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This article tests between the standard “random matching function” approach
and “stock-flow” matching while controlling for temporal aggregation bias. Con-
sistent with previous empirical work, the random matching function fits the
matching data reasonably well. But match flows are more highly correlated with
vacancy inflows than is consistent with the random matching approach. Instead
the data support stock-flow matching, where unemployed workers match directly
with suitable new vacancies as such vacancies come on to the market.

1. INTRODUCTION

The random matching approach has provided an important framework for ana-
lyzing labor market policy (Pissarides, 2000). But the empirical literature, when es-
timating the random matching function, rarely tests the matching function against
a meaningful alternative (see, for example, Blanchard and Diamond, 1989; Petron-
golo and Pissarides, 2001, for a recent survey). This article uses matching data to
test between the random matching hypothesis and stock-flow matching.

Stock-flow matching assumes that when laid off, a worker contacts friends, con-
sults situations vacant columns in newspapers, registers with job agencies, and so
observes the stock of vacancies currently on the market. If the worker is lucky and
a suitable vacancy already exists, the worker can quickly exit unemployment. If a
suitable vacancy does not exist, the worker then has to wait for something suit-
able to come onto the market. This worker does not then match with the stock of
vacancies—the stock has already been sampled and no match exists. The worker
instead matches with the inflow of newvacancies coming onto the market. The
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problem is symmetric for vacancies. If a firm has a vacancy, it might first ask em-
ployees if they know someone suitable or advertise the post in a situations vacant
column, job agencies, etc. If the firm is lucky, a suitable worker already exists in
the stock of unemployed workers and the post is quickly filled. If not, the firm has
to wait for someone suitable to come onto the market. This implies “stock-flow”
matching as the stock of unmatched agents on one side of the market matches
with the inflow of new agents on the other side. Papers in this literature include
Taylor (1995), Coles and Smith (1998), Coles and Muthoo (1998), Coles (1999),
Lagos (2000), and Gregg and Petrongolo (2005), but also see Jones and Riddell
(1999) who consider “wait” unemployment. More recent work includes Ebrahimy
and Shimer (2006), who calibrate the stock-flow matching model to the U.S. labor
market.

Lagos (2000) perhaps provides the most useful perspective for understanding
the results obtained here. Using a taxi market analogy, he supposes that cabs meet
potential customers at taxi ranks. At the microlevel there is stock-flow matching,
i.e., at any given taxi rank there is either a stock of customers waiting for cabs
or a stock of cabs waiting for customers. Aggregation over all taxi ranks and the
restriction to steady state imply that at the macrolevel, the flow number of cab rides
depends only on the total stock of taxi cabs and on the total stock of potential
customers in the market. Casual introspection also suggests there will be constant
returns to matching: doubling the total number of participants should double the
(steady state flow) number of taxi rides. Aggregate matching seemingly has the
properties of a standard random matching function, even with stock-flow matching
at the microlevel.

This view of matching is consistent with the fact that around 25–30% of new
vacancies posted in Jobcentres in Britain are filled on the first day (Coles and
Smith, 1998). Burdett and Cunningham (1998)also report for the United States
that most vacancies (55%) are filled within a week. This suggests that for many
vacancies matching frictions may not be a significant factor. Instead such vacancies
are snapped up by workers who have been waiting for something suitable to come
onto the market.

The equivalence between random matching and stock-flow matching, however,
only holds in steady state. Outside of a steady state, stock-flow matching at the
microlevel implies that a higher inflow of new vacancies, say into an unemployment
black spot, will yield an immediate increase in matches. Consider for example,
Figures 1 and 2 below, which describe aggregate matching time series in Great
Britain. A critical feature of these time series is that the unemployment outflow
or the vacancy outflow are much more volatile than both the unemployment and
the vacancy stock. Matching data for the United States provide a very similar
picture; see Blanchard and Diamond (1989, figure 5). This data pattern can only
happen when the number of matches is mostly driven by the inflow of new agents
into the market. Otherwise, if most matches originate in the stocks, a large increase
in the number of matches must result in a large fall in the stock of vacancies and
unemployment, which is not observed in the data. These data therefore imply
that a spike in the number of matches coincides with spikes in the inflows of new
agents and not with spikes in the existing stocks. The standard random matching
approach is inconsistent with this facet of the data.
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The underlying point is that outside of a steady state, random matching
and stock-flow matching imply quite different equilibrium hazard rates of
re-employment. In Shapiro and Stiglitz (1984), for example, the re-employment
hazard rate of an unemployed worker, denoted λ, is simply λ = v/U, where v is the
flow of new vacancies into the market, which match immediately (and randomly)
with one unemployed worker, and U describes the current stock of unemployed
workers. We shall refer to this case as job queueing. In contrast, the random
matching approach assumes the re-employment hazard rate depends on the va-
cancy/unemployment ratio, where frictions imply it is the stock of vacancies V
that is the relevant state variable (throughout uppercase refers to stock variables,
lowercase to flow variables). The stock-flow explanation instead implies there are
two parameters of interest. Proportion p of laid-off workers are on the short side
of their market and are re-employed immediately (or at least within a very short
period of time). Proportion (1 − p) are on the long side of their market and so
chase new vacancies. Their subsequent hazard rate λ depends on the flow of va-
cancies into their particular specialization. Clearly this latter hazard rate λ has a
similar structure to the job queueing hazard, depending on v instead of V.

Consistent with Lagos (2000), we find that the random matching function does
indeed provide a good fit of the United Kingdom aggregate matching data and the
hypothesis of constant returns is not rejected (see column 1, Table 2, below). The
critical overidentifying test for the random matching approach is that the inflow of
new vacancies should not have any additional explanatory power for the matching
rates of workers (given we control for temporal aggregation of the data). We
find instead that the vacancy inflow coefficient is highly significant. The principal
difficulty for the random matching approach, however, is that once vacancy inflow
is included as a conditioning variable, the estimated vacancy stock term becomes
wrong-signed. The results instead show that a stock-flow matching specification
provides a much better fit of the data. The central finding is that the longer-term
unemployed match with the inflow of new vacancies, which implies that these
workers are waiting for suitable vacancies instead of facing high matching frictions.
As pointed out in the conclusion, this has important implications for the design
of optimal unemployment insurance schemes.

There are two closely related papers. Coles and Smith (1998) introduces the
notion of stock-flow matching and shows that unemployment outflows of workers
with durations longer than one month are highly correlated with vacancy inflows,
whereas vacancy stocks typically yield no significant correlations.2 Consistent with
stock-flow matching, Coles and Smith (1998) also find that unemployment outflows
for workers with durations shorter than one month are significantly correlated
with vacancy stock measures. There is no formal testing in that paper. Gregg
and Petrongolo (2005) were the first to distinguish between stock-flow matching
and the random matching function on aggregate match data. But their estimates
do not properly control for temporal aggregation bias. In particular, they only
use the vacancy stock measure at the start of each quarter as a determinant of
the job-finding hazard for the unemployment stock (see Equations (8) and (9),
p. 1998). As will be made clear below, even with random matching, the total

2 Except at one year durations where worker unemployment benefits expire.
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unemployment outflow over the period depends on the inflow of new vacancies
within the period. As unemployment outflows are highly correlated with vacancy
inflows, a goodness-of-fit test in Gregg and Petrongolo (2005) is biased against
random matching. A central contribution here is that we show how to construct
“at-risk” measures of vacancies and unemployed workers within each month and
so fully control for the temporal aggregation problem. A formal test between the
two matching frameworks is then possible using maximum likelihood techniques.

The article is structured as follows. Section 2 discusses identification. It argues
that with unobserved search effort, a distinguishing test between the two match-
ing frameworks is not possible using microdata, but that identification is possible
on macrodata. Section 3 shows how to distinguish between competing matching
frameworks, while controlling econometrically for temporal aggregation bias. Sec-
tion 4 describes the data used. Section 5 presents our results. Section 6 concludes.

2. IDENTIFICATION ON AGGREGATE DATA

The hazard function literature establishes there is substantial variation in re-
employment rates across unemployed workers (see Machin and Manning, 1999,
for a recent survey). To understand how worker heterogeneity may affect iden-
tification, suppose unemployed worker i at time t makes search effort kit and
let

Kt =
Ut∑

i=1

kit

denote aggregate search effort across the Ut unemployed. The standard random
matching approach (e.g., Pissarides, 2000) assumes that the re-employment rate
of this worker, denoted λi t , is

λit = kit

Kt
M(Kt , Vt ),

where Vt is the stock of vacancies at time t and M(.) is a standard matching
function.

Consider instead a job queueing framework. In this world the stock of unem-
ployed workers matches with new vacancies as they are created. Using the taxi
rank analogy, suppose unemployed worker i makes effort kit to catch the next job.
Then this worker’s re-employment rate is

λit = kit

Kt
vt ,

where vt is the inflow of new vacancies and kit/Kt is the probability that worker i
gets the next job to come onto the market.

The aim of the article is to identify which better explains the re-employment
rates of unemployed workers: Is it the stock of vacancies (as implied by ran-
dom matching) or the inflow of new vacancies (as implied by job waiting)?
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Unfortunately it is not possible to identify either of these processes on microdata.
For most individuals we have only one data point—that individual’s observed un-
employment spell (a starting and end date)—and we cannot control for the fixed
effect kit . We might potentially control for the fixed effect by focusing on individ-
uals with repeat unemployment spells, but such individuals are a biased sample of
the market.

Note also that this matching structure generates congestion effects, where
greater job search effort by one worker reduces the matching probability of other
workers (via an increase in aggregate K). Unobserved search heterogeneity im-
plies a negative correlation in individual worker re-employment rates—if one
worker gets the job, the others do not. Aggregating across workers, however, nets
out these congestion effects. For example, job queueing implies individual hazard
rate λi t = kitvt/Kt , but aggregating over i implies average re-employment rate

λ̄t = 1
Ut

Ut∑
i=1

λit = 1
Ut

Ut∑
i=1

kit

Kt
vt = vt

Ut
.

Note that the average re-employment rate is driven by the inflow of new vacancies;
there is crowding out by the unemployment stock, but pure crowding out implies
the average re-employment rate is independent of the distribution of search efforts
{kit}.3

The random matching approach instead implies λit = kit
Kt

M(Kt , Vt ) and aggre-
gating over i implies average re-employment rate

λ̄t ≡ 1
Ut

Ut∑
i=1

λit = 1
Ut

Ut∑
i=1

kit

Kt
M(Kt , Vt ) = 1

Ut
M(Kt , Vt ).

If there are constant returns to matching then the average re-employment rate
simplifies to

λ̄t = M
(

k̄t ,
Vt

Ut

)
,

where k̄t = Kt/Ut is average search effort. As there is only partial crowding out,
the average re-employment rate depends on average search effort but is otherwise
independent of the distribution of search efforts {kit}.

As k̄t is unobserved, a critical identifying assumption is that k̄t changes slowly
and systematically over time. This seems reasonable as the unemployment and
vacancy stocks change slowly over time (see Figures 1 and 2, below).4 In that case

3 This is not true for the distribution of uncompleted unemployment spells. As 1/λi t is a convex
function of kit , a mean preserving spread in kit yields an increase in the average uncompleted unem-
ployment spell. Indeed if kit = 0 for one individual, the average spell is infinity.

4 In a job search framework this implies job offer arrival rates change slowly over time and so
aggregate job search effort will also change slowly over time.
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we can control for unobserved changes in aggregate job search effort by using time
dummies. In particular, using month dummies to capture seasonal variations in job
search effort (for example, the job market is quiet in August) and year dummies to
capture business cycle variations, random matching implies that observed short-
run variations in the average re-employment rates of unemployed workers are
driven by variations in the vacancy-unemployment ratio. Job queueing instead
implies that those variations are driven by variations in vacancy inflow. A second
approach, discussed further in the data section, is to use an HP filter that takes
out all trends.

3. THE EMPIRICAL FRAMEWORK

Our data do not record unemployment and vacancy stocks over the month.
Instead we have information on the stocks available at the start of each month
and the gross inflows during that month. From now on we adopt the following
time notation. Un denotes the stock of unemployed workers at the beginning of
month n ∈ N and Vn denotes the stock of vacancies. un denotes the total inflow
of newly unemployed workers within the month and vn denotes the inflow of new
vacancies.

We suppose that at time t ∈ [n, n + 1] in month n, the average re-employment
probabilities of unemployed workers are denoted by a pair (p(t), λ(t)). p(t) is
the proportion of workers laid off at date t who find immediate re-employment,
whereas λ(t) is the average re-employment rate of workers who have been unem-
ployed for some (strictly positive) period of time. The competing theories suggest
alternative functional forms for p and λ.

As previously described, the random matching approach implies p = 0—it takes
time to find work—and the average re-employment rate, now simply denoted λ, is
λ = M(kU, V)/U, where k is average search effort. Constant returns to matching
implies a functional form λ = λM(V/U, k).

Pure job queueing as described by Shapiro and Stiglitz (1984) also implies p =
0—it takes time to find work—but in this case the average re-employment rate is
λ= v/U, where the stock of unemployed workers U matches with the inflow of new
vacancies v. For econometric purposes we consider a more general specification
of the form λ = λQ(v, U).

Stock-flow matching is a generalization of the job queueing approach. Shapiro
and Stiglitz (1984) imply all unemployed workers are on the long side of the mar-
ket. In reality, some suitably skilled workers may find themselves on the short side
of the market and can quickly find re-employment. We suppose with probability
p = pSF, a newly unemployed worker finds there is a suitable vacancy already on
the market and so becomes (very quickly) re-employed. With probability 1 − pSF

there is no suitable vacancy and the worker must then wait for a suitable vacancy
to come onto the market. Job queueing implies average re-employment rate λ =
λSF(v, U). The same argument implies that each new vacancy may be either on the
short or long side of the market. Vacancy queueing—waiting for a suitably skilled
worker to come onto the market—implies average matching rate µ = µSF(u, V)
where u is the inflow of newly unemployed workers onto the market. Symmetry
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suggests a functional form pSF = pSF(V, u) where laid-off workers on the short
side of the market match with vacancies on the long side. Pure job queueing (e.g.,
Shapiro and Stiglitz, 1984) implies one-sided stock flow matching and the testable
restriction pSF = 0.

We now show how to identify (p, λ) using monthly time series. As the identifying
equations depend on the assumed theory, we consider each case separately, starting
with random matching.

3.1. Temporal Aggregation with Random Matching. To obtain a discrete time
representation of the underlying continuous time matching process, we assume
the inflows of new agents, un and vn, are constant within a month. We construct
at-risk measures for the stock of vacancies and unemployed workers by consid-
ering a representative worker who matches at average rate λn. Also suppose this
representative unemployed worker withdraws into nonparticipation at rate δU

n .
Then, if all the unemployed match at the same average rate λn over month n, total
matches are

Mn =
∫ 1

0
Une−(λn+δU

n )tλn dt +
∫ 1

x=0
un dx

[∫ 1

t=x
e−(λn+δU

n )(t−x)λn dt

]
.

The first term describes those workers in the initial stock who successfully
match in month n. The second term describes those workers in the inflow who
match, where—assuming entry is uniform and given entry at date x ∈ [0, 1]—
each matches with probability given by the bracketed integral. Calculating these
integrals, temporal aggregation implies the expected total number of matches in
month n is

Mn = λnUn

[
1 − e−(λn+δU

n )
]

λn + δU
n

+ λnun

[
e−(λn+δU

n ) − 1 + (λn + δU
n )

(λn + δU
n )2

]
.

Define now the “at-risk” measure of unemployment:

Ūn = Un

[
1 − e−(λn+δU

n )

λn + δU
n

]
+ un

[
e−(λn+δU

n ) − 1 + (λn + δU
n )

(λn + δU
n )2

]
.(1)

The expected number of matches in month n is thus

Mn = λnŪn,

with Ūn given by Equation (1) and λn is the matching rate of the representative
worker. To see why Ūn is an “at-risk” measure, note that letting δU

n → ∞ implies
Ūn → 0 : Arbitrarily high withdrawal rates into nonparticipation implies each
unemployed worker is at no risk of finding a job. Conversely with no withdrawal
into nonparticipation, δU

n = 0, the unemployment at-risk measure becomes
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Ūn = Un

[
1 − e−λn

λn

]
+ un

[
e−λn − 1 + λn

λn
2

]
.

In addition, letting λn → 0 then implies Ūn → Un + 1
2 un. Given that nobody finds

work (λn = 0), each newly unemployed worker in month n is, on average, un-
employed in that month for exactly half of it (given the identifying assumption
that newly unemployed workers enter the market at a uniform rate). Hence Un +
0.5un measures the average number of unemployed workers at risk over the whole
month. In contrast, the limit λn → ∞ instead implies each worker is only unem-
ployed for an instant and this limit yields λnŪn → Un + un: Given all workers
immediately find work, total matches equal the total number of workers unem-
ployed at any stage in the month. For any arbitrary matching rate λn ≥ 0 and
withdrawal rate δU

n , (1) computes Ūn, and Mn = λnŪn then describes the pre-
dicted total number of matches in month n. This formulation is usefully compared
to the standard continuous time case where match flows at time t are given by
Mt = λtUt . With temporally aggregated data, Ūn is the appropriate aggregated
measure of unemployment.

The above temporal aggregation argument also applies to vacancies. If in month
n vacancies match at average rate µn, are withdrawn at rate δV

n , and if vn describes
the total inflow of new vacancies within the month, then the relevant at-risk mea-
sure for vacancies is

V̄n = Vn

[
1 − e−(µn+δV

n )

µn + δV
n

]
+ vn

[
e−(µn+δV

n ) − 1 + (
µn + δV

n

)
(
µn + δV

n

)2

]
,(2)

and expected matches are given by

Mn = µnV̄n.

This in turn implies the identifying restriction

λnŪn = µnV̄n,(3)

as the expected number of workers who match must equal the expected number
of vacancies that match.

For random matching, we adopt the functional form

λn = λM(Ūn, V̄n; θ).(4)

This specification says that the average re-employment rate λn in month n does not
simply depend on the initial stocks Un, Vn, but on the measures of unemployed
workers and vacancies who try to match over the entire month. As in much of the
matching literature (see Petrongolo and Pissarides, 2001), we will express λn as a
log-linear function of its determinants.
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Our working paper, Coles and Petrongolo (2002),estimates the equations above
but with δU , δV = 0. Those results are qualitatively identical to the ones reported
below, except the predicted average completed spell of a vacancy was severely
overestimated. This overestimation occurred as the withdrawal rate of vacan-
cies is surprisingly high; around one third of all posted vacancies are eventu-
ally withdrawn. As a steady state implies the average completed vacancy spell is
1/(µ + δV), ignoring δV (which is large) results in predicted vacancy spells being
way too long.

In this version we control for vacancy withdrawal as part of the estimating
equations. Specifically the “at-risk” structure above implies withdrawn vacancies
Wn in month n are

Wn = δV
n V̄n.(5)

Using data on vacancy withdrawals in each month allows us to identify δV
n

period by period. Unlike withdrawn vacancies, however, we do not have direct
information on worker withdrawals into nonparticipation (especially as search
effort is unobserved). Fortunately, with δU = 0 the results, both here and in Coles
and Petrongolo (2002), fit the average completed spell of unemployment well, and
so setting δU = 0 seems a reasonable approximation.

Thus given a functional form λM(.), parameters θ and period n data {Un, un,
Vn, vn, Wn}, Equations (1)–(5) can be solved numerically for the five unknowns
Ūn, V̄n, λn, µn, δ

V
n . The predicted number of matches is then

Mn(θ) = λnŪn,(6)

where the identifying restriction (3) ensures the matching rates of workers are
consistent with the matching rates of vacancies.5 Further predictions of interest
are unemployment and vacancy durations, 1/λn and 1/(µn + δV

n ), respectively, and
the proportion of vacancies eventually withdrawn δV

n /(µn + δV
n ).

Given data on actual matches, Section 5 provides maximum likelihood estimates
of θ . The next section, however, derives the identifying equations for stock-flow
matching.

3.2. Temporal Aggregation with Stock-Flow Matching. Suppose now that dur-
ing month n, proportion pn of newly unemployed workers are on the short side of
their markets and re-match immediately. All other unemployed workers are on
the long side and again consider a representative worker who matches at average
rate λn and who withdraws into nonparticipation at rate δU

n . If all match according
to these parameters, then total expected matches over month n are

5 In contrast, Gregg and Petrongolo (2005) do not compute these at-risk measures and instead
estimate (3) assuming λ = λM(Un, Vn ;θ), which ignores the matching effects due to the inflow of new
vacancies.
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Mn =
∫ 1

0
Une−(λn+δU )tλn dt + pnun +

∫ 1

x=0

[∫ 1

t=x
e−(λn+δU )(t−x)λn dt

]
(1 − pn)un dx.

The first term again describes the number of workers in the original stock who
match within the month, the second now describes those in the unemployment
inflow who are on the short side of their markets and so immediately re-match,
and the third describes those in the unemployment inflow who are on the long
side of their markets but are sufficiently fortunate to re-match before the end of
the month. Integration implies the temporally aggregated matching function

Mn = λnUn

[
1 − e−(λn+δU )

]
λn + δU

+ pnun + λn(1 − pn)un

λn + δU

[
1 − 1

λn + δU
+ e−(λn+δU )

λn + δU

]
.

In this case the appropriate “at-risk” measure of (long side) unemployment is

Ūn = Un

[
1 − e−(λn+δU )

λn + δU

]
+ (1 − pn)un

[
e−(λn+δU ) − 1 + (λn + δU)

(λn + δU)2

]
(7)

and expected matches in month n are given by

Mn = λnŪn + pnun.

Note, stock-flow matching implies matches can be decomposed into those workers
who are on the long side of the market and who match slowly (at average rate λn)
and those newly unemployed who are on the short side and re-match very quickly
(proportion pn).

The above temporal aggregation argument also applies to vacancies. If, in month
n, proportion qn of new vacancies are on the short side and match immediately,
whereas vacancies on the long-side match at average rate µn and are withdrawn
at rate δV

n , then the appropriate “at-risk” measure of (long-side) vacancies is

V̄n = Vn

[
1 − e−(µn+δV)

µn + δV

]
+ (1 − qn)vn

[
e−(µn+δV) − 1 + (µn + δV)

(µn + δV)2

]
(8)

and expected matches are

Mn = µnV̄n + qnvn.

As in the random matching case, the expected number of unemployed workers
who match must equal the expected number of vacancies that match. But stock-
flow matching implies two identifying restrictions. First as the stock of (long side)
unemployed workers matches with the inflow of new vacancies on the short side,
we have

qnvn = λnŪn.(9)
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Second, newly unemployed workers on the short-side match with the stock of
vacancies on the long side and so

pnun = µnV̄n.(10)

A closed form econometric structure is then obtained by specifying

λn = λSF(vn, Ūn; θ)(11)

pn = pSF(un, V̄n; θ)(12)

which imply that the stock of (long side) unemployed workers Ūn matches with the
inflow of new vacancies vn, whereas proportion pn of (short side) newly laid-off
workers un re-match with current vacancies V̄n.

We again use Equation (5), i.e., Wn = δV
n V̄n, and data on vacancy withdrawals

to identify δV
n , and set δU

n = 0. Given functional forms for λSF(.), pSF(.), pa-
rameters θ , and period n data, Equations (5) and (7)–(12) jointly determine
(Ūn, V̄n, λn, µn, pn, qn, δ

V
n ). Expected matches are then

Mn(θ) = λnŪn + pnun(13)

and we use maximum likelihood techniques to estimate θ .
Predicted unemployment and vacancy durations are now (1 − pn)/λn and

µn(1 − qn)/[(µn + qn δV
n )(µn + δV

n )],6 and the proportion of vacancies eventually
withdrawn is given by (1 − qn)δV

n /(µn + δV
n ).

4. THE DATA

Construction of the “at-risk” measures Ūn, V̄n requires data that distinguish be-
tween flows (u, v) and stocks (U, V). Using inches of help-wanted advertisements
to measure vacancies, as is the general procedure for the United States,7 is not
sufficient as there is no information on whether a particular job advertisement is
new or is a re-advertisement. Such information is however available for the U.K.
labor market, as registered at Jobcentres.

The U.K. Jobcentre system is a network of government funded employment
agencies, where each town or city typically has at least one Jobcentre. A Jobcentre’s
services are free of charge to all users, both to job seekers and to firms advertising

6 Conditional on being filled, the expected completed spell is

q[0] + (1 − q)
∫ ∞

0
te−(µ+δV )tµ dt

µ + qδV

µ + δV

= µ(1 − q)
(µ + qδV)(µ + δV)

.

7 See Abraham (1987) for a description of U.S. vacancy data.
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vacancies. To be entitled to receive welfare payments, an unemployed benefit
claimant in the United Kingdom is required to register at a Jobcentre.8

The vast majority of Jobcentre vacancy advertisements are for unskilled and
semi-skilled workers. Certainly the professionally trained are unlikely to find suit-
able jobs there. Nevertheless, as the bulk of unemployment is experienced by
unskilled and semi-skilled workers, instead of by professionals, it seems reason-
able that understanding the determinants of re-employment hazard rates at this
level of matching provides useful differentiating information between competing
theories of unemployment.

The data we use are monthly time series running from September 1985 to April
2001 (188 observations). The choice of the sample period is driven by data avail-
ability. Flow data are not available on a monthly basis before 1985, and vacancy
data were discontinued in April 2001.

The unemployment and vacancy counts are usually made on the second Thurs-
day and on the first Friday of each month, respectively. The monthly timing
throughout the article thus does not strictly refer to calendar months. The data
record the number of unemployed workers and the number of unfilled vacancies
at each count date, Un and Vn, respectively, and the number of new job seekers
and vacancies that register between two consecutive count dates, un and vn, re-
spectively. The data also record the number of workers who leave unemployment,
MU

n , the number of vacancies that leave the register, MV
n , and the number of those

that are filled at a Jobcentre, M̃V
n . The difference between these two measures is

accounted for by vacancies that are withdrawn, either because they are cancelled,
or because they are filled through another search channel. Any matching measure
MU

n , MV
n or M̃V

n could in principle be used as our dependent variable in Equa-
tions (6) and (13). Finally, since months have different lengths, all flow variables
are standardized to a 4.33 week accounting month (see also Berman, 1997, pp.
S270–1). In our notation, all stocks indexed by n are measured at the beginning of
period (month) n, whereas all flows indexed by n are measured between the start
of period n and the start of period n + 1.

All data used are extracted from the Nomis databank (http://www.nomisweb.
co.uk/) and not seasonally adjusted. The main unemployment and vacancy series
are plotted in Figures 1 and 2, respectively. The unemployment claimant count
declines substantially during our sample period, from about three to one million
individuals in a 16-year span. Although it is possible to detect a long cycle between
1986 and 1994, the second half of our sample period is characterized by a secular
fall in unemployment figures. The flows experience a more modest decline than the
stock and tend to be much more volatile. The vacancy series is clearly negatively
correlated to the unemployment series, although its level is about one order of
magnitude smaller. The end of our sample period is characterized by both record
low unemployment and record high vacancy rates. The vacancy flows are very
volatile, display strong seasonality, and are roughly untrended.

8 Gregg and Wadsworth (1996) report that Jobcentres are used by roughly 80–90% of the claimant
unemployed, 25–30% of employed job seekers, and 50% of employers.
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FIGURE 1

THE UNEMPLOYMENT STOCK, INFLOW AND OUTFLOW IN BRITAIN, 1985:09–2001:04

The main sample statistics of these series are summarized in Table 1. As one
would expect from Figures 1 and 2, stock variables display a much higher degree of
persistence than flow variables, as shown by the monthly autocorrelation figures.
The data also show a much higher turnover rate for vacancies than for the unem-
ployed: the relevant monthly inflow/stock ratio being 0.158 for the unemployed
and 1.081 for vacancies. Although information on duration, as obtained from the
NOMIS, is relatively limited9, we report duration data in the same table. The av-
erage duration of unemployment is around 6.5 months and for filled vacancies it
is about three quarters of a month, or 22 days. This latter figure is the duration

9 Unemployment duration is obtained from information on the number of workers who leave the
register, disaggregated by 16 duration classes. We assign to each duration class its middle value, having
closed the last open class of 6+ years at 7 years. The duration of filled vacancies is only available
quarterly from 1986Q2 to 2000Q2.
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FIGURE 2

THE VACANCY STOCK, INFLOW AND OUTFLOW, AND FILLED VACANCIES IN BRITAIN, 1985:09–2001:04

between the time when a vacancy is first posted and when it is filled by a worker
and does not include vacancies that are not filled at Jobcentres.

As also suggested by Figures 1 and 2, the bottom part of Table 1 shows that the
monthly vacancy outflow is very highly correlated with the inflow of new vacan-
cies and more weakly correlated with the vacancy stock. Correlation coefficients
are 0.93 and 0.46, respectively. When only including vacancies that are filled, the
correlation between vacancies filled and the vacancy stock becomes negative (al-
though very small), whereas the one between filled and new vacancies stays high
at 0.72. For the unemployed, the correlation coefficient between the inflow and
the outflow is 0.70, and the one between the outflow and the stock is 0.60. Both
persistence and correlation statistics from this table, as well as visual inspection
of the time series in Figures 1 and 2, suggest the bulk of matches are driven by the
inflow of new agents.
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TABLE 1
MAIN STOCHASTIC PROPERTIES OF VARIABLES

Standard Monthly
Mean Deviation Autocorr. Min Max ADF(4) ADF(12)

Stocks and flows
Un 2074956 671559 0.996 960571 3282024 −1.341 −4.694
un 309168 69822 0.494 199396 559044 −2.459 −1.482
MU

n 319880 75288 0.431 154172 545019 −2.436 −1.130
Vn 213288 76836 0.979 90118 413447 −0.852 −1.357
vn 209186 42872 0.235 78492 322271 −4.560 −0.689
MV

n 207979 41118 0.189 87325 314562 −3.840 −0.615
M̃V

n 140115 31007 0.372 59404 212264 −4.126 −0.753

Turnover
un/Un 0.158 0.041 0.633 0.098 0.286 −1.529 0.346
vn/Vn 1.081 0.337 0.651 0.316 2.020 −1.272 −0.040

Durations
Unemployment 6.567 1.133 0.956 4.664 8.677 −1.089 −2.843
Vacancies 0.727 0.111 0.989 0.535 0.953 −0.931 −1.124

Correlations
ρ (MU

n , Un) = 0.601 ρ (MU
n , un) = 0.696 ρ (MU

n , MV
n ) = 0.342

ρ (MV
n , Vn) = 0.464 ρ (MV

n , vn) = 0.930 ρ(MV
n , M̃V

n ) = 0.762

ρ(M̃V
n , Vn) = −0.115 ρ(M̃V

n , Vn) = 0.720 ρ(M̃V
n , MU

n ) = 0.625

NOTES. Sample period: 1985:09–2001:04. ADF(4) and ADF(12) represent Augmented Dickey–Fuller
statistics for a unit-root in the relevant series, with 4 and 12 lags, respectively. The 5% critical value
is −2.88.

There are a number of data issues to be addressed here. A simultaneity bias in
matching function estimates typically arises when Mn is measured as a flow over a
time period and Un and Vn as stocks at some point during the period (or monthly
stock averages). In this case measured stock variables are depleted by matches Mn,
and this generates a downward bias in the coefficients of interest. See the related
discussions by Burdett et al. (1994) and Berman (1997, pp. S272–3). Constructing
“at-risk” measures solves this problem. Specifically the at-risk measures Ūn and
V̄n are a weighted sum of initial stocks at the beginning of the month and inflows
within the month. These at-risk measures are not affected by the realized number
of matches and so there is no feedback from the unemployment outflow to right-
hand side variables.10

Our estimates as obtained using the unemployment outflow are the dependent
variable. Results using vacancy outflow as the dependent variable are very similar
and, if anything, provide stronger evidence in favor of stock-flow matching. We
prefer the results using unemployment outflow as the count date for unemploy-
ment is the second Thursday of each month, whereas for vacancies it is the first

10 A related issue is whether a higher than expected matching rate induces more vacancies and
unemployed workers to flow into the market within that same month. But this would rest on a degree
of labor market responsiveness that is hard to imagine, as contemporaneous hiring rates are unobserved
and the relevant information is only released the following month by the Department for Work and
Pensions.
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Friday of each month. As the unemployment stock series is counted four working
days after the vacancy count, using vacancy outflow as the dependent variable
would re-introduce the simultaneity problem described above—a high vacancy
outflow yields a lower measured unemployment stock. This simultaneity problem
does not arise if instead we use unemployment outflow as our dependent variable.

Simple OLS estimates of the random matching function, using unemployment
outflow as the left-hand side variable, generates results that are reasonably con-
sistent with the literature. In particular, estimating a log-linear matching function
à la Blanchard and Diamond (1989) gives

ln Mn = −3.385 + 0.250 ln Vn + 0.859 ln Un, + εn,

(3.819) (0.147) (0.194)
(14)

where constant returns are not rejected (F = 0.15) and R2 = 0.749 (the regres-
sion includes both monthly and yearly dummies, with standard errors reported in
parentheses). These results are fairly close to those obtained by Pissarides (1986)
on a similar log linear specification for the United Kingdom.11

A second issue concerns the identifying assumption made in Section 3.1, namely,
that the inflow of unemployed workers and vacancies is uniform within each
month. This assumption is important as it yields a tractable empirical structure.12

The potential problem with this assumption is the following. Suppose that the as-
sumption is violated such that, say, most labor contracts are terminated at the end
of a month, and thus most newly unemployed workers register at Jobcentres on
the first day of each month. Similarly, employers might register most new vacan-
cies at the beginning of each month. If our stock variables were also measured as
those surviving from the end of the previous month, we would end up classifying
as variations in inflows what are essentially variations in stocks. This would be the
worst-case scenario for our identifying assumption and would bias our estimates
in favor of stock-flow matching. More generally, if there is a systematic downward
(upward) trend in inflow rates between two count dates, we would tend to bias
our estimates in favor (against) stock-flow matching.

But it easy to argue that these scenarios cannot arise in our data. In our data set,
we do not have information on daily or weekly inflows, but we can use information
from other data sets to investigate time patterns of inflow rates. In particular, the
Survey of Incomes In and Out of Work records the day of signing on for British
unemployed workers who registered at selected unemployment benefit offices in

11 Note that in both Equation (14) and Pissarides (1986) the vacancy elasticity is lower and the
unemployment elasticity is higher than in the findings of Blanchard and Diamond (1989), who ob-
tain estimates around 0.6 and 0.4, respectively. These differences are due to the different choice of
dependent variable; see Petrongolo and Pissarides (2001, section 4.2) for a discussion.

12 Berman (1997) also uses this uniform inflow assumption to assess temporal aggregation bias
in matching function estimates. Berman simulates a daily matching process using the assumption of
uniform inflows during each month, and then compares true underlying elasticities with respect to
vacancies and unemployment with the estimates obtained on monthly data. He finds the size of the
resulting aggregation bias to be negligible.
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the four weeks starting March 16, 1987.13 The data show a regular weekly pattern,
with 50% of workers joining on Mondays, 15% on Tuesdays, and so on, down to
0.5% on Saturdays. There is also evidence of a small spike in enrollment rates on
April 1. But it should be noted that neither the enrollment spikes on Mondays
nor the spike at the beginning of April coincide with our count dates (which for
unemployment is the second Thursday of each month and for vacancies is the
first Friday of each month). To conclude, as there does not seem to be a trend
in inflow rates between two consecutive count dates, the assumption of uniform
inflow during each month does not systematically bias our results either in favor
or against stock-flow matching.

A third issue is that vacancies advertised at Jobcentres are only a fraction of
existing job openings. Unfortunately there is no readily available information on
total job vacancies in the United Kingdom during our sample period, but a very
crude measure of the fraction of Jobcentre vacancies can be obtained by looking at
the fraction of total hires represented by vacancies filled at Jobcentres. Assuming
that all employment variations happen through variations in unemployment, total
hires from unemployment can be proxied by Hq = uq + �Nq, where �Nq is the
net quarterly change in aggregate employment and uq is the quarterly inflow into
unemployment.14 The ratio between the number of vacancies filled at Jobcentres
and the constructed series of hires is on average 0.447 during 1985:09–2001:04, and
it does not display a definite trend or a significant correlation with the business
cycle, as measured by the vacancy/unemployment ratio. If one assumes that the
fraction of hires that happen via Jobcentres is a good proxy of the fraction of
vacancies advertised there, one can thus rescale both Jobcentre vacancy measures
Vn, and Vn, by dividing through by 0.447. This is the adjustment procedure that
we use in our estimates. Such rescaling, however, is largely cosmetic: As we use
log-linear functional forms for our matching rates λn and pn (see Equations (15)–
(17) below), the scale factor only shows up in the constant term and simply allows
us to better replicate the observed unemployment duration in our estimates.15

Independent information on the total number of job openings in the United
Kingdom comes from a recent enterprise-based survey, conducted by the Office
for National Statistics between April 2001 and August 2002 (see Machin and
Christian, 2002, for details). An additional question that was included in the sur-
vey in May 2002 revealed that 44% of vacancies reported to the ONS had also
been registered at a Jobcentre—although due to sampling error a more conser-
vative estimate would range between a third and one half. The 44% figure is

13 Unfortunately there are no similar data available for vacancies.
14 This follows from the identity �Nq = Hq − uq , where uq proxies job separations into unem-

ployment. The employment data are also extracted from NOMIS, and they are only available on a
quarterly basis.

15 A different approach would be to note that, if vacancies filled at Jobcentres described total
matches, then MV

n /Un would be the average exit rate out of unemployment in month n, and hence
Un/MV

n would be the average expected duration of unemployment. Computing this statistic implies
an average duration of unemployment around 14.8 months. In contrast, the actual average duration of
unemployment for this period is around 6.5 months. This ratio, [6.5]:[14.8] equals 0.44, and so suggests
that Jobcentre vacancies account for 44% of the total in the United Kingdom.
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(surprisingly) exactly the same as the one we find based on our constructed mea-
sure of hires.

One final issue concerns the nonstationarity of a few variables. Several of the
series used are not stationary, as shown by the ADF statistics reported in the last
two columns of Table 1, using 4 and 12 lags, respectively, in the ADF test. The
matching structure defined above describes (very) short-run variations in match-
ing rates due to short-run variations in labor market conditions. It cannot be used
to explain long-run matching trends due to, say, changes in the matching technol-
ogy, government policies, the composition of the workforce or regional migration.
To focus on short-run variations on observed matching rates, our first (and sim-
plest) approach is to include year dummies. However, it may be argued that the
use of time dummies generates discontinuous breaks at arbitrary discontinuity
points and at a frequency that may be potentially too low. An alternative that
partly addresses these issues would consist in using a polynomial trend term in-
stead of year dummies. The estimates we obtained including a cubic trend were
very similar to those that include year dummies and are thus not reported.

Our second approach consists in estimating unemployment outflow equations
on detrended data, as already done in the matching literature by Yashiv (2000).
We thus filter all time series using a Hodrick and Prescott (1997) filter with a
smoothing parameter equal to 14,400, and to preserve series means we add to
the detrended series their sample averages. Although filtered series for all flow
variables are almost indistinguishable from the raw series (there is virtually no
trend in flow variables), it is interesting to compare the raw and filtered series
for the stocks, as done in Figure 3. As the data show, the filtered series get rid of
the downward trend in unemployment in the second half of the sample period
and the increasing trend in vacancies, but very clearly reproduce the short-run
fluctuations.16

Most of the discussion that follows focuses on the nonfiltered data with year
dummies. At the end we discuss the results using filtered data instead and show
that the insights and conclusions are qualitatively very similar.

5. RESULTS

5.1. Random Matching. Recall that given functional form λn = λM(Ūn, V̄n; θ)
and parameters θ , then period n data and Equations (1)–(5) yield at-risk measures
Ūn, V̄n and period n expected matches

Mn(θ) = λM(Ūn, V̄n; θ)Ūn.

Assuming realized matches Mn = Mn(θ) + εn where εn are normally and indepen-
dently distributed with mean zero and finite variance, the maximum likelihood
estimator for θ minimizes

∑
n[Mn − Mn(θ)]2.

16 We also detrended the data by log first differencing, and the results were very similar to those
obtained under HP filtering and thus they are not reported here.
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FIGURE 3

UNEMPLOYMENT AND VACANCY STOCKS; RAW AND HODRICK–PRESCOTT FILTERED SERIES

We identify the MLE using the following iterative procedure. Given initial
parameter values θ0 and for each period n = 1, . . . , 188, step 1 solves numerically
Equations (1)–(5) for “at-risk” values that we might denote Ū0

n, V̄0
n . With θ = θ0,

this implies expected matches

M0
n(θ) = λM(Ū0

n, V̄0
n ; θ)Ū0

n.

Given measures Ū0
n, V̄0

n , Step 2 identifies an updated value for θ by minimizing∑
n[Mn − M0

n(θ)]2. This updated value of θ is then used in step 1 to obtain new “at-
risk” measures, and the procedure is iterated to convergence. It is straightforward
to show this iterative procedure, if it converges, identifies the MLE.17

17 To account for heteroskedasticity, the covariance matrix of θ̂ can be estimated as V̂(θ̂) =
(X̂′ X̂)−1(X̂′̂X̂)(X̂′ X̂)−1, where X̂ is the matrix of partial derivatives of the regression function Mn(θ)
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TABLE 2
ESTIMATION RESULTS UNDER RANDOM MATCHING—RAW DATA

1 2 3 4 5

ln λn Constant −1.308 −1.163 −1.344 −1.308 −0.755
(4.053) (0.149) (1.841) (1.500) (0.054)

ln V̄n 0.489 0.476 −0.148 – –
(0.148) (0.058) (0.064)

ln vn – – 0.746 0.613 0.600
(0.056) (0.053) (0.020)

ln Ūn −0.475 −0.476a −0.563 −0.573 −0.600a

(0.165) (0.072) (0.062)
R2 0.850 0.850 0.950 0.945 0.944
CRSb 0.003 – 0.068 0.308 –
Monthly dummies = 0c 119.5 144.4 164.9 173.0 189.2
Yearly dummies = 0d 22.7 26.7 107.0 104.1 104.6
ADFe −3.680 −3.702 −3.364 −3.207 −3.143

Sample averages
λn 0.170 0.166 0.193 0.211 0.210
1/λn 6.546 6.657 5.477 5.087 5.144
µn 0.703 0.703 1.054 1.127 1.095
δn 0.315 0.317 0.366 0.376 0.368
1/(µn + δn) 1.035 1.036 1.055 0.741 0.897

NOTES. Monthly data not seasonally adjusted. Dependent variable: unemployment outflow recorded
at Jobcentres in Great Britain. Sample period: 1985:09–2001:04. All specifications include month and
year dummies. Estimation method: maximum likelihood. Heteroskedastic-consistent standard errors
(White, 1980) are reported in parentheses.
λn denotes the unemployment hazard rate. 1/λn denotes the predicted unemployment duration. µn
denotes the vacancy hazard rate of being filled. δn denotes the vacancy hazard rate of withdrawal.
1/(µn + δn) denotes the predicted vacancy duration. No. Observations: 188. Source: NOMIS.
aCoefficient constrained to equal the value reported.
bWald test, distributed as χ2(1), of the hypothesis that the sum of the coefficients on ln V̄n, ln vn and
ln Ūn is zero. Critical value at 5% significance level: χ2(1) = 3.841.
cWald test, distributed as χ2(11), of the hypothesis that monthly dummies are jointly zero. Critical
value at 5% significance level: χ2(11) = 19.675.
dWald test, distributed as χ2(17), of the hypothesis that yearly dumies are jointly zero. Critical value
at 5% singificance level: χ2(17) = 27.587.
eADF statistics for the presence of a unit root in the estimated residuals. Critical value at 5% signifi-
cance level: −2.88.

Given the identifying restrictions for random matching, Table 2 describes the
ML estimates using various functional forms for λn = λM(.). All specifications
include year dummies, and as the data are not seasonally adjusted, monthly dum-
mies, which turn out to be jointly significant in all specifications.18

with respect to right-hand side variables, and ̂ is a diagonal matrix with the nth diagonal element
equal to the nth least squared residual (White, 1980), all evaluated at θ̂ . To cater for small sample bias
of such variance estimator, the nth diagonal element of ̂ can be further divided by 1 − X̂n(X̂′ X̂)−1 X̂′

n
(see Davidson and MacKinnon, 1993, p. 553). This is the approach that we adopt. Very similar results
are obtained however using the uncorrected covariance estimator, V̂(θ̂) = σ̂ 2(X̂′ X̂)−1, where σ̂ 2 is
the sum of squared residuals divided by the number of observations.

18 The exact specification used for predicted matches is Mn(θ) = λnŪn+ dummies.
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Column 1 assumes the standard Cobb–Douglas specification

λn = exp[α0 + α1 ln V̄n + α2 ln Ūn].(15)

The coefficients on (time-aggregated) vacancies and unemployment have the ex-
pected sign and are significantly different from zero. Estimated matching elas-
ticities around 0.5 are in line with previous matching function estimates (see
Petrongolo and Pissarides, 2001), and constant returns to scale in the matching
function are not rejected, given a virtually zero Wald test statistics on the restric-
tion α1 = −α2. The extremely low value of this test statistic, however, together
with a nonsignificant constant term in λn makes one doubt that the elasticities
on V̄n and Ūn are separately identified. In Column 2, we impose constant returns
to scale: The constant term is now precisely determined, and the goodness of fit
remains unchanged. To compare outcomes with the sample means, note that if a
worker matches at constant rate λ, the expected completed unemployment spell
is 1/λ. Outside of steady state, the average value of 1/λn over the entire sample
would seem a useful proxy for the average unemployment spell. In Columns 1 and
2, the sample average of 1/λn is about six and a half months, which is very close
to the actual unemployment duration during the sample period (6.657 months).
Vacancies can either be filled at rate 0.7 by claimant unemployed or withdrawn
at rate 0.3, implying 70% of vacancies advertised at Jobcentres are successfully
filled. The predicted average completed vacancy spell (computed as the average
value of 1/(µn + δV

n )) is about one month, which slightly overstates by about 9
days the actual duration of filled vacancies.

Comparing these results with those obtained using OLS (see Equation (14))
finds that the estimated vacancy coefficient is much larger (0.49 instead of 0.25),
is highly significant, and the fit is much improved, with an R2 of 0.85 instead of
0.75. Ignoring temporal aggregation as in (14) implies thus a significant downward
bias in the vacancy coefficient. The reason is that the initial vacancy stock Vn is a
poor proxy for the total number of vacancies at risk over the month—it ignores
the new vacancies that enter the market within the month. For example, Equation
(2) with µ = 0.7, δV = 0.3 implies the appropriate vacancy at-risk measure is
V̄n = 0.73Vn + 0.37vn. As the average monthly inflow to stock ratio, vn/Vn, is
large (equal to 1.08), Vn is then a poor proxy for V̄n. Further as the unemployment
outflow is highly correlated with the vacancy inflow during the month, correcting
for the temporal aggregation bias results in a much better fit and a higher estimated
vacancy coefficient.

Column 3 is a test of an overidentifying restriction—that random matching
implies the matching rate of individual workers does not depend directly on the
inflow of new vacancies (once one controls for time aggregation). Column 3 thus
asks whether including the flow of new vacancies as an added explanatory variable
for λn improves the fit. In fact the fit is not only much improved, the vacancy stock
coefficient becomes wrong signed. Column 4 drops the vacancy stock term and
the fit is essentially unchanged. In both Columns 3 and 4 constant returns in
the matching function are not rejected, and this restriction is again imposed in
Column 5.
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Lagos (2000) provides a useful perspective for this result. He shows that even
with stock flow matching at the microlevel, aggregation over locations may yield, in
a steady state, aggregate matching behavior that appears consistent with a standard
random matching function. Column 2 establishes that a standard random match-
ing function fits the aggregate data well and implies constant returns. But the
identifying equations are not consistent with the “out-of-steady-state” matching
dynamics. The next set of results establish that the stock-flow identifying equations
explain better the observed time series variation in unemployment outflow.

5.2. Stock-Flow Matching. The regression equation is now given by

Mn = λnŪn + pnun + εn,

where Ūn is defined in (7), λn is defined in (11), and pn is defined in (12).
The estimating procedure is again iterative as explained above, but we are now

solving (5) and (7)–(12) for Ūn, V̄n, λn, µn, pn, qn, δ
V
n for each n, given θ0, and θ is

again obtained using ML techniques.
The results for stock-flow matching are reported in Table 3 under alternative

specifications for λn = λSF(.) and pn = pSF(.). Recall that in contrast to random
matching, stock-flow matching implies that λn depends on the vacancy inflow
and not on the stock of vacancies. The pure job queueing hypothesis in addition
predicts pn = 0.

Column 1 adopts the functional form

λn = exp
(
α0 + α1 ln V̄n + α2 ln vn + α3 ln Ūn

)
(16)

whereas pn is estimated as a constant parameter, and constrained to be nonneg-
ative, i.e., pn = exp(β0). Moreover, as in no specification was the hypothesis of
constant returns in the matching function rejected, we simply report estimates
that impose constant returns, i.e., α1 + α2 + α3 = 0.

Consistent with stock-flow matching, Column 1 in Table 3 finds that λn is driven
by the inflow of new vacancies and that the vacancy stock effect is not significantly
different from zero (and wrong-signed). Column 2 drops the vacancy stock from
the specification of λn and re-estimates. The results show that the exit rates of
the longer term unemployed, λn, are driven by the inflow of new vacancies with
an estimated elasticity around 0.75. Further, the pure job queueing hypothesis is
rejected—the mean matching probability of the newly unemployed, pn, is 0.44,
and is significantly different from zero, with an estimated standard error of 0.061.19

Columns 3–5 consider a more general specification for

pn = exp
(
β0 + β1 ln V̄n + β2 ln vn + β3 ln un

)
(17)

while leaving the specification of λn as in Column 2, which is consistent with
the identifying assumptions. In Columns 3–5, we still get a positive pn, but no

19 Using the delta method: s.e. (pn) = exp(β0) ∗ s.e. (β0) = 0.061.
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TABLE 3
ESTIMATION RESULTS UNDER STOCK-FLOW MATCHING—RAW DATA

1 2 3 4 5

ln λn Constant −1.275 −1.258 −1.210 −1.246 −1.289
(0.150) (0.138) (0.219) (0.147) (0.442)

ln V̄n −0.124 – – – –
(0.090)

ln vn 0.857 0.753 0.789 0.778 0.727
(0.112) (0.066) (0.094) (0.074) (0.126)

ln Ūn −0.733a −0.753a −0.789a −0.778a −0.727a

ln pn Constant −0.871 −0.822 −0.849 −0.841 −0.823
(0.194) (0.155) (0.209) (0.189) (0.319)

ln V̄n – – −0.101 −0.121
(0.117) (0.209)

ln vn – – −0.040 – 0.068
(0.305) (0.414)

ln un 0.141a 0.121a −0.068a

R2 0.961 0.960 0.961 0.961 0.960
Monthly dummies = 0b 259.0 311.5 279.5 280.2 305.7
Year dummies = 0c 126.8 115.8 123.1 122.2 115.0
ADFd −4.566 −5.488 −4.444 −4.703 −3.562

Sample averages
λn 0.104 0.103 0.103 0.101 0.103
pn 0.419 0.440 0.404 0.411 0.452
(1 − pn)/λn 6.176 6.107 6.479 6.506 5.969
µn 0.331 0.345 0.328 0.335 0.350
qn 0.416 0.407 0.405 0.398 0.409
δn 0.333 0.331 0.329 0.329 0.325

µn(1−qn)
(µn+qδV

n )(µn+δV
n )

0.656 0.656 0.667 0.655 0.572

NOTES. Monthly data not seasonally adjusted. Dependent variable: unemployment outflow recorded
at Jobcentres in Great Britain. Sample period: 1985:09–2001:04. All specifications include month and
year dummies. Estimation method: maximum likelihood. Heteroskedastic-consistent standard errors
(White, 1980) are reported in parentheses.
λn denotes the unemployment hazard rate. pn denotes the initial matching rate of the unemployed.
(1 − pn)/λn denotes the predicted unemployment duration. µn denotes the vacancy hazard rate of
being filled. δn denotes the vacancy hazard rate of withdrawal. qn denotes the initial matching rate of
vacancies. µn(1−qn)

(µn+qnδn)(µn+δn) denotes the predicted vacancy duration. No. Observations: 188.
SOURCE: NOMIS.
aCoefficient constrained to equal the value reported.
bWald test, distributed as χ2(11), of the hypothesis that monthly dummies are jointly zero. Critical
value at 5% significance level: χ2(11) = 19.675.
cWald test, distributed as χ2(17), of the hypothesis that yearly dumies are jointly zero. Critical value
at 5% singificance level: χ2(17) = 27.587.
dADF statistics for the presence of a unit root in the estimated residuals. Critical value at 5% signifi-
cance level: −2.88.

variables seem to explain it well. Column 3 is an overidentifying test for stock-
flow matching: that the inflow of new vacancies does not explain pn. This test
is accepted—the vacancy inflow coefficient is insignificant (and wrong-signed).
Column 4 is the “stock-flow” specification: that pn depends on the vacancy stock
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but not the inflow. But the vacancy stock coefficient is also insignificant (and
wrong signed). The results for pn are therefore a little disappointing, but we note
throughout that the estimates for λn are robust to these variations.

All these specifications provide an identical fit, with an R2 of 0.96, which is
higher than in all specifications in Table 1, even those that (inconsistently) include
the vacancy inflow. Table 3 yields the following predicted sample averages for
unemployed workers:

(i) pn ≈ 0.4; i.e., about 40% of workers entering the unemployment pool are
on the short side of their markets and quickly become re-employed;

(ii) 60% of workers entering the unemployment pool are on the long side
of their markets and so face an extended spell of unemployment. The
sample average 1/λn suggests an average unemployment spell of around
10 months for these workers; and

(iii) in a steady state, the expected average completed unemployment spell
is (1 − p)/λ. The sample average of (1 − pn)/λn ≈ 6.1 months, which is
reasonably consistent with the actual average completed unemployment
spell (6.5 months).

The predicted sample averages for vacancies are

(i) qn ≈ 0.4; i.e., about 40% of new vacancies are on the short side of their
markets and are quickly filled (indeed 30% of new vacancies are filled on

TABLE 4
ESTIMATION RESULTS UNDER RANDOM MATCHING—HP FILTERED DATA

1 2 3 4 5

ln λn Constant −1.371 −0.839 −1.349 −1.320 −0.754
(6.761) (0.233) (4.830) (4.265) (0.090)

ln V̄n 0.797 0.734 −0.203 – –
(0.185) (0.167) (0.125)

ln vn – – 0.714 0.685 0.681
(0.072) (0.066) (0.066)

ln Ūn −0.753 −0.734a −0.487 −0.645 −0.681a

(0.431) (0.309) (0.307)
R2 0.628 0.625 0.799 0.794 0.791
CRSb 0.019 – 0.007 0.043 –
Monthly dummies = 0c 124.5 153.7 119.2 123.7 143.3
Yearly dummies = 0d 12.9 12.0 26.5 24.4 30.9
ADFe −3.374 −3.146 −3.252 −3.255 −3.215

Sample averages
λn 0.154 0.152 0.175 0.177 0.175
1/λn 6.561 6.667 5.827 5.795 5.844
µn 0.646 0.634 0.773 0.776 0.738
δn 0.321 0.320 0.340 0.340 0.339
1/(µn + δn) 1.036 1.051 0.921 0.852 0.921

NOTE. See notes to Table 2.
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the first day of being posted). Note this is not inconsistent with pn = 0.4
for workers;

(ii) 60% of new vacancies are on the long side and must wait for suitable new
workers to come onto the market. As µn ≈ δV

n a vacancy on the long side is
as likely to be withdrawn as filled. A filled long-side vacancy has average
spell 1/(µn + δV

n ) = 6 weeks; and
(iii) in a steady state, the average completed spell of a filled vacancy is

µ(1 − q)
(µ + qδV)(µ + δV) .The sample average of µn(1 − qn)

(µn + qnδn)(µn + δn) is 20 days, which is
2 days short of the duration of filled vacancies observed in the data.

5.3. The Results Using HP Filtered Data. We quickly discuss the results ob-
tained when the data are first passed through an HP filter. Overall the results are
qualitatively identical to those obtained on the raw data. For the random match-
ing case, represented in Table 4, Columns 1 and 2 establish the random matching
function provides a reasonably good fit of the data and constant returns are not
rejected. But including vacancy inflow in Column 3 much improves the fit and the
vacancy stock coefficient again becomes wrong-signed (though not significantly
so).

TABLE 5
ESTIMATION RESULTS UNDER STOCK-FLOW MATCHING—HP FILTERED DATA

1 2 3 4 5

ln λn Constant −1.409 −1.371 −1.234 −1.298 −1.325
(0.481) (0.246) (0.449) (0.206) (0.703)

ln V̄n −0.089 – – – –
(0.358)

ln vn 1.218 1.170 0.906 0.883 0.969
(0.296) (0.280) (0.220) (0.223) (0.142)

ln Ūn −1.129a −1.170a −0.906a −0.883a −1.003a

ln pn Constant −0.467 −0.453 −0.672 −0.670 −0.562
(0.108) (0.125) (0.285) (0.228) (0.290)

ln V̄n – – −0.188 −0.226
(0.357) (0.327)

ln vn – – −0.177 – −0.155
(0.442) (0.530)

ln un 0.365a 0.226a 0.155a

R2 0.886 0.885 0.886 0.885 0.885
Monthly dummies = 0b 313.2 350.2 288.1 287.6 343.3
Yearly dummies = 0c 44.9 44.4 45.4 44.3 45.2
ADFd −4.669 −6.756 −4.748 −4.976 −4.137

Sample averages
λn 0.047 0.046 0.077 0.075 0.065
pn 0.627 0.636 0.432 0.458 0.529
(1 − pn)/λn 8.510 8.449 7.601 7.491 7.639
µn 0.387 0.392 0.271 0.288 0.334
qn 0.201 0.197 0.335 0.325 0.278
δn 0.313 0.314 0.315 0.316 0.324

µn(1−qn)
(µn+qnδn)(µn+δn) 1.001 1.001 0.660 0.611 0.473

NOTE. See notes to Table 3.
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Table 5 estimates stock flow matching, restricting again to constant-returns spec-
ifications. As in Table 3, the estimates of λn are robust across all specifications and
imply that the stock of longer-term unemployed workers match with the inflow
of new vacancies. The elasticity of λn with respect to vn is again higher than that
obtained on the raw data, and tends to be not significantly different from one; i.e.,
the matching rate of the long-term unemployed would seem proportional to the
vacancy inflow. The wide variation in estimated sample averages across these spec-
ifications, however, suggests these results are not as well identified as the above
results using the raw (nonfiltered) data and time dummies.

6. CONCLUSION

Lagos (2000) considers an equilibrium trading framework where matching at
the microlevel implies stock-flow matching, but aggregation over locations and a
restriction to steady state implies that aggregate matching appears consistent with
a standard random matching function. Our results are consistent with that view.
The random matching function fits the aggregate data reasonably well and con-
stant returns to matching are not rejected. Outside of steady state, however, the
matching function approach, as typically used to explain equilibrium unemploy-
ment dynamics (e.g., Mortensen and Pissarides, 1994; Shimer, 2005),is inconsistent
with the observed turnover dynamics. Specifically, unemployment outflows are too
highly correlated with new vacancy inflows.

Obviously these results do not imply search frictions are unimportant in labor
markets. An alternative search approach might instead assume a “good jobs”/“bad
jobs” scenario, where vacancies for “good jobs” match quickly whereas vacancies
for “bad jobs” do not. Unfortunately, such a model cannot be identified on our
data. But even so, it is not clear in a search environment that “good” vacancies
should necessarily match quickly. For example, all unemployed workers might
desire the highly paid CEO vacancy, but the post still takes a long time to fill
as shareholders search for the ideal candidate. Equilibrium matching with super-
modular match payoffs implies high ability workers will tend to match with high
quality vacancies, but being higher ability does not imply faster matching (e.g.,
Shimer and Smith, 2000; Burdett and Coles, 1999; Gautier and Teulings, 2004,
with search frictions). Stock-flow matching instead distinguishes between “short-
side” and “long-side” vacancies, where “short-side” vacancies are quickly filled
by unemployed workers on the “long side.” Such behavior is consistent with the
fact that 30% of new vacancies are filled on the first day of being posted, a statistic
that is hard to explain from a purely search perspective. Furthermore a “good
jobs”/“bad jobs” scenario would suggest that estimated pn should also be highly
correlated with vacancy inflow. Tables 3 and 5 clearly demonstrate this is not the
case.

Perhaps the major contribution of this article is that the matching behavior of
the longer term unemployed is robustly identified—they wait for suitable new
vacancies to come onto the market. The stock-flow view of matching is also useful
in reconciling the McDonald’s problem: that McDonald’s invariably has vacan-
cies and everyone knows where McDonald’s is, so how can unemployment be
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frictional? It cannot be argued that McDonald’s jobs are “bad” jobs, otherwise
no one would work there.20 Stock-flow matching instead implies that most unem-
ployed workers are better qualified to do different work and prefer to wait for
something more suitable to come onto the market. McDonald’s instead hires from
the inflow of workers into unemployment, hiring those who have a comparative
advantage in working for them. The monopsonist then chooses wages to maxi-
mize expected profit given the entrant inflow into unemployment. This approach
also provides insights into other market scenarios. For example, the house seller
who does not find an immediate buyer might set a lower price to generate a quick
sell. But he/she might instead maintain a high asking price and wait for a suitably
interested new buyer to come onto the market.

Our results have important policy implications. Search effort in the standard
search framework is a productive investment. But with job queueing by workers
on the long side of the market, then job chase effort kit is a pure rent seeking
investment. Specifically greater aggregate job chase effort Kt does not affect the
aggregate outcome: The vacancy on the short side of the market is always filled.
Individual job chase effort only determines the probability with which each given
individual gets the next available job. There is a large optimal unemployment
insurance (UI) literature that argues that, with search frictions and unobserved
search effort, unemployment benefit payments should be reduced with unemploy-
ment duration to encourage greater search effort (e.g., Shavell and Weiss, 1979).
But with job chasing as described above, it is welfare reducing to distort UI pay-
ments by duration to induce greater “job chase effort.” The relevant policy issue
then is not whether unemployment benefits should be stopped after, say 6 months,
1 year, etc. Rather what is the optimal level of unemployment benefits, where un-
employment benefits affect worker reservation values and so potentially lead to
inefficiently low (or high) job acceptance rates (see Marimon and Zilibotti, 1999;
Mortensen and Pissarides, 1999; Shimer and Werning, 2007, for related arguments
within the standard search framework)?

Another related policy issue is whether unemployed job seekers should retrain
or be encouraged to migrate to employment hot spots. However, it may be that
capital is more mobile than labor (given that residential housing is immobile).21 In
that case, it may be more efficient to subsidize capital to move into unemployment
black spots and the unemployed should then wait for new capital to arrive in town.
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