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A.1. Proof of proposition 1

Index the continuum of agents by i. Then, the family of all households wishes to

maximize:

E
∫ ∞∑

t=0

βt [ln cit − χ(1− hit)nit] di,

where each household receives the same weight since they were all ex ante identical at the

start of time. The family can choose any value for cit ≥ 0 and nit ∈ {0, 1} it wishes for each

agent at each period in time, since it can transfer resources across members freely through

the insurance payments. Integrating over all household’s budget constraints in equation

(3) in the main text gives the constraints of this maximization:

Ct +Kt+1 = (1− δ + rt)Kt + wtLt + dt −Gt,∫
citdi = Ct and

∫
sitnitdi = Lt,

for each period t.

Building the Lagrangian for this problem, with Lagrange multipliers ζ1t, ζ2t, ζ3t for the

three constraints, respectively, gives:

L = E
∞∑
t=0

βt
{∫

[ln cit − χ(1− hit)nit] di

+ζ1t [(1− δ + rt)Kt + wtLt + dt −Gt − Ct −Kt+1]

+ ζ2t

(
Ct −

∫
citdi

)
+ ζ3t

(∫
sitnitdi− Lt

)}
.
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The variables with respect to which to maximize are: {Ct, Lt,Kt+1, cit, nit}.

The first-order conditions with respect to individual and aggregate consumption are:

1

cit
= ζ2t and ζ1t = ζ2t.

Multiplying both sides by cit, and integrating gives the solution for the multipliers: ζ1t =

ζ2t = 1/Ct, as well as the sharing rule for individual consumption: cit = Ct. All consume

the same, since all were ex ante identical and they are all fully insured.

The optimality condition with respect to capital is:

ζ1t = βζ1t+1(1− δ + rt+1).

Replacing the Lagrange multiplier gives the Euler equation:

Ct+1

Ct
= β(1− δ + rt+1).

Finally, turn to the labor supply decision. It is clear from the structure of the problem

that if hit = 1, then nit = 1 as there is no utility loss and only a positive wage gain from

working. If hit < 1, it should also be clear that nit = 1 if and only if hit > h∗(sit), a

threshold that depends on the salary offer of the agent. But then:∫
χ(1− hit)nitdi = χ(1− π)

∫
s

∫ η

0
(1− hit)nitdF (ht)dF (st)

= χ(1− π)

∫
s

[∫ η

h∗
(1− hit)dh

]
dF (st)

=
χ(1− π)

2

[∫
s
(1− h∗)2dF (st)− (1− η)2

]
.

Using this result in the Lagrangian, the first-order conditions with respect to h∗ and Lt

are, respectively:

χ(1− h∗(sit)) = ζ3tsit and ζ1twt = ζ3t.

Using the first-order condition for consumption to eliminate the Lagrange multipliers gives

the optimal labor supply defining the h∗(.) function:

1− h∗(sit) =
wtsit
χCt

.

2



Recalling the definition of effective labor supply:

Lt =

∫
sitn

∗(k, s, h)di

= π + (1− π)

∫
sit (η − h∗(sit)) dF (s)

= π − (1− π)(1− η) + (1− π)

∫
wts

2
it

χCt
dF (s)

= π − (1− π)(1− η) +
(1− π)wtE(s2it)

χCt
.

Collecting all the results, we are left with the Euler equation and the aggregate labor

supply equation. These are identical to the two optimality conditions from the represen-

tative consumer problem in Proposition 1, proving the result.

A.2. Proof of proposition 2

Combining the optimality conditions in section 3.2, without nominal rigidities:

rt = αAt

(
Kt

Lt

)α−1
and µwt = (1− α)At

(
Kt

Lt

)α
.

Defining µ = 1 + τ gives immediately the result.

A.3. Proof of proposition 3

Combining Propositions 1 and 2, all that remains is to check the market clearing con-

dition: Mt = dt − Gt. But with flexible prices dt = (µ − 1)wtLt. Using the definition of

taxes in Proposition 2, Mt = τwtLt −Gt. Finally, to solve for employment:

Et =

∫
nitdi = π + (1− π)

∫
(η − h∗(sit)) dF (s)

= π + (1− π)η − (1− π)

∫ (
1− wtsit

χCt

)
dF (s)

= π − (1− π)(1− η) +
(1− π)wt
χCt

.

Combining with the expression for Lt in the proof of Proposition 1 gives the expression for

Et.

A.4. Numerical solution of the full model

We solve the household problem in the Bellman equations (1)-(5) in the main text by

numerically by value function iteration. For the first few iterations, we discretize the state
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space, but once we are close to the solution, we switch to interpolating the value function

linearly, and using a golden section search algorithm for the maximization. It is possible

to reduce the dimension of the state space from 3 to 2, by re-defining variables, but after

extensive experimentation we found that surprisingly this did not materially speed up the

calculations.

As for the production sector, the optimality conditions were described in section 3.2.

In the steady state, where all firms are perfectly informed of the current state of affairs that

has been lasting for an indefinitely long time, given values for X0 and r0, we can sequentially

find the other variables by solving in order the system of equations:

K0 =

(
αA0

r0

)1/(1−α)
X0 and w0 =

(1− α)A0

µ

(
K0

X0

)α
,

L0 = X0 and d0 = (µ− 1)w0L0.

Following a shock in period 1, only a fraction Λt of the firms know about it in period

t. Since prices are being set according to equations (10)-(11) in the main text, the price

index for intermediate goods in equation (8) equals:

p = µ

[
Λtw

1
1−µ
t + (1− Λt)w

1
1−µ
0

]1−µ
= (1− α)A

(
K

X

)α
,

where the second equality comes from equation (7).

In turn, letting XA
t be the output of attentive firms, that have learned about the change,

and XI
t be the output of inattentive firms:

X
1/µ
t = ΛtX

A1/µ
t + (1− Λt)X

I1/µ
t .

Of the following two expressions, the first comes from combining the production function

in equation (9), with the labor market clearing condition in equation (15), and the second

from dividing the demand functions in (8):

Lt = ΛtX
A
t + (1− Λt)X

I
t ,

XA
t /X

I
t = (wt/w0)

−µ/(µ−1).

The two expressions can be used above to replace for XA
t and XI

t to obtain:

Lt = Xt

 Λt

(
wt
w0

) µ
1−µ

+ 1− Λt[
Λt

(
wt
w0

) 1
1−µ

+ 1− Λt

]1−µ
 .
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As for dividends, note that:

dt = Λtd
A
t + (1− Λt)d

I
t

= Λt(µ− 1)wtX
A
t + (1− Λt)

(
µw0

wt
− 1

)
wtX

I
t ,

where the second equality comes from equation (17). Again, we can replace for XA
t and XI

t

just as in the previous paragraph.

Combining all of the previous results then, given values for Xt and rt the variables in

the production sector Kt, wt, lt, dt solve, again sequentially, the system of equations:

Kt = Xt

(
αAt
rt

) 1
1−α

,

wt = w0


[
(1−α)At
w0µ

(
Kt
Xt

)α] 1
1−µ

+ Λt − 1

Λt


1−µ

,

lt = Xt

 Λt

(
wt
w0

) µ
1−µ

+ 1− Λt[
Λt

(
wt
w0

) 1
1−µ

+ 1− Λt

]1−µ
 ,

dt = (µ− 1)wtlt

Λt

(
wt
w0

) µ
1−µ

+ (1− Λt)

( µw0
wt
−1

µ−1

)
Λt

(
wt
w0

) µ
1−µ

+ 1− Λt

 .

Combining all of the results gives the following algorithm, drawn from the original work

of Aiyagari (1994) to find the steady state:

1. Guess values for X and r.

2. Compute sequentially K, w, l, d using the steady-state optimality conditions for the

production sector.

3. Solve the decision problem of the household to obtain k′∗(k, s, h) and n∗(k, s, h).

4. Use this decision function and the exogenous transition function for s to build F (k, s, h).
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5. Obtain new guesses for X and r sequentially from:

X =

(∫
s1/µn∗(k, s, h)dF (k, s, h)

)µ
,

r = α

(∫
k′(k, s, h)dF (k, s, h)

X

)α−1
,

and iterate until convergence.

For the transition dynamics to shocks, we follow the approach of Conesa and Krueger

(1999) starting from the programs of Heer and Maussner (2005). We adapt this previous

work to deal with transitory shocks (they had permanent shocks) as follows. First, we pick

a finite T and assume that by that time the transitory shock to the exogenous variables has

disappeared and all of the endogenous variables have converged back to their steady state.

In the implementation, T = 120, and increasing it led to no noticeable differences in the

paths. Then, start by guessing the path: {rt, Xt}Tt=1. The optimality conditions in the

production sector in section 3.2 deliver the implied paths for {Kt,wt,lt,dt}Tt=1. Knowing

that the value function at period T + 1 is the one at the steady-state, applying steps 2-4 of

the algorithm for the steady state above gives the decision rules and value functions at date

T . Repeating this gives the decision rules at date T − 1, and so on until date 1. Finally,

we use the decision rules to calculate {Xt, rt}Tt=1 as in step 5 of the steady-state algorithm.

Iterating this procedure until convergence gives the transitional dynamics.
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