From Thought to Practice: Appropriation and Endogenous Market Structure with Imperfect Intellectual Property Rights

Mariagiovanna Baccara and Ronny Razin

First version: November 2001. This version: September 2004

1We are very grateful to Patrick Bolton, Gene Grossman, Alessandro Lizzeri and Wolfgang Pesendorfer for advising us on this project. We also thank Jim Anton, Jean-Pierre Benoit, Kfir Eliaz, Faruk Gul, Hugo Hopenhayn, Gilat Levy, Marciano Siniscalchi, Jan Zabojnik and the participants of seminars at Princeton University, New York University, Marshall School of Business (USC), Rutgers University, Carnegie Mellon University, Washington University, University of Southern California, Columbia Business School, Stern School of Business (NYU), University of Toronto, Stanford GSB, University of Rochester, Bocconi University, Tel Aviv University, Pompeu Fabra University, the ASSA 2003 meetings, the SED 2002 meetings and the V SAET Conference.

2Corresponding Author. Department of Economics, Stern School of Management, New York University, 44 West Fourth Street, Room 7-72, New York, NY 10012. E-mail: mbaccara@stern.nyu.edu.

3Department of Economics, New York University, 269 Mercer Street, Room 3-22, New York, NY 10012. Email address: ronny.razin@nyu.edu
Abstract

We address the problem faced by innovators who have an idea for a marketable product but must hire employees to bring the product to the market. Employees learn the idea and may attempt to bring the product to the market themselves. We develop a bargaining model that accounts for this problem of information leakage. In this model, employees’ rents endogenously reflect their bargaining power vis-a-vis the firm, which is due to their knowledge of the information. The model has a unique symmetric equilibrium in which the innovator appropriates a sizable share of the surplus despite the absence of property rights for ideas. We show that this share stays bounded away from zero even as the number of agents required in the development grows to infinity. We also derive the conditions under which monopoly or competition arise in the product market. We find that when the degree of potential competition on the product market is high enough, a monopoly is generated by hiring all potential competitors within the same firm. Finally, the link between intellectual property rights enforcement and industry performance is explored, and normative implications are derived.
1 Introduction

Innovation starts with ideas. The development of these ideas into products often requires some degree of information sharing, or information leakage, between the initial innovators and their co-workers. When information has been shared, innovators may lose control of their ideas.

Information leakage can hurt an innovator in two fundamental ways. First, it may result in a race to hit the market first. This could mean the loss of any rents that innovators could secure by an incumbency advantage. Second, information leakage may result in future competition in the market for the final product. Even if an incumbent advantage is assured, innovators’ profits may decrease due to the presence of new competitors.

Legal systems may provide means of protecting innovators’ ideas by enforcing Intellectual Property Rights (IPR henceforth).\(^1\) In practice, the enforcement of these rights is often problematic.\(^2\) The intrinsic nature of ideas makes it difficult to define property rights and to prove their violations. Moreover, it has been suggested that the degree of enforcement of property rights, which changes across states and industrial regions, via information diffusion, may influence the configuration of local industries and their fortunes.\(^3\) This raises questions about the relation between the enforcement of IPR and the performance of industries.

In this paper we develop a bargaining model that accounts for the problem of information leakage. We focus on two main issues. First, we examine the distribution of rents among those who are involved in the development of ideas. Second, we analyze the market structure that is endogenously determined by the presence of information leakage.

Our model of information leakage can be easily illustrated by the following classic problem of a treasure hunt. A person finds a map illustrating the location of a treasure on an island. In order to reach the island, this person needs the help of others. In the process of recruiting help,
information on the whereabouts of the treasure may leak. At this point, nothing prevents the new recruits from leaving the owner of the map and trying to find the treasure with someone else.

A first set of questions arises because the information contained in the map is not protected. How is the map owner’s position affected by the risk of information leakage? What share of the treasure would he have to promise to his companions? Will he have enough incentives to look for the treasure at all?

An additional set of issues arises after the treasure has been found. Suppose that a group of people initially know about the map. Will they reach the treasure all together as one team? If they do, the treasure will have to be split among many people. Alternatively, it could be that some in the group may have an incentive to form a smaller team. Small teams involve less people to share the pie with. However, as these teams may end up trying to rob one another, the pie each of them will share is smaller. Do we expect to see one team enjoying the treasure or numerous teams fighting for it?

This story suggests two natural features for a bargaining protocol with information leakage. First, the process of forming a group of individuals to develop an idea has a dynamic structure, dictated by the patterns of information diffusion; only those who are aware of the existence of the idea (or the map in the treasure story) can be actively involved in trying to form a team to develop it. Second, as the set of people who know about the idea increases, the competition for its rents intensifies.

We incorporate these two features in the following bargaining model. Suppose an innovator has an idea that needs other agents in order to be developed. At the beginning of the bargaining game, the innovator can make an offer to any subset of a pool of agents. All agents who receive the offer learn the idea, i.e. become “informed”. If the offer is accepted by everybody, a firm forms, and the development takes place. If the offer is rejected by someone, a new negotiation ensues. As the set of informed agents is enlarged, the race to carry out the development is more intense. We model the intensity of the race by assuming that the probability that any informed agent makes the next offer is inversely related to the number of informed agents.

The continuation of the game after one firm has formed depends on the legal regime under scrutiny. We consider two legal regimes. First, in a Partial Protection regime, ideas are not protected during the development stage, but patents are granted when the development is completed. This means that the first firm to form enjoys a monopoly in the product market. In this case, the
game ends when an offer is accepted and the first firm forms.4

Second, we analyze a No Protection regime. In this regime, patents cannot be granted at the end of the development stage. If this is the case, if the first firm to form does not employ all the informed agents, the game continues. The informed agents that are still unemployed can apply the idea to an identical or similar product and generate competition in the final product market.

We measure the appropriation rates of innovators operating under the different legal regimes. In the Partial Protection regime, we find that there is a unique equilibrium in which the innovator always receives a surprisingly high share of the profits.5 In particular, if two agents are necessary to develop the product, as the bargaining frictions disappear the share of the innovator goes to $1 - e^{-1}$, i.e. about 63\% of the profits. If the number of people necessary to develop the product goes to infinity, the appropriation rate of the innovator is bounded below by e^{-1}, i.e. about 37\% of the profits. This means that the information leakage problem does not dissipate an innovator’s payoff even when the idea requires many employees and forces him to face the potential defection of all of them.

The innovator’s success is due both to a first-mover advantage (that disappears as frictions become negligible) and to a second, novel effect that is robust to the disappearance of bargaining frictions. We refer to this effect as the “Information Diffusion Advantage.”

The intuition behind the Information Diffusion Advantage comes from the structure of the equilibrium. Following a rejection of an offer, proposers always make offers to uninformed agents. This is because by making an offer to an uninformed agent rather than an informed one, a proposer is increasing the degree of competition this agent will face upon rejection, and we show that this implies that uninformed agents have lower continuation values than informed ones.

The fact that proposers can credibly commit to make offers to uninformed agents implies that the innovator appropriates a sizable share of the profits in the first offer. Any agent who is approached by the innovator knows that upon rejection he will have to compete with the innovator. More importantly, this agent knows that the innovator will not come back to him is chosen as next proposer. This is what distinguishes our analysis from a standard two-agent alternating-offer bargaining game: by credibly committing not to come back to the same agent, any team of agents working to develop a patentable product are subject to the risk of competition arising from within. Dasgupta and Stiglitz (1980), Lee and Wilde (1980) and Loury (1979) have analyzed patent races, but these papers do not analyze the informational aspects of the development stage.

4The analysis of this legal scenario in the presence of information leakage captures a novel aspect of patent races.

5In our analysis, we focus our attention on the set of the Symmetric Subgame Perfect Equilibria.
the innovator is able to appropriates more than half of the rents.

Let us now turn to the No Protection regime. In the total absence of IPR, patents are not available to guarantee a monopoly at the end of the development process. An agent who is about to make an offer has to consider the effect of his offer on the product market structure. Besides the potential defection of the agents he hires, a proposer has to evaluate the threat of future market competition. Thus, he faces an additional trade-off. In particular, he can either preempt the potential competition on the final product market by hiring all the agents that could potentially compete with him (i.e., all the informed agents), or he can form a firm in the least expensive way, and face competition on the final product market.

We show that even in the absence of any kind of IPR two equilibrium effects enable innovators to appropriate significant shares of the profits. First, we show that for a range of parameters the innovator still enjoys the Information Diffusion Advantage. Second, higher rents for the innovator can be sustained by a second effect that we name the “Threat of Competition Advantage”. We show that the innovator is sometimes able to threaten his employees with competition arising upon rejection of his offer. As competition dissipates rents, this tends to lower the continuation value of potential employees. Thus, this threat enables the innovator to appropriate all of the gap between monopoly rents and the total rents under market competition. This implies that the fiercer is the potential market competition, the stronger is the position of the innovator.\(^6\)

We show that there is a limit to the ability of the innovator to use the threat of competition. In particular, when the degree of potential market competition is very high, the threat of future competition is not credible any longer. Upon rejection of an offer, agents always have incentives to avoid competition, and they tend to make offers that generate monopoly. This keeps the innovators’ payoffs at the minimum as both the information diffusion and the threat of competition advantages cease to hold.

Our analysis of the No Protection regime offers predictions on information diffusion and market structure outcomes when several innovators have an idea (as, for instance, in an R&D team). We show that, even in the absence of IPR, it may very well be that monopoly is the market outcome. This happens when the degree of potential market competition is high, and in this case, all information remains concentrated inside the boundaries of a single firm.\(^7\) When the degree of

\(^6\)The intuition of the “Threat of Competition Advantage” is present in Anton and Yao (1994). We discuss in detail the relation between the two models in Sections 1.2 and 4.

\(^7\)This is in line with studies suggesting that many firms rely on secrecy more than on patent protection to protect their R&D. See Levin, Klevorick, Nelson and Winter (1987).
potential competition in the final product market is low, we show that competition will arise. As competition entails some dissipation of rents, this result shows that information leakage could be an additional reason behind the breakdown of bargaining efficiency.\(^8\)

1.1 Related literature

The economic literature on technological diffusion is mainly divided into a microeconomic and a macroeconomic branch.

On the microeconomic side, the first papers to approach the informational concerns of inventors in the absence of IPR have been Nitzan and Pakes (1983) and, more recently, Anton and Yao (1994).\(^9\)

Anton and Yao (1994) present a model in which an inventor faces two manufacturers that can potentially market his product. In the negotiation with the first manufacturer, the inventor can increase his bargaining power by threatening to reveal his idea to the competitor. Our analysis differs from Anton and Yao’s in two important respects. First, Anton and Yao assume that, once they learn the idea, manufacturers do not face problems of information leakage. Our approach rests on the observation that in the absence of property rights, a manufacturer who employs some workers may eventually face the same information leakage problem that the innovator faced in the first place. This observation leads us to a model that accounts for the possibility of information diffusion and the arising of the “Information Diffusion Advantage”.\(^10\)

Second, the possibility of information diffusion allows us to endogenize the bargaining power of agents vis-a-vis each other. This allows us to have a unique prediction about the informational costs of implementing new ideas that doesn’t depend on exogenous assumptions about the allocation of the bargaining power across the agents in the game. Our model is therefore a useful tool for applications of the evolution on firms and industries.

Our model also relates to the notion that the employees of a firm could be tempted to appropriate the source of the rents of the firm. Rajan and Zingales (2001) carry out an analysis of the optimal design of a hierarchy to prevent employees from doing so. The difference in the focus of the analysis is reflected in the modelling assumptions: in their model, employees bargain on their wage \textit{after} deciding whether to stay in the firm or to defect. In our model the defection decision

\(^8\)This aspect is investigated further in Baccara and Razin (2004).
\(^9\)See also Anton and Yao (2002).
\(^10\)Section 4 in this paper is the most closely related to Anton and Yao’s paper. In that Section, we discuss the comparison of our results to Anton and Yao’s ones in greater detail.
can occur at any moment between the bargaining and the completion of the development process, so it affects the outcome of the bargaining.11,12

On the macroeconomic side, there are several papers that offer competitive treatments of information diffusion. In particular, Chari and Hopenhayn (1991) and Jovanovic and McDonald (1994) studied the dynamics of the diffusion of new technologies. More recently, Boldrin and Levin (2003(a), see also 2003(b)) constructed a competitive model of innovation and growth in which innovative products can be either consumed or duplicated and sold on a competitive market. Our paper shares with Boldrin and Levin's the aim to endogenize what in the previous literature has been seen as “exogenous spillovers”, but we do so from a different perspective. Rather than focusing on the product market, we take a micro-foundation approach, and we study the strategic incentives during the development process, (in particular, information diffusion arises for us from the strategic decision of whether to involve agents that already know a new idea or agents that are still uninformed).

The aim of this research project is to bridge these two strands of the literature. We think that a better understanding of the strategic issues underlying information diffusion can shed more light on the macro-implications of such phenomenon. In particular, we think that this paper develops a methodology that can potentially be applied to understand a very wide set of issues related to innovation and IPR. As a first step in this direction, in Baccara and Razin (2004) we apply the methodology developed in this paper to the problem of incremental research and incentives to innovate in established firms.

The paper is structured as follows. In Section 2 we present the model, in Section 3 we analyze the Partial Protection regime, in Section 4 we discuss the No Protection regime, in Section 5, we discuss the main assumptions and the normative implications of the model, and in Section 6 we conclude.

11For other papers that relate the possibility of employees' defection to the distribution of wages within the firm, see Stole and Zweibel (1994), Wolinsky (2000) and Zabojnik (2002). In particular, Zabojnik (2002) explores how hierarchical firms pay employees efficiency wages in accordance with the potential threat of their leaving the firm with relevant information. The common element between Zabojnik's and our paper is the idea that wages are not fully explained by the productivity of the employees but rather they incorporate the relevance of the information that employees hold. However, while Zabojnik models the threat as an external technology, we endogenize the process that makes this information a threat for the employer by explicitly modeling the continuation game.

12For an interesting paper about the bargaining on voluntary information disclosure between two participants in an R&D race, see d’Aspremont et al. (2000).
2 The Model

The strategic situation outlined in the introduction suggests a natural protocol for a bargaining model. Three assumptions underlie this protocol. First, we assume that no agent can develop an idea into a product on his own. Second, we assume that the act of recruiting entails sharing information about the idea. The final assumption relates to the asymmetry between informed and uninformed agents. As the only element differentiating otherwise homogeneous agents is the knowledge of the idea, we capture this asymmetry by assuming that offers can be made only by informed agents.

We now present the model in detail. Let us consider a finite set of \(n > 2 \) agents, denoted by \(N \), among which there is a set of innovators \(K^0 = \{1, 2, \ldots, k^0\} \) that have an idea for a business venture. All the agents in \(N \setminus K^0 \) are initially unaware of the business idea. If developed, this idea can be implemented into one or more marketable products. The process of developing the idea requires the work of \(m + 1 < n \) agents, where \(m \geq 1 \).

The knowledge of the idea is necessary for any group of agents to develop it into products. Thus, if all the informed agents are in one firm, this firm enjoys a monopoly in the product market. Any knowledgeable agent who is not part of any existing firm can always try to form her own firm and develop the same or a similar product. This new firm will compete to some degree with the first firm on the final product market. We assume that the market can accommodate only two firms. We normalize the present value of all the profits earned by the first firm if the second firm never enters the market to be equal to 1. Let \(\pi_2 \) be the present value of all the profits earned by the second firm in competition. Then, notice that the present value of all the profits earned by the first firm is increasing in the delay with which the second firm enters the market. We let \(\pi_1 \leq 1 \) be the present value of all the profits of the first firm if a second firm forms after

\(^{13}\)The assumptions of this model are discussed further in Section 5.2.

\(^{14}\)This assumption is motivated by the uninformed agents being unaware of the existence of the idea or of its potential profitability. They become aware of it only when approached by an informed agent for the first time.

\(^{15}\)We discuss the relevance of this assumption in Section 5.2.
one period.16 We assume $\pi_1 \geq \pi_2$ and $\pi_1 + \pi_2 \leq 1$.17

The structure of the game builds recursively on two types of negotiation subgames. What distinguishes the two types of subgames is whether one firm has already formed or not.

Suppose we are at some history along the game at which a firm has not yet formed and the set of the informed agents, i.e. the agents who know the idea, is $K' \supseteq K^0$. We are now ready to introduce the first negotiation subgame. We assume that nature chooses with equal probability among the informed agents in K' the next agent to make an offer. The chosen agent, say agent $i \in K'$, can propose a division of the surplus, α, to a subset of agents $C' \subset N \setminus \{i\}$, including at least m agents. An offer is fully represented by the pair (C', α). The agents in C' have to decide simultaneously whether to reject or to accept the offer. The crucial assumption in this model is that all of the agents who receive an offer become informed, and the set of the informed agents becomes $C' \cup K'$. If at least one agent in C' rejects the offer, they enter a negotiation subgame in which no firm has formed. If all accept, then the first firm is formed, and two resulting cases are possible.

If $C' \supseteq K' \setminus \{i\}$, i.e. all the other informed agents are included in the offer, then the game ends; the firm implements the idea and enjoys a monopoly status. Any agent $j \in C'$ receives α_j, agent i receives $(1 - \sum_{j \in C'} \alpha_j)$, and agents in $N \setminus (C' \cup \{i\})$ receive zero. We refer to an offer such that $C' \supseteq K' \setminus \{i\}$ as a “grand coalition” offer. If $C' \not\supseteq K' \setminus \{i\}$, not all the informed agents become part of the first firm. The informed agents that are not part of the first firm can continue to negotiate until they form a second firm. We therefore enter a second type of negotiation subgame in which one firm has formed and for which the set of informed agents left in the game is $K' \setminus (C' \cup \{i\})$. In any terminal node following this history agent i receives $(1 - \sum_{j \in C'} \alpha_j)\pi_1$ and any agent $j \in C'$ receives π_2.

16Let product π_1^m and π_2^m be the monopolistic profit earned in one period by a firm producing the first and the second product, respectively. Let also $\pi_1^m < \pi_1^m$ and $\pi_2^m < \pi_2^m$ be the profits earned in one period by a firm producing the first and the second product, respectively, when both products are present on the market. Let the first product be the most profitable one, i.e. $\pi_1^m \geq \pi_2^m$ and $\pi_1^m \geq \pi_2^m$. Observe that if a second firm enters the market x periods after the first one, the first firm earns π_1^m for x periods, and then it starts earning π_1^m from then on. The payoff of the first firm is $\pi_1(d) = \pi_1^m \frac{1 - \delta^d}{1 - \delta} + \pi_1^m \frac{\delta^d}{1 - \delta}$. However, since a second firm never forms after more than one period after the first one, nothing changes in our analysis if we just assume the payoff of the first firm always to be equal to $\pi_1 \equiv \pi_1(1)$.

17These profits should be interpreted as incorporating any downstream effects due to imitation. Also, observe that $1 - \pi_1$ is a measure of the cost of competition for an incumbent firm. Since the first firm to form chooses the most profitable project, $\pi_1 \geq \pi_2$ and competition implies $\pi_1 + \pi_2 \leq 1$. See Section 5.2 for a discussion of the case in which $\pi_1 + \pi_2 > 1$.

8
receives $\alpha_j \pi_1$. We refer to an offer such that $C' \not
contains $K' \setminus \{i\}$ as a “sub coalition” offer.

Let us now introduce the second type of negotiation subgame. Such subgames ensue after some agent i has already formed a firm making a successful offer to the set of agents C'. Let K'' be the set of informed agents left in the game, that do not belong to i’s firm. With equal probability, an agent l is chosen from K'' to propose a division of the surplus to a set of agents $C'' \subset N \setminus (C' \cup \{i\} \cup \{l\})$, including at least m agents. Let β be the proposed division. If everybody accepts the offer, the game ends, agent l receives $(1 - \sum_{j \in C''} \beta_j) \pi_2$, and any agent $j \in C''$ receives $\beta_j \pi_2$. All the agents in $N \setminus (C' \cup C'' \cup \{i\} \cup \{l\})$ receive zero. If someone in C'' rejects offer β, then we enter a negotiation subgame in which one firm has formed and for which the set of informed agents is $K'' \cup C''$.

Note that we use unanimity as the rule that governs the formation of a firm, so that the offers are conditional upon the acceptance of all the agents involved. This implies that agents cannot make offers that are binding as soon as at least one agent accepts it (“unconditional offer”).

The game begins with a negotiation subgame for which the set of informed agents is K^0. We assume that there are frictions in bargaining due to impatience. These frictions are represented by a common discount factor $\delta \in (0, 1)$. Every time we enter a negotiation subgame, payoffs in that subgame are discounted by δ. If no agreement is reached, we assume payoffs are zero. All the agents have reservation values normalized to zero and are risk-neutral.

To analyze this model, we look at Symmetric Subgame Perfect Equilibria (SSPE). Among the SSPE, we look at those in which agents do not use weakly dominated actions when responding to offers.

For any player $i \in N$, a strategy s_i is defined for all histories at which agent i takes an action. For any history h, in which nature chooses the next offerer, let $k(h)$ denote the number of informed agents at that history and let $K(h)$ denote the set of these agents. In the analysis of the model, we compute the continuation values of the players at such histories. We denote the continuation value of an informed agent i at a given history h as $v^i(h)$. A property of the SSPE is that for any such
history h, all the informed agents have the same continuation value, i.e., $v^i(h) = v^j(h) = v(h)$ for all $i, j \in K(h)$.

3 The Partial Protection Regime

In this Section, we analyze the case in which patent protection is available, but information leakage can damage innovators during the development stage (i.e., the “Partial Protection” regime). This corresponds to the particular case of the model presented in the previous section in which $\pi_1 = 1$ and $\pi_2 = 0$. In Proposition 1, we characterize the unique SSPE for any initial set of innovators K^0. Then, in Corollary 2, we focus on the appropriation rate of a single innovator (i.e., the case $K^0 = \{1\}$).

Proposition 1 In the Partial Protection regime, if $m + 1 < n$ agents are needed to develop an idea, there is a unique SSPE. In this equilibrium the proposers always make offers to m agents. In the subgames in which there are uninformed agents, proposers always make offers to uninformed agents rather than informed ones.

To understand the proof and the intuition of this result, here we focus on the case in which $m = 1$, and we refer to the Appendix for the general case of $m \geq 1$. Let us denote by v_k the continuation value of an informed agent at a history in which there are k informed players and nature is about to choose the next offerer.\[^{21}\] To build the unique equilibrium sequence $\{v_k\}_{k=2}^n$ of the continuation values of each informed player, start with n informed agents. When everybody is informed, symmetry guarantees that the continuation value of every player is $v_n = \frac{\delta}{n}$, i.e., $1/n$-th fraction of the discounted pie δ.

When $n - 1$ agents are informed, consider the options of a proposer. He can either form a firm only with one or more informed agents, or he can include an uninformed agent in his offer. If the offer includes the uninformed agent, every agent has to be paid $v_n = \frac{\delta}{n}$. Suppose that he only offers to informed agents. Upon rejection, each of them is chosen as next proposer with probability $\frac{1}{n-1}$. In that event, each can guarantee themselves at least $1 - \frac{\delta}{n}$ by making an offer to the only uninformed agent. Thus, the amount $\frac{\delta}{n-1} \left(1 - \frac{\delta}{n}\right)$ represents a lower bound of the continuation value of an informed agent. However, as $\frac{\delta}{n-1} \left(1 - \frac{\delta}{n}\right) > \frac{\delta}{n}$, it is always optimal to offer to the only uninformed agent. This implies that $v_{n-1} = \frac{\delta}{n-1} \left(1 - \frac{\delta}{n}\right)$.

\[^{21}\] It can easily be showed that the equilibrium characterized in Proposition 1 is such that $v(h) = v(h')$ for any h, h' such that $k(h) = k(h')$. Thus, we use the notation $v_{k(h)} \equiv v(h) = v(h')$.

10
Working backwards by induction on the number of informed agents, assume that $k < n$ agents are informed, and the continuation value sequence is defined by $v_l = \frac{\delta}{k} (1 - v_{l+1})$ for all $l \in \{k+1, ..., n-1\}$. Again, by making an offer to an informed agent, a proposer has to pay him at least $\frac{\delta}{k} (1 - v_{k+1})$, and it can be shown that $\frac{\delta}{k} (1 - v_{k+1}) > v_{k+1}$. This implies that it is always optimal to make an offer to an uninformed agent rather than an informed one (i.e. information diffuses off the equilibrium path), and that $v_k = \frac{\delta}{k} (1 - v_{k+1})$ for all $k \in \{2, ..., n-1\}$. Moreover, since the sequence $\{v_j\}_{j=k+1}^{n}$ displays the property $l v_{k+l} > (l + 1) v_{k+l+1}$ for any $l \geq 1$, it is not optimal to make an offer to more than one agent.

Let us now turn to the intuition behind the information diffusion we just described. Let us focus on a proposer that has to choose between making an offer to either an uninformed agent or an informed one when k agents are informed. By offering to an informed agent (or to a subset of the informed agents), the proposer forces that agent to choose between joining the firm or rejecting the offer and competing against k other informed agents. By offering to an uninformed agent, the proposer makes him choose between joining the firm and competing against $k + 1$ informed agents. Thus, uninformed agents face a fiercer competition upon rejection, and this tends to lower their continuation value. This effect tends to make uninformed agents “cheaper” to recruit than informed ones. On the other hand, after receiving an offer and becoming informed, by the inductive hypothesis, we know that an uninformed agent will have “cheaper” potential employees in the event that, upon rejection, he is chosen to make the next offer. This effect tends to increase an uninformed agent’s continuation value with respect to the one of an informed agent. Proposition 1 shows that in equilibrium the first effect is stronger than the second. Thus, it is optimal to hire uninformed agents, and in equilibrium more and more agents become informed off the equilibrium path.

At this point, one could be tempted to think that if the threat of future competition makes hiring uninformed agents cheaper, a proposer could profit from flooding the market by making offers to many agents. Proposition 1 shows that this is never profitable. By offering to more than one (or, in the general case, more than m) uninformed agents, one reduces their continuation payoffs but also promises a share to each of them. As the continuation values decrease with decreasing increments, it is not profitable to “flood” the market.

Proposition 1 allows us to compute the appropriation rate of a single innovator with an original idea, that faces the risk of information leakage. In the equilibrium presented in Proposition 1, the innovator’s appropriation rate is $1 - mv_{m+1}$. Since the sequence $\{v_k\}_{k=2}^{n}$ is a function of m,
of the discount factor \(\delta \), let us denote the appropriation rate
\[v(m, \delta, n) = 1 - m v_{m+1}. \]
We use the notation
\[v(m, \delta, \infty) \equiv \lim_{n \to \infty} v(m, \delta, n), \]
\[v(\infty, \delta, \infty) \equiv \lim_{m \to \infty} v(m, \delta, \infty), \]

Corollary 2 The initial innovator always appropriates more than a share \(\frac{1}{m+1} \) of the profit.

When \(n \) becomes arbitrarily large, the innovator’s share is bounded above by \(1 - e^{-\delta} \) and bounded below by \(e^{-\delta} \). The upper bound is achieved when \(m = 1 \), and the lower bound when \(m \) becomes arbitrarily large.

Corollary 2 shows that when the innovator needs the help of just one more person to develop his idea (i.e., \(m = 1 \)), as \(\delta \) converges to 1 his appropriation rate converges to \(v(1, 1, \infty) = 1 - e^{-1} \approx 0.632 \), i.e., as the bargaining frictions disappear the innovator appropriates 63.2% of the value of his idea. This implies that, in the absence of both first-mover advantage and legal protection, the innovator enjoys an advantage that is driven by equilibrium incentives.

For very large \(m \), and as the bargaining frictions disappear, the presence of the information diffusion advantage keeps the appropriation rate of the innovator bounded away from zero. In particular, Corollary 2 says that \(v(\infty, 1, \infty) = e^{-1} \approx 0.368 \), i.e., the innovator’s share as the number of agents required to develop the product grows to infinity is always larger than 36.8%, and converges to this share as \(\delta \) converges to 1. This implies that the innovator is able to appropriate a sizable share of profits even though he needs to hire many agents to develop the business idea.

To see how this result departs from the standard bargaining literature, consider what happens in our model when \(m = 1 \) and \(n = 2 \). In this case there is no role for information diffusion. It is easy to see that in the only SPE, proposers always offer \(\frac{\delta}{2} \), and agents always accept the offer. As the players get more patient (\(\delta \) tends to 1), the first-mover advantage of the first proposer vanishes, and his payoff goes to \(\frac{1}{2} \).

It is also possible to contrast Proposition 1 and Corollary 2 with a version of the bargaining model in which information diffusion is possible, but doesn’t imply fiercer competition upon rejection. Consider the case in which \(m = 1 \), \(n > 2 \) but, when an agent rejects an offer, he is the next proposer with probability 1 (when more than one agent simultaneously rejects the same offer, each of them becomes the next proposer with the same probability). Consider an equilibrium in which proposers always offer \(v = \frac{\delta}{1+\delta} \) to one agent. This is an equilibrium as \(v \) satisfies \(v = \delta (1 - v) \). In this equilibrium the information diffusion does not play any role, and the payoff of the innovator is \(1 - \frac{\delta}{1+\delta} \), which is higher than \(\frac{1}{2} \) only due to a first-mover advantage.
In this equilibrium, making offers to uninformed agents is the same as making offers to informed agents since the competition among informed agents never arises. In our case, we have that
\[\lim_{\delta \rightarrow 1} v(\delta, n) = 1 - \frac{1}{2} (1 - v_3) > \frac{1}{2} \] for all \(n \) and \(\delta \). This is due to the presence of many agents and the competition arising upon rejection of any offer. In fact, off the equilibrium path, more and more agents become informed about the idea. This implies that upon rejection of an offer, the surplus is not going to be divided only among the current informed agents but among a larger set of agents. This effect works in favor of the innovator, as it lowers the continuation value of the agent he hires.

This concludes the analysis of the Partial Protection regime. In the next section, we analyze the No Protection regime.

4 The No Protection Regime

We now analyze a situation in which patents are not available (i.e., the No Protection regime), and the market can accommodate more than one firm. If this is the case, a monopoly is not guaranteed after the creation of the first firm. As a result, proposers face two problems when trying to form a firm. First, as in the previous Section, since the information gets transmitted while they bargain, they have to take into consideration the possibility of employees’ defection during the development stage. Second, if they do not include all the informed agents in their firm, a second firm can be formed, and they will eventually face competition on the final product market. As a consequence, instead of earning the whole surplus of the idea, the first firm gets \(\pi_1 \leq 1 \), and the second firm gets \(\pi_2 \).

At the heart of the analysis of this Section is the trade-off that at any given subgame a proposer faces between making an offer that include all the other \(k(h_i) - 1 \) other informed agents

\[22 \text{The second firm can either produce a product identical to the first firm, or it can exploit the idea in some secondary application. To interpret the parameters } \pi_1 \text{ and } \pi_2, \text{ notice that our model is consistent with two different situations: first, consider the case in which there is no secondary application for the idea, and the second firm produces a product identical to the first firm. In this case, the two firms compete on the same market, so that } \pi_1 \text{ and } \pi_2 \text{ are both very small. If the two products are differentiated, } \pi_1 \leq 1 \text{ is due both by the decrease in the first market’s size due to the presence of the second product and by some degree of substitutability between the two products. The parameter } \pi_2 \text{ measures the size of the market for the secondary application of the idea, and is also affected by the degree of substitutability between the two products. } \pi_1 \text{ close to } 1 \text{ occurs when the secondary application of the idea is is well-differentiated and relatively unimportant. } \pi_1 \text{ and } \pi_2 \text{ both close to } 1/2 \text{ may denote well-differentiated and equally significant applications.} \]
(preventing competition as market outcome), and making an offer that does not include all of them (accommodating market competition as market outcome). We refer to the first kind of offer as “grand coalition” offer, and to the second one as a “sub-coalition” offer.

The analysis of this Section focuses on two main questions. First, in this specification of the model, the market structure is determined endogenously in equilibrium. Whether we will observe monopoly or competition arising in the market depends on the way innovators solve their trade-off between grand coalition and sub-coalition offers.

Second, we are interested in the ability of a single innovator to appropriate the rents generated from his idea. Recall that in Section 3 we highlighted the presence of the Information Diffusion Advantage, that enabled innovators to appropriate sizable shares of the profits. However, if the additional threat of potential market competition is added, the optimality of offers that generate information diffusion is challenged. Proposers may prefer to preempt the threat of market competition by making grand coalition offers. Since these offers change the equilibrium structure, they might end up excluding any uninformed agent and preventing information diffusion. One may wonder to what extent information diffusion survives and still affects the innovator’s payoff.

On the other hand, in the absence of patents, it seems that the threat of market competition may serve to strengthen the bargaining power of innovators. Our aim is to check the impact of these competing effects on the appropriation rate of a single innovator.

To simplify the exposition, throughout this Section we assume that \(n \) is arbitrarily large and that \(m = 1 \). In the Appendix we present all the results of this Section for the finite \(n \) case.

Proposition 3

(i) If \(\pi_1 \geq \frac{1-\delta \pi_2}{1+\delta} \), there exists a \(\bar{k} \) such that for any subgame with \(k \geq \bar{k} \) informed agents, there is a unique SSPE. In this equilibrium proposers always make offers only to one uninformed agent. (ii) There exists a \(\bar{\pi} \in \left[\frac{1-\delta \pi_2}{1+\delta}, 1 \right] \) such that if \(\pi_1 \geq \bar{\pi} \), then \(\bar{k} = 1 \).

Implications on market structure Observe that if the game starts with one innovator, monopoly is always going to be the equilibrium market outcome. However, when the game starts with a larger set of innovators, trade-off between grand coalition and sub-coalition offers start to bite.

Note that in all SSPE, if the number of informed agents is high enough, a proposer can guarantee himself almost \(\pi_1 \) by making a sub-coalition offer. To see this, notice that in any SP Equilibrium \[23\] Anton and Yao (1994) show, in a related model, that the stronger the potential competition on the market, the higher the appropriation levels of innovators may be.
and any renegotiation subgame \(h \), the sum of the continuation values of the informed agents cannot be larger than \(\delta \), i.e., \(\sum_{i \in K(h)} v^i(h) \leq \delta \).\(^{24}\) If the strategies are symmetric, the continuation values of all the informed players must be equal. Because the pie is bounded in size, this means that when there are many informed agents, the continuation value of each agent must converge to zero. In turn, this implies that whenever an agent is called to make an offer, he can guarantee himself almost \(\pi_1 \) by offering to one agent his continuation value.

Proposition 3(i) offers conditions under which competition arises as equilibrium market outcome. In particular, Proposition 3(i) establishes sufficient conditions for agents to make only sub-coalition offers. If agents make sub-coalition offers, competition is the equilibrium market structure outcome. When there are many informed agents in a negotiation subgame, the cost of a grand coalition offer must be close or above \(\delta (\pi_1 + \delta \pi_2) \), as this is the minimal (discounted) pie that is going to be shared upon rejection. Therefore, by making a grand coalition offer, one can expect to receive at most \(1 - \delta (\pi_1 + \delta \pi_2) \). On the other hand, by making a sub-coalition offer the proposer can secure a payoff of almost \(\pi_1 \). Thus, if \(\pi_1 > 1 - \delta \pi_1 - \delta^2 \pi_2 \) (i.e., if \(\pi_1 > \frac{1-\delta^2 \pi_2}{1+\delta} \)), no grand coalition is offered for high \(k \).

Proposition 3(i) implies that if the degree of potential market competition is low and the number of informed agents is high enough, competition is always the equilibrium market outcome. Notice that since \(\pi_1 + \pi_2 \leq 1 \), this prediction is in contrast to bargaining efficiency, which would require monopoly to arise. The source of this inefficiency is that proposers are restricted in their strategies. Proposers are forced to offer to all the informed agents if they want to sustain a monopoly. When the number of informed agents is high and the difference between monopoly rents and \(\pi_1 \) is low, proposers may find it optimal to generate competition instead.

Implications on appropriation rates We start the discussion with an observation: if exactly two agents are informed, the continuation value of each of them is at most \(\frac{\delta}{2} \). This implies that the innovator can always secure \(1 - \frac{\delta}{2} \) by offering \(\frac{\delta}{2} \) to one agent.\(^{25}\) Thus, \(v(\delta) \equiv 1 - \frac{\delta}{2} \) represents a lower bound of the appropriation rate of a single innovator. Proposition 3(ii) shows that the equilibrium characterized in Section 3 holds and is still unique for a range of values of \(\pi_1 \). Let us now look more carefully at the appropriation rate of the innovator in this equilibrium.

\(^{24}\)This follows trivially from the fact that at any history \(h \), the informed agents are dividing a discounted pie that is smaller or equal to 1.

\(^{25}\)Note that this is a result of the assumption that only one agent is needed in the production function. When the production function involves more and more agents, the minimum payoff an agent can secure tends to \(1 - \delta \).
It can be showed (see the Appendix) that the generic element of the sequence \(\{v_k\}_{k=2}^n \) for large \(n \) is

\[
v_k = \pi_1 \left(\sum_{i=1}^{\infty} \frac{(-1)^{i-1}\delta^i(k-1)!}{(k-1+i)!} + \sum_{i=1}^{\infty} \frac{\delta^i}{k} \right) + \pi_2 \sum_{i=1}^{\infty} (k+i) \sum_{j=1}^{\infty} \frac{\delta^j}{(k+i+j)!} \frac{(k+i)!}{(-1)^{j-1}} \]

The innovator’s appropriation rate is given by

\[
v(\delta, \infty) = 1 - v_2 > 1 - \frac{\delta}{2} = \nu(\delta)\]

The innovator’s ability to guarantee a share larger than \(1 - \frac{\delta}{2} \) is now due to two effects. The first effect, the information diffusion advantage, was introduced in Section 3. As the equilibrium involves information diffusion, the innovator enjoys the lower continuation value of the employee he offers to. This effect allows the innovator to be able to appropriate more than half of the surplus of the continuation game, i.e. \(\pi_1 + \delta \pi_2 \).

However, the innovator is succeeding in getting even a higher share. The innovator is able to appropriate also the entire gap between monopoly profits and the surplus under competition, i.e., \(1 - (\pi_1 + \delta \pi_2) \). The innovator is able to do that as he can credibly threaten a potential employee that if he rejects, the result will be market competition. We term this new effect the “threat of competition advantage”.

To understand the “threat of competition advantage”, notice that the continuation value of the potential employee \(v_2 \) is increasing in both \(\pi_1 \) and \(\pi_2 \). When competition arises in any subgame, the total pie that is divided among agents is \(\pi_1 + \delta \pi_2 \). Therefore, as the value of the pie increases, the agents’ continuation values increases as well. However, the appropriation rate of the innovator decreases in both \(\pi_1 \) and \(\pi_2 \). As \(\pi_1 \) and \(\pi_2 \) decrease, the threat of competition in the subgame that ensues in case of a rejection becomes more powerful. This enables the innovator to pay less to his employees and therefore increase his own share of the profit.

The link between fiercer potential competition on the market and higher bargaining power of the innovators is very intuitive. In a different model that does not allow for information diffusion and its implications on market competition, Anton and Yao (1994) consider this effect and show that fiercer competition on the market cannot hurt the innovator and often strengthens his position. Proposition 3 shows that in a model that allow for information diffusion, for low degrees of potential market competition, the threat of competition is credible, and the innovators does in fact exploit it.
In the next result we focus on the case in which the potential market competition is strong, i.e. π_1 is low.

Proposition 4 If $\pi_1 < 1 - \delta$, there is a unique SSPE. In this equilibrium proposers always make grand coalition offers.

Implications on market structure The intuition behind Proposition 4 is the following: the cost of making a grand-coalition offer never exceeds δ. Therefore, a grand coalition offer always guarantees a payoff of at least $1 - \delta$. On the other hand, a sub-coalition offer guarantees at most π_1. Therefore, if $\pi_1 < 1 - \delta$, no agent would ever make a sub-coalition offer, no matter how many informed agents there are on the market.

Proposition 4 guarantees that if π_1 is low, monopoly always arises. This implies that no matter how many innovators are initially aware of the new idea, information remains confined within the boundaries of one firm.

The last result has an important implication about information diffusion. Proposition 4 shows that if π_1 is low, offers never include uninformed agents, and grand coalition offers are made only to informed agents. This implies that information diffusion never occurs either on or off the equilibrium path. In the next Section we analyze how this feature of the equilibrium relates to the innovator’s appropriation rate.

Implications on appropriation rates In Proposition 4 we show that for high degrees of potential market competition, the threat of competition ceases to be credible. As a result, the innovator’s position is compromised, and he is unable to appropriate the gap between the monopoly and competition rents.\(^{26}\) In particular it is easy to show that in the equilibrium described in Proposition 4 the appropriation rate of a single innovator is $1 - \frac{\delta}{2}$.

Proposition 4 has implications also on the employees’ wages. Notice that the firm that arises

\(^{26}\)This result contrasts with the results of Anton and Yao (1994). Our “Threat of Competition Advantage” effect is a notion present in Anton and Yao’s framework as well. However, we show that when the potential market competition is strong this effect ceases to hold. To avoid the strong market competition, all the proposers in the bargaining game will tend to generate a monopoly by making “grand coalition” offers. This has two implications: first, the “threat of competition” is not credible, and, second, all the informed agents anticipate they will be included in any future offer. Both these effects go in the direction of making employees relatively expensive to hire. As a consequence, the innovator is not able to enjoy either a “Threat of Competition Advantage” or an “Information Diffusion Advantage”.
in this equilibrium demands a high wage for the employee. This is because, in the equilibrium described in Proposition 4, informed agents are always included in the grand coalition offers made in equilibrium.27

Next, we check the equilibrium outcomes for the middle range of potential market competition, i.e., \(\pi_1 \in (1 - \delta, \frac{1-\delta^2 \pi_2}{1+\delta}) \).

Proposition 5 If \(\pi_1 \in (1 - \delta, \frac{1-\delta^2 \pi_2}{1+\delta}) \), (1) there is a \(k \) such that for all subgames with \(k > k \) informed agents, there exist both a SSPE in which offers are made to only one uninformed agent and a SSPE in which offers are made to a grand coalition.

To understand the intuition for this result consider an equilibrium in which competition arises. One can sustain competition in every subgame using the following strategies. As long as proposers make sub-coalition offers, the continuation game involves future sub-coalition offers. This entails a large share of the profits to the proposers. But proposers may be tempted to go for a grand coalition offer. Such behavior is discouraged by the threat that if such offers are made, continuation games will involve further grand coalition offers that, as we will see in next, tend to increase the continuation value of the employees.

Corollary 6 In the interval \([1 - \delta, \frac{1-\delta^2 \pi_2}{1+\delta}]\) one can sustain equilibria in which the innovator appropriates the minimum appropriation rate, \(1 - \frac{\delta}{2}\), as well as equilibria in which he is able to appropriate more than that.

In the middle range, a competitive market outcome is sustainable only if the number of informed agents is high enough. However, Proposition 5 shows that there are equilibria where a single innovator can still benefit from it. In fact, in the equilibrium we present in the Appendix, the

\[k^0 > 1 \]

initial innovators, “grand coalition” firms arise and they demand high wages for the employees. Note that all the employees of the firm are guaranteed strictly positive shares of the profits, even though their marginal contribution to the firm’s production is zero. This is because the agents are paid not according to their productivity but rather according to the information that they hold. Observe that if we compare the wage that an employee earns in the firm that forms in equilibrium (i.e. \(\tilde{v}_{k^0} \)) with the wage that an employee earns in the firm that forms in equilibrium in a Partial Protection regime (i.e. \(v_{k^0+1} \)), we get that \(\frac{\tilde{v}_{k^0}}{2} > v_{k^0+1} \). The difference \(\frac{\tilde{v}_{k^0}}{2} - v_{k^0+1} \) is explained by the fact that if there are no patents and \(\pi_1 \) is low, an informed agent is always included in the grand coalition that forms upon his rejection. This result is in line with interesting empirical findings by Kumar, Rajan and Zingales (2001), who, in a cross-section and cross-country analysis on firm size, show that one of the explanatory variables of larger firm size is the presence of high wages in the industry.

27 For the case of \(k^0 > 1 \) initial innovators, “grand coalition” firms arise and they demand high wages for the employees. Note that all the employees of the firm are guaranteed strictly positive shares of the profits, even though their marginal contribution to the firm’s production is zero. This is because the agents are paid not according to their productivity but rather according to the information that they hold. Observe that if we compare the wage that an employee earns in the firm that forms in equilibrium (i.e. \(\tilde{v}_{k^0} \)) with the wage that an employee earns in the firm that forms in equilibrium in a Partial Protection regime (i.e. \(v_{k^0+1} \)), we get that \(\frac{\tilde{v}_{k^0}}{2} > v_{k^0+1} \). The difference \(\frac{\tilde{v}_{k^0}}{2} - v_{k^0+1} \) is explained by the fact that if there are no patents and \(\pi_1 \) is low, an informed agent is always included in the grand coalition that forms upon his rejection. This result is in line with interesting empirical findings by Kumar, Rajan and Zingales (2001), who, in a cross-section and cross-country analysis on firm size, show that one of the explanatory variables of larger firm size is the presence of high wages in the industry.
innovator’s payoff is higher than $1 - \frac{\delta}{2}$ even if a competitive market outcome can be sustained only for a high enough number of informed agents. The innovator’s success is again due both to the information diffusion and to the threat of competition advantages.

The analysis carried out in this Section highlights that, in the absence of legal protection, innovators’ appropriation rates are still protected by equilibrium effects. In particular, we can state the following Corollary:

Corollary 7 Whenever $\pi_1 \geq 1 - \delta$ there exist equilibria that provide the innovator with appropriation rates that are bounded away from the lower bound $1 - \frac{\delta}{2}$.

5 Discussion

5.1 Welfare Implications

A vast literature analyzes the use of IPR to increase the incentives to innovate.\(^{28}\) We suggest that the effect of patents on the incentives to innovate must be examined more carefully and that the importance of IPR may have been overvalued. In estimating the trade-off between the harms and benefits of IPR, too much weight was given to the benefit side in providing incentives to innovate.

This overestimate is due to the fact that the strategic aspects of information diffusion have not been taken into consideration. Our analysis of the Partial Protection regime suggests how information leakage in the development process of a product affects the appropriation rate of an innovator. As a consequence, in the absence of perfect protection of IPR, the innovator’s payoff is protected by the information diffusion advantage.

Our analysis of the No Protection regime suggests that incentives to innovate do not disappear even when patents are not available.\(^{29}\) In particular, as we have seen, monopoly can arise as a market outcome even in the absence of IPR. This outcome protects innovators from high degrees of potential market competition, and allows to identify a lower bound for innovators’ appropriation rates. For lower degrees of potential market competition the innovator’s payoff is still protected by the information diffusion advantage. Moreover, potential market competition

\(^{28}\) The literature on patents is very large. Just to mention the main papers that opened this field, see Schumpeter (1943), who raised the claim that monopoly is necessary to encourage R&D, and Arrow (1962), who addressed the question of how much the firm gains from innovation if a life-long patent is available.

\(^{29}\) See Boldrin and Levine (2003) for a similar conclusion drawn from a setting in which goods can be duplicated and sold on perfectly competitive markets.
may allow innovators to enjoy an additional increase in payoff due to the *Threat of Competition Advantage*. We showed that, if $\pi_1 \geq 1 - \delta$, there are always equilibria where these two effects protect the innovator’s payoff (Corollary 7), while if π_1 is relatively high, an equilibrium where these two effects are at work is unique (Proposition 3).

Another normative point regards the endogenous market structure analysis. Consider the monopoly market outcome that arises for high degrees of potential market competition (i.e., for very low levels of π_1). There are several reasons that suggest that such an outcome is not socially desirable. First, a monopolistic outcome from the point of view of consumers, is indistinguishable from the introduction of a patent. Second, the monopoly outcome is based on information remaining confined within the boundaries of the firm. This implies that this outcome precludes any potential information disclosure from the firm. This is not socially desirable as information disclosure may stimulate incremental research and future discoveries.\(^{30}\) Finally, from the point of view of the innovator’s incentives, we showed that when monopoly is the market outcome the appropriation rate is the lowest possible. This is because the innovators have to bear high costs to recruit all the informed agents, that in this equilibrium have high continuation values. This suggests that departing from the *No Protection* regime to introduce *narrow patents* should improve social welfare. This is because narrow patents capture the situations in which the second firm markets a product very similar to the first one (i.e., low π_1), but do not apply to lower degrees of market competition, where the social costs of patent introduction may be higher.\(^{31}\)

The legal literature has suggested that innovation still takes place in the presence of weak enforcement of IPR. In particular, in contrast with common wisdom, Hyde (2000) points out that the high innovation rate observed in Silicon Valley cannot be understood without considering the weak IPR enforcement guaranteed by the State of California.\(^{32}\) Hyde’s claims are based on the

\(^{30}\)It has been observed (see Scotchmer (1991) and Scotchmer (1999)) that when one firm is the exclusive user of a new technology (either because of secrecy or because of a patent), cumulative research may end up being discouraged. This argument usually relies on the assumptions that either frictions or specialization prevent the first patent-holder from fully exploiting all the applications of his patent.

\(^{31}\)If the degree of potential market competition is low, we can have a competitive market outcome. First, this is desirable for consumers. Second, it allows for information disclosure as agents do not have incentives to keep information secret. This may stimulate incremental research. Finally, for high π_1, the appropriation rates of innovators are high and their incentives to innovate are relatively protected.

\(^{32}\)California prohibits no-compete clauses (unless one of a number of exceptions are met). The application extent of patents and copyrights in the software industry is also an issue that does not seem to have found a precise legal answer yet (see Besen and Raskind (1991)).
assumption that when IPR are weak, information diffusion occurs. However, he does not take into account the incentives of firms to protect themselves against information leakage. In contrast, our model accounts for the incentives that innovators have to protect their information, and delivers a result that motivates why their incentives to innovate do not disappear.

Consider the high-tech industry in Silicon Valley. This industry is characterized by a very rapid growth of markets, by a constantly increasing number of applications of high-tech ideas, and by a geographical concentration that facilitates communication. These facts suggest that \(\pi_1, \pi_2, \) and the number of agents initially aware of new ideas are all high. Our results show that in these cases innovators' appropriation rate are relatively high and competition will arise. This implies that information diffusion may occur, and ideas are likely to be fully exploited and disclosed to stimulate future incremental research.

5.2 Modelling Assumptions

Information Leakage. An important feature of our model is the presence of information leakage, which is captured by assuming that developing an idea requires collaboration and that collaboration entails information sharing. The first of these assumptions is motivated by a production function increasing in labor. Involving more people in the development stage may increase productivity and quicken the development process. The second assumption is motivated by the incentives of innovators to inform their employees. Information is an input into the development process. The more information is shared with co-workers, the more efficient the development stage may be.

Therefore, the innovator faces a trade-off. On one hand, he would like to collaborate with a number of other agents and inform them. On the other hand, he has an incentive to hold information back as he fears information leakage and employee defection. Innovators will often solve this trade-off by collaborating with some agents and sharing information to some extent.

In this paper we abstract from the above trade-off by assuming that innovators *must hire* a minimal number of agents, and must share *all of the information* with them. These assumptions simplify our analysis and allow us to focus attention on innovators' appropriation rates. As our results are positive from the point of view of innovators, weakening these assumptions would only strengthen our results.

The assumption of information sharing should not be interpreted in the sense that all the information is exchanged immediately at the time of an offer. We prefer the point of view that
contracts on undeveloped ideas do not become immediately binding. However, there is a moment in which they do. This moment occurs when the idea becomes well defined and when someone defecting from the original team can still successfully compete with the other informed agents in the development process. We think in terms of a situation in which an agent can defect at any time between the moment at which they learn the information and the moment at which the contract becomes binding.

Bargaining Protocol. The bargaining protocol we use in this paper is a natural benchmark of the applied situation that we address. The symmetry of the probabilities with which nature chooses the next proposer captures the symmetry among the informed agents. Once an agent is made aware of the information, nothing differentiates him from the inventor anymore.\(^{33}\) This implies that every informed agent should have the same probability of being the next proposer. Similar results to those reported in this paper arise in other specifications of the model. The analysis of an alternative specification in which informed agents make *simultaneous offers* is available on request from the authors.

In our model, when an agent receives an offer, he is invested with two distinct abilities: he perfectly learns the idea, and he receives veto power on the success of the offer itself (i.e., the offers are *conditional* upon the acceptance of all the agents included in them).\(^{34}\) It is interesting to discuss the consequences of altering these assumptions by weakening the position of the recipient of an offer. However, we want to stress that, since the results in this paper show that in the absence of perfect IPR innovators are still protected by equilibrium effects, improving the position of the innovator always results in strengthening the point of this paper. The consequences of decreasing the recipients’ ability to understand the idea are discussed in an extension of the model presented in Section ??.

Relaxing the second assumption amounts to consider *unconditional* offers. If offers are unconditional, the acceptance of one agent is enough for the offer to be binding and for a firm to form. We find these kinds of offers unfit for our applied situation because we want to capture the competition that arises among the informed agents once they all know the information. In order

\(^{33}\)For symmetric offer probabilities see also Baron and Ferejohn (1989). One could think about an extension in which the inventor has a deeper understanding of the idea that gives him an advantage in the competition in being the next offerer, and therefore to be chosen by nature with higher probability. Besides increasing the appropriation rates of the inventor, we conjecture that this would not change the quality of the results.

\(^{34}\)This assumption is consistent with other models in the literature on intra-firm bargaining: both Stole and Zweibel (1996) and Wolinsky (2000) assume renegotiation of all contracts once an agent has defected from the firm.
to do so, we give the possibility of counter-offers to all the informed agents.

In a version of our model in which \(\pi_1 = 1, \pi_2 = 0 \) and unconditional offers are possible, consider the situation in which the innovator offers zero to two agents, and they both accept. This is an equilibrium, since none of the agents is pivotal in the formation of the firm, but the agents are not given the chance to make a counter-offer after they learn the idea.\(^{35}\)

Market competition. For simplicity, in our model the market can accommodate at most two firms. It is possible to relax this assumption and allow the final product market to accommodate any number of firms. As the number of firms increases, the competition gets fiercer, and the profits of all the pre-existing firms decrease.\(^{36}\) This extension does not change the quality of our results. This is because the proposers still face the trade-off between a grand-coalition offer that would guarantee a monopoly and a sub-coalition offer that would allow competition to emerge. The potential competition may be more harmful for the first firm, as in competition it can expect to get *at most* \(\pi_1 \). This increases the incentives to make grand-coalition offers, and expands the range of parameters for which we expect a grand-coalition to emerge.

In the presentation of the model, we restrict our attention to the case in which \(\pi_1 + \pi_2 \leq 1 \), i.e. the presence of a second firm can only generate competition and dissipate some of these rents. Relaxing this assumption and allowing for the case \(\pi_1 + \pi_2 > 1 \) requires some frictions to prevent the first firm from developing both applications.\(^{37}\) However, the analysis of the \(\pi_1 + \pi_2 > 1 \) case yields similar results.\(^{38}\)

Equilibrium concept. Focusing our attention to SSPE simplifies the analysis by making the computation of the equilibrium continuation values sequence tractable. Enlarging the set of

\(^{35}\)In turn, this leads to a lower bound for the innovator’s payoff in the *no protection* regime: the innovator has now the possibility to make an offer to 2 agents and get \(1 - 2\delta \pi_2 \). For low values of \(\pi_2 \), this is an improvement with respect to the bound \(1 - \frac{\delta}{2} \). The results on endogenous market structure display a trade-off between grand-coalition or cost-minimizing offers similar to the one present in the model we analyze.

\(^{36}\)All the possible profits are represented by a triangular \(m \times m \) matrix \(\Pi \), such that the generic element \(\pi_{i,j} \) is the profit of firm \(i \) if \(j \) firms are on the market. We have \(\pi_{i,j} > \pi_{i,j+1} \) and \(\pi_{i,j} \geq \pi_{i+1,j} \) for all \(i, j \). Moreover, increased competition lowers the sum of the profits, i.e. \(\sum_{i \leq j} \pi_{i,j} > \sum_{i \leq j+1} \pi_{i,j+1} \) for all \(i, j \).

\(^{37}\)E.g. timing problems, necessity to specialize, increasing management costs etc.

\(^{38}\)In particular, if \(\pi_1 + \pi_2 > 1 \), it can be easily checked that when all the \(n \) agents are informed a grand coalition offer costs at least \((n - 1) \pi_2 \). Then, whenever \(\pi_1 > 1 - \delta \), for a high enough number of informed agents competition arises. Notice that the case \(\pi_1 \leq 1 - \delta \) is not consistent with the assumption \(\pi_1 \geq \pi_2 \) in the case in which \(\pi_1 + \pi_2 > 1 \). This implies that for high enough \(k \) we always have a competitive market outcome. However, for lower \(k \) we could still have monopolistic market outcomes.
equilibria to all the Subgame Perfect equilibria is likely to generate a high level of indeterminacy in the predictions of the model. For instance, in the Partial Protection regime, enlarging the set of equilibria to all the SPE leads to a result in which both almost full appropriation and almost no appropriation can be supported in equilibrium when agents are very patient.

The focus on SSPE allows us to highlight the strategic aspects that are specific to our bargaining model in contrast to other models of multi-agent bargaining. Our analysis introduced a novel equilibrium effect that is driven by the endogeneity of the set of potential proposers. We have shown that the implication of this effect was an asymmetry in the equilibrium payoffs that holds even as bargaining frictions disappear.

A possible alternative to SSPE could have been to require equilibria to be stationary with respect to the number of informed agents. Although most of the predictions of our analysis remain the same under this alternative equilibrium concept, we believe that not allowing strategies to depend on histories is too restrictive to uncover all the strategic insights that the model produces. Moreover, we conjecture that for a substantial range of parameters, stationary equilibria may not exist for an infinite-\(n \) version of the model.

Matching heterogeneous agents. In our model, we assumed that agents are homogeneous and that the only element that differentiates them is the knowledge of the idea. An interesting extension of our model is to consider a market populated by two types of agents, say type A and type B (e.g., engineers and venture capitalists). A firm must be formed by an assortative match of these two types. It is easy to show that our results in the partial protection regime extend to this situation. This suggests an important implication of our model on the incentives to finance new ideas. We differentiate between the moment in which an idea arises and the

\[\text{\footnotesize 39}\text{It can be shown that the only SSPE found in Proposition 1 is also the only Stationary SP equilibrium in the partial protection regime. Also, in the no protection regime, we find grand-coalition offers for high degrees of competition, and cost-minimizing offers for low degrees of competition under Stationary SP equilibria.}\]

\[\text{\footnotesize 40}\text{In particular, we conjecture that this happens for } \pi_1 \in \left[1 - \delta, \frac{1 - \delta^2}{1 + \delta^2}\right]. \]

\[\text{\footnotesize 41}\text{Assume that there are } n \text{ agents of type A and } n \text{ agents of type B and that a type-A agent is the first to make an offer. It is easy to see that the quality of our results remains intact. In fact, in a partial protection regime, suppose that all } 2n \text{ agents are informed. Then, symmetry guarantees that the continuation value of each agent is } \frac{\delta}{2n} \text{ regardless the type. Suppose now that there is one type-A agent uninformed. If a type A is chosen to make an offer, he can just hire an informed type B agent for } \frac{\delta}{2n}. \text{ On the other hand, if a type B is chosen to make an offer, by hiring an informed, he has to pay at least } \frac{\delta}{2n - 1} (1 - \frac{\delta}{2n}), \text{ while offering to an uninformed, he has to pay just } \frac{\delta}{2n}. \text{ Working backward, we can build the unique SSPE in which uninformed agents are always made offers to when available.} \]
beginning of its development. While the process of financing innovation was traditionally seen as an up-front investment followed by a research stage, this view has changed dramatically recently. After getting a new idea at a relatively low cost, inventors now search for investors to finance its development. Our results suggest that the presence of information leakage increases the share appropriated by a venture capitalists, so that a weak protection of IPR improves the return of the investment in the development of new ideas. In fact, even in the presence of a competitive market for venture capitalists, the presence of information leakage increases the bargaining power of venture capitalists and increases their appropriation rate with respect to a perfect protection legal regime.

Partial information leakage. Throughout the analysis, we assumed that the act of hiring/developing necessarily involves full sharing of the information about the idea. Obviously, this is a strong assumption. Organizations find ways to secure information against insiders as well as against outside intruders. Information is often classified, and different agents gain access to different pieces of information. These measures will tend to decrease the amount of information that the innovator must share with potential employees. But as long as these measures are costly, some information will always leak. One way to model such an extension is to assume that there is a probability α with which an agent who is made an offer learns the idea. Again, we expect our qualitative results to hold. The SSPE in the partial protection regime is still unique and the payoff for the innovator is higher than the payoff of the partner. For high n, the payoff to the innovator is $\frac{1}{\alpha^2}(1 - e^{-\alpha \delta})$, which is higher than the payoff to the innovator when there is full information sharing. Moreover, the innovator’s appropriation rate is decreasing in α and reaches full appropriation when α approaches zero.

Unstable offers. In our model, we assumed that once a firm forms, it is stable and it completes the development of the product. An alternative modelling assumption can be made. In particular, we can assume that once a firm forms, it breaks down with some exogenous probability $\alpha > 0$. In this case, the pie to share in the next period becomes $\frac{1-\alpha}{1-\delta^2}$ in the monopoly case, $(\pi_1 + \delta \pi_2) \frac{1-\alpha}{1-\delta^2}$ in the competition case. The results in our paper are robust for low α. In particular, uninformed agents receive offers, and an information diffusion advantage protects the innovator’s payoff. This extension is interesting since in equilibrium information diffusion arises on the equilibrium path.

Cost of transmitting information. Our results are robust to the extension in which it is costly to transmit information. In particular, assume that making an offer to an uninformed agent involves
some training, or time spent in explanations, which translates into some cost \(c > 0 \). Making an offer to an informed agent allows the proposer to save this cost. This modification implies that, when a high enough number of people are informed, proposers will stop making offers to uninformed agents, even if some will still be present. However, as long as \(c \) is small enough, an information diffusion advantage is present and protects the innovator’s payoff. Qualitatively, the results of the No Protection regime are also unchanged.

6 Conclusion

This paper introduces a new bargaining model to analyze the distribution of rents in firms in the presence of information leakage. In this model, employees’ rents endogenously reflect their bargaining power vis-a-vis the firm, which is due to their knowledge of information. In particular, we have focused on the quantification of the informational costs of implementing ideas and on the market structure that arises due to information diffusion.

We have shown that in the absence of IPR for ideas, innovators are still able to secure substantial shares of the rents of their ideas. We have highlighted two equilibrium effects that allow this to happen, which we named “Information Diffusion Advantage” and “Threat of Competition Advantage”. In equilibrium, employees fear that if they try to defect from the innovator’s offer, information diffusion and competition will arise and dissipate their rents.

We believe that the model analyzed in this paper is a building block with which one can analyze the dynamics of innovation in firms and industry formation. As a first step in this direction, in Baccara and Razin (2004) the analysis carried out in this paper allows us to analyze the firm dynamics that emerge because of incremental research. In particular, we use the model introduced in this paper to analyze how variables such as firm size and firm governance affect the incentives of established firms to shield themselves from the changes that innovation brings with it.

References

Appendix

Definition of SSPE

Before we specify the notion of equilibrium we adopt, let us introduce the set of possible histories of this game, \(H \). The set \(H \) can be decomposed into the subsets \(H_O, H_R, H_N \) and \(H_T \). The set \(H_O \) includes all the histories at which an agent is called to make an offer, and we denote by \(h_i \) a generic history in \(H_O \) at which agent \(i \) is called to make an offer. The set \(H_R \) includes all the histories at which agents are simultaneously called to reply to an offer, the set \(H_N \) includes all the histories at which nature chooses the next proposer, and the set \(H_T \) include all the terminal histories. Every history in \(H_O \) is followed by a history in \(H_R \), and every history in \(H_R \) is followed either by a history in \(H_T \) or by a history in \(H_N \). Every history in \(H_N \) is followed by a history in \(H_O \).

Let \(K(h) \) be the set of informed agents in the game at history \(h \in H \), and let \(k(h) \equiv \text{card}(K(h)) \).

For any player \(i \in N \), a strategy \(s_i \) is defined for all histories in \(H \) at which agent \(i \) takes an action, specifically for all histories in \(H_O \) at which he is called to make an offer and all histories in \(H_R \) at which he is called to reply.

To define Symmetric Subgame Perfect Equilibria, we first have to require strategies to be anonymous. Let \(\sigma_i \) be a mixed strategy of player \(i \in N \). We say that \(\sigma_i \) is anonymous if at any history \(h_i \in H_O \), \(\sigma_i(h_i) \) can be described by a triple \((n^I, n^U, \gamma)\), where \(n^I \) and \(n^U \) are the number of informed and uninformed agents getting the offer, respectively, and \(\gamma \) is the vector of shares offered to each agent.\(^{42}\) The agents included in the offer are randomly chosen from among the two groups.\(^{43}\) The vector \(\gamma \) has dimension \(n^I + n^U \). The first \(n^I \) elements, the shares offered to the informed agents, are all equal to \(\gamma^I \) and the remaining \(n^U \) elements, the shares offered to the uninformed agents, are all equal to \(\gamma^U \).\(^{44}\)

Definition 1 A Subgame Perfect equilibrium is Symmetric if \(\sigma_i \) is anonymous for any \(i \in N \) and at any \(h_i, h_j \in H_O \) following the same history \(h \in N \), \(\sigma_i(h_i) \) and \(\sigma_j(h_j) \) can be described by the same triple \((n^I, n^U, \gamma)\). Moreover, at any \(h' \in H_R \), \(\sigma_i(h') \) and \(\sigma_j(h') \) are the same for any \(i \) and \(j \) who are playing at \(h' \).

\(^{42}\)This implies that \(n^I \in \{0, 1, \ldots, k(h_i) - 1\} \), \(n^U \in \{0, 1, \ldots, n - k(h_i)\} \), and \(\gamma \) is such that \(\gamma \geq 0 \) and \(\sum_i \gamma_i \leq 1 \).

\(^{43}\)Then, since at history \(h_i \) there are \(\text{card}(K(h_i)) \setminus \{i\} \) informed agents and \(\text{card}(N \setminus K(h_i)) \) uninformed agents, each informed agent gets the offer with probability \(\frac{n^I}{\text{card}(K(h_i)) \setminus \{i\}} \), and each uninformed agent gets the offer with probability \(\frac{n^U}{\text{card}(N \setminus K(h_i))} \).

\(^{44}\)More generally, we could allow for any mixture of these strategies. The results would remain the same under this alternative formulation.
Proof of Proposition 1: The sequence \(\{v_k\}_{k=2}^n \) of the continuation values of the informed players at the beginning of a renegotiation subgame with \(k \) informed player is defined by \(v_n = \frac{\delta}{n} \), \(v_k = \frac{\delta}{n} \left(1 - (n-k) \frac{\delta}{n} \right) \) for \(n - m \leq k < n \) and \(v_k = \frac{\delta}{n} \left(1 - m v_{k+m} \right) \) for \(k < n - m \).

We show that this is the only SSPE by backward induction on the number of informed agents \(k \):

Let all the \(n \) agents be informed. Then, symmetry guarantees that \(v_n = \frac{\delta}{n} \).

Let now the number of informed people be \(n - 1 \). Any proposer can involve the only uninformed agent in his offer or decide to offer only to informed agents. If the offers includes the uninformed, each player included in the offer has a reservation value of \(\frac{\delta}{n} \).

We claim that if the offer does not involve the uninformed agent, each player has to be paid at least \(\frac{\delta}{n-1} \left(1 - m \frac{\delta}{n} \right) + \frac{\delta (m-1)}{n-1} \frac{\delta}{n} \). To prove this claim, observe that upon rejection, an informed agent, say \(i \), will be the next proposer with probability \(\frac{1}{n-1} \) and in that case he could decide to make an offer involving the uninformed, and get \(\left(1 - m \frac{\delta}{n} \right) \). If he is not chosen as next proposer (event that occurs with probability \(\frac{n-2}{n-1} \)), only two cases are possible: the next proposer is going to include the uninformed in the offer, or the next offer is not going to include the uninformed in the offer. In the first case, symmetry guarantees that player \(i \) is going to be included in the offer with probability not inferior to \(\frac{m-1}{n-2} \) (the probability is going to be greater if the offer involves more than \(m \) people) and he gets \(\frac{\delta}{n} \), while in the second case, symmetry guarantees that player \(i \) is going to be included in the offer with probability not inferior to \(\frac{m}{n-2} \) and that the least he gets is \(\frac{\delta (1 - \frac{\delta}{n})}{n-1} \) as the entire pie to share among all the agents is \(\delta \), while a maximum of \(\frac{\delta}{n} \) can be appropriated by the uninformed. Then, we have that the expected value in the first and second case are respectively \(\frac{m-1}{n-2} \frac{\delta}{n} \) and \(\frac{m}{n-2} \frac{\delta (1 - \frac{\delta}{n})}{n-1} \). It is easy to see that \(\frac{m-1}{n-2} \frac{\delta}{n} < \frac{m}{n-2} \frac{\delta (1 - \frac{\delta}{n})}{n-1} \). This implies our claim. In fact, if the offer does not involve the uninformed agent, each player has to be paid at least

\[
\frac{\delta}{n-1} \left(1 - m \frac{\delta}{n} \right) + \frac{n-2 \delta (m-1) \delta}{n-1 \left(n-2 \right)} = \frac{\delta}{n-1} \left(1 - m \frac{\delta}{n} \right) + \frac{\delta (m-1) \delta}{n-1 \left(n \right)}
\]

\[
= \frac{\delta}{n-1} \left(1 - \frac{\delta}{n} \right) > \frac{\delta}{n}
\]

which guarantees that including the uninformed in the offer dominates not doing it. This implies that

\[
v_{n-1} = \frac{\delta}{n-1} \left(1 - \frac{\delta}{n} \right)
\]

Notice that \(v_{n-1} < 2v_n \).

Let now fix \(k + 1 > n - m \) and assume as an inductive hypothesis that for all \(n - 2 \geq h \geq k + 1 \),
we have that in all the subgames starting with \(h \) agents informed, all the available \(n - h \) uninformed agents are offered, and the remaining \(m - n + h \) agents necessary to form the firm are chosen with equal probability among the informed ones. Also, \(v_h > v_{h+1} \) and \(sv_{h+1+s} < (s + 1) v_{h+2+s} \). Let us now focus on a subgame starting with \(k \) informed agents. Observe that any proposer, say \(i \), can exhaust the uninformed agents and pay \(\frac{\delta}{n} \) each, or decide to substitute some uninformed agents with informed ones.

If he chooses the second option and he offers to, say \(s > 0 \), uninformed agents, he has to pay each agent \(v_{k+s} \). However, by our inductive hypothesis, \(v_{k+h} > \frac{\delta}{n} \). This implies that offering to all uninformed dominates this option. Suppose then that \(s = 0 \), meaning that proposer \(i \) only offers to informed agents.

Observe that in this case, the reservation value of each agent who gets the offer, say agent \(j \), is at least

\[
\frac{\delta}{k} \left(1 - m \frac{\delta}{n} \right) + \frac{\delta(k-1)}{k} \frac{m \delta}{k-1}.
\]

In fact, notice that symmetry guarantees that if agent \(i \) does not offer to any uninformed, the other agents do not so either. This implies that \(\frac{1}{k} \) is the probability of being chosen as next proposer, \(1 - m \frac{\delta}{n} \) is the payoff he can guarantee himself in that event, \(\frac{k-1}{k} \) is the probability of not being chosen as the next proposer, \(\frac{m}{k-1} \) is the probability that agent \(j \) is included in the offer of someone else, and \(\frac{\delta}{k} \) is the minimum value agent \(j \) will be offered. However, notice that

\[
\frac{\delta}{k} \left(1 - m \frac{\delta}{n} \right) + \frac{\delta(k-1)}{k} \frac{m \delta}{k-1} \leq \frac{\delta}{k} \left(1 - m \frac{\delta}{n} \right) + \frac{\delta}{k} \frac{m \delta}{k} \frac{1}{k} \leq \frac{\delta}{n}.
\]

This implies that, again, offering to all available uninformed agents dominates offering to only informed agents. For \(k \geq n - m \), we have

\[
v_k = \frac{\delta}{k} \left(1 - m \frac{\delta}{n} \right) + \frac{\delta(k-1)}{k} \frac{m \delta}{k-1} \frac{1}{n} = \frac{\delta}{k} \left(1 - (n-k) \frac{\delta}{n} \right)
\]

Notice also that \(v_k > v_{k+1} \) as

\[
v_k = \frac{\delta}{k} \left[1 - (n - k) \frac{\delta}{n} \right] > \frac{\delta}{k+1} \left[1 - (n - k - 1) \frac{\delta}{n} \right] = v_{k+1}
\]
and

$$\frac{v_{k+1}}{v_k} = \frac{k}{k+1} \left[1 - \frac{(n-k-1) \delta}{n} \right] \frac{1}{1 - \frac{(n-k) \delta}{n}}$$

$$> \frac{k}{k+1}$$

which conclude the inductive proof for \(k \geq n - m \).

To complete the construction of the equilibrium sequence, take as first step of the new induction the subgame in which \(k = n - m \), for which we already know that

$$v_{n-m} = \frac{\delta}{n-m} (1 - \frac{\delta}{n}) = \frac{\delta}{n-m} (1 - \frac{\delta}{m})$$

We have already showed that \(v_{n-m} > v_{n-m+1} \) and that \(\frac{v_{n-m+1}}{v_{n-m}} = \frac{n-m}{n-m+1} \). Let us now fix \(k < n - m \) and assume as an inductive hypothesis that for \(h \geq k + 1 \), we have \(v_h > v_{h+1} \) and \(\frac{v_{h+1}}{v_h} > \frac{h}{h+1} \), so that offers are always made to exactly \(m \) uninformed agents. Focus now on a subgame starting with \(k \) agents informed. If a proposer offers only to uninformed agents, he has to pay each of them \(v_{k+m} \). If he offers to \(s < m \) uninformed agents, he has to pay each agent \(v_{k+s} \), but we know by our inductive hypothesis that \(v_{k+s} > v_{k+m} \), so it is optimal to offer to all uninformed agents instead. Finally, suppose the proposer offers only to \(m \) informed agents. In this case, each of them has to be paid at least \(\frac{\delta}{k} (1 - mv_{k+m}) \).

However, notice that

$$\frac{\delta}{k} (1 - mv_{k+m}) > v_{k+m}$$

as by inductive hypothesis \(v_{k+m} \leq \frac{\delta}{k+m} \). It is then always optimal to extend the offer only to uninformed.

For \(k \leq n - m \), we have

$$v_k = \frac{\delta}{k} (1 - mv_{k+m})$$

Moreover, notice that for all such \(k \), we have \(v_k < \frac{\delta}{k} \) and \(v_k^m > \frac{\delta}{k} \left(\frac{k+m(1-\delta)}{k+m} \right) \). We have

$$\frac{v_{k-1}}{v_k} = \frac{\frac{\delta}{k-1} (1 - mv_{k-1+m})}{\frac{\delta}{k} (1 - mv_{k+m})} = \frac{k}{k-1} \left(1 - mv_{k-1+m} \right)$$

$$> \frac{k}{k-1} \left(1 - m \frac{m}{m+k} v_{k-1+m} \right)$$
as \(\frac{v_{k+m}}{v_{k+m-1}} > \frac{k+m-1}{k+m} > \frac{m}{m+1} \) Now, observe that

\[
\frac{\partial}{\partial x} \frac{(1-mx)}{(1-m(\frac{m}{m+1})x)} = -m \frac{m+1}{(-m-1+m^2x)^2} < 0
\]

and

\[
\frac{\partial}{\partial \delta} \left[\frac{k-1+m(1-\delta)}{k-1+m(1-\frac{m}{m+1})} \right] = -m \frac{(k-1+m)(m+1)}{(-k-1)(k-1)-m^2-(m+m\delta)} < 0
\]

Therefore, we have

\[
\frac{v_{k-1}}{v_k} > \frac{k}{k-1} \frac{1-mv_{k-1+m}}{1-m(\frac{m}{m+1})v_{k-1+m}} > \frac{k-k-1+m(1-\delta)}{k-1+k-1+m(1-\frac{m}{m+1}\delta)} > \frac{k-1}{k-1+m(1-\frac{m}{m+1})} > \frac{k}{k-1+m(1-\frac{m}{m+1})} = \frac{k}{k-1+(\frac{m}{m+1})} > 1
\]

Finally, we have \(\frac{v_k}{v_{k-1}} > \frac{k-1}{k} \) as

\[
\frac{v_k}{v_{k-1}} = \frac{\delta}{k} \frac{1-mv_{k+m}}{(1-mv_{k-1+m})} \frac{k}{k-1} \frac{1-mv_{k-1+m}}{(1-mv_{k-1+m})} > \frac{k-1}{k-1+m(1-\delta)}
\]

Proof of Corollary 2: Focus on the case in which \(n \) is large. For any number of players \(n \) and any optimal firm size \(m+1 \), Proposition 1 guarantees that there exists a unique SSPE such that the sequence of continuation values is \(\{v_k\}_{k=1}^n \) Such a sequence is such that \(v_{m+1} \) is defined as
\[v_{m+1} = \frac{\delta}{m+1} (1 - mv_{2m+1}^m) \]
\[= \frac{\delta}{m+1} (1 - m (\frac{\delta}{2m+1} \frac{\delta}{3m+1} \frac{\delta}{4m+1} \cdots \frac{\delta}{(m+1)m+1})) \]
\[\approx \max_{j: jm+1 \leq n} \sum_{i=1}^{\delta^i (m)^{i-1} (-1)^{i-1}} \frac{\delta^i (m)^{i-1} (-1)^{i-1}}{\prod_{s=1}^{j} (sm+1)} \]

This can be approximated for large \(n \) by

\[v_{m+1} \geq \sum_{i=1}^{\infty} \frac{\delta^i (m)^{i-1} (-1)^{i-1}}{\prod_{s=1}^{j} (sm+1)} \]

The innovator’s appropriation rate is \(v(m, \delta, \infty) \equiv 1 - mv_{m+1} (\infty) \), which for large \(m \) is approximated by

\[v(\infty, \delta, \infty) \equiv \lim_{m \to \infty} v(m, \delta, \infty) = 1 - \lim_{m \to \infty} m \sum_{i=1}^{\infty} \frac{\delta^i (m)^{i-1} (-1)^{i-1}}{\prod_{s=1}^{j} (sm+1)} = e^{-\delta} \]
\[\geq e^{-1} > 0 \]

As \(\delta \) tends to 1, we have \(\lim_{\delta \to 1} v(\infty, \delta, \infty) = e^{-1} \approx 0.368 \)

Proof of Proposition 3: (1) Focus on a subgame where all \(n \) agents are informed. Then, any proposer can offer to an uninformed agent and guarantee himself \(\pi_1 - \frac{\delta}{n} \) (by symmetry, \(\frac{\delta}{n} \) is the maximum possible continuation value of another player), or he can make a grand-coalition offer. If he makes a grand coalition offer, as \(\pi_1 + \delta \pi_2 < 1 \), the least he has to pay each player is \(\frac{\delta}{n} (\pi_1 + \delta \pi_2) \), so that the minimum cost of the offer is \((n-1) \frac{\delta}{n} (\pi_1 + \delta \pi_2) \). Notice that, under our assumption, we have

\[1 - \frac{\delta (n-1)}{n} (\pi_1 + \delta \pi_2) \leq \pi_1 - \frac{\delta}{n} \]

This implies that making a ‘sub coalition’ offer dominates making a grand-coalition offer.

(2) We need to show that there is \(\pi_1 (\pi_2, \delta, n) < 1 \) such that if \(\pi_1 > \pi_2 (\pi_2, \delta, n) \), then always offering one uninformed agent is an equilibrium. In this strategy profile, the continuation value sequence is \(\{v_k\}_{k=2}^{n} \) defined by \(v_n = \frac{\delta}{n} (\pi_1 + \delta \pi_2) \) and \(v_k = \frac{\delta}{k} (\pi_1 - v_{k+1}) + \frac{\delta (k-1)}{k} \pi_2 v^*_{k-1} \), where we denote by \(\{v_k^*\}_{k=2}^{n} \) the (unique) SSPE sequence we studied in the \(\pi_1 = 1, \pi_2 = 0 \) case (observe that after the formation of the first firm, if \(k \) informed agents are left on the market, each agent has a continuation value of \(\delta \pi_2 v^*_{k} \)).

To show that this is an equilibrium, we need to prove that the sequence \(\{v_k\}_{k=2}^{n} \) is decreasing, that \(mv_{k+m} < (m+1) v_{k+m+1} \) for all \(k \) and \(m \) such that \(1 \leq m \leq n-k-1 \), and that offering to one
uninformed always dominates making a grand-coalition offer. Let us first show that the sequence \(\{ v_k \}_{k=2}^n \) is decreasing and that \(mv_{k+m} < (m+1)v_{k+m+1} \) for all \(k, m \). To see that \(\{ v_k \}_{k=2}^n \) is decreasing, notice that we have \(v_k = \frac{\delta}{k} (\pi_1 - v_{k+1}) + \frac{\delta(k-1)}{k} \pi_2 v_{k-2}^* \) and \(v_n = \frac{\delta}{n} (\pi_1 - v_n) + \frac{\delta(n-1)}{n} \left(\frac{1}{n-1} v_n + \frac{n-2}{n-1} v_{n-2}^* \right) \) where \(v_{n-2}^* = \frac{\delta}{n-2} \). Therefore, \(v_n = \frac{\delta}{n} (\pi_1 + \delta \pi_2) \) and for any \(k \leq n \) we have

\[
\lim_{\pi_1 \to 1} v_k = \lim_{\pi_1 \to 1} \frac{\delta}{k} (\pi_1 - v_{k+1}) + \frac{\delta(k-1)}{k} \pi_2 v_{k-2}^* = v_k^* > v_{k+1} = \lim_{\pi_1 \to 1} v_{k+1}
\]

In the same way, it is easy to see that

\[
\lim_{\pi_1 \to 1} [(m+1)v_{k+m+1}] > \lim_{\pi_1 \to 1} [v_{k+1}mv_{k+m}]
\]

for all \(1 \leq m \leq n - k - 1 \). So, there exists \(\pi' (\pi_2, \delta, n) < 1 \) such that for all \(\pi_1 \geq \pi' (\pi_2, \delta, n) \) the sequence \(\{ v_k \}_{k=2}^n \) is decreasing and satisfies \(mv_{k+m} < (m+1)v_{k+m+1} \).

To show that offering to one uninformed always dominates making a grand-coalition offer we need

\[
\pi_1 - \frac{\delta (\pi_1 - v_{k+2}) + \delta k \pi_2 v_k^*}{k+1} > 1 - (k-1) \frac{\delta (\pi_1 - v_{k+1}) + \delta (k-1) \pi_2 v_{k-1}^*}{k} \tag{1}
\]

for all \(k \). Notice that

\[
\lim_{\pi_1 \to 1} \left[\pi_1 - \frac{\delta (\pi_1 - v_{k+2}) + \delta k \pi_2 v_k^*}{k+1} \right] = 1 - v_{k+1}^* = \lim_{\pi_1 \to 1} \left[1 - (k-1) \frac{\delta (\pi_1 - v_{k+1}) + \delta (k-1) \pi_2 v_{k-1}^*}{k} \right]
\]

for all \(k \). So, by continuity with respect to \(\pi_1 \), there is \(\pi'' (\pi_2, \delta, n) < 1 \), such that for all \(\pi_1 \geq \pi'' (\pi_2, \delta, n) \), (1) is satisfied for all \(k \). Define the bound \(\tilde{\pi} (\pi_2, \delta, n) \equiv \max \{ \pi', \pi'', \pi_2, \delta, n \} \).

Notice that the generic element of the sequence \(\{ v_k \}_{k=2}^n \) for \(n \) going to infinity is

\[
v_k = \frac{\delta}{k} (\pi_1 - v_{k+1}) + \frac{\delta (k-1)}{k} \pi_2 v_{k-1}^* = \frac{\delta}{k} \left[\pi_1 - \left(\frac{\delta}{k+1} (\pi_1 - \ldots) + \frac{\delta k}{k+1} \pi_2 v_k^* \right) \right] + \frac{\delta (k-1)}{k} \pi_2 v_{k-1}^* = \sum_{i=1}^{\infty} \left[\pi_1 (-1)^{i-1} \delta i (k-1)! \left(\frac{1}{(k+i)!} \right) \right] + \frac{\delta^i}{k} \left(1 + (k+i) \pi_2 \sum_{j=1}^{\infty} \delta^j (k+j)! (1)^{j-1} \right)
\]

36
which is increasing in both π_1 and π_2. This implies that the appropriation rate of the innovator, $v(\delta) = 1 - v_2$, is decreasing in π_1.

Proof of Proposition 4: Suppose that n agents are informed. Then, we have that making a ‘sub coalition’ offer costs at least $\delta\pi_1 + \delta\pi_2$ and a grand coalition offer costs at most $(n - 1)\frac{\delta}{n}$. This implies that a grand coalition arises if $\pi_1 - \delta\pi_1 + \delta\pi_2 < 1 - (n - 1)\frac{\delta}{n}$, which is equivalent to $\pi_1\left(1 - \frac{\delta}{n}\right) < 1 - (n - 1)\frac{\delta}{n} + \delta\pi_2 = \frac{n-(n-1)\delta+\delta\pi_2}{n} = \pi_1 < \frac{n-(n-1)\delta+\delta\pi_2}{n-\delta}$, which is satisfied by assumption. Then, we have $v_n = \frac{\delta}{n}$. Let us move to a subgame where $n - 1$ agents are informed. Any chosen proposer can offer to all the other players and pay $(n - 1)\frac{\delta}{n}$, he can decide to make an offer only to the other $n - 2$ informed players, paying each at most $\frac{\delta}{n-1}$ (in this case he pays at most $(n - 2)\frac{\delta}{n-1} < (n - 1)\frac{\delta}{n}$), or he can decide to offer only to the only uninformed player and get $\pi_1 - \frac{\delta}{n}$. Observe that $\pi_1 - \frac{\delta}{n} < 1 - (n - 2)\frac{\delta}{n-1}$ if $\pi_1 < 1 - (n - 2)\frac{\delta}{n-1} + \frac{\delta}{n}$. However, we have

$$\pi_1 < \frac{n - (n - 1)\delta + \delta^2\pi_2}{n - \delta} < 1 - \frac{n - 2}{n}\delta < 1 - (n - 2)\frac{\delta}{n - 1} + \frac{\delta}{n}$$

This guarantees that $v_{n-1} = \frac{\delta}{n-1}$. Assume now as an inductive hypothesis that $v_{k+1} = \frac{\delta}{k+1}$ and in all the subgames with $k + 1$ or more agents informed, only informed agents receive offers. Then, focus on a subgame starting with k agents informed. Every proposer has the choice of making a ‘sub coalition’ offer, exactly a grand coalition offer or to make a more extended grand coalition offer. In the last case, he has to pay $(h - 1)\frac{\delta}{n}$ with $h \geq k + 1$, while with an offer made only to informed agents, he pays at most $(k - 1)\frac{\delta}{k}$ for $h \geq k + 1$. Making a ‘sub coalition’ offer yields $\pi_1 - \frac{\delta}{k+1}$. We have that $\pi_1 - \frac{\delta}{k+1} < 1 - (k - 1)\frac{\delta}{k} + \frac{\delta}{k+1}$, but we have

$$\pi_1 < \frac{n - (n - 1)\delta + \delta^2\pi_2}{n - \delta} < 1 - \frac{n - 2}{n}\delta < 1 - (k - 1)\frac{\delta}{k} + \frac{\delta}{k+1}$$

This concludes the proof.

Proof of Proposition 5: Let $\pi_1 \in \left[1 - \delta, \frac{1}{1 + \delta}\right]$, and let us build a SSPE in which at any history $h \in H_O$ such that $k(h) \geq \bar{k}$, all the informed agents at a history h offer a grand coalition if chosen by nature as next offerers (subgame of type 1). If one of the players chooses to offer the grand coalition, let all the players offer an uninformed player in the subsequent subgame. To support a subgame in which all the players make an offer to an uninformed (subgame of type 2), let all the players make grand coalition offers in the subsequent subgame. Then, we have
\[v_k^1 = \frac{\delta}{k} \left(1 - (k - 1) v_k^2 \right) + \frac{\delta}{k} (k - 1) v_k^2 \]
\[v_k^2 = \frac{\delta}{k} (\pi_1 - v_{k+1}^1) + \frac{\delta}{k} (k - 1) \pi_2 v_{k-1}^* \]

Notice that \(\lim_{k \to \infty} v_k^1 = \lim_{k \to \infty} v_k^2 = 0 \). To check if a subgame of type 1 is a SSPE we show that

\[1 - (k - 1) v_k^2 > \pi_1 \] (2)

Notice that \(\lim_{k \to \infty} \left[1 - (k - 1) v_k^2 \right] = 1 - \delta \pi_1 - \delta^2 \pi_2 > \pi_1 \), so for high \(k \) (2) is satisfied. Also, we need to check that it is not optimal to offer to more agents than the grand coalition, but we can sustain this by imposing a type 1 subgame upon rejection. Therefore we must have

\[1 - (k - 1) v_k^2 > 1 - (k + m - 1) v_{k+m}^1 \]

or

\[(k - 1) v_k^2 < (k + m - 1) v_{k+m}^1 \]

This is satisfied as \(\lim_k (k - 1) v_k^2 = \delta \pi_1 + \delta^2 \pi_2 \) and \(\lim_{k \to \infty} (k + m - 1) v_{k+m}^1 = \delta \). Moreover, we know that \(\delta \pi_1 + \delta^2 \pi_2 > \delta \) since \(\pi_1 < \frac{\delta^2 \pi_2}{1+\delta} < 1 - \delta \pi_2 \).

Now, to check the sustainability of the subgames of type 2, we need to check that

\[\pi_1 - v_{k+1}^1 > 1 - (k - 1) v_k^1 \] (3)

But we have \(\lim_k \left[1 - (k - 1) v_k^1 \right] = \lim_{k \to \infty} \left\{ 1 - (k - 1) \left[\frac{\delta}{k} (1 - (k - 1) v_k^2) + \frac{\delta(k-1)}{k} v_k^2 \right] \right\} \)

\[= 1 - \delta < \pi_1 \), so for high \(k \) (3) is satisfied as well. This concludes the proof.

Proof of Corollary 6 Let \(\pi_1 \in \left[1 - \delta, \frac{1-\delta^2 \pi_2}{1+\delta} \right] \) and consider the strategy profile in which as long as at least two agents are informed, everybody always offers to all the other agents. If someone does not, when \(2 < k \leq n - 1 \), then upon rejection we go in grand coalition stage (which we know it is sustainable either with another grand coalition stage upon rejection, or with alternating stages). As soon as along the equilibrium path everybody is informed, if a proposer offers to one agent, upon rejection all agents offer to one agents (competition arises). If a grand coalition is offered instead, we have a grand coalition arising upon rejection. To show that this is an equilibrium, start from a subgame where everybody is informed. Notice that since \(\pi_1 \in \left[1 - \delta, \frac{1-\delta^2 \pi_2}{1+\delta} \right] \), we can sustain both competition and grand coalition in that stage.
To sustain competition, let competition arise if an uninformed is offered, and let grand coalition arise if a grand coalition offer is made. Then, one prefers to offer to just one agent since

\[\pi_1 - \frac{\delta}{n} (\pi_1 + \delta \pi_2) > 1 - (n - 1) \frac{\delta}{n} \]

is satisfied for high \(n \) as \(\pi_1 > 1 - \delta \). To sustain a grand coalition offer, let competition arise upon rejection, while if another offer is made, let a grand coalition arise. Then, we need

\[\pi_1 - \frac{\delta}{n} < 1 - (n - 1) \frac{\delta}{n} (\pi_1 + \delta \pi_2) \]

which is satisfied for high \(n \) as \(\pi_1 < \frac{1-\delta^2 \pi_2}{1+\delta} \).

Also, notice that if \(k \) people are informed, since proposers offer to everybody else, we have

\[v_k = \frac{\delta}{k} \left[1 - (n - 1) \frac{\delta}{n} (\pi_1 + \delta \pi_2) \right] + \frac{\delta}{k} \frac{(k - 1) \delta}{n} (\pi_1 + \delta \pi_2) = \]

\[= \frac{\delta}{k} - \frac{\delta^2}{nk} (n - k) (\pi_1 + \delta \pi_2) \]

To sustain this behavior, since when one offers to uninformed agents, we go into a grand coalition stage, we need

\[\pi_1 - \frac{\delta}{k+1} < 1 - (n - 1) \frac{\delta}{n} (\pi_1 + \delta \pi_2) \]

which is guaranteed to be true for \(\pi_1 < \frac{1-\delta^2 \pi_2}{1+\delta} \).

Now, if the one described is the continuation of the game, the innovator can offer to one other agent. If he does so, he gets \(1 - v_2 \) where

\[v_2 = \frac{\delta}{2} \left[1 - (n - 1) \frac{\delta}{n} (\pi_1 + \delta \pi_2) \right] + \frac{\delta}{2} \frac{\delta}{n} (\pi_1 + \delta \pi_2) = \]

\[= \frac{\delta}{2} - (n - 2) \frac{\delta^2}{2n} (\pi_1 + \delta \pi_2) < \frac{\delta}{2} \]

In this equilibrium the innovator gets at least

\[1 - \frac{\delta}{2} + (n - 2) \frac{\delta^2}{2n} (\pi_1 + \delta \pi_2) > 1 - \frac{\delta}{2} \]

which is increasing in \(\pi_1 \) and \(\pi_2 \). By having competition sustainable in the last step, we have built an equilibrium in which appropriation rate of the innovator is higher than \(1 - \frac{\delta}{2} \). For high \(n \), the innovator can do even better than that. In fact, if we let \(\hat{k} = \min \{2, k\} \), where \(k \) is the smallest \(k \leq n - 1 \), such that
\[\pi_1 \geq 1 - (k - 1) \frac{\delta}{k} + \frac{\delta}{k+1}, \]
we can sustain competition arising when there are \(\tilde{k} \) agents informed, so that the innovator can also offer \(\tilde{k} - 1 \) agents \(\frac{\delta}{\tilde{k}} (\pi_1 + \delta \pi_2) \) and get
\[1 - (\tilde{k} - 1) \frac{\delta}{\tilde{k}} (\pi_1 + \delta \pi_2) \geq 1 - (k - 1) \frac{\delta}{k} (\pi_1 + \delta \pi_2), \]
which is decreasing in \(\pi_1 \) and \(\pi_2 \). Notice that
\[1 - (\tilde{k} - 1) \frac{\delta}{\tilde{k}} (\pi_1 + \delta \pi_2) > 1 - (n - 1) \frac{\delta}{n} (\pi_1 + \delta \pi_2) > 1 - \frac{\delta}{2} + (n - 2) \frac{\delta^2}{2n} (\pi_1 + \delta \pi_2) \]
if \(\pi_1 + \delta \pi_2 < \frac{n(\delta + \frac{n}{2}) - 2(1 + \delta)}{n(2 + \delta) - 2(1 + \delta)} \) which is always satisfied for high \(n \) since \(\pi_1 + \delta \pi_2 < 1 \).

Let now show that if \(\pi_1 < \frac{\pi}{n} (\pi_2, \delta, n) = \frac{n + \delta - (n - 1) \delta^2 \pi_2}{n - (n - 1) \delta} \) (which is larger than \(\frac{1 - \delta^2 \pi_2}{1 + \delta} \)), there is always an equilibrium in which the innovator appropriates \(1 - \frac{\delta}{2} \). First, let \(\pi_1 < 1 - \frac{n - 2}{n} \delta \), and conjecture an equilibrium in which the grand coalition is always offered. If everybody is informed, observe that in our hypothesis, \(\pi_1 - \frac{\delta}{n} < 1 - (n - 1) \frac{\delta}{n} \). This implies that offering the grand coalition is sustainable. Then, we can work backward by induction and, using the fact that \(1 - \frac{n - 2}{n} \delta < 1 - (k - 1) \frac{\delta}{k} + \frac{\delta}{k+1} \) for all \(k \leq n - 1 \), we can show that offering always exactly to the grand coalition is sustainable again. Then, we have that the innovator appropriates \(1 - \frac{\delta}{2} \).

Now, assume that \(1 - \frac{n - 2}{n} \delta < \pi_1 < \frac{\pi}{n} (\pi_2, \delta, n) \). First, let \(\bar{k} = \min \{2, \tilde{k}\} \) where \(\tilde{k} \) is the smallest \(k \leq n - 1 \), such that \(\pi_1 \geq 1 - (k - 1) \frac{\delta}{k} + \frac{\delta}{k+1} \). Then, every time \(k \geq \bar{k} \) and we enter the first subgame in which \(k \) people are informed, let every proposer offer to the grand coalition. Upon rejection, let every proposer offer to one uninformed agent and so on. If \(k < \bar{k} \), let the agents always make a grand coalition offer. To check that this is an equilibrium, let us first check any \(k \geq \bar{k} \). We have that
\[1 - (k - 1) \frac{\delta}{k} \geq 1 - (k - 1) \frac{\delta (\pi_1 + \delta \pi_2)}{k} \geq \pi_1 - \frac{\delta}{k+1} \]
which is equivalent to \(\pi_1 < \frac{1 - \frac{k-1}{k} \delta^2 \pi_2 + \frac{\delta}{k+1} \pi_1}{1 + \frac{k-1}{k} \delta} \), which is satisfied as \(\frac{1 - \frac{k-1}{k} \delta^2 \pi_2 + \frac{\delta}{k+1} \pi_1}{1 + \frac{k-1}{k} \delta} > \frac{n + \delta - (n - 1) \delta^2 \pi_2}{n + (n - 1) \delta} \).

Upon rejection, we have that proposers offer to one uninformed as
\[\pi_1 - \frac{\delta}{k+1} \geq 1 - (k - 1) \frac{\delta}{k} \]
which is equivalent to \(\pi_1 \geq 1 - (k - 1) \frac{\delta}{k} + \frac{\delta}{k+1} \), which is satisfied by definition of \(\bar{k} \). If \(k < \bar{k} \), we have
\[\pi_1 - \frac{\delta}{k+1} < 1 - (k - 1) \frac{\delta}{k} \]
so that a grand coalition offer dominates offering to an uninformed. Notice also that as \((k - 1) \frac{\delta (\pi_1 + \delta \pi_2)}{k} < (k - 1) \frac{\delta}{k} < k \frac{\delta}{k+1} \), it is never optimal to offer to more than the grand coalition and, as \(\frac{\delta}{k+1} < m_0 \frac{\delta}{k+m_0} \), it
is never optimal to offer to more than one uninformed. In this equilibrium, the innovator’s payoff is again
\[1 - \frac{\delta}{2} \]