptions
 - ▶ Bad: neither side is observable

A lower bound on the equity premium

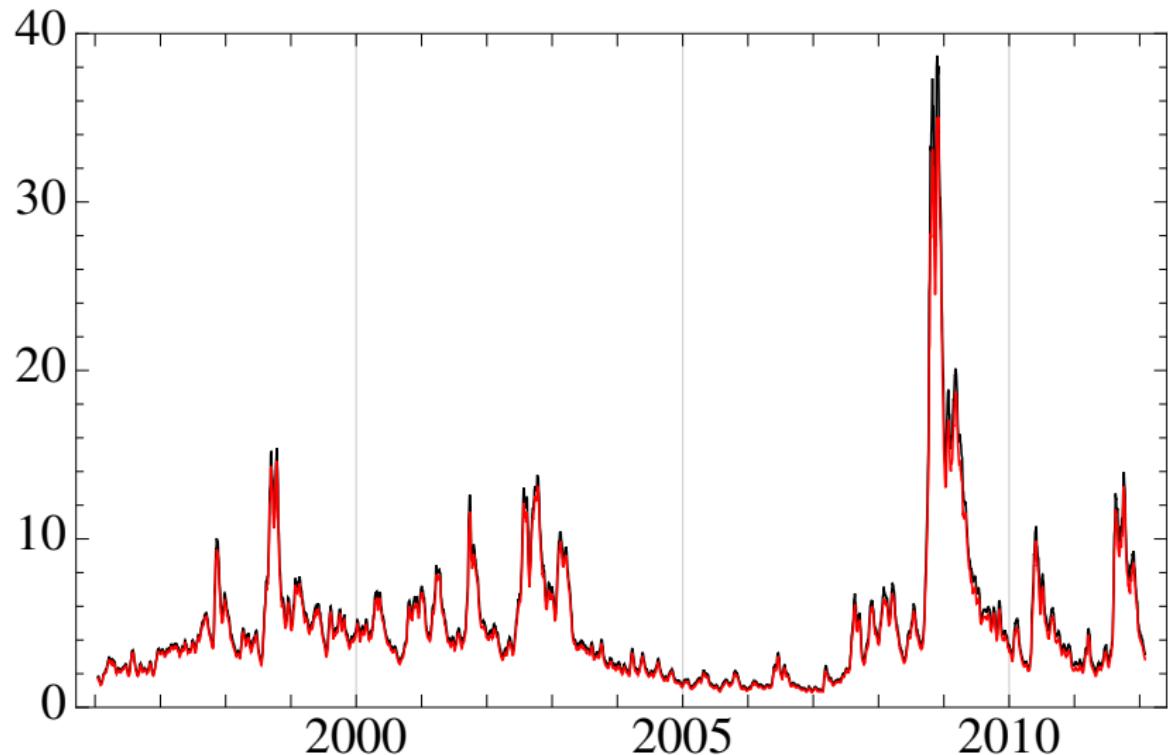
- Merton (1980) estimated equity premium from

$$\text{instantaneous risk premium} = \gamma\sigma^2$$

- Assumes power utility and **the market's price follows a diffusion**
- No distinction between risk-neutral and real-world variance in a diffusion-based model (Girsanov's theorem)
- Beyond diffusions, the appropriate generalization relates the risk premium to the *risk-neutral* variance

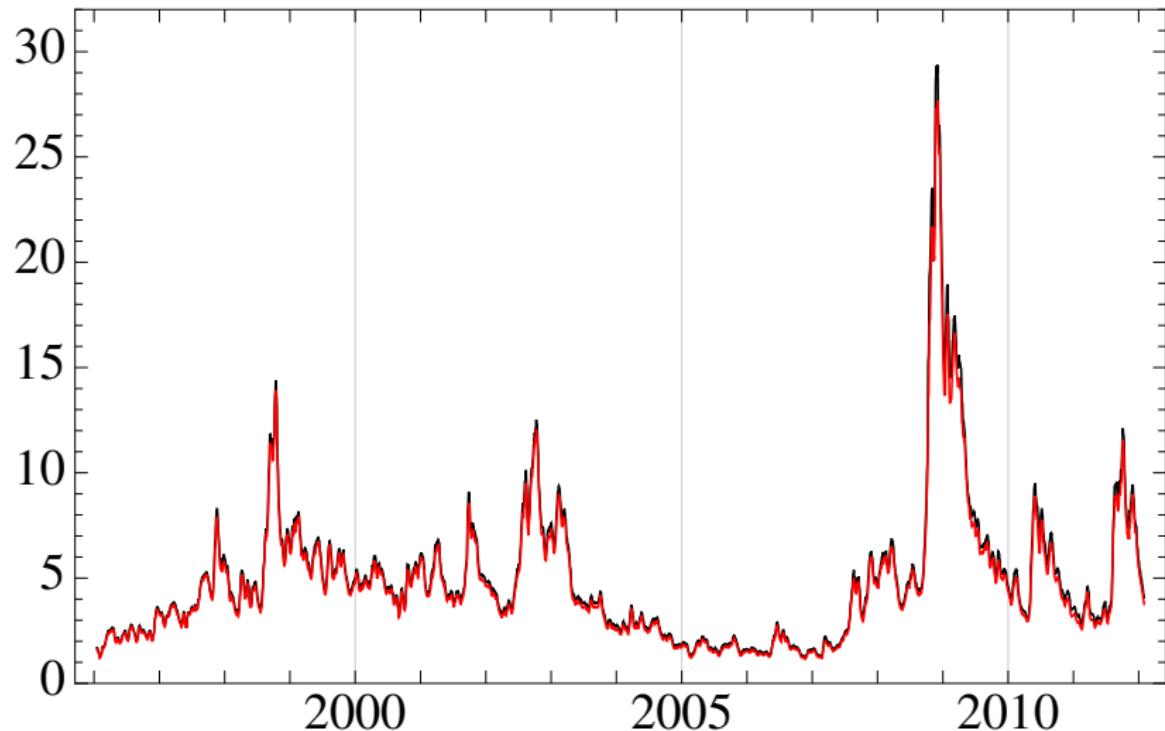
A lower bound on the equity premium

1mo horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red



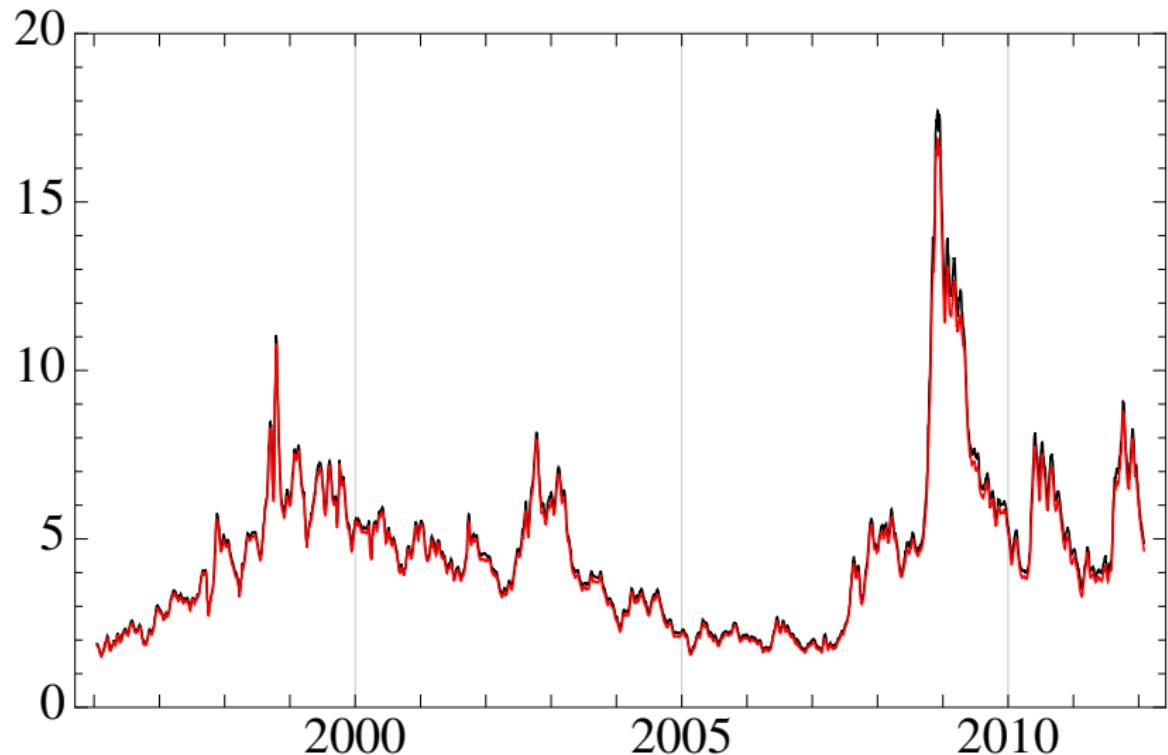
A lower bound on the equity premium

3mo horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red



A lower bound on the equity premium

1yr horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red



A lower bound on the equity premium

horizon	mean	s.d.	min	1%	10%	25%	50%	75%	90%	99%	max
1 mo	4.92	4.53	0.81	1.01	1.52	2.41	3.85	5.65	8.85	25.4	54.2
2 mo	4.92	3.94	0.97	1.17	1.62	2.57	4.05	5.82	8.41	23.2	45.4
3 mo	4.87	3.55	1.03	1.25	1.70	2.65	4.15	5.83	8.05	21.1	38.6
6 mo	4.77	2.93	1.24	1.45	1.88	2.83	4.29	5.88	7.57	16.7	28.6
1 yr	4.48	2.41	1.03	1.53	1.95	2.71	4.19	5.48	7.02	13.7	21.2

Table: Mean, standard deviation, and quantiles of EP bound (in %)

A lower bound on the equity premium

- Equity premium was very high at times of stress
- Also high from 1998–2000
 - ▶ Forecasts based on market valuation ratios incorrectly predicted a low or even negative equity premium during this period
 - ▶ By construction, the lower bound can never be less than zero
- Most important: no out-of-sample issues (Ang–Bekaert, Goyal–Welch) because no parameter estimation is required

A lower bound on the equity premium

- Suppose you think this just reflects “market segmentation”. What *trade* should you have done in November 2008?
 - ▶ Short the portfolio of options, i.e. short an at-the-money-forward straddle and (equally weighted) out-of-the-money calls and puts
 - ▶ You end up short if the market rallies and long if the market sells off
 - ▶ You’re taking a contrarian position, providing liquidity to the market
- At the height of the credit crisis, extraordinarily high risk premia were available for investors who were prepared to take on this position

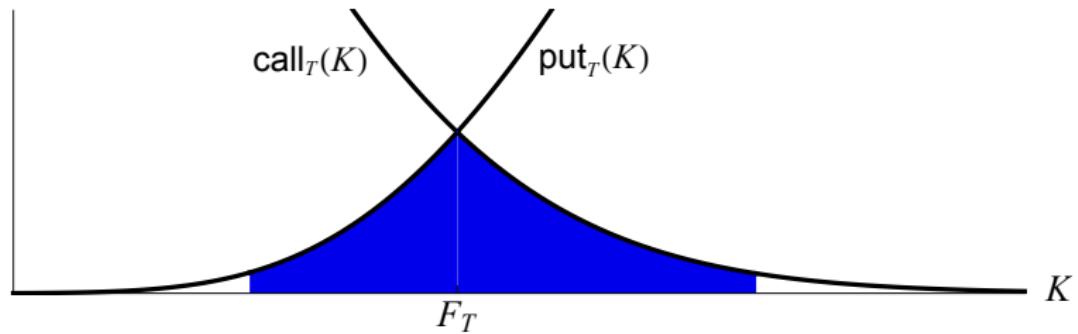
How *not* to think about what's going on

- If the world were lognormal you could think of what we're doing as
 - ▶ Exploiting a relationship between risk premia and \mathbb{P} -variance
 - ▶ \mathbb{Q} -variance equals \mathbb{P} -variance
- In the real, non-lognormal, world, this is the wrong intuition
 - ▶ Risk premia sensitive to higher moments as well as \mathbb{P} -variance
 - ▶ \mathbb{Q} -variance not equal to \mathbb{P} -variance

The bound is conservative in two respects

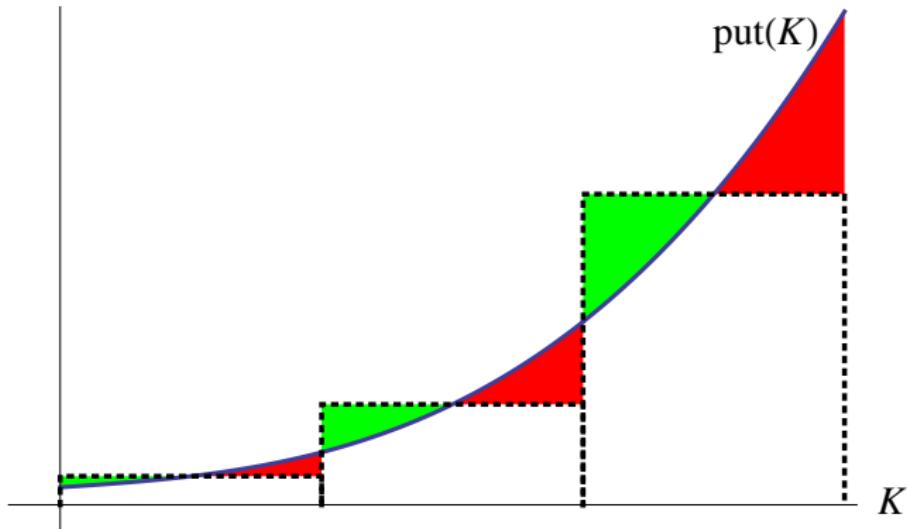
- Can't observe deep-OTM option prices

option prices



The bound is conservative in two respects

- Even near-the-money, can't observe a continuum of strikes



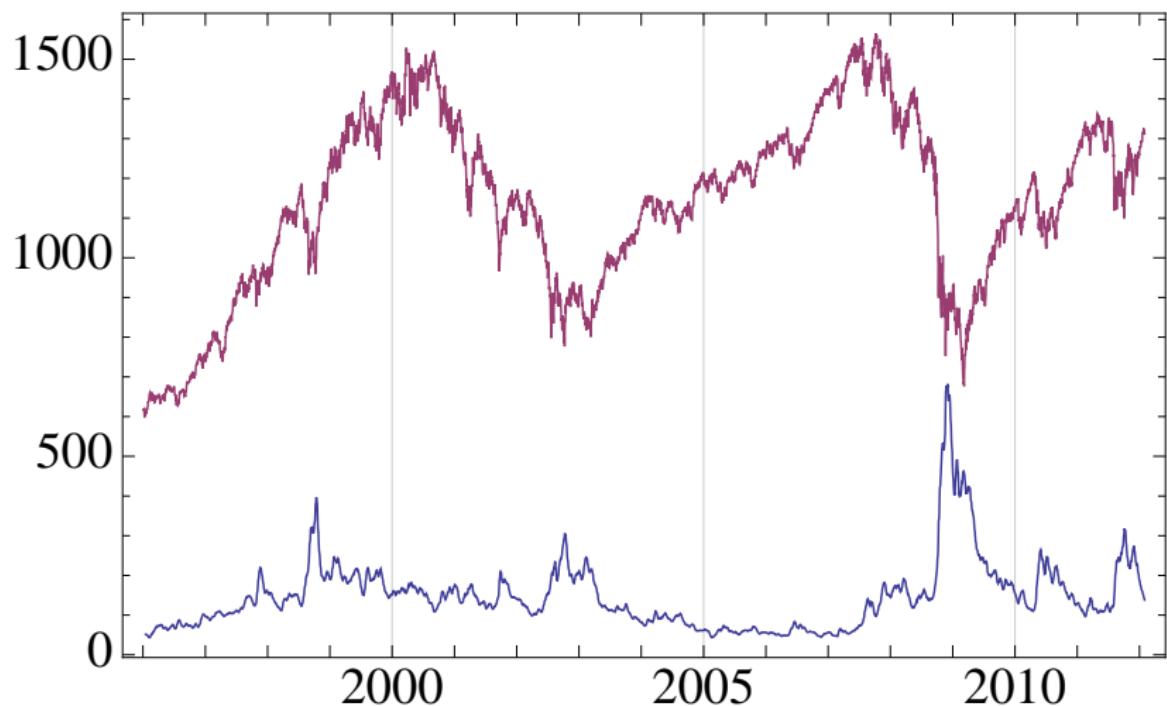
The bound is conservative in two respects

- Both these effects mean that **the true lower bound is even higher**
- By ignoring deep-OTM options, we underestimate the true area under the curve
- More subtly, discretization in strike also leads to underestimating the true area, because $\text{call}(K)$ and $\text{put}(K)$ are both convex in K

Labour income

- Suppose the investor has some other source of income $L(R_T)$ at time T ; think of bonds or labour income
- Then we get the same result under a stronger assumption on risk aversion
 - ▶ If $L'(R_T) \geq 0$ and $L(R_T) \leq \kappa W_T$ then we need risk aversion at least $1 + \kappa$
 - ▶ If the agent has at least as much wealth in the market as labour (or bond) income between now and time T , $L(R_T) \leq W_T$, then we need risk aversion at least 2
 - ▶ All the results go through the same—and the *numbers* are the same too

Equity premium bound (rescaled) and S&P 500



What if the bound were tight?

- $REP_{t \rightarrow t+T} \stackrel{?}{\approx} \alpha + \beta \cdot EPB_t + \varepsilon_{t+T}$
- OLS with Hansen–Hodrick standard errors to account for heteroskedasticity and overlapping observations
- Null hypothesis: bound holds with equality, $\alpha = 0, \beta = 1$

horizon	$\hat{\alpha}$	s.e.	$\hat{\beta}$	s.e.	R^2
1 mo	-0.01	[0.06]	0.77	[1.41]	0.3%
2 mo	-0.02	[0.07]	0.95	[1.47]	0.8%
3 mo	-0.02	[0.07]	0.90	[1.63]	0.9%
6 mo	-0.07	[0.06]	1.90	[0.90]	4.6%
1 yr	-0.04	[0.09]	1.54	[1.29]	3.6%

Up-SVIX and down-SVIX

Work in progress

$$\text{var}^* R_T = \underbrace{\frac{2R_{f,T}}{P_0^2} \int_0^{F_{0,T}} \text{put}_T(K) dK}_{\text{“down-SVIX}^2\text{”}} + \underbrace{\frac{2R_{f,T}}{P_0^2} \int_{F_{0,T}}^{\infty} \text{call}_T(K) dK}_{\text{“up-SVIX}^2\text{”}}$$

- Natural to think about what the calls and puts tell us separately
- Can we give a nice interpretation to down- and up-SVIX²?

Up-SVIX and down-SVIX

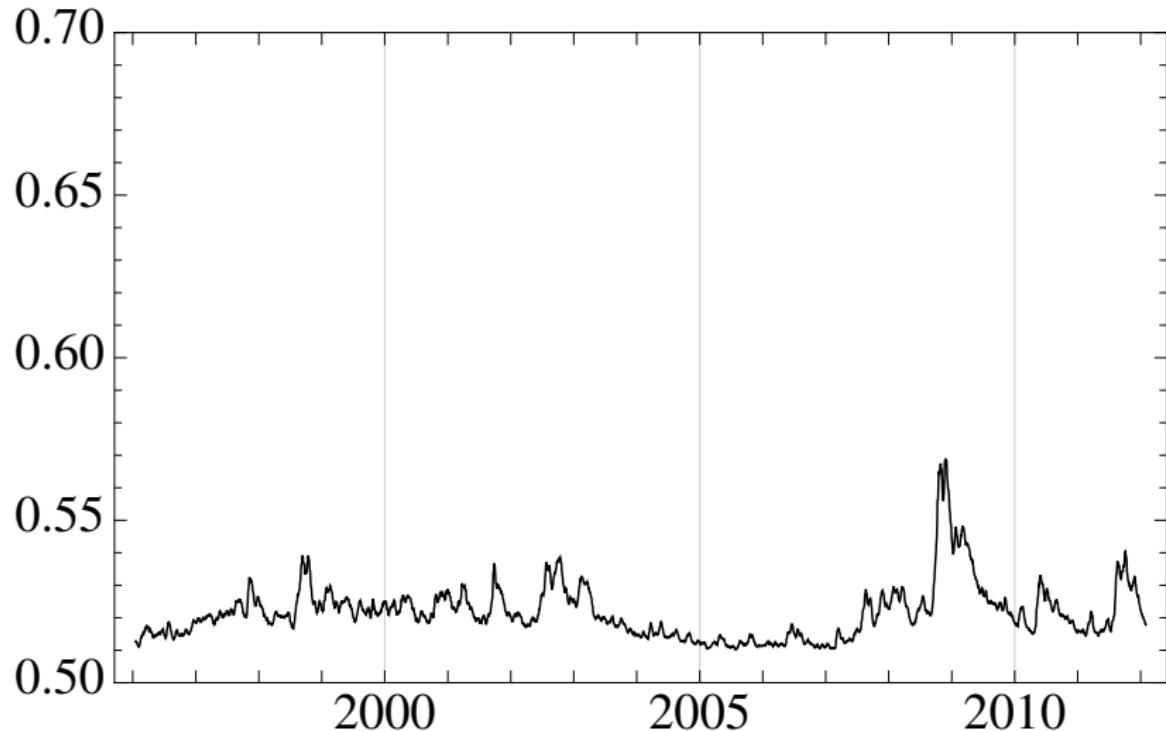
- Yes, if we think from the perspective of a log investor

$$\begin{aligned}\mathbb{P}(R_T > R_{f,T}) &= -R_{f,T} \text{call}'(F_{0,T}) + \frac{\text{call}(F_{0,T})}{P_0} \\ \mathbb{E}[(R_T - R_{f,T}) \mathbf{1}\{R_T > R_{f,T}\}] &= \frac{R_{f,T}}{P_0} \text{call}(F_{0,T}) + \frac{\text{up-SVIX}^2}{R_{f,T}} \\ \mathbb{E}[(R_T - R_{f,T}) \mathbf{1}\{R_T < R_{f,T}\}] &= -\frac{R_{f,T}}{P_0} \text{call}(F_{0,T}) + \frac{\text{down-SVIX}^2}{R_{f,T}}\end{aligned}$$

- These are real-world probabilities, \mathbb{P} not \mathbb{P}^*
- Rule of thumb: $\mathbb{E}[R_T - R_{f,T} | R_T > R_{f,T}] \approx 2 \times \text{up-SVIX}^2$
- $\mathbb{E}[R_T - R_{f,T} | R_T < R_{f,T}] \approx 2 \times \text{down-SVIX}^2$

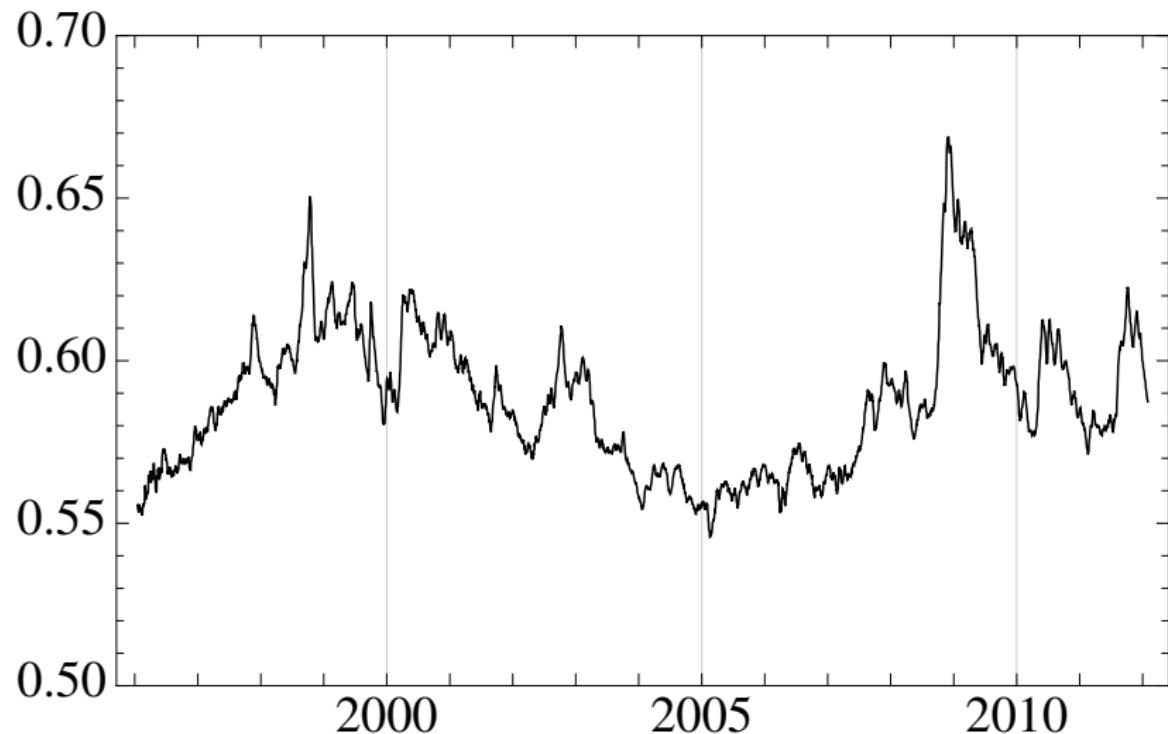
Probability of an up-move, $\mathbb{P}(R_T > R_{f,T})$

$T = 1 \text{ mo}$



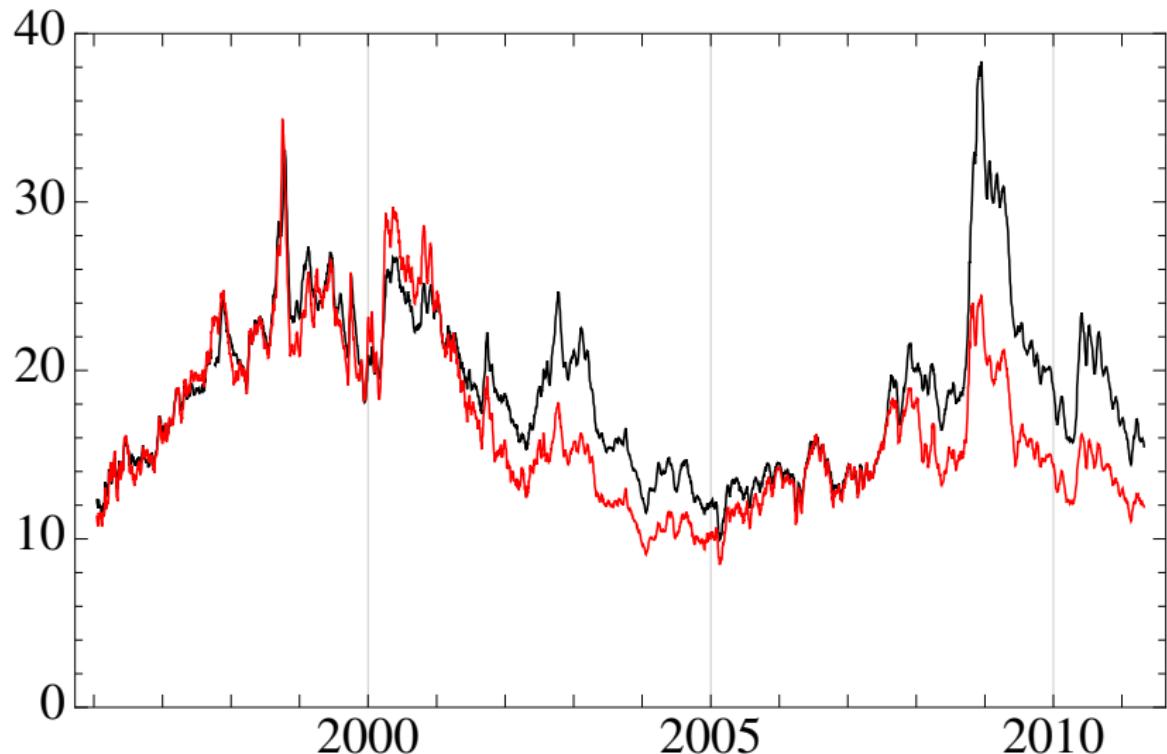
Probability of an up-move, $\mathbb{P}(R_T > R_{f,T})$

$T = 1 \text{ yr}$



Conditional equity premium $\mathbb{E} (R_T - R_{f,T} | R_T \geq R_{f,T})$

Black: up-move. Red: down-move (sign flipped). $T = 1$ yr



A comparison: November 1998 vs November 2008

- Both were times at which the equity premium was high
- In both cases, the probability of an up-move was high (over 65%)
- Expected excess return conditional on an up-move was high in both cases (33% in '98, 38% in '08)
- Big gap in the expected excess return conditional on a down-move (-35% in '98, -24% in '08)
- Internet boom was the only period in the sample when (the absolute value of) the equity premium was larger conditional on a down-move than on an up-move

Generalizing the bound

Work in progress

Modify the previous assumptions as follows:

- ① There is a one-period investor as before, except that relative risk aversion $\gamma(x) \equiv -xu''(x)/u'(x)$ satisfies $\gamma(x) \in [\underline{\gamma}, \bar{\gamma}]$, or
- ② There is an intertemporal investor as before, except that relative risk aversion $\Gamma(x) \equiv -xJ''[x]/J'[x]$ satisfies $\Gamma(x) \in [\underline{\gamma}, \bar{\gamma}]$, or
- ③ There is an Epstein-Zin (1989) investor as before, except that risk aversion $\gamma \in [\underline{\gamma}, \bar{\gamma}]$, or
- ④ The SDF and market return are conditionally jointly lognormal, and the ratio of the market's conditional Sharpe ratio to its conditional volatility lies between $\underline{\gamma}$ and $\bar{\gamma}$

Generalizing the bound

Result

Under any one of these assumptions,

$$\frac{\mathbb{E}^* \left(R_T^{\theta+\gamma} \right)}{\mathbb{E}^* \left(R_T^\gamma \right)} \leq \mathbb{E} \left(R_T^\theta \right) \leq \frac{\mathbb{E}^* \left(R_T^{\theta+\bar{\gamma}} \right)}{\mathbb{E}^* \left(R_T^{\bar{\gamma}} \right)} \quad \text{for any } \theta \geq 0$$

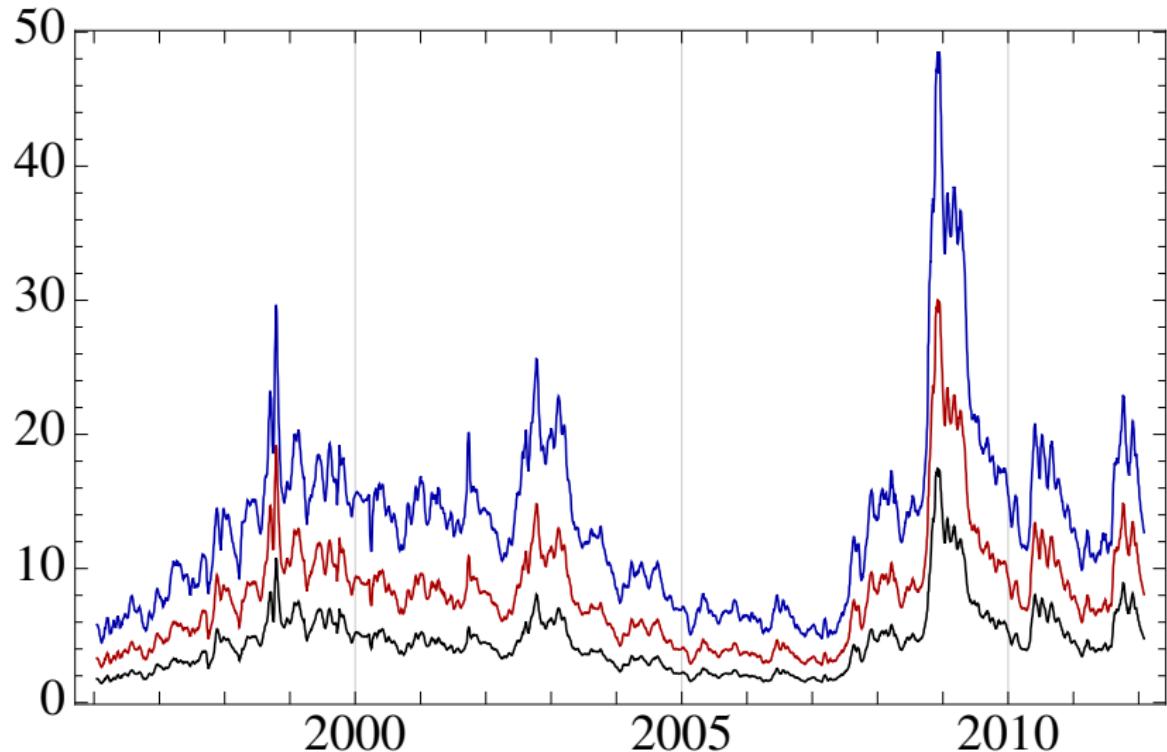
and

$$\frac{\mathbb{E}^* \left(R_T^{\theta+\bar{\gamma}} \right)}{\mathbb{E}^* \left(R_T^{\bar{\gamma}} \right)} \leq \mathbb{E} \left(R_T^\theta \right) \leq \frac{\mathbb{E}^* \left(R_T^{\theta+\gamma} \right)}{\mathbb{E}^* \left(R_T^\gamma \right)} \quad \text{for any } \theta \leq 0.$$

If one of the bounds on relative risk aversion holds with equality, then the corresponding inequality holds with equality.

Bounds on the equity premium

Bounds on 1yr equity premium, 10-day moving average, $\gamma = 1, 2, 4$



Bounds on the equity premium

γ	mean	s.d.	min	1%	10%	25%	50%	75%	90%	99%	max
0.75	3.47	1.89	0.75	1.17	1.50	2.09	3.23	4.25	5.49	10.7	16.6
1	4.48	2.41	1.03	1.53	1.95	2.71	4.19	5.48	7.02	13.7	21.2
1.25	5.44	2.89	1.33	1.87	2.39	3.30	5.10	6.65	8.44	16.5	25.5
1.50	6.34	3.34	1.65	2.20	2.80	3.86	5.98	7.76	9.74	19.0	29.4
2	8.01	4.15	2.34	2.81	3.58	4.90	7.60	9.79	12.2	23.7	36.5
4	13.4	6.71	3.79	4.85	6.16	8.24	12.9	16.2	19.9	38.7	59.3
8	21.1	11.4	4.47	7.27	9.70	12.7	20.5	24.6	31.7	70.7	114.8

Table: Mean, standard deviation, and quantiles of equity premium bounds at the 1-year horizon (measured in %) for different levels of risk aversion

Conclusion

- Proposed a new derivative contract, the simple variance swap, that can be hedged and therefore priced even if there are jumps
- Constructed an index, SVIX, that is to a simple variance swap as VIX is to a variance swap
- SVIX is less than VIX in the data; conditionally lognormal models make the opposite prediction
- No need to assume that the world is stationary or ergodic, because there's no need to replace \mathbb{E} with $\frac{1}{T} \sum$
- The forward-looking equity premium is **extremely volatile** and was **extraordinarily high** during the crisis