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Nonparametric estimation of the mean and covariance functions is ubiquitous in functional
data analysis and local linear smoothing techniques are most frequently used. Zhang and
Wang (2016) explored different types of asymptotic properties of the estimation, which
reveal interesting phase transition phenomena based on the relative order of the average
sampling frequency per subject T to the number of subjects n, partitioning the data into
three categories: “sparse”, “semi-dense”, and “ultra-dense”. In an increasingly available
high-dimensional scenario, where the number of functional variables p is large in relation
to n, we revisit this open problem from a non-asymptotic perspective by deriving compre-
hensive concentration inequalities for the local linear smoothers. Besides being of interest
by themselves, our non-asymptotic results lead to elementwise maximum rates of Ly con-
vergence and uniform convergence serving as a fundamentally important tool for further
convergence analysis when p grows exponentially with n and possibly 7. With the pres-
ence of extra log p terms to account for the high-dimensional effect, we then investigate the
scaled phase transitions and the corresponding elementwise maximum rates from sparse to
semi-dense to ultra-dense functional data in high dimensions. Finally, numerical studies
are carried out to confirm our established theoretical properties.

Keywords: Concentration inequalities, high-dimensional partially observed functional
data, elementwise maximum rates, local linear smoother, mean and covariance functions.

(©2023 Shaojun Guo, Dong Li, Xinghao Qiao, Yizhu Wang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided

at http://jmlr.org/papers/v1/21-0000.html.


https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v1/21-0000.html

Guo, L1, Qrao, AND WANG

1 Introduction

A fundamental issue in functional data analysis is the nonparametric estimation of the
mean and covariance functions based on discretely sampled and noisy curves. The esti-
mated quantities are not only of interest by themselves but also serve as building blocks for
dimension reduction and subsequent modeling of functional data, such as functional prin-
cipal component analysis (FPCA) (Yao et al., 2005a; Li and Hsing, 2010) and functional
linear regression (Yao et al., 2005b). Among candidate nonparametric smoothers, we focus
on the most commonly-adopted local linear smoothing method due to its simplicity and
attractive local and boundary correction properties.

In a typical functional data setting, we have n random curves, representing n subjects,
observed with errors, at T; randomly sampled time points for the ith subject. The sam-
pling frequency T; plays a pivotal role in the estimation, as it may affect the choice of the
estimation procedure. The literature can be loosely divided into two categories. The first
category corresponds to dense functional data, where T}’s are larger than some order of n.
A conventional approach to handle such data implements nonparametric smoothing to the
observations from each subject to eliminate the noise, thus reconstructing each individual
curve before subsequent analysis (Zhang and Chen, 2007). The second category referred
to as sparse functional data, accords with bounded 7T;’s. Under such a scenario, the pre-
smoothing step is no longer applicable, an alternative pooling strategy considers pooling
the data from all subjects to build strength across all observations (Yao et al., 2005a; Li and
Hsing, 2010). More recently, Zhang and Wang (2016) provided a comprehensive analysis
of phase transitions and the associated rates of convergence for three types of asymptotic
properties: local asymptotic normality, Lo convergence, and uniform convergence. They
proposed to further partition dense functional data into new categories: “semi-dense” and
“ultra-dense”, depending on whether the root-n rate is achieved with negligible asymptotic
bias or not. However, these aforementioned asymptotic results are only suitable for handling
univariate or low-dimensional multivariate functional data.

With recent advances in data collection technology, high-dimensional functional datasets
become increasingly available. Examples include time-course gene expression data, and
electroencephalography and functional magnetic resonance imaging data, where signals are
measured over time at a large number of regions of interest (Zhu et al., 2016; Li and Solea,
2018; Zapata et al., 2022; Fang et al., 2023). Those data can be represented as a p-vector
of random functions X;(-) = {Xj1(-),..., Xip(:)}" for i = 1,...,n defined on a compact set
U, with p-vector of mean functions p(-) = {1(-),..., pp()}" = E{X(-)} and (p x p)-matrix
of marginal- and cross-covariance functions

B(u,v) = {Zjk(u, v)}pxp,  Bjn(u,v) = cov{Xy;(u), Xir(v)}-

In a high-dimensional regime, the dimension p can be diverging with, or even larger than,
the number of subjects n. In practice, each X;;(-) is observed subject to error contamination
at T;; random time points; see (3) below.

Within the high-dimensional statistical learning framework, it is essential to conduct
non-asymptotic analysis of the estimators by developing concentration inequalities under a
given performance metric, which can lead to probabilistic error bounds in the elementwise
maximum norm as a function of n, p, and possibly T;;’s under our setup. Existing liter-
ature has mainly focused on fully observed functional data, based on which concentration
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inequalities for the estimated covariance functions were established in Qiao et al. (2019) and
Zapata et al. (2022). In practical scenarios where curves are partially observed with errors,
addressing dense functional data is achievable by applying the pre-smoothing technique to
observations from each i,j (Kong et al., 2016). Alternatively, a unified pooling-type local
linear smoothing approach can be employed for estimating the mean functions p;(-)’s and
marginal- and (or) cross-covariance functions ;x(-,-)’s across j, k to handle both sparsely
and densely observed functional data (Li and Solea, 2018; Qiao et al., 2020; Lee et al., 2023;
Fang et al., 2023). Under certain lower-dimensional structural assumptions, one can pos-
sibly develop the nonparametric smoothing method for the joint estimation of elements in
3(+,-), which, however, becomes challenging due to the observation of each Xj;(-) at differ-
ent sets of points. The elementwise approach is computationally feasible as it can be easily
parallelized and those FPCA-based methods only necessitate the estimation of marginal-
instead of cross-covariance functions (Qiao et al., 2020; Solea and Li, 2022). Moreover, such
approach can be largely accelerated in a common scenario where each X;;(-) is observed at
the same set of points across j especially with the aid of linear binning (Fan and Marron,
1994), resulting in an efficient estimation procedure. See Remark 1.

On the theory side, this approach entails dealing with the second-order U-statistics
with complex dependence structures, posing a technically challenging task. Qiao et al.
(2020) made the first attempt to derive some sub-optimal concentration inequalities for
local linear smoothers of marginal-covariance functions ¥;;(-,-)’s, albeit under a restrictive
finite-dimensional setting. Lee et al. (2023) established the convergence of their proposed
estimation of conditional functional graphical models under the assumption of elementwise
maximum rate for the covariance smoothers:

| ax 3 — Yjklls = Op(logpn™), (1)
where | - |s denotes the Hilbert-Schmidt norm, and the parameter 7 € (0,1/2] reflects
the average sampling frequency, with larger values yielding denser observational points.
Fang et al. (2023) developed the functional covariance estimation with theoretical guaran-
tees by assuming generalized sub-Gaussian-type concentration inequalities for local linear
smoothers fljk(-, -)’s, resulting in an improved elementwise maximum rate:

max |S5 — Sjills = Op{(logp)/>n™" + b2}, (2)
1<j,k<p

where h > 0 is the bandwidth parameter. However, it remains of theoretical interest to ask:

e What are the exact forms of such rates as functions of n, p, T;;’s, and associated
bandwidth parameters under cases with different sampling frequencies?

e Are these rates well-established in the sense of specifying the largest values of 7 and,
compared to Zhang and Wang (2016), exhibiting any corresponding phase transition
phenomena in the high-dimensional setting?

This paper aims to fill crucial theoretical gaps related to local linear smoothers fre-
quently adopted in existing literature. Specifically, we present a systematic and unified
non-asymptotic analysis of local linear smoothers for the mean and covariance functions
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to accommodate both sparsely and densely observed functional data in high dimensions.
While our focus is not to introduce new methodologies for handling high-dimensional par-
tially observed functional data, we make three new contributions as follows.

e First, we develop generalized sub-Gaussian-type concentration inequalities for each
functional element of the mean and covariance estimators in both Ly norm and supre-
mum norm. Compared to the asymptotic results in Zhang and Wang (2016), our
non-asymptotic error bounds lead to the same rates of Ly convergence and uniform
convergence, and reveal the same phase transition phenomena depending on the rela-
tive order of the average sampling frequency per subject to n'/4 for dense functional
data. See Remarks 4 and 5.

e Second, we derive elementwise maximum rates of both Ls and uniform convergence for
the mean and covariance estimators. Notably, we fundamentally improve the rates (1)
and (2) assumed in existing literature in the sense of precisely specifying the largest
values of 7 under cases with different sampling frequencies. These established rates
in Theorems 6 and 7 serve as a foundational tool to provide theoretical guarantees
for a set of models that can handle high-dimensional partially observed functional
data, such as functional graphical models (Li and Solea, 2018; Qiao et al., 2019; Zhao
et al., 2022; Solea and Li, 2022; Zapata et al., 2022; Lee et al., 2023; Tsai et al., 2023),
functional additive regressions (Fan et al., 2014, 2015; Kong et al., 2016; Luo and Qi,
2017; Wang et al., 2022), and functional covariance estimation (Fang et al., 2023).

e Third, with the presence of additional log p terms to account for the high-dimensional
effect in our established elementwise maximum rates, the scaled phase transitions
for high-dimensional dense functional data occur based on the ratios of the average
sampling frequency per subject to n'/4(log p)~1/4. This leads to a further partition of
dense functional data into categories of “semi-dense” and “ultra-dense”, depending
on whether the parametric rate (logp)'/?n=1/2 can be attained or not. With suitable
choices of optimal bandwidths, we also present the optimal elementwise maximum
rates from sparse to semi-dense to ultra-dense functional data, which correspondingly
extend the optimal rates in Zhang and Wang (2016) to the high-dimensional setting.
See Remarks 8 and 9.

Outline of the paper. In Section 2, we present the nonparametric smoothing approach
to estimate the mean and covariance functions. In Section 3, we investigate the non-
asymptotic and convergence properties of the proposed local linear smoothers and discuss
the associated phase transition phenomena. The established theoretical results are validated
through simulations in Section 4. All technical proofs are relegated to the Appendix.

Notation. We summarize here some notation to be used throughout the paper. For
a positive integer ¢, we write [¢] = {1,...,q}. For z,y € R, we write z v y = max(z,y)
and A y = min(x,y). We use I(-) to denote an indicator function. Let Lo(U) be a
Hilbert space of square-integrable functions on a compact interval U equipped with the inner
product {f, ) = § f(u)g(u)du for f(-), g(-) € L2(U) and the induced Ly norm |- | = (-, -y/2.
For any bivariate function ®(-,-) in the tensor product space Lo(U) ® Lo(U), we also use
® to denote the linear operator induced from the kernel function ®(-,-), that is, for any
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f(:) € LoUh), ®(f)(-) = §@(-,v)f(v)dv € La(U), and denote its Hilbert—-Schmidt norm by
{§§ ®(u, v)2dudv}/2. For two positive sequences {a,,} and {b,}, we write a,, < by, or by,

if there exist a positive constant ¢ such that limsup,,_, ., a,/b, < c¢. We write a,, = by, 1f and
only if a, < b, and b, < a, hold simultaneously.

2 Methodology

Let X;(-) = {Xi(),..., Xip(-)}" for i € [n] be independently and identically distributed
copies of X(-) defined on U with mean p(-) and covariance X(-,-). For any i € [n] and
J € [p], Xij(-) is not directly observable in practice. Instead it is observed, with random
errors, at T;; random time points, Uil,...,UiTij € U. Let Yj;; be the observed value of
Xij(Uijt) satisfying

Yije = Xij(Uije) + &3t 3)
where the errors €;;;’s, independent of X;;’s, are independently and identically distributed
copies of €; with E(e;) = 0 and var(e;) = 0]2 < 0.

Based on the observed data {(Uyj¢, Yij¢) : i € [n],j € [p],t € [Ti;]}, we present a unified
procedure to estimate the mean functions p;(-)’s and the marginal- and cross-covariance
functions 3 (-, -)’s for both sparsely and densely observed functional data. In what follows,
denote Kp(-) = h~'K(-/h) for a univariate kernel K with bandwidth h > 0. For each j,
a local linear smoother is firstly applied to {(Uij¢, Yij¢) : @ € [n],t € [Ti;]}, and hence the
estimated mean function is attained via fi;(u) = by, where

2
(bo, b1 = arg mln Z Vij Z { it — bo — b1 (Usje — u)} Khu’j(U,-jt —u). (4)

The weight v;; is attached to each observation for the 7th subject and the jth functional
variable such that >\ | T;;v;; = 1 (Zhang and Wang, 2016).

For each i € [n], ],k € [p],t € [T};] and s € [Tjx], once the mean functions are estimated,
let Oijnts = {Yije — fj(Uije) H{Yiks — itk (Uins)} be the “raw covariance” between Yj;; and
Yiks. Notice that cov(Yij¢, Yiks) = Ejk(Uijt,Uiks) + JJQ-I(j = k)I(t = s). To estimate the
marginal-covariance function ¥;;(-,-) for each j or the cross-covariance function (-, ")
for each j # k, we employ local linear surface smoothers to the off-diagonals of the raw
marginal-covariances (0;jjts)1<t2s<1;; Or to the raw cross-covariances (©yjkts)ie[T;],se[Tir]-
Specifically, we minimize

sz‘jk > {@ijkts—ﬁo—ﬁl(Uijt u) — Bo(Uirs — )}2th7jk(Uijt_U)th,jk(Uiks_U)- (5)

(t,s)eT

with respect to (8o, 81, 02), where the set T equals to {(t,s) : t € [T};],s € [T;;],t # s}
if j = k or {(t,s) : t € [Ti],s € [Tix]} if j # k, and the weight w;;;, is assigned to
each triplet (4, j, k) such that > | Ti;{Tix — I(j = k)}w;jr = 1. See the weights to estimate
marginal-covariance functions in Zhang and Wang (2016). The resulting marginal- or cross-
covariance estimator is Ejk(u v) = By. For ease of presentation, we assume that the mean
functions p(-)’s are known in advance when discussing the concentration and convergence

results related to the covariance estimators f]jk(u, v)’s in Section 3 below. However, it is
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noteworthy that all our discussions remain valid even when p;(-)’s are unknown as long as
a few additional technical assumptions are imposed.

Our estimation procedure allows general weighting schemes for {v; }icn], {Wijk Yie[n],jke[p]
such that two types of frequently-used schemes in existing literature are special cases of
them. One type assigns the same weights to each observation (Yao et al., 2005a) with
vij = (Ui )~ and wije = (2, Ty{Tw — I(j = k)}]™', so a subject with a larger
number of observations receives more weights in total. The other type assigns the same
weights to each subject (Li and Hsing, 2010), thus leading to v;; = (nT};)~" and w;j; =
(T (T — 1 = k)Y

Remark 1 (i) Suppose that the estimated mean and covariance functions are evaluated at
a grid of R x R locations over U?. Under high-dimensional settings, it is apparent that our
nonparametric smoothing approach suffers from high computational cost in kernel evalu-
ations, particularly when estimating p(p + 1)/2 marginal- and cross-covariance functions.
In a common practical scenario, where each X;j(-) is observed at the same set of time
points Uy, ..., Ur, € U across j € [p], the number of kernel evaluations is reduced from
o, Zﬁ-’:l TijR) to O3 T;R). To further speed up the computation, we can adopt the
linear binning technique (Fan and Marron, 1994) to approzimate the mean and covariance
estimation. This would largely reduce the number of kernel evaluations to O(R) while re-
quiring only O3 T;) additional operations. See the detailed implementation of binning
in Fang et al. (2023). Our conducted numerical experiments show that such binned im-
plementation offers substantially improved computational efficiency without sacrificing any
estimation accuracy.

(it) In a general scenario when X;;(-)’s are observed at different sets of time points, par-
allel estimation for j,k € [p] can be employed, resulting in an efficient procedure. In con-
trast, under certain lower-dimensional structural assumptions, the possible development of
nonparametric smoothing method for the joint estimation of components in 3(-,-) becomes
challenging in this general scenario, and is thus left for future research.

(iii) Due to the infinite-dimensional nature of functional data, it is standard practice to em-
ploy FPCA as a dimension reduction technique before subsequent modelling, which is evident
in commonly used high-dimensional functional models, as ezemplified in Kong et al. (2016);
Qiao et al. (2019); Solea and Li (2022); Zapata et al. (2022). When dealing with par-
tially observed functional data, this necessitates the estimation of only marginal-covariance
functions ¥j;(-,-) across j € [p], which can be easily paralleled for fast computation.

3 Theory

Before presenting the concentration and convergence results, we impose the following reg-
ularity assumptions.

Assumption 1 For each i€ [n] and j € [p], X;;(:) is a sub-Gaussian random process and
€ij 15 a sub-Gaussian random variable, that is, there exists some positive constant c such
that E{exp((x, Xij — p;»)} < exp{271c*(x, 2;;(x))} for all z(-) € L*(U) and E{exp(eijz)} <
exp(cQJJZ-zQ/?) for all z € R.
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Assumption 2 For each i € [n] and j € [p], under the sparse design, T;; < Tp < o,
and, under the dense design, T;; — o0 and there exists some positive constant ¢ such that
max; ; T (min; ; Tj;) ™' < .

Assumption 3 Under the dense design, there exists some positive constant co such that
. -1 . -1
max; j vij(min; j v;;) ™" < co and max; j p Wik (Ming ; k wijr) " < co.

Assumption 4 (i) Let {Ujjs : i € [n],t € [T;;]} be independently and identically distributed
copies of a random variable U defined on U. The density fu(-) of U satisfies 0 < my <
infy, fu(u) < supy fu(u) < My < oo for some positive constants my and My; (it) X(-), U
and {€;}jefp) are mutually independent.

Assumption 5 Let Bj, = [(k — 1)1~71, kfj*l] forke [ZF]] with IN’] = max; T;;, there exists
some constant C > 0 such that the cardinality #{Uijt : Uijt € Bjy, t € [T; ]} < C for each
i€[n],jep] and k € [T}].

Assumption 6 (i) K(-) is symmetric probability density function on [—1,1] with §u?K (u)du <
0 and § K(u)?du < co. (i) K(-) is Lipschitz continuous: there exists some positive constant
L such that |K(u) — K(v)| < Llu —v| for any u,v € [—1,1].

Assumption 7 (i) 0?uj(u)/0u® is uniformly bounded overu € U and j € [p); (ii) 0>k (u, v)/0u?,
02223jk(u,v)/6u0v, and 0%S;i(u,v)/0v? are uniformly bounded over (u,v) € U* and (j, k) €
[p]*.

The sub-Gaussianities in Assumption 1 for both Hilbert space-valued random elements
Xij(-)’s and random errors €;;’s together imply that the observations Yjj;’s in (3) are sub-
Gaussian, which plays a crucial role in deriving our subsequent concentration inequalities.
The dense case in Assumption 2 corresponds to a common practical scenario, where the
sampling frequencies Tj;’s are of the same order across ¢ € [n] and j € [p]. Under such a
scenario, Assumption 3 is automatically satisfied by two frequently-used weighting schemes
including “equal weight per observation” and “equal weight per subject”. Assumption 5
means that all observational time points are distributed in the sense of “uniformly on U”.
This prevents the occurrence of an extreme case where a large number of time points are
concentrated in some small areas while leaving too few points in other regions. Assump-
tions 4, 6 and 7 are standard in the literature of local linear smoothing for functional data
(Yao et al., 2005a; Zhang and Wang, 2016) adaptable to the multivariate setting.

Theorem 2 Suppose that Assumptions 1-6 hold. For each j € [p], let ynrn; = n(l A
Ty, jh,.j) with the corresponding average sampling frequency per subject T), j = n~! i Tijs
then there exist some positive constants ci,co (independent of n,p, T}, ;’s) and arbitrarily
small €1 > 0 such that for any § € (0, 1],

P(lli; — il = 8) < czexp (= c1yn,r,n,50°), (6)
co(n v 1)
2
hu,j
where fij(u) is a deterministic univariate function that converges to p;(u) as h,; — 0. See

(A.1) in Appendix A for the exact form of fi;(u).

exp (= c1Yn,1,h,56%) (7)

P{ sup |j1;(u) — fis (u)| > 6} <
uel
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Theorem 3 Suppose that Assumptions 1-6 hold. For each j,k € [p], let vp 1 p ik = n(1 A

ijh%]k) with the corresponding average sampling frequency per subject being T, ;, =
[t 30 T{ T —1(j = k)}Y2, then there exist some positive constants cs, cq (independent
of n,p, Ty jx’s) and arbitrarily small €2 > 0 such that for any ¢ € (0, 1],

p(uzjk — Sils = 5) < caexp (— csvn,rn k0, (8)
a & canvp T hjk
P{ sup \Ejk(u,v) — Ejk(u,v)| > 5} < # exp ( - CSVmT,h,jk:(sQ)a 9)
(u,v)el? S,k

where f]jk (u,v) is a deterministic bivariate function that converges to Xji(u,v) as hs j, — 0.
See (A.19) in Appendixz A for the exact form of ¥ (u,v).

Remark 4 The concentration inequalities in Theorems 2 and 5 imply that fi; and fljk are
nicely concentrated around [i; and ijk, respectively, in both Lo morm and supremum mnorm
with generalized sub-Gaussian-type tail behaviors. It is worth mentioning that such Lo and
uniform concentration results are derived based on the local concentration inequalities of
fij(u) and ijyk(u,v) for fized interior points u,v € U, which enjoy the same tail behaviors
as (6) and (8). Besides being fundamental to derive elementwise maximum error bounds
that are essential for further convergence analysis under high-dimensional settings, these
non-asymptotic results lead to the same rates of Lo convergence and uniform convergence
compared to those in Zhang and Wang (2016). Specifically, under extra Assumption 7, it
holds that

lij — il = Op{n™% + (nTp iy ;)™ + B2},

sup i1 () — p1(u)| = Op[(log )20~ V21 + (Tp, jhyy) 2 + 125,
UE

125k — Sjklls = Op{n™"2 + (nT2 W% )72 + B2 .},

( Sl)lpu2 |ijk(uvv) - ij‘(uv U)| = OP[(IOg n)1/2n71/2{1 + ( E]khg ]k) 1/2} + hz ]k]
U,)E

Remark 5 The above rates of convergence reveal interesting phase transition phenomena
depending on the ratio of the average sampling frequency per subject Tﬂ,j (or Ty 1.) to nl/4,
In the following, we use different rates of Lo convergence for [i; and f]jk to illustrate a
systematic partition of partially observed functional data into three categories:

1. Under the sparse design, when hy ; = n~5,

lig — pil = Op(nfl/zh;j/2 +12;) = Op(n~2);
_1/6

when hy, j;, =n

|Xj% = Zjkls = Op(n 1/2h2 %k + h% k) = OP(’rlil/g).



PHASE TRANSITIONS FOR FUNCTIONAL DATA IN HIGH DIMENSIONS

2. Under the dense design, when T, jn~"/* — 0 with hy, ; = (nT, ;)" '/,
. —1/2—1/2, —1/2 N
I = psll = Op (™ 2T, 20, 3% + 1 5) = Op{(nT5)™%);
when Ts_un~ Y4 — 0 with hy,; = (nfgyjk)*l/ﬁ,

”ij - ijHS = OP(n_l/QTE_,jlkh;];k + h%,jk) = OP{(nTEQ,jk)_l/3}‘

3. Under the dense design, when jﬂ%J.n—l/4 — ¢ (sozne positive constant) with h, ; =
n= Y4 or T, in™Y* — o0 with h,; = o(n™Y*) and T, jh,; — o,
ity = 1]l = Op(n~1/2);
when Ty Y4 — & with hy, o = n~Y* or Ty yn=Y4 — o0 with hy, ;i = o(n™Y4) and
T jihs ji — 0, N
ISk = Sjkls = Op(n~2).

As T#’j and Tk, ;, grow very fast, case 3 results in the root-n rate complying with the para-
metric rate for fully observed functional data. As Tu,j and Ts, ;. grow moderately fast, case 2
corresponds to the optimal minimaz rates (Zhang and Wang, 2016), which are slower than
root-n but faster than the counterparts for sparsely observed functional data. Our estab-
lished convergence rates in cases 1, 2 and 3 allow free choices of (j, k), and are respectively
consistent to those of the mean and covariance estimators under categories of “sparse”,
“semi-dense” and “ultra-dense” univariate functional data introduced in Zhang and Wang

(2016).

Theorem 6 Suppose that the assumptions in Theorem 2 and Assumption 7(i) hold, and
(min; ’YnyT,h,j)_l logp — 0, max; h, ; — 0 as n,p — 0o. It then holds that

R log p 1/2 9 }
max | ; — will = O (7> + maxh? . ¢, 10
oy = = O { (i) 4 i (10)
and, if min; hy, j = {log(p v n)/n}* for some k1 € (0,1/2],
X log(p v n) 11/ 2 ]
max su S(u) — wi(u)| =0 {7} 4+ maxh® ;| . 11
Jjelp] ueB‘M]( )= )‘ P[ ming; Yn,T,h,j i (11)

Theorem 7 Suppose that the assumptions in Theorem 3 and Assumption 7(ii) hold, and
(min; z/n’th,jk)fl logp — 0, max;j by j, — 0 as n,p — 0. It then holds that

& log p 1/2 2
Sk —Yals =0 (—) n2 o\ 12
jf%g[);] H jk jk:”S P { miang Vo ik + Hjl’%x 5,5k ( )
and, if min;j hs, ;. = {log(p v n)/n}* for some ko € (0,1/2],
& log(p v n) 12 2 }
max su Yoip(u,v) — Xi(u,v)| = O {—} +maxhi . |. 13
j.kelp] (u,u)gﬂ X 0) = Zie(u, )] d [ Miny g Vn T,h,jk gk (13)



Guo, L1, Qrao, AND WANG

We observe that the elementwise maximum rates of Ly convergence and uniform con-
vergence are governed by both dimensionality parameters (n, p, {T},;} jelp]s {Ts i} jkelp)) and
internal parameters ({h.;}je(p) {1Pxir}jke[p)). Each convergence rate is composed of two
terms reflecting our familiar variance-bias tradeoff in nonparametric statistics. It is easy to
see that the variance terms are determined by the least frequently sampled and smoothed
components, that is the smallest T}, ; (or T ;) and hy,j (or hy ;) across j,k, whereas the
highest level of smoothness with the largest h, ; (or hs ;) controls the bias terms.

Remark 8 To facilitate further discussion, we consider the simplified setting where T, g =
Tu,h#,j = h, and Tgyjk = Tz,hz,jk = hy for each j, k. Compared to cases 1-8 above,
the corresponding elementwise maximum rates of convergence for {fi;};e(p) (o7 {ijk}j,ke[p])
in Theorem 6 (or Theorem 7) reveal scaled phase transitions for dense functional data
depending on the relative order of T, (or Ts) to n**(logp)™"* instead of n'/*. In the
following, we use elementwise mazimum rates of Lo convergence to illustrate the phase
transition phenomena and the optimal estimation from sparse to dense functional data in
high dimensions. In terms of uniform convergence, the same phenomena occur as long as
D= N

1) Under the sparse design, when h, = (lo 1/5p-1/5
(i) i gn, p = (logp) ,

. e log p\ 1/2 2| logp\2/5)
melluy—ugl—OP{<nhM) +hy, o =0p (n) ;

when hy = (log p)/6n=1/6,

S _ log p\ 1/2 2| log p\1/3
nﬁx|\zjk—zjk\s_op{(nh%) +r2l=op ( ) .

n

(ii) Under the dense design, when T, (logp)"/*n="* — 0 with h, = (log p)*/°(nT,) "'/,

. logp \1/2 log p\ 2/5
mf‘x'“j‘“j”:OP{(nm> ”3}201”{(7@) TS
nlp 1
when Tx(logp)/*n=1* — 0 with hy = (logp)Y/5(nT2)~1/S,
& B logp \1/2 2| log p\1/3
H}f}cx szk _ijHS = OP{<nT§h%> +h2 =0Op <TLT22> . (15)

(iii) Under the dense design, when T,(logp)Yin=14 — ¢ with hy, = (logp)/An=1/4 or
T,,(log p)V/*n=Y* — o0 with h, = o{(logp)"/*n="*} and T,,h,, — oo,

. B logp\1/2)
max s~ ] = 0 { ()

when Tx(logp)Y4n=1* — & with hy = (logp)Y4n=14 or Ty (log p)/*n=* — oo with
hs, = o{(log p)*n='*} and Tshy — oo,

~ lo 1/2
max S5 - Sl = 0p { (22)°1.
Ik n

10
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Remark 9 In a similar spirit to the partitioned three categories for univariate functional
data (see cases 1, 2 and 3 above), we can also term the high-dimensional partially observed
functional data in cases (i), (ii), and (iii) as “sparse”, “semi-dense”, and “ultra-dense”,
respectively. The main difference lies in the presence of additional logp terms to account
for the high-dimensional effect.

o As Tu and Ts, grow at least in the order of n1/4(logp)_1/4, the attained optimal rate
(10gp)1/27f1/2 is identical to that for the fully observed functional data (Zapata et al.,
2022), presenting that the theory for high-dimensional ultra-dense functional data falls
in the parametric paradigm.

o As T, and Ts diverge slower than n'/*(logp)~"4, if we let h, = (logp)"/>(nT,)~ '/
and hy, = (logp)Y%(nT2)=Y/6 to balance the corresponding variance and bias terms, the
optimal rates for high-dimensional semi-dense functional data are respectively achieved
in (14) and (15). These rates degenerate to the minimax rates in case 2 when p
is fized. With the choice of elementwise optimal bandwidths h, = (nT#)*l/E’ and
hs = (nT2)~V6, we obtain

max 1y —pij| = Op{(log p)"*(nT,) "7}, max 16—k = Op{(logp)/?(nTs) "3},

which are respectively slower than the optimal rates in (14) and (15). Such discussion
applies analogously to the sparse functional setting; see cases 1 and (i).

o Compared to the asymptotic results for cases 1, 2 and 3 under a fixed p scenario, the
high-dimensionality in cases (i), (ii) and (iii) leads to the scaled phase transitions,
optimal selected bandwidths, and corresponding optimal rates, each of which is up to
a factor of logp at some polynomial order.

4 Simulations

In this section, we examine the finite-sample performance of the local linear smoothers for
the mean and covariance function estimation in high dimensions.

We generalize the simulated example for univariate functional data in Zhang and Wang
(2016) to the multivariate setting by generating

XZ(“) = /j’](u) + ¢(U)T0ij? i€ [Tl],j € [p]7u eU = [07 1]7

where the true mean function p;(u) = 1.5sin{3m(u +0.5)} + 2u?, the basis function ¢(u) =
{V/2 cos(2mu), v2sin(27u), V2 cos(4mu), ﬁsin(llwu)}T and the basis coefficient vector 6; =
( - .,G;FP)T e R* is sampled independently from a mean zero multivariate Gaussian
distribution with block covariance matrix A € R*>** whose (j, k)th block is given by
Aj, = Pkl diag{2=2 ... 572} € R¥* for j,k € [p]. Hence the (j,k)th entry of the true
covariance functions 3(-,-) = {X;x (-, ) }pxp 15 Bjr(u,v) = ¢(u)"Ajrp(v). We then generate
the observed values Y = X;;(Uijt) +€ije fort = 1,...,T;; = T, where the time points Ujj’s
and errors €;;¢'s are sampled independently from Uniform[0, 1] and N(0,0.5%), respectively.

We use the Epanechnikov kernel with bandwidth values varying on a dense grid. To
evaluate the performance of fi;(-) for j € [p] and X;4(-,) for (j,k) € [p]* given specific

11
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bandwidth h,; and hs;,, we define the corresponding mean integrated squared errors
(MISE) as MISE(fi;, by ;) = §,, {7 (u) — i (w) Y*du and MISE(Sjy, hs ;1) = §,, §, {Zk (u, v) -
¥k (u,v)}2dudv. We first calculate the elementwise minimal MISEs for the mean and co-
variance estimators over the grids of candidate bandwidths in prespecified sets H,, and Hsy,
respectively. We then compute their averages and maximums over j € [p] for the mean
functions, that is,

1
AveMISE(p) = = > min MISE(fi;, 1),

3

MaxMISE(u) = max min MISE(fi;, hy,j),

I huy

and over (j,k) € [p]? for the covariance functions, that is,

hs ik

1 . &
AveMISE(Y) = = ; ; min MISE(3y, hs 1),

MaxMISE(X) = max min MISE (S, hx. ;1 )-
3k hs K

We next use the example of estimating the mean functions to illustrate the rationale of
the above measures. While AveMISE(y1) presents the averaged elementwise minimal MISEs
across j € [p], some simple calculations in Appendix B show that the attainable quantity of

the minimal elementwise maximum of MISEs, min yerr, maxjerp) MISE(1ij, hy ), is
equal to MaxMISE(u).

Ppu,tseeshpp

Mean function Covariance function
o*
— 3
n
N
oS
[e0]
<
o
B S %
= s &4
Yo}
—
S <
3
o
— |
o ~
T T T T T T T T T O‘i\ T T T T T T T T
0O 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
T T

Figure 1: Plots of the average MaxMISEs (black) and AveMISEs (red) against 7' with
p = 50 (solid), 100 (dashed) and 150 (dotted) for the mean estimators (left) and
the covariance estimators (right).

We consider settings of n = 100, p = 50,100,150, and T = 5, 10, 20, 40, 60, 80, 100,
120, 140, 160, varying from sparse to semi-dense to ultra-dense measurement schedules. We
ran each simulation 100 times. Figure 1 plots the average AveMISEs and MaxMISEs as

12
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functions of the sampling frequency T for the estimated mean and covariance functions. A
few apparent patterns are observable from Figure 1. First, both MaxMISEs and AveMISEs
display a similar trend as T increases from 5 to 160, with a steep decline followed by a slight
decrease and then a period of stability. Such a trend roughly corresponds to the three cate-
gories of “sparse”, “semi-dense”, and “ultra-dense”, respectively. Second, while AveMISEs
reflect the performance for univariate functional data, MaxMISEs gradually enlarge as p
increases from 50 to 150, providing empirical evidence to support that the associated rates
in high-dimensional settings all depend on log p-based multiplicative factors. Additionally,
it is observable that the high-dimensionality causes the transition phase between semi-dense
and ultra-dense functional data to slightly shift to the left. Third, compared to the results
for the estimated mean functions, an increase in T for sparse and semi-dense functional
data leads to an enhanced reduction in relative MISEs for the covariance estimators. These
observations further validate our established theoretical results in Section 3.

Appendix A. Technical proofs

The appendix contains proofs of all theorems. Throughout, we use ¢, c1,co,... to denote
generic positive finite constants that may be different in different uses.

A.1 Proof of Theorem 2

We organize the proof in four steps. First, we will define fi(-), fi(-) and obtain the decom-
position of fi(-) — fi(+). Second, we will prove the local concentration inequality for fixed
interior point u € U. Third, we will prove the concentration inequality in Ly norm. Finally,
we will prove the concentration inequality in supremum norm.

A.1.1 DEFINITION AND DECOMPOSITION

~

Without loss of generality, we let h,; = h for j € [p] and denote ey = (1,0)", Uyj; =
{1, (Uije —u)/h}",

n Ty

Si(u) = Z Vi Z Ui U Kn (Ui — ),
i=1  t=1

N n Tij -

Rj(u) = Z vij ), Uit Kn(Uije — u)Yiji.
=1 t=1

fij(w) = e [E{S;(w)}] 'E{R;(u)}. (A1)

We can decompose fij(u) — fij(u) as

fij (u) — Jij () =eg [E{S;(u)}] 7' [R;(u) — E{R;(u)}]
— e {S;(u)} '[S;(u) — E{S; (w) HIE{S; (u)}] 'Ry (w),

13
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which then implies that

171 (u) — i (u)] < [E{S; ()} | Ry (1) — E{R;(u)}]

~ B A X ~ ~ (A.2)
+ 185 (1) i |EAS; () i | R () [[S(w) — E{S;(w)} [,
where, for any vector b = (b1,...,b,)", we write |b| = (3,0?)"/? and, for any matrix

B = (Bij)pxg, we write |Blmin = {Amin(B™B)}Y? and |B|p = (2 ij)l/2 to denote its

Frobenius norm.

A.1.2 LOCAL CONCENTRATION INEQUALITY

We will firstly show that there exists some positive constant ¢ (independent of u) such that
for any § > 0 and u e U,

enT), jho? >

P{Héj(u) ~E{S;(w)}], = 5} < 8exp ( - (A.3)

For k,1 = 1,2, let gjkl(u) be the (k,1)th entry of éj(u) Under Assumptions 4 and 6, we
obtain that for any integer ¢ = 2,3,... and s =0, 1,2,

2 (1) Rt - '} < oo ()

Note that Assumption 3 implies that the weights v;;’s are of the same order v;; = (nT#,j)_l.
By (A.4), it holds that

5q

fut)dt <ch'™9.  (A.4)

£ {‘ (%)S[(h([]ijt — u)r} < chmjhil’

Usiv — un 8 . B
E {‘ (%) Kh(Uijt - U)‘ } < 2_1q!chu7jh_1h2_q for ¢ = 3.
i=1t=1

By the Bernstein inequality (see Theorem 2.10 and Corollary 2.11 of Boucheron et al.
(2014)), we obtain that there exists some positive constant ¢ (independent of u) such that

for any § > 0 and u € U,
g RS T, iho>
P{‘Sjkl(u>_ {Sjki(u)}] 25} SQeXp<_%>’

for k,l = 1,2, which, by the union bound of probability, implies that (A.3) holds.
For k = 1,2, let Rj;(u) be the kth element of Rj(u). We will next show that there
exists some positive constant ¢ (independent of u) such that for any 6 > 0 and u € U,

~ ~ n 52
P{‘Rjk(u) —E{Rjx(u)}] > 5} < cexp ( - %) (A.5)

14
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where v, 74 = n(1 A Tu,jh). We only need to consider the case k = 1, while the case k = 2
can be demonstrated in a similar manner. Denote that

ijt = Yt — 15 (Uije),

n Tij
= Z Vij Z Kh(Uijt — U)Mj(Uijt)’
2 Vij Z Kh gt — ézjt

Then ﬁjl(u) - E{]?iﬂ(u)} can be rewritten as
Rji(u) — E{Rj1(u)} = Rjs(u) — E{Ry3(w)} + Rja(u). (A.6)

Following the same procedure to prove (A.3) and using the Bernstein inequality, we can
obtain that there exists some positive constant ¢ such that for any 6 > 0 and u € U,

.
enT), jho ) (A7)

B{|Rjs(u) ~ E(Rjs(w)}| > 6} < 205 (— T

Now we consider the tail behavior of ﬁéj4( ). Define the event V; = {Ujj, t € [T35],i €
n]} It follows from sub-Gaussianities in Assumption 1 and (3) that E{exp(A&;ji) ’V}
. 3 . T;s
exp(A2c?) for any A € R. Rewrite Rjs(u) = D1 vijtiji(v) with ;51 (w) = 3,7 Kn(Uije —
u)&;j¢. Note that for each i Assumption 3 implies that v;; = (nT), ;) ' If Z;‘Fjl Ky (Uije—u) >
0, by Jensen’s inequality, we have

E[exp{)\viﬂl}ijl(u)}‘v}]
T

1
< E:K WE | exp { vy € § Kn( w) v

T, h zgt p{ 1jSigt h zgt }’ J
thjl Kh(Uijt t=1

2
<exp A2 nT 1) {ZKh it — }

Clearly, the above inequality still holds even if ngl K, (Uijt —u) = 0. Assumption 5 implies
that the number of nonzero terms in ZtT;q K1,(Uijt — u) has an upper bound ¢(1 v T}, ;h),
which yields that Z:{;ﬁ K (Uijt —u) < ch™Y(1 v T}, ;h). Therefore, for any A € R, we obtain
that

< exp )‘222 zg{EKh th_u}2

n Tij

< exp {A2c2(nTM7jh)_2h(1 v T),.;h) 2 2 Ky (Uije — u)}
i=1t=1

[exp {A Z vt () }|V;

15
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For any 6 > 0, define the event ©;1(6) = {2, ZtTgl Ky (Uijy — u) < ¢(1 4 6)nT,;}. We
have

[exp {)\ Z Vi (u HQJ’ ] < exp {)\202(1 + 5)(nT#,jh)—2nTu,jh(1 v Tuyjh)}

= exp {(1 + N E (T, k) (1 v T#,jh)}.

As a consequence, we obtain that
_ 22075 py-1 ;o
Z vijthij(u) = 8|Q1(0) F <exp{ — A+ (1 4+ N2 (nT,;h) N1 v T, k). (A8)

With the choice of A = nT}, ;hS/{2(1 + 6)c2(1 v T, ;h)}, (A.8) degenerates to

P Z vt () > 6|1(6)} < exp { — en(l ?f“éjh)‘p 3 (A.9)

Note that >, Zt 9 E{Kp(Ujje —u)} < enT), ;. By the Bernstein inequality, we obtain that
there exists some positive constant ¢ such that for any § > 0

n Tij I 2

_ T, ;hé
Z Z [Kh(UZ-jt —u) — BE{K},(Usjt — U)}] > nT, ;0 | < exp <_%> ’
i—1t=1

which implies that

enT,, hé?
1 —P{Q;1(6)} <exp ( - #)

Combining (A.9) and (A.10), we obtain that there exists some constant ¢ > 0 such that for

any 6 > 0 _
P{Rya(u) > 8} < 2exp { - LTl

(A.10)

and, consequently,

en(1l A Tﬂvjh)(p}

P{|]§j4(u)|>5}<4exp{f 5o

This together with (A.6) and (A.7) yields that, there exists some constant ¢ such that

en(l A T“,jh)éz}

P{|§j1(u)—E{§jl(“)}‘ 25} gGeXp{_ 1446

Define the event §2;2(d) = {||§J(u) - E{gj(u)}ﬂp < §/2}. Note that E{gj(u)} is positive
definite. On the event €2;2(0) with ¢ € (0, 1], we obtain that

1S, () min = (1 — 6/2). (A.11)
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y (A.3), we have

enT, ;ho?
1= P{Q;2(0)} < 8exp #) (A.12)
Define the event €; 5( {H E{R (w)}| < é}. Note that, under Assumption 3 with
vij = (nT, ;)7L S vij Zt o E{Kh( ijt —u)} < c and p;(-) is uniformly bounded over U,

hence HE{IA{](u)}H is uniformly bounded over ¢/. On the event §2;3(J), we have
IR; ()] < e(1 +9). (A.13)
On the event Q;2(8) N Q;3(d) with 6 € (0, 1], it follows from (A.2), (A.11) and (A.13) that
() — R ()] < 8 + (1~ 6/2) (1 + 8)3 <

This together with concentration inequalities in (A.5) and (A.12) implies that there exist
some positive universal constants ¢; and ¢y such that for any 6 € (0,1] and u € U,

P{|ﬁ](u) — ﬁ](u)| = 5} < Cg €Xp (_CI'Yn,T,h,j(SZ) s
which completes the proof of local concentration inequality for the mean estimator.

A.1.3 CONCENTRATION INEQUALITY IN Lo NORM

In the proof, we need the following lemma.

Lemma 10 Let X be a random variable. If for some constants ci,co > 0, P(|X| > ¢§) <
c1 exp{—62_1 min(62,9)} for any § > 0, then for any integer q¢ = 1,

E(X2q) < q!01(462)q + (2q)!61(402)2q.

Conversely, if for some positive constants a1, as, E(X??) < qlajad + (Zq)!alagq for any
integer q = 1, then by letting ¢t = a; and ¢ = 32(ag + a3), we have that

P(|X| > 6) < cf exp{—c;~" min(6?,4)}
for any 6 > 0.

Proof This lemma can be proved in a similar way to Theorem 2.3 of Boucheron et al.
(2014) and hence the proof is omitted here. In the proof, the following two inequalities are
used, i.e. for any ¢,0 > 0,

52
1+9

%min(éQ,é) < < min(d2,6)

and

2
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We are now ready to derive the Ly concentration inequality of |fi; — fi;]. Let

n J
Sj(u) = (nTu,j)_l Z Z ZJtUz]t Usje — u). (A.14)

Then we have that Héj (©) | min = cng(u)Hmin. We now give a lower bound on ng(u) | min -
Denote W = sup,,¢ H§ 1) —E{gj(u)}HF Let §jkl(u) be the (k,[)th entry of §](u) for k,1 =
1,2. Note that E{|(Usj; —u)*h™*Kp(Usjt —u)|} < c and E(W) < 4maxy; E{sup,, |§]kl(u)\}
for a = 0,1,2. In an analogy to Lemma 13.5 of Boucheron et al. (2014), we can show that
E(W) < ¢(nT, ;)" "/?. Note that Lemma 13.5 of Boucheron et al. (2014) relies on the re-
sults presented in Lemma 13.1 of Boucheron et al. (2014). Consequently, Lemma 13.5
assumes that the corresponding index set is countable in order to apply Lemma 13.1, as
the supremums of the summation of indicator functions may not be measurable. However,
in our specific case, each component of §j (u) — E{gj (u)} is the sum of continuous func-
tions, for which the supremums over U are measurable. Therefore, when we extend the
index set from countable to the uncountable set I/, this lemma, as well as Theorems 11.10
and 12.5 of Boucheron et al. (2014), still hold true and can be applicable to our situa-
tion. Moreover, it follows from the facts var(W) < E(W?) < 4 maxy; var{sup,cy, §jkl(u)},
|(Uijt —U)ah_aKh(Uijt —U)| ch™! E{( ijt — )Qah_2aK]%(Uijt —u)} < ch~! for a = 0,1,2,
and Theorem 11.10 of Boucheron et al. (2014) that var(nT, hW) < 2E(nT, ;hW) +
Dy Zt Y ch™ 1h2 ( 1.5) Y/ 2h+enT), jh, which implies that the variance of T is bounded
by ¢(nT, jh)~! < c*ynT hj Applying Theorem 12.5 of Boucheron et al. (2014) yields that
there exists some positive constant ¢ such that, for any § > 0,

2
Y, T h,jO
Pv BV (- Ctozasdy Al
{(w ) > 6} <exp 35 (A.15)
Define the event 2;4(6) = { supyey |S;(w) — E{S;(u)}], < 6/2} with & € (0,1]. By (A.15),
we obtain that there exists some constant ¢ > 0 such that, for any ¢ € (0, 1],

1—P{Q4(6)} < 2exp (—cYn1n,;0°) - (A.16)

On the event Q4 = Q;4(61) with c'y;é/;’j <6 <1, 85 (w)min = ¢S () min = (1 —
01/2) = ¢/2. Note that E{S (u)} is positive definite and ||EA{1A1](u)}H is uniformlyAbounded
over Y. On the event ; 4, it thus follows from (A.2) and |[R;(u)| < |R;(u) —E{R;(u)}|| +
[E{R;(u)} that

i (u) — 7ij ()] < c|R;(w) — B{R; ()} + c|S;(u) — E{S;(u)}[. (A.17)

where the positive constant ¢ does not depend on u € U.
Combining (A.17) with (A.3), (A.5) and applying the first part of Lemma 10 yields that,
for any u € U and integer ¢ > 1,

E{ 1 () = i () 27|92.4} < gle( )"+ Coe(

)"
CYn,T,h,j CYn,T,h,j
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Applying the second part of Lemma 10 and (A.16), we can show that, for each ¢ € (0, 1],

P(li; — vl = 0) <P(lig — bl = 6]9254) + P(Q4) < crexp (= c1rymrn0%),

which means (6) in Theorem 2 holds and completes the proof of concentration inequality
for the mean estimator in Lo norm.

A.1.4 CONCENTRATION INEQUALITY IN SUPREMUM NORM

We will derive the uniform concentration bound of sup,,, |12 (v) — fi;(u)|. We partition the
interval U = [0, 1] into N subintervals I for s € [N] of equal length. Let us be the center
of I, then we have

sup A (w) — fij(u)| < max [!ﬁj(us) — i (us) | + {72 (us) — i (u)} — {75 (us) — ﬁj(U)}!]-

We need to bound the second term. By some calculations, it suffices to bound ‘{Ejk(u) -

Ry ()} = [B{Rju ()} ~ B Re () }]| andt [{S0(10) = Sjua(s)} ~ [ ()} ~ B Sy (u)}]
for k,I = 1,2, which means that we need to bound ‘}?ijk(u) — ]’%Jk(us)‘ and ‘gjkl(u)
§jkl(u8)|. Let u € Iy and consider |fi]1(u) - }Aijl(us)| first. Define the event Qg ;1 =

{21 vy E?gl Yijel < B vij Z;fgl Yij¢|) + 1}. On this event, it follows from Assump-
tion 6(ii) that

T..

n 1]
|Rj1(u) — Rj1(us)| < ’ Z Vij Z Yije{ Kn(Usje — u) — Kp(Uije — us)}‘
im1 t=1
clu — us| 4 c = Tij c
<= Lo Yl < g { B L) + 1 <
i=1 t=1 i=1 t=1

Applying similar techniques as above, we can define events Qg j and Qg ;i for k,l = 1,2.
On the intersection of these events, we can obtain that |R;x(u) — Rjk(us)| < ¢(Nh?)~! and
|S;k1(w) — Sjg(us)] < ¢(Nh?)~1. Combing the above results, we have

~ Cc

sup |t — < max |fi; — i + —.

u‘;g“‘](u) NJ(U)| Snel[]\}ﬁ |“J(“8) HJ(“S)| Nh2
Applying Hoeffding’s inequality, we obtain that P(Q% ;) < exp{—(2X, 021)%1%)*1} =
exp(—cn) < exp(—cmmny) and B ) < exp{—(30, A2T2)T) = exp(-cn) <

exp(—cyn 1) for k,1 = 1,2. It follows from the above results and the union bound of
probability with the choice of N = ¢(h2§)~! that there exist some positive constants ¢; and
o such that, for any ¢ € (0,1],

C2

P sup |7 (u) ~ ()] > 0 < 13 exp(—erin i 0°) (A.18)

Take arbitrarily small €; > 0. If n,, 7.5, ;0% > 1, then the right side of (A.18) reduces to
cz{mlfyn,T,hJ-}1/2h_2 exp(—clvn,T7h7j(52). If n“'yn,T7h7j52 < 1, we can choose ¢y and nf! > ¢
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such that cyexp(—cic™!) = 1 and the same bound 01{Tfl’}’n,T,h,j}I/fo2 exp(—c1Yn.1,h,j0°)
can therefore still be used. Hence (7) in Theorem 2 holds, which completes the proof of
concentration inequality for the mean estimator in supremum norm.

A.2 Proofs of Theorem 3

We organize the proof in four steps. First, we will define $(-,-), £(-,-) and obtain the
decomposition of X(-,-) — i(, -). Second, we will prove the local concentration inequality
for fixed (u,v) € U?. Third, we will prove the concentration inequality in Hilbert—Schmidt
norm. Finally, we will prove the concentration inequality in the supremum norm.

A.2.1 DEFINITION AND DECOMPOSITION

Without loss of generality, let hs ;. = h for (j,k) € [p]®> and denote & = (1,0,0)7,
Uijnes(u,v) = {1, (Uije — u)/h, (Uigs — v)/h}". For j = k, let

Zij(w0) = > wiz; Y. Uijjrs(u, ) U (u, 0) Kn(Uije — u) Kn(Uijs — v),

1<t#s<T;;

v) = Y wiii ) Uigies(,0)04550s K (Usje — w) Ky (Usjs — v).

1<t#s<T;;
For 5 # k, let
~ T’LJ Tzk
Ejk( Z Wijk Z Z Uz;kts U U)Uz]kts(u U)Kh(UZ]t —u) Ky (Uiks — v),
=1 t=1s=1

Z Wijk Z Z Uzykts u, U zjktsKh(Ul]t )Kh(Uzks - U)‘
t=1s=1

A simple calculation yields fljk(u,v) = ég{éjk(u,v)}_lzjk(u,v). Let
~ ~ 2 -1 A
S, ) = 83 [B(E (. 0)} ] EZw(,0)}: (A.19)

We can decompose ijk(u,v) - ijk(u,v) as

~

Sk, v) — S (u, v) =85 (B (u,v)} = [E{E0(u, v)}] ™) Zj ()
+ &0 [E{Z i (u, v) ] [Zji(u, v) — E{Z
which further implies that
!f]jk(u,v) — i]k(u v)’
<IB{Z 1 (1, 0) Hlinbo | Zk (1, v) = B{Zjie(w, 0)} (A.20)
+ IBAZ k(0 0) ot | B (1t 0) b1 Z (20, 0) [ (0, 0) — BAZ e (1, 0) -

In the following, we will prove the concentration results for case j # k, and the results for
the case j = k can be proved in a similar manner.
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A.2.2 LOCAL CONCENTRATION INEQUALITY

We will firstly show that there exists some positive constant ¢ (independent of u,v) such
that for any 6 > 0 and (u,v) € U?,

R R o h k02
]P’{HE.jk(u,v) —E{Ejk(u,0)}p = (5} < 18exp ( — %) (A.21)

For m,l = 1,2,3, let éjkml(u,v) be the (m,l)th entry of éjk(u,v). It follows from
Assumptions 4 and 6 that for any integer ¢ = 2,3,... and s,s' = 0,1, 2,

E {‘ (Uijth_ U)‘S(Uikt;L* v>S,Kh(Uijt - U)Kh(Uikt’ - U)‘q}

t—u ' —o\|t—u t’ —v
<k ()R ()|
J h h h
Note that Assumption 3 implies that the weights are of the same order w;;, = (nfg jk)_l.
By (A.22),

(A.22)

s5q s5q

fu @) fu(tdtdt' < ch*724,

n Tij Tik
Ui‘ —Uu Ui e V]
33 3 eI (B o U — B — )| < enT2

nG Uijt —u. s Uiky — v 1 2 p2-2
i ikt / _ = _
33 3 e {1 B b = ) Ui — )| < 27 T 7
for ¢ = 3. Applying the Bernstein inequality yields that there exists some positive constant

¢ (independent of u, v) such that for any § > 0 and (u,v) € U?,

CVn 1,1,k )
1+6 /7

for m,l = 1,2, 3, which, by the union bound of probability, 1mphes that (A.21) holds.
For m = 1,2,3, let ijm(u v) be the mth element of Z]k(u v). We will next show
that, there exits some positive constant ¢ (independent of u,v) such that for any § > 0 and

(u,v) € U?,

P{léjkml(uav) - E{Ejkml(ua U)}‘ = 5} < 2exp ( -

n '52
Warnnd®) (o

{’ ikem (U, V) E{éjkm(u,v)}} > (5} < cexp ( TS

where vy, 75,k = n(1 A T2, h?). We only need to consider the case m = 1, while the results
for cases m = 2,3 can be proved in a similar way. Denote that

Gijkts = {Yije — 15 (Uije) HYiks — ik (Uins)} — 2k (Usje, Uirs),

Tij Tik
ng4 u, U Z Wik Z Z Kh ijt — U)Kh(Uzkt’ - U) ]k(Uut, Uzks)a
i=1 t=1s=1
n Tij Tik
Zips (u,0) = > wig D0 Kn(Uije — w) Kp (Uiks — 0)Gijits.
=1 t=1s=1
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Then we rewrite éjkl(u,v) - E{ijl (u,v)} as

~ ~ ~

Zitr (t,0) = B{Z51 (u, )} = Zja(, v) — B{Zpa(u, v)} + Zigs (u, v). (A.24)

Following the same procedure to prove (A.21) with the aid of the Bernstein inequality,
we can obtain that there exists some positive constant ¢ such that for any § > 0 and
(u,v) € U?,

2
CVp, T h,jk0 )

P{yéjkzl(uw) — B{Zjpa(u,0)}| = 5} < 2exp ( - nitih

(A.25)

Now we consider the tail behavior of Zj%(u, v). Define the event ‘7};@ = {(Uijt, Uigs), t €
(T3], s € [Tik], i € [n]}. The sub-Gaussianities under Assumption 1 implies that, conditional
on the event ‘N/jk, Yijt — 1j(Uije) and Yigs — pr(Usks) are sub-Gaussian random variables,
then {Yij: — 15 (Uije) H{Yiks — pr(Uis)} is a sub-exponential random variable, and hence we
have E{exp()\gijkts)|‘~/jk} < exp {(1 — e\)"'eA?} for any A € (0,c¢™!). Rewrite éj%(u,v) =
i1 Wik igr1 (u, v) With ¢ijx (u,v) = Zthﬁ STk Ky (Usje — w) K (Usks — v)Cijhes- Note that
for each i Assumption 3 implies that w;; = (nfg,jk)_l. If ZtT;]l 252“1 K (Usje —u) Ky (Uigs —
v) > 0 holds, it follows from Jensen’s inequality that

E[ exp{ A\w;jrdiji1 (u, v) }“7316]

1 Tij Tik
< Ky (Uijy — u)Kp(Uks — v)
Tij Z Z ( r\Vijt h\Viks
ST Ky (Uige — u) Ky (Uigs — v) (51 21
- Ti' Tik N
x E| exp {)\wz‘jkCijkts Z Z Ky (Uije — u) Ky (Usps — U)Hij])
- t=1s=1

B _ 2
N (T2, { £ s Kn (Uit = ) KU = v)}

< exp =
1 —eA(nT2 ;)71 204 s Kn(Usje — u) Kp(Uiks — v)

where 0 < A(nT2 )" ngl ST K (Uije — u) K (Uigs — v) < ¢ L. Tt is obvious that the
above inequality still holds even if Z?jl ZZ;’“I Ky (Uijt — u)Kp(Uigs — v) = 0. Assumption 5
implies that the number of nonzero terms in ZtTgl ZST;’“l K (Uijt — uw)Kp(Uigs — v) has an
upper bound ¢(1v T2, h?), which yields that ngl ST Ky (Ugje—u) K (Uips—v) < ch™2(1v
T2 ,h?). Therefore, for any A satisfying 0 < A(nT2 ,h?)" (1 v T2,,h?) < ¢! for some
constant ¢ > 0, we obtain that

E [exp {)\ Zn] Wik Gijk1 (U, ”)}“zk
i=1

YAl —27,— YAl n Tij i
< exp C)\Q(nTZZ,jk) %h 2(1 Vv Tg,jkh2)_2i:1 Zt=]1 ZST% Kh(Uijt —u)Kp(Uigs — v)
h 1 —cA(nT2,,h2)~1(1 v T2 ,,.h?) '
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For any § > 0, define the event
n Tij Ty, B
Ajra(6) = S DY Kn(Uije — w) K (Uiks — v) < c(1+ 6)nTs ,

i=1t=1s=1

We have

E [eXP {A i Wik Pijr (U v)}‘/\jk,l(@

i=1

- cA?(1+6)(nT2 . h*)~ (1 v T2, h?)
X eX — —
Pl 1= AT, h2) (1 v T2,h2)

Consequently, we obtain that

cA?(1+6)(nT2 , h*) "1 (1 v T2, h?)
1 —cA(nTE,.h2)~ (1 v T2, h?)
(A.26)
With the choice of A = nT2 , h25{2¢c(1+6)(1 v T2 ,h?)+cd(1v TgyjkhQ)}_l, (A.26) reduces
to

]P){ Z wijkqﬁijkl(u) = 5‘/\31@1(5)} < exp {—)\5 +
i=1

P S g (u,0) > 6|Agka(0)} < exp{ - W} (A.27)
1=1

where the constant ¢ is chosen to satisfy cA(nT2 ,h%)~*(1 v T2, h?) < 1/2. Note that
n Tij Tik B
DI E{KW(Uije — w) K (Uigs — v)} < enTs ;.
i=1t=1s=1

By the Bernstein inequality, we obtain that there exists some positive constant ¢ such that
for any 0 > 0

Pl 22 [Kh(Uijt — u) Ky (Uigs — v) = B{Kp(Uije — u) Kp(Uigs — v)}] >nTz 0
1=1t=1s=1
—CUn. T, 1,02
< e (~20)

which implies that

CVn,T,h,jk52>

e A.28
1+6 ( )
Combining (A.27) and (A.28), we obtain that there exists some constant ¢ > 0 such that

for any § > 0,

1-— P{A]hl(d)} < exXp < —

~ o

P{ijs)(u, v) = 5} < 2€Xp{ _ %}

which leads to 2
Z CVn T kO
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It follows from the above, (A.24) and (A.25) that for each § > 0 and (u, v) € U?, there exists
some positive constant ¢ such that

{| { (u,v)}’>5}<6exp{—W}.

Define the event Aj;2(0) = {Héjk(u, v) — E{éjk(u,v)}HF < 6/2}. Note that E{éjk(u,v)} is
positive definite. On the event Aj; 2(d) with ¢ € (0, 1], we obtain that

155 () fmin = (1 — 5/2). (A.29)

y (A.21), we have

cVy, 102
1 —P{Ajr2(5)} < 18exp ( - %) (A.30)
Define the event Aji 3(6) = {szk (u,v) — E{ij u,v)}| < 0}. Note that, under Assump-

tion 3 with wyr = (nT2 )", D wijk Zt 9 Z L E{KL(Uiji — u) Ky (Usgs —v)} < ¢, hence
HIE{ZJk(u, v)}|| is uniformly bounded over U?. On the event Q5 3(5), we have

1Zjx(u,0)] < e(1 + ). (A.31)

On the event Aji2(0) N Aji3(d) with 6 € (0,1], it follows from (A.20), (A.29) and (A.31)
that
@jk(u,v) - f]jk(u, V)| <ed+ce(1—6/2)71(1+6)8 < es0.

This together with concentration inequalities in (A.23) and (A.30) implies that there exist
some positive universal constants c¢; and ¢y such that for any 6 € (0,1] and (u,v) € U?,

]P’{‘ij(u,v) — Ejk(u,’u)’ > 5} < coexp (—clumT,h,jk(S?) ,
which completes the proof of local concentration inequality for the covariance estimator.

A .2.3 CONCENTRATION INEQUALITY IN HILBERT—SCHMIDT NORM

We will derive the Ly concentration inequality of Hf]jk — f]jkug. Let

Tij Ty

n
Eji(u,v) = (nT2 )~ ZZZ Uijints Ui Kn (Uige — @) Ky (Uks — v).

Then we have that Héjk(u,v)Hmin > cHéjk(u,fu)Hmin. Similar to Appendix A.1.3, we will
give a lower bound on Hé]k(u, V)| min- Denote W = SUD (y,0) 2 ||§]k (u,v) — E{éjk(u v) HF
For t,s = 1,2,3, let éjkts(u,v) be the (¢,s)th entry of .%'.jk(u, v). Note that E{|(U;j; —
w)*h™ " (Us — U)bh*th(Uijt — uw)Kp(Ups — v)|} < ¢ for a,b = 0,1,2, and, moreover,
E(W) < 6 max; s E{sup(,, ,)ez2 \éjkts(u,v)]}. In an analogy to Lemma 13.5 of Boucheron
et al. (2014) and by the similar arguments below (A.14) in Appendix A.1.3, we can show
that ]E(V[N/) < o(nT2, )_1/2 In addition, it follows from the facts var(W) < E(W?)

<
9 max; s var{supy, ey _.]kts(u )}, [(Uije—u)*h ™ (Usgs —v)°h = Kp, (Uije—u) Kp (Ugks —v)| <
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ch™2, E{(Uijt — u)?*h =24 (Uss — v)®h "2 K2 (Uijt — u) K} (Uigs —v)} < ch™2 for a,b = 0,1, 2,
and Theorem 11.10 of Boucheron et al. (2014) that var(nfg,].khQﬁ//) < QE(nTg].kWWN/) +
Dy ZtT;]l ZST’:’CI ch™?h* < c(nfgyjk)l/ h? + enTZ ,,h?, which implies that the variance of W
is bounded by ¢(nT2 ,h*)~' < c(vprn )" Noting the similar arguments below (A.14)
and applying Theorem 12.5 of Boucheron et al. (2014), we obtain that there exists some
positive constant ¢ such that, for any § > 0,

52
Vn,Thygk0” ) (A.32)

P{W—E(WN/)>5}<exp(— 13

Define the event Aji 4(0) = {SUP(u,u)em Héjk(u,v) - E{éjk(u,v)}HF < 6/2} with & € (0,1].
By (A.32), we obtain that there exists some constant ¢ > 0 such that, for any ¢ € (0, 1],

1—P{Aj,4(6)} < 2exp (—cvy1pk0°) -

Ori the event Ajp4 = Ajkf;(gl) with C(l/n,T7h7jk)_1/2 < §1 < 1, we have Héjk(u,v)umin >
c|Zjx(w,v)|min = ¢(1 — 61/2) = ¢/2. Notice that E{Z;,(u,v)} is positive definite and
IE{Z;x(u,v)}|| is uniformly bounded over &4*. On the event Ajj 4, it thus follows from
(A.20) and [ Zjp.(u, v)| < |Zjx(u, v) = E{Zj1(u, v)}] + [E{Zjk(u, v)}] that

|55 (u, 0) = i, 0)| < ¢ Zji(u, v) — B{Zjp(u, v)}]| + | Ejn(u, v) — E{E5(u, )} |r (A.33)

and the positive constant ¢ does not depend on (u,v) € U2,
Combining (A.33) with (A.21), (A.23) and applying the first part of Lemma 10 yields
that, for any (u,v) € U? and integer q > 1,

~ ~ 9 4 q 4 29
B0, v) = Sie(0) P Ajea} < gle(————)"+ Cte(———)
CUn,T,h,jk CVn,T\h,jk
Applying the second part of Lemma 10, we can show that, for each ¢ € (0,1],
P(Hijk ~ils = 5) < P(Hijk — Sikls = 5|Ajk,4) +P(AS4) < caexp (— c3nrnjnd’),

which means (8) in Theorem 3 holds and completes the proof of concentration inequality
for the covariance estimator in Hilbert—Schmidt norm.

A.2.4 CONCENTRATION INEQUALITY IN SUPREMUM NORM

We will derive the uniform concentration bound of sup(, ,)ey2 |§jk(u, v) — ijk(u, v)|. We
partition the interval U = [0, 1] into N subintervals I for s € [N] of equal length. Let us
and vy be the centers of I and Iy, respectively, then we have

sup |Xjk(u,v) — Bjk(u,v)| < max [’ijk(us,vs/) — f]jk(us,vsl)
(u,v)eld? s,8’€[N]

+ {0 v) — S (us, va)} — (Sjk(u,v) — ijk(us,vs,)}]].
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We need to bound the second term. By some calculations, it suffices to bound {2 tern (U, V) —
Zitm 115, 00)} = [B{Zjtom (1,0)} = E{ Zjn (105, 05)} ]| @l | {5t (0, 0) = S (115, 00} =
[E{éjkml(u v)} — E{Ejkml(us,vsf)}]‘ for m,l = 1,2, 3, which means that we need to bound
| ke (U, V) ijm(us7v5/)| and |§jkml(u,v)—§jkml(us, v5/)|. Let (u,v) € Isx Iy and consider
|Z k1 (u,v) — éjkl(us,vs/)\ for the case of j # k first. The results for the case of j = k can
be proved in aTsimilar fashion. Define the event Az jr1 = { 271 wijk ngl ZZ;’H 1©ijker| <
BN wijk 202 ZtT/:’“l |©;jk]) + 1}. On this event, it follows from Assumption 6(ii) that

‘éjm(u, ) — Zj (us, vg)

Tl] Tzk
<‘ Z Wik Z Z @z]ktt’[{Kh( ijt — U) Kh(UZ]t )}Kh( ikt! — U)
t=1¢'=1
+ {Kn (Ui = v) = KU = v ) }En Uit — 5|
c(|lu — us| v |U T T
< 2 Wijik Z Z ‘@Uktt/ {Kh ikt’ — U + Kh(Uz]t )}
t=1t'=1
TZ] Tzk: c
(Z Wik Z Z ijktt! ) < ENTRE
t=1t'=1 Nh

Applying similar techniques as above, we can define events Az i, and Az jry for m,l =
1,2,3. On the intersection of these events, we can obtain that |Z;pm, (v, v) — Zjkm (us, vs)| <
c(NE3) ™ and |Zgm (u, v) — Ejgmi(us, vs)| < ¢(Nh3)~1. Combing the above results, we have

~ ~ ~ c
sup ’Ejk(uav) - Ejk(ua U)| < max |E]k Us, Vg ) - Ejk(usﬂ}s’)| + NR3"
(u,v)eU? 5,5'€[N]

By the Bernstein inequality, we have P(A7 ;) < exp{—)\ + AN (n — coA) 71} for A €
(0,nc™t]. With A = n(2¢? + c2)7!, the right-side reduces to exp(—cn) < exp(—cvn1.h.jk)
for m,l = 1,2,3. Similarly, (A:kal) < exp(—cn) < exp(—cvp,1h k) for m,l = 1,2,3.
It follows from the above results and the union bound of probability with the choice of
N = ¢(h35)~! that there exists some positive constants c3 and ¢4 such that, for any 6 € (0, 1],

}P’{( sup |ijk(u,v) - ijk(u,vﬂ > 5} h652 exp(—caVn 1.hjk0%)- (A.34)

u,v)eU?

Take arbitrarily small es > 0. If neQVn,Tﬁ’jkéQ > 1, the right side of (A.34) reduces to
c4n? Vn;p,h,jkh*‘3 exp(—03l/n,T7h7jk(52). If nc2 Vn7T7h7jk(52 < 1, we can choose ¢4 and n? > ¢ such
that ¢4 exp(—czc™!) > 1 and hence the same bound c;4n®? I/n,T,h”jkh_(S eXp(—ngn,TJij(SQ) can
still be used. We complete the proof of (9) in Theorem 3, the concentration inequality for
the covariance estimator in supremum norm.
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A.3 Proof of Theorem 6

Note that |1; — sl < [i5 — &l + 5 — ps], it suffices to bound ||fi; — p;]. By (A.1), for
any u €U,

i) — () = ef [B{8; ()} ] B[Ry () — ;) {ns ), 0}"]
By the Taylor expansion, we have

n Tij
] 2 Z Uit K, ; (Uije—u){pi Uije) =1 (u) } == J1+Ja,

~

.| R; () =S (w){py

with

& Uiit —u Opi(u
Z utKh,” it — ) Z;; , Py j Majl(b )v
o]

=1
n TJ 2
Uijt —u\2 9 aﬂj (5ijt)
; ; ’thKh z]t U)( hu,j ) h%jW’

||
W'Mz

l\D\H

where d;5; € [u—hy j,u+ hy ;] and E. denotes the expectation over {Y;j:} in (3) conditional
on the event V; = {Uj;,t € [Ti5],i € [n]}. First consider J;, which equals to the second
column of S; j(u) multiplied by hy, jou;(u)/0u, hence

B[ B8 ()] 1] = s P GE (S, ()] EIS, () 0, 17 = 0,

where Eg; denotes the expectation over V;. Consider J2 next. Under Assumption 7, we have
Ky = supjepp) eeu |é’,u?( )/6u2| < o0. Each entry of |J2| is bounded by the (1,1)th entry of
gj(u) multiplied by Kih? 57/2, and by E{Kh( ijt —u)} <1 we have that the (1, 1)th entry
of E{S;(u)} is bounded by 1. Note that IE{S]( u)} is positive definite. These results together
yield that

[Ev (eg [E{S; (w)}]™'32)| < IE{S;(w)}in|Ev (132D < cKihj .

which implies that |f;(u) — pj(u)| < cth ; for any uw e U. Hence

sup 7 (u) — 1y (u)| = O(h25) amd |7y — s = O(h2 ). (A.35)
UE

For M > 0 with the choice of § = (log p)"/?(min; v, 7;) "M < 1, it follows from the
union bound of probability and (6) in Theorem 2 that

{ max ey |15 —
(

> M}
log p) I/Q(mmg Yo Tohj) V2

p

2 P{l; — iyl = M(og p)"(min v )~

< 2 logp 2
Z cexp ( — Y h M —————) < cexp{(1 — cM*)log p}. (A.36)
: mln] P)/TL,T,h,j
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We can choose a large M such that 1 —cM? < 0, the right-side of (A.36) tends to 0. Hence
max;epy |7 — fij| = Op{(log p)/?(min; v,,.7,5.;) ~1/?}. Combing this with (A.35) yields that

. log p 1/2 9
max | i; — s =Op{(,) + maxh? .},
Jj€lp] I#t5 = 1] min; Yp, T,h,j g

which completes the proof of (10).

The rate of convergence in (11) can be proved following a similar procedure. Let hy, min =
min; by, j, we assume that hy,min = {log(p v n)/n}** where k1 € (0,1/2]. Consider hy min
with some ] > 1/2, the corresponding rate is not faster than that with x; € (0,1/2]. To
be specific, under the sparse design, the rate of max; e[, Sup,ey |fi;(v) — pj(u)] is {log(p v
n)/n}Y2=51/2 which is slower than {log(p v n)/n}?® with k; = 1/5. Under the dense
design with T),{log(p v n)/n}t — 0 and T, Alog(p v n)/n}3? — 0, the rate is {log(p v

n)/n}t?= “T/QT 12 , which is slower than {10g(p % n)/n}2/5T 25 with K, € (1/5,1/2]. Under
the dense de51gn Wlth T, {log(p v n)/n}* — 0 and T, L {log(p v n)/n}¥? — G or o, the rate
is {log(p v n)/n}"?- ””T/2T Y2 Which is slower than {log(p v n)/n}? with k1 = 1/4. Under
the dense design with T, {log(p v n)/n}*t — & or o, the rate is {log(p v n)/n}"/2, which is
the same as {log(p v n)/n}l/2 with k; = 1/4. Based on the above four cases, if k] > 1/2,
the corresponding rate is not faster than that with some x; € (0,1/2] and hence the %1 that
corresponds with the optimal bandwidth under sparse or dense design is in (0,1/2]. For
M > 0 with the choice of § = {log(p v n)}"/?(min; v, 7.4;)~*M < 1, by the union bound
of probability and (7) in Theorem 2, we have

~

{ MaXje[p] SUPyerq |15 () — fij(w)]

> M
{log(p v n)}1/2(ming v, 1,p.;) /2 }

< Y P{sup () = iy(w)] > Mlog(p v )} (min, 1) 12}
1 UE

.

1/2

P

(n° ’v Tyhyj) log(p v n)
Z 3 exp { = b M 2.7}
j=1 ,u min MG Y, T h,j

3+e€
< cexp{(

We can choose a large M such that 3 + e + 4x1 — 2cM? < 0, the right-side of (A.37) tends
to 0. Combing this with (A.35) yields that

L2k — CMQ) log(p v n)} (A.37)

1 1/2
P [{og(p v n) + max hi,j] ,

maxsup‘ug /‘j(u)‘ = ming v, 7.h.4 J
] n,1L,n,)

J€lp] ued

which completes the proof of (11).

A.4 Proof of Theorem 7

Note |E5 — Sikls < |Z56 — Sirlls + |Zj5 — Sjells, it suffices to bound S — Zji]s. By
(A.19), for any (u,v) € U2,

ijk(u,v) — Yjk(u,v) = ég[E{éjk(u,v)}]ilE[ij(u, v) — é (u, v){Zjk(u,v),0,0} ]
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By the Taylor expansion, we have

E. [ij:(ua v) — ) ik (U, U){ij(ua v),0, O}T“N/Jk]

TZJ Tzk
- Z wijk 2, O UigiKng, 0 (Uije — w){Zx(Uije, Uiks) — Sja(u,v)} := Ly + Ly + Lg,
t=1s=1
where
Uit —u 0%k
Ll = Z Wijk Z Z Uzgtth k zgt ) Z}Jlt hz,jk aj (U7U)7
t=1s=1 .k u
5y T Uips — v 0%k
Ly = Z Wijk Z Z UZJtKhE ]k Z]t ) ”th hE,jk aj (u7 U)?
t=1s=1 =ik v
T’LJ Tzk ~
L3 = Z Wijk Z Z UZ]tKhE ]k z]t )LijIm
t=1s=1
~ Usis — u\20%%; 1 Usirs — 0\20%°%;
2 t k 2 k k
Liji = *hgjk< Z}Jlmk ) aug (Oijktsts Oijhts2) + ih’E,jk( Zh;k ) avg (Oijktst, Oijhts2)
Uit — u U — v 0225
p2 i iks IR (5. 5:s
+ 5,k hz,]-k hz N Ouov ( ijktsls 'lects2)7

(5ijktsla 5ijkts2) € [U—hz,jka u+h2,jk] X [U_hz,jka U+h2,jk] and the event ‘7319 = {(Uijta giks)a te
(T3], s € [Ti], i € [n]}. First consider Ly, which equals to the second column of Zjj(u,v)

N -1
multiplied by hs ;.03 (u, v)/0u, hence Eyy (ég [E{Ejk(u, v)}] L1> equals to

0%; . N -1 (=
h&jkﬁ(u,v)eg [E{:.jk(u, U)}] E{:jk(u,v)}((), 1,0)" =0,

where Eyy denotes the expectation over ‘N/]k Following the similar procedure, we can show
that

~ -1
Eu (&) |E{&n(u0)}| L) =0,
Then consider Ls. By Assumption 7, we have

K= P {0°Sj(u,v)/0v?, 0° Lk (u, v) /Ou®, 0° Lk (u, v) /Oudv} < 0.
(4,k)e[p]?, (u,v)eld?

Each entry of |Ls| is bounded by the (1, 1)th entry of éjk (u, v) multiplied by 2K5h% ,, and
by E{K}(U, ijt — u)Kp(Uis — v)} < 1, the (1,1)th entry of E{éjk(u,v)} is bounded by 1.
Note that E{_.jk(u, v)} is positive definite. Combining these results, we have

~ -1 ~
Eu (&5 [E{&5k(,0)}| L )| < {5k, )} B (La)l < cKahd .
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which implies that \ijk(u,v) — Yk (u,v)| < cKahi , for any (u,v) € U?. Hence

( SL)lpM2 ‘Ejk u,v) — Ejk(u,fu)’ = (h%gk) and Hijk - Xl = (h% ) (A.38)
U,V )E

For M > 0 with the choice of § = (logp)1/2(minj7k I/n’T’hJ‘k)_l/QM < 1, it follows from the
union bound of probability and (8) in Theorem 3 that

P{ max; refp] |2k — Zjklls - M}
Ing 1/2 mln] k VnTh,]k) 2 =
p
<), Z {szk Sjkls = M(logp)m(f?ikn Vn,T,h,jk)_l/z} (A.39)
j=1k=1 ’

p P

lo
E E cexp ( — cun,T7h7jkM2—, ep ) < cexp{(2 — cM2) log p}.
=1 mln]7k V’I’L,T,h,jk‘

—
ol

.

We can choose a large M such that 2 — cM? < 0, the right-side of (A.39) tends to 0. Hence
Max; pe(p| X5k — Bjkls = Op{(logp)l/z(minj’k ymT’h’jk)*l/Q}. Combing this with (A.38)
yields that

~ lo 1/2
max X, — Xjils = OP{(. &b ) +maxh%jk}.
J.kelp] MING g Vn T h,jk gk ’

which completes the proof of (12).

The rate of convergence in (13) can be proved following a similar procedure. Let hy i, =
min; i, by, j,, we can assume that hs, .., = {log(pvn)/n}"*2 where kg € (0,1/2]. Consider Ay in
with some x5 > 1/2, the corresponding rate is not faster than that with some x9 € (0,1/2].
Specifically, under the sparse design, the rate of max; re(,) SUP (4 v)ers2 \f]]k (u,v) = X (u,v)|
is {log(p v n)/n}Y2~%2  which is slower than {log(p v n)/n}*/3 with ry = 1/6. Under the
dense design with Ty{log(p v n)/n}"* — 0 and Ti-{log(p v n)/n} — 0, the rate is {log(p v
n)/n}/2="3 Tt which is slower than {log(p v n)/n}1/3T;2/3 with ko € (1/6,1/2]. Under
the dense design with Ti-{log(p v n)/n}** — 0 and Ty{log(p v n)/n} — € or oo, the rate
is {log(p v n)/n}/2#5 T, which is slower than {log(p v n)/n}"/? with kg = 1/4. Under
the dense design with Ty-{log(p v n)/n}"* — & or o0, the rate is {log(p v n)/n}"/2, which is
the same as {log(p v n)/n}"? with ko = 1/4. Based on the above four cases, if k5 > 1/2,
the corresponding rate is not faster than that with some ko € (0,1/2] and hence ko that
corresponds with the optimal bandwidth under sparse or dense design is in (0,1/2]. For
M > 0 with the choice of § = {log(p v n)}"/2(min; v, 7.4,)~/?M < 1, by the union bound
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of probability and (9) in Theorem 3, we have

P{ max; re[p] Sup(u,v)EZ/{2 |2jk(u7 ’U) - Ejk(u’ U)| > M}

log(p v n)1/2(minj,k Vn,T h,jk) 2

N
'M"@
=

<

Il
—_
x>

Il
—_

B{ sup [S5(u,v) = Sn(u,0)| > Mlog(p v m)}(minvnr) "2
( Js

u,v)eU?

en vy T b jk
76

>, min

o log(pvn) }
min g Vp T,h,jk

N
M=
=

exp { — Wn,1h, M

.
Il
—
e
Il

1
< cexp{(3 + e + 6ry — cM?)log(p v n)}.

We can choose a large M such that 3 + ez + 6x2 — cM? < 0, the right-side of the above
inequality tends to 0. Hence

max sup_ [Syu(v) — Su(u,0)| = Opflog(p v m)2(min v znge) V)
Jkelp] (u,v)el? Jik

Combing this with (A.38) yields that
log(p v n) 172 2
max sup Zkuv Yip(u,v)| = Op {{} + max hs .. | .
Jkelp] (u,v)el? | ! )~ Biwl )‘ MmN g Vn T,k jk gk gk

which completes the proof of (13).

Appendix B. Verification of the claim in Section 4

For the mean estimator, define the set of r candidate bandwidths H,, = {hg), Ces hff)}. In
our simulations, the bandwidth for each dimension can be chosen from #, freely, and
hence there are r” possible outcomes. The targeted evaluation metric is global,

Wiy, oy )e[r]p THAX; []MISE(,u],h(mJ)). We will show that global,,, = MaxMISE(u),
the right side of Wthh is much easier to calculate as it only takes into account pr cases.
On one hand, it is obvious that global,,, < MaxMISE(xz). On the other hand, for fixed

(j,m;) € [p] x [r], MISE(;, hi™) > mine,) MISE(fi;, h™), and hence global, >

min max min MISE(,u],h(m)) max min MISE(,uJ,h( )) = MaxMISE(1).
(ma,...;mp)e[r]? je[p] me[r] jelp] melr]

Combining the above results yields global,,, = MaxMISE(y). The corresponding claim for
the covariance estimator can be verified in the same way.
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