BUILDING THE CITY: URBAN TRANSITION AND INSTITUTIONAL FRICTIONS

Tanner Regan, LSE with Vernon Henderson and Anthony Venables

HIL

AN ENT

Wednesday. September 6, 2017 University of California, Berkeley

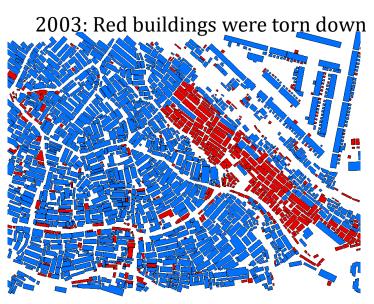
#Geo4Dev 💟 @CEGA_UC | @GPS_UCSD

Geo4Dev

WHAT THIS PAPER IS ALL ABOUT

Urban theory for the developing world

• Dynamic monocentric city model with informality


Very high resolution satellite data

• Nairobi 2003 and 2015 manually traced buildings

Estimate the cost of delays

• Guiding policy makers towards efficient urban development

Kibera, Nairobi

2015: Green buildings are new

WHY IS THIS NEW AND IMPORTANT?

Cities in sub-Saharan Africa are:

- Big, numerous, and fast growing
- High incidence of informal settlements

Economic relevance of volume

@CEGA_UC | @GPS_UCSD

• The capital stock of a country is primarily in buildings

Contribution

#Geo4Dev

- Urban theory has been focused on the developed world
 - Change is slow and land markets are formal
- No study in econ that details changes in buildings, with demolition, redevelopment, and infill
- Methodology to calculate welfare cost of old slums

Tandale, Dar es Salaam

June 2016

)ev

Å MONOCENTRIC MODEL FOR THE DEVELOPING WORLD

BUILDING TECHNOLOGIES

Formal builds using 'putty-clay'

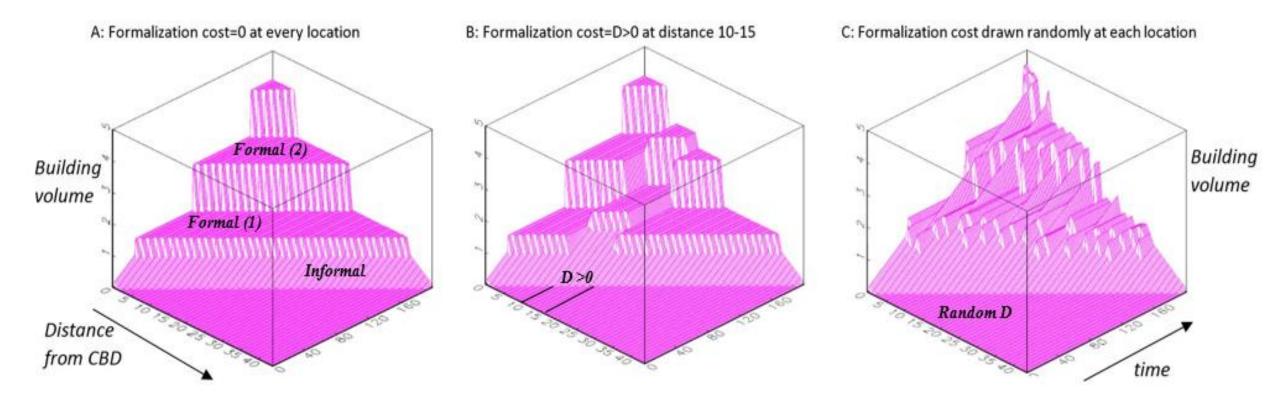
- Choose height
 - Assume a single cover to area ratio
- Height fixed until redeveloped
- Taller buildings are increasingly costly

Slum rents flexible 'Meccano parts'

- Choose cover
 - Assume single height
- Cover continuously adjustable
- More cover (crowding) lowers quality

Kibera, Nairobi 2014

flexible but not load bearing slum 'technology' tall but durable formal 'technology' in the background


#Geo4Dev 🕥 @CEGA_UC | @GPS_UCSD

Geo4Dev

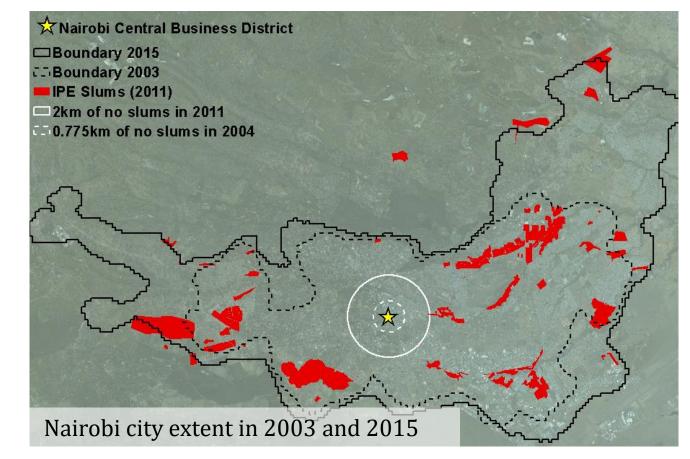
SIMULATED CITY (RESULTS)

MEASURING THE EVOLUTION OF THE BUILT ENVIRONMENT IN NAIROBI 2003-2015

EMPIRICAL WORK

Building footprints

- Our algorithm identifies unchanged buildings, redevelopment, infill, and demolition
- Height data for 2015 from LiDAR
 - For 2004 interpolate using nearby unchanged buildings


Slum definition

#Geo4Dev

Slum areas are based off a single 2011 map

@CEGA_UC | @GPS_UCSD

Geo4Dev

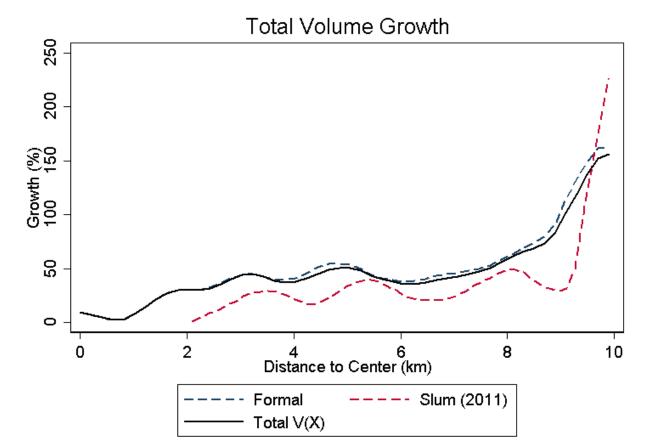
*Threshold built cover above 10% to define the city extent in 2003 and 2015

BIG PIXEL

VOLUME GROWTH

Evolution 2003-2015

- Total volume increases 59% inside the 2015 extent
- Overall growth is slightly higher in formal (60% vs 55%)
 - Formal sector grows more quickly until 9km, then slum takes over


Churning

#Geo4Dev

 35% of buildings torn down inside 3km

@CEGA_UC | @GPS_UCSD

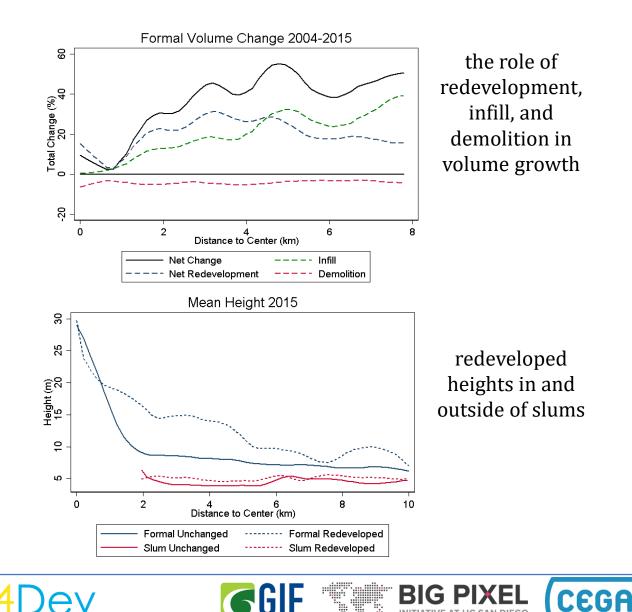
Roughly three times what would be typical in a US city

GIF

ev

BIG PIXEL

BREAKING DOWN GROWTH


The process of change (formal)

• Redevelopment near centre, infill near fringe

Redeveloped heights by sector

- Formal buildings are taller when redeveloped
- Slum buildings remain short even after redevelopment

 $(\mathbf{A} \in \mathcal{A})$

ESTIMATING THE WELFARE COST OF DELAYED CONVERSION OF SLUM LAND

COSTLY DELAYS

Intuition for formalisation costs

- History of a particular location can create conflicting claims to ownership
- This leaves areas stuck in slum use near to the centre where land is highly valued

Welfare cost

- We calibrate parameters of the model using data on buildings, prices, and rents
- Plug in and use the structure of the model to estimate the present value of land
 - Will differ based on a choice parameter (z), the date the land is converted to formal
- Conversion of remaining slum land inside 4km results in a gain around \$268 million or \$9,200 per household living on this land

Date of formalisation, z	3-4 km	4-5km	5-6km	6-7km	7-8km
Optimal z (year)	2000	2005	2011	2017	2023
z = 2015	767	645	542	456	384
$Z = \infty$	409	369	332	299	270
z = optimal z	790	652	543	457	387

Present value of land rent $(\$/m^2)$

CONCLUSION

Model

- Slums locate at the fringe without formalisation costs
- Random costs can create a city 'hodgepodge'

Observed growth in Nairobi

- Large volume increases across the city
- Formal and slums add volume differently

Welfare Cost

- Slums inside of 6km are past their due date
- Large gains to conversion

@CEGA UC | @GPS UCSD

Next steps...

#Geo4Dev

- More cities: framework suitable for many cities given more affordable data
- Need to overcome issue of manual digitization (automatic building and height classification)

