Cooperation in the Prisoner’s Dilemma with Anonymous Random Matching

Glenn Ellison

RES 1994
Folk Theorem: "cooperative" outcome can be sustained in a sequential equilibrium of a repeated prisoner’s dilemma

- In every period, each player knows his opponent (unique) and what his opponent did before.

\[
\begin{array}{c|c}
1, 1 & -l, 1 + g \\
1 + g, -l & 0, 0
\end{array}
\]

- However, the result are not applicable to models of social games where a large population of players are randomly matched.
 - player has limited information about other player’s action
 - players probably cannot identify his opponent and thus cannot punish a certain deviator.
To which extent Folk Theorem-type results may be obtained in such random-matching games?

Kandori (1992) and Harrington (1991) introduced the idea of "contagious" punishment: you start to cheat once you see cheating. Kandori showed that in the case of no information processing, if \(l \) is big enough, cooperation is sustainable in a sequential equilibrium for sufficiently patient players with any fixed population size.

Kandori also argued that such an equilibrium is fragile in the sense that a bit noise would cause it to break down.

This paper built on Kandori’s arguments:

- Introducing public randomization to adjust the severity of punishments
- Cooperation is thus sustainable for general payoffs
- Robust and approximately efficient with noise
- Extension of the result to a model without public randomization
The Model

- M players indexed by $\{1, 2, 3, \ldots, M\}$ where $M \geq 4$ is an even number
- In each period $t \in \{1, 2, 3, \ldots\}$ the players are randomly matched into pairs with player i facing player $o_i(t)$
- The pairings are independent over time and uniform:
 \[\text{Prob}\{o_i(t) = j|h_{t-1}\} = \frac{1}{M-1}, \forall j \neq i \]
- The stage game is the prisoner's dilemma shown below with positive g and nonnegative l

\[
\begin{array}{c|cc}
 & C & D \\
 \hline
 C & 1, 1 & -l, 1 + g \\
 D & 1 + g, -l & 0, 0 \\
\end{array}
\]

Min (LSE) | Repeated Game
The Model

- All players have common discount factor $\delta \in (0, 1)$
 - Later this assumption would be relaxed
- Before players choose their actions in period t, they observe a **public** random variable q_t
 - q_t is drawn independently over time from $U[0, 1]$
 - Later the assumption of public randomization would be relaxed
Proposition 1

Theorem

\[\exists \delta < 1 \text{ such that } \forall \delta \in [\delta, 1) \text{ there is a sequential equilibrium } s^*(\delta) \text{ of this random-matching repeated game with public randomizations, where all players play } C \text{ in every period along the equilibrium path.} \]

- The strategies \(s^*(\delta) \) are as follows
 - Phase I
 - Play \(C \) in period \(t \)
 - If \((C, C)\) is the outcome for matched players \(i \) and \(j \), both play according to phase I in period \(t + 1 \)
 - Otherwise, in period \(t + 1 \) both play according to phase II if \(q_{t+1} \leq q(\delta) \) and according to phase I if \(q_{t+1} > q(\delta) \)
 - Phase II
 - Play \(D \) in period \(t \)
 - In period \(t + 1 \) play according to phase II if \(q_{t+1} \leq q(\delta) \) and according to phase I if \(q_{t+1} > q(\delta) \)
 - In period 1, all players play according to phase I
Proof of Proposition 1

- Let $f(k, \delta, q)$ be player i’s continuation payoff from period t on when all players are playing the strategies above, and player i and $k-1$ others are playing according to phase II.
- The continuation payoffs must satisfy two constraints derived from players not having a profitable single-period deviation:
 - No profitable deviation in phase I:
 \[(1 - \delta)g \leq \delta q(\delta)(1 - f(2, \delta, q(\delta)))\]
 \[(1 - \delta)g \geq \delta q(\delta) E_j[f(j, \delta, q(\delta)) - f(j + 1, \delta, q(\delta))]\]
 - expectation reflects player i’s beliefs over the number of players who will play according to phase II at $t+1$.
 - it suffices to show it holds pointwise:
 \[(1 - \delta)g \geq \delta q(\delta)[f(j, \delta, q(\delta)) - f(j + 1, \delta, q(\delta))] \quad \forall j \geq 3\]
Proof of Proposition 1

Lemma

\[f(k, \delta, q) \text{ is convex in } k \text{ for } k \geq 1, \text{ i.e.} \]
\[
f(k, \delta, q(\delta)) - f(k + 1, \delta, q(\delta)) \geq f(k + s, \delta, q(\delta)) - f(k + s + 1, \delta, q(\delta))
\]
\[\forall s \geq 1 \]

The proof of this lemma depends on the fact that the group of phase I players in a future period shrinks as more players play phase II today

- \[f(k, \delta, q) - f(k + 1, \delta, q) = \sum_{t=0}^{\infty} (1 - \delta)^q t^t (1 + g) \Pr\{\omega \in \Omega | o_1(t, \omega) \in C(t, k, \omega) \cap D(t, \omega)\} \]
- \[C(t, k, \omega) \subseteq C(t, k + s, \omega) \]

Another fact we need to notice is that when (1) holds with equality, a player in phase I is exactly indifferent between playing \(C \) and \(D \) in a certain period

- \[(1 - \delta)g = \delta q(\delta) (1 - f(2, \delta, q(\delta))) \iff \]
- \[(1 - \delta)g = \delta q(\delta) (f(1, \delta, q(\delta)) - f(2, \delta, q(\delta))) \quad (3) \]
Proof of Proposition 1

Now what we need to show is that there exists δ and $q(\delta)$ such that $\forall \delta \in [\delta, 1)$, (1) and (3) both holds with equality

- If $q(\delta) = 1$, punishments are infinite and all players would eventually be infected with probability 1 if someone already started to play D:
 \[\lim_{\delta \to 1} f(2, \delta, 1) = 0 \]

- Thus $\lim_{\delta \to 1} \frac{\delta}{1-\delta} (1 - f(2, \delta, 1)) = \infty$ and $\lim_{\delta \to 0} \frac{\delta}{1-\delta} (1 - f(2, \delta, 1)) = 0$

- By continuity, $\exists \underline{\delta} \in (0, 1)$ so that $\frac{\delta}{1-\delta} (1 - f(2, \underline{\delta}, 1)) = g$: for $\underline{\delta}$ and $q(\underline{\delta}) = 1$, (1) holds with equality and thus (3) holds with equality

- Note that $\frac{\delta q}{1-\delta} (f(k, \delta, q)) - f(k+1, \delta, q)) = \sum_{t=0}^{\infty} (q\delta)^{t+1} (1 + g) \Pr\{\omega \in \Omega | o_1(t, \omega) \in C(t, k, \omega) \cap D(t, \omega)\}$, RHS only depends on $q\delta$

- Thus if we define $q(\delta) = \underline{\delta}/\delta$ for all $\delta \in [\delta, 1)$, then (3) holds with equality for all such δ and $q(\delta)$

- Then (1) holds with equality for all such δ and $q(\delta)$ and (2) also holds by convexity of f
This equilibrium obviously satisfies the property of **global stability**:
after any finite history, the continuation payoffs of the players eventually return to the cooperative level (with probability 1)

- due to the introduction of public randomizations

What if we introduce noise ε?

- In contrast to Kandori’s equilibrium, such sequential equilibrium is also **robust to little noise**
- Moreover, this equilibrium is **approximately efficient with little noise**
Theorem

$\exists \delta' < 1$ and a set of strategy profiles $s^*(\delta)$ for $\delta \in [\delta', 1)$ of the random-matching game with the following three properties:

1. In the game with discount factor δ, $s^*(\delta)$ is a sequential equilibrium with all players playing C on the path in every period.

2. Define $s^*(\delta, \varepsilon)$ to be the strategy which at each history assigns probability ε to D and probability $1 - \varepsilon$ to the action given by $s^*(\delta)$. Then $\exists \bar{\varepsilon}$ such that $\forall \varepsilon < \bar{\varepsilon}$ $s^*(\delta, \varepsilon)$ is a sequential equilibrium of the perturbed game where all players are required to play D with probability at least ε at each history.

3. For u_i defined to player i's expected per period payoff, $\lim_{\varepsilon \to 0} \lim_{\delta \to 1} u_i(s^*(\delta, \varepsilon)) = 1$.

Min (LSE)
Repeated Game
02/11 11/17
Outline of Proof

- $s^*(\delta)$ can be taken to have the same form as in Proposition 1, but with a slightly larger probability $q'(\delta)$ of continuing in a punishment phase.
- The basic idea is that the continuation payoff function f can indeed be shown as strictly convex in k.
 - Note that generally $C(t, k, \omega) \subset C(t, k + s, \omega)$.
 - Strict convexity allows us to pick a slightly larger $q'(\delta) = \delta' / \delta$ to let the two constraints hold with strict inequality.
 - Thus the equilibrium could endure noise ε.

Repeat Game

Min (LSE)
Heterogeneity in Time Preferences

- Up to now all the results require the assumption that all players share the same discount factor δ
 - Indeed, the equilibrium $s^*(\delta)$ depends on δ because we need to define $q(\delta)$
 - This seems not plausible when players have heterogeneous time preferences
- Indeed, a strategy profile s^* with similar form as before but independent of discount factor can still be a sequential equilibrium.
Proposition 3

There exists a strategy profile \(s^* \) and a constant \(\delta'' < 1 \) such that
\[\forall \delta \in [\delta'', 1), \ s^* \text{ is a sequential equilibrium of the repeated game and all players play } C \text{ in every period on the path of } s^*. \]

- Define \(q''(\delta) \equiv q'' = \lim_{\delta \to 1} q'(\delta) \) (= \(\lim_{\delta \to 1} \delta'/\delta = \delta' \)) and \(\delta'' = \delta / q'' \)

- \(\delta \geq \delta'' \implies \delta q'' \geq \delta = \delta q(\delta) \implies \frac{\delta q''}{1-\delta} (f(1, \delta, q'')) - f(2, \delta, q'') \geq \frac{\delta}{1-\delta} (f(1, \delta, 1)) - f(2, \delta, 1) = g \)

- \(\delta < 1 \implies \delta q'' < q'' = \delta' = \delta' q'(\delta') \implies \frac{\delta q''}{1-\delta} (f(2, \delta, q'')) - f(3, \delta, q'') < \frac{\delta'}{1-\delta'} (f(2, \delta', 1)) - f(3, \delta', 1) < g \)

- with convexity of \(f \) the proof is finished
Proposition 4

- Public randomizations are playing two critical roles here
 - A coordination device so that all players can \textit{simultaneously} return to cooperation at the end of a punishment phase
 - simultaneity is important because all players only slightly prefer cooperating when all others are doing so
 - To adjust the expected length and hence the severity of punishments
 - punishments are not so severe that no one is willing to carry them out
- Without public randomizations, can we still find a sequential equilibrium to sustain cooperation and endure little noise?

\textbf{Theorem}

\textit{The results of Proposition 2 still hold in a model where no public randomizations are available.}
Outline of Proof

- Basically, we need to find a sequential equilibrium with \(q \equiv 1 \)
- Note that for Proposition 2, we have \(q'(\delta') = 1 \) and \(\delta' \) for the two constraints to hold with strictly inequality
 - By continuity we know that \(\exists \delta_1 > \delta' \) and the two constraints still hold for any \(\delta \in [\delta', \delta_1] \) and \(q \equiv 1 \)
- The following lemma will then help us to finish the proof

Lemma

Let \(G(\delta) \) be any repeated game of complete information, and suppose that there is a non-empty interval \((\delta_0, \delta_1)\) such that \(G(\delta) \) has a sequential equilibrium \(s^*(\delta) \) with outcome \(a \) for all \(\delta \in (\delta_0, \delta_1) \). Then \(\exists \delta < 1 \) such that \(\forall \delta \in (\delta, 1) \) we can also define a strategy profile \(s^{**}(\delta) \) which is also a sequential equilibrium of \(G(\delta) \) with outcome \(a \).

- the constructed equilibrium uses **infinite periodic punishments**
- global stability will **not hold** in this case although approximate efficiency is still available
Conclusions

- "Contagious" punishments lead to a break down of cooperation, but the convexity of the breakdown process can be exploited.
- Stability and limiting efficiency with noise are achievable with public randomizations.
- Cooperation is also possible with heterogeneity in time preferences or without public randomizations.
- With a stage game not having a dominant strategy equilibrium, whether these results could be further extended remains interesting.
Learning, Local Interaction, and Coordination

Glenn Ellison

Econometrica 1993
Game theoretic models all too often have multiple equilibria

\[
\begin{array}{cc}
A & B \\
\hline
A & 2, 2 & 0, 0 \\
B & 0, 0 & 1, 1 \\
\end{array}
\]

Why we should expect players to coordinate on a particular equilibrium

- Whether there is any reason to believe that one equilibrium is more likely than the other

Foster and Young (1990) and Kandori, Mailath and Rob (1993) derived strong predictions on the evolution of play over time

- how players learn their opponents’ play and adjust their strategies over time

KMR (1993) showed that in the long run limit, players will achieve coordination on the particular "risk dominant" equilibrium

- \((A, A)\) in the example above
This paper built on KMR’s work while

- The behavioral assumptions incorporate noise and myopic responses by boundedly rational players
- The rate at which each dynamic process converges is considered
 - In reality it is important whether the evolutionary forces would be felt within a reasonable time horizon
- The nature of the interactions within a population plays a crucial determinant of play
 - KMR used uniform matching rule while two extreme cases described as uniform and local are considered here
A large population of N players

A repeated coordination game played in periods $t = 1, 2, 3, ...$

- $a - d > b - c \implies (A, A)$ is "risk dominant" equilibrium

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a, a</td>
<td>c, d</td>
</tr>
<tr>
<td>B</td>
<td>d, c</td>
<td>b, b</td>
</tr>
</tbody>
</table>

In each period t, player i chooses an action $a_{it} \in \{A, B\}$ and his payoff is $u_i(a_{it}, a_{-i,t}) = \sum_{j \neq i} \pi_{ij} g(a_{it}, a_{jt})$

- payoffs g are those of the 2×2 coordination game above
- π_{ij} represents the probability that player i and j are matched in a given period
 - independent of t as the matching rule is time consistent
Boundedly rational players: \(a_{it} \in \arg \max_{a_i} u_i(a_i, a_{-i}, t) \)

- player \(i \) is reacting to the distribution of play in period \(t - 1 \), not to the action of his matched opponent
 - fairly naive in predicting how his potential opponents would play in period \(t \)

Disturbed by noise

- With probability \(1 - 2\varepsilon \) player \(i \) plays according to the rule above with probability
- With probability \(2\varepsilon \) player \(i \) chooses an action equally at random
Local and Uniform Matching Rules

- **Uniform matching rule:** \(\pi_{ij} = \frac{1}{N-1} \quad \forall j \neq i \)

 - With this rule, a myopic player will choose his period \(t \) strategy considering only the fraction of the population playing each strategy at time \(t - 1 \).

- "Local" matching: each player is likely to be matched only with a small fixed subset of the population.

- **2k-neighbour matching** (players are thought to be spatially distributed around a circle)

 - \(\pi_{ij} = \frac{1}{2k-1} I\{i - j \equiv \pm 1, \pm 2, ..., \pm k \ (\text{mod} \ N)\} \)

- Probability assigned to a match is declining with distance

 - \(\pi_{ij} = \begin{cases} \frac{3}{\pi^2} \frac{1}{d^2} & \text{for } d = \min\{|i-j|, N-|i-j|\} \neq \frac{N}{2} \\ 1 - \frac{3}{\pi^2} \sum_{|i-j| \neq N/2} \frac{1}{d^2} & \text{otherwise} \end{cases} \)
Assume that at some point in the past, arbitrary historical factors determined the initial strategies of the players. The behavior rules then generate a dynamic system which describes the evolution of player’s strategy over time.

With uniform matching

Let q_i be the fraction of player i’s opponents who play A in period $t - 1$.

Player i will play A in period t iff $q_i \geq q^* \equiv \frac{b-c}{(a-d)+(b-c)} < \frac{1}{2}$

The state of the system is denoted as a N-tuple $s_t \in S = \{A, B\}^N$, and $A(s_t)$ the total number of players playing A at t.

The cutoff of player’s response above becomes $A(s_t) > \lceil q^*(N - 1) \rceil$

Without noise, there are two steady states, \vec{A} and \vec{B}, with nearby states jumping to them.

With noise ϵ, the transitions are governed by a Markov process.

Once play approaches either equilibrium it will likely remain nearby for a long period of time.
With local $2k$-neighbour matching (set $q^* = \frac{1}{3}$ and $k = 4$)

- The cutoff becomes whether the number of your 8 neighbours playing A exceed 3
- Without noise, there are at least two steady states, \vec{A} and \vec{B}
 - both have a nontrivial attractive basin, but that of \vec{A} is bigger than that of \vec{B}
 - with four adjacent players playing A at a time, the dynamic process will eventually goes to \vec{A}

- With noise, the differing sizes of these attractive basins cause relatively rapid convergence to \vec{A}
 - starting from \vec{B}, it is far more likely to see 4 adjacent disturbances than $\lceil (N - 1)/3 \rceil$ simultaneous ones when N is large
Further Notations

- We view the time t strategy profiles as the states s_t of a Markov process.
- The time t probability distribution over the states is represented by an 1×2^N vector v_t.
- The evolution of the process is governed by $v_{t+1} = v_t P(\varepsilon)$.
 - $P(\varepsilon)$ is the transition matrix with $p_{ij}(\varepsilon) = \Pr\{s_{t+1} = j | s_t = i\}$.
 - Write $P^u(\varepsilon)$ for uniform matching and $P^{2k}(\varepsilon)$ for local matching.
- $P(\varepsilon)$ is strictly positive if $\varepsilon > 0 \Rightarrow \exists! \mu(\varepsilon)$ such that $\mu(\varepsilon) = \mu(\varepsilon) P(\varepsilon)$.
 - Let $\mu_s(\varepsilon)$ denote the probability assigned to state s by distribution $\mu(\varepsilon)$.
- Use O-approximations for the asymptotic behavior of $\mu(\varepsilon)$ as $\varepsilon \to 0$.
 - $f(x) = O(g(x))$ ($x \to 0$) if $\exists C, c > 0$ such that $cg(x) \leq f(x) \leq Cg(x)$ for sufficiently small x.
Converging to Risk Dominant Equilibrium

Theorem

For sufficiently large N we have:

(a) $\lim_{\epsilon \to 0} \mu_{uA}(\epsilon) = 1$, $\lim_{\epsilon \to 0} \mu_{2kA}(\epsilon) = 1$;

(b) $\mu_{uB}(\epsilon) = O(\epsilon^{N-2}[q^*(N-1)]+1)$, $\mu_{2kB}(\epsilon) = \begin{cases} O(\epsilon^{N-2}) & \text{for } N \text{ even} \\ O(\epsilon^{N-1}) & \text{for } N \text{ odd} \end{cases}$

- The proof does not rely on the fact that the matching distribution has finite support
 - the matching rule with declining probability also works, even with $N \to \infty$
- The matching rule can not be too concentrated
 - If $\pi_{ij} > 1 - q^*$ then the probability of the cycle where i and j alternatively play (A,B) and (B,A)
- The long-run outcome may differ between the two matching rules when we move beyond 2×2 games.
Theorem 1 implies that if the coordination games are repeated enough times we expect to see the risk dominant equilibrium played almost all the time.

Whether this "eventually" is relevant depends on the rate of convergence.

Let \(\rho \) be an arbitrary initial state

\[
\mu(\epsilon) = \lim_{t \to \infty} \rho P(\epsilon)^t
\]

Define \(\| \mu - \nu \| \equiv \max_{s \in S} |\mu_s - \nu_s| \)

Define \(ru(\epsilon) = \sup_{\rho \in \Delta} \limsup_{t \to \infty} \| \rho P^u(\epsilon)^t - \mu^u(\epsilon) \|^{1/t} \) and

\[
r^2(\epsilon) = \sup_{\rho \in \Delta} \limsup_{t \to \infty} \| \rho P^2(\epsilon)^t - \mu^2(\epsilon) \|^{1/t}
\]

Theorem

Assume \(q^*(N-1) \) \(< N/2 \), as \(\epsilon \to 0 \) we have:

\[
1 - ru(\epsilon) = O(\epsilon^{q^*(N-1)}) \), \ 1 - r^2(\epsilon) = O(\epsilon).
\]
Rates of Convergence

Loosely speaking, \(\| \rho P^u(\varepsilon)^t - \mu^u(\varepsilon) \| = O(r^t) \) for some \(r < 1 \)

- convergence is approximately at an exponential rate

\(r^u(\varepsilon) \) is much closer to 1 than \(r^2(\varepsilon) \) for small \(\varepsilon \), so the rate of convergence with uniform matching is much slower

An alternate measure:
\[
W(N, \varepsilon, \alpha) = E(\min\{t \mid A(s_t) \geq (1 - \alpha)N\} \mid s_0 = \overrightarrow{B})
\]

- \(W(N, \varepsilon, \alpha) \) is the expected waiting time until at least \(1 - \alpha \) of the players play \(A \) given that everyone starts off playing \(B \)

Theorem

For \(\varepsilon \) sufficiently small we have:
\[
W^u(N, \varepsilon, \alpha) = O(\sqrt{Ne}((q^* - \varepsilon)/\varepsilon(1 - \varepsilon))N), \quad W^{2k}(N, \varepsilon, \alpha) = O(1)
\]
Different Matching Rules

\[W^{2k}(N, \varepsilon, \alpha) \]

<table>
<thead>
<tr>
<th>(\varepsilon = 0.025)</th>
<th>(\varepsilon = 0.05)</th>
<th>(\varepsilon = 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = 1)</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>(k = 2)</td>
<td>44</td>
<td>23</td>
</tr>
<tr>
<td>(k = 3)</td>
<td>93</td>
<td>25</td>
</tr>
<tr>
<td>(k = 4)</td>
<td>522</td>
<td>45</td>
</tr>
</tbody>
</table>

- For small \(\varepsilon \), evolution is faster for more concentrated matching rules
- For large \(\varepsilon \), evolution can be faster for less concentrated matching rules
- The assumption of players located around the circle is crucial
 - This implies a great \textbf{overlap} of the groups of neighbours
 - With less overlap (lattice of more dimensions), the evolution may be slower
Heterogeneity

The players are assumed to have heterogeneous tastes $u_i(A, A)$ and $u_i(B, B)$ with lognormal distributions.

- (A, A) is still better: $u_i(A, A) \overset{D}{\sim} (17/7) u_i(B, B)$

<table>
<thead>
<tr>
<th>Var($u_i(B, B)$)</th>
<th>$W^{2k}(N, \varepsilon, \alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\varepsilon = 0.025$</td>
</tr>
<tr>
<td>0</td>
<td>522</td>
</tr>
<tr>
<td>0.1</td>
<td>75</td>
</tr>
<tr>
<td>0.2</td>
<td>28</td>
</tr>
</tbody>
</table>

- Heterogeneity increases the rate of convergence (especially when ε is small)
 - Stable clusters for players with great utility from (A, A) is smaller

- When evolution is already rapid for a homogeneous population, heterogeneity only has limited effect
Boundedly rational players’ myopic adjustments create evolutionary forces which may select among the equilibria.

The nature of the matching rule helps us weight historical factors and evolutionary forces.

- With uniform matching among a large population play will reflect arbitrary historical factors for a long period of time.
- With local matching evolutionary forces may be felt early in the game.