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1 UK inflation and the swap market indices

Section 1.1 explains how we adjust the data for the timing of the calculation of the cash flows for
inflation swaps. Section 1.2 compares RPI and CPI inflation for the UK.

1.1 Adjusting swap prices for indexation lags

In this section of the appendix, we provide more details for how we adjust the UK RPI swap prices
for indexation lags to extract the component that is purely forward-looking.

There are two relevant market conventions for RPI swap pricing. In the first, the floating rate
index on which liabilities of the floating payer are calculated is referenced to the RPI index from
two months ago. This is known as the RPI indexation lag. Second, UK RPI inflation swap pricing
uses a monthly RPI fixing. This implies that regardless of which date the swap is traded at a given
month, its reference RPI index is always the RPI index from two months ago.

To see the impact of these, consider a 1-year zero coupon RPI swap. If it is traded in a given
date in June 2023, this swap has a reference fixing of the April 2023 RPI index, and the swap
seller is liable for the floating rate payment that arises from the year-on-year increase of the April
RPI index between 2023 and 2024. Because the May (and possibly June) 2023 RPI would have
been released at the trade date, the inflation swap seller would require the breakeven rate to
compensate for the growth in the RPI index between April and May. This is the known component
of the breakeven price. The forward-looking component of this price would then be the expected
change in the RPI index between April 2024 and June 2023, reflecting market’s expectation of RPI
inflation 10-months from now.

Formally, let p(N)
td,tm

denote the annualized breakeven rate of a N-year zero coupon RPI swap
that is traded in date td of month tm. The two time indexes are required because inflation swaps
trade at a daily frequency and so their prices vary day-to-day with changes in expected inflation,
but the reference RPI index that is tied to the floating leg changes only at a monthly frequency.
The breakeven rate at the trade date of td in month tm must satisfy:

(1 + p(N)
td,tm

)N =
RPIe

·,tm+12N−2

RPI·,tm−2
=

(RPIe
·,tm+12N−2

RPI·,tm

)
︸ ︷︷ ︸

unknown payoff

(
RPI·,tm

RPI·,tm−2

)
︸ ︷︷ ︸

known payoff

, (1)

where RPIe
·,tm+12N−2 denotes the date td expectation (in month tm) of the future RPI realization

in month tm + 12N − 2, conditional on the information of the economy at date td. Using this
equation, we extract the unknown component of the breakeven rate using the daily swap rates
and the monthly RPI data from the UK’s Office of National Statistics.

The differences in frequencies of the data poses a further set of complications. The latest RPI
statistic is released in a lumpy manner, at approximately the middle of each month. As a result,
for some swap prices in a given month tm, the information for RPI of month tm is not yet available
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at the trade date. For example, if the RPI is released only on the 16th, swaps executed on dates
prior to 16th must price in an unknown component that is attributed to the stochasticity of the RPI
in month tm.

We adjust for indexation by assuming that for all swaps traded in a given month tm, the month
tm release of the latest RPI figure is not yet available. Hence, our method extracts the known com-
ponent of the payoff arising only from the change in RPI from month tm − 2 to tm − 1, and regards
the indexation-adjusted N-year zero swap price as an annualized rate reflecting RPI inflation ex-
pectations over the horizon from month tm (inclusive) to month tm + 12N − 2.

Therefore, we adjust the formula above to calculate instead:

(1 + p(N)
td,tm

)N =

(RPIe
·,tm+12N−2

RPI·,tm−1

)(
RPI·,tm−1

RPI·,tm−2

)
=

[
(1 + x(N)

td,tm
)N

] 12N−1
12N

(
RPI·,tm−1

RPI·,tm−2

)
. (2)

The second equality comes from defining x(N)
td,tm

as the indexation-adjusted swap rate of the N-
year zero coupon swap in annualized terms. Taking logs and rearranging, we we solve for the
indexation-adjusted N-year zero coupon swap breakeven rate x(N)

td,tm
, for

N = 1, ..., 10, 12, 15, 20, 25, 30, 35, 40, 45, 50 according to the following equation:

log(1 + x(N)
td,tm

) =
12N

12N − 1

[
log(1 + p(N)

td,tm
)− 1

N
log

(
RPI·,tm−1

RPI·,tm−2

)]
. (3)

1.2 The RPI-CPI wedge

Figure 1 COMPARISON BETWEEN UK RPI AND UK CPI

NOTE: Time-series comparison of the UK RPI and UK CPI. SOURCE: Office for National Statistics.

Inflation swaps are indexed to the Retail Price Index (RPI) while the Bank of England’s infla-
tion target refers to the Consumer Price index (CPI). Linking swaps and bonds to RPI is a legacy of
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earlier periods when RPI was the primary UK price index. Since long-dated bonds from that time
are still in circulation, RPI has persisted as the benchmark index in inflation-linked financial mar-
kets. In 2020, the UK chancellor announced that RPI is to be aligned with CPIH “no earlier than
Feb 2030”, with no compensation for holders of index-linked gilts. However, the market is yet to
price this transition in its entirety, likely due to expectations of a delay or possible compensation.
Given the slow-moving nature of the transition, our estimates of high-frequency movements in
RPI swap prices should not be affected by this future change.

Figure 1 plots the two to highlight that they often, but not always move together, and that the
RPI is on average higher.
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2 Trade repository data and the data cleaning procedures

This section of the Appendix provides a more elaborate documentation of trade repository data
used in our analyses, along with a step-by-step procedure taken to carefully construct a data
cleaning infrastructure that is capable of handling large volumes of this data from the DTCC
trade repository. We then describe the steps taken to collapse the raw high-frequency data into
a daily time series that is used across all of our identification strategies. Our goal is to provide
some guidance to researchers who are interested in using this novel dataset, as well as to discuss
caveats and nuances in the data that all require careful discretion.

2.1 Data structures and nomenclatures: the raw data

Under the UK-EMIR regulation, there are currently 4 trade repositories regulated by the FCA for
which derivatives transacted by any UK-based counterparty can be reported to. These are DTCC
Derivatives Repository Plc, UnaVista Limited, REGIS-TR UK Limited and ICE Trade Vault Europe
Limited. These trade repositories record daily derivative transactions on 5 different asset classes:
(i) interest rate (IR), (ii) foreign exchange (FX), (iii) credit (CR), (iv) equity (EQ) and (v) commodity
(CO). We focus only on the DTCC trade repository because it is the largest — it captures around
75% to 80% of the market and is therefore sufficiently representative of the data. Within each trade
repository, there are two primary types of raw data reports generated in the form of delimited files
(e.g., a .txt or .csv file type). These are the (i) trade state reports and (ii) trade activity reports. Each
of these is generated on a daily frequency (with the exception of Sunday, and public holidays) by
around noon of each day, to capture the latest derivative transactions from the preceding busi-
ness day. Each derivative transaction is recorded by a row of contract-level information, spanning
more than a 100 columns of variables (The DTCC trade state reports generated after 31st October
2017 have exactly 186 variables). These variables contain information such as the legal entity iden-
tifier (LEI) of the reporting counterparty (and its counterparty), trade ID, notional principal (and
currency), a series of date fields (such as execution date, effective date, maturity date, settlement
date, and termination date), fixed and floating rates, venue of execution, and so forth. See UK
EMIR validation rules for a more thorough listing and description of the variables (link).

2.2 Data structures and nomenclatures: trade state reports and trade activity

reports

Trade state reports reflect the stock of outstanding transactions in the market that had been ex-
ecuted and which have not yet matured. These transactions may have an effective date that
precedes the execution date (backward-starting) or one that is scheduled to be at some date in
the far future (forward-starting). A daily sequence of trade state reports would therefore grow in
the number of transactions, insofar as most of the new derivatives traded have an initial time-to-
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maturity that is relatively long-dated. Hence, trade state reports are ideal if a researcher would
like to obtain empirical facts about how a market has grown over time, or to get a snapshot of the
outstanding transactions at a particular instance in history. Trade activity reports capture the flow
of trading activity from every business day. Therefore, they record the derivative transactions that
would be in principle equivalent to the change in the stock of transactions reflected by the trade
state files. Thus, the trade activity reports can be ideal for implementing event-based studies, or
to assemble a time series data that reflects daily trading in the market. It is, however, also possible
to achieve this using trade state reports with an additional caveat that more elaborate dedupli-
cation procedures would be required. For instance, an inflation swap contract executed on date
T with an initial time-to-maturity of two periods would be present in the trade state reports on
both dates T and T + 1 owing to the feature of these state reports observing the same trade repeat-
edly across time, insofar as the trade has not yet matured or cancelled. To obtain a time series of
trading activity, one can merge the trade state reports from both dates into a single dataset and
deduplicate that inflation swap transaction which now appears twice. This deduplicated dataset
will then have a single inflation swap contract that was executed on date T.1 This is also the main
idea behind our data cleaning procedure.

One major challenge working with trade repository data lies in the sheer volume of obser-
vations and the non-universality of data structure across trade repositories and across time. In
the DTCC trade repository, for instance, a given trade state report from a single trading day can
contain between 2.5 to 3.5 million observations. In comparison, a given trade state report from
the UnaVista trade repository can contain between 15 to 25 million observations. This is due to
the fact that the UnaVista trade repository stores the records of all derivative transactions into a
single trade report regardless of their underlying asset class. This differs from the DTCC trade
repository, where trade reports are individually generated for each asset class. This implies that
considerable computational power and memory is needed for data ingestion.2 Each trade reposi-
tory also contains a different number of data fields: trade state reports from DTCC, UnaVista, ICE
and Regis-TR have 186, 152, 137 and 138 variables respectively. Some variables e.g., “fixed rate of
leg 1”, can also sometimes be recorded as a numeric-type variable and sometimes a string-type
variable, depending on the trade repository, and these are also not exactly consistent across time.
Trade reports generated by the same trade repository itself can also sometimes have a varying
number of variables. In our experience working extensively with the DTCC trade repository, we

1Such deduplication is also required even if trade activity reports are used instead of trade state reports to con-
struct a daily time series of trading activities. This is because it is not always the case that both counterparties to
the transaction reports it to the trade repository at the same time. One counterparty can report it in the evening of
date T for which the trade was executed, but the other counterparty can report it only in the afternoon of date T + 1.
This implies that trade activity reports generated on both dates would capture the same derivative transaction each,
with the exception that it was reported by a different counterparty. Yet, the transaction is pairwise in the sense that it
shares the same pair of counterparties and has the same trade ID. Thus, one should append both trade activity files
and deduplicate this pairwise transaction such that only one remains in the dataset.

2Our data cleaning procedure below takes roughly 50 minutes to complete for every DTCC trade state report,
and approximately 2.5 hours for every UnaVista trade state report.
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found that on some random dates in our sample the trade state files are generated with 190 vari-
ables — instead of 186 — where the 4 additional variables are all empty. Some DTCC trade state
reports also have wrongly reported fields for some transactions: e.g., “XXXX” was input as the
notional amount of the transaction where it should have been recorded as the trading venue. It is
crucial for any data cleaning infrastructure to be able to handle these ‘special cases’ especially if it
is automated by a loop. All these implies that any data-cleaning infrastructure would have to be
tailored for each trade repository, and quite some cost is required to adapt it such that it is equally
capable of handling data from another trade repository.

2.3 Data cleaning procedure

In what follows, we provide a detailed documentation of our data cleaning procedure primarily
designed to handle data from the DTCC trade repository. Most of these can also be adapted
wholesale to the other trade repositories.

We first define the preliminaries of our empirical work by restricting our data sample to daily
DTCC OTC interest rate trade state files from 31th October 2017 to 10th February 2023 since we
focus on inflation derivatives. Inflation derivatives are a subset of interest rate derivatives, where
the underlying asset of the interest rate derivative is a floating inflation rate index. Thus, our
entire raw dataset consists of 1,321 trade state files, each containing a stock of approximately 2.5
to 3.5 million outstanding transaction-level trade reports. The total number of initial observations
is approximately 4 billion.

Next, we describe the main steps taken to clean each individual DTCC OTC interest rate trade
state report. We then describe the automation that was built to allow for the same code to be
implemented on each trade state report at a daily frequency:

1. Identify inflation derivative contracts from the raw trade state report. To take advantage
of potential speed gains in our cleaning procedure, we begin by identifying inflation deriva-
tives from the entire stock of outstanding contracts and drop the remainder of the dataset.
This has the advantage that the remainder of our extensive cleaning procedure can be ap-
plied to a smaller subset of observations and is therefore significantly faster.

To do so, we first extracted the string that is associated with the floating leg fields of the
derivative contract and used regular expressions to exhaustively capture strings that refer
to inflation indexes. We find that the following strings are sufficient enough to capture
the entire universe of inflation derivatives: “cpi”, “rpi”, “ukpri”, “lpi”, “hicp”, “-infla-”,
“inflatn”, “inflation”, “inf”, “cpx”, “cpt”, “consume”, “cpunr”, “ukrp”, “ukcp”, “urnsa”,
“cpurn”, “non-revised”, “nonrevised”, “non-re”, “harmonised”, “tobacco”, “excluding to-
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bacco”.3 Subsequently, we checked for the product classification type of the derivative con-
tract (the relevant variable is “product classification”) and used its ISO 10962 6-character
CFI code to verify whether it is an inflation swap contract. For example, the CFI code
“SRGCSC” stands for: (S): Swaps; (R): Rates; (G): Underlying assets: inflation rate index;
(C): Notional: constant; (S): Single or multi-currency: single; (C): Delivery: Cash. A deriva-
tive with “SRGCSC” as its product classification would be indicative that it is an inflation
swap. On this premise, we add a secondary condition that the transaction must be recorded
with a recognizable inflation rate index — for instance, this would be picked up by the pre-
ceding regular expression functions — or else identifying this inflation swap would not be
useful insofar as we cannot identify whether it is a UK inflation or US inflation index, etc.
We only kept the trade reports that can be identified with a recognizable inflation index.4 In
this part of our cleaning procedure, we coded up the entire ISO-10962 (and all its 4 classes
of attributes) which allows us to identify as many as 14 different categories of derivatives.5

Following this procedure, we can subsequently identify 5 categories of inflation derivatives
from any given trade state report. These are: (i) swaps, (ii) listed options, (iii) non-listed and
complex-listed options, (iv) strategies and (v) miscellaneous, with inflation swaps account-
ing for roughly 97.5% to 98.5% of overall number of transactions.

2. Drop matured trades, terminated trades and forward-starting trades that will only go into
effect 10 years later or more. Next, we shrink the dataset further by dropping the trans-
actions that are not economically important: these are the trades that have either matured,
been terminated, or those that only go into effect in the far future after 10 years. We identify
these using the information on its valuation date, maturity date, termination date and effec-
tive date.6 We also drop a minority of trades with a valuation date that falls on a weekend
since this is not consistent with market convention.

3. Deduplicate pairwise consistent transaction reports at the counterparty-level. Owing to
UK-EMIR reporting requirements, all UK-regulated counterparties to a derivative transac-
tion are required to report it to a relevant trade repository. This implies that our dataset up
to this juncture contains a pool of duplicated transactions that are pairwise, i.e., they share
the same trade ID, and have the same pair of LEIs identifying the two counterparties to the
trade with one recorded as the “reporting counterparty ID” in one trade report submitted

3On the set of derivatives that contain these strings in their floating rate data fields, we further used regular
expressions to check whether there are some transactions with “clpicp” as their floating rate index. These derivatives
could be present due to the string “lpi”, which was meant to capture inflation derivatives with limit price indexation.
We then drop these transactions, as “clpicp” refers to CLP-ICP fixed-to-floating interest rate swap (the floating rate
refers to the Chilean Average Chamber Index (Índice de Cámara Promedio or “ICP”).

4The number of inflation derivative transactions reported without a recognizable inflation index (or if any at all)
are few, and account for less than 0.2% of the total number of observations at this juncture.

5These are: “Equity”, “Collective Investment Vehicles”, “Debt Instruments”, “Entitlements”, “Options”, “Fu-
tures”, “Swaps”, “Non-listed complex options”, “Spot”, “Forwards”, “Strategies”, “Financing”, “Reference Instru-
ments”, “Miscellaneous”.

6For example, matured trades are those with a valuation date that precedes their maturity date.
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by the reporting counterparty and this very LEI is simultaneously recorded as the “ID of the
other counterparty” when the same transaction is reported by the other counterparty. These
pairwise observations have to be deduplicated or else there would be double counting in
our data when we calculate net and gross positions.

To do so, we first sort the transaction-level observations by its trade ID. Deduplication based
solely on trade ID would not be the most precise approach, as it does not uniquely identify
the trade. Each trade is uniquely identified only at the counterparty-level, that is, the unique-
ness of each transaction requires the combination of trade ID and the two LEIs of both coun-
terparties at the very least.7 For every group of trades with the same trade ID, we carefully
identify those that are pairwise and those that are individually unique. This step requires a
procedure that is both exhaustive and targeted: this is because we can have groups up to 8
to 10 trades all with the same trade ID, but within the group there may only be 2 or 4 trades
that are pairwise, that may either be pairwise with regards to the same pair of LEIs (in which
we drop the pair of older reports) or to a set of two pairs of LEIs.8 We work through this
combinatorial problem carefully to arrive at a dataset that has a pool of individually unique
trade reports and another pool of pairwise trade reports.

We then focus on the pool of pairwise trade reports to check for internal consistency of the
information submitted by both reporting counterparties. We cross-validated each pair of
trade reports by the following criteria:

(a) Notional amount: both counterparties should report the same notional amount in the
transaction, at least within a rounding margin. We also check that the currency in which
the notional amount is reported by both counterparties is identical.9

(b) Maturity date: both counterparties should report the same maturity date on the con-
tract.

7As an illustration, consider a dataset sorted according to the trade ID of each transaction-level report. All the
trades with the same trade ID e.g., 001, will therefore be grouped together. However, one trade may have a pair
of counterparties A and B while another has counterparties A and C. This implies that both trades are individually
unique and are not a pair of duplicated reports.

8Consider the following scenario: suppose we identify a group of 4 trades that share the same trade ID, but there
exists two sets of pairwise bundles reported as:

• (i) Trade ID = 001, reporting counterparty ID = A, ID of the other counterparty = B

• (ii) Trade ID = 001, reporting counterparty ID = A, ID of the other counterparty = C

• (iii) Trade ID = 001, reporting counterparty ID = B, ID of the other counterparty = A

• (iv) Trade ID = 001, reporting counterparty ID = C, ID of the other counterparty = A

In this scenario, the trade reports in (i) and (iii) are pairwise while the trade report in (ii) and (iv) are pairwise. Hence,
the goal would be to deduplicate one trade from each of these pairs. However, in another scenario we could well
have that the ID of the other counterparty in trade (iii) not to be A, in which case the trade reports in (i) and (iii)
become individually unique and should not be deduplicated.

9That is, we do not include cross-currency inflation swaps in our analysis. These are non-standard inflation
swaps, and are extremely few in the dataset.
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(c) Intragroup flag: both counterparties should report consistently whether the trade is an
intragroup transaction.

(d) Counterparty side: each pair of pairwise transactions must consistently indicate whether
one LEI is the buyer (and the other a seller) and vice versa.

There is no standard formula for what criteria to consider. We considered these as they are
of first-order importance in determining the precision of our calculations of gross and net
notional positions. For example, if the pairwise trades are not consistent in the notional
amounts reported by both counterparties, we drop the pair altogether because it would not
be possible to determine which notional reported is correct. Similarly, we drop the pairs if
they are inconsistent with their maturity dates, or else we cannot be precise about the initial
time-to-maturity of the contract and thus our market segmentation facts.

It is on this pool of cross-validated pairwise trade reports that we deduplicated each pair and
kept only the latest trade report by its reporting timestamp. This allows us to obtain a dataset
containing only inflation derivatives transactions that are unique at the counterparty-level.
We further drop a minority of these unique trades if they (i) have implausible notional
amounts (less than $1,000 or more than $10bn); (ii) have a missing counterparty side; (iii)
have counterparties that are not identified with the 20-alphanumeric character LEI codes;
(iv) are intragroup transactions or compression trades.

4. Remove reports that do not adhere to UK EMIR Validation Rules. Next, for every re-
ported derivative transaction we check if the contract information satisfies the set of UK
EMIR validation rules provided by the UK’s Financial Conduct Authority. These rules list
a set of conditions that uniquely apply to each of the 106 variables that can be populated
when a transaction is reported, which, depending on whether it is a trade-level or position-
level report, is either mandatory (either conditionally or unconditionally) or optional. The
conditions listed for each variable may also be interdependent. For example, consider the
variables “value of contract”, “valuation type” and “cleared”. Then, for a cleared transac-
tion with a reported value of contract, its valuation type should be reported as “C” (CCP’s
valuation) instead of “M” (mark-to-market) or “O” (mark-to-model). We apply these vali-
dation rules to the entire dataset consisting of roughly 180,000 outstanding transactions at
this juncture, insofar as the reporting timestamp of the transaction is later than 11pm on 31st

December 2020.10 Roughly 5% of reported transactions are in violation of these rules and
are removed from the dataset. We note that these validation rules are beneficial for the qual-
ity of trade repository data since reporting counterparties are also required to inform the
FCA of any breaches of these validations rules. Subsequently, we drop all swap transactions
that were not confirmed according to Article 12 of Commission Delegated Regulation No.

10This is the exact time when the UK EMIR validation rules become applicable. Stated amendments to these rules
apply to transactions reported from 21st June 2021.
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149/2013 (link). We take these steps to be conservative towards the data.

5. Categorizing various inflation markets. In this step, we return to our regular expres-
sions to properly categorize the reported derivative transactions into their respective mar-
kets. This is crucial for completeness as there are generally no universal standards for how
an inflation index (tied to the floating rate) should be reported to trade repositories. For
instance, we were able to extract strings “ukrpi”, “ukpri”, “rpi”, “ukrp”, “GBP - Non-
revised Retail” from various swap contracts that should all be categorized as UK RPI in-
flation swaps. Similarly, swap contracts with floating rate strings such as “ukcpi”, “ukcp”,
“uk-cpi”, “GBPNONREVISEDCONSUMERPRIC”, “gbcpi”, “GBPINFLATNREFB”, “GBP-
INFLATN-REFB”, “gbp cpi”, “GBP CPI”, “GBP-CPIUK-INFLFIX” should be categorized as
UK CPI inflation swaps.11 To arrive at an exhaustive list of strings that is truly representa-
tive of the inflation products traded in this market, we build and test our code on individual
trade state files from many dates, adding more strings to the list when we identify them to
have been left out by the list of strings above. We perform this procedure iteratively until no
further ‘new’ strings can be identified pertaining to the relevant inflation index. Using this
approach, we carefully identify recognizable inflation rate indexes from 19 different coun-
tries/regions in total, with the UK, EU and US inflation markets the largest, and with UK
RPI inflation swaps being the most traded derivative product within the UK market.12

6. Allocating counterparty LEIs to an investor group using a best-endeavor sectoral classi-
fication. Given that the LEIs of all counterparties to a derivative transaction are reported
as part of the contract information, we can identify these institutions and classify them into
an investor group. We use the LEI reported in “beneficiary ID” as opposed to the “report-
ing counterparty ID”, as by definition that entity is the true party subject to the rights and
obligations arising from the contract.13 We then use the “ID of the other counterparty” to
identify who is on the other side of a given transaction. This process is naturally subject to
errors, like allocating an insurer with asset management arm, so we manually verified and
corrected as best as we could.

11For EU CPI inflation swaps, the strings we identified are: “EUR EXT CPI”, “EUR-EXT-CPI”, “EUREXTCPI”,
“EUR EXT CPI”, “EURINFLATNREFB”, “EUR-INFLATN-REFB”, “CPALEMU”, “INFLEURNREXTCPI”, “IN-
FEUR”, “EUR-INFLA”, “EUR-EXT-R-CPI”, “EUR-CPIEU-INFLFIX”, “INFLEUR”, “EUCPXTOB”, “inflation EUR”,
“EU CPI XT”, “EUR EXCLUDING TOBACCONONR”, “EUR CPI”, “EXT CPI”. For EU HICP inflation swaps, the
relevant strings are: “cpxtemu”, “CPTFEMU”, “CPTFEM”, “eu hicp”, “eur hicp”, “EUROSTATEUROZONEHICPEX-
TOB”, “EUR - Excluding Tobacco-N”, “EUR-HICP-REFB”, “EURHICPREFBXT05”, “EURHICPREFB”, “BLGHICP”,
“EUR-Excluding Tobacco-Non”, “EUR-HICPX”, “HCPIxt”, “EUROZONE HICP”, “EUR ZONE HICP EX TO-
BACCO”, “hicpxt”, “EUHICPXT”, “BLG-HICP”, “EUHICP”. For US CPI-U inflation swaps, the relevant strings
are: “cpurnsa”, “cpurns”, “usd”, “uscpi”, “us cpi”, “usa”, “CPI-U”, “cpurn”, “INFLUS”.

12These 19 countries/regions are: Australia, Germany, Spain, Euro Area, France, Israel, Italy, Japan, Sweden,
United Kingdom, United States, Ireland, Mexico, Denmark, Norway, Canada, Chile, Switzerland and the Nether-
lands.

13For a overwhelming majority of the transactions, the beneficiary ID exactly coincides with the reporting coun-
terparty ID.
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Steps [1]—[6] fully describe the procedure required to clean a single DTCC OTC interest rate
trade state file extracted from a given date, which enables us to identify an outstanding stock of
approximately 130,000 to 160,000 inflation swap contracts. We then build an automation that can
iterate the abovementioned cleaning procedure over each of the 1,321 trade state files from 31st

October 2017 to 10th February 2023 at a daily frequency.14 To conserve computational memory, our
automation fetches one raw trade state report from the trade repository locally in each iteration,
and deletes it once the cleaning procedure is complete and the cleaned dataset is saved. This
entire process took approximately 3 weeks to complete on 5 high-powered servers with 16GB of
memory each.

Next, we append these cleaned DTCC OTC interest rate trade state reports into a single dataset.
Given the gigantic volume of data, this is computationally feasible only if we were to first reduce
the file size of each of these cleaned trade state reports. We do by encoding string-type variables
where applicable, dropping irrelevant variables and compressing the data. This is sufficient for
appending 62 trade state reports at a monthly frequency between 31st October 2017 to 10th Febru-
ary 2023, which we use to construct a monthly time series of both gross and net notional posi-
tions.15 To construct the daily time series data used to implement our identification strategies, we
append 1,321 trade state reports at a daily frequency by further restricting the data sample to the
dealer-client segment of the UK RPI inflation swap market. This resulted in a total of 33,784,686
observations in total. We now turn our attention to this dataset and describe the further steps
required to collapse it such that it can be used to estimate a VAR.

7. Removing replica transactions that are repeatedly observed across time. We begin by
first implementing another substantial deduplication procedure to remove repeated obser-
vations of the same transaction at the counterparty-level.16 These repeated observations
arise from having the outstanding stocks of executed transactions from daily trade state
files merged into a single dataset, and thus the same transactions are repeatedly observed
over time (by its execution date) insofar as they have not been terminated or matured. Since
the objective is to obtain a time series of trading activities that is reflective of the change

14In the DTCC trade repository, it is sometimes the case that two or even three trade state reports are generated
for a given business day. They are then archived with a different timestamp. Our procedure extends to all these
additional reports, with the caveat that we later implement another round of deduplication when constructing our
daily time series to remove identical transactions that are double-recorded by these additional trade state reports.

15This procedure additionally requires one to remove some stale trades in the dataset. These are identical trades
at the counterparty-level (i.e., have exactly identical trade ID and LEIs for reporting counterparty ID and ID of the
other counterparty to the transaction) that have the same valuation dates. These valuation dates should be refreshed
based on the recency of the trade state report generated. Thus, we deduplicate these stale trades and keep the latest
transaction so as to avoid double counting.

16Note that this procedure differs from deduplicating pairwise trade reports in Step [6]. These trade reports are
defined as “replicas” because they take the following form in the sorted dataset e.g.,

• (i) Trade ID = 001, reporting counterparty ID = A, ID of the other counterparty = B, execution date = T

• (ii) Trade ID = 001, reporting counterparty ID = A, ID of the other counterparty = B, execution date = T

and can differ in their reporting timestamps and valuation timestamps.

11



in net notional positions of each counterparty, this deduplication is an essential step. We
sort the counterparty-level transactions by its execution date forward in time, and only keep
the latest contract reported to the trade repository for a given execution date of the trade.17

For the replicated trades that all share the same reporting timestamp, we keep the one that
has the latest valuation timestamp. For the replicated trades that have identical timestamps
for both its reporting date and its valuation date, we consider them to be stale trades and
keep one arbitrary report. Upon completion of this step, we also repeat the deduplication
of pairwise trade reports that may be observed owing to different trade state reports being
combined into a single dataset. All these sequences have to be carefully implemented in
order to arrive at an unbalanced panel of 145,181 unique, transaction-level UK RPI swap
trade reports. This can now be used to analyse the change in net notional positions: pre-
cisely because each transaction is unique, we can use the notional amount quoted as a direct
measure of the change in net notional position for the pair of counterparties involved. Since
these counterparties have already been classified into an investor type in Step [6], we can
further aggregate these positions taken by all actively trading institutions on that particular
execution date to calculate the change in net notional position at a sectoral level (i.e., pension
funds against dealer banks).

8. Merging in Bloomberg prices. Next, we merge our transaction-level data with another
dataset containing prices obtained from Bloomberg by the execution date of each transac-
tion.18 These are daily UK RPI inflation swap rates for zero coupon swap contracts with an
initial time-to-maturity of 1, 2,..., 10, 12, 15, 20, 25, 30, 35, 40, 45, and 50 years. To match the
relevant prices to every contract, we calculate the initial time-to-maturity for the entire pool
of transactions using their maturity dates and effective dates.19 It is then straightforward
to match these prices to the trades that have an initial maturity that exactly matches those
from the zero coupon contracts for which the Bloomberg swap rates are priced for. We fo-
cus our attention on the trades for which their initial maturity is not a whole integer (when
measured by number of years).20 For these contracts, we implement a “nearest neighbour”
method. That is, an inflation swap with initial maturity of 2.8 years will be regarded as a
3-year swap and be matched with a 3-year swap rate, while a swap with initial maturity of
13 years will be regarded as a 12-year swap and be matched with a 12-year swap rate, and
so on. In particular, those with an initial maturity longer than 30-years will all be matched

17This step is taken as a proxy for the report to contain the most updated information or terms of trade. Note that
while these replica transactions reported to the trade repository can have a different reporting times, by definition
they all have the same execution date since they ultimately refer to the same trade.

18These swap prices have been adjusted for RPI indexation lags. See Appendix 1.1 for a formal description of the
problem.

19We also drop a minority of trades in this step for which we are unable to calculate the initial maturity, either
because the maturity date or effective date fields are not populated.

20For instance, we are able to observe an inflation swap with an initial time-to-maturity of 2.7 years. These con-
tracts are to be expected, due to the highly OTC nature of the market that allows terms of trade to be customised.

12



with the 30-year swap rate.

9. Constructing daily price-quantity pairs in the long and short maturity markets. This pro-
cedure transforms the transaction-level dataset—which features trade-by-trade transactions
at a counterparty-level sorted by an execution timestamp precise to the seconds—into a
daily time series featuring a pair of prices and quantities for both the short maturity and
long maturity markets. Further, it restricts the data sample to dealer-client trades in UK RPI
inflation swaps where the client is either a hedge fund or pension fund (this also includes
the LDI funds), and all trades with an initial maturity that is between 3 years to 10 years
are dropped since this segment of the market is not our focus. This yields the segmented
market, with hedge funds active in their trading of swaps with initial maturity 3 years or
less and pension funds primarily trading in the long maturity market. Since the objective is
to construct one price-quantity pair for each of these markets, and there are multiple prices
within each market (e.g., since the short maturity market consists of all swaps with an initial
maturity of 3 years or less, it has a composition of 1-year, 2-year and 3-year swap rates), we
remove such compositional effects by weighting these prices by their gross notional shares.
These shares are calculated from hedge fund’s trading activities throughout the entire data
sample. We replicate this procedure for the long maturity inflation market, except that prices
in this market are weighted by the gross notional shares of the corresponding maturities
traded by pension funds. This ensures that there is just one price corresponding to each
execution date, that is also identical across contracts with different initial maturities insofar
as they belong to the same market. We subsequently aggregated up all notional positions at
a transaction-level (taking into consideration whether it is a contract bought or sold to the
dealer) in both markets transacted within a given execution date and collapsed the data by
scaling up the unit of analysis from a second to a day.
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3 Data: additional information

This section of the Appendix provides additional information on the data used in the empiri-
cal analysis. Section 3.1 defines the key variables used in our VAR implementation. Section 3.2
compares our data with data from a different source.

3.1 Definition of the key variables

The DTCC trade repository data gives us positions on the inflation swap market at each day, t,
for institution i defined by its legal entity identifiers, across the three main sectors b, h, f as well as
others, and for the maturity of the contracts per year. We aggregate contract maturities into three
buckets: three years or less into P, Q, and 10 years or more into p, q, leaving out the remainder.
Noting that data quality is poor prior to 2019, we dropped all the corresponding quantities and
prices with an execution date that precedes 1st January 2019. This yields a time series dataset
from the 2nd January 2019 to the 10th February 2023, for 1078 days. Therefore, we have 1078 x
4 observations in the raw data matrix used for VAR estimation in implementing all of our three
identification strategies.

The two key observables used in estimation are a balanced panel for q f ,i,t and a f ,i,t (and same
for b and h). The trading activity corresponds to q f ,i,t, while the a f ,i,t are the gross notional amount
of all outstanding inflation swap contracts traded by institution i from the pension fund sector.
To build this measure, we carefully tracked the trading activity of each institution in our data
sample and accumulated the stock of its outstanding positions by taking account of not only new
inflation swap trades, but also trades entered into at the earlier part of the data sample that have
eventually matured prior to the cessation of our data sample.

Every contract has a separate price and each maturity has a different price within the long and
short buckets. We build the market price pt as the weighted-average daily price of a UK RPI zero
coupon inflation swaps of initial time-to-maturity 10 years or more, where the weights are gross
notionals traded in each long maturity category by pension funds as a share of the total across
the data sample. Likewise Pt is the weighted-average daily price of UK RPI zero coupon inflation
swaps with weights equal to the share of gross notional amount traded in each maturity category
by hedge fund institutions in this market.

3.2 A robustness check: comparison to alternative data

To check that our trade repository dataset is representative of the trading activity in the OTC
inflation swap market, we collected supervisory data on the derivative holdings of insurance
companies that are regulated by the UK’s Prudential Regulation Authority (PRA) and subject to
the Solvency II Directive. Most insurers within scope of the Solvency II Directive are required
to submit annual and quarterly returns, with the exception of some smaller firms with quarterly
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waivers. The reports include detailed information on the derivatives holdings of a given insurer,
including the identity of the counterparty, the underlying security, the notional amount, and the
derivative category (e.g., inflation swap). Given the supervisory nature of the reporting, we can
assume that the Solvency II data provide an exact quarterly snapshot of the total inflation swap
holdings in the insurance sector.

Figure 2 compares the average gross notional outstanding of the insurance sector in our dataset
with the supervisory holdings in the Solvency II data for the period 2019 Q1 - 2022 Q4. The figure
shows that the EMIR TR data cover the vast majority of trading activity in the OTC inflation swap
market as reported to the Solvency II database. In 2022 Q4, for example, both datasets report a
gross notional of around $320bn for the UK insurance sector.21

Throughout our sample period, the EMIR cleaned trade repository data of trading activity in
the OTC inflation swap market covers 90% of the total inflation swap holdings reported to the
Solvency II database. The improved coverage in the second half of our sample is likely due to the
increased precision of the regulatory reporting in the EMIR TR data.

Figure 2 COMPARISON OF SOLVENCY II INSURANCE HOLDINGS AND EMIR TR DATA

Average gross notional outstanding

NOTE: By the Solvency II Directive, most insurance companies within its supervisory outreach are required to submit annual and quarterly
returns, and these include detailed information on the derivatives holdings. Given this alternative dataset on the total inflation swap
holdings of insurers in the UK RPI market, we compare the total gross notional position of these insurers across our two data sets in this
figure to seek an affirmation that our trade repository data cleaning procedure is robust and fit for the task. SOURCE: Solvency II data and
DTCC Trade Repository.

21Section 4.2 describes the mechanical nature of insurers’ inflation swap trading in recent periods in more detail.
Our baseline results remain stable when including insurers’ trading volumes (section 6.5).
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4 Additional descriptive statistics

This section of the appendix provides more facts about the UK RPI swap market.
Section 4.1 provides more data and information on the gross notional positions in the dealer-

client segment of the market to complement the net positions in the main text, splitting the data
by maturity segments and also investor-types extending beyond just pension funds and hedge
funds i.e., the remainder of the market.

We excluded insurers from our institutions. Section 4.2 discusses their features.
Appendix 4.3 provide additional summary statistics for a single trade state report from the

DTCC trade repository, taken on the last day of our data sample that is 10th February 2023. These
statistics cover all outstanding trades in the dealer-client segment of the UK RPI market that are
effective as of this date.

4.1 More on gross positions in the dealer-client inflation swap market

Figure 3 digs deeper into gross notionals, splitting them by client sector, maturities, and type of
institutions. Gross notionals have grown rapidly, reaching a peak of around $1.1tn in late 2022,
with the larger share in contracts for inflation for a long maturity of ten years or more. Across
clients, hedge funds have steadily increased their notionals since the COVID-19 market turmoil
in 2020 and the reappearance of inflation in 2021, from less than $50bn in 2019 to around $200bn
in 2022.

Figure 4 does a double-sort splitting of the gross notional holdings of the three sectors in our
analysis by maturity and across time. The segmentation of the market is clear also in gross hold-
ings, even though it is starker on net holdings.

Figure 5 shows the gross notional positions of all other investor types in the market. For
completeness, Figure 6 show the equivalent values in terms of net notional positions.

Figure 7 shows the net notional position of dealers broken down by the initial time-to-maturity
of the contracts. This is a mirror image of the figure on fact 2 in the main text since dealers are the
counterparties of pension funds in the transactions. This also confirms that the transactions with
all other clients are not quantitatively significant.

4.2 Insurance companies

In our baseline results, we focused on the trading volumes of hedge funds in the short-maturity
market and pension funds in the long-maturity market. However, as discussed in the main text,
there are other types of agents in the market. As noted in Section 3.2, the next notable sector in the
inflation swap market are insurance companies, in particular pension insurers. The latter have
been heavily involved in the buy-in/buy-outs of pension fund liabilities in recent years, a trend
that is set to continue in the coming years.
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Figure 3 GROSS NOTIONAL POSITIONS IN THE DEALER-CLIENT SEGMENT

(a) Gross notional by initial time-to-maturity

(b) Gross notional by client sector

NOTE: This figure shows the gross notional positions outstanding traded in the dealer-client segment of the UK RPI inflation swap market
at month-end, categorised by different maturity segments and investor types. These positions represent the gross notional values used
to calculate cash flows for both counterparties to the swap contract. Time variation comes from both new contracts executed and the
expiration of existing contracts. We omit trades that involve a central counterparty clearing house because the trades net out to zero by
construction. The total value for each month is aggregated based on all transaction-level trades with a valuation date-time within the
month. The data sample is from January 2019 to February 2023. SOURCE: DTCC Trade Repository.
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Figure 4 GROSS NOTIONAL POSITIONS: THE MAIN INVESTORS IN THE UK RPI MARKET

(a) Pension funds and liability investment driven institutions

(b) Hedge funds

(c) Dealer banks

NOTE: This figure shows the gross notional positions outstanding of pension funds, hedge funds and dealers traded in the dealer-client
segment of the UK RPI inflation swap market at month-end, categorized by different maturity segments. The gross notional position
of dealer banks include their trades with the entire market, not only pension funds and hedge funds. The total value for each month is
aggregated based on all transaction-level trades with a valuation date-time within the month. The data sample is from January 2019 to
February 2023. SOURCE: DTCC Trade Repository.
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Figure 5 GROSS NOTIONAL POSITIONS: THE REMAINDER OF THE UK RPI MARKET

(a) Asset managers (b) Non-dealer banks

(c) Other financial institutions (d) Non-financial institutions

(e) Sovereign wealth funds (f) All others

NOTE: “All others” include: state, supranational, proprietary trading firms, trading services and central banks. SOURCE: DTCC Trade
Repository.
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Figure 6 NET NOTIONAL POSITIONS: THE REMAINDER OF THE UK RPI MARKET

(a) Asset managers (b) Non-dealer banks

(c) Other financial institutions (d) Non-financial institutions

(e) Sovereign wealth funds (f) All others

NOTE: “All others” include: state, supranational, proprietary trading firms, trading services and central banks. SOURCE: DTCC Trade
Repository.
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Figure 7 NET NOTIONAL POSITION OF DEALER BANKS IN THE UK RPI MARKET

NOTE: This figure shows the aggregate net position of dealer banks in the UK RPI inflation swap market at month-end from January
2019 to February 2023. These positions are an aggregate across the net positions of the largest G17 banks that are licensed to deal in the
UK financial market, and they are also an aggregate of all net positions taken against all the abovementioned types of different investor-
sectors, with pension funds and insurers holding the majority of the opposite position (See Figure 2 in the main text). A negative net
position indicates that dealer banks pay floating inflation to the counterparty, bearing the risk that inflation goes above the contracted
swap rate. The total value for each month is aggregated based on all transaction-level trades with a valuation date-time within the month.
SOURCE: DTCC Trade Repository.

Including insurers in our analysis is difficult for one main reason. In contrast to pension funds,
insurers mainly use cash-flow driven investment strategies (CDI). The aim of a CDI strategy is
to create an asset/derivative portfolio that closely matches the cash-flows on the liability side.
In terms of the inflation-indexation of pension liabilities, the most prevalent form sees inflation
linkage floored at zero and capped at 5%, as measured by RPI.

For a CDI-investor that is fully inflation hedged, inflation moving above the 5% is usually
a positive outcome: while the investor’s inflation-linked asset rises in value, the liability stops
tracking the higher inflation and effectively becomes a nominal liability for a period. The insurer
will see its assets rise in value by more than its liabilities. This creates a hedging mismatch: the
fund now has too much inflation-linkage. Given that RPI inflation has been above the 5% cap
since late 2021, pension insurers have become net sellers of short-dated inflation swaps to reduce
their over-hedged positions: see Figure 8.

This re-balancing is a mechanical consequence of the CDI. Their trading activity is passive, and
does not depend on prices and beliefs. At an extreme, if it was completely mechanical, insurers
would be infra-marginal in the market. Therefore, excluding insurers’ trading volumes, as we did
in our main analysis, would have no effect on our results. Still, to make sure, we checked that our
baseline results remain robust to the inclusion of insurers’ quantities.
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Figure 8 NET NOTIONAL POSITION OF INSURERS

NOTE: The figure shows the aggregate net notional position of insurance companies vis-a-vis dealers in the UK inflation swap market at
month-end from January 2019 to February 2023. A positive value indicates that these insurers are net buyers of inflation protection. The
total is categorised by the maturity of the underlying swap contract. SOURCE: DTCC Trade Repository.

4.3 Summary statistics on individual positions at one data

To give a sense of the micro data behind our estimates, we provide additional summary statistics
for a single trade state report, covering all outstanding trades in dealer-client segment of the UK
RPI inflation swap market on the last day in our sample: 10th February 2023.

Table 1 shows that we observe the largest number of trades by pension funds, followed by
hedge funds and non-dealer banks. The largest average trades size are for hedge funds with an
average notional of $70m. When analyzing the notionals across maturities, we find the largest
outstanding notionals for the 1-year, 10-year, and 3-year contracts. The average trade size seems
to be decreasing with the maturity of the contract.
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Table 1 SUMMARY STATISTICS: DTCC DERIVATIVES REPOSITORY TRADE STATE REPORT

Gross
Notional

Mean Std.
Deviation

5th
Percentile

25th
Percentile

50th
Percentile

75th
Percentile

95th
Percentile

Total
Observations

By investor type
Pension funds 296,223.7 21.6 (43.9) 0.5 2.8 8.4 23.2 84.5 13,696
Hedge Funds 162,600.3 69.4 (111.3) 5.9 15.6 32.8 81.4 236.3 2,342
Non-dealer banks 44,491.2 21.3 (40.1) 0.3 1.8 8.6 24.7 82.7 2,085
Others 341,242.8 37.6 (91.5) 0.4 3.6 13.4 38.5 140.9 9,073
By initial maturity
3-year or less 186,482.5 89.4 (169.2) 3.6 16.7 46.3 96.8 311.2 2,086
3 to 10-year, excl. 191,680.2 54.7 (88.9) 1.3 7.8 26.0 66.7 204.8 3,505
10-year or more 466,395.3 21.6 (43.9) 0.4 2.7 8.8 23.3 81.3 21,605

All 844,558.0 31.1 (71.7) 0.5 3.4 11.3 30.9 120.2 27,196

NOTE: Units are USD millions for all columns, except the last. The category “Others” includes asset managers, central banks, insurers,
non-financials, other financials, sovereign wealth funds, state entities, supranationals, trading services and proprietary trading firms.
“All” also coincides with the statistics pertaining to the dealer bank sector since we report statistics on the dealer-client segment of the
market. SOURCE: DTCC Trade Repository, 10th February 2023 trade state report.
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5 Samplers used for Bayesian Inference

In this section, we provide a discussion of the Bayesian samplers implemented across the three
identification strategies used in the article. Section 5.2 provides details of the sampler used to im-
plement the heteroskedasticity-based identification, while Section 5.3 outlines the modified sam-
pler that we adopt from Bahaj (2020) for the GIV-based identification strategy.22 In Section 5.4, we
provide a summary of the algorithm adopted from Arias et al. (2018) to implement sign and zero
restrictions. Across all three identification strategies, we clearly state the number of draws and
effective sampling sizes from which we conduct inference.

5.1 The VAR model in reduced-form orthogonal representation

Given that all three identification strategies rely on the same vector autoregression (VAR) model,
we first present the reduced-form representation that is estimated by each of the three Bayesian
samplers and set the general notation, before elaborating on each sampler in the subsections be-
low. The reduced-form VAR specification is given by:

Yt = c +
p

∑
ℓ=1

ΦℓYt−ℓ + ut, ut = Ψεt (4)

where ut = Ψεt defines its reduced-form orthogonal representation. Yt = [Qt, Pt, qt, pt]′ is the
4 × 1 endogenous variable vector consisting of net purchases of inflation swaps from dealers in
the short- and long-maturity markets {Qt, qt} and their respective swap breakeven rates {Pt, pt}
at time t (following this order). c is a 4 × 1 vector of deterministic constants, and ut is a 4 × 1
vector of reduced-form VAR forecast errors. The reduced-form coefficients are the autocorrelated
lag coefficients {Φℓ} and the variance-covariance matrix Σ = E[utu′

t]. The matrix Ψ identifies the
structural shocks εt. Across all three identification strategies, this reduced-form representation is
estimated with p = 3 lags.

Notation. For the purpose of this appendix section, variables and symbols in bold will be used
to denote vectors and matrices, and scalars are denoted otherwise without bold-faced symbols.

5.2 Bayesian Structural VAR with Heteroskedasticity-Based Identification

Following the reduced-form representation of the VAR model in Equation (4), the reduced-form
orthogonal structural representation of the VAR model under the heteroskedasticity-based iden-
tification strategy is:

ut = It ·
[
ΨϵH,t

]
+ (1 − It) ·

[
ΨϵL,t

]
,

ϵH,t ∼ N (0, ΩH), ϵL,t ∼ N (0, ΩL),
(5)

22Michele Piffer provided this sampler for the heteroskedasticity-based identification strategy.
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where It is an indicator variable denoting the type of regime, with It = 1 for the high-volatility
regime (H) and It = 0 for the low-volatility regime (L). In our application, the high-volatility
regime corresponds to the dates in data sample where there are news releases concerning inflation.
Yt is a 4× 1 vector of 4 endogenous variables. Ψ is a 4× 4 structural impact matrix. The coefficient
matrix Φℓ has dimension 4× 4. The residuals ut = It ·

[
ΨϵH,t

]
+ (1− It) ·

[
ΨϵL,t

]
follow a normal

distribution, ut ∼ N(0, Σt), with:

Σt = It · ΣH + (1 − It) · ΣL, (6)

ΣH = ΨΩHΨ′, (7)

ΣL = ΨΩLΨ′, (8)

where Σt, ΣL, and ΣH are 4 × 4 covariance matrices. The structural shocks ϵL,t and ϵH,t are 4 × 1
vectors, with ΩL and ΩH as their corresponding 4 × 4 covariance matrices.

5.2.1 Prior Specification

The prior for the coefficients [c, Φ1, Φ2, Φ3] is a multivariate normal distribution:

vec([c, Φ1, Φ2, Φ3]) ∼ N (µprior, Vprior), (9)

where vec(·) represents the vectorisation of a matrix. We use uninformative priors imposing
µprior = 052×1 and V−1

prior = 052×52 and let the data inform the posterior distribution entirely. The
prior for the structural shock covariance matrices ΩL and ΩH is an inverse-Wishart distribution
given by:

Ωj ∼ IW(S, d), j ∈ {L, H}, (10)

where S is the prior scale matrix, and d is the degrees of freedom equal to 6. We impose S = 04×4

as an uninformative prior and let the data inform the posterior scale matrix entirely, where the
posterior scale matrix is positive definite.

5.2.2 Posterior Conditional Distributions

Given the prior specification, the posterior distribution of [c, Φ1, Φ2, Φ3] is a multivariate normal
distribution:

vec([c, Φ1, Φ2, Φ3]) | Y, X, Σt ∼ N (µposterior, Vposterior), (11)
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where its posterior mean µposterior and variances Vposterior are defined and updated according to:

Vposterior =
[
V−1

prior + ∑
j

XjX′
j ⊗ Σ−1

j

]−1
, (12)

µposterior = Vposterior

[
V−1

priorµprior + ∑
j
(Xj ⊗ Σ−1

j )ỹj

]
. (13)

Yj = [Y1, ..., Yt, ..., YTj ] is a 4 × Tj matrix of endogenous variables in regime j, where each column
corresponds to Yt for observations belonging to regime j, and Xj = [X1, ..., Xt, ..., XTj ] is a 13 × Tj

matrix of regressors in regime j, where Xt = [1, Yt−1, Yt−2, Yt−3]
′, with Tj representing the number

of observations in regime j and j ∈ {L, H}. The notations Y and X in Equation (11) are therefore
to be interpreted as the collection of Yj and Xj, for j ∈ {L, H} such that they recover the raw data
sample. The vector ỹj = vec(Yj) is the column-stacked version of Yj, with dimension 4Tj × 1. The
notation ⊗ refers to the Kronecker product operator.

The posterior distribution of Σj for j ∈ {L, H} is an inverse-Wishart distribution. Given the
residuals u and a draw of [ĉ, Φ̂1, Φ̂2, Φ̂3] from the posterior distribution of [c, Φ1, Φ2, Φ3], the
posterior is Σj ∼ IW(S∗

j , d∗j ), where:

S∗
j = S + (Yj − ĉ −

3

∑
ℓ=1

ΦℓYt−ℓ)(Yj − ĉ −
3

∑
ℓ=1

ΦℓYt−ℓ)
′, (14)

d∗j = d + Tj, (15)

with Tj representing the number of observations in regime j.
For inference of the inflation shock, we implement a eigenvalue decomposition Σ−1

L ΣH =

QΛQ−1, where Q is a 4 × 4 matrix contains the eigenvectors and Λ is a 4 × 4 diagonal matrix
of eigenvalues. The inflation shock corresponds to the eigenvector associated with the largest
eigenvalue. We simulate the posterior distribution via MCMC using 1,500,000 draws from the
Gibbs sampler, with the first 500,000 draws discarded as burn-in. The remaining chain is thinned
by a factor of 100, leaving 10,000 draws for inference. The results are subsequently presented
based on the median of these retained draws.

5.3 Bayesian Structural VAR with Granular Instrument Variables

5.3.1 Shock Identification

In this section, we provide further details on the Bayesian implementation of our SVAR using
granular instruments as proxies for the underlying demand and supply shocks. We use a modified
version of the sampler from Bahaj (2020).

To start, it is useful to first clarify the identification of these shocks and we proceed in a two-

26



step procedure. Recall that the relevance assumption requires:

E(GIVf ,tε f ,t) ̸= 0 and E(GIVb,tεb,t) ̸= 0 and E(GIVh,tεh,t) ̸= 0, (16)

where ε f ,t, εh,t and εb,t are the demand and supply shocks from pension funds, hedge funds and
dealer banks respectively, with {GIVx,t}x= f ,h,b representing their respective granular instruments
constructed from the estimated interactive fixed effects factor panel as discussed in the main text.
A straightforward representation of the relevance assumption is the imposition that the granular
instruments measure the true, unobserved demand and supply shocks with some noise. Such a
measurement equation is given by:

GIVx,t = υxεx,t + ιx,t, (17)

where υx is an unknown scale parameter and ιx,t is assumed to be a measurement disturbance
that is orthogonal to the demand and supply shocks. Using matrix notation, we define M =

[GIVf, GIVh, GIVb] as the T × 3 matrix of granular instruments for the reduced-form residual U
(of dimension T × 4), which vertically stacks the residual vectors u′

t, each of dimension 1× 4, that
we can estimate by least squares, and T denotes the number of total observations in the VAR used
for estimation.

Let A be defined such that it is a 4× 3 submatrix of Ψ−1 from the VAR specification containing
the three columns from the left that identify these demand and supply shocks in sequence (hence
ordering the inflation shock last). The structural-form VAR can be represented by:

UA = ε, ε = [ε f , εh, εb]. (18)

Substituting this structural-form representation into the identification equation above yields
the first stage regression that can be estimated by least squares:

M = UΥ + V, (19)

where Υ = Aθ identifies the demand and supply shocks up to a scaling matrix θ = diag{υ f , υh, υb}
that is diagonal, and V stacks the measurement errors such that its variance-covariance matrix is
given by ΣV . Equation (19) is the first-stage regression that identifies the demand and supply
shocks, given the validity and relevance of the granular instruments M.

Once the demand and supply shocks are fully identified from this first stage, we use them to
identify the residual shock remaining from a ”second-stage” regression that has the interpretation
of a inflation shock within the VAR framework. In particular, let aπ be a column vector that
identifies the inflation shock i.e., Uaπ = επ. This vector can be identified by using the demand
and supply shocks as instruments to project the first three reduced-form residuals on the fourth,
and the residual from this least squares regression will be the estimated inflation shock.
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5.3.2 Prior Specification

We denote Y as the T × 4 matrix of dependent variables, which vertically stacks the row vectors Y′
t

(of dimension 1 × 4). Similarly, we denote X as the T × 13 matrix of explanatory variables, which
vertically stacks the row vectors X′

t (of dimension 1 × 13), containing lags of Y and deterministic
terms. The deterministic components Xdet and endogenous variables Xendo can be partitioned as:

X = [Xdet, Xendo]. (20)

In a model with only a deterministic constant, Xdet is a T × 1 vector and Xendo is a T × 12 matrix
representing the endogenous variables. The reduced-form and identification parameters associ-
ated with the OLS estimate of model are given by:

γ = (X′
detXdet)

−1X′
detY , (21)

β = (X′
endoXendo)

−1X′
endoY , (22)

U = Y − Xdetγ − Xendoβ , (23)

Σ =
U′U

T − k + 1
, (24)

Υ = (U′U)−1U′M , (25)

V = M − UΥ , (26)

ΣV =
V′V
T − k

, (27)

where Equation (21) are estimates for the coefficients associated with the deterministic terms,
corresponding to the previously defined c′, Equation (22) are the estimates for the slope co-
efficients corresponding to the endogenous variables, corresponding to the previously defined
[Φ′

1, Φ′
2, Φ′

3]
′, Equation (23) are the residuals from the reduced-form VAR model, Equation (24)

defines the variance-covariance matrix of the residuals, Equation (25) are the identification pa-
rameters obtained from the set of external (granular) instruments represented by the T × 3 matrix
M, and Equation (26) states its corresponding identification errors (i.e., the residual). Finally,
Equation (27) is the 3 × 3 variance-covariance matrix associated with the identification errors,
where 4 is the number of endogenous variables in the VAR.

We assume that prior distributions of the slope parameters {γ, β, Υ} are Gaussian and those
of the variance-covariance matrices {Σ, ΣV} to be an inverse-Wishart with degrees of freedom
equal to ν̄ = 7. In our implementation of the Gibbs sampler, we initialise the priors at their OLS
estimates.
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5.3.3 Posterior distributions, Model Estimation and Sampling

To economize on notation, we introduce set notation by defining the parameter space of the model
Θ, the set of data used in the VAR model data Y and the external instruments as M:

Θ = {β, γ, Σ, Υ, Σv} , (28)

Y = {Y, X} , (29)

M = {M} . (30)

Using Bayes rule, the joint likelihood function is given by:

p(M, Y | Θ) = p(M | Y, Θ)p(Y | Θ) , (31)

The posterior distribution of parameters is proportional to the product of the likelihood and the
prior:

p(Θ | M, Y) ∝ p(M, Y | Θ)p(Θ) . (32)

The VAR data and the granular instruments are jointly Gaussian, given by: vec(Y)

vec(M)

 ∣∣∣∣∣Θ ∼ N

(IT ⊗ Xendo)β + (IT ⊗ Xdet)γ

0

 ,

Φ11 Φ12

Φ21 Φ22

 , (33)

where vec(·) represents the vectorisation of a matrix, with dimensions of vec(Y) and vec(I) given
by 4T × 1 and 3T × 1 respectively, and IT represents the T × T identity matrix. The covariance
block matrices are defined as:

Φ11 = Σ ⊗ IT , (34)

Φ22 = Υ′ΣΥ ⊗ IT + ΣV ⊗ IT , (35)

Φ12 = Φ21 = Σ′Υ ⊗ IT . (36)

Having defined these objects, the posterior distribution of the VAR slope coefficients β is given
by:

p(β | Y, M, Θ \ β) ∝ N (D−1d, D−1), (37)

where the posterior mean and variances of β are defined, respectively, as:

D = (IT ⊗ Xendo)
′(Φ11 − Φ12Φ−1

22 Φ21
)−1

(IT ⊗ Xendo) , (38)

d = (IT ⊗ Xendo)
′(Φ11 − Φ12Φ−1

22 Φ21
)−1

[
vec(Y)− (IT ⊗ Xdet)γ − Φ12Φ−1

22 vec(M)
]

. (39)

Taking the covariance block matrices as given from Equation (34) to Equation (36), and taking the
parameter γ as given all from the previous draw from the Gibbs sampler, Equations (38) and (39)
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provide an update to the posterior distribution of β given the data {Y, M}, for which the values
of β can be updated by drawing from the posterior distribution in Equation (37).

Turning now to the deterministic coefficients γ, the posterior distribution is expressed as:

p(γ | Y, M, Θ \ β) ∼ N (F−1f, F−1), (40)

where the posterior mean and variances of γ are defined as:

F = (IT ⊗ Xdet)
′(Φ11 − Φ12Φ−1

22 Φ21
)−1

(IT ⊗ Xdet) , (41)

f = (IT ⊗ Xdet)
′
(

Φ11 − Φ12Φ−1
22 Φ21

)−1 [
vec(Y)− (IT ⊗ Xendo)β − Φ12Φ−1

22 vec(M)
]

. (42)

Thus, taking the covariance block matrices as given from Equation (34) to Equation (36), and
taking the parameter β as given from the previous draw from the Gibbs sampler, Equations (41)
and (42) provide an update to the posterior distribution of γ given the data {Y, M}, for which the
values of γ can be updated by drawing from the posterior distribution in Equation (40).

For the covariance matrix Σ, its posterior distribution is given by:

p(Σ | Y, Θ \ Σ) ∼ IW(U′U, T + v̄) (43)

where U = Y − Xendoβ − Xdetγ and v̄ = 7. Thus, the matrix of residuals given the updated draws
of β and γ are used to update the posterior distribution of Σ, for which an update to the value of
Σ is obtained by drawing from the distribution in Equation (43).

Next, we turn to the posterior distribution of the identification parameters Υ. This is given by:

p(Υ | Y, M, Θ \ Υ) ∼ N (J−1j, J−1), (44)

where the posterior mean and variances of Υ are defined as:

J = Σ−1
V ⊗ U′U (45)

j = (Σ−1
V ⊗ U′) vec(M) (46)

Hence, given the update of U and the variance-covariance of the identification errors ΣV , the
posterior distribution of Υ is updated by the data M. An update to Υ can thus be obtained by
drawing from the posterior distribution in Equation (44).

Finally, the posterior of the instrument variance-covariance matrix ΣV is given by:

p(ΣV | M, Θ) ∼ IW(V′V, T), (47)

where V is the instrument residual matrix V = M − UΥ. The update of Υ from Equation (44)
implies that the posterior distribution of ΣV can be updated in the presence of data U and the
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granular instruments M.
For the baseline specification, the posterior distribution is simulated using 1,500,000 draws

from the MCMC sampler; the first 500,000 are discarded as burn-in, and the remaining chain is
thinned by a factor of 100, leaving 10,000 draws for inference. Results are presented as the median
of the 10,000 retained draws, and credible intervals are computed using standard Bayesian Monte
Carlo methods. This process ensures that the convergence diagnostics on the parameters in the
set Θ are passed. For robustness checks or extensions, a shorter chain of 500,000 draws is used,
where the first 400,000 are discarded as burn-in, and the remaining draws are thinned by a factor
of 10, leaving 10,000 draws for inference.

5.4 Bayesian Structural VAR with Sign and Zero Restrictions

In this section, we turn to our last identification strategy that implements a Bayesian structural
VAR with sign and zero restrictions. We follow the algorithm of Arias et al. (2018) to indepen-
dently draw from a family of conjugate posterior distributions over the structural parameterisa-
tion conditional on the sign and zero restrictions. In particular, the algorithm that we implement
independently draws from the normal-inverse-Wishart distribution over the orthogonal reduced-
form, and accepting the draws only when the sign and zero restrictions hold. We only provide a
sketch of the main steps, emphasising the restrictions we impose and numerical details from the
sampler, and invite readers to follow Arias et al. (2018) for further details about the algorithm.

We consider a structural vector autoregression model represented by:

Y′
tA0 = X′

tA+ + ε′t, εt ∼ N (0, In), (48)

where εt is an 4 × 1 vector of latent structural shocks, and A0 (of dimensions 4 × 4) and A+ (of
dimensions 13 × 4) are the structural-form parameters that identify these structural shocks. We
assume the condition that A0 is invertible. Conditional on the data Xt, the structural shocks are
also assumed to be Gaussian with mean zero and covariance matrix In, the n × n identity matrix.
The orthogonal reduced-form representation of the VAR is therefore given by:

Y′
t = X′

tB + u′
t, ut ∼ N (0, Σ), (49)

where B = [c′, Φ′
1, Φ′

2, Φ′
3]
′ = A+A−1

0 , u′
t = ε′tA

−1
0 , and E[utu′

t] = Σ = (A0A′
0)

−1. The matrices
{B, Σ} are the reduced-form parameters, while {A0, A+} are the structural-form parameters.

5.4.1 Prior and Posterior Distributions

For Bayesian inference we adopt a normal–inverse Wishart prior. In particular, we assume that
the prior distribution of Σ follows:

Σ ∼ IW(Φ̄, ν), (50)
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and, conditional on Σ, the prior distribution for B is specified as:

vec(B) | Σ ∼ N
(

vec(Ψ̄), Σ ⊗ Ω̄
)

. (51)

We impose diffuse priors by setting ν̄ = 0, Ω̄
−1

= 013×13, Ψ̄ = 013×4, Φ̄ = 04×4, where m and n
conforms to the dimensions of the VAR, and let the data inform the posterior distribution entirely.
Given VAR data {Y, X}, where Y = [Y1, ..., YT]

′ and X = [X1, ..., XT]
′ and the priors from Equations

(50) to Equation (51), the posterior update to the normal-inverse Wishart distribution follows:

ν̃ = T + ν̄, (52)

Ω̃ =
(
X′X + Ω̄

−1)−1, (53)

Ψ̃ = Ω̃
(
X′Y + Ω̄

−1
Ψ̄
)
, (54)

Φ̃ = Y′Y + Φ̄ + Ψ̄
′
Ω̄

−1
Ψ̄ − Ψ̃

′
Ω̃

−1
Ψ̃, (55)

after which we draw the reduced-form parameters {B, Σ} independently from the posterior dis-
tributions:

Σ | Y, X ∼ IW(Φ̃, ν̃) , (56)

vec(B) | Σ, Y, X ∼ N
(
vec(Ψ̃), Σ ⊗ Ω̃

)
. (57)

5.4.2 Identification via Sign and Zero Restrictions

The structural identification is achieved by imposing restrictions on the contemporaneous im-
pulse responses derived from the structural representation in Equation (48). We follow Theorem
4 of Arias et al. (2018) in drawing random, orthogonal matrices Q of dimension 4 × 4 from the
uniform distribution over O(4), and given a Cholesky decomposition of Σ such that Σ = P P′, we
can obtain a rotation of this decomposition such that it is a candidate draw of the impact response
matrix of the structural shocks:

A−1
0 = P Q, (58)

and the corresponding impulse response functions at horizon h are given by:

Lh = A−1
0 Φh = P Q Φh. (59)

In our application, we impose the sign and zero restrictions on the contemporaneous impulse
response functions L0, restricting the effects of the structural shocks on impact. These restrictions
are the following:
Hedge fund demand shock: we impose the sign restriction that a positive demand shock from
hedge funds in the short-maturity swap market increase both the net purchases of swaps traded
against dealer banks in this market and the short-term inflation swap rate, whilst having zero
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effects on the corresponding net purchases of swaps and its associated swap rate in the long-
maturity swap market. These restrictions are represented by the following sign (S) and zero (Z)
restriction matrices:

S1 =

1 0 0 0

0 1 0 0

 , Z1 =

0 0 1 0

0 0 0 1

 . (60)

Pension fund demand shock: we impose the sign restriction that a positive demand shock from
pension funds in the long-maturity swap market increase both the net purchases of swaps traded
against dealer banks in this market and the long-term inflation swap rate, whilst having zero
effects on the corresponding net purchases of swaps and its associated swap rate in the short-
maturity swap market. These restrictions are represented by the following sign and zero restric-
tion matrices:

S2 =

0 0 1 0

0 0 0 1

 , Z2 =

1 0 0 0

0 1 0 0

 . (61)

Dealer bank supply shock: we impose the sign restriction that a supply shock from dealer banks
decreases the net purchases of swaps traded against hedge funds in the short-maturity swap mar-
ket and those traded against pension funds in the long-maturity swap market, leading to an in-
crease in inflation swap rates in both markets. That is, we rely on sign restrictions entirely to
identify the supply shock and do not impose zero restrictions.

S3 =


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 . (62)

Inflation shock: we impose the sign restriction that a inflation shock resembles a supply shock in
the long-maturity swap market and a demand shock in the short-maturity swap market. Thus,
this imposes sign restrictions such that the shock increases both the net purchases and associ-
ated inflation swap rate in the short-maturity market, whilst decreasing net purchases in the long-
maturity swap market. The sign restrictions we impose are (note that the last restriction on long-
maturity swap rate is redundant):

S4 =


1 0 0 0

0 1 0 0

0 0 −1 0

 . (63)
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5.4.3 Implementation of Restrictions and Inference

We proceed with estimation by drawing the reduced-form parameters from the joint posterior
p(B, Σ | Y, X) as described in Section 5.4.1, and keeping the draws only if their transformed
structural-form parameterisations satisfy the sign and zero restrictions that we impose in Section
5.4.2. For each draw i, the reduced-form covariance matrix Σ(i) (a 4 × 4 matrix) is decomposed as

Σ(i) = P(i) (P(i))′, (64)

with P(i) ∈ R4×4. An auxiliary variable w is constructed such that its elements are drawn from
the uniform distribution on the unit sphere and are subsequently used to construct an orthogonal
matrix:

Q(i) ∈ R4×4, Q(i)(Q(i))′ = I4. (65)

The transformation from the reduced-form parameters (without any restrictions imposed) to the
structural parameters is achieved via the mapping:

θ(i) =

vec
(
A(i)

0
)

vec
(
A(i)

+

)
 = f−1

h

(
vec

(
B(i)), vec

(
Σ(i)), w

)
. (66)

This mapping constructs the structural matrices A0 and A+ so that

B(i) =
(
A(i)

0
)−1 A(i)

+ and Σ(i) =
(
A(i)

0
)−1

((
A(i)

0
)−1

)′
. (67)

In particular, we have (
A(i)

0
)−1

= P(i) Q(i), (68)

and given the impulse response multipliers {Φh}h≥0, the impulse responses are computed as

L(i)
h =

(
A(i)

0
)−1

Φh, (69)

with the contemporaneous impulse response given by L(i)
0 =

(
A(i)

0
)−1 since Φ0 = I4. The sign

and zero restrictions on L(i)
0 are then imposed by requiring that the following conditions hold for

the accepted draws:
For hedge fund demand shock:

S1 l(i)1 =

ℓ
(i)
11

ℓ
(i)
21

 ≥ 0, and Z1 l(i)1 =

ℓ
(i)
31

ℓ
(i)
41

 =

0

0

 . (70)
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For pension fund demand shock:

S2 l(i)2 =

ℓ
(i)
32

ℓ
(i)
42

 ≥ 0, and Z2 l(i)2 =

ℓ
(i)
12

ℓ
(i)
22

 =

0

0

 . (71)

For dealer supply shock:

S3 l(i)3 =


−ℓ

(i)
13

ℓ
(i)
23

−ℓ
(i)
33

ℓ
(i)
43

 ≥ 0. (72)

For the inflation shock:

S4 l(i)4 =


ℓ
(i)
14

ℓ
(i)
24

−ℓ
(i)
34

 ≥ 0. (73)

In these, l(i)1 , l(i)2 , l(i)3 , and l(i)4 denote the first, second, third, and fourth columns of L(i)
0 , respec-

tively.
A draw i is accepted if and only if all imposed sign and zero restrictions are satisfied. For each

accepted draw, an importance sampling weight is computed to adjust for both the transformation
from unconstrained reduced-form parameters to the structural parameters and the reduction in
the admissible parameter space due to zero restrictions, such that inference is not dominated by
only a few draws. Specifically, the mapping

f−1
h :

(
vec

(
B(i)), vec

(
Σ(i)), w

)
7→ θ(i) (74)

transforms the unconstrained parameters into the structural parameter vector θ(i), which encap-
sulates both the contemporaneous structural impact matrix A0 and the lag coefficient matrices
A+. As this mapping is one-to-one, it introduces a Jacobian factor fh

(
θ(i)

)
that corrects the density

during the transformation. Furthermore, the imposition of zero restrictions reduces the effective
volume of the parameter space. This reduction is quantified by a volume element:

g
(

fh
(
θ(i)

)
| Z

)
, (75)

which depends explicitly on the zero restriction matrices Z1 and Z2. Consequently, the importance
sampling weight for the ith accepted draw is given by

ω(i) ∝ exp
{

log fh
(
θ(i)

)
− log g

(
fh
(
θ(i)

)
| Z

)}
. (76)
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The effective sample size is thus given by:

(
∑N∗

i=1 ω(i))2

∑N∗
i=1(ω

(i))2
, (77)

where N∗ is the total number of draws that satisfies the sign and zero restrictions.
For inference, we implement 10 million iterations from the importance sampler (correspond-

ing to Algorithm 3 in Arias et al. (2018)), of which a total of 35,160 draws satisfy the sign and
zero restrictions imposed. Given the importance sampling weights associated with each accepted
draw, the effective sample size according to Equation (77) is 9,955. This corresponds to an effective
sample size as a share of total draws satisfying the sign and zero restrictions equal to 0.28. Our
baseline results for inference use the median of these 9,955 effective draws from the importance
sampler along with its 68% and 90% credible intervals.
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6 Additional empirical results

This section includes additional empirical results.

6.1 Testing the desk separation assumption directly

Under the desk separation assumption, a demand shock that emerges from one market should
not have a bearing on dealers’ supply of inflation swaps in another market, at least at a daily fre-
quency. We test this assumption by running seemingly unrelated regressions of qb,i,t/ab,i,t on εh,t

and Qb,i,t/qb,i,t on ε f ,t, using the structural demand shocks εh,t and ε f ,t identified using a granular
instrument.

Figure 9 shows that the pooled coefficient estimate is close to zero, closely aligned with the
fact that individual estimates obtained from the trading activities of each dealer bank are also
extremely small.

Figure 9 TEST OF THE DESK SEPARATION ASSUMPTION

(a) The short maturity market (b) The long maturity market

NOTE: The thick blue and yellow lines are pooled coefficient estimates for dealers’ trading responses against hedge fund and pension
fund demand shocks respectively, where these frictional shocks are the median estimates obtained from the using the GIV identification
strategy. The dashed lines are their 95% credible sets where standard errors clustered at the institutional-level (where each is identified by
a legal entity identifier). Sample goes from January 2019 to February 2023. SOURCE: DTCC Trade Repository and authors’ calculations.

6.2 Movements around large shocks

Figure 10 presents the complete set of forecast error decompositions for the two episodes dis-
cussed in the main text with large changes in expected inflation for all four series in the VAR.
These decompositions are the cumulative contributions of the inflation shock and demand and
supply shocks (i.e., aggregating across dealer supply shocks, pension fund and hedge fund de-
mand shocks) to the forecast error of both prices and quantities in each market, given an initial
starting date. The left column decomposes each series’ forecast error from just before the start
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of the Covid pandemic from February 2020, while the right column provides this decomposition
since the start of the Ukraine War from February 2022.

Turning to the LDI episode, figure 11 repeats the comparison with bid0ask spreads for this
episode and shows that the pattern of dealer supply shocks we see closely matches the evolu-
tion of bid-ask spreads in the swap market. These bid-ask spreads in the swap market also only
started widening after the immediate phase of the selling had become apparent and issues with
counterparty risk became salient.

6.3 Adding MPC dates

In our main analysis our heteroskedasticity-based identification strategy relied on inflation data
releases and a policy announcement that influenced energy prices. This left us with 51 events in
total. Monetary policy announcements constitute another set of dates that may convey the central
bank’s assessment of inflation, leading to first order changes in the variance of our data. Hence, in
this section we extend the set of dates to include the 33 monetary policy announcements between
January 2019 and February 2023. Figure 12 below presents a comparison to the impulse response
to a inflation shock with and without the inclusion of monetary policy meeting dates. There are
negligible differences.

6.4 Estimated impulse responses to frictional shocks

Figure 13 shows the estimated dynamic responses to the demand and supply shocks with sign
restrictions. Given the sign restrictions, these conform with the standard responses one would
expect from shocks to supply and demand.

6.5 Impulse response functions including insurance companies

We now report the estimated impulse responses when insurance companies quantities are added
to the pension fund sector.

The responses to the demand and supply shocks under our first identification strategy — sign
restrictions using the high-frequency data — are reported in Figure 14. Comparing these estimates
to Figure 13, we see that the results from the main text are preserved even when adding the
variation that originates from insurance companies. The responses to the inflation shocks are
reported in Figure 15. Comparing them with the baseline results in the main text, again we find
that the results are very similar whether insurance companies are included or not.
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6.6 Responsiveness of trading positions to inflation shock in the long-maturity

market

The paper showed how trade by dealers in the short-maturity market segments was sensitive to
instittuion-level expected inflation. Using the same 3SLS regression of institutional-level trading
activity. Figure 16 shows coefficients estimated for the activity of both dealers and pension funds
on the long-maturity market segment. It shows three alternatives, corresponding to the thee iden-
tification strategies for the inflation shocks. The bold blue line represents the pooled coefficient
estimate, along with the 95% confidence interval, obtained by clustering standard errors at the
institutional level.
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Figure 10 FULL FORECAST ERROR DECOMPOSITIONS AROUND THE TWO EPISODES

Decomposition of long-maturity inflation swap breakeven rates
(a) Covid-19 period (b) Ukraine Invasion

Decomposition of long-maturity net purchases (Cumulated)
(c) Covid-19 period (d) Ukraine Invasion

Decomposition of short-maturity inflation swap breakeven rates
(e) Covid-19 period (f) Ukraine Invasion

Decomposition of short-maturity net purchases (Cumulated)
(g) Covid-19 period (h) Ukraine Invasion

NOTE: This figure shows the forecast error decompositions of prices and quantities across both segments of the market for the two key
episodes described in the main text: Covid-19 period (beginning early 2020) and the Ukraine invasion (early February 2022). Shaded area
plots measure the %pp (USD billions) contribution to prices (quantities) by the median demand, supply and inflation shocks identified
using the sign restrictions strategy. ”Actual” refers to the associated price or quantity measure, without the estimated deterministic
components, and therefore precisely equal to the vertical sum of the shaded plot areas.
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Figure 11 COMPARISON BETWEEN DEALER SUPPLY SHOCKS AND MARKET BID-ASK SPREADS –
AUTUMN 2022

NOTE: This figure compares the bid-ask spreads quoted on a 1-year zero-coupon UK RPI swap (right scale), and the cumulative contribu-
tion to the short-maturity inflation swap rate by the dealer supply shock estimated using the sign restrictions identification strategy (left
scale). Dealers’ supply shocks are obtained as a median of the draws from the importance sampler. Data on UK RPI swap bid-ask spreads
are available from Bloomberg at a daily-frequency. SOURCE: Bloomberg and authors’ calculations.
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Figure 12 IMPULSE RESPONSE FUNCTIONS TO AN INFLATION SHOCK:
ESTIMATES FROM A HETEROSKEDASTICITY-BASED IDENTIFICATION STRATEGY

(a) Without MPC announcement dates

(b) Adding MPC announcement dates

NOTE: Impulse response functions to a inflation shock scaled to raise quantities in the short market (i.e. purchases of inflation protection
by hedge funds) by $1bn. Panel (a) presents the estimates with the set of 51 dates that coincide with the benchmark results from the main
text in Figure 10. Panel (b) additionally includes the 33 monetary policy announcement dates i.e., a total of 84 dates to define the high
covariance sample in the data. The bold line indicates the median of the draws from the sampler and shaded bands are its 68% and 90%
credible intervals.
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Figure 13 ESTIMATED IMPULSE RESPONSE FUNCTIONS TO DEMAND & SUPPLY SHOCKS

(a) Dealer supply shock (εb,t)

(b) Pension fund demand shock (ε f ,t)

(c) Hedge fund demand shock (εh,t)

NOTE: Panel (a) presents impulse response functions to a dealer supply shock scaled to lower quantities in the short market (i.e. purchases
of inflation protection by hedge funds) by $1bn. Panel (b) presents impulse response functions to a pension fund demand shock scaled to
raise quantities in the long market (i.e. purchases of inflation protection by pension funds) by $1bn. Panel (c) presents impulse response
functions to a hedge fund demand shock scaled to raise quantities in the short market by $1bn. Across all panels, these demand and
supply shocks are identified using the sign restrictions identification strategy. The posterior is simulated using 10 million draws using
the sampler of Arias, Rubio-Ramı́rez, and Waggoner (2018) that selects 9,955 importance sampling draws for inference. The bold line
indicates the median of the draws from the sampler and shaded bands are its 68% and 90% credible intervals.

43



Figure 14 ESTIMATED IMPULSE RESPONSE FUNCTIONS TO DEMAND & SUPPLY SHOCKS:
ADDING INSURERS IN THE LONG MARKET

(a) Dealer supply shock (εb,t)

(b) Pension fund demand shock (ε f ,t)

(c) Hedge fund demand shock (εh,t)

NOTE: Panel (a) presents impulse response functions to a dealer supply shock scaled to lower quantities in the short market (i.e. purchases
of inflation protection by hedge funds) by $1bn. Panel (b) presents impulse response functions to a pension fund demand shock scaled to
raise quantities in the long market (i.e. purchases of inflation protection by pension funds) by $1bn. Panel (c) presents impulse response
functions to a hedge fund demand shock scaled to raise quantities in the short market by $1bn. Across all panels, these demand and
supply shocks are identified using the sign restrictions identification strategy. The posterior is simulated using 10 million draws using
the sampler of Arias, Rubio-Ramı́rez, and Waggoner (2018) that selects 14,922 importance sampling draws for inference. The bold line
indicates the median of the draws from the sampler and shaded bands are its 68% and 90% credible intervals.
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Figure 15 IMPULSE RESPONSE FUNCTIONS TO AN INFLATION SHOCK:
ESTIMATES FROM THE SIGN RESTRICTIONS IDENTIFICATION STRATEGY

(a) Baseline result

(b) Adding insurers

NOTE: Impulse response functions to a inflation shock scaled to raise quantities in the short market (i.e. purchases of inflation protection
by hedge funds) by $1bn. Panel (a) presents impulse response functions to an inflation shock estimated from the sign restrictions iden-
tification strategy without including insurers in the estimation data (which is the baseline result presented in the main text). Panel (a)
presents impulse response functions to an inflation shock estimated from the sign restrictions identification strategy that includes insurers
in the estimation data. Across all panels, we present the median of the draws from the sampler along with 68% and 90% Bayesian credible
intervals.
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Figure 16 ESTIMATES OF βi FOR INDIVIDUAL INSTITUTIONS

(a) Dealer banks (ST market) (b) Hedge funds

(c) Dealer banks (LT market) (d) Pension funds

NOTE: Individual markers denote point estimates of βi across the three different strategies. Institutions ranked based on the sign restric-
tions strategy. The thick blue lines are pooled coefficient estimates estimated by three-stage least squares, using our identified inflation
shocks as an instrument for the change in the long-maturity inflation swap breakeven rates. The dashed blue lines are their 95% credible
sets, with standard errors clustered at the institutional-level (where each is identified by a legal entity identifier). For figures (d), the
respective responses of the highest and lowest ranking institutions are not plotted and their values are instead indicated on the figures as
shown. Sample goes from January 2019 to February 2023.
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