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INTERMEDIATE MICROECONOMICS (Ec201)

Course duration: 54 hours lecture and class time (Over three weeks)

Summer School Programme Area: Economics

LSE Teaching Department: Department of Economics

Lead Faculty: Dr Andrew Ellis (first-half) and Dr Francesco Nava (second-half) (Dept. of Economics)

Pre-requisites: Introductory Microeconomics, Calculus, Introductory Statistics.

Course Overview:

The aim of this course is to give students the conceptual basis and the necessary tools for understanding
modern microeconomics at the intermediate level. In the context of this theoretical framework, the course
explores a number of applied issues such as contract design, insurance, and ownership structures.

The course covers 6 broad areas:
- Consumer Theory
- The Theory of the Firm
- General Equilibrium
- Game Theory
- Oligopolistic Markets

- Information Economics

The theory of the consumer explores the demand side, while the theory of the firm discusses the supply side
of the economy. General equilibrium puts the two parts together and discusses welfare implications, including
in the presence of externalities.

The second part of the course introduces basic concepts in non-cooperative game theory, emphasising the
strategic aspect of economic interaction. Game theory is then applied to analyse informational problems in
economics, in particular problems of hidden information (adverse selection) and hidden action (moral hazard).

Whilst not all of the presentations will be as mathematical as that provided in the course text, knowledge of
calculus is essential for the study of quantitative solutions to economic problems and, indeed, enhances one’s
understanding of the underlying concepts. In class on the first day of the course, differential calculus will be
reviewed, and students will be introduced to the technique of constrained maximisation due to Lagrange.
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Lecture Plan:
Topic 1 - Consumer Theory

This part of the course studies consumers’ preferences and budget constraints. It derives individual demand
functions and analyses how these can be aggregated to build the market demand curve. Also the concepts of
consumer surplus and price indexes will be discussed.

Topic 2 - The Theory of the Firm

This part of the course reviews the structure of production and studies the profit maximisation problem of the
firm. It analyses how the firm responds to market stimuli both in the short and in the long run. The issues
above are addressed for perfectly competitive firms as well as for monopolies. The market supply is also
derived as the aggregate supply of firms that produce identical products.

Topic 3 - General Equilibrium and Welfare

The topic provides conditions for an economy to reach equilibrium and studies how equilibrium prices and
guantities are determined. It identifies conditions under which the market equilibrium is efficient as well as
those under which a central planner can implement an efficient allocation as a market-equilibrium.

Topic 4 - Game Theory

Game theory is used to study strategic interactions between agents and is a fundamental tool in modern
economics. This topic analyses several general classes of games and defines relevant solution concepts in each
of these. It begins by discussing static games of complete and incomplete information and by defining
Dominant Strategy equilibria and Nash equilibria, in pure and mixed strategies. It proceeds by analysing
dynamic and repeated games with complete information, and by introducing Subgame Perfection.

Topic 5 — Oligopolistic Markets

Two main game theoretic applications are considered. The first looks at the strategic behaviour of firmsin a
duopoly. The second looks at a model of entry-deterrence with pre-commitment strategies.

Topic 6- Information Economics

In many environments, agents involved in economic transactions have access to different information about
profitability of trade between them. The final topic considers such scenarios: firstly, in adverse-selection and
signalling models where one agent cannot observe another agent’s characteristics (insurance market);
secondly, in moral hazard models where one agent cannot observe another agent’s action. The optimal design
of contracts to provide incentives and elicit information is the main aim of the topic.
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Suggested Reading:
The following text is recommended as additional reading to the lecture notes and class exercises.

Christopher Snyder and Walter Nicholson, Microeconomic Theory: Basic Principles and Extensions, (11th
edition, International Edition), South-Western College Publishing (2011).

Please note that the textbook differs from previous editions as well as the American edition.

Formative Assessments:

1) Format: Hand-in Problem Set
Date: Friday week one
Results due: Tuesday week two

2) Format: Hand-in Problem Set
Date: Tuesday of week three
Results due: Thursday week three

Summative Assessments:

1) Format and Weight: Two Hour Midterm Exam (50%)
Date: Wednesday of week two
Results due: Monday of week three

2) Format and Weight: Two Hour Final Exam (50%)
Date: Friday of week three

Results due: Within a week

The precise time and location of the exams will be circulated during the programme.
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Credit Transfer: If you are hoping to earn credit by taking this course, please ensure that you confirm
itis eligible for credit transfer well in advance of the start date. Please discuss this directly with your
home institution or Study Abroad Advisor.

As a guide, our LSE Summer School courses are typically eligible for three or four credits within the
US system and 7.5 ECTS in Europe. Different institutions and countries can, and will, vary. You will
receive a digital transcript and a printed certificate following your successful completion of the
course in order to make arrangements for transfer of credit.

If you have any queries, please direct them to summer.school@Ise.ac.uk
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Introduction

The second part of the course discusses:

a Classical models of Choice Under Uncertainty

@ Fundamental concepts and results in Game Theory:

a Strategic Decision Making
a Static and Dynamic Solution Concepts

a Folk Theorems

a Classical game theortic applications:

Imperfect Competition

Adverse Selection

[F]

Signaling
Moral Hazard
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Why Game Theory?

In many relevant economic environments the well being of individuals
depends on decisions made by others

Game theory sheds light on behavior in strategic environments

Game theoretic models are commonly used to:

study oligopolistic competition [cartels, competition laws]

model insurance contracts [public option and socialized healthcare]
write incentive contracts [long term incentive contracts|
understand voting and political systems

design markets, mechanisms, and auctions

¢ 0w e e

bid in auctions [ebay, spectrum auctions]

model externalities and public goods

W

make decisions on war strategies
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Objectives of the Course

@ Introduce the classical model of choice under uncertainty.

@

Introduce models of behavior in strategic environments.
Understand how information affects strategic behavior.

Understand decisions and threats in dynamic environments.

Understand how reputation affects behavior in repeated interactions.

o

Introduce classical models of imperfect competition.

Understand screening or signalling in models of hidden information.

©

Understand incentive contracts in settings with moral hazard.
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General Information

Lecturer:

Email:

Time:

Location:

Lectures:

Classes:

Nava (LSE)

Course Website:

Enrollment Key:

Francesco Nava, 32L Room 3.20

f.nava@lse.ac.uk

http://shortcourses.lse.ac.uk/

EC20119

2pm-5pm & morning classes

TBD

Week 2: Wed, Thur, Fri; Week 3: Mon, Tue, Wed

Week 2: Thur, Fri; Week 3: Mon, Tue, Wed, Thur

Slides 0 — EC201 June 19 5/8

Daily Course Program

Nava (LSE)

@ Choice Under Uncertainty & Static Games
a Readings: SN7 & SN8; Supplementary: 02.1, 02.6-9

@ Mixed Strategy and Imperfect Competition
s Readings: SN8 & SN15; Supplementary: O4.1-4, 03.1-2

@ Incomplete Information Games & Dynamic Games

a Readings: SN8; Supplementary: 09.1-3 & 05.1-4

@ Dynamic Games & Repeated Games
a Readings: SN8; Supplementary: 015.1-2

@ Asymmetric Information & Adverse Selection

= Readings: SN18; Supplementary: S2, S3-2, S4
@ Signalling & Moral Hazard

= Readings: SN18; Supplementary: S5.1 to 55.3.5
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Course Requirements

e Classes follow lectures with 1 day lag

el
-

The work for each class consists of one or more exercises

Some answers to exercises will be posted

= A marked problem set will be due on Tuesday of week 3

Principal features of the final exam are:

& [he final consists of 2 parts A and B
@ Part A is worth 60% of the final grade

a |t consists of short questions
e You will have to choose 3 out of 4 questions

a Part B is worth 40% of the final grade

s It consists of long questions
a You will have to choose 1 out of 2 questions
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Main Textbook
Microeconomic Theory, Snyder & Nicholson, Thomson, 11" Edition [SN]

Slides
Include all materials required for the examinations
Slides are posted on the course website

Slides labeled "Extra" are not examinable

Supplementary Readings
An Introduction to Game Theory, Osborne, Oxford Press, 2003 [O]
Economics of Contracts, Salanie, MIT Press, 2005 [S]
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Choice Under Uncertainty:

@ Statistics Review

@ Definitions:

a Lottery & Fair Lottery

Expected Utility

Risk Attitudes (Aversion, Neutrality, Loving)
a Certainty Equivalent

@ Measures of Risk Aversion:
a Relative Risk Aversion
@ Absolute Risk Aversion
a |[nsurance, a first take:

Actuarially Fair Insurance
Under-insurance at Unfair Prices
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Statistics Review
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Statistics Review

A random variable X is a variable that records the possible outcomes x
of a random event

Any random variable X is characterized by:

@ the set of possible outcomes that can occur (X) and by

@ a probability distribution over the possible outcomes (f : X — [0, 1])

Given a numerical random variable {X, f} (that is X C RR):

@ The probability of X = x is denoted by f(x)
@ [he expected value of the RV X is denoted and defined by:

E(X) — ZXEX Xf(X)

@ [he variance of the RV X is denoted and defined by:

V(X) = Leex(x = E(x))*f (x)
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Expected Utility
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Lotteries and Fair Lotteries

A lottery X is a random variable over monetary outcomes

@ Any lottery is characterized by an outcome set and a probability
distribution over monetary outcomes {X, f}

@ In general monetary outcomes can be negative
A lottery X is said to be fair if E(X) =0
Examples:
e X ={2 -1}, f(2) =1/3, f(—1) = 2/3 is fair since:
E(X)=2%(1/3)—1%(2/3)=0
e X={2 -1}, f(2) =1/2, f(—1) = 1/2 is unfair since:
E(X)=2%(1/2)—1x(1/2)=1/2

Such a lottery would be fair if an entry fee of 1/2 were charged
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Expected Utility & Risk Preferences

Consider a decision maker that has preferences over monetary outcomes
defined by a strictly increasing utility function v : X — IR

The expected utility of a lottery X is defined by:
E(u(X)) = Lxex u(x)f(x)
Expected utility may differ from the utility of the expected value!!!

Preferences over lotteries:

@ An individual is risk averse if v/ < 0

An individual is risk neutral if v’/ =0

An individual is risk loving if v > 0
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Risk Preferences
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Risk Preferences

Preferences over lotteries:

A risk averse individual prefers E(X) to the lottery X:
E(u(X)) < u(E(X))
a A risk neutral individual is indifferent between a lottery X and E(X):
E(u(X)) = u(E(X))
@ A risk loving individual prefers a lottery X to E(X):
E(u(X)) > u(E(X))
Example, consider X ={1,9} and f(1) =f(9) =1/2:

If preferences are concave, say u(x) = x1/2, we get that:

E(u(X)) =2 < V5 =u(E(X))

2

If preference are convex, say u(x) = x=, we get that:

E(u(X)) = 41 > 25 = u(E(X))
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Certainty Equivalent

The certainty equivalent xcg of a lottery X is defined by:
u(xce) = E(u(X)) & xce = u ' (E(u(X)))

The certainty equivalent is the amount of money xcg that leaves the
individual indifferent between the lottery X and the certain outcome xcg

For any given lottery X we have that if:

@ an individual is risk averse then xcg < E(X)
@ an individual is risk neutral then xcg = E(X)

@ an individual is risk loving then xcg > E(X)
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Consider a lottery X ={a, b}, f(a) = p, f(b) =1 — p and a risk averse
individual:

Risk Aversion u"<0 E=pa+(1-p)b
EU=pu(a)+(1-p)u(b)

u(b)
u(kE)
EU

u(a)
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Risk Loving

Consider a lottery X ={a, b}, f(a) = p, f(b) =1 — p and a risk loving
individual:

u(b)

EU
u(E)

u(a)
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Relative Risk Aversion (Pratt)

The coefficient of relative risk aversion is defined by:

It is @ measure of risk aversion of individuals
Preferences u display constant relative risk aversion CRRA if ' =0

Any CRRA preference takes the form:
u(x) =ax”+p for « >0,7€(0,1) &V}
If preferences are CRRA then for any k > 0:
E(u(X)) =u(xce) <& E(u(kX)) = u(kxcg)

Risk aversion does not change with proportional changes in the stakes
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Absolute Risk Aversion

The coefficient of absolute risk aversion is defined by:

u/l (X)

A(x) = —

u'(x)
It is a measure of risk aversion of individuals

Preferences u display constant relative risk aversion CARA if A’ =0

Any CARA preference takes the form:
u(x) =—ae ™+ B for «a >0,v>0&VpB
If preferences are CARA then for any k > O:
E(u(X)) =u(xce) < E(ulk+ X)) =u(k+ xce)

Risk aversion does not change with additive changes in the stakes
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A Model of Insurance

Nava (LSE) Slides 1 — EC201 June 19 15 /21

A Simple Insurance Model |

Consider the following decision problem faced by a risk averse individual:

@ There are two possible states of the world {H, S}
@ The individual can be healthy H or sick §
@ [he probability of being sick is p

@ [he income of an individual is:

= Y if healthy
a Y — L if sick

@ Let y denote the consumption if healthy and x if sick

a Preference satisfy u” € (—o0,0) and:

pu(x) + (1 —p)uly)
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A Simple Insurance Model Il

A Simple Insurance Model: Demand

Consumers can buy insurance coverage z € [0, L]

The unit price of insurance is g

Therefore the total premium is gz

If they do so, their consumption in the two states becomes:

y
X

= Y —qz

= Y—-L—qgz+z=Y—-L+(1—q)z

If so, the problem of a consumer becomes:

max, pu(x) + (1 — p)u(y)

FOC with respect to z requires:

Nava (LSE)

p(1—q)u'(x) = (1 —p)qu'(y)

Slides 1 — EC201

FOC can be written in terms of MRS as:

u'(x) 1-p gq
u'(y) p l1—gq

Thus a consumer of type t wants:

Full Insurance: z=L if g=p
Under Insurance: z <L if g>p
Over Insurance: z>L if g<p

This is the case because u” < 0 implies:

Nava (LSE)
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u'(x)

u'(y

N—"

AV
[
0
X
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A Simple Insurance Model: Supply

@ Suppose that an insurance company is selling the contract

a Its profits on the contract (g, z) are given by:

m(q,z) = (1—p)gz—p(l—q)z= (9 —p)z

@ The company’ profits are:

positive if g > p
negative if g < p
zeroifg=p

[F]

@ The insurance price is actuarially fair if g = p
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Full Insurance at Fair Prices

The consumer fully insures at actuarially fair prices.

A
X

Y-pL|~~~~~~~—- ” a=-(1-p)p
|
|
|
: S NI

Y-Lf-5F~------ —:———--E-'-
. N

Y-pL Y
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Under-Insurance at Unfair Prices

The consumer under-insures at prices are not fair and g > p.
A
X
YpLl-=-=-=---- = a>-(1-p)p
p |
______ A Y
1
) NI
|
A G A g tis
1 : : }!h
Y-pL Y
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Summary: Games of Complete Information

@ Definitions:

Game: Players, Actions, Payoffs
Pure Strategy

Best Response

Mixed Strategy

@ Solution Concepts:

a Dominant Strategy Equilibrium
e Nash Equilibrium

& Properties of Nash Equilibria:
a Multiplicity
a Inefficiency
a Non-Existence in Pure Strategies
a Existence in Mixed Strategies

@ Examples

Nava (LSE) Slides 2 — EC201 June 18 2/43

Introduction to Games

Any environment in which the choices of an individual affect the well being
of others can be modeled as a game.

What pins down a specific game:

@ Who participates in a game [Players]
@ The choices that participants have [Choices|
@ The well being of individuals [Payoffs]
@ The information that individuals have [Rules of the Game]
e The timing of events and decisions [Rules of the Game]
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Introduction to Games

In all models discussed in the first part of the course:

& individual decisions did not affect the well being of others

@ any dependence would just hinge from equilibrium prices

The next lectures discuss complete information strategic form games.

In such environments:

a |Individuals know the environment

All decisions take place at once

Payoffs are interdependent

Nava (LSE) Slides 2 — EC201
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Static Complete Information Games
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Complete Information Games

A complete information game G consists of:

A set of players:

2 N of size n

@ An action set for each player in the game:
w A; for player i's
s An action profile a = (az, ap, ..., an) picks an action for each player
@ A utility function for each player mapping action profiles to payoffs:

a uj(a) denotes player i's payoff of action profile a

B\G| s m
S 52 1,2
m |00 35

Nava (LSE) Slides 2 — EC201 June 18 6 /43

Representing Simoultaneous Move Complete Info Games

Strategic Form S 52 1,2
m |00 35

Extensive Form
oo

(5]
(5]
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Representing Simoultaneous Move Complete Info Games

Strategic Form s [ 52 1,2
m | 0,0 35

00
Extensive Form

e
(&, ]

Nava (LSE) Slides 2 — EC201 June 18 8 /43

Feasible Payoffs and Efficiency

Strategic Form S 52 1,2
m | 0,0 35

Pareto Efficient

Feasible Payoffs

Efficient Payoffs Feasible Payoffs
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Strategies and Best Responses
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Information and Pure Strategies

A strategy in a game:

is a map from information into actions

it defines a plan of action for a player

In a complete information strategic form game:

@ players have no private information

@ players act simultaneously

In this context a strategy is an element of the set of actions

For instance a (pure) strategy for player i is simply a; € A;
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Best Responses

Define a profile of actions chosen by all players other than / by a_;:

a_;j=1(a1,...,3-1,3+1, .-, an)
A strategy a; is a best response to a_; if and only if:
ui(aj,a_;) > uj(aj,a_;) for any a; € A
The best response correspondence of player i is defined by:
bi(a_;) = argmax,eca, uj(aj,a_;) for any a_;

BR identifies the optimal action for a player given choices made by others.

B\G| s m
S 52 1,2
m |00 35
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Dominance and DSE
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Strict Dominance

@ Strategy a; strictly dominates a’ if:

u,-(a,-,a_,-) > u,-(af,a_,-) for any a_;

aj is strictly dominant if it strictly dominates any other a'
@ a; is strictly undominated if no strategy strictly dominates a;

@ a; is strictly dominated if a strategy strictly dominates a;

In the following example s is strictly dominant for B:

B\G| s m
S 5- 2,-
m 0- 1-
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Weak Dominance

@ Strategy a; weakly dominates a if:

ui(aj,a_;) > wui(a,a_;) foranya_;

ui(aj,a_;) > wu;(a,a_;) for somea_;
@ a; is weakly dominant if it weakly dominates any other a’

@ a; is weakly undominated if no strategy weakly dominates a;

@ a; is weakly dominated if a strategy weakly dominates a;

In the following example s is weakly dominant for B:

B\G| s m
S 5- 2-
m 0,- 2-
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Dominance Examples

One strictly and one weakly dominated strategy:

1\2| L C R

1 -2 -1
-0 -1 -3

One strictly dominant strategy:
1\2| L C R

One weakly dominant strategy:
1\2| L C R
T -1 -2 -2
B |-0

Nava (LSE) Slides 2 — EC201

Dominant Strategy Equilibrium

Definitions (Dominant Strategy Equilibrium DSE)

strategy profile a such that for any a’ ; and i € N:

ui(aj,a’;) > uj(al,a’ ;) for any a; € A

June 18

A strict Dominant Strategy Equilibrium of a game G consists of a

16 / 43

@ For weak DSE change > with > ...

@ A profile a is a DSE iff a; is dominant for every player /.

@ Example (Prisoner’s Dilemma):

B\S| N ¢
N |55 06
C |60 11
Nava (LSE) Slides 2 — EC201
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@ Formally, a profile a is a DSE iff a; € b;j(a’ ;) for anya’ ; and i € N.
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lterative Elimination of Dominated Strategies

To find dominant strategies eliminate dominated strategies from the game

If necessary repeat the process to possibly rule out more strategies

Consider the following example:

1\2| L C R 12| L C R
T [10 21 30 _ T [10 21 30
M |23 32 21 M |23 32 21
D |02 12 25 D |02 12 25

At the first instance only D is dominated for player 1
No strategy is dominated a priori for player 2

[Strategies in green in the table are dominated and thus eliminated]

Nava (LSE) Slides 2 — EC201 June 18

lterative Elimination of Dominated Strategies

Once D has been eliminated from the game:
Strategy R is dominated for player 2

No strategy is dominated for player 1

12| L C R 12| L C R
T [10 21 30 _ T [L0 21 30
M |23 32 21 M |23 32 21
D |02 12 25 D |02 12 25

Once R has been eliminated from the game:
Strategy T is dominated for player 1

A final iteration yields (M, L) as the only surviving strategies
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Dominance: Final Considerations

e
fuall

Dominance is often considered a benchmark of rationality:

Rational players never choose dominated strategies

Common knowledge of rationality means:

players only employ strategies that survive iterative elimination

Dominance is a simple concept buy with important limitations:

Often there is no dominant strategy even after iteration

It often leads to inefficient outcomes

Thus a weaker notion of equilibrium needs to be introduced to model
behavior especially for richer setups
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Pure Strategy Nash Equilibrium
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Nash Equilibrium: Introduction

Dominance was the appropriate solution concept if players had no
information or beliefs about choices made by others

The weaker notion of equilibrium that will be introduced presumes that:

@ players have correct beliefs about choices made by others
& players choices are optimal given such beliefs

@ the environment is common knowledge among players

Such model allows for tighter predictions when dominance has no bite
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Nash Equilibrium

Definition (Nash Equilibrium NE)

A (pure strategy) Nash Equilibrium of a game G consists of a strategy
profile a = (a;,a_;) such that for any i € N:

ui(a) > u;j(a,a_;) for any a; € A,

@ A profile a is a NE iff a; is a best response to a_; for any player /.

a Formally, a profile a is a NE iff a; € b;(a_;) for any i € N.

Properties:
& Strategy profiles are independent

@ Strategy profiles common knowledge
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More Examples

Games may have more NE's (Battle of the Sexes):

B\G| s m
S 52 1.2
m |00 35

Nash equilibria may not be efficient (Prisoner’'s Dilemma):

B\S| N C
N [55 06
C |60 11

Pure strategy Nash equilibria may not exist (Matching Pennies):

B\G\ H T
H [02 20
T |20 02
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Examples, Properties and Limitations

Games may have more NE's (Battle of the Sexes):

B\G| s m
S 5,2 1,2
m |00 35

Nash equilibria may not be efficient (Prisoner’'s Dilemma):

B\S| N C
N [55 06
C |60 11

Pure strategy Nash equilibria may not exist (Matching Pennies):

B\G| H T
H 102 20
T |20 02
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Some Nash Equilibria are More Risky

Consider the Stag Hunt game:

B\G | Stag Hare

Stag | 9,9 0,8
Hare | 8,0 8,8

Best responses for this game are:

B\G | Stag Hare

Stag | 9,9 0,8
Hare | 8,0 3,8

Both players choosing to go for the stag is NE

Such NE involves greater risks of miscoordination

than the NE in which both go for the hare
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Three Player Example

& A game with more than 2 players:

3 L
1\2 A B A B
T 101 100 011 011

D 0,1,1 1,20 1,001 21,1
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Three Player Example

= A game with more than 2 players:

1\2 A B A B
T 101 100 011 01,1
D 01,1 120 101 211

a To find all PNE check best reply maps:

3 L R
1\2 A B A B

T 1,0 1,00 01,1 01,1
D 01,1 120 101 21,1
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War of Attrition Example

Consider a game with two competitors involved in a fight:

@ The set of players is N = {1,2}.

@ Competitors choose how much effort to put in a fight A; = [0, c0).
@ [he value of winning the fight is for competitor i € N is v;.

@ The highest effort wins the fight and ties are broken at random.

@ For each competitor the cost of fighting is simply min{a;, a; }.

a The payoff of competitor i given their effort levels thus satisfy:

Vi — a; if a; > aj
u,-(a,-, aj) = V,'/2 — aj if aj = aj
—a; if a; < aj
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War of Attrition Example

As payoffs amount to:

u,-(a,-,aj) =

Best response functions satisfy:

bi(aj) =

>
>

@a;=0andap >y

@aap=0and a; > wn

Nava (LSE)

War of Attrition Example

32‘

W

v,-—aj
V,'/2— dj

aj > aj

ai=0 or a; > g

a,-:O
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if a; > a;
if dj = dj
if a; <a;

if aj
if aj
if aj

All Nash Equilibria of the game satisfy one of the following:

June 18

The esiest way to find the NE in such games is plotting BRs:

>
>

@ a;=0anda, >y

@ap=0anda; > v
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All Nash Equilibria of the game satisfy one of the following:
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DSE implies NE

Any dominant strategy equilibrium is a Nash equilibrium l

If ais a DSE then a; € b;(a’ ;) foranya’ ; and i € N.
Which implies a is NE since a; € b;(a_;) for any i € N. O
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Mixed Strategies and Concealing
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Introduction to Mixed Strategies

A problematic aspect of the solution concepts discussed in pure strategies
was that equilibria did not always exist.

Technical reasons for the lack of existence were:

& Non-convexities in the choice sets:;

@ Discontinuities of the best response correspondences;

Intuitively the impossibility of concealing decisions was causing problems.

Such problems can be solved by introducing mixed strategies which
guarantee the existence of at least one Nash equilibrium.
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Mixed Strategy Definition

Consider complete information static game {N, {A;, u;},cp }-

A mixed strategy for i € N is a probability distribution over actions in A;.
Let 0;(a;) denote the probability that player i chooses to play a;.
Thus o; is a mixed strategy if:

@ 0;(a;) >0 forany a; € Aj;

@ Za,-GA,- 0-,'(3,') =1

For instance 01(B) = 0.3 and 01(C) = 0.7 is a mixed strategy for 1 in:

1\2| B C
B |20 02
C |01 10
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Payoffs from Mixed Strategies

As in the last lectures often we denote:

o_; = (0’1, 01,041, ...,0'/\/)

The payoff to player / from choosing o; when others follow o_; is:

ui(oi, 0_;) = YaeaPr(a)ui(a) =
= Yaealljencj(aj)ui(a)

E.G. If players follow 01 (B) = 02(B) = 0.3 in the game:

1\2| B C
B |20 02
C |01 10

The payoff to player 1is: ui(o1,02) = (.09)2 + (.49)1 + (.42)0 = 0.67
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Best Responses

Denote the best response correspondence of i by b;(o_;)

The map is defined by:

b,‘(O'_,') = arg maXg; u,-((T,-, 0'_,')

For instance consider the game:

1\N2| s m
s |52 1,2
m | 00 35

If o1(s) = 1 then any 02(s) € [0, 1] satisfies 02 € by(071)

If 01(s) < 1 then only 0,(s) = 0 satisfies 05 € by(01)
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Dominated Strategies

@ Strategy o; strictly dominates a; if:

ui(oj,a_;) > ui(a;,a_;) for any a_;

@ a; is strictly undominated if no strategy strictly dominates it

@ This allows us to rule out more strategies than before, eg:

12| L C R
T |66 02 00
B |00 02 66

@ 02(L) = 02(R) = 0.5 strictly dominates C since:

UQ(O'Q,al) =3> UQ(C, 31) =2
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Nash Equilibrium

Definition (Nash Equilibrium NE

A Nash Equilibrium of a game consists of a strategy profile
o = (0, 0_;) such that for any i € N:

u,'(O') > u,-(a,-, 0'_,') for any a; € A;

Implicit to the definition of NE are the following assumptions:

@ Each agent chooses his mixed strategy independently of others
@ Each agent knows and believes which strategies the others adopt

@ Each agent maximizes expected utility given his beliefs about others
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Nash Equilibrium Computation Help

A strategy profile ¢ is a Nash Equilibrium if and only if:

ui(c) = wi(aj,oc—;) forany a; such that o;(a;) >0
ui(c) > wuj(a;,oc—;) forany a; such that o;(a;) =0

@ Intuitively, a player is indifferent between the actions he plays and
prefers them to any other action.

If a; is strictly dominated, then ¢;(a;) = 0 in any NE.

@ If a; is weakly dominated, then o;(a;) > 0 in some NE then any profile
of actions a_; for which a; is strictly worse occurs with O probability.

Nava (LSE) Slides 2 — EC201 June 18 39 / 43

Games may have more NEs (Battle of the Sexes):

1\N2| s m
s |52 11
m |00 25

There are 2 PNE & a mixed NE in which 01(s) =5/6 & 02(s) =1/6:

ul(S,Uz) = 502(5) + (1 —0'2(5)) = 2(1 —02(5)) = ul(m, 0'2)
uz(m,al) = 0'1(5) —|—5(1 —(71(5)) = 2(71(5) = U2(5, (71)

Games may have only mixed NE (Matching Pennies):

B\G| H T
H [02 20
T |20 02

There is a unique NE in which o1(H) = 02(H) = 1/2:
2(1—0;(H)) =20i(H)
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Nash Equilibrium Existence
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Nash Equilibrium Existence

Theorem (NE Existence)

Any game with a finite number of actions possesses a Nash equilibrium.

Theorem (PNE Existence)

Any game with convex and compact action sets and with continuous and
quasi-concave payoff functions possesses a pure strategy Nash equilibrium.

Assumptions in both theorems guarantee that best response maps are
"continuous" on convex compact sets and thus existence...
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Continuous Best Responses Imply Existence

1\2| B C
A game without PNE and with a single NE: B |20 0,2
C |01 10
$1(B)
A
1
1/3 ®
113 1 s,B)
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The models of competition presented earlier in the course have explored
the consequences on prices and trade of two extreme assumptions:

@ Perfect Competition [Many sellers supplying many buyers]

& Monopoly [One seller supplying many buyers]

Today intermediate assumption is discussed:

e Oligopoly [Few sellers supplying many buyers]

Two models of competition among oligopolists are presented:

& Quantity Competition [aka Cournot Competition]
@ Price Competition [aka Bertrand Competition]
Nava (LSE) Slides 3 — EC201 June 19  2/20

Quantity Competition

Nava (LSE) Slides 3 — EC201 June19  3/20




A Duopoly

Consider the following economy:

& There are two firms N = {1,2}

a Each firm i € N produces output g; with a cost function

e ¢;(g;) mapping quantities to costs

» Aggregate output in this economy is ¢ = g1 + g2

& Both firms face an aggregate inverse demand for output

a p(q) mapping aggregate output to prices

The payoff of each firm i € N is its profits:

Uf(Ch, CI2) = P(Q)q/' - Ci(q/')

Profits depend on the output decisions of both

Nava (LSE) Slides 3 — EC201 June 19

Cournot Competition: Duopoly

Competition proceeds as follows:

@ All firms simultaneously select their output to maximize profits

Each firm takes as given the output of its competitors

@ Firms account for the effects of their output decision on prices

In particular the decision problem of player i € N is to:

mqax u,-(q,', qj) = quXP(CIi + Qj)q/' - c,-(q,-)

[Historically this is the first known example of Nash Equilibrium — 1838]

[Example: Visa vs Mastercard]
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Cournot Competition: Equilibrium

If standard conditions on primitives of the problem hold:

e a pure strategy Nash equilibrium exists

@ the PNE is characterized by the FOC

If so, the problem of any producer i € N satisfies:

oui(qgi, q;) op(q; + q;) dci(qi) [ <0 if g =0
oG f)(q' )+ dgq; qi dq; =0 if ¢ >0
Margin;I,Revenue Marginal Cost

Marginal revenue accounts for the distortion in prices
Prices decrease if inverse demand is downward-sloping
FOC defines the best response (aka reaction function) of player i:

qi = bi(q;)
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Cournot Competition: Plot

The Cournot FOC of any produce graphically satisfies:

ap(q; + q;) dci(q;)
P(q/ + QJ) + aql_ g = aCIi
N ~ 4 N e’
Marginal Revenue Marginal Cost

Profit

MR,
Uco g

A J
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Cournot Competition: Example

Consider the following economy:

a p(g)=2—gq
e a(q) =q7 and o (q2) = 343

Firm i's problem is to choose production g; given choice of the other g;:

mqax(2 —qi — CIj)CIi —¢i(qi)

The best reply map of each firm is determined by FOC:

2-2q1—q@—2q1 = 0 = q=b(qp)=02-q)/4

2-2¢—q1—6q2 = 0 = q=b(q1)=(2-q1)/8
Cournot Equilibrium outputs are: gp = 14/31 and g = 6/31
Perfect competition outputs are larger: g; =3/5and g5 =1/5
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Collusion and Cartels
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Collusion and Cartels

Suppose that the producers collude by forming a cartel

A cartel maximizes the joint profits of the two firms:

max p(q)q — C1(¢71) — C2(C72)
g1.q2

First order optimality of this problem requires for any i € N:

dp(q oci(q; <0 if gg=0
p(q)+—( )q - () P
aq aql =0 if q;i > 0
Margin;rRevenue Marginal Cost

Aggregate profits are higher in the cartel
Players account for effects of their output choice on others

But the profits of each individual do not necessarily increase
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Collusion: Plot

The Collusion FOC of any producer graphically satisfies:

Ip(q) dci(gi)
+ —= =
p(q) 3 ¢ 3,
. ~ 7 | S ——
Marginal Revenue Marginal Cost

A\ J

Um Yco g
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Collusion: Example

Consider the previous duopoly, but suppose that a cartel is in place

If so, FOC for the cartel production satisfy:

2—-2q;—29,-2q; = 0 = q;=(1-9)/2
2-2g,-2q,—6G, = 0 = G =(1-7q1)/4
Cartel outputs are: g, =3/7and g, =1/7
Cournot outputs are larger: g = 14/31 and ¢p = 6/31
Cartel profits are: up=3/7and u, =1/7
Cournot profits are: u; = 392/961 and u, = 144/961

Total profits are larger with a cartel in place, but not all firms may benefit
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Collusion: Incentives to Defect

Suppose that the firm j produces the cartel output g;

If so, firm i/ may benefit by producing more than the cartel output since:
bi(q;) > q;
In this scenario sustaining a cartel may be hard without output monitoring

In the example this was the case as firms preferred to increase output:

bi(1/7) = 13/28 > 3/7
b2(3/7) = 11/56 >1/7

If so the problem of sustaining the cartel becomes a Prisoner’s dilemma
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Price Competition
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Bertrand Competition: Duopoly

Competition proceeds as follows:

@ All firms simultaneously quote a price to maximize profits

Each firm takes as given the price quoted by its competitors

Firms account for the effects of their pricing decision on sales

Consider an economy with:

@ Two producers with constant marginal costs ¢

@ Aggregate demand for output given by q(p) = (by — p)/b

Given the prices demand of output from firm i € N is:

q(pi) if pi <p;
qi(pi,pj) = 4§ q(pi)/2 if pj=p;
0 if pi > p;
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Bertrand Competition: Monopoly

If only one firm operated in such market it would choose the price to:

max u(p) = maxq(p)(p - c)

Thus a profit maximizing monopolist would sell goods at a price:

p=(by+c)/2

With two producers the problem of each firm becomes:

max u; (pi, py) = maxgi(pi, py) (pi — )

i
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Bertrand Competition: Best Responses |

In the Bertrand model, i's optimal pricing is aimed at “maximizing sales”

In particular firm / would set prices as follows (for € small):

@ If pj > p, set p; = p and capture all the market at the monopoly price
@ If p>p; > c, set p; = pj — ¢, undercut j and capture all the market

@ If ¢ > pj, set p; = c as there are no benefits by pricing below MC

Such logic requires the best response of each player to satisfy:

( p if pj € (ﬁ,oo)

piny ) pi—e if pi€(cp]

. >p if pje0,¢)

Thus in the unique NE both firms set p; = po = ¢ and perfect
competition emerges with just 2 firms!
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Bertrand Competition: Best Responses ||

To find PNE plot the best responses for c =1 and p = 2:

Pb &

>
1 2 Pa

In blue the best response of player b, in pink that of player a.
Thus in the unique NE both firms set p, = pp = 1.
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Capacity and Market Structure
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Cournot vs Bertrand Competition

Bertrand model predicts that duopoly is enough to push down prices to
marginal cost (as in perfect competition)

Cournot model instead predicts that few producers do not suffice to
eliminate markups (prices above marginal cost)

In both models there are incentives to form a cartel and to charge the
monopoly price

Neither model is intrinsically better
Accuracy of either model depends on the fundamentals of the economy:

a Bertrand works better when capacity is easy to adjust

@ Cournot works better when capacity is hard to adjust
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Games of Incomplete Information:

a Definitions:

a Incomplete Information Game
Information Structure and Beliefs
Strategies

Best Reply Map

I

@ Solution Concepts in Pure Strategies:

e Dominant Strategy Equilibrium
a Bayes Nash Equilibrium

Examples
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Static Incomplete Information Games
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Incomplete Information Games

An incomplete information game consists of:

@ N the set of players in the game
a For convenience we consider only two player games
o A; player i's action set

& X; player i's set of possible signals

s A profile of signals x = (x1, x2) is an element X = X7 xX>

f a distribution over the possible signals

I

ui: Ax X — R player i's utility function, u;(a|x)
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Bayesian Game Example

Consider the following Bayesian game:

Player 1 observes only one possible signal: X; = {K}
@ Player 2's signal takes one of two values: Xy = {L, R}

@ Probabilities are such that: f(K,L) = 0.6

@ Payoffs and action sets are as described in the matrix:

1\2..| C D 1\2.R| C D
A |12 01 A [13 04
B |04 13 B |01 1.2
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Information Structure

Information structure:

e X; denotes the signal as a random variable

belongs to the set of possible signals X;

4]

@ x; denotes the realization of the random variable X;
@ X_; denotes a profile the signal of player j # i

@ Player i observes only X;

@ Player i ignores X_;, but knows f

With such information player i forms beliefs regarding the realization of
the signals of the other players x_;
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Beliefs about other Players’ Signals [Easy]

In this course we consider models in which signals are independent:

f(x)=Pr(X1 =x & Xo = x) = fi(x1)fh(x)
This implies that the signal x; of player i is independent of X_;.
Beliefs are a probability distribution over the signals of the other players.
Players form beliefs about signals received by others using Bayes Rule.

Independence implies that conditional observing X; = x; the beliefs of
player i are:
PI’(X_,' = X_j & X,' = X,')

i) = PrX =l = x) = =5 A =

Pr(X_j=x_i) = f-j(x-i)
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Extra: Beliefs about other Players’ Signals [Hard]

Also in the general case with interdependence players form beliefs about
the signals received by the others by using Bayes Rule.

Conditional observing X; = x; the beliefs of player i are:

filtxoilxi) = Pr(Xoi=xi|Xi=x) =

PI’(X_,' == X_j & X,' = X,')
PF(X,' = X,')

Pr(X_; = x_; & X; = x;) B
Y, oex  PriXsi=y_i & Xi=x)
f(x—i, i)
Yy iex; Fy—ixi)

Beliefs are a probability distribution over the signals of the other players.
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Slides 4 — EC201 June 19 8 /21

Nava (LSE)

Strategies and Best Responses

Slides 4 — EC201 June 19 9/21




Strategies

Strategy Profiles:

A strategy consists of a map from available information to actions:
;X — A

& A strategy profile consists of a strategy for every player:

a(X) = (a1(X1), a2(X2))

@ We adopt the usual convention:

IX_,'(X_,') = DCJ(XJ') for j 7£ I € {1,2}
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Bayesian Game Example Continued

Consider the following game:

@ Player 1 observes only one possible signal: X; = {K}

@ Player 2's signal takes one of two values: Xy = {L, R}

@ Probabilities are such that: f(K,L) = 0.6

@ Payoffs and action sets are as described in the matrix:
1\2..| C D 1\2.R| C D

A 1,2 0,1 A 1,3 04
B 04 1.3 B 0,1 1,2

A strategy for player 1 is an element of the set a; € {A, B}

@ A strategy for player 2 isa map ay : {L,R} — {C, D}

e Player 1 cannot act upon 2's private information

Nava (LSE) Slides 4 — EC201 June 19 11 /21




Dominant Strategy Equilibrium

e Strategy «; strictly dominates «/ if for any a_; and x € X:
U,'((X,'(X,'), a_,-|x) > U,'((X;-(X,'), a_,-\x)

@ Strategy «; is dominant if it dominates any other strategy .

a Strategy «; is undominated if no strategy dominates it.

Definitions (Dominant Strategy Equilibrium DSE)

A Dominant Strategy Equilibrium of an incomplete information game is
a strategy profile « that for any i € N, x € X and a_; € A_; satisfies:

ui(ai(xi), a_i|x) > uj(ai(x;),a_i|x) forany a’:X; — A;

@ Thatis, «; is optimal independently of what others know and do.
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Interim Expected Utility and Best Reply Maps

The interim stage occurs just after a player knows his signal X; = x;.

It is when strategies are chosen in a Bayesian game
The interim expected utility of a (pure) strategy profile a is defined by:

Ui(alxi) = Ex, ui(a(x) | x)f(x-i[x)

With such notation in mind notice that:
U,-(a,-, 06_,'|X,') = ZX_,- u,-(a,-, DC_,'(X_,')‘X)IC(X_,"X,')

The best response correspondence of player i is defined by:
b,-(zx_,-\x,-) = argmaXa,cA; U,-(a,-, (X_,"X,')

BR identifies which actions are optimal given the signal and the strategies
followed by others.
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Pure Strategy Bayes Nash Equilibrium

Definitions (Bayes Nash Equilibrium BNE)

A pure strategy Bayes Nash Equilibrium of an incomplete information
game is a strategy profile a such that for any i € N and x; € X, satisfies:

Ui(alx;) > Ui(aj, a—i|x;) for any a; € A;

BNE requires interim optimality. That is, do your best given:

@ the signal you have received;

@ the strategy of other players.

BNE requires a;(x;) € bj(a_;|x;) for any x; € X; and i € N.
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Bayesian Game Example

Consider the following Bayesian game with f(K,L) =p > 1/2:

1\2.L.| C D 1\2.R| C D
A |12 01 A |13 04
B |04 13 B |01 12

The best reply maps for both player are characterized by:
. C if X2:L . A if “2(L):C
b2(“1‘x2)—{ D if =R bl(“z)_{ B if ax(L)=D
The game has a unique (pure strategy) BNE in which:
x1 = A, DCQ(L) = C, DCQ(R) =D
DO NOT ANALYZE MATRICES SEPARATELY!!!
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Transforming a Bayesian Game Example

Consider the following Bayesian game with f(K,L) =p > 1/2:

1\2.. | C D 1\2.R| C D
A ‘1,2 01 A |13 04

B 04 1.3 B 0,1 1.2
This is equivalent to the following complete information game:

1\2| CC DC CD DD
A ,3—p 1—p,3—2p p,4—2p 0,4—3p
B |10,1+3p p,1+2p 1—p,24+2p 1,2+p

You may then find BRs and BNEs in this modified table.
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Extra: Relationships between Equilibrium Concepts

If « is a DSE then it is a BNE. In fact for any action a; and signal x;:

u,-(oc,-(x,-),a_,-|x) > Ui<3i,a—i’X) Va_j,x-; =
ui(ei(xi), a—i(x=i)[x) = wj(aj, a—i(x=i)|x) Va_jx_i=
Ix i) ) fi(xilxi) = T, uilai ami(x-i) |} fi(x=i[x;) Va_;j =

U,'(Dé’X,') 2 U,-(a,-,oc_,-]x,-) VDé_,'
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BNE Example |: Entry Game

Consider the following market game:

e Firm / (the incumbent) is a monopolist in a market

Firm E (the entrant) is considering whether to enter in the market

If E stays out of the market, E runs a profit of 1$ and / gets 8%

1]

a If E enters, E incurs a cost of 1$ and profits of both / and E are 3%
@ | can deter entry by investing at cost {0, 2} depending on type {L, H}

@ If I invests: I's profit increases by 1 if he is alone, decreases by 1 if he
competes and E's profit decreases to O if he elects to enter

E\I.L | Invest Not Invest E\I.H | Invest Not Invest
In 0,2 3,3 In 0,0 3,3
Out 1,9 1,8 Out 1,7 1,8
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BNE Example I: Exploiting the Transformation

Let 7t denote the probability that firm / is of type L.
a The original payoff matrix was:

E\I.L | Invest Not Invest E\I.H | Invest Not Invest
In 0,2 3.3 In 0,0 3.3

Out 1,9 1,8 Out 1,7 1,8

@ Its associated interim transformation amounts to:

VAL NI IN NN
In 0,27 37,371 3(1—m),3—m 3,3
Out | 1,7+21 1,747 1,8+ 1,8
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BNE Example |I: Entry Game

Thus we have that:

@ «;(H) = Not Invest is a strictly dominant strategy for /.H

@ For any value of 7t, a;(L) = Not Invest and ag = In is BNE:

uy(Not, In|L)
UE(In, (X/(X/))

3 > 2 = uj(Invest, In|L)
3>1= UE(OUt, (X/(X/))

For 7 high enough, a;(L) = Invest and ag = Out is also BNE:

uy(Invest, Out|L)
UE(OUI', ey (X/))

9 > 8 = u;(Not, Out|L)
1>3(1—m) = Ue(In,a;(X)))

E\I.L | Invest Not Invest
In ‘ 0,2 3,3

E\I.H | Invest Not Invest
In 0,0 3,3

Out 1,9 1,8 Out 1,7 1,8
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BNE Example Il: Exchange

A buyer and a seller want to trade an object:

@ Buyer's value for the object is 3%
e Seller's value is either 0% or 2% based on the signal, Xs = {L, H}
@ Buyer can offer either 1$ or 3% to purchase the object

a Seller choose whether or not to sell

B\S.L | sale no sale B\S.H | sale no sale
3% 0,3 0,0 3% 0,3 0,2

1% 2,1 0,0 1% 2,1 0,2
@ This game for any prior f has a BNE in which:

as(L) = sale, as(H) = no sale, ag = 1%

e Selling is strictly dominant for S.L

Offering 1% is weakly dominant for the buyer
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Dynamic Games:

& Definitions:

Extensive Form Game

a2

a Information Sets and Beliefs
a Behavioral Strategy

a Subgame

@ Solution Concepts:

a Nash Equilibrium
a Subgame Perfect Equilibrium
a Perfect Bayesian Equilibrium

@ Examples: Imperfect Competition
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Extensive Form Games
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Dynamic Games

a All games discussed in previous lectures were static. That is:

a set of players taking decisions simultaneously;

]

or not being able to observe the choices made by others.

a Today we relax such assumption by modeling the timing of decisions.

a In common instances the rules of the game explicitly define:

a the order in which players move;

a the information available to them when they take their decisions.

e A way of representing such dynamic games is in their Extensive Form.

The following definitions are helpful to define such notion.
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Basic Graph Theory

@ A graph consists of a set of nodes and of a set of branches.

Each branch connects a pair of nodes.

@ A branch is identified by the two nodes it connects.

A path is a set of branches:

{{Xk,Xk_|_1} ‘k = 1, . m}

where m > 1 and every x, is a different node of the graph.

1]

a A tree is a graph in which any two nodes are connected by exactly
one path.

A rooted tree is a tree in which a node designated as the root.

@ A terminal node is a node connected by only one branch.
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An Extensive Form Game
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Extensive Form Games

An extensive form game is a rooted tree together with functions assigning
labels to nodes and branches such that:

1. Each non-terminal node has a player-label in {C, 1, ..., n}:

{1, ..., n} are the players in the game.
Nodes assigned to label C are chance nodes.
Nodes assigned to label i # C are decision nodes controlled by /.

2. Each alternative at a chance node has a label specifying its
probability:

a Chance probabilities are nonnegative and add to 1.

3. Each node controlled by player i > 0 has a second label specifying i's
information state:

a Thus nodes labeled i.s are controlled by i with information s.
a Two nodes belong to i.s iff / cannot distinguish them.
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Extensive Form Games

4. Each alternative at a decision node has move label:

a If two nodes x, y belong to the same information set, for any
alternative at x there must be exactly one alternative at y with the
same move label.

5. Each terminal node y has a label that specifies a vector of n numbers

a The number u;(y) specifies the payoff to i if the game ends at node y.

6. All players have perfect recall of the moves they chose.
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Perfect Recall

With perfect recall information sets 1.2 and 1.3 cannot coincide:

A
1KB .
C
1KD
:<D
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Without Perfect Recall

Without perfect recall assumption this is possible:
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Perfect Information

An extensive form game has perfect information if no two nodes belong
to the same information state.

With Perfect Information Without Perfect Information
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Behavioral Strategies

Throughout let:

@ S; be the set information states of player i € N.

e A;s be the action set of player / at info state s € §;.

A behavioral strategy for player i maps information states to probability
distributions over actions.

In particular 0 s(a;.s) is the probability that player i at information stage s
chooses action a;s € A; ;.

Throughout denote:

e a behavioral strategy of player i by 0 = {0is},cs,

¢ a profile of behavioral strategy by o = {ci},cp

& the chance probabilities by T = {7-(0-5}5650
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Probabilities over Terminal Nodes

For any terminal node y and any behavioral strategy profile o, let P(y|0)
denote the probability that the game ends at node y.

E.g. in the following game P(c|o) = mo.1(1)01.1(R)022(C) = 1/9:

12

9o

172

[ =3

173

| Nl

23

[ RN

<
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Expected Payoffs

If () denotes the set of end notes, the expected payoff of player / is:

Ui(o) = Ui(ci.0-i) = Lyeq Pylo)ui(y)

E.g. in the following game U;(0) = 4/9 and Uy(0) =5/9.

1/3 : o
213 : .
172 ; 0
172 g o
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Nash Equilibrium
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Nash Equilibrium

Definition (Nash Equilibrium — NE)

A Nash Equilibrium of an extensive form game is any profile of behavioral
strategies such that:

Ui(0) > Ui(0},0—;) for any 0 € Xsecs.A(Ais)

Recall that ¢’ is any mapping from information sets to probability
distributions over available actions.

The definition of NE is as in strategic form games.

What differs is the strategy (behavioral) that is expressed at every single
decision stage and not on profiles of decisions for every individual.
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A Simple NE Example

Consider the following three player game and the strategy:

o 0'1(8) =1, O'Q(D) =1, 0'3(F> =1
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A Simple NE Example

Profile o1(B) = 1, 02(D) =1, 03(F) = 1 is NE since:

U1(B,0'_1) = 1>0:U1(A,0'_1)
UQ(D,O'_Q) = O>0=U2(C,0'_2)

U3(F,0'_3) = 2 > 2 = U3(E,0'_3)
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Ultimatum Game

This game possesses three types of NE, namely for any a».», a» 3.

NE1:
o1 =[1] & 02 =[A az2, a2 3]

NE2:
op=1[2] & 02 =[R,A a3]

NE3:
o1 = [3] & 0Oy = [R, R,A]

In the table, o1 and 07 denote the behavioral (pure) strategies of the two

players.
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Ultimatum Game

Strategy o1 = [1], Oy = [A, a o, 32_3] is NE since:

Ul(].,(TQ) = 3> U1(31,0'2) for any aj € {2,3}
UQ(U’Q,].) = 1> Uz(ag, 1) for any ap € {A, R}3

Strategy 01 = [1], 02 = [R, A, a2.3], is NE since:

U1(2,0'2> = 2> U1(31,0'2) for any aj € {1,3}
Us(02,2) = 22> Ux(ap,2) forany ay € {A, R}3

A similar argument works for the other proposed NE.

Only the first type of NE however, involves threats that are credible, since
player 2 would never credibly reject an offer worth at least 1 when faced

with an outside option of 0.

Nava (LSE) Slides 5 — EC201




A Transformation to Find NE

The NE of the game can be found by looking at NE of the strategic form:

1/2 | AAA RAA ARA AAR RRA RAR ARR RRR
1 31 00 31 31 00 00 31 0,0
2 2,2 2,2 00 22 00 22 00 00
3 13 1,3 1,3 00 1,3 00 00 0,0
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Subgame Perfect Equilibrium
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Subgame Perfect Equilibrium

A successor of a node x is a node that can be reached from x for an
appropriate profile of actions.

Definition (Subgame)
A subgame is a subset of an extensive form game such that:

It begins at a single node.

L]

It contains all successors.

w

@

If a game contains an information set with multiple nodes then either
all of these nodes belong to the subset or none does.

Definition (Subgame Perfect Equilibrium — SPE)

A subgame perfect equilibrium is any NE such that for every subgame the
restriction of strategies to this subgame is also a NE of the subgame.
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NE but not SPE

The following game has a continuum of NE but only one SPE:

@ 011(T)=1 and 021(L) =1 is unique SPE.
a011(T)=0 and 021(L) <1/2 are all NE, but none SPE.

$»

8 02?2
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NE but not SPE

Strategy 01.1(T) =1 and 0,.1(L) = 1 is the unique SPE since:
Up1(T, L) =2 > 1= Uy(B,L)
U2_1(L) =3 > 2= U2_1(R)

Any strategy 011(T) =0 and 021(L) =g <1/2is NE since:
>

U1(T,(72):2q 1= Ul(B,O'Q)
U(L,B)=4 = 4=U,1(R,B)
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Computing SPE — Backward Induction

Definition of SPE is demanding because it imposes discipline on behavior
even in subgames that one expects not to be reached.

SPE however is easy to compute in perfect information games.

Backward-induction algorithm provides a simple way:

@ At every node leading only to terminal nodes players pick actions that
are optimal for them if that node is reached.

@ At all preceding nodes players pick an actions that optimal for them if
that node is reached knowing how all their successors behave.

@ And so on until the root of the tree is reached.

A pure strategy SPE exists in any perfect information game.
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Backward Induction Example

SPE: 01, = 013 = [A], Or1 = [t], any 022 and 011 = [T]
NE but not SPE: 017, =013 = [A], Or1 = [b], any 022 and 011 = [B]
Again NE may support empty threats.
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Dynamic Oligopoly
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Duopoly: Stackelberg Competition

Implicit to both Cournot and Bertrand models was the assumption that no
producer could observe actions chosen by others before making a decision.

In the Stackelberg duopoly model however:

e Players choose how many goods to supply to the market (as Cournot).

One player moves first (the leader).

@ While the other player moves after having observed the decision of
the leader (the follower).

Both players account for the distortions that their output choices
have on equilibrium prices.

To avoid empty threats restrict attention to the SPE of the dynamic game.
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Duopoly: Stackelberg Competition

The game is solved by backward induction:

& Consider the subgame in which the leader has produced g; units.

@ In this subgame (as in Cournot) the decision problem of follower is to:
fT;,%XP(QL + qr)ar — cr(qF)

@ Solving such problem defines the best response to the follower br(qy).

@ By SPE the leader takes the follower's strategy into account when
choosing his output.

@ Thus the decision problem of the leader is as follows:

n;:zaxp(qL + br(qL))qr — cr(qr)
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Stackelberg Example

Consider the following economy:
@ d(g)=2—gq
e cr(q) =¢* and c(q) =34

The problems of both players are respectively defined by:

maxg. (2 — 9. — qr)qr — cF(qF)
maxg, (2 — qr — br(qL))qr — cu(ar)

Optimality of each firm is determined by FOC:
2=29r —qr—2gr = 0 = qr=>br(q)=(2—q)/4
3/2—(3/2)qL—6qL = 0 = q =1/5

Stackelberg Equilibrium outputs are:

Cournot Equilibrium outputs are:

Nava (LSE)

gr =9/20 and g, =1/5
qgr = 14/31 and q; =6/31
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Slides 5 — EC201

Duopoly: Market Entry

Consider the following game between two producers.

Firm 1 is the incumbent and firm 2 is the potential entrant.
Assume P> L >0and M > P > F.

Fight (F . 0}

8 ®
Concede (P.P)

&
Fight (F . 0}

1:1 ®
Concede (P-K . F)

Invest &

out (MK, L)
P
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Duopoly: Market Entry

To find an SPE with successful deterrence, notice that:

@ |f 1 does not invest, it prefers to concede if entry takes place as
P> F.

@ [hus firm 2 prefers to enter if 1 does not invest as P > L.
e If 1 does invest it prefers to fight if entry takes place, provided that:
F>P—-K
a If so firm 2 prefers to stay out if 1 has invested as L > O.
@ Thus firm 1 prefers to invest and deter entry if:
M—K>P
An SPE exists in which entry is effectively deterred if the cost satisfies:

M—P>K>P—F
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Extra: Uncertainty and Dynamics
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Extra: Dynamics and Uncertainty

If an extensive form game does not display perfect information, subgame
perfection cannot be imposed at every information set, but only on
subgames.

In such games a further equilibrium refinement may help to highlight the
relevant equilibria of the game by selecting those which Bayes rule.

Definition (Perfect Bayesian Equilibrium — PBE)

A perfect Bayesian equilibrium of an extensive form game consists of a
profile of behavioral strategies and of beliefs at each information set of the
game such that:

strategies form an SPE given the beliefs;

@ beliefs are updated using Bayes rule at each information set reached
with positive probability.

v
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Repeated Games:

a Definitions:

Feasible Payoffs
Minmax
Repeated Game
Stage Game
Trigger Strategy

& Main Result:

w Folk Theorem

e Examples: Prisoner’s Dilemma
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Feasible and Minmax Payoffs
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Feasible Payoffs

Q: What payoffs are feasible in a strategic form game?

A: A profile of payoffs is feasible in a strategic form game if can be
expressed as a weighed average of payoffs in the game.

Definition (Feasible Payoffs)

A profile of payoffs {w;},., is feasible in a strategic form game
{N, {A;, u,-}l-e,\,} if there exists a distribution over profiles of actions 7
such that:

wi =Y ,eat(a)uj(a) forany i€ N

Unfeasible payoffs cannot be outcomes of the game

Points on the north-east boundary of the feasible set are Pareto efficient
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Minmax

Q: What's the worst possible payoff that a player can achieve if he chooses
according to his best response function?

A: The minmax payoff.

Definition Mlnmax

The (pure strategy) minmax payoff of player i € N in a strategic form
game {N, {A;, ui};cy} is:

u; = min max u;(aj, a_;)
a_;j€A_; aj€A;

Extra: The mixed strategy minmax payoff satisfies:

v; = minmaxu;(c;,0_;)
o_j ag;

The mixed strategy minmax is not higher than the pure strategy-minmax,
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Example: Prisoner's Dilemma

Minmax Payoff: (1,1)

Feasible Payoffs: blue and red areas.

Individually Rational Payoffs: red area.

Stage Game Payoffs
u, Individually Rational Payoffs
N2 | w s i
wW 2’2 0’3 IR Payoffs
s | 30 1,1
Feasible Payoffs

=
Ll

1 2 3
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Example: Battle of the Sexes

Minmax Payoff: (2,2)

Feasible Payoffs: blue and red areas.

Individually Rational Payoffs: red area.

Stage Game Payoffs
5 Individually Rational Payoffs
R
12| w s ’
w (33 1,0
s |01 22 y Feasible Payoffs

Ll

=]

w

c
i
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Repeated Games
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Repeated Game: Timing

Consider any strategic form game: G = {N, {A;, Ui},‘g/v}

Call G the stage game.

An infinitely repeated game is a strategic environment in which the stage
game is played repeatedly by the same players infinitely many times.

Round 1 Round t
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Repeated Games: Payoffs and Discounting

The value to player i € N of a payoff stream {u;(1), u;(2), ..., ui(t), ...} is:

(1—=6) X, 6 ui(e)

The term (1 — J) amounts to a simple normalization,
. and guarantees that a constant stream {v, v, ...} has value v.
Future payoffs are discounted at rate 9.

An infinitely repeated game can be used to describe strategic environments
in which there is no certainty of a final stage.

In such view ¢ describes the probability that the game does not end at the
next round which would result in a payoff of 0 thereafter.
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Repeated Games: Perfect Information and Strategies

Today we restrict attention to perfect information repeated games.

In such games all players prior to each round observe the actions chosen by
all other players at previous rounds.

Let a(s) = {a1(s), ..., an(s)} denote the action profile played at round s.
A history of play up to stage t thus consists of:

h(t) ={a(1),a(2),...,a(t—1)}
In this context strategies map histories (ie information) to actions:

lX,'(h(i')) € A;
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Sustaining Payoffs in Equilibrium
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Prisoner’'s Dilemma Folk Theorem

Consider the prisoner’'s dilemma discussed earlier:

N2 w s
w |22 03
s |30 11

To understand how equilibrium behavior is affected by repetition, let's
show why (2, 2) is SPE of the infinitely repeated prisoner’s dilemma.

Folk theorem shows that any feasible payoff that yields to both players at
least their minmax value is a SPE of the infinitely repeated game if the
discount factor is sufficiently high.
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Grim Trigger Strategies

Consider the following strategy (known as grim trigger strategy):

ai(t) = w if a(z) = (w,w) forany z <t
I S otherwise

Such a strategy can be graphically represented as a 2-state automaton:

a=(w,w) any a

Nava (LSE) Slides 6 — EC201 June 19 14 / 20

Grim Trigger SPE

Consider the grim trigger strategy:

any a

v

If all players follow such strategy, no player can deviate and benefit at any
given round provided that 6 > 1/2.

In subgames in which a(t) = (w, w) no player benefits from a deviation as:
(1-6)(3+0+0+8+..)=3-20<2 & §>1/2
In subgames in which a(t) = (s, s) no player benefits from a deviation as:

(1-6)(0+6+6+8+..)=6<1 & <1
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Folk Theorem

Theorem (SPE Folk Theorem)

In any two-person infinitely repeated game:

For any discount factor 9, the discounted average payoff of each
player in any SPE is at least his minmax value in the stage game.

W

Any feasible payoff profile that yields to all players at least their
minmax value is the discounted average payoff of a SPE if the
discount factor 6 is sufficiently close to 1.

@ If the stage game has a NE in which each players’ payoff is his
minmax value, then the infinitely repeated game has a SPE in which
every players’ discounted average payoff is his minmax value.
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Testing SPE in Repeated Games

Definition (One-Deviation Property)

A strategy satisfies the one-deviation property if no player can increase his
payoff by changing his action at the start of any subgame in which he is the
first-mover given other players’ strategies and the rest of his own strategy.

A strategy profile in an extensive game with perfect information and
infinite horizon is a SPE if and only if it satisfies the one-deviation property.

This observation can be used to test whether a strategy profile is a SPE of
an infinitely repeated game as we did in the Prisoner’'s dilemma example.
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Example: Different Punishments

Consider the following game — with minmax payoffs of (1, 1):

1\2| A B
A |00 41
B |14 33

Two PNE: (A, B) and (B, A) with payoffs (1,4) and (4,1).
Always playing (B, B) is SPE of the repeated game for § high enough.

Consider the following grim trigger strategy:
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Example: Different Punishments

1\2| A B
A |00 41
B |14 33

(1-6)(4+6+6+8+..)=4-35<3 & §>1/3
When a(t) = (B, A), no player player benefits from a deviation as:

(1-0)(040+6°+8°+..) = 6<1 & §<1
(1-0) (3+46+45°+45°+..) = 3+6<4 & 06<1

When a(t) = (A, B), no one wishes to deviate for symmetric reasons.
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If all follow such strategy, no player can deviate and benefit if 6 > 1/3.

( (B,B) if a(s)=(B,B) forany s<t
a(t) = ¢ (B,A) if a(s) = { Eig; :Z: zii for ze€ {0,..,t—1}
\ (A, B) if a(s) :{ Eg i; :: zij for z€ {0,..,t—1}

18 / 20

When a(t) = (B, B), no player player benefits from a deviation if 6 > 1/3:
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Example: Different Equilibrium Behavior

Next show why (1.5,1.5) is also an SPE of the repeated PD as § — 1.

Consider the following pair of strategies:

(w,s) if tisevenand a(z) ¢ {(s,s), (w,w)} forany z <t
a(t) = ((s W)) if tis odd and a(z) ¢ {}ES s?, (w,w)} forany z <t
s, s otherwise

If & > 1/2, no player can profitably deviate from the strategy.

When a(t) = (s, w), (w, s), no player benefits from a deviation as:

1< (1-6)(36+36°+358+...) =35/(1+9)
(1=0)(240+6%.)=2-6<(1-0)(3+30*+36"..) =3/(1+9)

When a(t) = (s, s), no player benefits from a deviation as:

(1-6)(0+6+6+8+..)=6<1 & <1
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Adverse Selection:

Fa] ™
Ll
—
f.o
kam
-_—

Hidden Characteristics

Uninformed party moves first

Monopoly:

= One type of consumer

a Multiple types of consumer

@ Competition

a Definitions:

a Pooling Equilibrium
= Separating Equilibrium

Market for Lemons
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Monopoly Surplus Extraction
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Adverse Selection: Monopoly Setup

& Consider an economy two goods, x and y.

@ A firm produces good x using y at constant marginal cost c.

The firm sells bundles (X, P) which cost P dollars and contain X
units.

@ An alternative pricing schemes considered in the literature are:

Uniform tariff

P(x) = px

L]

Two-part tariff

P(x) = po+p1x if x>0
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Complete Information: One Consumer Type

Begin by looking at the complete information benchmark:

All consumers are all identical.

e Endowments given by (e, e,) = (0,Y).

@ The budget constraint of an individual then requires that:

() = Y —P if x=X
YXI=1vy if x=0

@ Preferences over the two goods are given by:

U(X,y(x))=U(X)+Y(X>:{ l\J/(X)—i_Y_P :i iig

& Assume: u(0) =0, uy >0, Uy < 0.
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Consumer & Firm Decision Problems

Given such a bundle, consider the decision problem of the consumer:

@ A consumer purchases the bundle (X, P) only if
UX,y(X))—=U0,Y)=uX)—P>0 (PQ)

& Such constraint is known as Participation Constraint.

Given such demand consider the decision problem of the firm:
@ A firm chooses the bundle (X, P) to maximize profits

max P — cX subject to PC
X,P

@ PC must hold with equality or else the firm could increase profits by
raising the price while holding fixed the quantity

P = u(X)
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Solving the Firm Decision Problem

& First order conditions of the firm’s problem then require that:
c = Auy(X) and A =1
where A denotes the Lagrange multiplier on the PC.
@ Defining ¢ = uz !, the solution of the problem simply amounts to

(X, P) = (¢(c), u(e(c)))

@ Unlike in the standard monopolist problem, the solution of this
problem is efficient as prices equal marginal costs.

@ It is still exploitative however because buyers are left at their
reservation utility:

U(X,y(X))=U(0,Y) =0

Nava (LSE) Slides 7 — EC201 June 19 7 /29




Extra: Alternative Implementation

@ The same conclusion obtains with two-part tariffs.

@ The optimal two-part tariff P(x) = py + p1x sets:

pr=c & po=u(¢p(c))—p1ep(c)

@ Given the tariff demand amounts to x = ¢(c¢).
@ The fixed fee pg is set so to have PC binding.
@ The firm effectively chooses x by changing P(-) exploiting FOC.

e Thus choosing a two-part tariff and choosing a bundle are equivalent.
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Complete Information: Multiple Consumer Types

Suppose that consumers have multiple types:

@ Let t € {L, H} denote the type of a consumer with H > L.

Let 7t(t) denote the proportion of types t in the population.

@ [he monopolist knows the type of every consumer.

@ Preferences of a consumer of type t are:

Y+tuX)—P if x=X
U““*”“@+y:{v %0 f x=0

@ Setup meets the single crossing condition which requires
indifference curves of the two types to cross only once.

@ Consumers cannot resell the units purchased.
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Complete Information: Multiple Consumer Types

With more types and complete info not much changes:

The firm price discriminates by selling two bundles (X(t), P(t)).

e The participation constraint of each type t becomes

U(x,y|t) — U0, Y|t) = tu(X(t)) — P(t) >0 (PC(t))
& As before PC(t) holds with equality P(t) = tu(X(t)).
a Using these two facts the problem of the monopolist's becomes:

(2% gy e TOeu(X () = eX(8)] = tuc(X(1)) = €

The resulting equilibrium bundles amount thus to

(X(t), P(t)) = (p(c/t), tu(gp(c/t)))
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Adverse Selection
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Incomplete Information: Multiple Consumer Types

If the firm cannot recognize the two types and knows only 77(t):

@ Firm may still offer several bundles (X (t), P(t))...
... but cannot guarantee that type t purchases (X(t), P(t)).

@ Each consumer decides which type he reports to be...
.. and buys bundle (X(s), P(s)) if he reports to be type s.

The net-payoff of a consumer of type t claiming to be s is:
V(s|t) = tu(X(s)) — P(s)

a If the firm keeps offering the complete information P(t)...

... both types of consumers purchase P(L) since:

V(LIH) = (H—L)u(X(L))>0=V(H|H)
V(LIL) = 0> (L— H)u(X(H)) = V(H|L)
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Incomplete Information: No Pooling

Offering the same contracts however is not optimal for the firm:

e Consider decreasing P(H) to P(H) > P(L) so that:
V(H|H) = Hu(X(H)) — P(H) = V(L|H)
@ Such a change would increase the firm's profits as:

n(H)P(H) + (L)P(L) > P(L)

Theorem (No Pooling)

12 /29

It is not optimal for the firm to offer contracts that lead consumers to pool.

>
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Incomplete Info: Participation & Incentive Constraints

The previous remark implies that the firm wants to satisfy both:

@ The participation constraint for any type t € {L, H}:
V(t|t) >0 (PC(t))
e The incentive constraint for any type t # s € {L, H}:

V(t|t) = V(s|t) (1C(t))

The problem of the firm can now be written as

max t(t)|P(t) — cX(t)| subject to
m Toequn m(0)[P(6) — eX(2)] sub
V(t|t) > V(s|t) forany t e {L H}

V(t|t) >0 forany t e {L H}
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Incomplete Information: Binding Constraints

Prior to solving the problem, notice that:
@ PC(L) holds with equality (otw firm can increase profits raising P(L)):
V(L|L) = Lu(X(L)) — P(L) = 0
@ IC(H) holds with equality (otw firm can increase profits raising P(H)):
V(H|H) = Hu(X(H)) — P(H) = Hu(X(L)) — P(L) = V(L|H)
@ PC(H) is strict (by the previous two equalities and H > L):

V(H|H) = Hu(X(H)) — P(H) > 0

[ ]

IC(L) is strict (by no pooling theorem as otw X(H) = X(L)):

V(L|L) = Lu(X(L)) — P(L) > Lu(X(H)) — P(H) = V(H|L)
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Incomplete Information: Binding Constraints

Graphically the previous observations follow as:

Py
PC(H)

Huy Complete Info

Incomplete Info

X Best Pooling

PC(L)

|_L||_ PL
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Incomplete Information: Optimal Pricing

The previous remarks simplify the firm’s problem to:

e [ Teeqwan T(OP(0) = X (0)]] + AV(LIL) + p[V(HIH) = V(LIH)]

First order optimality requires:

—nt(H)c+ pHu (X(H)) = 0 (x(H))
—7t(L)c+ ALuy (X (L)) — pHu (X(L)) = 0 (x(L))
n(H)—pu = 0 (P(H))
(L) =A+p = 0 (P(L))
Notice that y = 7t(H), A = 1 and thus:
Hu (X(H)) = ¢

Luc(X(L)) =

1—(7t(H)/7(L)) [(H/L) —1]
P(H) and P(L) are pinned down by the two binding constraints.

Nava (LSE) Slides 7 — EC201 June 19 17 / 29




Incomplete Information: No Distortion at the Top

Notice that the optimality conditions for x(t) require that:

MRS, (H) = MRT,, =c
MRS, (L) > MRT,, =c

This principle carries over to more general setups and requires:

Theorem (No Distortion at the Top)

In the second-best optimum for the firm, the high valuation types are
offered a non-distortionary (efficient) contract.

In general (if the single-crossing condition is met) second-best optimum
Xsg(t) when compared to full-information optimum xgg(t) satisfies:

Xsg(H) = Xeg(H)
XSB(L) < XFB(L)
XSB(L) < XSB(H)
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Incomplete Information: Competition

With competition and free entry firms do not run positive profits.
Or else entering firms would profit by offering P(t) € [cX, P(t)).
As they would sell to all buyers = competition requires P(t) = cX.

In blue P(x), in red C(x), in green monopoly profits on each type.
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A Market for Lemon

Competition, Costs and Adverse Selection

Nava (LSE) Slides 7 — EC201 June 19 20 / 29

A Market for Lemons

Consider the following economy:

@ There are two qualities of goods {H, L}.

@ There number of firms selling one unit of quality t is N;.
@ The cost of producing quality t is ¢; and cy > ¢;.

@ There is a large number of buyers, Ng > Ny + N,.

@ Every buyer who wants to buy one unit of the good.

@ The value of buying quality t is vy and uy > u;.

a Gains from trade are certain as u; > ¢;.

@ Prices are determined by competitive equilibrium.

w» We consider both scenarios in which quality is:

observable by buyers;
unobservable by buyers.
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A Market for Lemons: Observable Quality

If the quality is observable, quality t sells at a quality-specific price p;.
For prices (py, pr) demand and supply satisfy:
a if the buyer demands quality H, then

uy — pe > max{u, — p, 0}

if the buyer demands quality L, then

up — pr > max{uy — py,0}
@ if the buyer does not demand any quality, then
0 > max{uy — pH, uL — pL}
@ if a seller supplies quality t, then
Pt = Ct

where the converse holds if they do not supply.
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A Market for Lemons: Observable Quality

For prices (py, pr) to form an equilibrium markets must clear.

In a competitive equilibrium:
a the payoff of buyers equals zero
U(p) = max{uy — pn,u — pr,0} =0,
since U(p) > 0 implies that the market does not clear as
Dr(p) + Di(p) = Ng > Ny + Np > Sy (p) + St(p):
a sellers of quality t must weakly prefer to sell
pt = Ct,

as pr < ¢, implies U(p) > 0.

Hence, a competitive equilibrium (py, p;) = (uy, uy) always exists.
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A Market for Lemons: Unobservable Quality

When quality is unobservable, sellers can claim to sell any quality.
Several types of competitive equilibria can arise:

a separating equilibria where qualities sell at different prices (py, pr):

a in some of these at most one quality is traded;
a In others both qualities can be traded.

a pooling equilibria where qualities sell at a common price p:

2 in some of these no quality is traded;
s in others both qualities can be traded.

For convenience, denote the fraction of sellers of type t by

Ty = Nt
T NH—I—NL.
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A Market for Lemons: Separating Equilibria

In separating equilibria, the payoff of buyers equals zero
U(p) = max{uy — pn,uL — pr,0} =0,
as players know the quality in any separating equilibrium as before.
If at most one quality is traded, there exists a quality t such that
up < pr = ¢ < pr.
But, this cannot be a separating equilibrium as
Di(p) =0 < Ny = S¢(p).

If both qualities are traded at different prices, then p; = ¢; and all
sellers would claim to sell quality H.

So, this cannot be a separating equilibrium.
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A Market for Lemons: Pooling Equilibria

In pooling equilibria, the payoff of buyers also equals zero

U(f)) = max{nHuH + Tpu — p, 0} =0,

D(p) = Ng > Ny + N > 5(p).
If no quality is traded, then
THuy +mTu < p = ¢ <p.
But if so, this cannot be a pooling equilibrium as
D(p) =0 < N = 5(p).
If both qualities are traded, then p; > ¢; for all t.
So, p can be a pooling equilibrium if and only if

co<cy < p<o.
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A Market for Lemons: Unravelling Summary

If quality is unobservable and cy > ©:

@ no separating equilibria (with or without trade) exist;
@ no pooling equilibria (with or without trade) exist;

@ so no competitive equilibrium exists!

If quality is unobservable and cy > @:

@ no separating equilibria (with or without trade) exist;
@ no pooling equilibria without trade exist;

@ a pooling competitive equilibrium exists in which

p = TTyUy + 7T U = U.
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as U(p) > 0 by construction and since U(p) > 0 implies everyone buys
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A Market for Lemons: Intuition

With unobservable quality, equilibria may fail to exist.

Intuitively, in such instances there is no equilibrium as:

e in any pooling equilibrium H sellers want to separate;

@ in any separating equilibrium L sellers want to pool.
This can happen, even if gains from trade are certain — that is u; > ¢;.
Similar models can explain rationing in competitive insurance markets.

The key difference relative to the earlier setting is that private
information directly affects the payoff of the uninformed party.
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A Market for Lemons: Example

Consider an economy in which:

@ Ng =20, uy =9, u, = 6;
@ Ny =3, cy = k > 4

2 /VL=6, CL=4.

If so, a competitive pooling equilibrium exists when
cH=k<T7=n0.

But, no competitive equilibrium exists when k > 7.
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Signaling:

& Hidden Characteristics

@ Informed party moves first

@ Costly Signals:

a Educational Choice
a Pooling Equilibria
e Separating Equilibria

& Costless Signals
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Spence Signaling Model
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A Signaling Model

Consider the following educational choice model:

@ There are two types of workers {g, b}

@ [ype t having probability 7,

@ Workers can signal their type by acquiring education

a Different types have different costs to acquire education

@ Firms can distinguish workers only by their education and ...
. compete on wages to hire workers given such information

Timing:

@ Nature determines the type of each worker
@ Workers decide how much education to acquire
@ Firms simultaneously make wage offers (Bertrand)

@ Workers decide whether or not to accept an offer
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Signaling: Educational Choice Model

In particular consider the following model:

Individuals can acquire any level e € [0, 1] education

The cost of acquiring level e education for type t is c(e|t)

4]

@ Suppose that costs satisfy:
c(0]t) =0 & ce(elt) >0 & cele|t) >0
ce(elg) < ce(elb)

@ Suppose that firms offer a wage schedule w(e)

If so the payoff of a worker of type t with education z is:

u(elt) = w(e) — c(e|t)

@ Assumptions on costs and preference imply that the single crossing
condition is met (ie indifference curves cross once)
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Educational Choice Model: Firms

In this economy firms are modeled as follows:

a Firms know that the productivity of a worker of type t is f(t).

@ If firms knew the type of a worker, they'd pay type t exactly f(t).
Bertrand competition implies that wages equal productivity.

Recall that Bertrand = price equals marginal cost.
@ Initially firms know only the probability that a worker is of type t, 7.
@ Firms can observe the educational decisions of workers.

@ After workers have made their educational decision, firms:

update their beliefs on the basis of this new information;

Fq 1
@ pick a wage schedule w(e) that depends on education.
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Equilibria and Signaling
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Educational Choice Model: Types of Equilibria

This model has two different types of equilibria:

@ Separating equilibria in which the two types of worker:

& choose different education levels;
@ are paid different wages;
& prefer not to mimic the other type.

@ Pooling equilibria in which the two types of worker:

& choose the same education level;
Q@ are paid the same wage;

& prefer not to be separated from the other type.
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Educational Choice Model: Separating Equilibria |

In a separating equilibrium:

@ Workers of different type choose different education levels e;.

Firms recognize either type t by his education e;.

e Firms pay each type its marginal productivity w(e;) = f(t).

[Bertrand competition =- wages equal productivity]

@ For types to reveal themselves at wage w(e;) it must be that:

f(g) — cleglg) f(b) — c(eslg) (IC(g))
f(b) — c(ep|b) f(g) — c(eg|b) (IC(b))

@ Since education has no effect on productivity and since bad

>
>

workers are identified by their education it must be that ¢, = 0.

[In a model with more types only the lowest acquires no education]
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Educational Choice Model: Separating Equilibria Il

@ By the last observation, incentive constraints can be written as:

cleglg) < f(g)—f(b)
c(eglb) > f(g)— f(b)

@ |C conditions require that e; € [e, €] with boundaries defined by:
c(elg) = f(g) = f(b) = c(elb)

@ If the two types of workers chose in equilibrium education levels
ez € |6, €] & e, = 0 the ex-post beliefs of a firm are:

1 if e=¢g
7Tg<e)_{0 if e=e,

Beliefs don’t have to be pinned down for e # e, ep.
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Educational Choice Model: Separating Equilibria 1ll

@ To guarantee that no worker chooses e # ez, e, suppose that:

f(b) if e<eg
W(e):{fggg if e> e,

If such are the wages no good worker prefers to deviate since:

f(g)—cleglg) > f(g)—cle|lg) for e > e
> — c(e|g) for e < g

@ Moreover no bad worker prefers to deviate since:

f(b) > — c(e|b) for e > eg
f(b) > f(b)—c(e|b) for e < eg

Other wages schedules achieve the same result, but complicate the
analysis unnecessarily.
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Educational Choice Model: Separating Equilibria 1V

There is a multiplicity of separating Perfect Bayesian equilibria:
& [hey are characterized by the education levels satisfying:
es € e € & e, =0.
@ Workers receive the efficient wage, namely their productivity.

a But no equilibrium is efficient since good workers lose resources to
signal their type by investing in education.

@ The Pareto dominant equilibrium is the one in which e; = e since the
cost of acquiring education is the lowest.

e The multiplicity is due to the unspecified beliefs for e # eg, ep.
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Educational Choice Model: Separating Equilibria V
There is a multiplicity of separating Perfect Bayesian equilibria:

es € e, € =le,ey] & e =0.
Graphically these equilibria can be seen in the plot:

A
c

(fg-fo)
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Educational Choice Model: Separating Equilibria VI

The multiplicity disappears for appropriately chosen beliefs:
@ The intuitive criterion for out of equilibrium beliefs says:
e>e = mg(e)=1
@ This criterion is reasonable as bad workers prefer e = 0 to e > e:
f(b) > f(g) — c(elb)
which holds by definition of e.

@ If firms’ beliefs meet the intuitive criterion the only PBE that survives
is the one in which e, = e and ¢, = 0.

@ Indeed if e, > e, good workers prefer to switch to e since:
f(g) —cleglg) < f(g) —clelg).

The Pareto dominant equilibrium is the only PBE that survives the

intuitive criterion and involves the lowest education levels.
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Educational Choice Model: Pooling Equilibria |

In a pooling equilibrium:

a All workers choose same education levels e*.

Firms cannot recognize workers by their education e* and pay all
workers their expected productivity:

w(e*) = rtgf(g) + mpf(b)
@ To guarantee that no worker chooses e # e* suppose that:

B f(b) if e<e*
wie) = { nf(g) + mof(b) if e> e’

a For types not to reveal themselves at wage w(e*) it must be that:

w(e®) —c(e’|b) = f(b)

@ Such condition requires e* < e where € is defined by:

c(e|b) = mg|f(g) — f(b)]
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Educational Choice Model: Pooling Equilibria Il

There is a multiplicity of pooling Perfect Bayesian equilibria:

@ They are characterized by an education level e* € [0, €].
@ Workers wages are inefficient and differ from their productivity.

@ Again the multiplicity is due to the unspecified off equilibrium beliefs.

No pooling equilibrium meets the intuitive criterion:
@ Consider an effort level E defined by:
w(e®) — c(e|b) = f(g) — c(E|b).
@ When e > E, firms should then set 71,(e) = 1 and pay w(e) = f(g).

s If so, good workers choose e = E + ¢ while bad ones do not since

f(g)—clelg) > w(e") —c(e’|g) > w(e") —c(e”|b) > f(g) — c(e]b).
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Educational Choice Model: Pooling Equilibria Il

There is a multiplicity of pooling Perfect Bayesian equilibria:
e* €[0,¢] = [0, ey].
Graphically these equilibria can be seen in the plot:

¥ 3
c
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Comparison: Signaling vs Adverse Selection

The results on signaling differ from those on adverse selection since:
@ There is a multiplicity of pooling equilibria.
@ There is a multiplicity of separating equilibrium.
@ The incentive constraint neither type may bind in a pooling

equilibrium.

However most result coincide when the intuitive criterion is applied:

@ There are no pooling equilibria.
@ There is a unique separating equilibrium.

@ [he incentive constraint of the bad type binds.

The incentive constraint of the good type does not bind.

a Inefficiencies arise to provide incentives to the good type.
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Educational Choice Model: Example

Consider a setting in which:

e c(e|lg) = e and f(g) = 46;
c(elb) = 4e? and f(b) = 10;
g =1/9 and 71, = 8/9.

Thus, for separating equilibria, we have that

c(elg) = € =36="(g)—f(b)
clelb) = 4e*=36="f(g)—f(b)

While, for pooling equilibria, we have that
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cle]b) = 4e> = 4 = my(F(g) — F(b) = &=1.
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Extra: Costless Signaling
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Extra: Costless Signals |

The theory on costless signals is more involved. Some more result can be
understood from the following example:

@ There are N risk-neutral individuals

a All of them can participate in the production of a public good
@ In particular player i chooses his effort e; € {0,1}

2 The public good is produced only if all exert ¢ =1

& [he cost of exerting effort ¢; is private information and
costs are uniformly distributed on [0,1] —ie Pr(¢; < b) = b

a The preferences of player / with cost ¢; are — for a < 1:

ui(elc;) = alljen & — ciei

L]

The unique BNE of this game has all players exerting no effort

@ This follows since there is positive probability that ¢; > a for some |
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Extra: Costless Signals ||

If a signaling stage is introduced prior to effort decision such that:

@ Each agent can announce his willingness to exert effort

@ In particular each agent can say { Yes, No} to him exerting effort

When such signaling stage is added, then there is a BNE in which:
a Any agent announces Yes if and only if ¢; < a
@ Each agent chooses e, = 1 if and only if all said Yes
@ This is a BNE since individuals no longer risk wasting their effort

However, many other BNE are exist in which no information is exchanged
at the communication stage. Such BNE are known as babbling equilibria.
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Hidden Action Problem aka:

& Moral Hazard Problem
@ Principal Agent Model

@ Outline

@ Simple Moral Hazard Model:

a Complete Information Benchmark
a Hidden Effort
a Agency Cost
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Principal-Agent Models
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Qutline: Moral Hazard Problem

The basic ingredients of a moral hazard model are as follows:

@ A principal and an agent, are involved in bilateral relationship.

Principal wants Agent to perform some task.

4]

& Agent can choose how much effort to devote to the task.
@ [he outcome of the task is pinned down by a mix of effort and luck.

@ Principal cannot observe effort and can only motivate Agent by
paying him based on the outcome of the task.

Timing:

@ Principal chooses a wage schedule which depends on outcome.
@ Agent chooses how much effort to devote the task.
@ Agent’s effort and chance determine the outcome.

@ Payments are made according to the proposed wage schedule.
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A Principal-Agent Model

Consider the following simplified model:

A task has two possible monetary outcomes: {g,ﬁ} with g < 9.
Agent can choose one of two effort levels: {e;, &2} with e; < e.

The probability of the high output given effort e; is:

pi = Pr(qg =17|e)

Assume that p; < po — ie more effort = better outcomes.

Principal chooses a wage schedule w.

Agent is risk averse and his preferences are:

U(w,e) = Elu(w)] — c(e)

Principal is risk neutral and his preferences are:
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V(w) = E[q — w]
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Principal-Agent Model: Complete Info |

Begin by looking at the complete information benchmark:

@ Principal can observe the effort chosen by Agent.

@ Principal picks a wage schedule w; that depends on Agent'’s effort.
@& Agent's reservation utility is u — utility from resigning.

@ | he participation constraint of Agent requires:

U(W,', e,-) = U(W,') — c(e,-) Z u

By picking wages appropriately Principal chooses e; and wj;.

@ [he problem of Principal thus is to:
maxe, w; E[qlei] — wi + Alu(w;) — c(ej) — u]

@ Recall that E[q|e;/] = pig+ (1 — pi)q.
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Principal-Agent Model: Complete Info Il

a Recall the problem of Principal:

maxe, w;, E[qlei] — wi + Alu(w;) — c(e;) — u]
a The lowest wage v; that induces effort e; from Agent is:
u(vi) —c(e) =u
@ Thus Principal chooses to induce effort e, if and only if:
e € argmMaXe e o) E[qlei] — vi

@ Principal then induces such effort choice by offering wages:

V; if e = e
Wiy = .
* vi—e if e # e

@ Complete info implies that FOC for the wage requires MC = Price:
l/UW(W,') = A
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Hidden Actions
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Principal-Agent Model: Incomplete Info |

Next consider the case in which effort is unobservable for Principal.

If so, Principal can only condition wage w(q) on outcome g:

SES

wia) = {

If Principal prefers Agent to exert high effort e;:

@ Agent’s participation constraint at e, requires:
p2u(w) + (1 — p2)u(w) — c(e2) > u
@ Agent’s incentive constraint guarantees that they pick high effort:

p2u(®) + (1 — p2)u(w) — c(e2) > pru(W) + (1 — pr)u(w) — c(er)

June 19 10 / 18
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Principal-Agent Model: Incomplete Info Il

It is easy to rewrite IC and PC as follows:

(PC) p2u(w) + (1 — p2)u(w) > c(e) +u
(1) (p2—p1)(u(W) —u(w)) = c(e) — ¢

Graphically, the constraints amount to

uwy)t

.

\_
NG

-(1-p2)lp2 A

u(w,)
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Principal-Agent Model: Incomplete Info llI

Formally, Principal who wants Agent to exert e;:

& maximizes its profits by choosing w(q) subject to:

@ Agent's Participation Constraint at e
[Agent prefers to exert high effort than to resign]

@ Agent's Incentive Constraint
[Agent prefers to exert high effort than low effort]

@ the Lagrangian of this problem amounts to
max  p[q—w]+ (1 - p2)[g— w]
w,w

A (@) + (1 — p)u(w) — c(e) — 4]
l(p — p1) (u(@) — u(w)) — c(e2) + c(er)]
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Principal-Agent Model: Incomplete Info IV

Writing out Lagrangian explicitly the Principal’s problem becomes:
max  p[q—w]+ (1 - p2)[g — w]
+Alp2u(W) + (1 = p2)u(w) — c(e) — u]
+ul(p2 — p1) (u(W) — u(w)) — c(e2) + c(er)]
First order conditions for this problem are:
—p2 + Ap2uw (W) + p(p2 — p1)uw (W) =
—(1=p2) + A1 = p)uw(w) —p(p2 — pr)uw(w) = 0

Solving for A and u we find that:
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Principal-Agent Model: Incomplete Info V

The previous argument establishes that:

@ both y and A are positive if u is increasing and concave;
the incentive constraint binds since u > 0;
(8 ]

the participation constraint binds since A > 0.

Thus, wages w, w are found by solving the two constraints IC & PC:

P1 %
ulw)=u—c(e + cler
( ) ( >P2—P1 ( )Pz—Pl
_ 1—pm 1—p
ulw)=u-+cle —cCcle
(W) =y (2)P2—P1 (& P2 — p1
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As firms prefer low wages, PC binds; as agents are risk averse, so does IC.
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Principal-Agent Model: Incomplete Info VI

If Principal wants Agent to exert ey:

@ at such wage worker chooses eq;

it pays v; with certainty;

@ Principal’s profit amounts to:

p1g+ (1 —p1)g — w.

To conclude the principal chooses to enforce effort e if

PG —w|+ (1—p2)[g—w] > p1G+ (1 —p1)g — w.
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Principal-Agent Model: Key ldeas

With incomplete information:

Agent is not fully insured.
@ Volatility in payoffs is required for him to exert effort.

@ As actions are unobservable compensation must increase with output.

If Principal was more risk averse than the agent:

@ |t would sell the company to Agent.

e |t would face no risk and extract the full surplus.
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Principal-Agent Model: Example |

Example: e € {0,1}, u(w,e) =2w!/?2 —e, u=1,
q=4,9g=0,p1 =3/4, pp=1/4

Complete Info: what are wy, wy, e*7?

e Wages wy and wy are found by PC(e):

2W11/2—1 = 1 = w =1
2W3/2—0 = 1 = w=1/4

@ Optimal effort e, = 1 is found by comparing profits:

3oyt s lg3

-9+ -q— -g+-9—w

49T 947 "M 49T 247
3 3 1 1
4 2T 3T

& Thus the agent is fully insured by the principal
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Principal-Agent Model: Example |l

Incomplete Info: what are w, w, if principal wants e, = 17

@ Wages w = 25/16 and w = 1/16 are found by solving PC(1) and IC:

3 1

Z(2W1/2 ~+0wt?2-1) = 1

1 1 3

@ If principal wants e, = 0, a wage w, = 1/4 satisfying PC(0) suffices:
owl’?—0=1

@ The principal, however, prefers e, = 1 since:

3, 1
Z(q—W)+Z(ﬂ w) >
3 25 1 1 29
(4 — =2 () = 22 —
4( 16)+4( 16) 16 -~ 4 4 4
The principal cannot fully insure the agent with incomplete
information since it would undermine the incentives to exert effort.
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Insurance Markets

Consider the following economy:

Individuals have two types {H, L}.

The fraction of individuals of type t is 7t;.

Any individual can be healthy or sick.

The probability of type t being sick is o.

Assume that oy > 0.

The income of an individual is Y if healthy and Y — K if sick.

Let y; denote the consumption of type t if healthy & x; if sick.

Preference of type t satisfy:

Nava (LSE)

oru(xe) + (1 —o¢)u(ye)
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Insurance Markets

The insurance market is competitive (free entry).

Consumers can buy insurance coverage z; € [0, K]...

. at a unit price p; [ie total premium p;z].

If they do so their consumption in the two states becomes:

Yt
Xt

Y — ptz;

Y—K—pt2t+2t:Y—K+(].—pt)Z

If so the problem of a consumer becomes:

mathE[O,K] U'tU(Xt) + (1 — Ut)u(yt)

Thus, FOC with respect to z; requires for type t:

Nava (LSE)

Ut(l - Pt)U/(Xt) = (1 - Ut)PtU/()/t)
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Insurance Markets

@ FOC can be written in terms of MRS as:

Ul(Xt) o 1—Ut Pt

Ul()/t) cr 1—p:

@ Thus a consumer of type t wants:

Full Insurance: zz=K if p=o0;
Under Insurance: z; < K if p; > 0
Over Insurance: z > K if p; <0y

a The profits of an insurance company are given by:

Y TFtZt(Pt — (Tt)

thus a company does not run a loss provided that p; > 0.
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Competition in Insurance Markets: Full Info

Assume that insurance companies can distinguish the two types.

If so, the companies set a different price for each type.
Since the markets are perfectly competitive insurance companies:

@ Offer price p; = 0 to type t € {H, L}.
@ At such prices all consumers fully insure.

@ And each firm makes zero profits.

No entrant could benefit from offering competing policies.
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Competition in Insurance Markets: Incomplete Info

If insurance companies cannot distinguish the two type:

@ Offering the complete information contracts is suboptimal...

. as all players claim to be of type L to pay p; = 0 < py.
@ This cannot be optimal for a firm since it would run a loss:
TL'HK(,DL —O'H) —|—7’(LK(pL —(TL) <0

@ Alternatively a firm may not attempt to distinguish consumers...

but may offer a price that would lead to break-even if all fully insure:

p=THOH + T 0L

If so, low risk type L wants to under insure as 0; < p and...

high risk type H wants over insurance as oy > p and picks zy = K.
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Competition in Insurance Markets: No Pooling

If, however, different types respond to p as detailed above, the firm:

@ can tell types apart as only type H buys full insurance;

@ prefers to raise prices on those individuals to oy.

Consumer H thus prefers to mimic type L by buying at price p as many
units as type L, that is z; .

If so, the firm profits by offering a policy (E' g) such that:

@ is preferred by type L consumers but not by type H

s with a lower price p € (o, p) and a lower quantity z < z;.
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Competition in Insurance Markets: No Pooling

4 X
5 Po=(0,0)
_p Pr=(K,Kp)
e Pr=(2L,2LP)
Po
"_H"..

Theorem (No Pooling)

There is no pooling equilibrium in a competitive insurance market.

w
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Insurance Markets: Separating Equilibria may Not Exist

Thus firms must offer separating contracts if an equilibrium is to exist:
@ Consider (py,zy) = (oy, K) and (pr,z1) = (01, w)
a For players of type H to choose (pp, zy), IC requires:
u(Y —oyK) > opu(Y —K+(1—0p)w)+ (L —op)u(Y —opw)
@ For players of type L to choose (p;, z;), IC requires:
ou(Y—-K+Q—0c)w)+(1—0c)u(Y —orw) > u(Y —oyK)

a PROBLEM: if 7t; is high enough both contracts are dominated...
... by pooling contract (p',z') = (p+¢ K —¢).

@ |f so a competitive insurance market may have no equilibrium.

a Cause: Profits from each type depend directly on hidden info!
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Insurance Markets: Separating Equilibria may Not Exist

PA\ '\ Po=(0,0)
Py NX\p PH=(K,Ksp)

Pp=(z,ZP)

Theorem (No Equilibrium)

No equilibrium may exist in a competitive insurance market.
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Insurance Markets: Separating Equilibria may Not Exist

The magenta region (left plot) identifies the pooling contracts that are
profitable if purchased by both types and that are accepted by both types:

@ if such region is non-empty (left plot) no equilibrium exists;

@ if the region is empty (right plot) a separating equilibrium exists.

4 x 4 x

PH N\ P

Po Po
y

£

> >
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EC201 - Intermediate Microeconomics
SUMMER SCHOOL 2019 — FRANCESCO NAVA

Homework Assignments

The list of daily assignments follows. I suggest that you attempt at least some of them prior to the class. Numbers
refer to exercises from the textbook. The problems labeled "extra" are not required, but are good practice.

1. Due Thursday June 28

e Problem 1 (below)
e Normal: 7.1, 7.4, 7.7
e Extra: 7.3, 7.10

2. Due Friday June 29

e Problem 2 (below)
e Normal: 8.1, 8.2, 84
e Extra: 8.9

3. Due Monday July 2

e Problem 3 (below)
e Normal: 15.1, 15.2, 8.7(a)
e Extra: 8.5, Problem 4 (below)

4. Due Tuesday July 3

¢ Hand-In Problem Set
e 8.3, Problem 5 (below)
e Normal: 8.6, 15.7(a)

5. Due Wednesday July 4

e Problem 6 (below)
e Normal: 18.2, 18.3, 18.4
e Extra: 18.5 (a-b)

6. Due Thursday July 5

e Problem 7 and 8 (below)
e Normal: 18.7
o Extra: 18.1

Problem 1 (Uncertainty) Rick is considering whether to spend 5 dollars betting on Republicans winning the next
election. If Republicans were to win the election, Rick would be paid 4 dollars for any dollar that he has bet. The
utility that Rick derives from a (positive or negative) cash transfer of x dollars is determined by the following utility
function,

u(x) = (475 + 75x) /2.

Rick believes that the probability of republicans winning the next election is 1/3.

1. Find the expected value of such a lottery.



Intermediate Microeconomics F. Nava

2. Find Rick’s expected utility of taking such a gamble. Would he accept it? Or would he reject it and get = 07

3. What’s the certainty equivalent of such a lottery.

Problem 2 (Static Games) Consider the following static two-player game:

1\2| A B
A 1,2 3,7
B |73 22

Player 1 is the row player, and his payoff is the first to appear in each entry. Player 2 is the column player and his
payoff is the second to appear in each entry.

1. Find the pure strategy Nash equilibria of the game, and show that they are equilibria.
2. Find the mixed strategy Nash equilibrium of the game.

3. Derive the mixed strategy best responses.

Problem 3 (Bayesian Games) Cousider the following Bayesian game played by two players (1 and 2) who are
deciding whether to cooperate, C, or defect, D. Two states are possible, Good and Bad. Suppose that Player 2
knows the state, while Player 1 thinks that the state is Good with probability p. Payoffs in each state respectively
satisfy

2| C D 2| C D
State Good: C | 0,0 1,1 State Bad: C | 0,0 0,1 .
D | 1,1 0,0 D |10 3,3

Player 1 is the row player, and his payoff is the first to appear in each entry. Player 2 is the column player and his
payoff is the second to appear in each entry.

1. What is the set of possible strategies for the two players in this game?

2. Find the pure strategy Bayes-Nash equilibria for all values of p € (0, 1).

Problem 4 (Cournot Uncertainty) Two firms compete to sell a good. Firm 1 has total costs of production
Ci(q1) = (q1)* + 2q1 and its costs are known to Firm 2. The total costs of Firm 2 depends on its type. If Firm 2
is of type L, its costs are Cr(qr) = 2qr. If Firm 2 is of type H, its costs are Cy(qm) = 2 (qH)Q. Firm 2 knows its
type. But Firm 1 only knows that Firm 2 can have either cost structure with equal probability. The inverse demand
for the output produced by the two firms in this market satisfies:

p(g1 + g2) = 10 — 2(q1 + ¢2)

Firms choose how much output to produce in order to maximize their profits. Find the Bayes-Nash equilibrium of
this game. Characterize the equilibrium output strategies for both firms. Find the market price for each of the two
possible cost configurations.

Problem 5 (Repeated Games) Consider the following asymmetric Prisoner’s Dilemma:

\2|C D
C 34 16
D |40 22

1. Find the minmax values of this game.

2. Then, consider the following "trigger" strategy: any player chooses C provided that no player ever played D;
otherwise any player chooses D. Write the two incentive constraints that if satisfied would make such a strategy
a NE. Then, write the two additional incentive constraints that if satisfied would make such a strategy a SPE.
What is the lowest discount rate for which such strategy satisfies all the constraints.
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Problem 6 (Adverse Selection) Consider an economy with a monopolistic electricity supplier. Assume that the
costs of producing a unit of electricity are 1$. There are only two goods in this economy namely money, y, and
electricity, x. All consumers in this economy are endowed with 100$ in money and no electricity. There are two
types of buyers in the economy: type H has high value for electricity, while type L does not. In particular assume
that preferences satisfy:

u(z,ylH) = 8% +y
u(z,ylL) = (9/2)a' +y

1. If the monopolist can recognize the type of any individual, find the optimal bundles sold to both types. Why
is this outcome efficient?

2. Suppose that 1/8 of all individuals in the population are of type H. If the monopolist cannot recognize the type
of any individual, find the optimal bundles sold to both types in equilibrium. Why is the outcome inefficient?

Problem 7 (Signaling) Consider Spence’s signalling model. A worker’s type is t € {0,1}. The probability that
any worker is of type t = 1 is equal to 2/3, while the probability that ¢ = 0 is equal to 1/3. The productivity of a
worker in a job is (¢ + 1)2. Each worker chooses a level of education e > 0. The total cost of obtaining education
level e is C(e|t) = €?(2 — t). The worker’s wage is equal to his expected productivity.

1. Find pooling equilibrium education levels.

2. Find separating equilibrium education levels.

Problem 8 (Moral Hazard) Consider the Principal-Agent model discussed in the slides. Suppose that the effort
exerted by the agent can take one of three values e € {1/3,2/3}. Also suppose that the Agent’s preferences are given
by u(w,e) = 2w'/? —e. Leisure yields to the Agent a reservation utility w = 1. The principal’s problem can have one
of two outcomes: success or failure {q, q}. The payoffs to the Principal in these two events are: § = 4 if the outcome
is a success and ¢ = 0 if the outcome is a failure. The probability of a success is: p; /3 = 1/3 if the Agent chooses the
low effort; and p,,3 = 2/3 if the agent chooses the high effort.

1. Let effort be observable. Compute the full-information wages at each effort level. What is the profit maximizing
effort for the Principal?

2. Now suppose that the Principal cannot observe effort. For each effort level find output dependent wages that
induce the Agent to exert such an effort.

3. Which effort level maximizes the profits of the principal if he cannot observe effort?” Which wage schedule
should he set to induce the agent to exert such effort.



EC201 Hand-In Problem Set

Short Questions (17 MARKS EACH)

1. Ann is deciding whether to bet on a tennis match. A friend offers to give her 20 dollars if the
lower ranked player wins, while she has to pay him 12 dollars otherwise. The utility that she
derives from a (positive or negative) cash transfer of x dollars is determined by the following

utility function,
u(z) = (16 + )2,

Ann believes that the probability of the lower ranked player winning the match is p.

(a) Find the expected value of this lottery. For what values of p is the expected value positive?
(5 marks)

(b) Find Ann’s expected utility when betting on the match. For what values of p would she
accept the bet? (6 marks)

(c) Find Ann’s certainty equivalent for this lottery when p = 3/4. (6 marks)

2. Consider the following Bayesian game played by two players 1 and 2. Two states are possible,
A and B. Suppose that player 2 knows state, while player 1 deems both states equally likely.
Payoffs in each state respectively satisfy

1\2 ‘ s D 1\2 ‘ s D
State A: s | 1,1 0,2 State B: s | 0,2 1,1 .
p | 0,0 2,0 p |20 0,0

Player 1 is the row player, and his payoff is the first to appear in each entry. Player 2 is the
column player and his payoff is the second to appear in each entry.

(a) What is the set of possible strategies for either player in this game? (7 marks)

(b) Find a pure strategy Bayes Nash equilibrium of the game. (10 marks)

3. Suppose that two friends have split 5 indivisible cookies according to the following protocol.
Player 1 gets to divide the cookies between two dishes and Player 2 gets to choose which of
the two dishes to consume (while the remaining dish is consumed by Player 1). First, assume
that all cookies are alike, so that both players value every cookie equally, and care only about
consuming more cookies.

(a) Set up this problem as an extensive form game. [4 marks]

(b) Find a Subgame Perfect equilibrium of this game. Write the behavioral strategy for both
players, and check that no deviation is profitable. [6 marks]

(c¢) Does the game possess any Nash equilibrium that is not Subgame Perfect? [7 marks]
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LONG QUESTION (49 Marks)

4. Two firms compete to sell a good. Total costs of the two firms respectively satisfy

Ci(q1) =2q1 and Ca(q2) = ¢3.

The total output produced in the economy is ) = q1 + ¢2. The inverse demand for the total
output produced by the two firms in this market satisfies

C[10-2Q if Q<5
p(Q)_{ 0 if Q>5

Remember that the inverse demand curve identifies the highest price for which all the units
supplied to the market are purchased.

(a) First assume that firms compete on quantities. Find the Cournot equilibrium output at
the two firms, the equilibrium price, and the profits at each of the two firms. (20 marks)

(b) Then suppose that the two firms form a cartel. Find the cartel price and the output
produced at the two firms? Compare your results with part (a). Does the cartel make
higher profits than the two firms in part (a)? Does it produce more output on aggregate?
(15 marks)

(c¢) Finally assume that firms choose their output taking prices as given. Find the perfect
competition price and the output produced at the two firms? Again, compare your results
with parts (a) and (b). (14 marks)
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