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Abstract

The dynamic stochastic general equilibrium (DSGE) models that are used to study
business cycles typically assume that exogenous disturbances are independent au-
toregressions of order one. This paper relaxes this tight and arbitrary restriction, by
allowing for disturbances that have a rich contemporaneous and dynamic correlation
structure. Our first contribution is a new Bayesian econometric method that uses con-
jugate conditionals and Gibbs sampling to estimate DSGE models. It is considerably
more efficient than conventional algorithms, in draws and time taken, so it makes es-
timation with correlated disturbances feasible. Our second contribution is to show
that allowing for correlated disturbances can provide a specification check on models
and robustify inferences about key parameters, pointing to directions over which the
model is failing to endogenously match the correlation structure of the data.
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1 Introduction

A typical macroeconomic model proposes a theory for the behavior of economic agents
that links a set of exogenous disturbances to predictions on a different set of endogenous
variables. Because the disturbances are taken as given by the theory, by definition they are
unexplained. The common practice in dynamic stochastic general-equilibrium (DSGE)
models is to impose very strict assumptions on the processes driving disturbances, usu-
ally that they follow independent AR(1)s. This paper develops new estimation techniques
for models with a rich correlation structure for the disturbance vector and applies them
to robustify inferences on U.S. business cycles.

Our first contribution is a new Bayesian econometric technique to estimate dynamic
macroeconomic models with potentially rich processes for the disturbances. We show
that the economic structure of the models implies that key conditional posterior distribu-
tions belong either exactly or approximately to a family of conjugate distributions with
known analytical form. We propose a new conjugate-conditionals algorithm that exploits
this knowledge to efficiently characterize the posterior. The method relies on two well-
known Bayesian techniques: Gibbs sampling and data augmentation. When applied to
DSGE models that assume that disturbances are independent first-order autoregressions,
AR(1)s, our method significantly speeds up estimation. Because the parameters asso-
ciated with the disturbances are part of the conjugate conditional distributions, the ef-
ficiency gains are potentially larger with correlated disturbances because the algorithm
takes advantage of this knowledge. Therefore, the method makes feasible the estima-
tion of DSGE models that were previously prohibitively numerically costly by breaking a
curse of dimensionality that plagues existing algorithms.

Our second contribution is methodological. In the simultaneous-equation reduced-
form macroeconomic model tradition, there has long been a careful treatment of distur-
bances. Researchers routinely allow for rich dynamic cross and auto-correlations across
disturbances, sometimes estimated non-parametrically. This literature has convincingly
established that arbitrary restrictions on the disturbances can lead to inconsistent esti-
mates of key parameters and impulse responses and can lead researchers astray in at-
tempts to endogenize incorrectly-identified disturbances.1 However, DSGE macroecono-
metric models arbitrarily assume that disturbances are independent AR(1)s, which is po-
tentially dangerous for inference. From a Bayesian perspective, since researchers are typ-

1 See Cochrane and Orcutt (1949), Zellner (1962), and Newey and West (1987) for the evolution on deal-
ing with disturbances, and Fair (2004) for a recent careful application.
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ically uncertain about the source and nature of the disturbances, generalizing the distur-
bance process ensures that this uncertainty is reflected in the posterior distribution.

We envision three possible uses for correlated disturbances, and illustrate these with
applications to a real business cycle model, a new Keynesian model, and a medium-scale
DSGE. First, allowing for correlated disturbances lets the data speak freely on the dimen-
sions along which the model is inadequate. Therefore, it provides a check or test for
model misspecification, as previously argued by Del Negro and Schorfheide (2009), and
by Herbst and Schorfheide (2015) in their textbook treatment of correlated disturbances.
We suggest that, after estimating a model with independent disturbances, a researcher
should check whether allowing for correlated disturbances significantly improves fit and
whether the estimated correlations are large and statistically significant. If so, the pattern
of the estimated correlations should provide useful information regarding which part(s)
of the model fail to endogenously match the data.

Second, allowing for more flexible specifications than the independent AR(1) should
robustify inferences in DSGE models as reflected in the posterior for the economic pa-
rameters. The argument is similar to the practice of adjusting standard errors in linear
regressions to allow for unknown heteroskedasticity and autocorrelation in the distur-
bances (Stock, 2010). It is even more important to be careful with the disturbances in
DSGE models than in linear regressions, because correlations will lead to not just ineffi-
cient but also inconsistent estimates in these non-linear models. After allowing for cor-
related disturbances, researchers can compute revised posterior distributions and see in
which direction they change.

Third, a researcher would like to be confident that the model captures the relevant
co-movements among macroeconomic variables endogenously, without needing to rely
on exogenous correlated disturbances. Examining the key propagation mechanisms of
the model and its predictions for co-movement of variables when there are correlated
disturbances should suggest whether this propagation happens endogenously or not. If
not, the pattern of correlation of the disturbances can suggest the path to improving the
model by including some new endogenous mechanism, towards the ultimate aim of a
model with truly “structural” disturbances that are uncorrelated with each other and over
time.

At the same time, researchers must be aware that this ultimate aim is a chimera.
Decades of estimating DSGE models and of adding internal propagation mechanisms
has not led the serial correlation of the assumed AR(1)s to be driven to the ideal of zero.
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We are not proposing the use of models with correlated disturbances as an end in itself.
Rather, we see our method as (i) providing a useful specification check, (ii) allowing for
more robust inferences against the possibility that disturbances are correlated, and (iii)
highlighting directions for improving the endogenous properties of the model. These are
all that researchers can hope for in the process of building better models, pursuing an
ultimate aim of a truly structural model that is unachievable. Allowing for correlated dis-
turbances is an admission that the model is not correctly specified but, at the same time,
models are never perfectly specified, so it is important to have techniques to estimate
models with a rich correlation structure. If nothing else, this allows for a test of how far
the shocks are from independence and it points to the directions in which to improve the
model.

After a brief literature review and discussion of some issues, the paper is organized as
follow. Section 2 presents the conjugate-conditionals estimation method for a broad class
of equilibrium macroeconomic models. Section 3 presents three concrete models to which
we will apply the method: a canonical real business-cycle model, a compact new Keyne-
sian model, and a larger medium-scale DSGE. Section 4 compares the efficiency of our
algorithm estimating these models relative to a standard Metropolis-Hastings approach.
Section 5 discusses how to use the method to look for misspecification and robustify in-
ferences. Section 6 concludes.

1.1 Literature review

The closest paper to this one is Ireland (2004). He adds measurement errors to the reduced-
form equations of a DSGE model and allows them to follow a VAR(1), proceeding to es-
timate the model by maximum likelihood and to statistically test for structural stability.
We differ in several respects. First, our focus is on the exogenous disturbances of the
model, not on measurement error (which we will even abstract from). A key distinction
between disturbances and measurement errors is that the properties of the disturbance
process affect the behavioral responses of the agents in the model, whereas the proper-
ties of the measurement error only affect the job of the econometrician. For instance, if
productivity disturbances are more persistent, agents in the model will engage in less in-
tertemporal substitution in consumption and hours worked, altering the response of all
endogenous variables. Instead, more persistent measurement errors only mechanically
drive a difference between the endogenous variables and the observations. Second, from
an econometric perspective, while both Ireland’s and our approaches exploit the state-
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space representation of the model, Ireland’s focus is on dealing with the measurement
equation, while ours is on the state equation. Third, a few other differences are that we
take a Bayesian approach, we allow for VARs of higher order than one, and we focus on
implications for business cycles.

Del Negro and Schorfheide (2009) also emphasize the need for robustifying inferences
from DSGEs. Their preferred approach is to merge the versatility of a VAR with the tight
restrictions of a DSGE in an innovative method that uses the DSGE to provide priors for
the VAR. They also contrast their approach with the alternative of allowing for flexible
processes for the disturbances as we do. As they note, our approach fits into their general
framework for dealing with misspecification in policy analysis. Their empirical analysis
is constrained to independent AR(2) processes though, and part of their criticisms focus
on researchers judiciously picking which correlations to model. We instead allow for a
more flexible and more general correlation structure for the disturbances. More recently,
Inoue et al (2020) and Den Haan and Drechsler (2020) pursue different methods to add
disturbances to models in order to assess their misspecification. They follow our cue in
imposing as little structure as possible on the disturbances.

Another related paper is Chib and Ramamurthy (2010). Like us, they use the insight
of Gibbs sampling to propose an alternative to Metropolis estimation. However, while
our blocks are suggested by the structure of the model, in their work it is the statistical
properties of the data that guide the blocking of parameters. More concretely, at each
step they cluster the parameters into arbitrary blocks to reduce the number of draws that
are necessary to characterize the posterior distribution. Instead, our algorithm clusters
the parameters into two groups, the economic parameters and those related to the dis-
turbance processes. While our clustering is not efficient in the sense of minimizing the
number of draws, as there may correlation between the two groups of parameters, its
virtue is that one of the groups has exact or approximate conjugate distributions. There-
fore, while we may need more draws than Chib and Ramamurthy (2010), our algorithm
is easier to implement and faster to execute. More generally, one can see our algorithm
as a variant of theirs, where our key contribution is to point out that DSGE models lend
themselves to data augmentation and conjugate distributions that significantly speed up
the estimation.

Finally, Chib and Greenberg (1994, 1995) develop Bayesian algorithms to estimate lin-
ear regression models with ARMA errors. Some of their conditional distribution results
are similar to ours. We share the focus on estimating models allowing for general pro-
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cesses for the disturbances, and in the use of Gibbs sampling to make estimation feasible
in spite of the large number of nuisance parameters. Differently, and crucially, we focus
on DSGE models. As the booming literature of the last decade has shown, they pose
significant new challenges to estimation relative to regression models.

A few papers have moved beyond the assumption of independent AR(1) disturbances,
but typically in only special ways. Within closed-economy models, Chari, Kehoe, and Mc-
Grattan (2007) allow for a restricted VAR(1) where the productivity disturbance is special
in that it Granger-causes all others, and Smets and Wouters (2007) allow two of their seven
disturbances to follow an ARMA(1,1) and two others to be contemporaneously correlated.
Schmitt-Grohe and Uribe (2010) find that a common shock to total factor productivity and
investment-specific productivity explain an important share of the business cycle. More
directly, when researchers have measured supposedly structural disturbances directly,
they usually find them to be strongly correlated with each other (e.g., Evans, 1992, with
military spending and Solow residuals).

In the open-economy literature, it is more common to assume that disturbances are
correlated across countries, starting with the work of Backus, Kehoe and Kydland (1992).
Justiniano and Preston (2010) estimate an open-economy DSGE model and find that cor-
related cross-country disturbances can partially account for the exchange rate disconnect
puzzle. Rabanal, Rubio-Ramirez and Tuesta (2011) allow for cointegration among tech-
nological disturbances and find they can explain the volatility of real exchange rates.

As these papers on closed-economy and open-economy business cycles show, as mod-
els grow larger, with more disturbances and more emphasis on accounting for the data
beyond just a few moments, there is a natural tendency to allow for correlated distur-
bances. We take a step further than this literature and allow for a richer and more general
correlation between disturbances.

1.2 Three issues: simplicity, identification and orthogonalization

A natural objection to allowing for correlated disturbances is that it is harder to give them
a structural interpretation than, say, AR(1) disturbances. While we are sympathetic with
this objection, we are uncomfortable with its implications. Even though the estimates
from independent AR(1)s for a vector of variables are simpler to interpret than those
from a VAR, few (if any) researchers would argue in favor of the former instead of the
latter. This apparent simplicity comes with estimation biases and incorrect inferences.
Moreover, as the applications in this paper show, it is possible to interpret estimates with
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correlated disturbances. Once this is done, what becomes hard to understand is what was
captured by estimates that assumed, for instance, that government spending was exoge-
nous. Looking forward, we would expect that once researchers become used to models
with correlated disturbances, this objection will become mute as it did just a few years
after VARs became popular. In any case, the contribution of this paper is to argue that
even when researchers prefer to assume independent disturbances, they should apply
our specification check on whether their inferences are robust to allowing for correlated
disturbances.

A second, more difficult, issue is identification. As noted by Sargent (1978) in estimat-
ing dynamic labor demands, it will often be difficult to empirically distinguish between
endogenous sluggishness mechanisms, and exogenous persistent disturbances.2 More
generally, the issue is similar to the old argument (Griliches, 1967) that it is difficult to
separately identify a linear regression with both a lagged dependent variable and an au-
tocorrelated disturbance. Komunjer and Ng (2011) have provided a set of conditions for
identification of DSGE models involving the rank of the information matrix, and which
includes the case of correlated disturbances. In all of the applications of this paper, we ex-
haustively checked that their condition was satisfied, and did not find problems, but they
will surely appear in other models.3 Looking forward, we find compelling the argument
that when there is an identification problem, the disturbance parameter responsible for it
is set to zero so that the endogenous mechanisms have primacy in explaining the data.

Third, and related, whenever disturbances are contemporaneously correlated, one
must orthogonalize them to produce impulse responses and variance decompositions.
This is not a major objection since the arguments used in the VAR literature to argue
for particular orthogonalizations can be directly applied to DSGEs with correlated distur-
bances. Of course, note that orthogonalizations are not restrictions, so this has no effect on
the estimates or fit of the model, and that here it is the model disturbances not some VAR
residuals that are being orthogonalized. An in-between alternative arises when distur-
bances are dynamically correlated, but contemporaneously uncorrelated with each other,
and so orthogonalized this way. We explore this as well. More generally though, it is
a virtue rather than a vice to bring attention to the need for thinking hard about iden-

2 It is important to note that even if the exogenous disturbances could follow an arbitrary process, e.g. an
infinite order VARMA, in many DSGE models, the economic and statistical parameters would still be iden-
tified. As noted by Sargent (1978) and many others, rational expectations models impose cross-equation
restrictions that both identify the models as well as give them testable predictions.

3Reicher (2015) investigates identification more thoroughly within our model of correlated disturbances.
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tification and orthogonalization in estimating DSGE models. These are central issues in
all empirical work and should not be assumed away as the assumption of independent
disturbances implicitly does.

2 The conjugate-conditionals method

A dynamic stochastic model links a vector of exogenous disturbances, st, to a vector of
endogenous variables, yt, of size ns and ny, respectively. The disturbances are hit by
exogenous mean-zero innovations, et, and the researcher observes only a vector of ob-
servables, xt, of size ne and nx, respectively. The econometrician observes a sample of
these observables in t = 1, ..., T with the convention that a variable dated t is determined
at that date. The sample realization from t = 1 to date j is denoted by xj ≡ {xt}j

t=1.
The model comes with two sets of parameters. First is the vector ε, which are the eco-

nomic parameters determining preferences, technologies, and other constraints, of size nε.
Second is the nσ vector σ of statistical parameters, that determine the correlation structure
and the volatility of the disturbances st. The distinction between the two will become
clearer as we present the model. The inference problem is to characterize the distribution
of these parameters given the data, that is the posterior: p(ε, σ|xT). Section 2.1 presents
the economic model, section 2.2 derives the conjugate-conditionals algorithm, and section
2.3 discusses extensions.

2.1 The model

A broad class of dynamic macroeconomic models has the following structure:

yt = Λ1(ε, σ)yt−1 + Λ2(ε, σ)st + Λ3(ε, σ)(L)st−1, (1)

st = Φ (σ) (L) st−1 + et, with et i.i.d. and Var(et) = Ω(σ), (2)

xt = H1(ε) + H2(L)yt + H3(L)st. (3)

The Φ (σ) (L) = ∑k
i=1 Φi (σ) Li−1, a matrix lag polynomial of order k and similarly for

H2(L), H3(L) and Λ3(ε, σ)(L). All the matrices are conformable, and their elements are
functions of the sub-set of parameters of (ε, σ) that are indicated in brackets. We explain
each of these relations in turn in the next three sub-sections.
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2.1.1 The economic dynamics

Equation (1) in the model describes the economic (behavioral and accounting) relations
between the endogenous variables and the exogenous disturbances. It nests most linear
(or linearized) dynamic economic models that are described by a system of equations:

Ψ0(ε)yt = Ψ1(ε)yt−1 + Ψ2(ε)(L)st + Ψ3(ε)wt, (4)

where the vector of endogenous disturbances wt has the property that Et−1 wt = 0 and
can capture terms involving Et(yt+1). The Ψi matrices typically have many zero elements
and have more elements than nε, embodying the cross-equation restrictions that come
from optimal behavior, technologies and other constraints and which are affected by the
economic parameters ε. As Blanchard and Khan (1982) and Sims (2002) among many
others have shown, equation (1) is the solution, or reduced-form, of these models.

The matrices Λi(ε, σ) in this solution are typically complicated non-linear functions
of all the parameters. Therefore, while the model has a state-space representation, esti-
mating it requires moving well beyond the standard techniques in state-space estimation
(Durbin and Koopman, 2001).4 While each particular DSGE imposes a tight link between
parameters and the matrices in Λj(ε, σ), across models, little that can be said in general.
There is an important exception to this statement, and one that is crucial to the conjugate-
conditionals method. By the principle of certainty equivalence, the parameters in the
reduced-form solution of the model do not depend on the covariances in Ω. That is the
Λj(ε, σ) matrices depend on the parameters in Φ(σ) but not on the parameters in Ω (σ).

2.1.2 The exogenous law of motion for the disturbances

Equation (3) requires that disturbances are linear processes that are well approximated
by a vector autoregression of finite order k. The contribution of this paper is to allow for
k ≥ 1, unrestricted Φi square matrices, and an unrestricted positive definite matrix Ω.
Because st is exogenous, its correlations cannot be explained but must be assumed. It is
then desirable to assume as little as possible on these measures of our ignorance and focus
instead on the tight restrictions imposed by the model on the endogenous variables.

This leads to a much larger vector of statistical disturbances σ. Note that the param-

4There is another difference relative to state-space models that one should not get confused about. In
our model and notation, yt are not the state variables. Rather, yt includes all of the variables in the economic
model, including states, controls, or any other variable.
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eters ε do not appear in equation (2), and it is this exclusion that defines the statistical
parameters, σ. They are the collection of the parameters in Φ(L) and Ω that describe the
dynamics of the disturbances. In many studies, the object of interest is the economic pa-
rameters, so that the elements of σ are viewed as nuisance parameters that must also be
estimated.

An inevitable feature of this general approach is that the elements of et no longer have
a structural interpretation without explicit orthogonalization assumptions as in the VAR
literature. (However, inferences on the economic parameters ε are invariant to these or-
thogonalizations.) There is one way that some researchers may find useful of preserving a
structural interpretation to the elements of et as innovations to each of the components of
st: imposing the assumption that Ω is diagonal. Disturbances are then still dynamically
correlated, but now assumed to be contemporaneously uncorrelated. This is similar to
the seemingly unrelated regressions approach to dynamic models in time-series econo-
metrics.

The literature has instead often assumed that k = 1, and both Φ1 and Ω are diag-
onal, so each of the elements of st is an independent AR(1). One argument for this
assumption is that it reduces the number of nuisance statistical parameters from nσ =

kns + ns(ns + 1)/2 to nσ = 2ns. There is a curse of dimensionality as k increases, since
the computational complexity of most estimation algorithms explodes even for modest
values of k. However, as we will show, this is not a limitation of the theory, but rather of
the particular algorithms being used.

2.1.3 Measurement and inference

Finally, equation (2) allows for a general linear link between model variables and data
observables. In many applications, xt = yt so the endogenous variables are observed.5

Other times, H1(ε) includes the steady-state of the model, which depends on the eco-
nomic parameters, while H2(L) and H3(L) are typically simple data transformations that
adjust units. We abstract from measurement error in these observations to avoid con-
fusion with the economic disturbances specified in the model. Including measurement
error does not change our conclusions significantly, although it requires a clear distinc-
tion between them and the disturbances.

We now have all the ingredients to define the inference problem. Following the re-

5We will treat yt as deviations from a steady-state, so we omit constants from (1)-(3), but it is straightfor-
ward to include these.

9



cent literature, we take a Bayesian perspective.6 Starting with a prior distribution for the
parameters, q(ε, σ), the model in (1)-(3) provides a sampling distribution (or likelihood
function) f

(
xT
∣∣ ε, σ

)
for the sample xT, which defines, by Bayes rule, the posterior distri-

bution for the parameters:

p( ε, σ| xT) = f
(

xT
∣∣∣ ε, σ

)
q(ε, σ)/p(xT). (5)

2.2 The conjugate-conditionals method to characterize the posterior

There is rarely an analytical form for the posterior distribution, so it must be characterized
numerically. This is usually done with Markov Chain Monte Carlo (MCMC) algorithms,
that draw a new (ε, σ) pair from an approximate distribution conditional on the last draw,
in a way that ensures convergence of the J draws to the posterior distribution.7 As the
number of parameters grows, this suffers from a curse of dimensionality. We propose a
new algorithm that breaks the curse by exploiting the economic structure of the model.
Because its central observation is to use knowledge that some conditional posterior dis-
tributions are exactly or approximately conjugate, we label it the conjugate-conditionals
algorithm. This section presents the algorithm in three steps. First, it introduces a few
technical assumptions for it to hold, next it presents the results in which it lies, and finally
it presents the algorithm.

2.2.1 Technical assumptions

We make the following technical assumptions:

Assumption. The likelihood and prior functions satisfy the following restrictions:
a) The distributions p( ε| xT, σ), p(σ| xT, ε) and p( sT

∣∣ xT, ε, σ) are not point masses, that is they
are not degenerate in the sense of the random variables being almost surely constant.
b) f ( et| ε, σ) and f ( sk

∣∣ ε, σ) are normal distributions.
c) q(ε) is a non-degenerate distribution, that is ε is not almost surely constant.
d) q(Ω) is an inverse-Wishart distribution and q(Φ|Ω)is a normal distribution.

Assumption a) requires that, given the observed data, there is more than one set of
parameters that could have generated it with non-zero probability, so there is a legitimate

6Throughout the paper, we use p(.) to denote a general posterior distribution, f (.) to denote a sampling
distribution, and q(.) to denote a prior distribution.

7 Readers that are very familiar with the literature on Bayesian estimation may find the next few pages
tiresome, and are welcome to skip to the algorithm in section 2.3.
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estimation problem. The assumption strengthens this basic requirement in two ways.
First, it requires that conditioning on each of the two sub-sets of parameters, ε or σ, again
we still have a non-trivial statistical estimation problem. If this was not the case, some
of the steps in the algorithm would be trivial or redundant. Second, it requires that the
observables are not enough to recover the disturbances. Otherwise the statistical problem
would boil down to estimating the VAR in equation (2).

Assumption b) is standard in the literature: innovations are independent and identi-
cally normally distributed, and the initial unobserved states in the k lags of the VAR are
also normal, so that the observations xT are normally distributed.

Assumption c) puts only the weakest restriction on the prior for the economic param-
eters for our method to work. Finally, assumption d) sets the priors for the statistical
parameters to the standard in the VAR literature, although not as common in the DSGE
literature.

2.2.2 Two results on which the method rests

Our algorithm relies on two observations. First, by the principle of Gibbs sampling, we
can break the sampling from the joint posterior at step j into drawing σ(j) from the con-
ditional p(σ(j)

∣∣∣ xT, ε(j−1)) followed by drawing ε(j) from the conditional p( ε(j)
∣∣∣ xT, σ(j)).

This well-known alternative to the random-walk Metropolis has here a natural applica-
tion in separating statistical and economic parameters.

Moreover, while we are interested in the parameters, there is also uncertainty on the
realization of the innovations eT and thus the disturbances sT. Focusing on the first Gibbs
step, note that by the definition of a marginal distribution p(σ| xT, ε) =

∫
p(σ, sT

∣∣ xT, ε)dsT,
so drawing from the conditional for the statistical parameters is equivalent to drawing
from the joint distribution for σ and sT, retaining only the σ draws. This is often referred
to in the statistics literature as data augmentation.

Finally, note that drawing from p(σ, sT
∣∣ xT, ε) can be split by Gibbs sampling again

into drawing from p( sT
∣∣ xT, ε, σ) and p(σ| xT, ε, sT) in succession. Combining all of these

in a formal statement, we have:

Proposition 1. Starting at step j with (ε(j−1), σ(j−1)), then:
a) drawing σ(j) from the conditional p(σ(j)

∣∣∣ xT, ε(j−1)) and then drawing ε(j) from the conditional

p( ε(j)
∣∣∣ xT, σ(j)) converges in distribution to a set of draws from p( ε, σ| xT).

b) drawing σ(j) and sT(j) from the joint distribution p(σ(j), sT(j)
∣∣∣ xT, ε(j−1)), and storing only the
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σ(j) draws gives a set of draws from p(σ(j)
∣∣∣ xT, ε(j−1))

c) drawing sT(j) from the conditional p( sT(j)
∣∣∣ xT, ε(j−1), σ(j−1)) and then drawing σ(j) from the

conditional p(σ(j)
∣∣∣ xT, ε(j−1), sT(j)) converges in distribution to a set of draws from p(σ(j), sT(j)

∣∣∣ xT, ε(j−1)).

Proof: Result b) is the definition of a marginal distribution in relation to the joint distri-
bution. Results a) and c) are applications of the convergence of the Gibbs sampler. The
proof follows the same steps as Tierney (1994), where the crucial assumptions are a) and
c) ensuring that the Markov chain defined by the Gibbs sampler is irreducible.�

The next observation focuses on result c) of the previous proposition. Conditional
on the parameters, the model in equations (1)-(3) is a state-space system and the uncer-
tainty on the disturbances sT fits into a standard signal extraction problem. Therefore,
the conditional distribution p( sT

∣∣ xT, ε, σ) is normal with mean and variance given by
variants of the Kalman smoother (the disturbance smoother to be concrete). Moreover,
conditional on the disturbances sT, equation (2) is a standard vector autoregression. If
the prior distribution Ω is an inverse-Wishart, then the posterior distribution is also an
inverse-Wishart. In turn, if the variability in the innovations et is much smaller than the
variability in the initial disturbances, then approximately all of the information about Φ
in the system (1)-(3) is contained only in the second equation, and a normal prior for
Φ leads to a normal posterior distribution.8 The parameters of these distributions are
known analytically: the mean and covariance of the normal distribution are the output of
the disturbance smoother and the parameter of the inverse Wishart can be found in most
Bayesian statistics textbooks (e.g., Geweke, 2005).

More formally:

Proposition 2. The following two distributions belong to known families, with analytical means
and variances:
a) the posterior distribution for the disturbances, conditional on the data and the parameters,
p( sT

∣∣ xT, ε, σ) is normal.
b) the posterior distribution for the variance of the innovations, conditional on the data, the other
parameters, and the disturbances p(Ω| xT, ε, Φ, sT) = p(Ω| sT), and it is an inverse-Wishart.

Proof: Equations (2)-(3) define a linear state-space system. Assumption b) states that
innovations and initial conditions are normal. Therefore, the disturbances are normal,

8It is common practice to set the prior variance of the initial conditions equal to the unconditional vari-
ance predicted by the system. If the economic system has significant propagation and magnification, then
this variance should be considerably larger than the variance of the innovations.
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proving result a). To prove the second result, note that by certainty equivalence, only
equation (2) involves the covariance matrix Ω. Moreover, no xT or ε appear in that equa-
tion. It therefore follows that p(Ω| xT, ε, sT, Φ) = p(Ω| sT). But then, using assumption
d), it is a standard result from linear regression that, since the prior is an inverse-Wishart,
so is the posterior.�

2.2.3 The conjugate-conditionals method

Based on the two results, the output of the following hybrid, Metropolis-within-Gibbs (or
block-Metropolis) algorithm will converge to a set of draws from the posterior distribu-
tion of the parameters:

Algorithm At draw j:
Step 1) draw sT(j) from p( sT(j)

∣∣∣ xT, ε(j−1), σ(j−1)), the known distribution in proposition 2;

Step 2) draw Ω(j) from p(Ω| sT(j)), the known distribution in proposition 2;
Step 3) draw Φ(j) from a proposal distribution that approximates p(Φ| xT, ε(j−1), sT(j), Ω(j)) and
accept or reject this draw with a Metropolis-Hastings probability;
Step 4) draw ε(j) from a proposal distribution that approximates p( ε| xT, σ(j)) and accept or reject
this draw with a Metropolis-Hastings probability.

The first two steps are easy even for a very large number of disturbances ns, number of
lags, k, and number of observations T. Most software programs can take draws from the
multivariate normal quickly and, while the Kalman filter recursions can take some time,
they were required anyway in order to calculate the likelihood function of the problem.
The Kalman smoother provides the posterior means and variances recursively.9

As for the third step, we do not have the exact distribution, but we have a good guess.
The autocorrelation parameters Φ enter both the reduced-form solution of the model in
equation (1), as well as the VAR in equation (2). But, if the variance of the innovations eT is
much smaller than the variance of the prior for the initial states and endogenous variables,
then this filtering problem has an approximate solution where only the information in
the VAR is relevant. That is, in this limit case, p(Φ| xT, ε, sT, Ω) ≈ p(Φ| sT, Ω). But then,
we have another conjugate conditional, since the posterior for Φ is also normal and the
formulae for the mean and variance are the standard linear regression formulae.

We have found that a particular implementation of this approximate proposal works

9Carter and Kohn (1994) show that sampling from the joint distribution is considerably more efficient.
We use their approach as described in Chib’s (2001) algorithm 14.
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remarkably well, converging quickly. Following Geweke (1989), we use an independence-
Metropolis step sampling from a t-distribution instead of the normal in the previous para-
graph, to allow for fatter tails. To be clear, recall that this is the proposal density, so there
are many other alternatives that would lead to consistent estimates. What the argument
in the previous paragraph strongly suggests, and our experience confirms, is that a t-
distribution for p(Φ| sT, Ω), using the mean and variance from normal conjugate formu-
lae, provides a good approximation to the target distribution p(Φ| xT, ε, sT, Ω), as judged
by how quickly the draws converge and the very high acceptance rate that we obtain for
the draws.10

Finally, for step 4, our algorithm does not make any significant improvement over
the literature.11 We neither know p( ε| xT, σ), nor is there any hope of having even an
approximate result beyond very specific models, since the parameters ε usually enter
the system in a highly non-linear way. In practice, we used a random-walk Metropolis
for this step, drawing ε(j) from a normal with mean ε(j−1) and covariance matrix equal
to the inverse-Hessian at the mode of the posterior, scaled to reach an acceptance rate
around one quarter. We have tried several alternatives: independent Metropolis, rejection
sampling, and modifying the random-walk Metropolis to have the new draws depend on
σ(j). None of these clearly dominated the more conventional random-walk Metropolis.12

To conclude, the conjugate-conditionals algorithm draws from the expanded parame-
ter vector

(
ε, σ, sT) in turn, exploiting the knowledge that the conditional distribution for

sT is known, while we have a good guess for the conditional distribution for σ. Allow-
ing for correlated disturbances may dramatically increase the number of parameters in
σ, but because the conditional posterior distribution for the covariance matrix is known
analytically, and because we have a good approximating distribution for the conditional
posterior distribution for the correlation coefficients, the curse of dimensionality is bro-
ken. Estimating a DSGE with correlated disturbances is not significantly harder than one
with independent AR(1) disturbances, because it is not harder to draw from normals and
inverse-Wishart distributions of higher dimension. Because it uses our knowledge of par-
ticular slices of the posterior distribution that we are trying to characterize, this algorithm

10Some readers, accustomed to the Metropolis-Hastings random walk sampling often used in economics,
may find it puzzling that we refer to high acceptance rates as a measure of efficiency. This is the case because
we are using independence Metropolis.

11Note, that since steps 1-3 and 4 are the two blocks of one Gibbs sampler, we could move step 4 before
the other three.

12Meyer-Gohde and Neuhoff (2015) extend our method by replacing the Metropolis with a recursive
jump Markov Chain Monte Carlo.
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should be more efficient than the standard Metropolis algorithm.13

2.3 Relaxing the assumptions

Some features of the setup are central to our method. They are also central to the defi-
nition of a DSGE model. First, our argument applies only to models with a state-space
linear set of equations (1)-(3) where the matrices Λi(ε, σ) are non-linear functions of the
parameters, with many restrictions imposed by the theory. Second, the assumption that
the economic parameters ε do not affect the law of motion for the disturbances in equation
(2) is crucial for the ability to deal separately with the two types of parameters, but it is as
much an assumption as it the definition of what σ and ε are. Third, the principle of cer-
tainty equivalence is important to draw separately from these two classes of parameters,
but it applies to all linearized DSGE models.

The other assumptions can be relaxed in many ways. Starting with equation (3), we
could allow for H2(ε)(L) and H3(ε)(L), so the measurement equation linking the endoge-
nous variables to the observable can depend on the economic parameters. This requires
no change in the algorithm, although we have trouble finding economic models to which
this extension would be useful.

Turning to the assumptions on prior distributions, they can be somewhat relaxed.
There are alternative conjugate priors to the normal-inverse-Wishart family. Kadiyala and
Karlsson (1997) discuss combinations of diffuse, normal, Wishart and Minnesota prior
distributions that deliver conjugate families for VARs. Sims and Zha (1998) propose an
alternative, with a normal conjugate family for the distribution of Φ conditional on Ω,
which puts fewer restrictions on the prior variance than the one in our assumption and
has some computational advantages, although the posterior for the covariance matrix Ω
stops being conjugate.

The assumption that is the focus of this paper is the unrestricted VAR for the distur-
bances. There are two alternatives, partly discussed in section 2.2. The first is to have dis-
turbances follow independent AR(k)s, so the Φk and Ω matrices are all diagonal. Adapt-
ing the priors in the assumption to i = 1, ..., ns independent normals for [Φj(i)]kj=1, and
i = 1, ...ns independent inverse-gammas squared for each of Ω(i), our results follow. Our
algorithm can then be used in models that make the dominant assumption in literature

13 The statement has to be qualified, because it is possible that the co-dependence between ε and σ is so
strong that the Metropolis algorithm ends up dominating the Gibbs-sampler. In our experience, this is not
the typical case.
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that disturbances are independent AR(1)s, as well as higher-order autoregressions.
The second case is to have dynamic but not contemporaneous correlation, so the Φj

are unrestricted but the Ω must be diagonal. In this case, using the normal priors for Φ
from the assumption, and the independent inverse gamma priors for Ω(i) just described,
again our results follow.

More generally, we may wish to impose that some of the elements of Φj and Ω are
either zero, or appear more than once in the matrices. In this case, equation (2) is a system
of seemingly unrelated regressions (SUR). Collecting the disturbances into the vector s̄
of size ns(T − k), it is written as s̄ = Zβ + ε, with ε ∼ N(0, Ω⊗ It−k), where Z contains
the lagged states as well as blocks of zeros allowing for a rich set of restrictions on the
VAR. The coefficients β include the elements of Φ. As long as the prior for β|Ω is normal
and the prior for Ω−1 is the Wishart distribution as described in assumption 2, then our
results on conjugate distributions still hold (Zellner, 1962).

Yet another possibility is to allow the disturbances to have a factor structure. Caldara
et al (2014) extend our method to allow for this case.

Finally, in some applications, the researcher may want to impose the constraint that
the VAR in equation (2) is stationary. This affects the distribution for Φ in step 3, which
is now truncated to the stationarity region. However, our experience is that still using as
proposal the t-distribution based on the approximate-normal result, but truncating it to
only accept stationary draws, has almost no effect on the performance of the algorithm.
This is not entirely surprising; the truncation does not affect the relative density of dif-
ferent draws in the stationary region, so it has little effect on the importance sampling
algorithm.

3 Three DSGE models and the data

This section presents three familiar DSGE models in which we now allow for correlated
disturbances. The log-linearized solution to each of them takes the form in equation (1),
and for each we will allow for general VAR disturbances as in equation (2).

3.1 A real business cycle model

The best-known and simplest DSGE model is due to Prescott (1986), extended to include
government spending following Baxter and King (1993) and Christiano and Eichenbaum
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(1992). This model has three merits for our purposes. First, it is sufficiently simple that
the effect of correlated disturbances can be grasped intuitively. Second, it only has two
structural parameters to estimate, making it easy to transparently evaluate the efficiency
of the method. And third, it is a canonical model that many macroeconomists carry in
their mind, so we can re-examine some classic puzzles that it has generated from the
perspective of correlated shocks.

A social planner chooses sequences of consumption and hours, {Ct, Nt}∞
t=0, to maxi-

mize:

E0

 ∞

∑
t=0

βt


[
Ct (1− Nt)

θ
]1−1/γ

− 1

1− 1/γ
+ V(Gt)


 , (6)

subject to

Yt = Ct + Kt − (1− δ)Kt−1 + Gt, (7)

Yt = (AtNt)
1−α Kα

t−1. (8)

The notation is standard.14 Utility increases with consumption and leisure and the bene-
fits of government spending enter additively through the function V(.), so they have no
effect on the positive predictions of the model. Equation (7) states that output equals con-
sumption plus investment plus government spending, and equation (8) is a neoclassical
production function.

The log-linearized solution to this model takes the form of equation (1). Some of the
parameters are easily pinned down by steady-state relations15 Two of the parameters are
not, and they are crucial to the model’s business-cycle predictions. First, the elasticity of
intertemporal substitution, γ, determines the willingness of households to shift resources
over time. It is a key determinant of how strongly savings and labor supply respond to
persistent productivity changes, and thus of the model’s ability to generate sizable output
fluctuations. Second, the parameter θ pins down the steady-state elasticity of labor supply

14In particular: Ct is private consumption, Gt is government consumption, Nt is the fraction of hours in a
quarter spent at work, Kt is capital, Yt is output, At is total factor productivity, β is the discount factor, γ is
the intertemporal elasticity of substitution, θ determines the relative utility from leisure and consumption,
δ is the geometric depreciation rate, and α is the labor share.

15Namely: the discount factor, β = 0.995, to generate a steady-state risk-free annual real interest rate of
2%, the production parameter, α = 0.33, to match the capital income share, the depreciation rate δ = 0.015
to roughly match econometric estimates and the average U.S. capital-output ratio, the average level of
productivity is normalized Ā = 1, and the average government spending Ḡ = 0.2, its historical average
share of GDP.
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with respect to wages. It is the key determinant of the size of the fluctuations in hours
worked. These are the economic parameters in the vector ε = (γ, θ). Their priors have
a gamma distribution and follow conventions in this literature in their modes: γ = 2/3
and θ = 4.85 (to generate a steady-state value of 0.2 for N).

Turning to the data, and so the specification of equation (3), this simple model has
been used to account for movement in two variables: output and hours worked. So, in
log-deviations from the steady-state xt = (Ŷt, L̂t). Following the RBC literature, we use
U.S. data for non-farm business sector hours and output per capita that is quarterly, HP-
filtered, and goes from 1948:1 to 2008:2, although we use the data before 1960:1 only to
calibrate the priors.

Finally, the disturbances are st = (ln (At) , ln (Gt/Ḡ)) ≡ (Ât, Ĝt). In all advanced
economies, government spending is certainly not an independent process in the data, and
via the payment of unemployment benefits or countercyclical fiscal policy, Gt typically
responds to At at least with a lag, and persists over time through slow fiscal adjustments.
In the other direction, perhaps private productivity responds with a lag to some forms
of government spending like infrastructures or the enforcement of contracts. There is a
strong prior case for allowing these disturbances to be correlated, especially in such a
simple model.

3.2 A new Keynesian model

The second model we consider is the canonical 3-equation NK model used to explain the
co-movement of inflation, output, and nominal interest rates. We use the version of this
model in Cúrdia et al (2015), which adds three sources of inertia to the model: interest-
rate smoothing, internal habit formation, and indexation to the past of sticky prices. With
these, this otherwise textbook model fits the data reasonably well.

The three equations, mapping into the general model of equation (1) are:

x̃t = Et(x̃t+1)− ϕ−1
γ [it −Et(πt+1)− re

t ] (9)

πt − ζπt−1 = ξ (ωxe
t + ϕγ x̃t) + β Et(πt+1 − ζπt) + ut, (10)

it = ρit−1 + (1− ρ) [re
t + π∗t + φπ(πt − π∗t ) + φxxe

t ] + εi
t, (11)

where: x̃t is the marginal utility of consumption; xe
t is the efficient output gap, it is the

nominal interest rate, πt is inflation, and π∗t is a time-varying inflation target, all in log-
deviations from their steady states. The first equation above is a standard Euler equation,
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or intertemporal IS, whereby the marginal utility of consumption today is equal to its
expectation next period minus the real interest rate. The second equation is a standard
Phillips curve relating the gap between actual inflation and its indexed component to
marginal costs that depend on the output gap, and its expectations next period. The third
equation is a Taylor rule with smoothing of interest rates.

The model has three more auxiliary equations for the dynamics of the exogenous
efficient levels. Letting xe

t = ỹt − ỹe
t , then ỹt is output and ye

t is its efficient level, the
equilibrium value in a counterfactual economy with no price rigidities and no monopoly
distortions. There is likewise an efficient real interest rate re

t . These evolve according to:

x̃t =
[
xe

t − ηγ

(
ỹt−1 − ỹe

t−1
)]
− βηγ Et

(
xe

t+1 − ηγxe
t
)

, (12)

ỹe
t = −

ϕγ

ω

{
ỹe

t − ηγ

(
ỹe

t−1 − γt
)
− βηγ Et

[
ỹe

t+1 + γ
y
t+1 − ηγỹe

t
]}

+
βηγω−1

1− βηγ
Et δ

y
t+1, (13)

re
t = Et γ

y
t+1 + Et δ

y
t+1 −ω

(
Et ỹe

t+1 − ỹe
t
)

. (14)

The first equation defines the marginal utility as a function of output, and the next two
equations define the efficient levels of output and the real interest rate, respectively, rel-
ative to which the gaps in the model are defined. These 6 equations constitute the 6
equations captured in our general specification in equation (1).

Turning to the economic parameters, they are listed, together with their priors in table
1. All the values mimic those in Cúrdia et al (2015), and are common in the NK literature.

The model is used to explain data on output, inflation, and nominal interest rates:
xt = (yt, πt, it), defining equation (3) in the general setup. To measure them, we use
quarterly data on unfiltered series for the log-change in real GDP, the log-change in the
GDP deflator, and the federal funds rate from 1987:3 to 2009:3.

Finally, the focus of this paper are the five disturbances st = (εi
t, π∗t , ut, γt, δt), to the

monetary policy rule, the time-varying inflation target, markups, productivity, and pref-
erences, respectively. Usually they are each assumed to follow an independent AR(1),
sometimes further restricted so that the autoregressive coefficient is zero. But again, these
assumptions are easily rejected in the macro series. To give but one example, with such
a simple policy rule, the shocks to monetary policy are surely partly a response, and so
correlated with, changes in the other three shocks. Or, for another example, any attempt
at measuring productivity and markups directly has found the two to be strongly dynam-
ically correlated.
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3.3 A medium-scale DSGE

Our final model is the medium-scale DSGE model estimated by Smets and Wouters (2003,
2007). It provides a good fit to the data, and it has become influential in the study of
business cycles and monetary policy.

The model involves much new notation, and it is reasonably well known, so we rele-
gate its presentation to an appendix. Like the other models, it fits into the general setup
for our method in equation (1). The economic parameters, and their respective priors, are
likewise stated in the appendix, closely following the choices of Smets and Wouters (2003,
2007). Likewise, for the data, we mimic their choices, with only a few minor exceptions
detailed in the appendix.

This model has seven exogenous disturbances: total factor productivity, investment-
specific productivity, risk premium, government spending, monetary policy, price markups,
and wage markups. Following the DSGE tradition, Smets and Wouters assume that they
all follow independent AR(1)s, but already in order to fit the data, they allowed for two
exceptions. First, they included two first-order moving average terms for the price and
wage markup disturbances to fit high-frequency movements in the data. Second, they
allowed for contemporaneous correlation between government spending and total factor
productivity. So, the case for correlated disturbances was already in this original DSGE
model, but done so by highly restrictive prior restrictions taken ex post to improve model
fit.

3.4 Correlated disturbances

The focus of this paper is on allowing the disturbances to follow a vector autoregression
of order k as in equation (2) where the Φi and Ω are unrestricted matrices and σ is the
vector of statistical parameters. Table 2 lists the prior distributions for these parameters.

In the RBC model, there are 4k + 3 elements in σ. We estimated VARs of orders 1 to
6 with very similar results. While the marginal likelihood is higher for order 6, we focus
on the k = 1 case because the results are easier to interpret and the difference in marginal
likelihood is less than 3 log points. The prior mode for the four AR(1) parameters (the
diagonal terms of Φ0 and Ω0) is set to match four moments in the data before 1960: the
variances and serial correlations of output and hours. For the three remainder statistical
parameters, the non-diagonal elements in Φ0 and Ω, the prior mode is zero, but they have
a precision according to the extension of the Minnesota prior discussed in Kadiyala and
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Karlsson (1997), tighter around zero the further away we move from the diagonal.
In the NK model, we also concentrate attention on the VAR(1), and likewise set the

mode of the non-diagonal elements of Φ0 and Ω at zero with a Minnesota prior. For
the ten diagonal elements we choose priors comparable to those used in Cúrdia et al
(2015). The (self) autocorrelation coefficients are centered at 0.5 for the non-monetary
policy disturbances, 0.2 for the policy rule shock, and 0.95 for the (slow moving) time-
varying inflation target. The standard deviations of the innovations are centered at one
percentage point annualized, with the exception of the inflation target which is centered
at half a percentage point.

For the Smets-Wouters DSGE model, we take a different approach. We impose the
restriction, already discussed in section 2 that the disturbances are dynamically, but not
contemporaneously correlated. This allows us to discuss this approach to orthogonaliza-
tion and slightly reduces the number of parameters in this large model that takes time to
estimate. Because there are so many parameters, we list the priors for this model in the
appendix.

For the study of efficiency, we also consider versions of the models with independent
AR(1)s. In those cases, the prior variances of the off-diagonal elements of Φ0 and Ω0 are
set to zero.

4 The computational efficiency of the method

This section evaluates the efficiency of our estimation method against the common al-
ternative in the literature: the random-walk Metropolis. At step j, it draws a proposal
(ε, σ)(j) from a normal density with mean (ε, σ)(j−1) and some pre-defined covariance ma-
trix, accepting this draw with a probability that depends on the ratio p(ε, σ)(j)/p(ε, σ)(j−1),
keeping (ε, σ)(j−1) in case of rejection. This algorithm is robust in the sense that it usu-
ally explores well the posterior distribution with minimal input from the researcher. The
other side to this robustness is that, because it uses almost no knowledge of the shape
of the posterior, the algorithm can take many draws to converge. Experience with DSGE
models has found that it can take millions of draws to converge if there are more than ten
parameters to estimate, a bound that is quickly crossed with correlated disturbances.16

We compare the methods both on actual data, as well as on average across ten Monte
Carlo samples of simulated data. Each was generated by first taking a random draw for

16For an alternative sequential Monte Carlo algorithm, see Herbst and Schforheide (2014).
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the parameters from their posterior distribution, and then taking random draws to the
disturbances in the model. We do this for the RBC and the NK models. The larger-scale
DSGE takes a long time to estimate for even one sample, and often fails to converge for
the usual algorithm making comparisons difficult.

The comparison is along two metrics. The first is how many draws it took to have
at least 300 effective draws, as defined by Geweke (1992). Measuring effective draws
involves adjusting for the serial correlation across draws to provide a measure of the
number of independent-looking draws. We have tried cut-offs other than 300, and four
alternative measures of convergence of the algorithm, all with very similar results. The
second is how long it took on a standard computer to achieve this convergence. Compu-
tational times are more unreliable because they are too dependent on hardware, software,
and coding specifics. We still report them because an individual draw can take longer to
take in one method relative to another.17

The results are in table 3, broken by panels according to the model that is estimated.
Starting with the RBC model in the top panel, assuming independent AR(1) disturbances,
the conjugate-conditionals method takes approximately one-eighth of the draws to con-
verge on its estimates in the data as the conventional algorithm. The conjugate distribu-
tions take longer to evaluate in each draw, however, so the time savings are smaller but
still substantial, with a reduction of 57% in the time to deliver estimates. The Monte Carlo
samples reinforce the efficiency gains of the conjugate-conditionals algorithm: it lowers
the number of draws on average by 92% and the time taken by 73%.

With VAR(1) disturbances, there are now 9 instead of 6 parameters to estimate. In this
case, the method provides no consistent gains relative to Metropolis-Hastings in terms of
number of draws, and it takes about 3 times longer to run.

The second panel estimates the NK model. With independent AR(1) disturbances, the
efficiency gains in draws are 71% with the actual data and 94% with simulated data. On
time, the conjugate-conditional method is on average 76% faster, mostly because some-
times the two methods are just as fast, but sometimes, the traditional algorithm performs
very poorly. In this case, where there are more parameters at play, the VAR(1) case makes
the efficiency of the algorithm more visible. The traditional method most often fails to

17In terms of implementation details: we run four parallel chains, and discard the first 10,000 simulations
in each to remove the influence of initial conditions. The proposal density for ε in the conjugate-conditionals
algorithm is a random-walk Metropolis. The covariance matrix for the Metropolis algorithm is the Hessian
at the mode of the posterior (found by numerical maximization), multiplied by a scale factor to obtain
approximately a 25% acceptance rate. We fine-tune this proposal density after the number of effective
independent draws reaches 50.
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converge after 40 million draws, at which point we stop it, so that in practice it is infeasi-
ble to estimate a NK model with correlated disturbances using traditional methods. This
barrier is removed with the conjugate-conditionals method.

Overall, the evidence leads to three conclusions. First that the benefits of the conjugate-
conditionals method are visible even with independent AR(1) disturbances across all
models. Second, that the method leads to large efficiency gains in terms of number of
draws (with the exception of the RBC-VAR1 model) and in the case of the NK-VAR model,
it makes estimation feasible where the standard algorithm fails. Third, that the efficiency
gains in terms of time are smaller, but still often sizeable.

5 Inference with correlated disturbances

In the previous section, we showed that estimating models with correlated disturbances
is feasible. Now, we argue that this is desirable from three perspectives. First, because the
macroeconomic data strongly prefers models without arbitrary AR(1) restrictions, and re-
jects specifications with these restrictions. Second, because the posterior estimates of the
economic parameters are significantly affected by imposing these restrictions on the nui-
sance statistical parameters. And third, because an assessment of the internal propagation
properties of these dynamic models changes when we allow for correlated disturbances.

5.1 The impact of correlated disturbances in the RBC model

Table 4 reports the posterior distributions for the RBC model with either AR(1) or VAR
disturbances.

Misspecification. The log marginal predictive density of the model is 26 points higher
with correlated disturbances than with independent AR(1)s. Therefore, the posterior
odds ratio is an overwhelming e26 in favor of the former.18 This is in spite of the prior with
correlated disturbances being centered around the independent-disturbances model, with
shrinking variances as one moves towards the cross-correlations. Therefore, the marginal
likelihood would, all else equal, favor the more parsimonious AR(1) specification.

The data estimates of the cross-correlation terms also overwhelmingly reject the zero
restrictions. The three non-diagonal terms of the Φ and Ω matrices do not include zero in

18Here and everywhere, we calculated the marginal likelihood using a harmonic mean with the truncated
multivariate normal distribution as the weighting function, as described in Geweke (2005).
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their 90% credible sets. The largest correlated-disturbance term is the lagged productivity
term in the law of motion for government spending. According to these estimates, when
productivity falls, there is a lagged increase in government spending. This matches what
we would expect from the automatic and discretionary stabilizers in U.S. fiscal policy.

Posteriors for economic parameters. Turning to the economic parameters, with inde-
pendent disturbances, figure 2 plots a view from above of the bivariate histogram for the
two economic parameters in the posterior distribution, under independent or correlated
disturbances. There is remarkably little overlap between the two posterior distributions,
and the posterior with independent disturbances is very far from the prior.

Focusing on the intertemporal elasticity of substitution, the mean of the posterior with
independent disturbances is 1.4. This is not just above the prior, but it is especially sub-
stantially higher than the usual value of 0.2 that comes from Euler-equation estimates
(Hall, 1988, Yogo, 2004). With correlated disturbances instead, the elasticity of intertem-
poral substitution is much lower, with a mean of 0.43 and a 5% bound of 0.29, bringing
the DSGE estimates in line with the single-equation Euler equation estimates. Figure 2
strikingly shows how distorted inferences would be by imposing the independence re-
striction.

Inferences on internal propagation. With only two variables and two disturbances, only
one orthogonalization condition is needed and it is easy to check alternatives and their im-
plications for impulse responses and variance decompositions. Following Evans (1992),
we use a Choleski decomposition with the innovations to government spending ordered
first. This is an orthogonalization, not a restriction, and it applies to the disturbances,
not the variables.19 Figure 3 plots impulse response responses to one standard-deviation
innovations to the two disturbances, with the legend showing the median unconditional
variance decomposition between parentheses. With independent disturbances, the RBC
model suffer from three well-known problems in its internal propagation when compared
with reduced-form estimates from VARs.

1) The output persistence puzzle. In response to an improvement in productivity, output
increases both because of the higher productivity, and also because the representative
household chooses to work longer today when the returns to working are higher. How-

19We also tried ordering productivity first, as well as estimating a model with dynamic but not contem-
poraneous correlation between the disturbances. The solution of the three puzzles was robust to these
alternatives. The results are also robust to the order of the VAR.
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ever, as Cogley and Nason (1995) noted, the persistence of the output response closely
mirrors the persistence of the productivity disturbance, whereas most reduced-form es-
timates of these responses are more gradual. Figure 3 shows that with correlated dis-
turbances, the response of output to a productivity disturbance is significantly more de-
layed. An increase in productivity now leads to a subsequent fall in government spend-
ing. While this initially makes the impact on output smaller, after a few periods, it boosts
output up partially solving the output persistence puzzle.

2) The hours-productivity puzzle. Gali (1999) first, and Dedola and Neri (2007) more recently,
estimated that hours fall after improvements in productivity. In figure 3 though, with in-
dependent disturbances, hours increase strongly after a productivity improvement. With
correlated disturbances, instead, an improvement in productivity has a delayed and per-
sistent contractionary effect on hours. While the improvement in productivity increases
hours, the subsequent fall in government spending lowers them and the net impact is
close to zero, matching the results from the VAR literature.

3) The sources-of-business-cycles puzzle. According to the variance decompositions with in-
dependent disturbances, government spending disturbances account for half of the vari-
ance of output and most of the variance of hours. The findings in typical VAR studies (e.g.,
Shapiro and Watson, 1986, Fisher 2006) instead which attribute a larger role to produc-
tivity.20 With correlated disturbances, productivity accounts for a much larger fraction of
the business cycle. Much of the earlier predominance of government spending was due
to its response to productivity. In line with the VAR evidence, productivity now accounts
for three quarters of the variance of output and 64% of the variance of hours.21.

Conclusion on the RBC model. Introducing correlated disturbances improves the fit of
the model to the data by allowing the model to account for countercyclical fiscal policy
that is a strong feature of the data. The estimates of the intertemporal elasticity of substi-
tution are significantly larger, and impulse responses and variance decompositions from
DSGE full-information methods become consistent with the estimates from reduced-form
VARs and limited-information methods. Treating government spending as exogenous in
spite of its clear counter-cyclicality in the data is the main source of misspecification.

20The 90% credible sets for the variance decompositions output are (17, 79) and (21, 83) and for hours (3,
12) and (89, 97), for At and Gt respectively.

21The 90% credible sets for the variance decompositions output are (58, 83) and (17, 42) and for hours (44,
75) and (25, 56), for At and Gt respectively.

25



5.2 The impact of correlated disturbances in the NK model

The posterior distributions for the NK model are in table 5.

Misspecification. Moving from independent to correlated disturbances raises the log
marginal predictive density of the model by 31 log points, a fairly significant amount.
Interestingly, the individual marginal posterior 90% credible sets for each of the cross-
correlation of the disturbances includes zero. The data strongly disfavors assuming that
all disturbances are independent, as is commonly done, but does not point to one partic-
ular correlation alone. This provides a word of caution to the sometimes-used procedure
of allowing for a few selected cross-correlations between disturbances in the model.

Posteriors for economic parameters. There are two noticeable differences between the
posterior estimates with independent and correlated disturbances. First, the parameter
measuring the intrinsic persistence of inflation, ζ, here driven by the indexation of un-
adjusted prices to past inflation, falls from a median of 0.33 to 0.20. This parameter is
a notorious weak spot of NK models: the micro evidence strongly rejects it, its micro-
foundations are weak, and it surely changes with policy. Including correlated distur-
bances correctly points to the reduced-form nature of this parameter, and just as in the
RBC model, including correlated disturbances brings the model closer to other sources of
evidence by shrinking it. The data prefers that persistence comes from exogenous distur-
bances then from a misspecified microfoundation, and therefore suggests changing the
model of price rigidity.

Second, the relative weight of each shock changes significantly, once these shocks
are allowed to co-vary. The variance of preference and markup shocks increase from
(1.16, 0.20) to (1.65, 0.26). In the other direction, the variance of the shocks to productiv-
ity and to the inflation target fall from from (0.03, 0.49) to (0.01, 0.18). This indicates that
decompositions of the sources of business-cycle variability across shocks in this model are
fragile. This is particularly worrisome for optimal policy exercises in this model, which
depend strongly on whether shocks arise from changes in natural rates as opposed to
markups.

Inferences on the power of monetary policy. The main use of the NK model is to under-
stand the co-movement in the economy after a monetary policy shock. Figure 3 shows the
impulse responses of inflation, interest rates, output growth and the output gap following
a 25bp shocks to monetary policy. The monetary structural shocks are identified through
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the standard Choleski assumption that shocks to it only affect the statistical disturbances
to interest rates on impact; other disturbances only move with at least a one-quarter lag.

Comparing the two panels, the median point of the impulse responses is not very dif-
ferent. But, the credible sets are much wider. Allowing for correlated disturbances leads
to an acknowledgment of higher uncertainty in the statistical estimates, much as what
usually happens in linear regressions when adjusting standard errors for heteroskedasc-
itity and autocorrelation. A researcher that assumes independent disturbances would
infer with confidence that tighter monetary policy lowers inflation for at least 6 quarters,
and that it has non-zero impact on output growth and gap for 2 quarters. A researcher
that allows for correlated disturbances is much less confident on these predictions. In fact,
if she is skeptical of the effectiveness of monetary policy, she may well conclude that mon-
etary policy has little to no effect on output and an effect on inflation that is gone within
one year. Consistent with the estimate of price stickiness, this also points to looking for
alternative models of nominal rigidities.

Conclusion on the NK model. Independent, as opposed to correlated, disturbances are
again strongly rejected in the data. The main effect of allowing for correlated disturbances
is to cast doubt on the apparent certainty in the standard estimates of impulse response
and variance decompositions. These inferences appear fragile, as the estimated uncer-
tainty is higher than previously appreciated. Moreover, correlated disturbances shine a
light on the model of nominal rigidities, and especially price indexation, as the weak spot
of the model, supporting debates in the theoretical literature.

5.3 The impact of correlated disturbances in the Smets-Wouters model

Finally, we turn to the Smets-Wouters model with dynamically but not contemporane-
ously correlated disturbances.22

Misspecification. The two models with independent or correlated disturbances do
roughly well at explaining the data: the log marginal predictive densities of the mod-
els with independent and dynamically-correlated disturbances are within 5 log points of
each other. The criteria heavily penalizes (as it should) the large increase in the nuisance
parameters of the model.

22All the estimates are based on 3 million draws, preceded by another 6 million draws used to burn in
and to calibrate the proposal densities.
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Table 6 displays the estimated dynamic correlations across disturbances. Quite a few
are significantly different from zero. Starting with the correlation between total factor
productivity and government spending, it is large and goes in both directions (ΦAG and
ΦGA). While the DSGE model is more involved than the simple RBC model, it is still
missing an important role for fiscal policy rules that respond to the business cycle.23 This
result provides a justification for why Smets and Wouters (2007) assumed a correlation
between these two variables. However, it is not enough, as there are several other signif-
icant cross-correlations. All but one of them involve either the risk-premium disturbance
or investment-specific productivity. These estimates suggest that the absence of financial
frictions are the main weakness of this model that researchers should focus on.

Posteriors for economic parameters. The Smets-Wouters model is the canonical model
to study the impact on the economy of different monetary policy rules. Figure 4 plots
the bivariate histogram of the posterior distribution for two of the parameters in the esti-
mated policy function for nominal interest rates. One of them is the implied steady-state
target inflation rate, while the other is the coefficient on inflation in the nominal interest
rate rule. Both of them capture how averse to inflation the Federal Reserve has been, one
in terms of average inflation, and the other in terms of how shocks to inflation trigger
policy responses.

With correlated disturbances, there is little change in the posterior for trend inflation.
This is perhaps not too surprising insofar as this parameter is being pinned down by av-
erage inflation in the sample. However, with correlated rather than independent distur-
bances, the policy response to inflation is much lower. Unlike the original Smets-Wouters
estimates, the correlated estimates portray monetary policy has having been not so ag-
gressive in response to inflation between 1966 and 2004.

Inferences on what drives the business cycle. Table 7 shows the median variance
decompositions for output, hours, real wages and inflation in the short run (1 quarter
ahead), the long run (unconditionally), and at business cycle frequencies (2 years and 8
years ahead).

With independent disturbances, the fluctuations in output and hours are accounted
mostly by government spending, risk premium and investment-specific productivity at

23Alternatively, both models assume a closed economy, so G may be capturing net exports. Since both
theory and casual empirics suggest that the trade balance is sensitive to the business cycle, this reinforces
our point that it is inappropriate to assume an exogenous G.
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the shorter horizon. At longer horizons, as Smets and Wouters (2007) emphasized, it is
the wage-markup disturbance that dominates.

With correlated disturbances, the conclusions are similar at the short-run frequencies
but very different at the business-cycle and long-run frequencies. Focusing on the vari-
ance of output, wage markups go from accounting for 47% and 49% at the 8-year and
infinite horizon with independent disturbances, to only 25% and 9% with correlated dis-
turbances. The two productivity disturbances and government spending now explain
80% of the variance of output in the long run, and as much as 35% at the 2-year hori-
zon. Looking instead at the variance of inflation, again the role of wage markup de-
clines significantly when we allow for correlated disturbances, and the difference from
the independent-disturbances case increases with the horizon. Across all series, there is
an increase in the role of productivity and government spending in accounting for the
business cycle. Therefore, we find that the much-debated finding that markup distur-
bances are important is not robust.24

Conclusion on the DSGE model. The DSGE model has the virtue of fitting the data
quite well, and being routinely estimated within central banks. Allowing for correlated
disturbances does not significantly improve the fit of the model. Monetary policy is es-
timated to have been less aggressive in response to inflation. There are two economic
take-aways for modelers. First, the pattern of cross correlations points to the absence of
financial frictions as the main flaw of the model. Second, it suggests that trying to en-
dogenize fiscal policy is more important than trying to explain markups, as much of the
literature has done.

6 Conclusion

DSGE modeling has made great strides in the last two decades, in particular in the area
of estimation and statistical inference. At the same time, there are still some holes in
our knowledge that must be filled. This paper identified one of these holes: the strong
and incredible restrictions that models typically place on the exogenous disturbances.
Using well-known points in simultaneous-equation econometrics, we argued that these
restrictions could severely hamper the model’s ability to fit the data and severely bias

24See Chari, Kehoe, McGrattan (2009) for some of the debate, and Justiniano and Primiceri (2013) for an
alternative estimation approach that converges with our results that wage markups are not as important as
previously thought.
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inferences on key parameters and model predictions. We proposed the alternative of
allowing for correlated disturbances, in the tradition of Zellner (1962).

The main obstacle to allowing for correlated disturbances is that it introduces a large
number of nuisance parameters. We proposed a new method for estimating DSGE mod-
els, based on using conjugate families for some conditional posterior distributions. The
algorithm is also valid and useful with uncorrelated disturbances, and with correlated
disturbances it makes previously infeasible estimation now possible.

We applied the method to three models, and found that in all of them there was ev-
idence of misspecification due to assuming independent AR(1) disturbances, that some
parameter estimates were robust to correlated disturbances, but some key ones were not,
and that the answers that the models give to important economic questions change sig-
nificantly when allowing for correlated disturbances, pointing to fragility in the model’s
endogenous propagation mechanisms.
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Appendix – For Online Publication

This appendix contains extra results to accompany our manuscript “Correlated Distur-
bances and U.S. Business Cycles.” Sections A to C we map the three models in section 3
to the general structure in section 2. Section D discusses other convergence diagnostics
to complement the discussion in section 4. Section E present the parameter priors and
posteriors for the Smets-Wouters model used in section 5.

A The Real Business Cycle Model

The first model is described in detail, including the exact matrices in the state-space rep-
resentation. For the other models, we only show the key pieces in terms of our notation,
without much discussion.

The endogenous variables in this model are:

yt ≡
(
Ŷt, K̂t, N̂t

)
,

corresponding to output, capital and labor, in log-deviations from steady state. The ex-
ogenous disturbances are:

st ≡
(

Ât, Ĝt
)

,

corresponding to productivity and government expenditure shocks.
The log-linear representation of the model is:

0 = Et

[
αβY

K
(
Ŷt+1 − K̂t

)
+ γ−1 (Ŷt − Ŷt+1

)
+

(
θ(1− γ−1)

N
1− N

− γ−1

1− N

) (
N̂t − N̂t+1

)]
,

0 = (C−Y) Ŷt + GĜt −
C

1− N
N̂t + KK̂t − (1− δ)KK̂t−1,

0 = Ŷt − (1− α)(Ât + N̂t)− αK̂t−1.

In capitals, (Y, K, N) correspond to the steady state values. The parameters (α, β, δ) are
calibrated, while parameters (γ, θ) are estimated together with the disturbance parame-
ters characterizing the law of motion for the disturbances.

The log-linear equations satisfy the canonical form proposed in Sims (2002) and pre-
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sented as equation (4) in the manuscript:

Ψ0 (ε) yt = Ψ1 (ε) yt−1 + Ψ2 (ε) st + Ψ3 (ε)wt, (A1)

where the matrices are:

Ψ0 (ε) ≡

 γ−1 − αβY
K θ(1− γ−1) N

1−N −
γ−1

1−N 0
C−Y − C

1−N K
1 −(1− α) 0

 ,

Ψ1 (ε) ≡

 γ−1 θ(1− γ−1) N
1−N −

γ−1

1−N − αβY
K

0 0 (1− δ)K
0 0 α

 ,

Ψ2 (ε) ≡

 0 0
0 −G

1− α 0

 , Ψ3 (ε) ≡

 1
0
0

 ,

and wt is a single endogenous expectations shock, defined as

wt ≡
(

αβY
K
− γ−1

) (
Ŷt −Et−1 Ŷt

)
−
(

θ(1− γ−1)
N

1− N
− γ−1

1− N

) (
N̂t −Et−1 N̂t

)
.

As discussed in Sims (2002), the solution to this forward-backward looking problem
is given by

yt = Λ1 (ε, σ) yt−1 + Λ2 (ε, σ) st (A2)

where Λ1 (ε, σ) are nonlinear functions of (ε, σ).25 This fits equation (1) in the manuscript.
Turning to equation (2) in the manuscript, the shock structure takes the form of:

st = Φ (L) st−1 + et,

Var (et) = Ω,

just as mentioned in the paper, with et ≡
(
eA

t , eG
t
)

the vector of innovations. The vector
of statistical parameters to be estimated depends on the specific case considered. For the

25Notice that this representation is true for solutions to the rational expectations equilibrium (REE) that
exist and are unique. In the implementation it is usual for authors to discard parameter values that do not
satisfy existence and uniqueness, which is equivalent to considering a joint prior that is truncated so as to
give zero probability to such outcomes.
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AR(1) case, we have:

ΦAR1 ≡
[

ΦA 0
0 ΦG

]
, ΩAR1 ≡

[
ΩA 0
0 ΩG

]
,

and the statistical parameters vector is

σAR1 ≡ (ΦA, ΦG, ΩA, ΩG) .

For the VAR(1) case then we get

ΦVAR1 ≡
[

ΦAA ΦAG

ΦGA ΦGG

]
, ΩVAR1 ≡

[
ΩAA ΩAG

ΩGA ΩG

]
,

and the statistical parameters vector is

σVAR1 ≡ (ΦAA, ΦAG, ΦGG, ΦGA, ΩAA, ΩAG, ΩGG) ,

and notice that because Ω is a covariance matrix then it must be the case that ΩGA = ΩAG.
Finally, the observation equations are:

Yobs
t = Ŷt,

Nobs
t = N̂t,

where xt ≡
(
Yobs

t , Nobs
t
)

is the vector of observables. Relative to equation (3) in the
manuscript, H1 = H3 (L) = 0 and H2 is a matrix with ones and zeros mapping the
endogenous variables yt to the observable variables xt,

H2 ≡
[

1 0 0
0 1 0

]
.

Turning to the assumption in section 2.1, assumption a) holds by inspection of the
state-space system and assumption b) holds as long as the disturbances to the exogenous
processes are assumed to be drawn from a normal distribution.
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B The New Keynesian Model

All variables and parameters are explained in Cúrdia et al (2010). Here we just show the
representation in terms of our assumptions, without any further interpretation.

The log-linear equations are:

x̃t = Et x̃t+1 − ϕ−1
γ (it − Etπt+1 − re

t) , (A3)

x̃t =
[

xe
t − ηγ

(
ỹL

t − ỹe,L
t

)]
− βηγ Et

(
x∗t+1 − ηγx∗t

)
, (A4)

xe
t = ỹt − ỹe

t (A5)

ỹe
t = −ϕγ

ω

{
ỹe

t − ηγ

(
ỹe,L

t − γt

)
− βηγ Et

[
ỹe

t+1 + γ
y
t+1 − ηγỹe

t
]}

+
βηγω−1

1− βηγ
Etδ

y
t+1,(A6)

re
t = Et γ

y
t+1 + Et δ

y
t+1 −ω

(
Et ỹe

t+1 − ỹe
t
)

, (A7)

π̃t = ξ (ωxe
t + ϕx̃t) + β Et π̃t+1 + ut, (A8)

π̃t = πt − ζπt−1, (A9)

it = ρit−1 + (1− ρ) (φππt + φxxe
t) + rt, (A10)

ỹe,L
t = ỹe

t−1, (A11)

ỹL
t = ỹt−1, (A12)

∆yt = ỹt − ỹt−1 + γt, (A13)

γ
y
t = γt, (A14)

δ
y
t = δt. (A15)

The observation equations are:

∆Ya
t = γa + 400∆yt

πa
t = π∗ + 400πt

ia
t = (ra + π∗) + 400it,

where ∆Ya
t is the growth rate of real GDP, πa

t is the inflation rate, ia
t is the Federal Funds

target rate.
The observable variables are:

xt ≡ (∆Ya
t , πa

t , ia
t ) .

38



The endogenous variables are:

yt ≡
(

ỹt, π̃t, it, x̃t, xe
t , x∗t , ỹe

t , re
t , ∆yt, ỹL

t , ỹe,L
t , γ

y
t , δ

y
t

)
.

Finally, the exogenous disturbances are:

st ≡ (γt, δt, ut, rt) ,

with innovations:
et ≡

(
eγ

t , eδ
t , eu

t , er
t

)
.

Turning to the parameters, the economic parameters:

ε ≡ (ω, ξ, η, ζ, ρ, φπ, φx, π∗, ra, γa) .

Other parameters showing up in equations are either calibrated or are a combination of
estimated parameters. The statistical parameters depend on the assumption:

σAR1 ≡ (Φγ, Φδ, Φu, Φr, Ωγ, Ωδ, Ωu, Ωr) , or

σVAR1 ≡
(
Φγγ, Φγδ, Φγu, Φγr, Φδγ, Φδδ, Φδu, Φδr, Φuγ, Φuδ, Φuu, Φur, Φrγ, Φrδ, Φru, Φrr,

Ωγγ, Ωγδ, Ωγu, Ωγr, Ωδδ, Ωδu, Ωδr, Ωuu, Ωur, Ωrr
)

.

Equations (A3)-(A15) satisfy the canonical form in equation (A1), hence the solution to
this model can be represented as in equation (A2), consistent with our paper’s framework.
Notice that, as before, in this model we defined several auxiliary variables that allow
us to map the model exactly to the framework needed in our paper. The number of
observables, nx, is smaller than the number of disturbances, ns, hence again it is possible
to apply the Kalman filter and generate a well behaved likelihood function.

C The Smets-Wouters DSGE Model

We follow Smets and Wouters (2007) closely, including keeping their notation in this ap-
pendix as much as we can. The only change is for the statistical parameters to fit our
general setup in section 2.

The notation refers to: yt is output, ct is consumption, it is investment, qt is the value
of capital, lt is hours worked, zt is capital utilization, rt is the nominal interest rate, πt is
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inflation, wt is the real wage, kt is capital installed, µ
p
t is the price mark-up, and µw

t is the
wage mark-up. The disturbances are all denoted by st with the superscript denoting the
type of shock.

The endogenous variables are:

yt ≡
(
ỹt, ct, it, zt, lt, rt, qt, kt, wt, πt, µ

p
t , µw

t , ỹp
t , cp

t , ip
t , zp

t , lp
t , rrp

t , ip
t , qp

t , zp
t , kp

t , wp
t ,

cL
t , iL

t , πL
t , wL

t , cpL
t , ipL

t , ∆yt, ∆yp
t , ∆it, ∆ct, ∆wt

)
.

The observable variables are:

xt ≡
(

∆Ya
t , ∆cobs

t , ∆iobs
t , ∆wobs

t , lobs
t , πobs

t , robs
t

)
.

Finally, the exogenous disturbances are:

st ≡
(

sg
t , sb

t , si
t, sa

t , sp
t , sw

t , sr
t

)
with innovations:

et ≡
(

eg
t , eb

t , ei
t, ea

t , ep
t , ew

t , er
t

)
.

Turning to parameters, the list of economic parameters is:

ε ≡
(

γ̄, l̄, π̄, 100
(

β−1 − 1
)

, ϕ, σc, λ, ξw, σl, ξp, ιw, ιp, ψ, Φsw, rπ, ρsw, ry, r∆y, α
)

.

The structural parameters are: γ∗ = 100(γ− 1) is the steady-state growth rate, l∗ is the
steady-state hours worked, π∗ is the steady-state inflation rate, β is the discount factor, φ

is one plus the share of fixed costs in production, σc is the elasticity of intertemporal sub-
stitution keeping labor fixed, λ is the degree of habit formation, ξw is the degree of wage
stickiness, σl is the wage elasticity of labor supply, ξp is the degree of price stickiness,
ιw is the degree of wage indexation, ιp is the degree of price indexation, ψ is a positive
function of the steady-state elasticity of the capital utilization adjustment cost function
that is ϕ, ΦSW is the gross steady-state labor markup, ρSW , rπ, ry and r∆y are the monetary
policy-rule parameters, and α is the capital share.

The reduced-form parameters are linked to structural parameters according to: iy =

(γ− 0.975)ky, c1 = (λ/γ)(1 + λ/γ), c2 = [(σc − 1)(Wh
∗ L∗/C∗)/[σc(1 + λ/γ)], and c3 =

(1 − λ/γ)/[(1 + λ/γ)σc], i1 = 1/(1 + βγ(1−σc)), i2 = i1/γ2ϕ, q1 = 0.975βγ−σc , k1 =

0.975/γ, k2 = (1− k1)(1 + βγ1−σc)γ2ϕ, π1 = ιp/(1 + βγ1−σc ιp), π2 = π1βγ1−σc /ιp, π3 =
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(π1/ιp)
{
(1− βγ1−σc ξp)(1− ξp)/

{
ξp [10(φ− 1) + 1]

}}
, w1 = i1, w2 = w1(1+ βγ1−σc ιw),

w3 = ιww1, w4 = w1
{
(1− βγ1−σc ξw)(1− ξw)/ {ξw [10(ΦSW − 1) + 1]}

}
, γ∗ = 100(γ −

1), and ky is the steady-state capital-output ratio and Rk
∗ is the steady-state rental rate of

capital. (Other parameters showing up in equations are either calibrated or some combi-
nation of estimated parameters.)

The statistical parameters depend on the two cases we considered:

σAR1 ≡
(
Φg, Φb, Φi, Φa, Φp, Φw, Φr, Ωg, Ωb, Ωi, Ωa, Ωp, Ωw, Ωr

)
, or

σVAR1∗ ≡
(
Φgg, Φgb, Φgi, Φga, Φgp, Φgw, Φgr, ...Φrg, Φrb, Φri, Φra, Φrp, Φrw, Φrr,

Ωg, Ωb, Ωi, Ωa, Ωp, Ωw, Ωr
)

,

where σVAR1∗ stands for the dynamic VAR(1) — dynamic correlated shocks, but contem-
poraneously independent — which is the case discussed in our paper (the full list of
parameters is shown in Table A.2 below).

Finally, turning to the model, the log-linear set of equations is (referring to equation
(4) in the manuscript):

ỹt =
(
0.82− iy

)
ct + iyit + Rk

∗kyzt + sg
t ,

ct = c1cL
t + (1− c1)Et ct+1 + c2(lt −Et lt+1)− c3(rt −Et πt+1 + sb

t ),

it = i1iL
t + (1− i1)Etit+1 + i2qt + si

t,

qt = q1 Et qt+1 + (1− q1)Et (lt+1 − kt+1 + wt+1)− (rt −Et πt+1 + sb
t ),

ỹt = φ [αkt−1 + αzt + (1− α)lt + sa
t ] ,

zt = [(1− ψ) /ψ] (lt − kt + wt) ,

kt = k1kt−1 + (1− k1)it + k2si
t,

πt = π1πL
t + π2 Et πt+1 − π3µ

p
t + sp

t ,

wt = w1wL
t + (1− w1) (Et wt+1 + Et πt+1)− w2πt + w3πL

t − w4µw
t + sw

t ,

µ
p
t = α(kt−1 + zt − lt)− wt + sa

t ,

µw
t = wt − [σl lt + (ct − ct−1λ/γ) / (1− λ/γ)] ,

rt = ρrt−1 + (1− ρ)[rππt + ry(ỹt − ỹp
t )] + r∆y

(
∆yt − ∆yp

t
)
+ sr

t ,

ỹp
t =

(
0.82− iy

)
cp

t + iyip
t + Rk

∗kyzp
t + sg

t ,

cp
t = c1cpL

t + (1− c1)Et cp
t+1 + c2(l

p
t −Et lp

t+1)− c3(r
rp
t + sb

t ),
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ip
t = i1ipL

t + (1− i1)Et ip
t+1 + i2qp

t + si
t,

qp
t = q1Etq

p
t+1 + (1− q1)Et

(
lp
t+1 − kp

t+1 + wp
t+1

)
− (rrp

t + sb
t ),

ỹp
t = φ

[
αkp

t−1 + αzp
t + (1− α)lp

t + sa
t
]

,

zp
t = [(1− ψ) /ψ]

(
lp
t − kp

t + wp
t
)

,

kp
t = k1kp

t−1 + (1− k1)i
p
t + k2si

t,

wp
t = α(kp

t−1 + zp
t − lp

t ) + sa
t ,

wp
t =

[
σl l

p
t +

(
cp

t − cp
t−1λ/γ

)
/ (1− λ/γ)

]
,

cL
t = ct−1,

iL
t = it−1,

πL
t = πt−1,

wL
t = wt−1,

cpL
t = cp

t−1,

ipL
t = ip

t−1,

∆yt = ỹt − ỹt−1,

∆yp
t = ỹp

t − ỹp
t−1,

∆ct = ct − ct−1,

∆it = it − it−1,

∆wt = wt − wt−1.

The observation equations, referring to equation (3) in the manuscript are:

∆yobs
t = γ̄ + ∆yt,

∆cobs
t = γ̄ + ∆ct,

∆iobs
t = γ̄ + ∆it,

∆wobs
t = γ̄ + ∆wt,

lobs
t = l̄ + lt,

πobs
t = π̄ + πt,

robs
t = r̄ + rt,

where
(
∆Ya

t , ∆cobs
t , ∆iobs

t , ∆wobs
t
)

represent the real growth rates of GDP, consumption, in-
vestment and wages, lobs

t hours worked, πobs
t inflation rate, and robs

t the federal funds rate.
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D Other convergence diagnostics

We used four metrics to assess convergence and relative efficiency. First, the R statistic,
which compares the variance of each parameter estimate between and within chains, to
estimate the factor by which these could be reduced by continuing to take draws. This
statistic is always larger or equal than one, and a cut-off of 1.001 is often used. We report
the maximum of these statistics across all the parameters. Second, the number of effec-
tive draws, neff, in each chain for each parameter, which corrects for the serial correlation
across draws following Geweke (1992). The larger this is, the more efficient the algorithm,
and we again report the minimum of these statistics across parameters and chains. This
was the statistic used in the main manuscript. Third, the number of effective draws in
total, mneff, which combines the previous two corrections applied to the mixed simula-
tions from the four chains (Gelman et al, 1998: 298), where again we report the minimum
across parameters. Finally, the number of rejections at the 5% level of the z-test that the
mean of the parameter draws in two separated parts of the chain is the same. This is the
separated partial means test, SPM, of Geweke (1992) and fewer rejections implies being
closer to convergence.

E More detailed estimates of the Smets-Wouters model

The model and notation were defined in section A.3 of this appendix.
The posterior distributions, with independent AR(1) disturbances and dynamic corre-

lated VAR(1) disturbances, are described in tables A.2 and A.3, respectively. The impulse
responses at the median of the posterior are in figure A.4 for both independent and corre-
lated disturbances. Finally, the credible sets for the variance decompositions are in table
A.5.
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Tables and Figures

Table 1: Prior distribution for economic parameters across the models

Percentile

Parameter Density Mode 5 50 95

Panel A. RBC model
γ Gamma 0.6667 0.2347 1.1559 3.3311

θ Gamma 4.8480 2.7326 5.3290 9.2117

Panel B. NK model
ω Gamma 0.9600 0.6953 0.9867 1.3501

ξ Gamma 0.0750 0.0342 0.0918 0.1938

η Beta 0.6667 0.2486 0.6143 0.9024

ζ Beta 0.6667 0.2486 0.6143 0.9024

ρ Beta 0.7632 0.4266 0.7166 0.9162

φπ Normal 1.5000 1.0888 1.5000 1.9112

φx Normal 0.5000 0.1710 0.5000 0.8290

π∗ Normal 2.0000 0.3551 2.0000 3.6449

ra Normal 2.0000 0.3551 2.0000 3.6449

γa Normal 3.0000 2.4243 3.0000 3.5757

44



Table 2: Prior distribution for statistical parameters across the models

Parameter Density Mode 5 50 95

Panel A. RBC model with independent AR(1)s
ΦA Normal 0.7525 0.5125 0.7456 0.9361

ΦG Normal 0.4255 0.1979 0.4248 0.6487

ΩA(×104) Inv-Gamma2 1.0348 0.6579 1.5392 4.9752

ΩG Inv-Gamma2 0.2297 0.1452 0.4002 1.7917

Panel B. RBC model with unrestricted VAR(1)
ΦA,A Normal 0.7525 0.5062 0.7442 0.9348

ΦG,G Normal 0.4255 0.1856 0.4218 0.6482

ΦA,G Normal 0.0000 -0.4183 0.0012 0.4127

ΦG,A Normal 0.0000 -0.1302 -0.0002 0.1324

ΩA,A(×104) Inv-Wishart 0.8184 0.6552 1.4796 4.6492

ΩG,G Inv-Wishart 0.2583 0.2046 0.4803 1.5041

ΩA,G(×102) Inv-Wishart 0.0000 -0.8163 -0.0017 0.8130

Panel C. NK model witth independent AR(1)s
Φδ, Φγ, Φu Normal 0.5000 0.1961 0.4993 0.7854

Φmp Normal 0.2000 0.0491 0.2004 0.3559

Φπ∗ Normal 0.9500 0.9115 0.9491 0.9820

Ωδ, Ωγ, Ωu, Ωmp, Ωπ∗ Inv-Gamma2 0.3846 0.2430 0.6487 2.7170

Panel D. RBC model with unrestricted VAR(1)
Φδ,δ, Φγ,γ, Φu,u Normal 0.5000 0.3006 0.4981 0.6856

Φmp,mp Normal 0.2000 -0.0018 0.1985 0.3870

Φπ∗,π∗ Normal 0.9500 0.7160 0.9138 1.0035

Φδ,γ, Φδ,u, Φδ,mp, Φδ,π∗ Normal 0.0000 -0.1952 0.0003 0.1863

Φγ,δ, Φγ,u, Φγ,mp, Φγ,π∗ Normal 0.0000 -0.1919 0.0003 0.1871

Φu,δ, Φu,γ, Φu,mp, Φu,π∗ Normal 0.0000 -0.1875 0.0002 0.1872

Φmp,δ, Φmp,γ, Φmp,u, Φmp,π∗ Normal 0.0000 -0.1857 0.0006 0.1855

Φπ∗,δ, Φπ∗,γ, Φπ∗,u, Φπ∗,mp Normal 0.0000 -0.1884 -0.0002 0.1919

Ωδ,δ, Ωγ,γ, Ωu,u, Ωmp,mp, Ωπ∗,π∗ Inv-Wishart 0.0770 0.1249 0.4116 2.448

Ωδ,γ, Ωδ,u, Ωδ,mp, Ωδ,π∗ Inv-Wishart 0.0000 -0.8001 0.0003 0.8053

Ωγ,u, Ωγ,mp, Ωγ,π∗ Inv-Wishart 0.0001 -0.7785 -0.0024 0.7808

Ωu,mp, Ωu,π∗ Inv-Wishart 0.0000 -0.7899 -0.0027 0.7693

Ωmp,π∗ Inv-Wishart 0.0000 -0.7098 0.0036 0.8009
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Table 3: Draws and time for method to reach 300 effective draws

Number of draws (thousands) Time (minutes)

Conjugate Random-walk Conjugate Random-walk

conditionals Metropolis conditionals Metropolis

Data Disturbances Average Average Average Average

(min,max) (min,max) (min,max) (min,max)

Panel A. RBC model
Actual AR(1) 425 3365 230 538

VAR(1) 1160 1250 729 258

Simulated AR(1) 213 2702 115 432

(45,785) (70,13696) (24,424) (11,2191)

VAR(1) 477 458 300 95

(55,3045) (100,1265) (35,1913) (21,261)

Panel B. NK model
Actual AR(1) 56 196 54 51

VAR(1) 1329 50000 1115 18804

Simulated AR(1) 52 801 49 208

(44,62) (158,5124) (42,59) (41,1332)

VAR(1) 3263 36685 2738 13797

(200,12492) (17350,40000) (168,10482) (6525,15043)
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Table 4: Posterior distribution for the RBC model

Percentile

Parameter Mean Mode 5 50 95

Panel A. Independent AR(1)s
Economic

γ 1.4029 1.4234 0.4970 1.2435 2.8629

θ 0.6184 0.4896 0.2632 0.5471 1.2036

Statistical

ΦA 0.8173 0.8106 0.7422 0.8174 0.8923

ΦG 0.7505 0.7518 0.6713 0.7520 0.8234

ΩA .00014 .00014 .00012 .00014 .00017

ΩG 0.2706 0.2475 0.1928 0.2645 0.3684

Panel B. Unrestricted VAR(1)
Economic

γ 0.4301 0.4304 0.2892 0.4170 0.6060

θ 4.8550 4.3184 1.9072 4.6302 8.5641

Statistical

ΦAA 0.9385 0.9355 0.9058 0.9402 0.9656

ΦAG 0.0048 0.0048 0.0041 0.0049 0.0054

ΦGA -8.62 -8.26 -11.21 -8.50 -6.25

ΦGG 0.8805 0.8828 0.8362 0.8811 0.9232

ΩAA .00013 .00013 .00011 .00013 .00016

ΩAG 0.0084 0.0071 0.0045 0.0080 0.0138

ΩGG 2.0718 1.3527 0.7942 1.6752 4.6432
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Figure 1: The prior and posterior distribution for the economic parameters in the RBC
model

48



Figure 2: Impulse response functions in RBC model, median and distributions

(a) Independent AR(1)s case

(b) Unrestricted VAR(1) case
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Table 5: Posterior distribution for the NK model

Percentile

Parameter Mean Mode 5 50 95

Panel A. Independent AR(1)s
Economic

ω 1.0133 0.96661 0.7057 1.0002 1.3678

ξ 0.1031 0.06033 0.0260 0.0920 0.2181

η 0.6696 0.68057 0.3386 0.6973 0.9029

ζ 0.3472 0.22557 0.1280 0.3294 0.6319

ρ 0.7254 0.73722 0.6442 0.7278 0.7989

φπ 1.7096 1.64669 1.3936 1.7019 2.0553

φx 0.5237 0.54184 0.1899 0.5253 0.8529

π∗ 2.3928 2.40919 1.4444 2.4047 3.2993

ra 1.9353 1.92588 0.7282 1.9339 3.1373

γa 2.9983 2.99986 2.4170 2.9994 3.5743

ϕγ — — 2.2842 10.2847 82.5071

ηγ — — 0.3400 0.6916 0.8943

Statistical

Φδ 0.9143 0.93016 0.8493 0.9172 0.9692

Φγ 0.4991 0.49924 0.4441 0.4990 0.5537

Φu 0.4690 0.44401 0.2970 0.4664 0.6420

Φmp 0.2187 0.21655 0.1601 0.2179 0.2801

Φπ∗ 0.9593 0.96115 0.9326 0.9601 0.9831

Ωδ 1.2721 1.04357 0.6680 1.1630 2.2445

Ωγ 0.0277 0.02592 0.0216 0.0273 0.0351

Ωu 0.2198 0.15639 0.1227 0.1997 0.3780

Ωmp 0.1332 0.11664 0.0919 0.1296 0.1864

Ωπ∗ 0.5487 0.47846 0.2467 0.4910 1.0410

Panel B. Unrestricted VAR(1)
Economic

ω 1.0026 0.9328 0.6902 0.9894 1.3612

ξ 0.1013 0.0316 0.0293 0.0931 0.2011

η 0.6601 0.9080 0.3039 0.6856 0.9273
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ζ 0.2194 0.1100 0.0672 0.2005 0.4359

ρ 0.7190 0.8516 0.5854 0.7232 0.8385

φπ 1.6003 1.4554 1.2122 1.5972 1.9944

φx 0.5133 0.5215 0.1758 0.5134 0.8522

π∗ 2.2909 2.2139 1.4672 2.3038 3.0687

ra 2.1154 2.2204 1.0346 2.1290 3.1502

γa 2.9991 2.9971 2.4142 2.9989 3.5828

ϕγ — — 2.0400 9.6026 142.0639

ηγ — — 0.3014 0.6807 0.9206

Statistical

Φδ,δ 0.8164 0.7865 0.6389 0.8311 0.9410

Φδ,γ -0.0041 0.0028 -0.3422 -0.0027 0.3326

Φδ,u -0.0598 0.0545 -0.3934 -0.0606 0.2783

Φδ,mp -0.0225 0.1057 -0.3815 -0.0135 0.3059

Φδ,π∗ 0.0327 -0.029 -0.1248 0.0293 0.2000

Φγ,δ 0.0005 0.0008 -0.0095 0.0005 0.0104

Φγ,γ 0.4999 0.4998 0.4731 0.5000 0.5267

Φγ,u -0.0004 0.0001 -0.0217 -0.0004 0.0211

Φγ,mp -0.0006 -0.000 -0.0251 -0.0006 0.0239

Φγ,π∗ -0.0003 -0.000 -0.0120 -0.0003 0.0114

Φu,δ -0.0039 0.0729 -0.1669 0.0010 0.1459

Φu,γ 0.0033 0.0007 -0.1478 0.0023 0.1575

Φu,u 0.5223 0.5065 0.3756 0.5100 0.7179

Φu,mp 0.0437 0.0270 -0.0967 0.0346 0.2182

Φu,π∗ 0.0156 0.0263 -0.1037 0.0209 0.1189

Φmp,δ 0.0137 0.1395 -0.0864 0.0126 0.1170

Φmp,γ 0.0016 0.0015 -0.0854 0.0014 0.0884

Φmp,u 0.0247 0.0288 -0.0569 0.0207 0.1208

Φmp,mp 0.2238 0.2543 0.1410 0.2202 0.3177

Φmp,π∗ -0.0212 -0.0304 -0.0834 -0.0246 0.0578

Φπ∗,δ 0.0354 0.0940 -0.0587 0.0348 0.1288

Φπ∗,γ -0.0006 0.0007 -0.1186 -0.0005 0.1173

Φπ∗,u -0.0026 0.0211 -0.1158 -0.0028 0.1105

Φπ∗,mp -0.0007 0.0316 -0.1178 -0.0007 0.1153

Φπ∗,π∗ 0.9415 0.9475 0.8798 0.9449 0.9906

Ωδ,δ 1.9394 0.4090 0.6442 1.6494 4.1824

Ωδ,γ -0.0018 0.0006 -0.0286 -0.0013 0.0235
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Ωδ,u -0.4591 0.0763 -1.6014 -0.3203 0.2127

Ωδ,mp -0.1289 0.1303 -0.6311 -0.0664 0.1639

Ωδ,π∗ 0.1586 0.1046 -0.3976 0.1268 0.8140

Ωγ,γ 0.0113 0.0094 0.0088 0.0111 0.0143

Ωγ,u 0.0010 0.0000 -0.0099 0.0006 0.0135

Ωγ,mp 0.0005 0.0003 -0.0059 0.0004 0.0072

Ωγ,π∗ -0.0002 0.0001 -0.0091 -0.0002 0.0086

Ωu,u 0.4196 0.0853 0.1032 0.2560 1.2694

Ωu,mp 0.0425 0.0195 -0.0628 0.0060 0.2790

Ωu,π∗ -0.0507 0.0274 -0.3455 -0.0249 0.1580

Ωmp,mp 0.1253 0.0986 0.0638 0.1054 0.2560

Ωmp,π∗ -0.0011 0.0360 -0.0987 0.0000 0.0902

Ωπ∗,π∗ 0.2379 0.0878 0.0773 0.1794 0.5827
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Table 6: Estimated dynamic correlation of the disturbances in the Smets-Wouters model

Shock

Variable
Total

Productivity

Risk

Premium

Government

Spending

Investment

Productivity

Monetary

Policy

Price

Markup

Wage

Markup

Total

Productivity

0.9141*

(0.0348)

0.0096

(0.0239)

-0.2712*

(0.0521)

-0.0922

(0.1051)

-0.0142

(0.1290)

0.0074

(0.1573)

0.0872

(0.0995)

Risk

Premium

0.2099*

(0.1217)

0.2397

(0.2056)

-0.1692

(0.1635)

-0.8591*

(0.4121)

-1.2483*

(0.6686)

0.7074

(0.6548)

0.4821

(0.4196)

Government

Spending

-0.1787*

(0.0394)

-0.0196

(0.0252)

0.6769*

(0.0660)

0.1924

(0.1345)

0.0240

(0.1482)

0.1926

(0.1760)

0.1419

(0.1190)

Investment

Productivity

0.0643*

(0.0280)

-0.0324*

(0.0175)

-0.0779*

(0.0387)

0.6918*

(0.0575)

-0.0878

(0.0964)

0.0180

(0.1008)

0.0756

(0.0912)

Monetary

Policy

-0.0330*

(0.0174)

-0.0335*

(0.0148)

0.0192

(0.0276)

0.1143*

(0.0438)

0.1838*

(0.0771)

0.0011

(0.0842)

-0.0052

(0.0640)

Price

Markup

-0.0058

(0.0058)

0.0014

(0.0055)

-0.0036

(0.0102)

0.0072

(0.0171)

0.0062

(0.0399)

0.6629*

(0.0842)

-0.0082

(0.0222)

Wage

Markup

0.0055

(0.0083)

0.0029

(0.0081)

0.0194

(0.0132)

-0.0024

(0.0261)

-0.0194

(0.0544)

-0.0035

(0.0532)

0.9422*

(0.0331)

The entries are the mean and, in parenthesis, the standard error of the posterior marginal distribution of

the elements of Φ in the law of motion for the disturbances: st = Φst−1 + et. A∗ is included if zero is not

within the 90% posterior credible set.
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Figure 3: Impulse response functions to monetary policy shock in NK model, median
and distributions

(a) Independent AR(1)s case
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(b) Unrestricted VAR(1) case
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Table 7: Variance decomposition in the Smets-Wouters model

Shock

Variable
Total

Productivity

Risk

Premium

Government

Spending

Investment

Productivity

Monetary

Policy

Price

Markup

Wage

Markup

Panel A. Independent AR(1) disturbances
1-quarter ahead

Output 0.016 0.289 0.475 0.1160 0.065 0.025 0.003

Hours 0.421 0.160 0.274 0.082 0.034 0.006 0.014

Real wage 0.010 0.016 0.000 0.006 0.012 0.268 0.682

Inflation 0.026 0.003 0.001 0.007 0.014 0.807 0.137

2-years ahead

Output 0.177 0. 075 0.184 0.191 0.095 0.083 0.163

Hours 0.158 0.075 0.203 0.149 0.087 0.059 0.242

Real wage 0.098 0.018 0.000 0.061 0.055 0.269 0.474

Inflation 0.050 0.008 0.003 0.022 0.050 0.408 0.443

8-years ahead

Output 0.200 0.023 0.134 0.072 0.033 0.034 0.474

Hours 0.064 0.026 0.170 0.066 0.033 0.026 0.596

Real wage 0.330 0.011 0.001 0.080 0.044 0.189 0.304

Inflation 0.046 0.007 0.004 0.021 0.044 0.321 0.542

Unconditional

Output 0.133 0.014 0.208 0.043 0.019 0.020 0.489

Hours 0.047 0.015 0.257 0.041 0.019 0.015 0.558

Real wage 0.379 0.010 0.001 0.073 0.040 0.172 0.280

Inflation 0.044 0.006 0.006 0.019 0.037 0.279 0.593

Panel B. Dynamic VAR(1) disturbances
1-quarter ahead

Output 0.008 0.454 0.392 0.032 0.016 0.053 0.023

Hours 0.468 0.229 0.212 0.023 0.007 0.014 0.032

Real wage 0.045 0.036 0.004 0.002 0.007 0.325 0.564
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Inflation 0.054 0.009 0.020 0.022 0.023 0.638 0.202

2-years ahead

Output 0.108 0.161 0.173 0.066 0.019 0.103 0.308

Hours 0.210 0.180 0.069 0.136 0.012 0.046 0.289

Real wage 0.300 0.023 0.057 0.021 0.029 0.227 0.275

Inflation 0.058 0.020 0.067 0.056 0.063 0.288 0.386

8-years ahead

Output 0.237 0.051 0.275 0.096 0.011 0.027 0.252

Hours 0.128 0.104 0.059 0.097 0.019 0.035 0.484

Real wage 0.452 0.046 0.199 0.120 0.011 0.059 0.069

Inflation 0.068 0.027 0.081 0.066 0.060 0.258 0.383

Unconditional

Output 0.381 0.044 0.287 0.129 0.005 0.011 0.094

Hours 0.177 0.089 0.094 0.107 0.016 0.028 0.407

Real wage 0.456 0.047 0.258 0.142 0.005 0.019 0.036

Inflation 0.224 0.036 0.175 0.098 0.032 0.145 0.231
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Figure 4: Posterior distribution of two policy-rule parameters in Smets-Wouters model
with independent and correlated disturbances
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Table A.1: Prior and posterior in SW model, independent AR(1) disturbances

Prior Posterior

Dist 5% Median 95% Mode Mean SE 5% Median 95%

γ∗ N 0.2355 0.4000 0.5645 0.3898 0.3864 0.0191 0.3523 0.3881 0.4145

l∗ N -0.4935 0.0000 0.4935 0.0000 0.0003 0.3006 -0.4989 0.0020 0.4954

π∗ G 0.4652 0.6146 0.7931 0.6873 0.7100 0.1024 0.5454 0.7071 0.8843

β−1 − 1 G 0.1111 0.2368 0.4339 0.1470 0.1698 0.0592 0.0830 0.1643 0.2765

φ N 1.5327 4.0000 6.4673 6.1285 6.1955 1.1311 4.4047 6.1516 8.1194

σc N 0.8832 1.5000 2.1168 1.4058 1.3673 0.1409 1.1508 1.3589 1.6113

λ B 0.5242 0.7068 0.8525 0.7024 0.7083 0.0486 0.6218 0.7122 0.7807

ξw B 0.3351 0.5000 0.6649 0.7056 0.6756 0.0701 0.5562 0.6788 0.7861

σl N 0.7664 2.0000 3.2336 1.7248 1.7625 0.5421 0.9467 1.7220 2.7179

ξp B 0.3351 0.5000 0.6649 0.7011 0.6845 0.0572 0.5850 0.6872 0.7735

ιw B 0.2526 0.5000 0.7474 0.5110 0.5137 0.1259 0.3061 0.5142 0.7203

ιp B 0.2526 0.5000 0.7474 0.2645 0.3024 0.1109 0.1438 0.2899 0.5046

ψ B 0.2526 0.5000 0.7474 0.6195 0.6366 0.0693 0.5299 0.6326 0.7585

ΦSW N 1.0526 1.2500 1.4474 1.6617 1.6628 0.0764 1.5398 1.6608 1.7914

rπ N 1.0888 1.5000 1.9112 1.9834 2.0435 0.1724 1.7654 2.0392 2.3341

ρSW B 0.5701 0.7595 0.8971 0.8015 0.8008 0.0258 0.7562 0.8020 0.8405

ry N 0.0378 0.1200 0.2022 0.0846 0.0884 0.0207 0.0566 0.0872 0.1243

r∆y N 0.0378 0.1200 0.2022 0.2257 0.2257 0.0289 0.1788 0.2254 0.2739

α N 0.2178 0.3000 0.3822 0.1676 0.1698 0.0179 0.1408 0.1695 0.1998

ΦA,1 N 0.1986 0.4964 0.7732 0.9601 0.9609 0.0139 0.9369 0.9618 0.9822

ΦB,1 N 0.2010 0.4959 0.7805 0.2021 0.2382 0.1478 0.0274 0.2206 0.5267

ΦG,1 N 0.1869 0.4994 0.7780 0.9945 0.9910 0.0062 0.9795 0.9922 0.9986

ΦEI,1 N 0.1957 0.4975 0.7853 0.7119 0.7147 0.0570 0.6204 0.7149 0.8089

ΦER,1 N 0.1925 0.4958 0.7764 0.1698 0.1779 0.0713 0.0604 0.1787 0.2934

ΦEP,1 N 0.1967 0.4983 0.7772 0.7203 0.7053 0.0982 0.5365 0.7098 0.8575

ΦEW,1 N 0.1834 0.4979 0.7882 0.9802 0.9794 0.0098 0.9616 0.9807 0.9931

−ΨEP B 0.1718 0.5000 0.8282 0.5470 0.5228 0.1363 0.2866 0.5291 0.7358

−ΨEW B 0.1718 0.5000 0.8282 0.8926 0.8540 0.0641 0.7331 0.8653 0.9367

ΩA IG2 0.0291 0.0823 0.3889 0.2076 0.2143 0.0257 0.1758 0.2122 0.2596

ΩB IG2 0.0291 0.0823 0.3889 3.4472 3.9211 2.0819 1.0706 3.6287 7.8164

ΩG IG2 0.0291 0.0823 0.3889 0.3182 0.3285 0.0376 0.2723 0.3255 0.3946

ΩEI IG2 0.0291 0.0823 0.3889 0.2170 0.2272 0.0453 0.1621 0.2223 0.3092

ΩER IG2 0.0291 0.0823 0.3889 0.0615 0.0648 0.0078 0.0528 0.0642 0.0786

ΩEP IG2 0.0291 0.0823 0.3889 0.0264 0.0279 0.0051 0.0203 0.0275 0.0371

ΩEW IG2 0.0291 0.0823 0.3889 0.0673 0.0701 0.0117 0.0526 0.0693 0.090658



Table A.2: Prior and posterior distributions in SW model, correlated disturbances

Prior Posterior

Dist 5% Median 95% Mode Mean SE 5% Median 95%

γ∗ N 0.2355 0.4000 0.5645 0.2753 0.2964 0.0201 0.2623 0.2976 0.3271

l∗ N -0.4935 0.0000 0.4935 -0.0000 -0.0001 0.2976 -0.4911 -0.0003 0.4878

π∗ G 0.4652 0.6146 0.7931 0.6090 0.6559 0.1024 0.4937 0.6525 0.8295

β−1 − 1 G 0.1111 0.2368 0.4339 0.2335 0.2645 0.0907 0.1304 0.2563 0.4259

φ N 1.5327 4.0000 6.4673 5.1223 5.3067 1.1751 3.3973 5.2952 7.2588

σc N 0.8832 1.5000 2.1168 1.4438 1.5421 0.2238 1.2028 1.5300 1.9303

λ B 0.5242 0.7068 0.8525 0.5250 0.6873 0.0629 0.5668 0.6965 0.7745

ξw B 0.3351 0.5000 0.6649 0.6400 0.5441 0.0545 0.4560 0.5430 0.6356

σl N 0.7664 2.0000 3.2336 0.9592 1.2453 0.5283 0.4435 1.2086 2.1817

ξp B 0.3351 0.5000 0.6649 0.5150 0.5832 0.0628 0.4772 0.5845 0.6841

ιw B 0.2526 0.5000 0.7474 0.4756 0.5619 0.1284 0.3453 0.5644 0.7687

ιp B 0.2526 0.5000 0.7474 0.2083 0.2912 0.1105 0.1324 0.2789 0.4932

ψ B 0.2526 0.5000 0.7474 0.3518 0.4891 0.0585 0.3944 0.4885 0.5857

ΦSW N 1.0526 1.2500 1.4474 1.4191 1.4946 0.0734 1.3765 1.4930 1.6180

rπ N 1.0888 1.5000 1.9112 1.5055 1.7383 0.1887 1.4361 1.7327 2.0606

ρSW B 0.5701 0.7595 0.8971 0.7611 0.7535 0.0325 0.6979 0.7552 0.8035

ry N 0.0378 0.1200 0.2022 0.0564 0.0801 0.0302 0.0330 0.0787 0.1314

r∆y N 0.0378 0.1200 0.2022 0.2250 0.1913 0.0305 0.1418 0.1909 0.2420

α N 0.2178 0.3000 0.3822 0.0395 0.0994 0.0183 0.0713 0.0984 0.1311

ΦA,A,1 N 0.1787 0.4932 0.7524 0.9302 0.9141 0.0348 0.8578 0.9137 0.9719

ΦA,B,1 N -0.2779 -0.0033 0.2907 -0.0088 0.0096 0.0239 -0.0366 0.0135 0.0399

ΦA,G,1 N -0.2820 -0.0025 0.2848 -0.2914 -0.2712 0.0521 -0.3588 -0.2702 -0.1876

ΦA,EI,1 N -0.2886 -0.0049 0.2828 -0.0961 -0.0922 0.1051 -0.2675 -0.0899 0.0753

ΦA,ER,1 N -0.2817 0.0021 0.2944 0.0222 -0.0142 0.1290 -0.2228 -0.0162 0.2012

ΦA,EP,1 N -0.2768 -0.0006 0.2862 -0.0588 0.0074 0.1573 -0.2537 0.0096 0.2625

ΦA,EW,1 N -0.2859 0.0016 0.3046 0.1247 0.0872 0.0995 -0.0767 0.0873 0.2513

ΦB,A,1 N -0.2828 0.0012 0.2923 0.0693 0.2099 0.1217 0.0385 0.1974 0.4282

ΦB,B,1 N 0.1942 0.4910 0.7528 0.6947 0.2397 0.2056 -0.0321 0.1961 0.6489

ΦB,G,1 N -0.2874 0.0048 0.3024 -0.1308 -0.1692 0.1635 -0.4602 -0.1550 0.0707

ΦB,EI,1 N -0.2864 -0.0036 0.2867 -0.4177 -0.8591 0.4121 -1.5980 -0.8148 -0.2752

ΦB,ER,1 N -0.2799 0.0076 0.3013 -0.5817 -1.2483 0.6686 -2.4081 -1.2064 -0.2460

ΦB,EP,1 N -0.2786 -0.0013 0.2933 0.2720 0.7074 0.6548 -0.2060 0.6163 1.9356

ΦB,EW,1 N -0.2873 -0.0018 0.3019 0.1370 0.4821 0.4196 -0.1093 0.4332 1.2362
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Prior Posterior

Dist 5% Median 95% Mode Mean SE 5% Median 95%

ΦG,A,1 N -0.2914 -0.0008 0.2920 -0.1899 -0.1787 0.0394 -0.2445 -0.1779 -0.1155

ΦG,B,1 N -0.2791 0.0017 0.2847 -0.0630 -0.0196 0.0252 -0.0596 -0.0191 0.0187

ΦG,G,1 N 0.1996 0.4931 0.7622 0.7551 0.6769 0.0660 0.5686 0.6770 0.7846

ΦG,EI,1 N -0.2826 0.0010 0.2724 0.4629 0.1924 0.1345 -0.0144 0.1843 0.4281

ΦG,ER,1 N -0.2816 0.0036 0.2758 -0.0990 0.0240 0.1482 -0.2175 0.0228 0.2704

ΦG,EP,1 N -0.2839 0.0016 0.2958 0.1392 0.1926 0.1760 -0.0969 0.1927 0.4808

ΦG,EW,1 N -0.2794 -0.0026 0.2871 0.3713 0.1419 0.1190 -0.0489 0.1394 0.3405

ΦEI,A,1 N -0.2904 -0.0039 0.2980 0.0595 0.0643 0.0280 0.0203 0.0632 0.1117

ΦEI,B,1 N -0.2901 -0.0019 0.2762 -0.0385 -0.0324 0.0175 -0.0638 -0.0305 -0.0083

ΦEI,G,1 N -0.2882 -0.0026 0.2836 -0.1085 -0.0779 0.0387 -0.1463 -0.0749 -0.0199

ΦEI,EI,1 N 0.1922 0.4911 0.7543 0.6312 0.6918 0.0575 0.5961 0.6928 0.7854

ΦEI,ER,1 N -0.2855 0.0030 0.2898 -0.1230 -0.0878 0.0964 -0.2495 -0.0852 0.0646

ΦEI,EP,1 N -0.2782 0.0022 0.2846 0.0318 0.0180 0.1008 -0.1424 0.0148 0.1882

ΦEI,EW,1 N -0.2901 0.0012 0.2830 0.0213 0.0756 0.0912 -0.0741 0.0781 0.2184

ΦER,A,1 N -0.2710 0.0030 0.2851 -0.0283 -0.0330 0.0174 -0.0624 -0.0327 -0.0052

ΦER,B,1 N -0.2781 0.0038 0.2789 -0.0810 -0.0335 0.0148 -0.0620 -0.0308 -0.0149

ΦER,G,1 N -0.2786 -0.0002 0.2843 0.0075 0.0192 0.0276 -0.0260 0.0190 0.0652

ΦER,EI,1 N -0.2735 0.0015 0.2936 0.1007 0.1143 0.0438 0.0459 0.1126 0.1896

ΦER,ER,1 N 0.2035 0.4908 0.7542 0.1292 0.1838 0.0771 0.0577 0.1832 0.3102

ΦER,EP,1 N -0.2715 0.0017 0.2855 -0.0099 0.0011 0.0842 -0.1391 0.0017 0.1384

ΦER,EW,1 N -0.2837 0.0003 0.2837 0.0423 -0.0052 0.0640 -0.1122 -0.0040 0.0976

ΦEP,A,1 N -0.2843 -0.0005 0.2877 -0.0107 -0.0058 0.0058 -0.0157 -0.0056 0.0034

ΦEP,B,1 N -0.2901 0.0049 0.2851 -0.0007 0.0014 0.0055 -0.0071 0.0012 0.0107

ΦEP,G,1 N -0.2960 -0.0016 0.2891 -0.0273 -0.0036 0.0102 -0.0204 -0.0035 0.0126

ΦEP,EI,1 N -0.2846 -0.0007 0.2847 -0.0007 0.0072 0.0171 -0.0207 0.0078 0.0336

ΦEP,ER,1 N -0.2898 0.0014 0.2903 0.0253 0.0062 0.0399 -0.0570 0.0051 0.0735

ΦEP,EP,1 N 0.1988 0.4934 0.7435 0.8069 0.6629 0.0842 0.5205 0.6660 0.7962

ΦEP,EW,1 N -0.2785 0.0025 0.2842 -0.0243 -0.0082 0.0222 -0.0484 -0.0057 0.0235

ΦEW,A,1 N -0.2686 -0.0004 0.2937 0.0099 0.0055 0.0083 -0.0083 0.0055 0.0191

ΦEW,B,1 N -0.2822 -0.0018 0.2723 -0.0008 0.0029 0.0081 -0.0091 0.0027 0.0149

ΦEW,G,1 N -0.2895 0.0008 0.2891 0.0124 0.0194 0.0132 -0.0003 0.0183 0.0429

ΦEW,EI,1 N -0.2707 0.0043 0.2966 -0.0247 -0.0024 0.0261 -0.0434 -0.0034 0.0427

ΦEW,ER,1 N -0.2839 -0.0002 0.2809 -0.0082 -0.0194 0.0544 -0.1077 -0.0193 0.0676

ΦEW,EP,1 N -0.2856 -0.0028 0.2851 0.0002 -0.0035 0.0532 -0.0854 -0.0061 0.0867

ΦEW,EW,1 N 0.1819 0.4911 0.7657 0.9735 0.9422 0.0331 0.8826 0.9481 0.9830
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Prior Posterior

Dist 5% Median 95% Mode Mean SE 5% Median 95%

−ΨEP B 0.1718 0.5000 0.8282 0.5134 0.3397 0.1212 0.1422 0.3382 0.5421

−ΨEW B 0.1718 0.5000 0.8282 0.9665 0.6739 0.1094 0.4751 0.6877 0.8264

ΩA IG2 0.0291 0.0823 0.3889 0.2431 0.2257 0.0284 0.1828 0.2235 0.2756

ΩB IG2 0.0291 0.0823 0.3889 0.4768 5.1996 3.3725 0.6226 4.8122 11.5165

ΩG IG2 0.0291 0.0823 0.3889 0.2563 0.2584 0.0310 0.2120 0.2562 0.3126

ΩEI IG2 0.0291 0.0823 0.3889 0.0582 0.0912 0.0334 0.0473 0.0854 0.1552

ΩER IG2 0.0291 0.0823 0.3889 0.0497 0.0542 0.0066 0.0444 0.0537 0.0659

ΩEP IG2 0.0291 0.0823 0.3889 0.0296 0.0257 0.0052 0.0181 0.0252 0.0351

ΩEW IG2 0.0291 0.0823 0.3889 0.0855 0.0724 0.0132 0.0528 0.0712 0.0961
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Figure A.3: Median impulse response functions in the Smets-Wouters model
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Table A.4: Posterior variance decompositions, Smets-Wouters model, percentiles 5, 95
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