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Abstract

Moving from univariate to bivariate jointly dependent long memory time series intro-

duces a phase parameter (
), at the frequency of principal interest, zero; for short memory

series 
 = 0 automatically. The latter case has also been stressed under long memory,

along with the "fractional di¤erencing" case 
 =(�2� �1)�=2; where �1; �2 are the memory

parameters of the two series. We develop time domain conditions under which these are

and are not relevant, and relate the consequent properties of cross-autocovariances to ones

of the (possibly bilateral) moving average representation which, with martingale di¤erence

innovations of arbitrary dimension, is used in asymptotic theory for local Whittle parameter

estimates depending on a single smoothing number. Incorporating also a regression pa-

rameter (�) which, when non-zero, indicates cointegration, the consistency proof of these

implicitly-de�ned estimates is nonstandard due to the � estimate converging faster than the

others. We also establish joint asymptotic normality of the estimates, and indicate how

this outcome can apply in statistical inference on several questions of interest. Issues of

implemention are discussed, along with implications of knowing � and of correct or incorrect

speci�cation of 
; and possible extensions to higher-dimensional systems and nonstationary

series.
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1. Introduction

In the analysis of long memory time series, two major issues emerge in multivariate extension

of univariate results. One is the possibility of cointegration, whereby one or more linear

combinations of the (stationary or nonstationary) observables reduces memory. In general,

rules of large sample inference based on a no-cointegration assumption are invalidated by

cointegration, and vice versa. The literature on cointegration under long memory is dwarfed

by that under autoregressive (AR) unit roots, but has been developed in several directions

recently. Another distinctive multivariate feature, which has attracted very little attention,

is phase, essentially the argument in polar co-ordinate representation of the cross-spectrum.

This is a particularly interesting issue in a "semiparametric" setting, where the spectral

density matrix is modelled only near zero frequency. For a jointly covariance stationary

short memory process, this matrix is continuous at zero frequency: thus, since the quadrature

spectrum (the imaginary part of the cross-spectrum) is an odd function, it, and thus the

phase, are zero there. In long memory series, on the other hand, where spectra diverge at

zero frequency, the cross-spectrum is discontinuous there, and the phase need not be zero.

In the literature, essentially two values for the phase have been considered, albeit rather

implicitly, with little discussion of implications.

The present paper develops large sample statistical inference, in a possibly cointegrated

system, with unknown phase. The formal results focus on a bivariate system, extension of

our techniques for establishing asymptotic statistical theory to a system of arbitrary dimen-

sion being seemingly relatively straightforward, albeit introducing issues of speci�cation and

implementation, whose detailed treatment would be lengthy; we include a brief discussion.

We also focus on covariance stationary observable series. This becomes a theoretical possi-

bility when we switch from an AR unit root cointegration setting to a fractional one, and it
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has been of recent practical interest in �nancial time series analysis. We include, however,

a brief discussion of possible nonstationary extensions.

Consider a bivariate jointly covariance stationary process ut = (u1t; u2t)
0, having spectral

density matrix fu(�) that satis�es

fu(�) � � (�;�0)
�1
0 �� (�;�0)

�1 ; as �! 0; (1.1)

� (�;�) = diag
n
j�j�1 ; j�j�2 e�isign(�)


o
; � 2 (��; 0) [ (0; �]: (1.2)

Here, � = (
; �0)0 for � = (�1; �2)
0, where 
, �1 and �2 are real-valued, 
0 and �0 = (�01; �02)

0

in �0 = (
0; �
0
0)
0 are unknown, �0i 2 [0; 12); i = 1; 2; 
0 is an unknown 2� 2 positive de�nite

matrix, and the overbar indicates complex conjugation; the notation "�" in (1.1) means

that for each element, the ratio of real/imaginary parts of the left and right sides tend to 1

(taking 0=0 = 1).

From (1.1), uit is said to have memory (parameter) �0i, its spectral density fi(�) satisfying

fi(�) � !ii j�j�2�0i ; as �! 0; i = 1; 2;

where !ij is the (i; j)th element of 
:We deduce also that u1t; u2t have cross-spectrum f12(�)

(the top right element of fu(�)) satisfying

f12(�) � !12 j�j��0 e�isign(�)
0 ; as �! 0; (1.3)

where �0 = �02 + �01: Then (see e.g. [4, p.302], [12, p.48]) 
0 is the phase between u1t; u2t

at � = 0. There is no loss of generality in the restriction 
0 2 (��; �]: Thus the local

approximation on the right of (1.3) is real-valued only if !12 = 0 and/or


0 = 0: (1.4)

To deduce another leading possibility, which applies to an extension of the fractional
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ARMA class, a general model for fu(�) is

fu(�) = � (�;�0)
�1 f�(�) �� (�;�0)

�1 ; � 2 (��; 0) [ (0; �]; (1.5)

where �(�;�) = diag
�
�(�)�1 ; �(�)�2e�isign(�)


	
; �(�) =

�
1� ei�

�
eisign(�)�=2 and f�(�) is

continuous and Hermitian positive de�nite at � = 0: Since �(�) � j�j as �! 0; (1.1) holds.

On the other hand, with �0 = �02 � �01;


0 =
�

2
�0 (1.6)

gives �(�;�0) = diagf(1 � ei�)�01, (1 � ei�)�02geisign(�)�01�=2, so since the scalar factor has

modulus one, ut fractionally integrates an I(0) process; if the latter is ARMA, ut is frac-

tional ARMA. (Note that (1.6) reduces to (1.4) when �01 = �02:) However the fractional

integration operator was originally motivated in a parametric framework [1], and in a semi-

parametric one there seems no overriding reason to �x 
0: More generally, (1:1) with


0 = (�02 � �01) c�=2 can be shown to result from generalising the fractional di¤erencing

�lter 1� ei� to
�
1� eij�j

1=csign(�)
�c
; c 6= 0:

We can investigate the time domain implications of general 
0. The proof of the following

theorem is left to Section 5.

Theorem 1 Denoting r12(j) = cov(u1j; u20), j 2 Z, assume �0 > 0 and, for (�+; ��) 6=

(0; 0);

bj = r12(j)� f�+1(j � 0) + ��1(j < 0)g jjj�0�1 (1.7)

satis�es

jbj � bj+1j � K jbjj =(jjj+ 1), bj = o
�
jjj�0�1

�
; as jjj ! 1; (1.8)

where K throughout denotes an arbitrarily large positive generic constant. Then (1.3) holds

with
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0 = arctan

��
�+ � ��
�+ + ��

�
tan

�

2
�0

�
; !12 = (�+ + ��)�(�0) cos(��0=2)=(2� cos 
0): (1.9)

In particular:

�� = 0 is equivalent to 
0 =
�

2
�0; !12 = �+�(�0)=(2�); (1.10)

�+ = 0 is equivalent to 
0 = �
�

2
�0; !12 = ���(�0)=(2�): (1.11)

Solving (1.9) gives �� = �!12 sin(��0=2 � 
0)=�(�0): In view of (1.7) and the second

part of (1.8), r12(j) dominates r12(�j) as j ! 1 in (1.10), and vice versa in (1.11), while

they decay at equal rates otherwise. The �rst part of (1.8) implies, with (1.7), an analogous

condition for r12(j), which is satis�ed by vector fractional ARMA processes. When �+ = ��

in (1.9), the power-law approximation is symmetric in j, and (1.4) results. On the other

hand (1.10) is a kind of weak causality (u2 ! u1) condition; it agrees with (1.6) only if

�01 = 0: In general, the Theorem indicates that any value of 
0 is a possibility.

For the bivariate series zt = (yt; xt)
0, observed for t = 1; :::; n, consider the system

B0zt = ut; t 2 Z; B0 =

0B@ 1 ��0

0 1

1CA ; (1.12)

with �0 unknown, so u1t is unobservable. When �01 � �02; �0 cannot be identi�ed (from the

spectral density matrix fz(�) of zt near � = 0) unless 
0 is suitably restricted, for example

!12 is known. When �01 6= �02, and �0 = 0; yt and xt have unequal memories �01; �02

respectively. When �01 < �02 and �0 6= 0; then both xt and yt have the same memory �02,

but the unobservable linear combination u1t = yt� �0xt has less memory, �01, and xt and yt

are said to be cointegrated. Both have a dominant common component with memory �02;

and so a dimensionality reduction is achievable:

fz(�) � (�0; 1)
0 (�0; 1)!22 j�j

�2�02 ; as �! 0: (1.13)
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The right side of (1.13) is singular, and the cointegrating error u1t has memory �01: Included

is the possibility that �01 = 0, when u1t has short memory. We focus on estimating �0 =

(�0; �
0
0)
0 under

0 � �01 < �02 <
1

2
; (1.14)

covering cointegrated systems (�0 6= 0), and, for �01 < �02; non-cointegrated ones (�0 = 0):

In [31] estimation of �0 in (1.12) was discussed with zt exhibiting quite general forms of

nonstationarity, and u1t being stationary or nonstationary. [27] pointed out that cointegra-

tion is possible even when zt is stationary with long memory, as might be true of certain

�nancial time series, say, and a number of references (e.g. [6], [23], [24]) have developed

theory and applications in this setting. Financial time series are often very long, motivating

reliance on only the "semiparametric", local, assumption (1.1). This justi�es methods with

only slow convergence rates, but a very large n compensates. Faster rates are available in

parametric models, for example when ut is a fractional ARMA process. However, if the

ARMA component is misspeci�ed, in that either the autoregressive (AR) or moving average

(MA) orders are under-speci�ed, or both are over-speci�ed, all parameters will be inconsis-

tently estimated. In [5] estimation of cointegrating subspaces in a semiparametric fractional

context was studied. A recent parametric reference is [19].

We consider a narrow-band or local Whittle estimate �̂ = (�̂; �̂0)0 = (�̂; 
̂; �̂1; �̂2)0 extend-

ing that for scalar long memory series of [20], whose asymptotic properties were developed by

[29], and further studied by and extended to nonstationary or non-cointegrated multivariate

systems by [18], [22], [26] ; [33] ; [34], [35] : [36]; [37] considered a version of it for cointegrated

systems but with nonstationary fractional observables, while [24] has alternative results in

the stationary case. We establish asymptotic properties of �̂. For estimates that are only

implicitly de�ned, a central limit theorem (CLT) is typically preceded by a consistency proof.
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This is more di¢ cult to establish than usual because �̂ converges faster than �̂. Consistency

is usually established by showing that, after suitable normalization, the objective function

converges uniformly in the parameter space to a limit which identi�es all parameters and can

thus be uniquely optimized. In multiparameter models this approach only works when all

parameter estimates converge at the same rate. Additionally, as encountered by [29] in local

Whittle estimation of the memory of a scalar series, our consistency result is insu¢ cient to

show that in the usual mean value theorem relations commencing the CLT proof, points on

line segments between �̂ and �0 can be replaced to negligible e¤ect by �0; a slow convergence

rate for �̂1; �̂2 is needed, and established using the stronger moment condition in any case

required for the CLT.

The following section describes �̂: Section 3 presents regularity conditions, a consistency

result and CLT, and a small simulation study of �nite-sample performance. Section 4

contains further discussion. Proofs are in Sections 5-8.

2. Local Whittle estimation

For a generic vectorwt de�ne the periodogrammatrix Iw(�) = n�1
�Pn

t=1wte
it�
� �Pn

t=1wte
�it��0 :

De�ne the Fourier frequencies �j = 2�j=n, for integer j. In connection with (1.2) we allow

some choice of "working model" for fu(�) near � = 0. Introduce

	(�;�) = diag
�
 (�)�1 ;  (�)�2e�isign(�)


	
; for a given complex-valued function  (�) such

that  (��) =  (�) and

 (�)� j�j = o(1) as �! 0: (2.1)

For example,  (�) = j�j or �(�). De�ning A(�; �) = 	(�;�)BIz(�)B
0 �	(�;�), where � =
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(�; �0)0 and B is de�ned like in (1.12) with �0 replaced by �, consider the objective function

Q(�;
) =
1

m

mP
j=1

�
log det

�
	(�j;�)

�1
�	(�j;�)
�1	+ tr

�
A(�j; �)


�1	� ;
for 
 2 S, the set of real positive de�nite 2� 2 matrices, and an integer m 2 [1; n=2] which

satis�es at least

1

m
+
m

n
! 0; as n!1: (2.2)

The real function Q is minimized over S by 
̂(�) = Re
n
m�1Pm

j=1A(�j; �)
o
; leading to

R(�) = Q
�
�; 
̂(�)

�
= log det

n

̂(�)

o
� 2 (�1 + �2)

1

m

mP
j=1

log j (�j)j :

Thus estimate �0 by �̂ = argmin�R(�); for a compact set� 2 R4 such that� = ����
���;

with ��; �
; �� chosen as follows. Take �� =
�
� : ��1 � �1 � �2 � �2 � 1

2
� �2 � �3

	
;

where the �i are arbitrarily small positive numbers satisfying 0 < �1 < min(�2; �3), �2+�3 <

1
2
; our consistency proof necessitates including a constraint corresponding to (1.14). We allow

some �1 < 0 because the CLT requires �0 to be interior to �, and we cover short memory,

�01 = 0. We choose �
 = [�4 � �=2; �=2� �4] for �4 2 (0; �3 � �1) , so 
0 2 �
 under (1.4)

and (1.6). We can take �� to be an arbitrarily large interval, possibly including f0g.

3. Asymptotic and �nite-sample properties

Existence of fu(�) implies that for p � 2 we can �nd a 2 � p matrix-valued function C(�)

such that C(��) = C(�) and

fu(�) = C(�) �C(�)0; � 2 (��; �]: (3.1)

The representation (3.1) is familiar in case p = 2, but it is then obviously available for p � 2.

Even when p = 2, C(�) is de�ned only up to post-multiplication by a unitary matrix, and
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when p > 2 the ambiguity is greater. From [12, p.61], existence of fu(�) is equivalent to ut

having representation

ut = Eut +
P
j2Z

Cj"t�j; t 2 Z;
P
j2Z
kCjk2 <1; (3.2)

where f"tg is a p�1 vector process such that E"t = 0, E"t"0t = Ip (the p�p identity matrix),

E"s"
0
t = 0, s 6= t, s; t 2 Z, Cj = (2�)�1

R �
�� C(�)e

�ij�d�; and k:k is Euclidean norm. We will

have to strengthen the conditions on "t for asymptotic theory, but �rst discuss two other

features of (3.2).

Moving average (MA) representations of long memory time series models have typically

been one-sided in particularCj = 0, all j < 0, in (3.2), implying ut is purely non-deterministic

(see e.g. [11]). (An exception is [8], which considers a parametric model.) With assumption

A2, and the stronger assumption B2 below for central limit theory, a one-sided representation

was assumed in [29] in asymptotic theory for local Whittle estimation of memory parameter

estimation, and subsequently by a number of authors in extensions of this work. On the

other hand, since the basic quantity modelled is the spectral density matrix, rather than the

process itself, there is no essential reason to impose one-sidedness. Indeed, going back to the

earlier literature one can �nd repeated examples of bilateral representations in time series

asymptotics (e.g. [2], [12], [25]). More recently, such representations have been employed

to model speci�c (non-Gaussian, short memory) phenomena (see e.g. [3], [21], as well as

examples in the electrical engineering literature, say). Our main motivation for allowing a

bilateral representation here is to indicate its ability to yield any phase under long memory.

Theorem 2 Let (3.2) hold with f"tg satisfying the conditions that follow it, and, denoting

the (k; `)th element of Cj by cjk`, let the

gjk` = cjk` �
�
�+k`1(j � 0) + ��k`1(j < 0)

	
jjj�0k�1
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satisfy

jgjk` � gj+1;k`j � K jgjk`j =(jjj+ 1); gjk` = o
�
jjj�0k�1

�
; as jjj ! 1;

for constants �+k`; ��k`; k = 1; 2 and ` = 1; :::; p. Then (1.7) and (1.8) of Theorem 1 hold

with

�+ = �0+1�+2B(1� �0; �02) + �0+1��2B (�01; �02) + �0�1��2B (1� �0; �01) ;

�� = �0+1�+2B (1� �0; �01) + �0�1�+2B (�02; �01) + �0�1��2B (1� �0; �02) ;

where �+`; ��` are p� 1 vectors with kth elements �+k`; ��k`, respectively.

Section 6 contains a proof sketch. When ��1 = ��2 = 0, so that ut is purely non-

deterministic, the relation �(x)�(1 � x) = �� csc(�z) and trigonometric addition formulae

may be shown to give (1.6), to extend the known results for fractional ARMA models. On

the other hand, [6], [22], [23], [24] consider purely non-deterministic long-memory vector

sequences with zero phases, (1.4), and we do not know of Cj satisfying this prescription.

However, the power-law decay of MA coe¢ cients is only a su¢ cient condition for power-law

spectral behaviour. When �+1 = �+2 = 0, so ut has a one-sided forward representation, then


0 = ��0�=2; the negative of (1.6), and the theorem indicates that for bilateral models 
0

can take any value, which depends on the �+`; ��` as well as the �0i.

Another di¤erence from the earlier references where MA representations are used in as-

ymptotic theory for local Whittle estimates is in the allowance for rectangular, not necessarily

square, Cj in (3.2), and thus ut generated by shocks of higher dimension than the bivariate

observable. Note that the equivalence property mentioned when introducing (3.2) is lost

when "t satis�es stronger assumptions, as in Assumption A2 below, but some generality can

be recouped by the allowance for p > 2: This is natural if xt, yt are seen as just two of a

vector of related observations that are analyzed pairwise. It is also natural if (1.12) is viewed
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as a consequence of component models for xt, yt, namely xt = at + bt, yt = �0at + ct, where

at; bt; ct are unobservable sequences such that at has memory �02 and u1t = ct � �0bt has

memory �01; if the memories of bt and ct di¤er then b in Assumptions B1, B3 and B5 below is

restricted. We can allow (at; bt; ct) to have a non-singular spectral density matrix by choosing

p � 3 in (3.1). Note that xt and yt might themselves be instantaneous non-linear functions

of raw series Xt; Yt, where Yt and Xt are non-linearly related, e.g. (in view of evidence of

stationary long memory and cointegration in nonlinear functions of �nancial time series, see

e.g. [6]), logged squares, with Xt; Yt generated by long-memory stochastic volatility models,

Xt = AtBt, Yt = A�t Ct, where At = eat, Bt = ebt, Ct = ect :

We introduce the following assumptions for our consistency result.

Assumption A1 (1.1) holds, where ut is covariance stationary, and for C(�) in (3.1),

�(�;�0)C(�)� P = o(1); as �! 0+; (3.3)

where the real 2�p matrix P satis�es PP 0 = 
0, and C(�) is di¤erentiable in a neighbour-

hood of � = 0, satisfying there

� (�;�0)
d

d�
C(�) = O(��1); as �! 0 + : (3.4)

Assumption A2 f"tg in (3.2) satisfy also E ("t jFt�1 ) = E("t); E ("t"
0
t jFt�1 ) = E("t"

0
t);

a.s., t 2 Z; where Ft is the �-�eld of events generated by "s, s � t, and also P ("0t"t > �) �

KP (X > �) for all � > 0 for some scalar non-negative random variable X such that

EX <1.

Assumption A3 (2.1) holds.

Assumption A4 �0 2 �.

Assumption A5 (2.2) holds.
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Assumption A6

0 < j!12j < (!11!22)
1
2 : (3.5)

Assumption A6 on the one hand implies 
0 is positive de�nite, and on the other rules

out

!12 = 0; (3.6)

when u1t; u2t are incoherent at � = 0 (cf. (1.3)). Under (3.6) 
0 is unidenti�able. We

subsequently discuss related problems in which 
0 is known and (3.6) is permitted. It could

be covered in our theorems with extra detail, but while (3.6) is milder than the time domain

orthogonality condition r12(j) = 0; j 2 Z, it is less usual in the cointegration setting than

(3.5), which tends to treat observables as jointly dependent. Assumption A1 implies (1.1),

and this and other conditions are natural extensions or modi�cations of ones in [22], [29],

[33] :

Theorem 3 Let Assumptions A1-A6 hold. Then

�̂!p �0; �̂ = �0 + op

��m
n

��0�
; as n!1:

To prove asymptotic normality we introduce the following assumptions.

Assumption B1 Assumption A1 holds, with the right side of (3.3) replaced by O(�b), for

some b 2 (0; 2].

Assumption B2 Assumption A2 holds, with also the elements of "t having a.s. constant

third and fourth moments and cross-moments, conditional on Ft�1.

Assumption B3 (2.1) holds for all 
 2 �
, after replacing its right hand side by O(�b),

b 2 (0; 2]:

Assumption B4 �0 is an interior point of �.
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Assumption B5 For any C <1

(logm)2m1+2b

n2b
+
(log n)C

m
! 0; as n!1: (3.7)

The extensions of the previous conditions are similar to ones in earlier literature, the

requirement (log n)C=m ! 0 coping, as in [33], with the fact that log n terms are not

eliminated at the outset when  (�) = j�j : De�ne by � the symmetric 4 � 4 matrix with

(k; `)th element �k`, given by �11 = 2� f(1� 2�0)�1 � (1� �0)
�2 cos2(
0)g!22=!11; �12 =

�2�(1 � �0)
�1 sin(
0)(!12=!11); �13 = 2��0(1 � �0)

�2 cos(
0)!12=!11; �14 = �2��0(1 �

�0)
�2 cos(
0)!22=!11; �22 = ��34 = 2��2; �23 = �24 = 0; �33 = �44 = 4 + �34; where

� = (1 � �2)�1; � = !12=(!11!22)
1
2 . Write �n = diag

�
���0m ; 1; 1; 1

	
and let Nk denote a

k-variate normal variate.

Theorem 4 Let Assumptions B1-B5 and A6 hold. Then as n!1

m
1
2�n(�̂ � �0)!d N4

�
0;��1

�
:

A consistent estimate �̂ of � is formed by plugging �̂ in place of �0, and elements of


̂(b�) for those of 
0. After also replacing �n by b�n = diag
n
��̂1��̂2m ; 1; 1; 1

o
; we can form

asymptotically valid con�dence regions for �0, and also test hypotheses of interest, such

as the linear homogeneous restrictions �0 = 0 "no-cointegration"; (1.4) "zero-phase"; (1.6)

"purely non-deterministic"; 
0 = (�01 + �02)�=2 "weak causality"; �01 = 0 "short memory

cointegrating error". A small Monte Carlo study of �nite sample performance was car-

ried out along such lines. To satisfy (1.1), ut was generated from the fractional ARMA

diag
�
(1� L)�01 ; (1� L)�02

	
(1 � 0:5L)ut = R1=2"t;where L is the lag operator, the "t are

bivariate normal, and R has elements 1 and 4 down the main-diagonal and o¤-diagonal el-

ement 2�: Thus 
0 = �0�=2 (and !12 = 4�=�): We took �0 = (0:05, 0:45)0 and (0:2, 0:3)0;

� = 0:75 and 0:9; �0 = 1: On each of 1000 replications, �̂ was computed for 3 values of

13



m,
�
n2=3=2

�
;
�
n2=3

�
; 2n2=3 in each of three sample sizes, n = 128; 512 and 2048. We em-

ployed  (�) = j�j (so local misspeci�cation was incurred), and �1 = 0:01; �2 = �3 = 0:02;

�4 = 0:005; �� = [�3; 3]: The Table gives Wald test rejection frequencies, at nominal 2-sided

5% level, for the hypotheses �0 = 0 (under "�"); (1:6) (under "
") and �01 = 0 (under "�1"):

Table: Frequency of Wald test rejections, nominal 5% level

n =128 n =512 n =2048

�01 �02 � m � 
 �1 m � 
 �1 m � 
 �1

0.05 0.45 0.75 13 95.0 8.6 18.3 32 99.6 8.4 25.0 81 100 6.1 38.9

0.05 0.45 0.75 25 93.5 6.0 59.0 64 99.9 5.5 76.5 161 100 3.5 83.9

0.05 0.45 0.75 51 69.8 6.0 99.5 128 96.3 4.5 100 323 100 6.4 100

0.05 0.45 0.9 13 97.3 5.5 18.1 32 99.8 6.3 32.9 81 100 5.0 52.9

0.05 0.45 0.9 25 96.4 4.1 61.5 64 99.9 3.5 82.7 161 100 4.2 93.2

0.05 0.45 0.9 51 84.1 2.3 98.9 128 99.9 4.4 100 323 100 11.0 100

0.2 0.3 0.75 13 92.5 16.8 40.6 32 94.4 21.7 66.8 81 95.6 15.2 94.9

0.2 0.3 0.75 25 89.7 12.0 88.6 64 92.6 17.0 99.1 161 98.0 12.9 100

0.2 0.3 0.75 51 90.6 4.9 100 128 93.3 7.9 100 323 99.6 11.0 100

0.2 0.3 0.9 13 91.9 15.7 41.7 32 93.3 16.1 73.1 81 98.7 12.0 97.3

0.2 0.3 0.9 25 88.8 10.5 91.5 64 95.8 12.8 99.8 161 99.8 9.0 100

0.2 0.3 0.9 51 91.0 5.5 100 128 98.0 7.8 100 323 100 6.1 100

The second hypothesis is true so that size is measured, while the others are false so that

power is measured. When �0 = (0:2, 0:3)0 the gap �0 is very small (and hard to detect): here

the test on 
0 is clearly over-sized, even for large n; though matters improve for large m;

and for �0 = (0:05, 0:45)0 the sizes are better on average, albeit variable. For the test on �01

power is poor for the smallestm, especially but unsurprisingly when �01 = 0:05, but increases
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satisfactorily with both. Power for testing �0 is mostly very high. Overall, it seems hard to

draw �rm conclusions about the e¤ect of �; while a relatively large m appears to work best.

Our technical results can be readily adapted to justify score and pseudo-likelihood-ratio-type

tests.

4. Discussion

Remark 1 Lack of block-diagonality in � suggests that correctly �xing � in R(�) or

employing an estimate ~� which converges faster than m
1
2 gives an estimate, �̂(�), say,

that is more e¢ cient than �̂; satisfying m
1
2���0m

n
�̂(�0)� �0

o
!d N1(0; �

�1
11 ). Going even

further, but assuming (1:6), [15] provide an even more precise estimate of �0, having the

same e¢ ciency as one minimizing Q(�;
) after replacing � and 
 by known �0 and 
0; this

estimate has also the advantage of a closed form representation. However, the need to select

more than one bandwidth number, and in other respects suitably design the estimate of �0,

and possibly 
0, presents some disadvantage.

Remark 2 On the other hand, computationally simpler but less e¢ cient estimates than

�̂ are available. [27] suggested the narrow-band least squares estimate

~� = Re

(
mP
j=1

Iyx(�j)

)
�

mP
j=1

Ix(�j); (4.1)

where (Iyx(�); Ix(�))0 makes up the second column of Iz(�); and showed it to be consistent

under very similar conditions to some of those for Theorem 1; [32] showed it is (n=m)�0-

consistent (cf. Theorem 1). It advantageously avoids estimating �0. [6] showed ~� to be

(n=m)�0m
1
2 -consistent and asymptotically normal under (3.6) and �0 <

1
2
; [23] gave anal-

ogous results for a weighted version of (4.1). Even when a CLT for ~�, or another simple

estimate, is available, the limiting variance depends on �0. Under (3.5), [32] showed that
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(n=m)�0(~� � �0) converges in probability to a non-zero constant, so no useful inferential

result is available. Our �̂ corrects the bias.

Remark 3 Simpler estimates of other parameters are available. We can estimate �01

and �02 using univariate local Whittle (see e.g. [20], [29]), bivariate log periodogram [28]

or bivariate local Whittle [22] ; [33] techniques, though such estimation of �01 requires a

preliminary estimate of �0. Given a preliminary estimate ~�; a simple estimate of 
0 is

~
 = arctan

"
Im

(
mP
j=1

s(�j)

)
=Re

(
mP
j=1

s(�j)

)#
;

where s(�) = Iyx(�)� ~�Ix(�).

Remark 4 When 
0 = 0, � is block diagonal with respect to �̂; �̂ on the one hand and 
̂

on the other. Treating 
0 as an unknown parameter seems unique in a long memory setting,

and it is worth noting the e¤ects of its prior misspeci�cation. Suppose we �x 
 = 
� in

R(�), and then minimize with respect to �; �. Denoting ��0 = (�0; 

�; �01; �02)

0, arguments

like those in the proofs of Theorems 1 and 2 give


̂(��0)!p

264 !11 !12 cos(

� � 
0)

!12 cos(

� � 
0) !22

375 :
Likewise, taking a �p b to mean a=b!p 1 element-wise, calculations in the proof of Theorem

4 give

@
̂(��0)

@�
�p

2���0m

1� �0

264 2!12 cos(
0) !22 cos(

�)

!22 cos(

�) 0

375 :
Thus from (8.3) in the proof of Theorem 4 below,

@R(��0)

@�
�p

2���0m

1� �0

!12!22 sin(

� � 
0) sin(


�)

!11!22 � !212 cos
2(
� � 
0)

:

It is readily seen that (@=@�k)R(�
�
0) !p 0; but due to the non-diagonal limiting structure

of (@2=@�@�0)R(��0), it appears that unless 

� = 
0; or 


� = 0, not only is the �0 estimate
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only (n=m)�0-consistent but the �0i estimates are inconsistent. When 
0 6= 
� = 0, these

estimates are asymptotically normal but their limiting variance matrix is complicated, and

depends on 
0. Our discussion suggests a more serious cost to incorrectly �xing 

� 6= 0; e.g.

when 
 is replaced by ��=2 in Q(�;
); where � = �2 � �1; cf (1:6). However it can also be

inferred that such bias problems are absent under (3.6). There are two cases of potential

interest. In one, (3.6) is assumed a priori, in the other it is not; in both 
0 is speci�ed.

In both cases the estimates of �0, �01; �02; after correct centering and normalization as in

Theorem 4, converge to independent zero-mean normal variates, whose variances can be

deduced from the formulae in � in the latter case (which the CLT of [24] addresses).

Remark 5 On the other hand if �0 is known (e.g. to be zero, where there is no cointegra-

tion) we can infer from Theorems 3 and 4 that after correct centering and m
1
2 normalization,

the estimates of 
0 and �0 are asymptotically independent, with limiting variances given

in the inverse of the matrix consisting of the last 3 rows and columns of �: In fact the

consistency proof is much simpler than that of Theorem 3, and the results hold for j�0ij < 1
2
;

i = 1; 2; with �� chosen suitably.

Remark 6 Also in the known non-cointegrated case �0 = 0; consistent estimation of 
0; as

well as of �0; is relevant in inference based on the sample mean z = (z1 + :::+ zn)=n: Under

our conditions it may be shown that as n!1

diag
n
n
1
2
��01 ; n

1
2
��02
o
(z�Ez1)!d N2(0; (2�!ij cos((i�j)
0)=(�(�0i+�0j+2) cos(�(�0i+�0j)=2)));

where the (i; j)th element of the 2 � 2 variance matrix is indicated. In [30] inference was

developed in which the !ij and �0 are replaced by consistent estimates (better than log

-n-consistent in case of �0 , for which (3.7) su¢ ces) but assuming 
0 satis�es (1.6). If this

assumption is incorrect, a corresponding con�dence ellipse would be inconsistent. This kind

of issue does not arise under short memory �01 = �02 = 0, where the variance matrix is
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2�fu(0); and phase is bound to be zero.

Remark 7 An earlier version of this paper employed a di¤erent phase parameterization,

��; in place of 
: This naturally covers (1.4) (�0 = 0) and (1.6) (�0 = �=2); but is less

natural in general, in view of Theorems 1 and 2. It a¤ects the form of �; in particular giving

non-zero �23 and �24: As a consequence, when �0 is known the limiting variance matrix for

estimation of �0 is no longer block-diagonal (cf Remark 5), while if � is incorrectly speci�ed

to a non-zero value (e.g. �=2); �0 is estimated inconsistently; in Remark 4, with 
 likewise

misspeci�ed, this was due to estimating �0:On the other hand, with the �� parameterization,

[33] compared the cases when � is correctly �xed at �=2; and when � is correctly �xed at 0

(where the limit distribution is the same as in Remark 5), �nding greater precision in the

former.

Remark 8 To construct approximate Newton iterations, given an ith iterate �̂
(i)
, i � 1, we

can form �̂(i) by plugging in �̂
(i)
for �0 in �, replacing elements of 
 by those of 
̂(�̂

(1)
), and

then compute �̂
(i+1)

= �̂
(i)� �̂(i)�1(@=@�)R(�̂(i)). Choices for �̂(1) include estimates described

in Remarks 2 and 3. If �̂
(1)
satis�es m

1
2�n

�
�̂
(1) � �0

�
= Op(1), then �̂

(2)
has the properties

of �̂ in Theorem 4. If the initial �0 estimate is only (n=m)
�0-consistent, as is (4.1), �̂

(i)

should satisfy Theorem 4 for some �nite i but determination of a minimal i depends on

hypothesizing a rate of increase for m with n, and on the unknown �0. If a smaller m is

used in (4.1) than in R(�); assuming the former m increases su¢ ciently slowly relative to

the latter one can justify i = 2 even.

Remark 9 With respect to choice ofm;minimizing approximate mean squared error (MSE)

of a given linear combination of �̂ elements is complicated, especially as �̂ converges faster

than �̂. Though sub-optimal, the minimum MSE rule (in scalar local Whittle estimation

of memory) of [13] could be applied, most simply to the xt sequence (requiring preliminary
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estimation of �02 and �xing b in Assumption B1 say to 2). As always, a minimum-MSE

rate violates the condition (here B5) that provides correct centering in the CLT, suggesting

use of a smaller m. In univariate local Whittle memory estimation, with data tapering, [10]

developed an m that minimizes the error in the CLT, having rate nb=(1+b), which satis�es

B5; with b = 2 this is the rate employed in the Monte Carlo. [16], [17] proposed data-

dependent m in univariate log-periodogram memory estimation. Full con�dence cannot be

placed in any automatic technique and it may be wise to employ a grid of m values, and

assess sensitivity; estimates for a given m should be a good starting point for iterations with

adjacent m.

Remark 10 From B5, �̂; �̂ converge slower than nb=(1+2b), n
1
2
�( 1

2
��0)=(1+2b) respectively,

e.g. n2=5; n(2+�0)=5 for b = 2; while for all b the rate of �̂ approaches n
1
2 as �0 ! 1

2
. This

rate is best for estimates of all parameters if fu(�); � 2 (��; �], is parametric (extending

theory of [7], [9], [11] ; [14]). But misspeci�cation of fu incurs inconsistent estimation of

all parameters, and if fu involves additional parameters (over those in (1.1)) computational

burden increases. The least squares estimate of �0 is inconsistent when u1t and u2t are

correlated (cf. A6).

Remark 11 By analogy with the pseudo-spectrum of univariate nonstationary fractional

series, we can de�ne a pseudo-spectral density matrix (involving a phase parameter as in

(1.1)) for vector series with one or more nonstationary elements. Integer di¤erencing of

both series will not change phase, and may produce the stationary setting of the present

paper. Given uncertainty as to whether or not the data are nonstationary, or about the

degree of nonstationarity, alternative methods, already employed to extend univariate local

Whittle estimates (e.g. [34], [35]), should produce analogous asymptotic properties to those

in Theorems 3 and 4, albeit perhaps with some variance in�ation, so long as the gap between
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memory parameters is less than 1
2
(as in (1.14)). If this gap exceeds 1

2
optimal estimates have

a faster rate, and mixed normal asymptotics [15]. [36] considered local Whittle estimation

with a gap exceeding 1
2
; but the estimate of �0 achieves a slower convergence rate than is

attainable even by such simple estimates as (4.1) and least squares when also the sum of

memory parameters exceeds 1:

Remark 12 Another kind of extension concerns multivariate series zt of dimension q > 2.

[24] considers local Whittle estimation with q � 2 and a single cointegrating relation, though

with phases correctly assumed to be zero, (3.6) assumed in the CLT, and a consistency proof

which, like ours, takes q = 2: More generally, q > 2 raises the possibility that the number,

r < q; of cointegrating relations exceeds 1: In (1.12), B0 can be rede�ned by replacing

the 10s in the diagonal by blocks Ir and Iq�r ; with �0 now being an r � (q � r) matrix.

Likewise in (1.1), (1.2) the dimension is extended to q; with, for j 2 [2; q]; the jth diagonal

element of � (�;�) now being j�j�j e�isign(�)(
1+:::+
j�1); with �i < �j for i � r; j > r:

Thus � = (
1; :::; 
q�1; �1; :::; �q)
0 unless, to mitigate possible curse of dimensionality and

additional computational challenge, prior restrictions are imposed, e.g. �1 = ::: = �r and/or

�r+1 = ::: = �q: Such constraints could imply some zero 
i even under fractional integration

assumptions (cf (1.6), which is zero for �01 = �02); but in general they can be unrestricted.

Prior restrictions on �0 might also be imposed: Our methods can be straightforwardly

extended to estimate the remaining, unknown, parameters. The techniques of proof of

Theorems 3 and 4 also appear to extend, while Theorems 1 and 2 clearly remain relevant.

5. Proof of Theorem 1
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From [38 , p.186],

1X
j=1

j�0�1eij� = �(�0)e
i��0=2���0 +O(1); as �! 0 + : (5.1)

For � 6= 0, mod(2�);

f12(�) = (2�)
�1

8<:r12(0) + �+

1X
j=1

j�0�1e�ij� + ��

1X
j=1

j�0�1eij� +
1X
jjj=1

bje
�ij�

9=; :

The last term in braces is bounded by

NX
j=1

(jbjj+ jb�jj) +
1X

j=N+1

fjbj � bj+1j+ jbj � b�j�1jg
�����
1X
k=N

e�ik�

�����
� K"

�
N�0 +N�0�1 j�j�1

�
= o

�
j�j��0

�
; as �! 0;

where " > 0 is arbitrary and we choose N � j�j�1. Thus from (5.1),

f12(�) � (2�)�1
�
�+e

�isign(�)��0=2 + ��e
isign(�)��0=2

�
�(�0) j�j

��0 ; as �! 0:

Then (1.9) is determined by inspection, and the remaining statements are straightforwardly

veri�ed. �

6. Proof of Theorem 2

Take j � 0: With c0ij denoting the ith row of Cj; write

r12(j) =
1X

i=j+1

c01ic2;i�j +

jX
i=0

c01ic2;i�j +

�1X
i=�1

c01ic2;i�j:

Each of the three terms on the right is dominated by contributions in which c1i; c2;i�j are of

order jij�01�1 and ji� jj�02�1, respectively, the remainder terms involving products of these

with the gi1`, gi�j;2` and products of the latter. After integral approximation of the leading
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terms we write

r12(j) =

8<:�0+1�+2
1Z
0

(1 + x)�01�1x�02�1dx+ �0+1��2

1Z
0

x�01�1(1� x)�02�1dx

+�0�1��2

1Z
0

x�01�1(1 + x)�02�1dx

9=; j�0�1 + bj: (6.1)

We omit the straightforward but lengthy proof that bj satis�es (1.7) and (1.8). It only

remains to express the integrals in (6.1) as Beta functions. The method of proof for j < 0

is identical. �

7. Proof of Theorem 3

We �rst give the proof with "o" replaced by "O" in the error bound for b�. For any c > 0

de�ne neighbourhoods N�(c) = f� : j� � �0j < cg ; N
(c) = f
 : j
 � 
0j < cg ; N�(c) =

f� : k� � �0k < cg : Fix " > 0 and de�ne N (") = N� ("
�1 (m=n)�0)�N
(")�N�("); �N (") =

� n N ("): We have P
�
�̂ 2 �N (")

�
� P (inf �N (") fR(�)�R(�0)g): To show that this tends to

zero we �rst decompose R(�) � R(�0). We omit the straightforward proof, using A3, that

the e¤ect of replacing 	(�;�) by �(�;�), when they di¤er, is negligible, uniformly on �N ("),

and proceed as if 	 = �. Then

R(�)�R(�0) = log det
n

̂(�)
̂(�0)

�1
o
� 2

2P
i=1

� i
1

m

P
j

log �j; (7.1)

where � i = �i � �0i and
P

j means
Pm

j=1. With �(�) = diag
n
(2�1 + 1)

1
2 ; (2�2 + 1)

1
2

o
;

�(�) = diag
�
��1m ; �

�2
m

	
; 
̂�(�) = �(�)
̂(�)�(�); write

R(�)�R(�0) = log det
n
�(�)
̂�(�)�(�)
̂(�0)

�1
o
+ u(�);
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where u(�) =
P

j

P2
i=1

n
2� i � log(2� i + 1) + 2� i(logm�m�1P

j log j � 1)
o
: To decom-

pose 
̂�(�) denote Iuj = Iu(�j), and deduce

BIz(�j)B
0 = Iuj + (B0 �B)Iuj + Iuj(B0 �B)0 + (B0 �B)Iuj(B �B0)

0:

With the de�nitions Hj = 	(�j;�0)Iuj �	(�j;�0); bn(�) = ���0m (�0 � �), � = 
 � 
0,

rearrangement gives


̂�(�) = Ĝ(1)(�) + bn(�)Ĝ
(2)(�) + b2n(�)Ĝ

(3)(�); (7.2)

where Ĝ(i)(�) =
�
ĝ
(i)
k`

�
, bg(1)kk = m�1P

j (j=m)
2�k hkkj (k = 1; 2); ĝ

(1)
12 = ĝ

(1)
21

= (2m)�1
P

j (j=m)
�1+�2 (ei�h12j + e�i�h21j) ; ĝ

(2)
11 = (2m)

�1P
j (j=m)

�1+�1��02 (ei
0h21j + e�i
0h12j) ;

ĝ
(2)
12 = ĝ

(2)
21 = m�1P

j (j=m)
�1��02+�2 (cos 
)h22j; ĝ

(3)
11 = m�1P

j(j=m)
2(�1��02)h22j; ĝ

(2)
22 =

ĝ
(3)
12 = ĝ

(3)
21 = ĝ

(3)
22 = 0; suppressing reference to dependence on � in the ĝ(i)k` and with

Hj = (hk`j). De�ning

U�(�) = log det
n
�(�)Ĝ(1)(�)�(�)Ĝ(1)(�0)

�1
o
+ u(�); U�(�) = log det

n

̂�(�)Ĝ(1)(�)�1

o
;

we have R(�)�R(�0) = U�(�)+U�(�); since 
̂(�0) = Ĝ(1)(�0):Writing �N�(c) = ���N�(c);

�N
(c) = �
�N
(c), �N�(c) = ���N�(c), and also �� = �
 ���, �N�(c) =
�
�N
(c)���

	
[�

�
 � �N�(c)
	
, it su¢ ces to show that as n!1

P

�
inf
�N�(")

U�(�) � 0
�

! 0; (7.3)

P

 
inf

�N�( 1"(
n
m)

�0)���
U�(�) � 0

!
! 0: (7.4)

Introduce the following population analogues of the ĝ(i)k` : g
(1)
kk = !kk(2�k + 1)

�1 (k =

1; 2); g
(1)
12 = g

(1)
21 = (�1 + �2 + 1)

�1!12 cos � ; g
(2)
11 = 2(�1 + �1 � �02 + 1)

�1!12 cos 
0; g
(2)
12 =

g
(2)
21 = (�1+�2��02+1)�1!22 cos 
; g

(3)
11 = (2(�1��02)+1)�1!22; g

(2)
22 = g

(3)
12 = g

(3)
21 = g

(3)
22 = 0;

write G(i)(�) =
�
g
(i)
k`

�
.
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To prove (7.3) observe that from the inequality jlog(1 + x)j � 2 jxj for jxj � 1
2
; and

because �N�(") �
�
�N
(")���

	
[ �N�("); it su¢ ces (following a development like that in

[22]) to show

sup
��




�(�)nĜ(1)(�)�G(1)(�)
o
�(�)




 ! p 0; (7.5)

sup
��




��(�)G(1)(�)�(�)	�1


 < 1; (7.6)

inf
�N
(")���

log det
�
�(�)G(1)(�)�(�)G(1)(�0)

�1	 > 0; (7.7)

lim
n!1

inf
�N�(")

u(�) > 0: (7.8)

We omit the details of (7.5) as these are now standard, mainly following the proof of Theorem

1 of [29]), and multivariate extensions [22], [33]. Our model (3.2) is more general than those

in such references in two respects, namely our allowance for a bilateral MA and for the

dimension of "t to exceed 2; but it is readily seen that neither extension materially a¤ects

the roof. The basic technique involves summation-by-parts (to deal with the uniformity)

followed by approximation of the Hj by the PI"jP 0, where I"j = I"(�j) (see [29]) and then

approximating the consequent term in the I"j by one in 
0 (with only a second moment for

"t required for the latter step due to applying a law of large numbers for L1 variables to the

term in the "t"0t) and approximating sums of form m�1P
j(j=m)

a by (1 + a)�1 for a > �1.

The most signi�cant di¤erence from earlier results is the presence of the general 
; 
0, but

this is easily handled in view of compactness of �
. Likewise, (7.8) follows from the proof

of Theorem 1 of [29], which used the inequalities

inf
jxj>"

fx� log(x+ 1)g > "2

6
;

�����logm�m�1P
j

log j � 1
����� � Km�1: (7.9)

To prove (7.6) observe that

det
�
�(�)G(1)(�)�(�)

	
= !11!22 � !212c(�) cos

2 � ; (7.10)

24



where c(�) = (2�1 + 1)(2�2 + 1)= (�1 + �2 + 1)
2 : It follows from the inequality 0 < 4xy �

(x+ y)2, for x; y > 0, that 0 < c(�) � 1, and thus (7.10) � det(
0) > 0.

To prove (7.7) note that

log det
�
�(�)G(1)(�)�(�)G(1)(�0)

�1	 = log�1� �2c(�) cos2 �

1� �2

�
: (7.11)

From jcos � j � 1, jc(�)j � 1 and log(1 + x) � x=(1 + x) for x � 0, this is lower-bounded by

�2 f1� c(�) cos2 �g � �2 sin2 � : Because sin (� � x) = � sin x,

inf
N 
(")���

sin2 � � min
n
sin2

�"
2

�
, sin2 (2�4)

o
> 0: (7.12)

Since � 6= 0; (7.7) is proved.

Now consider (7.4). We can write U�(�) = logQ(bn(�)); where Q(s) = 1 + â1s + â2s
2;

â1 = (ĝ
(2)
11 ĝ

(1)
22 � 2ĝ

(1)
12 ĝ

(2)
12 )= det

n
G
(1)
1 (�)

o
; â2 = (ĝ

(3)
11 ĝ

(1)
22 � ĝ

(2)2

12 )= det
n
G
(1)
1 (�)

o
: For all �,

â2 � 0 by the Cauchy inequality, and, since 
̂�(�) and Ĝ(1)(�) are non-negative de�nite,

Q(s) is non-negative for all real s. It has a global minimum at s = �â1=2â2. Thus

inf
jsj�1="

Q(s) �
�
1� â21

4â2

�
1

����� â12â2
���� > 1

"

�
+

�
1� jâ1j

"
+
â2
"2

�
1

����� â12â2
���� � 1

"

�
= 1� jâ1j

"
+
â2
"2
+

�
jâ1j
"
� â2
"2
� â21
4â2

�
1

����� â12â2
���� > 1

"

�
;

where 1(:) denotes the indicator function. Thus the probability on the left side of (7.4) is

bounded by

P

�
log

�
1� sup

��

jâ1j
"
+ inf

��

â2
"2

�
� 0
�
+ P

�
sup
��

���� â12â2
���� > 1

"

�
� 2P

�
sup
��

jâ1 � a1j+
2

"
sup
��

jâ2 � a2j �
1

"
inf
��
a2 � sup

��

ja1j
�

(7.13)

by elementary inequalities, where a1 = (g(2)11 g
(1)
22 � 2g

(1)
12 g

(2)
12 )/det G

(i)(�); a2 = (g
(3)
11 g

(1)
22 �

g
(2)2
12 )=det G

(i)(�): Now sup��

���bg(i)k` � g
(i)
k`

��� !p 0 (i = 2; 3; k; ` = 1; 2) as n ! 1; by the
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same method of proof as described for (7.5), so sup�� jâi � aij !p 0 (i = 1; 2) as n !1:

We need to show that the right side of the last inequality in (7.13) is positive. It is easily

seen that sup�� ja1j <1, noting boundedness away from zero on �� of denominators in the

g
(i)
k` : Since " can be arbitrarily small we require only that inf�� a2 > 0. This is true because,

on ��;

g
(3)
11 g

(1)
22 � g

(2)2
12 = !222

�
1

f2(�1 � �02) + 1g (2�2 + 1)
� cos2 
0
(�1 + �1 � �02 + 1)

2

�
� !222

�
1

f2(�1 � �02) + 1g (2�2 + 1)
� 1

(�1 � �02 + �2 + 1)
2

�
>

!222�
2

8
� !222�

2
2

8
> 0:

This completes the proof that �̂!p �0; �̂ = �0+Op ((m=n)
�0) : To replace "O" by "o" in the

latter, for " 2 (0; 1) de�neN �(") = N�

�
"
1
2 (m=n)�0

�
�N
("

2)�N�("
2); �N �(") = ��N �("):

We have P
�
�̂ 2 �N �(")

�
� P

�
�̂ 2 �N �(") \N (")

�
+ P

�
�̂ 2 �N (")

�
: We have just shown

that the last probability tends to zero. For the previous one it su¢ ces to show that as

n!1

P

�
inf
�N �
�(")

U�(�) � 0
�

! 0; (7.14)

P

 
inf

�N�("1=2(mn )
�0)�N�(")

U�(�) � 0
!

! 0; (7.15)

where N�(") = N
(")�N�("), �N �
�(") = N�(") nN �

�("). The proof of (7.14) is as above. To

prove (7.15), following the argument up to (7.13) we have to show

P

 
sup
N�(")

jâ1 � a1j+ 2"
1
2 sup
N�(")

jâ2 � a2j � "
1
2 inf
N�(")

a2 � sup
N�(")

ja1j
!
! 0: (7.16)

In view of the above remarks about (7.13) it remains to show that the right hand side of the

inequality in (7.16) is positive. We have

sup
N�(")

ja1j �
(
sup
N�(")

���g(2)11 g(1)22 � 2g(1)12 g(2)12 ���
)
� inf
N�(")

det
n
G
(1)
1 (�)

o
:
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The denominator is already known to be �nite and the quantity on the right side whose

absolute value is taken equals

2!12!22

�
cos 
0

(2�2 + 1)(�1 + �1 � �02 � 1)
� cos 
 cos �

(�1 + �2 + 1)(�1 + �2 � �02 + 1)

�
:

After rearrangement and application of trigonometric addition formula, this is seen to be

bounded in absolute value by K (j
 � 
0j+ k� � �0k) : It follows that supN�(") ja1j � K":

From the proof of Theorem 3, "
1
2 infN�(") a2 � sup ja1j � "

1
2=K �K"; which, for arbitrarily

large K, is bounded below by "
1
2=2K > 0, choosing " 2 0; (4K4)�1). �

8. Proof of Theorem 4

De�ne s(�) = (@=@�)R(�), S(�) = (@=@�0) s(�). Denote by ~S the matrix S(�) when its kth

row is evaluated at � = ~�
(k)
. If




~�(k) � �0




 � 


�̂ � �0




, k = 1; :::; 4, the mean value theorem
gives �̂ � �0 = ~S�1s(�0), for some such ~�

(k)
. The Theorem is established if

m
1
2��1

n s(�0) !d N4(0;�); (8.1)

��1
n
~S��1

n !p �: (8.2)

Denoting by �k, sk(�), the k-th elements of �, s(�), and by sk`(�) the (k; `)-th element of

S(�),

sk(�) = tr

(
@
̂(�)

@�k

̂(�)�1

)
� 1(k = 3 or 4) 2

m

P
j

log j (�j; 
)j ; (8.3)

sk`(�) = tr

(
@2
̂(�)

@�k@�`

̂(�)�1 � @
̂(�)

@�k

̂(�)�1

@
̂(�)

@�`

̂(�)�1

)
: (8.4)

Now

@
̂(�)

@�k
= Re

(
1

m

P
j

A
(k)
j

)
;

@2
̂(�)

@�k@�`
= Re

(
1

m

P
j

A
(k;`)
j

)
;
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k; ` = 1; 2, writing A
(k)
j = (@=@�k)Aj, A(k;`) = (@=@�`)A

(k)
j , Aj = A(�j; �). To sim-

plify we proceed, as in the proof of Theorem 3, as if  (�) = j�j. This can be justi-

�ed via B3; further discussion appears later in the proof. De�ne Ek` by replacing the

(k; `)th element by 1 in the 2 � 2 matrix of zeros. Noting that E12B0 = �E12 we deduce

A
(1)
j = ����j (E12Ajei
 � AjE21e

�i
); A
(2)
j = iAjE22 � iE22Aj; A

(2+k)
j = (log �j)(EkkAj +

AjEkk); k = 1; 2; A
(1;1)
j = 2��2�j E12AjE21; A

(1;2)
j = i���j (E22AjE21 � E12AjE22) ; A

(1;2+k)
j =

� (log �j)���j (EkkE12Aj+EkkAjE21+E12AjEkk+AjE21Ekk); A
(2;2)
j = 2E22AjE22�E22Aj�

AE22; A
(2;2+k)
j = �i (log �j) (EkkAjE22 � EkkE22Aj � E22AjEkk + AjE22Ekk); A

(2+k;2+`)
j =

(log �j)
2 (EkkE``Aj+AjE``Ekk+EkkAjE``+E``AjEkk): Thus from (8.3), withA0j = A(�j; �0),

s1(�0) = = �tr 1
m

P
j

���0j (E12A0je
i
0 + A0jE21e

�i
0)
̂(�0)
�1;

s2(�0) = itr

(
1

m

P
j

(A0jE22 � E22A0j) 
̂(�0)
�1

)
;

s2+k(�0) = tr
1

m

P
j

�
log �j �

1

m

P
i

log �i

�
(EkkA0j + A0jEkk)
̂(�0)

�1

for k = 1; 2, where the real part operator is omitted because imaginary parts are automati-

cally eliminated here, and we use 
̂(�0) = m�1P
j RefA0jg. We can replace, with negligible

error, 
̂(�0) by 
0 and A0j by Tj = PI"jP
0 in m

1
2��1

n s(�0), using arguments of [22] ; [29],

[33], and allowing p � 2. Thus m 1
2��1

n s(�0) di¤ers by op(1) from m
1
2��1

n s�(�0), where s�(�0)

has k-th element

s�k =
2

m

P
j

tr (URkj RefI"jg+ UIkj ImfI"jg) ; (8.5)

where UR1j = � cos 
0
�
���0j �m�1P

i �
��0
i

�
P 0
�10 E12P; UI1j = � sin 
0���0j P 0
�10 E12P;

UR2j = 0; UI2j = P 0
�10 E22P; UR;2+k;j = (log j �m�1P
i log i)P

0
�10 EkkP; UI;2+k;j = 0;

for k = 1; 2. After rearrangement and application of a martingale CLT we deduce, following

the same references, ��1
n s�=2 !d N4(0;�). (The formula for � can be most easily veri-

�ed after noting that Es�ks
�
` = 8m

�2P
j tr
�
URkj

�
U 0R`j + UR`j

�
+ UIkj

�
U 0I`j � UI`j

�	
, plus a
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negligible fourth cumulant term.) This completes the proof of (8.1).

Turning to (8.2), it su¢ ces to show that

��1
n

n
~S � S(�0)

o
��1
n !p 0; (8.6)

1

2
��1
n S(�0)�

�1
n !p �: (8.7)

We omit the straightforward proof of (8.7). To prove (8.6). we require a rate of conver-

gence for the ~�i: Put ~� = (~�; ~�0)0 = (~�; ~
; ~�1; ~�2)0, for



~� � �0




 � 


�̂ � �0




. For some such ~�,

̂(~�) appears in all elements of ~S. From Section 7 we can write, with the same de�nitions, and

	 again replaced by �, 
̂(~�) = �(~�)
n
Ĝ(1)(~�) + bn(~�)Ĝ

(2)(~�) + b2n(
~�)Ĝ(3)(~�)

o
�(~�): Then

from Theorem 3, 
̂(~�)� 
̂(�0)!p 0 if ~� !p �0 and Ĝ(i)(~�)� Ĝ(i)(�0)!p 0; i = 1; 2; 3: To

achieve the latter, Hj = A0j can be replaced as before by the Tj, but from the de�nitions of

Section 7 the ~�k are involved as exponents of (j=n), j = 1; :::;m, in the Ĝ(1)(~�), so more than

the consistency established in Theorem 3 is needed (though consistency of ~
 su¢ ces). So far

as remaining terms which make up elements of ~S are concerned , similar considerations apply,

indeed di¤erentiation produces factors log
�� j��, log2 �� j�� in some summands. In [29], only

 (�) = j�j was considered, and log n terms are precisely eliminated prior to taking limits, as

in Section 7. With more general  j this does not happen, as in [33]
0 s choice of  , and as there

we establish something a little stronger. It su¢ ces to show that (log n)C
�
�̂k � �0k

�
!p 0,

k = 1; 2, for any C < 1 (explaining the requirement (log n)C=m ! 0 in (3.7)). Ar-

guing as before, this follows if, as n ! 1; supN�(")



�(�)nĜ(1)(�)�G(1)(�)

o
�(�)




 =
op((log n)

�2C); inf �N
("2)�N�(") log det
�
�(�)G(1)(�)�(�)G(1)(�0)

�1	 > 0;
limn!1(log n)

2C inf �N�("=(logn)C) u(�) > 0; for any " 2 (0; 1): The �rst result follows by

straightforward extension of the proof of (4.6) in [29], the rate being due to "t now hav-

ing a �nite moment of order greater than 2. The proof of the second is identical to that of

(7.7), the only di¤erence in outcome being the replacement of " by "2. As in the proof of
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[29], we deduce the �nal result from the inequalities in (7.9).
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