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Abstract

Has the persistence of inflation in the United States changed since 1965? We estimate the

persistence of inflation over time using different measures and estimation procedures and we

produce confidence intervals for our estimates as well as formal tests of unchanged persistence.

We find that inflation persistence has been high and approximately unchanged in the U.S.

over our sample period. We reconcile our results with other studies that reached

different conclusions.
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1. Introduction

While inflation is an important macroeconomic variable that has received much
attention, there is still controversy on its properties. This paper is a contribution to
the measurement over time of a key property of inflation: its persistence.

We start our investigation by estimating a Bayesian non-linear model of
inflation dynamics and using it to provide a time series for inflation persistence in
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the United States. Our model is similar to that in the innovative contribution by
Cogley and Sargent (2002). They find that the persistence of inflation in the United
States rose in the early 1970s and remained high during this decade, before starting a
gradual decline from the early 1980s until the present (similar to the results of
Taylor, 2000, and Brainard and Perry, 2000). We depart from their study in three
important ways. First, while they displayed only point estimates, we also present the
Bayesian credible sets. Second, whereas they condition their priors and restrict the
parameter space solely to stationary representations, we allow for the possibility that
inflation may have a unit root, a possibility that the data do not reject. Third, we
compute alternative statistical measures of persistence, especially to try to distinguish
between changes in volatility and changes in persistence. The first of these
modifications is enough to alter the Cogley and Sargent conclusion. All three
together lead to a different conclusion: inflation persistence in the United States is
best described as unchanged over the last three decades.

We then take a different approach to the problem by estimating a model of
inflation dynamics grounded on classical statistical theory. Using local-to-unity
asymptotics, we compute median unbiased estimates for different measures of
inflation persistence. We find again that inflation persistence is best described as
unchanged since 1965. Classical estimates also provide us with formal tests of the
null hypothesis of no change in persistence. We are never able to reject this null.

The results in this paper inform many debates in macroeconomics. Closely related
is the debate on whether monetary policy could repeat the mistakes of the 1970s,
when inflation spiralled up. Hall (1999) and Taylor (1998) noted that if estimates of
the persistence of inflation are revised downwards, tests of the natural rate hypothesis
in the spirit of Solow (1968) and Tobin (1968) will start rejecting long-run monetary
neutrality.1 If the central bank feels encouraged to exploit an illusory inflation
unemployment trade-off, the result could be high inflation without any accompanying
output gains. As the model in Sargent (1999) illustrates, if the policymaker gradually
learns about the natural rate hypothesis by successively applying over time the
Solow–Tobin test on the available data, a fall in the persistence of inflation will lead
to a shift to a high-inflation time-consistent equilibrium. Even if the underlying true
model exhibits long-run monetary neutrality, the inflation bias equilibrium becomes
self-confirming as inflation endogenously lacks persistence and the central bank keeps
rejecting the natural rate hypothesis. In this model, inflation persistence is key in
determining whether there is high inflation (as in the 1970s) or low inflation (as in the
1990s). Detecting whether persistence has recently fallen is key in assessing the
likelihood of recidivism by the central bank.

On a different front, research on dynamic price adjustment has emphasized the
need for theories that generate inflation persistence (see Taylor, 1999). This paper
evaluates whether the models should generate changes over time in this persistence.
While it is true that inflation persistence has changed before – Barsky (1987) finds
1It has long been known though (Sargent, 1971) that if agents form expectations rationally, these tests

cannot determine whether the natural rate hypothesis holds.
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that inflation was close to white noise in the pre-war period but very persistent since
the 1960s – it is unclear whether a new change occurred in the last 35 years.

Yet a third line of work has identified changes in the way monetary policy is
conducted in the United States. Clarida et al. (2000) and Boivin and Giannoni (2006)
have econometrically identified shifts in the parameters of Taylor rules fit to describe
the setting of interest rates by the Federal Reserve. It remains an open question
whether there have been corresponding changes in the response of inflation to
monetary shocks, including the persistence of this response. Furthermore, recent
research has detected a fall in the volatility of output after 1984 (McConnell and
Perez-Quiros, 2000) as well as a fall in the volatility of many other macroeconomic
series in the 1990s (Stock and Watson, 2003; Kim et al., 2004). This suggests the
possibility of a structural change in the economy in the last 20 years, which if it
occurred, could have effects on the persistence of inflation.

Has the persistence of inflation changed over time? Will tests of the natural rate
hypothesis soon start rejecting, raising the dangers of recidivism? Do we need
theories that generate persistence in inflation and if so should this be modelled as
varying over time? Have the changes in monetary policy and in the behavior of
output come with changes in inflation persistence? To answer these questions, a
necessary first step is to measure the persistence of inflation and to assess whether it
has changed over time. This is the aim of this paper.

In Section 2, we describe the statistical model and the measures of persistence we will
employ. In Section 3, we present and discuss the data, and in Section 4, we implement a
Bayesian approach to estimation of persistence. Section 5 instead provides classical
median unbiased estimates of persistence and tests for the null of unchanged persistence.
Section 6 compares our findings with those of other papers, and Section 7 concludes.
2. Statistical model and measures of persistence

We estimate the following kth order autoregressive representation for inflation:

pt ¼ y0;t þ
Xk

i¼1

yi;tpt�i þ et. (1)

It explicitly allows for changes in persistence over time driven by changes in the time-
varying k þ 1 parameter vector y0t ¼ ðy0;t; y1;t; . . . ; yk;tÞ. We choose to focus on a
univariate model, since persistence is itself a univariate property. Our estimates of
persistence at time t will reflect what inflation is expected to be at time tþ s,
conditional on all the present and past values of inflation from time t backwards.
Including other variables would lead to an assessment of predictability – what do we
forecast inflation to be at some future date, given the values of a set of forecasting
series today and in the past. Our focus on persistence, not predictability, leads us to
work with a univariate model.2
2In the literature, these two different concepts are sometimes referred to as conditional or unconditional

persistence, referring to whether we are conditioning on other variables or not.
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By persistence, we mean the long-run effect of a shock to inflation – given a shock
that raises inflation today by 1%, by how much do we expect it to be higher at some
future date and how long (if ever) will it take to return to its previous level. This
concept is intimately linked to the impulse response function of inflation, yet the
impulse response is not a useful measure of persistence since it is an infinite-length
vector. There are many useful scalar functions of the parameter vector yt that serve
as measures of persistence. We focus on three, all with some virtues and some faults.

First, is the largest autoregressive root (LAR), which we denote by r. If L denotes
the lag operator Ljxt ¼ xt�j, the lag polynomial associated with Eq. (1) can be
written as 1� y1L� � � � � ykLk ¼ ð1� rLÞð1� b1LÞ . . . ð1� bk�1LÞ, where r;
b1; . . . ; bk�1 are the autoregressive roots of which r is the largest. In the distant
future, the impulse response of inflation to a shock is dominated by the largest root,
so the size of r is a key determinant of how long the effects of the shock will persist.
When r ¼ 1, the process is infinitely persistent, since after a shock, inflation never
returns to its initial level (there is a unit root); when r ¼ 0, shocks die away
immediately and inflation is serially uncorrelated. In between 0 and 1, the higher is r,
then the longer (to a first approximation) it will take for inflation to fall back to its
original level after a shock, and thus the larger is the persistence of inflation. The
LAR has been used to measure persistence by Stock (1991) and DeJong and
Whiteman (1991) in the context of testing for the presence of unit roots. The main
problem with this measure, voiced by Phillips (1991) and Andrews (1993), is that it
ignores the effects of the other roots. All else equal, an AR(2) process with roots 0.9
and 0.8 is more persistent than an AR(2) with roots 0.9 and 0.1. While the LAR may
provide a good approximation to persistence, considering more roots will provide
better approximations.

A second measure of persistence is the sum of the coefficients (SUM) in the
autoregressive process, defined as g ¼

Pk
i¼1 yi. The rationale for this measure comes

from realizing that for g 2 ð�1; 1Þ, the cumulative effect of a shock on inflation is
given by 1=ð1� gÞ. A larger g therefore intuitively corresponds to higher persistence
of inflation. This measure has a history in macroeconomics since the Solow–Tobin
test of the natural rate hypothesis is a test for the null hypothesis that g ¼ 1, so that
low values of g would provide support to the possibility of recidivism pointed in the
introduction.3 The main problem with this measure is that it is large for a process
with an impulse response function where inflation rises quickly to large levels to fall
steeply back to zero, than for a process with a slowly decaying impulse response but
which increases by little in the beginning, in spite of the second being intuitively more
persistent.

Our third measure is the half-life (HL), defined as the number of periods in which
inflation remains above 0.5 following a unit shock. We denote it by Z, defined by
Z ¼ ft 2 ½0; 40� : E½pt � pt�1 j e0 ¼ 1�X0:5; E½ptþ1 � pt j e0 ¼ 1�o0:5g, and Z ¼ 40 if
the previous set is empty. We interpret half-lives of 40 as infinite persistence since in
practice in our application, half-lives above 40 usually indicate non-stationarity and
3Note that the Solow–Tobin test includes unemployment in the estimated regression, so it is not quite

the same as this test.
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thus an half-life of infinity. This measure of persistence is especially popular in the
vast literature that measures deviations from PPP surveyed in Rogoff (1996). Its
virtues are that it is intuitive, simple, and easy to associate with the concept of
persistence discussed above. There are many arguments against it though. First, if
the impulse response function is oscillating, the half-life will severely understate the
persistence of the process. Second, even if the impulse response monotonically
decays, the half life will be lower if the impulse response is more pronouncedly
convex to the origin, when this convexity has little relation to persistence. Third, for
very persistent processes, the half-lives are very close to infinity making it difficult to
distinguish changes in persistence over time. Finally, there has been less attention in
econometric theory devoted to studying the distribution of estimates of the half-life,
as opposed to the other two measures of persistence.

Finally, we must choose the order of the autoregression. There is no clear
statistical criterion to choose k, since we will use different estimation methods on
different samples. We set k ¼ 3 based on the Bayesian Information Criterion (BIC)
on the full sample and several different sub-samples.4
3. Data description

We use seasonally adjusted quarterly data on the GDP deflator from the second
quarter of 1947 to the third quarter of 2001, obtained from the Bureau of Economic
Analysis, as our measure of the price level (Pt).

5 Inflation is the quarterly change of
the price level at an annualized rate calculated as pt ¼ 400 lnðPt=Pt�1Þ. The plot of
the data is in Fig. 1, which shows the well-known trends. Starting from low levels in
the 1950s and 1960s, inflation rose throughout the 1970s, peaking at 1975 at 11.8%.
It then remained high, peaking again at 10.5% at the end of 1980. Paul Volcker, then
chairman of the Federal Reserve, embarked in an aggressive policy to reduce
inflation. As a result, inflation fell to 3% by the beginning of 1983, and fell further
to 1.6% by 1986. Throughout the 1990s, it remained stable between 1% and 3%.
Table 1 reports the sample means and the standard deviations per decade. The 1970s
were a decade of unusually high inflation while, after an intermediate decade in the
1980s, the mean inflation in the 1990s was back to the values observed in the 1950s
and 1960s. The 1990s differed from previous decades in that the volatility of inflation
was lower than ever. The 1970s on the other hand are not unusual in terms of the
standard deviation of inflation.

A natural first look at the persistence of inflation is to see the evolution over time
of the sample first-order serial correlation. Table 1 shows the serial correlation per
decade. We see that in the 1950s, it was unusually low, mostly due to the Korean war
price controls at the beginning of the decade. After rising from the 1970s to the
1980s, in the 1990s the serial correlation of inflation was down to the 1970s value.
4We also computed most of the estimates with k ¼ 5 and found no significant changes.
5We also conducted most of the analysis using the CPI. There were no substantial changes to the

conclusions.
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Fig. 1. Inflation in the United States.

Table 1

Summary statistics for inflation over the decades

Decade 1950s 1960s 1970s 1980s 1990s

Mean 2.47 2.47 6.50 4.47 2.22

Standard deviation 2.93 1.55 2.10 2.36 0.96

Serial correlation 0.31 0.81 0.68 0.91 0.68

F. Pivetta, R. Reis / Journal of Economic Dynamics & Control 31 (2007) 1326–1358 1331
Fig. 2a shows rolling estimates of the serial correlation, for which the estimate at t is
based on data from t� 55 to t, a window of 14 years.6 The same broad trends are
again visible. For most of the 1960s, the serial correlation was quite low, only rising
right at the end to the 0.81 value reported in Table 1. The serial correlation during
the 1970s was around 0.7, while in the 1980s it rose to peak at 0.93. Then, after
another sharp fall down to 0.4 in 1995, the serial correlation rose until 1998 up to
0.7, since when it has been falling again. Fig. 2b instead shows recursive estimates.
The estimate at t now incorporates all the information from the beginning of the
sample up to time t. A different picture emerges: After starting at around 0.4 and
staying there during the 1960s, the serial correlation shot up throughout the 1970s
and the first half of the 1980s, stabilizing around 0.74 with no noticeable change
throughout the 1990s.
6The choice of 14 years, which will also be followed in other sections of the paper, was guided solely by

the need to have long enough samples to assess persistence. We have replicated most of the results with 12

and 10 year samples, with no noticeable changes.
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Fig. 2. (a) First-order serial correlation of inflation over 14-year rolling window samples, (b) first-order

serial correlation of inflation over recursive samples.
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4. Bayesian time-varying parameter estimates

A Bayesian approach is well suited to this problem. It explicitly treats the
parameter vector yt as being random and time-varying and provides posterior
densities for yt at all points in time. From these, one can obtain posterior densities
for the measures of persistence.
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4.1. The model

Following Cogley and Sargent (2002), we study a state-space model given by
(1)
7T
8T

resu

poss
the measurement equation in Eq. (1);

(2)
 an equation for the evolution of the state:
pðytþ1 j yt;V Þ / Iðytþ1Þf ðytþ1 j yt;V Þ, (2)

where pðytþ1 j yt;V Þ is the density of next period’s state ðytþ1Þ conditional on this
period’s state yt and on the covariance matrix of the disturbances to the system V .
This density is proportional to the product of a normal density f ðytþ1 j yt;V Þ
with mean yt and variance V , and an indicator function Iðytþ1Þ, which imposes
prior subjective restrictions on the model. These restrictions may lead to non-
linearities. However, the posterior distributions are still well defined and Monte
Carlo methods can be used to approximate them. We will use the notation pð:Þ
to designate an arbitrary probability density function and f ð:Þ to refer more
specifically to a normal density function. The errors of the measurement and state
equations ðet; v0tþ1Þ

0 are i.i.d. normal random variables with mean 0 and covariance
matrix

V ¼
s2e C0

C Q

 !
(3)

of dimension ðk þ 2Þ � ðk þ 2Þ; where s2e is the scalar variance of measurement
innovations, Q is the covariance matrix of state innovations, which is ðk þ 1Þ�
ðk þ 1Þ, and C is a cross-covariance vector, ðk þ 1Þ � 1. In maybe more familiar
form, the state equations are given by ytþ1 ¼ yt þ vtþ1 with the added truncation Ið:Þ
to possibly restrict the parameter vector to some class. In empirical Bayes
terminology, yt are the parameters and the elements of V are the hyperparameters.

The priors for y0 are independent from the hyperparameters and also follow a
(possibly truncated) Gaussian distribution, with mean ȳ and variance P̄. The
hyperparameters come from an inverse-Wishart distribution with scale matrix V̄�1

and T0 degrees of freedom.7 The joint prior distribution is hence given by:8

pðy0;V Þ / IðyÞf ðȳ; P̄ÞIW ðV̄�1;T0Þ. (4)

The values of ðȳ; P̄; V̄ ;T0Þ come from estimating a time-invariant autoregression on
an initial sub-sample 1948.1–1958.4. To estimate the model, we use data from 1959.1
to 2001.3, starting the estimates at 1965.1. We denote the partial histories of the
variables as PT ¼ ½p1 . . . pT �

0 and yT
¼ ½y1 . . . yT �

0 and the potential futures from
date T to T þH as PTþ1;TþH ¼ ½pTþ1 . . . pTþH �

0 and yTþ1;TþH
¼ ½yTþ1 . . . yTþH �

0.
he Wishart distribution is the multivariate analogue of the chi-squared distribution.

his choice of priors coincides with that of Cogley and Sargent (2002) to allow comparison of our

lts. This is not an innocuous choice though. See Uhlig (1994) for the implications of this prior and

ible alternatives.
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Our aim is to obtain a posterior predictive density for the parameters. We can
decompose the joint posterior into two fundamental components, using Bayes law:

pðPTþ1;TþH ; yTþ1;TþH ; yT ;V jPT Þ

¼ pðyT ;V jPT ÞpðPTþ1;TþH ; yTþ1;TþH
jPT ; yT ;V Þ. ð5Þ

The first term captures beliefs about the past – it is the joint posterior density for
both the past states and the hyperparameters. The second term involves beliefs about
the future, conditional on the beliefs about the past. This includes beliefs not only
about the future observations but also about the future evolution of the state vector.
This suggests a two-step procedure to obtain future draws that we can use to
approximate the joint posterior distribution. First, obtain by multiple draws the
posterior of past states and hyperparameters. Then, conditional on each past draw,
draw future states and inflation paths. This gives draws from this posterior density.
The first part of the algorithm uses the Gibbs sampler to simulate draws of ðyT ;V Þ
from pðyT ;V jY T Þ. The second part runs the system forward successively drawing
state and measurement innovations from their known distributions. The appendix
describes the exact steps.

Implementation involves choosing the number of iterations to use in our
approximation of the posterior density. We draw 420 past histories, discarding the
first 120 to remove dependence from the starting point of the Gibbs sampler, and
then draw 400 futures per history. We set H ¼ 120 quarters so that we draw futures
with 30 years duration. Thus, at each date we have in total 400� ð420� 120Þ ¼
120; 000 future trajectories for inflation (pt) and the states (yt), each 120 quarters
long. Because this focuses on future draws, the estimates of persistence are forward-
looking, since they capture expectations of the future persistence of inflation as of a
point in time. For each trajectory of future data, we compute our measures of
persistence r, g and Z, using an AR(3) as a base. We then take the median over the
trajectories and the 5% and 95% percentiles to give the Bayesian 90% credible set.9
4.2. Replicating Cogley and Sargent (2002)

Our specification differs from Cogley and Sargent’s (2002) in many ways. First,
they estimate a VAR in order to address other issues aside from inflation
persistence.10 Second, they argue that non-stationary representations for inflation
are implausible from the perspective of economic theory, since they imply an infinite
asymptotic variance for inflation, which could never be optimal if the central bank’s
9There are severe computational constraints on this exercise. Simultaneously using five computers with

approximately 1700MHz, it takes about one month to run the full algorithm. These constraints explain

our choice to settle for a number of draws that is relatively small for what is standard in Gibbs sampling.

Section 4.5 examines the robustness of the results to the number of draws.
10Cogley and Sargent (2002) are also concerned with making inferences on long-run forecasts of

inflation, tests of the natural rate hypothesis, and estimates of Taylor-type policy rules. To do so, they

estimate a VAR on three variables: inflation, unemployment and interest rates. The focus of this paper on

inflation persistence leads us to work instead with an AR.
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loss function includes the variance of inflation. Accordingly, they truncate the
parameter space using the indicator function Ið:Þ to exclude non-stationary
representations for inflation. Third, they choose to measure persistence by the
spectrum at frequency zero, which we denote by S0. For each trajectory of future
inflation, they estimate a spectrum and take the median of these estimates at
frequency zero.

Fig. 3a shows the median estimates and Bayesian credible sets of S0. To ease
interpretation, Fig. 3b shows the same estimates using a logarithmic scale in the
vertical axis. Our estimates are similar to those in Cogley and Sargent (2002). The
estimates of S0 rise until the 1970s, remaining at high levels during this decade, and
start a gradual decline since 1981 until the present. Unlike them, we nevertheless also
plot the credible sets. These turn out to be quite large, so that paths with constant
inflation persistence are perfectly consistent with the data. Thus, once we take
parameter uncertainty into account, there is no longer decisive evidence that
inflation persistence has changed in the last three decades.
4.3. Forward-looking measures

The use of S0 in this application is nevertheless problematic, since it is likely to
confuse changes in persistence with changes in volatility. From Table 1, we have
strong signs that the variance of inflation has been falling in the last 20 years. A fall
in the variance would lower the spectrum of inflation at all frequencies, including 0.
Thus, S0 would fall even if all the other autocovariances, and so persistence, were
unchanged. To see this, note that if the model consisted solely of the measurement
equation, then

S0 ¼
1

2p
s2e

ð1� gÞ2
. (6)

Even if a variance-independent measure of inflation persistence as the sum of the
coefficients on inflation g is unchanged, S0 will fall with the variance of inflation.
Indeed, Cogley and Sargent (2002) note that their estimates of S0 are highly
correlated with their measures of the variance of inflation.11

Figs. 4a–c depict the median estimates and 90% credible sets for the largest
autoregressive root (r), the sum of lagged coefficients on inflation (g), and the half-
life (Z). The three measures give the same message: inflation persistence is basically
unchanged over the last 30 years, with at most a very slight fall in the median
estimates after 1980. The credible sets cover a large area and constant paths for
inflation persistence are consistent with the data over a wide range. Compared with
Figs. 4a–c shows smoother estimates, due to the non-linearity of the half-life
estimator.
11An alternative measure of persistence, not subject to this criticism, would be the normalized spectral

density at frequency zero. The ideal though would be to have a statistical model that allowed for time-

varying volatility. Our model in Section 4.1 does not take this approach, because of the severe

computational constraints that we faced. We hope that future research pursues this.
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Another issue in the Cogley and Sargent (2002) application is the truncation of the
parameter space to exclude non-stationary representations. If there is a strong belief
that inflation is stationary, this is the appropriate way to introduce these strong
subjective priors of the researcher into the model. However, it comes with some
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potentially undesirable implications. For the sake of illustration, say that k ¼ 1, so
that we are working with an AR(1) and the parameter y1 equals both r and g. If at a
point in time our estimate of y1 is 0.99 with standard deviation 0.05, the restriction to
stationary draws next period implies that approximately 42% of the draws are
discarded. The implied distribution for the parameter then becomes similar to the
lower half-tail of the normal, scaled up to have measure one. It is very asymmetric
(we are putting only a 14% chance on the parameter rising and 86% on it falling),
and this could be seen in Fig. 4 where the median is much closer to the upper bound
of the credible set than to the lower bound. Moreover, by placing such a strong
weight on declines, ytþ1 has a distribution that does not have a mean of yt ¼ 0:99,
but instead a mean of 0:956. Thus, we should expect that the truncation strongly
pushes the results towards low values of persistence.12

Furthermore, the argument that we should exclude the possibility of an infinite
asymptotic variance of inflation is not entirely convincing. If the objective function
of the policymaker is the expected discounted sum of the variance of inflation, then
as long as the discount factor is smaller than one, even if inflation has a unit root, the
loss is finite. Moreover, according to this argument, if output also enters the central
bank’s loss function we should also discard explosive representations of output,
ruling out by assumption unit roots in output despite the large literature arguing for
their presence. If it is the output gap that enters the central bank’s objective function,
12Sims (2002) discusses the economic implications of this restriction, namely in biasing tests of the

natural rate hypothesis (g ¼ 1) towards rejection.
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the Cogley and Sargent argument would allow for unit roots in output, but it is
unclear why there should not also be an inflation gap in the objective function rather
than actual inflation, in which case unit roots in inflation should not be excluded.
More generally, taking the Cogley and Sargent restriction to its logical extreme, any
variable that enters the objective function of risk-averse agents must be stationary.
This includes most variables of interest in economics.

We proceed by re-estimating the model without imposing the stationarity
restriction. This amounts to setting Iðytþ1Þ ¼ 1 always. Estimates and 90% credible
sets for our three measures of persistence are in Figs. 5a–c.13 Note that the estimates
are substantially larger than before, and we generally cannot exclude the possibility
of explosive representations. Concerning changes, our earlier result remains: there is
no detectable change in the median estimates of inflation persistence in the last 30
years, and a wide range of values of persistence lie at all points in time within the
90% credible set.

In taking as the estimator of persistence the median of the posterior distribution,
we are implicitly choosing an absolute error loss function. A common alternative is a
squared error loss, in which case the Bayes estimator is the mean of the posterior
density. Figs. 5a–c also plot the mean. The conclusion of no evidence for a change in
persistence remains, as the mean closely tracks the median and is stable over time
and across measures of persistence.

Finally, note from Fig. 5b that since 1980 there is a progressive fall in the
lower bound of the credible set. A little of this fall (though much less so) also
happens in the posterior for the largest autoregressive root in Fig. 5a. We inspected
the evolution of the posterior distributions over time and found that, below the
40% percentile, the distributions have become somewhat flatter in the last 20 years.
This could be interpreted as some evidence that persistence has fallen as the
probability of lower values has increased. Yet this is at best weak support for
the hypothesis of a change in persistence. Since the remaining pieces of evidence
go against the hypothesis, we conclude persistence is best described as unchanged
over time.

4.4. Backward-looking measures

The forward-looking measure of persistence we have employed so far are meant to
capture the perspective of a policymaker who at a point in time is trying to foresee
what the persistence of inflation in the future will be. An alternative is to estimate our
Bayesian time-varying parameters model for the whole sample, and use the posterior
distribution of the models’ parameters at each point in the sample to generate
posterior distributions of the inflation persistence measures at each point in time.
These are backward-looking measures of persistence, since they are the estimates of
persistence that the econometrician forms at a point in time, given all of the sample
data until then.
13Using S0 to measure persistence would only be valid if the process for inflation was covariance

stationary, but this is not the case for our three preferred measures of persistence.
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Figs. 6a–c present backward-looking estimates of persistence. Because these are
less computationally intensive, they use a much larger number of draws: 30,000,
discarding the first 10,000. These backward-looking measures are less decisive on the
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question of whether persistence has changed.14 On the one hand, there is a sharp fall
in the median estimates of persistence in 1975 and 1982. Moreover, there are clear
trends in the median estimates of persistence, rising from 1960 to 1975, and slowly
declining since 1990. On the other hand, the credible sets are wide and consistent
with the view that persistence if unchanged. Furthermore, the rise from 1960 to 1975
can be explained by the choice of priors, which have very low persistence and thus
exert a strong influence in the estimates in the beginning of the sample. In the next
section, we show that having priors with higher persistence eliminates this rise. As
for the sharp falls, the first is clearly associated with the oil price shock and the
second with the Volcker disinflation. Noticeably though, after these two isolated
episodes, the estimates return to their previous levels.

The measures of persistence since 1990 leave open the question of whether
persistence has recently fallen. As with the forward-looking measures, there is an
increase in the mass of the distribution at lower values of persistence. The credible
sets widen to now include many values of persistence that have quite different
implications. However, it is unlikely that a researcher coming into the 1990s with
priors mildly in favor of unchanged persistence would change her views. The case for
a change in persistence is slim.
14The half-life estimates are tightly concentrated between two and three quarters, and almost always

unchanged despite the large variations in the LAR and the sum of autoregressive coefficients. This is likely

driven by the non-linearity of half-life estimates and serves as an illustration of the possible danger of

focusing solely on this measure.
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4.5. The role of the priors and the number of draws

The priors for our application were obtained from a time-invariant autoregression
on an initial sub-sample of the data from 1948.1 to 1958.4. Yet, as we observed in
Section 2, this period is somewhat unusual in that the serial correlation of inflation
was much lower than what it typically has been since 1960. The LAR for the prior
parameters is 0.54 lying with 90% prior probability on the (0.39, 0.80) interval, well
below most of the estimates in Figs. 4–6.

To check on the robustness of our results to different priors, we undertook two
experiments. First we changed the priors for ȳ to raise the LAR while keeping
the priors for ðP̄; V̄ ;T0Þ as before. The new implied LAR was 0.95, more in accord
with the post-war experience, lying with 90% probability in (0.82, 1.05). Our second
experiment consisted of using as priors the estimates from a time-invariant
regression on the data from 1959.1 to 2001.3. These are, of course, not valid
priors since they use future information. The thought experiment we had in
mind was to consider the priors of a researcher that comes into this exercise with
her experience of studying inflation in the last 40 years. This researcher has much
tighter priors, with an LAR that lies, with 90% probability, in the interval
ð0:91; 0:98Þ.

Figs. 7a–c show the estimated backward-looking measures of persistence, the left
panel corresponding to the first experiment, and the right to the second experiment.
The contrast between Figs. 7 and 6 is remarkable. The estimates of persistence are
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now typically unchanged over the entire sample period. With the very uninformative
priors, the posterior credible set is wide, and the mass in the left tail increases in the
1990s as before. With the second set of priors, the credible sets are remarkably tight
throughout with very little variation over time.

We were not able to repeat this experiment with the forward-looking measures
because of our computational constraints. Still, given the results with the backward-
looking measures, it is reasonable to expect that using priors with very little
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persistence tends to influence the results towards finding changes in persistence. Since
with these priors, we still found that persistence is best described as unchanged, this
suggests that using priors with higher persistence would reinforce this conclusion.

Another potential concern in the implementation is that we used a small number
of draws in the forward-looking estimates. Even though this issue is worrisome,
taking more draws was infeasible given our computational constraints. One way we
checked whether this problem was by estimating the backward-looking measures,
which are much less computationally demanding, for different number of draws.
Fig. 8 shows estimates of the LAR. Panel (a) uses 420 draws discarding the first 120,
as in the forward-looking measures. Panel (b) replicates Fig. 6a, which used 30,000
draws, discarding the first 10,000. Panels (c) and (d) use an intermediate number of
draws: 11,000 discarding the first 1000, and 10,000 discarding the first 5000,
respectively. The figure shows that using a limited number of draws leads to
estimates that are similar to those with many more draws. While this is only
suggestive, it indicates that the small number of draws behind the forward-looking
estimates in Figs. 4 and 5 may have been enough.
5. Classical median unbiased estimates

Classical econometrics provides an alternative set of estimation techniques for
persistence in our model. We pursue these in this section. Now, the parameter vector
is treated as fixed, but variability in the sample data is taken into account.
Consequently, the estimates that follow are different in spirit from the Bayesian
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estimates of the previous section, and could easily lead to different conclusions, as it
happens in the related literature on unit roots.15

5.1. Estimates

Alternative estimators of persistence and associated asymptotic distributions are
provided by Stock (1991) and extended by Andrews (1993) and Andrews and Chen
15See the 1991 issue of the Journal of Applied Econometrics for a contrast between Bayesian and

classical approaches in testing for unit roots.
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(1994). They focus on the class of median unbiased estimators, defined as the
estimators ŷ of the true parameter y, such that the median of ŷ equals y for all
possible y in the parameter space. Median unbiased estimates are generally well
above least squares estimates, since the latter are known to be biased downward
when the parameters are close to a unit root.

The approach consists of re-estimating Eq. (1) on different sub-samples of the
data, taking care to obtain median unbiased estimates of persistence for each
regression. Stock (1991) used local-to-unity asymptotics to establish the asymptotic
confidence interval for the LAR. For a fixed sample in which the parameter vector is
treated as constant, Eq. (1) becomes

yðLÞpt ¼ y0 þ et, (7)

where yðLÞ is a k order lag polynomial, yðLÞ ¼ 1�
Pk

j¼1 yjL
j , that can be

decomposed into yðLÞ ¼ ð1� rLÞbðLÞ, and et is a martingale difference sequence,
homoskedastic (E½e2t � ¼ s2), and with finite fourth moments (suptE½e

4
t �o1). The

local-to-unity model for the LAR is r ¼ 1þ c=T , for a fixed scalar c, so that r is
within a 1=T neighborhood of 1, where T is the sample size. The polynomial bðLÞ is a
lag polynomial of order k � 1 with all stable roots.

Rearranging, we obtain the augmented Dickey–Fuller regression

pt ¼ y0 þ gpt�1 þ
Xk�1
j¼1

fj�1npt�j þ et. (8)

The parameters fj are given by fj ¼ �
Pk

i¼jþ1 ai and the ai are the components of the
k � 1 order lag polynomial defined by aðLÞ ¼ L�1ð1� ð1� yðLÞÞ: The coefficient on
lagged inflation is our familiar measure of persistence, the sum of the autoregressive
coefficients g, which in this parametrization equals g ¼ 1þ cbð1Þ=T : Estimating this
regression by least squares, we can compute the t-statistic for the hypothesis that
g ¼ 1; commonly known as the augmented Dickey and Fuller (1979) statistic. Using
the tables in Stock (1991) and following the procedure in Kendall and Stuart (1967),
we obtain a median unbiased estimate and a confidence interval for c, from
where a confidence interval for r follows from r ¼ 1þ c=T . To obtain an estimate
and a confidence interval for the sum of the autoregressive coefficients, g, we need a
consistent estimator of bð1Þ ¼ 1�

Pk�1
j¼1 fj�1: Andrews and Chen (1994) explain

how to obtain this iteratively. Starting with the initial least squares estimate of bð1Þ,
we compute an initial estimate of g, denoted ĝð1Þ. Regressing pt � ĝð1Þpt�1 on a
constant and the lags in the change in inflation, we obtain a second estimate of
bð1Þ from where a second estimate of g gives ĝð2Þ. Iterating until convergence, we
obtain a median unbiased estimate of the sum of the autoregressive coefficients. As
for the half-life, note that as T tends to infinity so does the half-life. Following Rossi
(2005), we make the additional assumption that the half-life as a fraction of the
sample size ðZ=TÞ converges to a finite value as T goes to infinity, in which case we
can obtain median unbiased estimates and confidence intervals for the half-life
as well.
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Median unbiased estimates and confidence intervals for r and g on recursively
increasing samples are presented in Figs. 9a and b from 1970 onwards, where the first
estimate uses 14 years of data. Also plotted are the median unbiased estimates on the
full sample. Again, it is striking how stable and unchanged over time these estimates
are. With a single exception, for all points in time, a wide range of values of
persistence are consistent with the possibility that persistence has been unchanged
over the sample period. The exception is the short period 1974–1975, when the
confidence intervals tighten considerably. However, in this period, whereas the
largest auto-regressive root increases, the sum of autoregressive coefficients falls, so
there is no clear sign of a change in persistence.16

Estimates over rolling 14-year windows are presented in Figs. 10a and b.17 The
short sample over which each regression is estimated leads to more imprecision and
time-variation. Still, the broad trends are the same as those obtained on recursive
sample, with again unchanged persistence. The exception is an anomalous episode in
1996, with a sharp fall in the estimates.18 When we re-estimate the model using a
12-year window, the large drop is now in 1994, and with a 10-year window, it occurs
in 1992. This points to the source of the anomaly lying in the beginning of the
rolling sample in the 1981–1983 period. This was indeed an anomalous period in the
data for inflation, commonly referred to as the Volcker disinflation. We see this
episode mainly as an illustration of the danger of using short samples to infer the
persistence of a series, especially when history warns us that an extraordinary event
took place.

The estimates and confidence intervals above used asymptotic distributions which
may be misleading with finite samples. Andrews and Chen (1994) describe a
procedure to obtain finite-sample approximately median unbiased estimates of the
parameters in Eq. (8) assuming a normal distribution for the errors et. The procedure
is again iterative: given the initial least squares estimates of f1; . . . ;fk�1, we define
the approximately unbiased estimator gð1ÞAMU to be the value of g which leads the least
squares estimator to have as its median the initial least squares estimate of g: This
involves finding gð1ÞAMU such that generating data with this value for g and the
estimates of f1; . . . ;fk�1 for the remaining parameters, and estimating least squares
regressions on many sequences of simulated data, the median of these estimates is
exactly the value of g obtained from the initial least squares regression. Conditional
on gð1ÞAMU, we obtain new estimates of f1; . . . ;fk�1, and calculate a new median
unbiased estimator gð2ÞAMU. This is repeated until convergence. By an analogous
procedure, we can obtain the 5% and 95% bounds for the largest autoregressive
16We do not report the estimates for the half-lives because the results are easily described in one

sentence. Since the LAR is consistently above one, the median unbiased estimates of the half-life are

almost always at the 40 (infinity) upper bound.
17We replicated all of the results with 10 and 12 year windows and obtained qualitatively the same

results. The only difference is that confidence intervals are even wider due to the shorter samples, which

further reinforces our conclusions.
18The drop is sharper if one uses the CPI instead of the GDP deflator. In both cases, the median estimate

and 10% lower bound are discontinuous because we are outside the range of critical values tabulated by

Stock (1991).
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root, the sum of autoregressive coefficients, and the half-life. Note that a limitation
of this approach is that it constrains g to lie in the interval ð�1; 1Þ. The results for
recursive samples are in Fig. 11a, which is broadly similar to Fig. 9b. The only
noticeably difference is that the estimates are smaller, which is probably driven by
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the restriction to the interval ð�1; 1Þ imposed by this procedure. Rolling sample
results are in Fig. 11b, which again are similar to Fig. 10b, with the exception of the
1975–1985 period where, contrary to any of the results so far, the path of inflation
persistence over time has a V-shape. Still, the estimates are much more volatile and
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the confidence intervals are much wider. Overall, these approximate estimates
suggest there is not much distortion from using asymptotic distributions in our
applications.19
19The results are qualitatively similar for the LAR and the half-life, so they are not reported for brevity.
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5.2. Formal tests

We employ two tests to inform us on the validity of the null hypothesis of constant
persistence.

Banerjee et al. (1992) develop the asymptotic theory for rolling and recursive tests
of unit roots. Their null hypothesis is that g ¼ 1 for the entire sample period (and so
c ¼ 0 and r ¼ 1). This hypothesis is stricter than our null hypothesis of constant
inflation persistence which requires that r and g are constant but not necessarily one.
The test statistics are the maximum and the minimum of the Dickey–Fuller statistic
over the different regressions, tmax and tmin, and Banerjee et al. (1992) provide critical
values for sample sizes of 100.20

For the recursive estimates, the tmax is 1.07 and tmin is �2:74. The respective 10%
significance level critical values are �1:73 and �4:00, so in both cases we do not
reject the null hypothesis and infer there is no evidence of a change in inflation
persistence. For the rolling Dickey–Fuller statistics, the maximal value is 1.68,
to be compared with the 10% significance level critical value of �1:73. We therefore
do not reject the null of a constant unit root. The minimal statistic is �5:30,
which compared with a 2.5% critical value critical value of �5:29, leads to a
rejection of the null. However, inspection of the sequence of the statistics reveals
that the rejection is entirely driven by the 1996 estimates, which as we argued
above, is very sensitive to the small rolling window samples. Overall, we
conclude there is little evidence of rejection of the null of a constant unit root in
inflation.

An alternative test is for the hypothesis of parameter stability. The null hypothesis
is that the parameters of the autoregression are unchanged for the entire sample
period: yt ¼ y for all t. Again this is stricter than our null hypothesis since it is
conceivable that the scalar functions of persistence remain unchanged despite
changes in the parameter vector. Still, parameter stability implies unchanged
persistence (even if the converse need not hold) so an acceptance of the null
hypothesis implies unchanged persistence. We calculate the sup-Wald or Quandt
Likelihood Ratio test, first proposed by Quandt (1960) and studied by Banerjee et al.
(1992) when the regressors are possibly non-stationary. The testing procedure
consists of computing a sequence of Chow (1960) statistics for parameter stability at
each of the different points in time in a middle subset of the sample, and taking the
maximum. For our application, the maximum is attained at 1974:3 at a value of
28.69, should be compared with a critical value at 10% significance level of 31.78.
We do not reject the null hypothesis of parameter stability and again infer that
persistence is best described as unchanged.
20A small issue with these critical values is that they apply to specific lengths of the rolling and recursive

windows. The cutoff for the rolling window is 15 years and a quarter, and 11 years and one quarter for the

recursive window. We re-estimated the regressions using these window lengths to calculate the test

statistics.
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6. Comparison with other papers in the literature

Throughout the paper, we have compared our approach with that in Cogley and
Sargent (2002). Stock (2002) and Taylor (2000) also preceded us in examining
inflation persistence in the United States. Stock (2002) applied a subset of the
classical methods in this paper and found no evidence of a change in persistence.
Taylor (2000) found that the median-unbiased estimate for the LAR is much lower
for the 1982.1–1999.4 sample than the estimate in 1960.2–1979.4. This result is also
present in our application – the latter sample yields a LAR estimate of 1.01 and the
former 0.64. Yet our 14-year window estimate at 1999.4 is much higher at 1.02,
consonant with the earlier sample period. Taylor’s results seem therefore to be driven
by the anomaly of having the 1982–1983 period at the beginning of the estimation
sample.

After the first draft of this paper was written and circulated (in May 2001), a small
literature sprung devoted to measuring the persistence of inflation in the United
States. Cogley and Sargent (2005) addressed one of our criticisms. They estimated a
model in which the variance of innovations can vary over time. However, they did
not address the other issues raised in this paper.

Benati (2002) used a classical autoregressive model allowing for time-varying
volatility. He estimated it using U.S. data since 1793 and confirmed the Barsky
(1987) result that inflation has only been persistent since World War I. Kim et al.
(2004) found evidence for a structural break in inflation in late 1979, resulting in
lower persistence. However, their application allows for only one break in the sample
period, so if there was a very short-lived change in inflation persistence around this
date, their test would be unable to detect a return to high levels right after. Our
conclusion that persistence is unchanged since 1970 with a possible very short-lived
exception in the early 1980s is not inconsistent with their results.

Stock and Watson (2003) agreed with our conclusion. They also found no
evidence of a change in persistence in the United States. They further found strong
evidence of a fall in volatility. O’Reilly and Whelan (2005) applied some of our
methods to the Euro area data since 1970 and also found that persistence was high
and unchanged.

An alternative hypothesis has been put forward by Kozicki and Tinsley (2002) and
Levin and Piger (2002). They argued that there has been a change in the intercept of
the inflation equation (y0). Kozicki and Tinsley (2002) interpreted this shift as a
change in the long-run inflation target of the Federal Reserve and found some
evidence that once one controls for it, inflation persistence was somewhat lower
during the 1990s. Levin and Piger (2002) found evidence for a fall in the intercept in
1991, and argue that our 14-year rolling windows might just have missed this shift.
After controlling for the shift, they found no evidence that persistence has changed,
but their estimates are significantly lower than ours. According to them, persistence
is low and unchanged, rather than high and unchanged. The models in our paper
allowed for changes in the intercept. The Bayesian model in Section 4 includes a
time-varying intercept, and the rolling windows in the classical methods in Section 5
should at least partially address this concern. However, and in spite of allowing for
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these shifts, we found that persistence was high and unchanged. One possible
explanation for the different results may be that the changes in the intercept occurred
suddenly and only a few times and our methods may have little power to detect
them.21 Another explanation, suggested by Levin and Piger (2002), is that in a few
years, the extra data points will show a break in 1991. We cannot rule out these
possibilities, although we are skeptical.

Our reading of these papers, and acknowledging that others might see things
differently, is that the weight of the evidence confirms the main finding in this paper.
There is no evidence of a change in persistence in the United States since 1965, with
the minor exception of a possible short-lived change during the 1982–1983 period.
One further robust finding seems to be that there has been a fall in volatility. Finally,
there is some evidence suggesting a change in the intercept of the inflation process in
1991, but it still too early to be sure.
7. Conclusion

We have estimated a quarterly time-series for inflation persistence in the United States
since 1965. We employed different estimation methods and different measures of
persistence. All led to the same conclusion: persistence of inflation has been high and
approximately constant over time. The only possible change in persistence refers to a very
short period in time (1981–1983), an historically exceptional period in monetary policy
which should not be seen as a structural change in the economy. Another conclusion is
that confidence intervals and credible sets are wide enough that there remains great
uncertainty on the exact value of inflation persistence at any given point in time.

Our results provide some answers to the questions raised in the literature described
in the introduction. Concerning the dangers of recidivism by monetary policy-
makers, our results do not exclude this possibility, but its occurrence depends very
much on the model used to test the natural rate hypothesis, i.e., the hypothesis that
the sum on the coefficients in inflation (or the LAR) is one. Within the Bayesian
framework, if the model as exactly implemented by Cogley and Sargent (2002) is
used, then the hypothesis is surely rejected – the model restricts the parameter space
and imposes that inflation is always stationary. Without this parameter restriction
though, there is no evidence pointing to a rejection of a unit root in inflation. Within
the classical framework, if the researcher is careful to compute corrected median
unbiased estimates, she will not reject the null. However, if the policymaker applies
tests of the natural rate hypothesis exactly as in Solow and Tobin, by using the
simple least squares estimates of Eqs. (1) or (8) and testing the null of g ¼ r ¼ 1, it is
possible that she erroneously rejects long-run neutrality.

A second implication of our results is that theories should predict very persistent
inflation rates. In regards to the changes in the way monetary policy is conducted,
21One must be careful not to fall into a tautology here. A stationary model with low persistence but

frequent mean shifts is close to undistinguishable from a persistent process or even a unit root. The issue is

one of frequency of the changes in long-run expected inflation in response to shocks.
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the results show that, even though these likely had effects on the mean or variance of
inflation, they seem to have left inflation persistence unchanged.

Finally, the wide confidence intervals and credible sets that we find point to the
need to model monetary policy under uncertainty. For most of our estimates, we
could not distinguish in the data between LARs of 0.9, 0.95 and 1. Taking the case of
an AR(1) for illustration, the first implies a half-life response to shocks of about 1.5
years, the second already 4.25 years, and in the third the shocks persist forever. All
are substantively different and likely to lead to very different optimal monetary
policies.
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Appendix A

This appendix describes the details in the implementation of the Bayesian time-
varying model. The reader is referred to Cogley and Sargent (2002) for an alternative
exposition. The aim is to obtain the posterior

pðPTþ1;TþH ; yTþ1;TþH ; yT ;V jPT Þ

¼ pðyT ;V jPT ÞpðPTþ1;TþH ; yTþ1;TþH
jPT ; yT ;V Þ.

Since analytical expressions of the two densities are unavailable we use Monte Carlo

methods to simulate them. The algorithm is split in two parts: first, pðyT ;V jPT Þ is

estimated using the Gibbs sampler; and then pðPTþ1;TþH ; yTþ1;TþH
jPT ; yT ;V Þ is

estimated using the draws ðyT ;V Þ of step 1 as starting points for future trajectories

ðPTþ1;TþH ; yTþ1;TþH
Þ.

Step 1: pðyT ;V jPT Þ

The following three results are useful
�
 pðyT ;V jPT Þ / pðPT j yT ;V ÞpðyT ;V Þ from Bayes rule.

�
 pðPT j yT ;V ÞpðyT ;V Þ / f ðPT j yT ;V ÞpðyT

jV ÞpðV Þ since the measurement equa-
tion is linear and has normal innovations.

�
 f ðPT j yT ;V ÞpðyT

jV ÞpðV Þ / IðyT
Þ½f ðPT j yT ;V Þf ðyT

jV ÞpðV Þ� using Eq. (2).

If we did not exclude unstable roots (Ið:Þ ¼ 1 always), the model would have a
linear Gaussian state-space representation with transition equation f ðyT

jV Þ: The
posterior kernel would then be given by pLðy

T ;V jPT Þ / f ðPT j yT ;V Þf ðyT
jV ÞpðV Þ.

We may therefore write pðyT ;V jPT Þ / IðyT
ÞpLðy

T ;V jPT Þ.
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The Monte Carlo simulation of pðyT ;V jPT Þ proceeds in two steps. First, we
estimate the unrestricted posterior pLðy

T ;V jPT Þ by simulations and second, we
reject the draws that violate the stability condition.

We have also two steps in the estimation of pLðy
T ;V jPT Þ. Under some regularity

conditions (Roberts and Smith, 1994), the sequence of draws from pLðy
T
jV ;PT Þ

and pLðV j y
T ;PT Þ converge to a draw from the joint distribution pLðy

T ;V jPT Þ.
This is the Gibbs sampler and its two steps are the following:

Gibbs Step 1: pLðy
T
jV ;PT Þ.

Since the unrestricted transition law is linear and normal, the states are also
normal: pLðy

T
jV ;PT Þ ¼ f ðyT

jV ;PT Þ. Moreover, successive applications of Bayes
law imply: f ðyT

jV ;PT Þ ¼ f ðyT jV ;PT Þ
QT�1

t¼1 f ðyt j ytþ1;V ;PT Þ.
First, we estimate f ðyT jV ;PT Þ ¼ NðyT jT ;PT jT Þ; where yT jT and PT jT are given by

iterating until T on the Kalman updating equations starting from ȳ and P̄:

Kt ¼ ðPtjt�1X t þ CÞðX 0tPtjt�1X t þ s2e þ X 0tC þ C0X tÞ
�1,

ytjt ¼ yt�1jt�1 þ Ktðpt � X 0tyt�1jt�1Þ,

Ptjt�1 ¼ Pt�1jt�1 þQ,

Ptjt ¼ Ptjt�1 � KtðX
0
tPtjt�1 þ C0Þ.

Second, we estimate f ðyt j ytþ1;V ;PT Þ ¼ Nðytjtþ1;Ptjtþ1Þ by going backwards in
time through the sample to obtain ytjtþ1 ¼ ytjt þ PtjtP

�1
tþ1jtðytþ1 � ytjtÞ and Ptjtþ1 ¼

Ptjt � PtjtP
�1
tþ1jtPtjt. Notice that those are not the equations of the Kalman smoother

since the Kalman smoother does not condition on ytþ1 to estimate the mean and
variance of f ðyt j ytþ1;V ;PT Þ.

Gibbs Step 2: pLðV j y
T ;PT Þ.

The inverse Wishart prior on the hyperparameters combined with a Gaussian
likelihood yields an inverse Wishart posterior given by: pLðV j y

T ;PT Þ ¼ IW ðV�11 ;T1Þ,
where T1 ¼ T0 þ T , V 1 ¼ V̄ þ V̄ T and ð1=TÞV̄ T ¼ ð1=TÞ

PT
t¼1 ðetvtÞðetvtÞ

0.
To sample from an inverse Wishart, we use two facts: first, that

pLðV
�1 j yT ;PT Þ ¼W ðV�11 ;T1Þ. Second, that sampling from W ðV�11 ;T1Þ is equiva-

lent to taking T1 independent draws Zi from a normal density Nð0;V�11 Þ, computing
V�1 ¼

PT1

i¼1 ZiZ
0
i and inverting the result.

A.1. Rejection sampling

To impose the Ið:Þ prior restrictions, we check the autoregressive roots of each
simulation at each date and reject non-stationary representations.

Step 2: pðPTþ1;TþH ; yTþ1;TþH
jPT ; yT ;V Þ.

For every draw of the past (yT ;V ), we compute the future trajectories. To do so,
we factorize:

pðPTþ1;TþH ; yTþ1;TþH ; yT ;V jPT ; yT ;V Þ

¼ pðyTþ1;TþH
jPT ; yT ;V ÞpðPTþ1;TþH j yTþ1;TþH ;PT ; yT ;V Þ,

and obtain draws from each of the two components in turn.
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Future Step 1: pðyTþ1;TþH
jPT ; yT ;V Þ.

Since the states are Markov processes, we have that: pðyTþ1;TþH
jPT ; yT ;V Þ ¼QH

i¼1 pðyTþi jPT ; yTþi�1;V Þ:We may then use the fact that ytþi ¼ ytþi�1 þ vtþi, where

vtþi �
i:i:d

Nð0;QÞ. We take H draws from Nð0;QÞ and iterate on the state equation to
obtain a future trajectory. As before, when applicable we also reject the explosive
roots associated with each draw.

Future Step 2: pðPTþ1;TþH j yTþ1;TþH ;PT ; yT ;V Þ.
This joint distribution may be factored into: pðPTþ1;TþH j yTþ1;TþH ;PT ; yT ;V Þ ¼QH
i¼1 pðpTþi jPTþ1;i�1; yTþ1;TþH ; yT ;V ;PT Þ: But then, using the fact that

etþi�NðC
0Q�1vtþi;R� C0Q�1CÞ, it follows that the distribution of inflation is

pTþi�NðX
0
Tþ1yTþ1 þ C0Q�1vtþi;R� C0Q�1CÞ: We take draws for etþi and the lags

of pTþi in the data to iterate the measurement equation ptþi ¼ X 0tþiytþi þ etþi.
This gives the future draws for inflation that we use to obtain our measures of

persistence.
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