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Abstract
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discuss estimation of the variance matrix, including estimates that are robust to disturbance het-
eroscedasticity and/or dependence. A Monte Carlo study of �nite-sample performance is included.
In an empirical example, the estimates and robust and non-robust standard errors are computed
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1 Introduction

The linear regression model, with estimation by ordinary least squares (LS) or instrumental variables
(IV), is still a very popular statistical tool in empirical economic investigation. Often, however, the
linearity seems an arbitrary restriction, while no speci�c nonlinear-in-parameters model is supported
by economic theory. On the other hand, smoothed nonparametric regression encounters the curse of
dimensionality unless very few explanatory variables are relevant or a huge sample is available. As
a result, semiparametric models, such as partly linear regression, have been employed. For example,
Robinson (1988) proposed estimates of the coe¢ cients of the linear component of a partly linear re-
gression and showed that they can compete with estimates of purely parametric models by converging
at parametric rate and being asymptotically normal, in the setting of arbitrarily many stochastic ex-
planatory variables in both the parametric and nonparametric parts. He assumed that observations are
independent and identically distributed (i.i.d.). This is often questionable in economic applications,
in particular, spatial dependence may arise from local shocks in an economy and interaction among
economic agents, due for example to spill-overs, competition and externalities; Conley (1999) discussed
in detail sources of spatial dependence, from both theoretical and empirical perspectives. The setting of
the present paper is motivated by spatial dependence in general, but also covers, as a special case, time
dependence, whose implications have already been widely studied in the parametric regression context,
and to a much more limited extent (e.g. Fan and Li (1999)) in the partly linear context, but on the
other hand our conditions also cover time dependence in panel data or spatio-temporal data settings.
Spatial dependence can arise in many forms of data, for example (equally-spaced) data observed on

a regular lattice of two or more dimensions, data observed with irregular spacing on a geographic space,
data for which only pairwise "economic distances" are available, and cross-sectional data that are feared
to be dependent but for which no distance measures are postulated. Asymptotic statistical properties
of estimates, such as of LS and IV estimates of linear regression, and estimates for the partly linear
model, have not yet been developed under conditions that satisfactorily cover these possibilities. In an
important class of cases, unobservable disturbances are i.i.d., and here the asymptotic distribution is
expected, under suitable regularity conditions, to be una¤ected, leaving intact rules of large sample in-
ference. In other cases, disturbances will be mutually independent but conditionally or unconditionally
heteroskedastic, where the asymptotic variance matrix is a¤ected, so standard t-tests and interval esti-
mates are invalidated, and Gauss-Markov e¢ ciency properties (in case of LS regression estimates), or
the achievement of a semiparametric e¢ ciency bound (in case of Robinson�s (1988) estimates of partly
linear regression) are lost. The same is true when, on the other hand, homoskedasticity in distur-
bances is retained but independence is lost, and a fortiori when disturbances are both heteroskedastic
and dependent. A desirable solution would entail correcting for whichever problem is present, using
generalized least squares (GLS) ideas, as has been frequently done in dealing with heteroskedasticity,
and also with time series dependence, and occasionally even with both problems simultaneously (see
Hidalgo (1992) ). It is relatively easy to see how to construct GLS estimates when dependence can
be accurately parametrically modelled, but matters become more complicated in the more modern ap-
proach where disturbance correlation is treated as nonparametric, and certainly more consideration has
to be given to the possible structure of dependence, re�ecting the particular nature of the data, than
in simple point estimates which ignore the problem. Moreover, if we begin from a situation in which
correlation between regressors and disturbances is also feared, leading to use of instrumental variables,
e¢ ciency improvements are still harder to achieve.
In the setting of random design nonparametric regression, Robinson (2007b) proposed a triangular

array structure which he justi�ed as a possible representation for a broad class of spatial con�gurations,
and presented conditions for consistency and asymptotic normality of Nadarya-Watson estimates. Dis-
turbances were assumed to satisfy a kind of linear process, possibly allowing also for conditional or
unconditional heteroscedasticity, and restrictions on dependence of regressors were expressed in terms
of conditions on joint and marginal probability density functions, again also permitting some hetero-
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geneity. It was argued that these kinds of conditions might be suited to a wide range of spatial data.
We employ similar conditions here, in order to establish asymptotic normality of IV (and thus also

LS) estimates of a linear regression (see the following section), and of (density-weighted IV) estimates
of a partly linear model (see Section 3), allowing in both cases for spatial dependence in regressors and
disturbances. Proofs of these results are left to three appendices, the �rst presenting the main steps,
the second a sequence of propositions, and the third, technical lemmas. Section 4 discusses estimation
of relevant large sample covariance matrices, some of which allow for disturbance heteroscedasticity
and/or dependence, and thus provide robust inference, with the proof of a theorem contained in the
fourth appendix. In an empirical study in Section 6, we develop the regression analysis of Banerjee and
Iyer (2005) of the e¤ect of systems for collecting land revenue instituted during British rule in India
on present-day economic performance, after �rst �nding evidence of spatial correlation of disturbances
and carrying out nonparametric regression �tting. Sections 5 and 6 also include some discussion of the
issue of bandwidth choice in partly linear regression. Section 7 discusses related aspects and possible
modi�cations and extensions of our methods and theory.

2 Linear Regression

Given n observations on the p-dimensional column vector random variable X1in and scalar random
variable Yin; we consider the linear regression

Yin = �
0X1in + Uin; 1 � i � n; n = 1; 2; :::; (1)

where the p-dimensional column vector � is unknown, the prime denotes transposition, and the Uin
are unobservable scalar disturbances. It is possible that X1in includes an intercept. For spatial data
there is generally no natural ordering, but an arbitrary one is employed in (1). The triangular array
formulation, indicated by the n subscript, is used because some re-ordering may be natural when n
increases, as discussed by Robinson (2007b), for example when observation points form a lattice in two
or more dimensions. It is also essential when a variable is believed to be generated by a model such
as a spatial autoregression (SAR) with row-normalized weight matrix. However, to avoid complicated
notation we will mostly suppress reference to the n subscript in what follows, so in particular we write
Ui = Uin; X1i = X1in, Yi = Yin; though from time to time we take the opportunity to remind the
reader of the underlying potential dependence on n of various quantities.
Consider the IV estimate ~� = ~�n of �; given by

~� =

 
nX
i=1

X2iX
0
1i

!�1 nX
i=1

X2iYi;

assuming we observe also the p-dimensional column vector random variable X2i = X2in and the inverse
exists. As usual X1i and X2i may overlap and X2i = X1i is possible, when ~� becomes LS, but IV
estimation is as usual motivated by the fear of correlation between one or more elements of X1i and Ui;
and the hope of orthogonality between X2i and Ui; and correlation between X1i and X2i .
We introduce the following assumptions, where the norm kAk of a rectangular matrix A is de�ned

as the square root of the trace of A0A; and C denotes a generic, �nite constant, independent of n.

Assumption A1 (1) holds where

Ui = Uin =
1X
k=1

bik"k; 1 � i � n; n = 1; 2; :::; (2)
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where "k; k = 1; 2; :::; are independent scalar random variables with zero mean and unit variance, and
the scalar weights bik = bikn satisfy

1X
k=1

b2ik � C; 1 � i � n; n = 1; 2; :::: (3)

Assumption A2 As n!1;
nX
i=1

E kX2ik2 = O (n) ;

n�1
nX
i=1

X2iX
0
1i !p �;

where � is a constant non-singular matrix.

Assumption A3 Denoting by N the set of positive integers,

lim
�!1

sup
k2N

E
�
"2k1 (j"kj > �)

	
= 0:

We abbreviate the triangular array or sequence fbi = bin; 1 � i � n; n � 1g to fbig :

Assumption A4 fX2ig and f"ig are independent, and as n!1;

1

n

nX
i=1

nX
j=1

1X
k=1

bikbjkX2iX
0
2j !p �;

where � is positive de�nite (p.d.) and

n�1=2 sup
k2N







nX
i=1

X2ibik






!p 0: (4)

Theorem A Under Assumptions A1-A4, as n!1;
p
n
�
~� � �

�
!d N

�
0;��1���10

�
:

Robinson (2007b) gave detailed motivation for using (2) and (3) to derive central limit theorems in
the presence of spatial correlation and heterogeneity. Most basically, they imply that max1�i�nE(U2i ) �
C: They also extend the kind of linear process used when the Ui form a stationary time series, and
bij = bi�j : The more general ij subscript conveys possible heterogeneity as well as correlation, and
this and the suppressed n subscript on bij are required to cover models such as the SAR (which is
nonstationary). In the SAR model for Ui the bij eventually vanish, for all i (bij = 0 for j > n); and
(3) is satis�ed under standard conditions, but it also covers in�nite-order dependence, familiar from
time series and lattice autoregressive and autoregressive moving average models. In these, the bij are
absolutely summable, but (3) covers also possible "long memory". However, the extent to which this is
possible depends also on the dependence within fX2ig : As noted in the time series case by Robinson and
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Hidalgo (1997), root-n�consistency is only possible if the collective memory in Ui and X2i is su¢ ciently
weak. In particular if X2i includes an intercept, the �rst limit in Assumption A4 (which merely asserts
convergence of the covariance matrix of n�1=2

Pn
i=1X2iUi) rules out long memory in Ui: However if (1)

is reformulated in terms of mean-corrected observables long memory in Ui might be permitted in a cor-
responding central limit theorem for slope parameter estimates based on Assumption A1, cf Robinson
and Hidalgo (1997). Independence of innovations (in Assumption A1) is standardly assumed both in
models of SAR type and in lattice extensions of linear time series models; the martingale di¤erence
assumptions of time series models are hard to extend as there is no natural ordering to our data. In-
dependence of fX2ig and f"ig is a strong assumption and would be capable of some relaxation, but at
a cost because our decoupling of conditions on disturbances and explanatory variables, here and even
more so with respect to the partly linear model of the following section, has advantages, as discussed in
Robinson (2007b). Assumption (4) is the required version of the asymptotic-negligibility condition to
satisfy a Lindeberg condition. Note that if the Ui are uncorrelated, as implied when bik = 0 for i 6= k,
(4) reduces to n�

1
2 max1�i�n kX2ik !p 0, which, given the standard Assumption A2, is implied by

the more familiar-looking condition max1�i�n kX2ik =
�
�ni=1 kX2ik

2
�1=2

!p 0: But the same conclusion

results also under fairly general dependence in Ui. In particular this is the case if �ni=1 jbikj � C for all
k; as is true if jbikj � C jbi�kj where �1i=�1 jbij <1, to connect with weakly dependent stationary time
series, or under an analogous condition relating to lattice processes. It is also the case with SAR models
under normalization conditions. However, (4) is also true under more general dependence conditions, in

particular if X2i is uniformly bounded in probability it is only required that supk2N �
n
i=1 jbikj = o

�
n
1
2

�
,

which for stationary time series and lattice data would permit long memory in Uin. Assumption A3 is
just a standard uniform integrability requirement, avoiding identity of distribution.

3 Partly Linear Regression

Consider now the partly linear regression

Yi = �
0X1i + � (Zi) + Ui; 1 � i � n; (5)

where to extend the previous de�nitions Zi = Zin is a q-dimensional observable column vector ran-
dom variable; and � is an unknown, nonparametric, function. As discussed by Robinson (1988), for
identi�ability X1i cannot include an intercept and X1i; Zi cannot overlap.
We again focus on estimating �: As in Robinson (1988), we employ Nadaraya-Watson nonparametric

regression estimation in estimating a transformed version of (5). Letting k : R! R be an even function,
consider a product kernel K : Rq ! R such that

K (z) =

qY
t=1

k (zt) ;

where zt is the t-th element of z: For a positive scalar bandwidth sequence a = an; tending to zero as
n!1; denote

Kij = Kijn = K

�
Zj � Zi
a

�
:

For a column vector triangular array fAi = Aing ; de�ne

A�i = A
�
in =

1

naq

nX
j=1

(Ai �Aj)Kij ;
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and with fBi = Bing also a column vector triangular array, de�ne

SAB =
1

n

nX
i=1

A�iB
�0
i :

Our semiparametric IV estimate of � is

�̂ = S�1X2X1
SX2Y ;

assuming existence of the inverse. This is a density-weighted (as in Fan and Li (1999)) IV version of the
estimate of Robinson (1998) For independent and homoskedastic Ui; Chamberlain (1992) showed that
the latter estimate achieves a semiparametric e¢ ciency bound. However, with spatial dependence in
fUig, this property is lost, and without suitable spatial dependence structure, GLS-type estimation is
ruled out. Because neither the estimate in Robinson (1988) nor the density-weighted version is e¢ cient,
and the former need not in general be the more e¢ cient of the two, the latter may be preferable since
the trimming in Robinson (1988) can thereby be avoided. However as in that reference, we still need
to su¢ ciently reduce bias so as to obtain root-n-consistency in the presence of an arbitrarily high
dimension of the vector Zi, and this is achieved by employing a kernel k of suitably high order, and a
corresponding degree of smoothness in the functions to be estimated. To describe these features we
introduce the following de�nitions.

De�nition 1 Kl; l � 1; is the class of bounded and even functions k : R! R such thatZ
R
uik (u) du = �i0; i = 0; :::; l � 1;

k (u) = O

��
1 + juj�

��1�
;

as juj ! 1; where �ij is the Kronecker delta and � > max(l + 1; 2q):

De�nition 2 A function g : Rq ! R is in the class G�� ; � > 0; � > 0 (with respect to the
triangular array fZig) if: (i) g is (m� 1)-times partially di¤erentiable, for m � 1 � � � m; (ii)
for some � > 0; supy2B(z;�) jg (y)� g (z)�Q (y; z)j = ky � zk

� � h (z) for all z, where B (z; �) =
fy : 0 < ky � zk < �g ; Q = 0 when m = 1; (iii) Q is a (m� 1)-th degree homogeneous polynomial in
y� z with coe¢ cients the partial derivatives of g at z of orders 1 through m� 1 when m > 1; and (iv)
g (z), its partial derivatives of order m � 1 and less, and h (z), have average �th moments (averaged
over Zi; 1 � i � n) that are uniformly bounded for all su¢ cietly large n.

We introduce the following assumptions.

Assumption B1 Assumption A1 holds with (1) replaced by (5).

Assumption B2 f"ig is independent of fX2i; Zig and Assumption A3 holds.

Assumption B3 The following probability densities exist and have unbounded support: fi = fin,
the density function of Zi; fij = fijn; the joint density function of Zi and Zj; fijk = fijkn; the joint
density function of Zi; Zj ; and Zk; and fijkl = fijkln , the joint density function of Zi; Zj ; Zk and
Zl:
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Assumption B4 For all n � 1 and 1 � i � n;

Xti = �t (Zi) + Vti; t = 1; 2;

where Vti = Vtin are p-dimensional column vector random variables such that for t = 1; 2;

E (VtijZ1; :::; Zn) = 0

and there exist functions �t : Rq �Rq ! R such that

E (V 0tiVtj j fZ1; :::; Zng) = �t (Zi; Zj) 

(t)
ij ;

where 
(t)ij = 

(t)
ijn =E (V 0tiVtj).

De�ne

f(z) = fn(z) =
1

n

nX
i=1

fi(z); fi = f(Zi);

and


(U)
ij = 


(U)
ijn = E (UiUj) :

Assumption B5 As n!1;

n�1
nX
i=1

V2iV
0
1ifi

2 !p 	;

where 	 is a constant non-singular matrix and

max
1�i; j�n

���
(t)ij ��� � C; t = 1; 2;
nX

i;j=1

���
(1)ij ��� = o(n2); nX
i;j=1

n���
(2)ij ���+ ���
(U)ij

���o = o�n3=2� ; as n!1:

Introduce the notation
nX

i1;:::;is

=
nX

i1=1

nX
i2 6=i1

� � �
nX

is 6=i1;:::;is 6=is�1

:

Also introduce the dependence measures

Fj:i(z2; z1) = fij (z1; z2)� fi (z1) fj (z2) ;
Fjk:i(z2; z3; z1) = fijk (z1; z2; z3)� fi (z1) fjk (z2; z3) ;

Fij:k:l(z1; z2; z3; z4) = fijkl (z1; z2; z3; z4)� fij (z1; z2) fk (z3) fl (z4) :

Assumption B6 For some " > 0; fZig satis�es the following conditions as n!1:
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(i) denoting B = Bn =
�
z : f (z) > 0

	
; N (z) = fz1 : kz1 � zk < "g ;

sup
z12B

sup
z22N (z1)

8<: 1

f (z1)

nX
i;j

jFj:i(z2; z1)j

9=; = o
�
n3=2

�
;

sup
z12B

sup
z2;z32N (z1)

8<: 1

f (z1)

nX
i;j;k

jFjk:i(z2; z3; z1)j

9=; = o
�
n5=2

�
;

(ii)

sup
z1;z22Rq

sup
z32N (z1)[N (z2)

nX
i;j;k

���
(U)ij 

(2)
ij Fij:k(z1; z2; z3)

��� = o
�
n2
�
;

sup
z1;z22Rq

sup
z32N (z1); z42N (z2)

������
nX

i;j;k;l


ijFij:k:l(z1; z2; z3; z4)

������ = o
�
n3
�
;

for 
ij = 

(2)
ij ; 


(U)
ij and the product 
(2)ij 


(U)
ij :

Assumption B7 For all su¢ ciently large n; f 2 G1� for some � > 0; and, for distinct i; j; k; l 2
[1; n] ;

lim
n!1

�
max
i
sup fi (z) + max

i;j
sup fij (z1; z2) + max

i;j;k
sup fijk (z1; z2; z3) + max

i;j;k;l
sup fijkl (z1; z2; z3; z4)

�
<1;

where the suprema are over all real values of the function arguments.

Introduce a scalar function G(z) such that

nX
i=1

E
�
G4 (Zi)

	
= O (n) ; as n!1:

Assumption B8 For t = 1; 2; �t 2 G4� for some � > 0 and there exist " > 0 such that for any
z 2 Rq

sup
0<kuk<"

j�t (z)� �t (z + u)j
kuk � G (z) :

Assumption B9 � 2 G4� for some � > 0; and there exist " > 0 such that for any z 2 Rq

sup
0<kuk<"

j� (z)� � (z + u)j
kuk � G (z) :

Assumption B10 For t = 1; 2; as n!1;Z
�t (z; z)

2
f (z) dz +

Z
�2 (z1; z2)

2
f (z1) f (z2) dz1dz2 = O (1) ;
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max
1�i; j�n

E j�2 (Zi; Zj)j = O
�
n1=2

�
;

and there exist " > 0 and functions Gt (z1; z2) such that for any z1; z2 2 Rq;

sup
0<k(u;v)k<"

j�t (z1; z2)� �t (z1 + u; z2 + v)j
k(u; v)k � Gt (z1; z2) ;

where as n!1 Z
Gt (z; z) f (z) dz +

Z
Gt (z1; z2) f (z1) f (z2) dz1dz2 = O (1) :

Assumption B11 As n!1;

n�1=2 sup
j2N

nX
i=1

kV2ik f
2

i jbij j !p 0

and
1

n

nX
i=1

nX
j=1

1X
k=1

bikbjkf
2

i f
2

jV2iV
0
2j !p 
;

where 
 is a constant p.d. matrix.

Assumption B12 For the same �; �; � as in Assumptions B7 - B9, k 2 Kmax(l+m�1;l+r�1) for
integers l; m; r such that l � 1 < � � l; m� 1 < � � m; r � 1 < � � r:

Assumption B13 For the same �; �; � as in Assumptions B7 - B9, as n!1;

a+ n�1=2a�q + n1=2a��2q + n1=2
�
a2� + a2� + a2�

�
! 0:

Theorem B Under Assumptions B1-B12, as n!1;
p
n
�
�̂ � �

�
!d N

�
0;	�1
	�10

�
:

To a substantial degree, the assumptions are a mixture or modi�cation of ones in Robinson (1988,
2007b). In his i.i.d. data setting, Robinson (1988) was able to relax Assumption B4 to E (VtijZ1; :::; Zn) =
0 a.s., t = 1; 2; but for our potentially spatially dependent setting we have been unable to avoid more
structure. Though Assumption B4 does allow for some conditional heteroscedasticity it is nevertheless
strong, especially when p > 1; but we prefer to avoid milder but more complicated assumptions. As-
sumption B5 places an upper bound on the spatial dependence in Ui and V2i that covers long memory.
Assumption B6, as in the nonparametric regression setting of Robinson (2007b), constitutes an asymp-
totic independence assumption on Zi; part (ii) of it also involves the 


(U)
ij and 


(2)
ij . It is di¢ cult to

check in general, but this is possible at least under Gaussianity: as noted in Robinson (2007b), a similar
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(slightly stronger) condition was checked by Castellana and Leadbetter (1986), in the stationary scalar
Gaussian time series case: there exists " > 0 such that for N (z) = fz1 2 R : jz � z1j < "g ;

sup
z12R

sup
z2;z32N (z1)

nX
i;j;k

����Fjk:i(z2; z3; z1)f (z1)

���� � Cn nX
i=1

nX
j=1

jCov(Zi; Zi+j)j :

In this setting at least, Assumption B6 allows fZig to have long memory. With respect to �nding
alternative su¢ cient conditions, there is always a di¢ culty, in either the spatial or time series contexts, in
characterizing useful, coherent, joint, non-Gaussian, densities. To place matters in further perspective,
mixing conditions would provide an alternative to B6, but though there has been a good deal of
discussion of conditions for these with respect to time series, relatively little seems to be known in a
spatial context, especially given the rather wide range of spatial con�gurations that we try to allow for.

4 Variance Estimation

For statistical inference the limiting covariance matrices in Theorems A and B must be consistently
estimated. To focus particularly on the Theorem A, Assumption A2 gives a consistent estimate, b�; of
�: Assuming no correlation in the Ui; � can be estimated by

b�1 = b�1n = 1

n

nX
i=1

X2iX
0
2i
eU2i ;

where eUi = eUin = Yi � ~�0X1i;
so b�1 is a standard heteroscedasticity-robust estimate in the style of Eicker (1967). Assuming also
homoscedasticity we have of course the estimate

b�2 = b�2n = e�2 1
n

nX
i=1

X2iX
0
2i;

where e�2n = e�2 = (n� p)�1Pn
i=1

eU2i : Consistency of b�1 and b�2 follows under mild additional condi-
tions.
Estimation of � can be considerably more problematic when there is correlation in the Ui: Given

a parametric model for Ui; such as a SAR or, with lattice data, a lattice extension of a stationary
time series model such as an autoregressive moving average, matters are relatively straightforward.
When Ui is not parametrically modelled, lattice data permit relatively straightforward extension of
the heteroscedasticity-and-autocorrelation-consistent (HAC) variance estimates proposed for time se-
ries data, which are essentially smoothed nonparametric estimates of the spectral density matrix of
a stationary process at zero frequency (though the edge-e¤ect must be taken account of). For non-
lattice data there is a fundamental di¢ culty of autocovariance estimation, for example when data are
irregularly-spaced there are typically insu¢ cient pairs of observations available to reliably estimate
the autocovariance for a given lag using standard formulae. This problem is present with irregularly-
spaced time series data, and the kernel smoothing method suggested there by Masry (1983), to estimate
autocovariances at integer lags, can be extended to two or more dimensions, with the autocovariance
estimates then straightforwardly inserted in a higher-dimensional HAC formula. This approach is based
on stationarity, but as in the time series case it can doubtless be shown to be consistency-robust to a
degree of heterogeneity. As an alternative way in which the problem can be transformed to one for a
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stationary random �eld on a lattice, Conley (1999) modelled locations by a point process, dividing the
sampling region into rectangular cells such that for each cell, there can be at most a single observation.
On the other hand an estimate which potentially covers both nonparametric dependence and het-

erogeneity is of form b�3 = b�3n = 1

n

nX
i=1

nX
j=1

X2iX
0
2j
~Ui ~Ujwij ; (6)

where the wij = wijn form an array of weights, as in Kelejian and Prucha (2007). In their proof of
consistency, they stress SAR-type Ui; but the property holds much more generally under Assumption
A1. The quadratic-form estimate (6) reduces to a familiar HAC form if the wij are of the kernel form
wi�j = wi�j;n; involving a bandwidth, but Kelejian and Prucha (2007) take wij = w (dij=d) ; where the
function w (x) is suitably normalized and vanishes for x > 1; dij = dijn is a known, positive (economic)
distance between locations i and j; and d = dn � maxi;j dij is regarded as increasing without bound
with n: An alternative choice of wij is based on knowledge of observed locations s�i 2 Rr; for dimension
r � 1; i = 1; :::; n: Let si be a r� 1 vector such that if sik and s�ik are the k-th elements of si and s�i ; so
sik is the smallest integer such that sik � s�ik:We can regard si as discretized locations on a rectangular
grid. De�ne

w (si � sj ;m) =
rY

k=1

h f(sik � sjk) =mkg ;

where h is a real-valued function and mk = mkn are non-negative integers forming a truncation vector
m = (m1,...,mr): Set wij = w�

�
s�i ; s

�
j

�
= w (si � sj ;m) :

With respect to variance estimation in Theorem B, Assumption B5 supplies a consistent estimate,b	; of 	; while to echo remarks of the previous section, after de�ning bU�1i = bU�1in = Y �i � �̂0X�
1i; under

regularity conditions a consistent estimate of 
 is

b
1 = b
1n = 1

n

nX
i=1

X�
2iX

�0
2i
bU�21i ;

when the Ui are independent, and

b
2 = b
2n = b�2 1
n

nX
i=1

X�
2iX

�0
2i ;

when they are also homoscedastic, where b�2n = b�2 = (n� p)�1
Pn

i=1
bU�21i : For dependent Ui one can

use (cf (6)) b
3 = b
3n = 1

n

nX
i=1

nX
j=1

X�
2iX

�0
2j
bU�1i bU�1jwij : (7)

In order to provide some reasonably comprehensible theoretical justi�cation, let us consider the
infeasible estimate e�3 = e�3n = 1

n

nX
i=1

nX
j=1

X2iX
0
2jUiUjwij ; (8)

which becomes b�3 with Ui replaced by ~Ui; and b
3 with Ui; X2i replaced by bU�1i; X�
2i respectively. For

any � 2 Rp;
�0e�3� = 1

n

X
s2L

X
t2L

vsvtw (s� t;m) ;
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where vt =
Pn

i=1 �
0X2iUi1 (si = t) and 1 is the indicator function. This can be written asX

u2L�
w (u;m) cu;

where L� = fs� t : s 2 L; t 2 Lg ; cu = n�1
P

�(u) vtvt+u; and � (u) = ft : t 2 L; t+ u 2 Lg ; where
we assume that si 2 �rj=1 f1; :::; njg = L for all i; where L is the smallest rectangular grid containing
all si: If h is either the modi�ed Bartlett window or the Parzen window, then �

0e�3� � 0 (see Robinson,
2007a), and hence e�3 is non-negative de�nite. We establish conditions for approximating

�n = n
�1

nX
i=1

nX
j=1

E
�
X2iX

0
2j

�
E (UiUj)

by e�3:
Assumption C1 The kernel h is a real, even function such that jh (u)j � 1; h (u) = 0 if

juj > 1; and limu!0 (1� h (u)) = jujq = hq for some q > 0 and 0 < hq <1:

Assumption C2 As n!1;
(i)

mk !1; nk !1; k = 1; :::; r;

(ii)
mk

nk
! 0; k = 1; :::; r;

and there exist 0 < c1 < c2 <1 such that

c1

rY
k=1

nk � n � c2
rY

k=1

nk

for su¢ ciently large n:

De�ne

Sn (u) =
1

n

nX
i=1

nX
j=1

E
�
X2iX

0
2j

�
E (UiUj)1 (si � sj = u) :

Assumption C3 There exists a family of p � p matrices fGu : u 2 Zrg ; where Zr is the r-
Cartesian product of the set of integers, such that the absolute value of each element of Sn (u) is
bounded by the corresponding element of Gu; for all u 2 L�; n 2 N, and

P
u2Zr

Pr
k=1 jukj

q
Gu is a

�nite matrix.

Assumption C4 Let xti be the t-th element of Xi: For all t; s = 1; :::; p; as n!1
nX
i=1

nX
j=1

nX
k=1

nX
l=1

j� (xtiUi; xsjUj ; xtkUk; xslUl)j = O (n) ;
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where � is the cumulant function.

De�ne

S1ts;n (u; v; u1) = n�1
X
u;v;u1

E (xtixtkUiUk)E (xsjxslUjUl) ;

S2ts;n (u; v; u1) = n�1
X
u;v;u1

E (xtixskUiUk)E (xtjxrlUjUl) ;

where the summation is over all i; j; k and l such that si � sj = u; sk � sl = v and si � sk = u1:

Assumption C5 There exist numbers
�

u;v : u; v 2 Zr

	
such that jS1ts;n (u; v; u1) + S2ts;n (u; v; u1)j �


u1;u1+v�u for all t; s = 1; :::; p and u; v; u1 2 L
�; n 2 N, andX

u2Zr

X
v2Zr


u;v <1:

Theorem C As n!1; under Assumptions C1, C2 (i) and C3

E
�e�3 � �n� = O rX

k=1

m�q
k

!
;

and under Assumptions C2, C4 and C5,

V ar
�e�3� = O n�1 rY

k=1

mk

!
:

Sharper results can be obtained if stronger assumptions are imposed. For example, if as n ! 1;
Sn (u)! S (u) for all u, for a well-de�ned function S (u) ; the asymptotic bias can be made more precise.
This assumption is similar to the de�nition of asymptotic stationarity of irregularly spaced time series
in Parzen (1963). The same can be said for the variance if another type of asymptotic stationarity is
introduced (see the proof of Theorem C). Under such assumptions, the asymptotic mean squared error
can be used as a criterion for choosing a truncation vector, and a data-dependent plug-in procedure
then employed.

5 Monte Carlo Study of Finite-Sample Performance

We examine �rst, for the linear regression (1) with p = 1, the size of 2-sided t -tests based on the LS
version of e� and the estimates b�1; b�2 and the second approach to forming b�3 described in the previous
section. The locations s1; :::; sn of the observations were generated by a random draw from the uniform
distribution over

�
0; 4n1=2

�
�
�
0; 4n1=2

�
: Given these (and keeping them �xed across replications), the

Ui were generated as normal variables with mean zero and covariances Cov (Ui; Uj) = �
ksi�sjk
U ; for

prescribed �U 2 (0; 1): Likewise the Xi (= X1i = X2i) were generated as scalar normal variables with
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mean unity and covariances Cov (Xi; Xj) = �
ksi�sjk
X ; for prescribed �X 2 (0; 1) (and independently of

the Ui): We took � = 1; (�X ; �U ) = (0:2; 0:3) and (0:4; 0:5) ; n = 100 and 169; and generated 1000
replications: Table 1 reports empirical sizes of t�tests with nominal sizes � = 0:01; 0:05 and 0:1 usingb�1; denoted in the "m" column by H, e�2, denoted there by C, and e�3; for various values of m in
the truncation vector (m;m) ; and using the Parzen kernel for h. There is some over-sizing, which
diminishes with increasing n: The over-sizing is particularly acute with respect to the inappropriate
variance estimates C and H, with the (heteroscedasticity-robust) H doing worse than the classical C.
For e�3 there is stability across m (though when we tried m outside the range used in Table 1 we found
greater sensitivity.

Table 1 about here

Power was investigated in the same setting, against the incorrect null hypothesis that � = 0:8; but
with Ui � NID (0; 1) ; Xi � NID (1; 1) : Monte Carlo powers are displayed in Table 2. The main
�ndings are that choice of variance estimate here makes little di¤erence, and that power increases quite
signi�cantly with the rather modest increase in n: The experiment was repeated with the incorrect null
hypothesis � = 0:5; when all powers were perfect.

Table 2 about here

We now turn to the semiparametric partly linear model (5), and use the LS version of b�: This
depends on a bandwidth a: In general one expects less sensitivity to bandwidth choice in semipara-
metric than in nonparametric estimation. Moreover, the problem with trying to use a data-dependent
bandwidth, especially in a relatively complicated, semiparametric, situation like this, is not so much
the computational e¤ort as that one is then at the mercy of a mechanical procedure that is itself rather
arbitrarily selected. Even in the semiparametric literature often optimal bandwidths originally devised
for purely nonparametric estimation are used, but clearly their relevance to the semiparametric model
is unclear. Alternatively one can develop some procedure based on the semiparametric model itself.
Our view here is that if the goal is statistical inference based on the central limit theorem, rather than
using, say, minimum-mean-squared error or cross-validation procedures, it is more appropriate to choose
a bandwidth that minimizes the error in the normal approximaton. Nishiyama and Robinson (2000)
achieved this for semiparametric averaged derivatives but even that case is complicated and in the
current one, if feasible, it would be more so. Moreover, they assumed independence of observations,
which would clearly be inappropriate here given the paper�s overall focus. Even weak disturbance
correlation would a¤ect this optimal bandwidth (unlike in the pure nonparametric setting), let alone
the strong correlation which we allow for. Another point to bear in mind is that our asymptotic theory,
like the bulk of the nonparametric and semiparametric literature, assumes a data-free bandwidth. In
any case some experience over the years suggests that unless an "optimal" bandwidth is available and
well-motivated it may be desirable to employ a range of bandwidths, which also allows one to assess
sensitivity, and this was done in the following experiment (though cross-validation was tried in the
empirical study of the following section).
In (5) we took p = 1; q = 2 andXi = 1+Z1i+Z2i+Vi; �(Zi) = Z21i+Z

2
2i; where the Z1i; Z2i; Vi were

generated as normal variables with mean zero and such that Cov fXi; Xjg = �ksi�sjkX , the Ui as normal

with mean zero and Cov fUi; Ujg = �
ksi�sjk
U ; and fZ1ig ; fZ2ig ; fVig and fUig were independent.

We again took � = 1; (�X ; �U ) = (0:2; 0:3) and (0:4; 0:5) ; n = 100 and 169; and generated 1000
replications. We employed a = 1:0; 1:2 and 1:4: We used two di¤erent kernels k; namely k2 (z) = � (z)
and k4 (z) =

�
3� z2

�
� (z), where � is the standard Gaussian density; k2 and k4 are respectively second-

and fourth-order kernels, and are thus not of high enough order to satisfy the conditions of Theorem
B, but this strategy was adopted due to the imprecision likely to be caused by a high order kernel in
the relatively modest sample sizes.
There is interest in the e¤ect on bias (BI) and standard deviation (SD) of the point estimateb� of the choice of kernel and bandwidth. The results for k2 were as follows. With (�X ; �U ) =
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(0:2; 0:3) ; BI(SD) was, for a = 1:0; 1:2; 1:4; respectively .0062(.1200), .0059(.1184), .0057(.1187) when
n = 100, and .0047(.0872), .0037(.0852), .0026(.0849) when n = 169; with (�X ; �U ) = (0:4; 0:5) ;
BI(SD) was .0052(.1260), .0048(.1259), .0047(.1281) when n = 100, and .0045(.0909), .0035(.0894),
.0024(.0897). The results for k4 were as follows. With (�X ; �U ) = (0:2; 0:3) ; BI(SD) was .0063.(.1245),
.0060(.1224), .0059(.1214) when n = 100, and .0053(.0910), .0045(.0886), .0035(.0872) with n = 169;
with (�X ; �U ) = (0:4; 0:5) ; BI(SD) was .0052(.1300), .0050(.1291), .0048(.1295) when n = 100, and
.0050(.0945), .0043(.0925), .0033(.0915) when n = 169: Both BI and SD fall with increasing n: There
is no clear pattern discernable from changing (�X ; �U ) : The fact that k2 on average produces lower BI
than k4 is due to the fact that the same bandwidths were used for both, whereas k4 demands a larger
bandwidth than k2: Nevertheless, k2 still produces a lower SD.

Tables 3 and 4 about here

From the same replications t-ratios were computed for each choice of kernel and bandwidth, and
using b
1; denoted by H, b
2, denoted by C, and b
3; which employed the Parzen kernel and m in the
truncation vectors (m;m) : Empirical sizes using k2 and k4 are displayed in Tables 3 and 4 respectively.
There is cleaely some sensitivity to choice of a; with sometimes a monotone change, and sometimes a
peak or trough, observed on increasing it, though the discrepancies do not seem huge. Use of the C or
H estimates tends to produce marked over-sizing when (�X ; �U ) = (0:4; 0:5) ; but the correlation-robust
tests are quite stable across m: Generally, performance deteriorates with greater spatial correlation, but
it also improves with increasing n; and when n = 169 it is surprisingly better than for the parametric
linear model (1). Comparing Tables 3 and 4, k2 generally fares better than k4; possibly due to the
relative BI and SD behaviour reported above.
Finally Table 5 displays empirical powers, against the incorrect null hypothesis that � = 0:7; in

the previous setting but with Ui; Vi; Z1i; Z2i;� NID (0; 1) : Powers mostly increase somewhat with a
and markedly with n; but tend to be stable across the variance estimates, with the larger powers for
C possibly due to over-sizing. In another experiment using the incorrect null hypothesis that � = 0:5;
perfect powers were observed throughout.

Table 5 about here

6 Empirical Illustration

The present section develops an empirical analysis of Banerjee and Iyer (2005), which employed linear
regression modelling and estimation to study the in�uence of di¤erent systems for collecting land revenue
in India, instituted during British colonial rule, on present-day economic performance. In a threefold
classi�cation of these systems, in a given area revenue was collected either through the local landlord,
or through the village, or from the individual cultivator. Banerjee and Iyer (2005) used district-level
data, and calculated the proportion of "non-landlord" areas within a district (in the 1870�s or 1880�s);
in some cases this could not be done accurately and a proportion of 0 or 1 was assigned. This non-
landlord proportion, denoted NL, was the explanatory variable of chief interest in Banerjee and Iyer�s
(2005) study: on the basis of economic theory and empirical evidence, agricultural investment and yields
are positively related to NL, and income/wealth inequality are negatively related to it. Their data on
measures of economic performance and productivity, used as dependent variables, consisted of a panel
(annually, over the period 1956 through 1987 and across some 271 districts in 13 major states). As
well as carrying out LS regressions (correcting also for various control variables), because of concerns
about endogeneity (non-landlord areas are inherently more productive), Banerjee and Iyer (2005) also
used IV estimation with a dummy, which we denote C0, for whether or not a district was conquered
between 1820 and 1856 as instrument for NL. Districts are intrinsically of irregular size and shape, and
are thus intrinsically geographically irregularly-spaced, and moreover the lack of data for some states
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produces huge spatial gaps, as Figure 1 of Banerjee and Iyer (2005) indicates. However, they did not
explore the possibility of spatial or serial correlation, and employed standard inference rules based on
uncorrelated and homoskedastic disturbances, and nor did they explore semiparametric modelling.
We consider the possibility of spatial correlation of disturbances, and its a¤ect on inference, as well

as the use of partly linear, and also pure nonparametric, regression. To maintain focus and prevent
matters becoming over-complicated, we employ data from only one year, 1984; incidentally, Banerjee
and Iyer�s (2005) model was static, with time-invariant slope parameters. Employing data from near
the end of the period also takes account of the "Green Revolution" (see e.g. Munshi (2004)), which
started in the early 1960s to combat famine in certain Indian states, and was later extended throughout
the country; as Banerjee and Iyer�s (2005) aim was to study e¤ects of local institutions, later periods
in the sample could provide better regression �ts.
We �rst tested for spatial correlation of the disturbances in some of Banerjee and Iyer�s (2005)

regression models, employing LS and IV residuals in members of the class of tests proposed by Robinson
(2008). These tests include a number of previously-proposed ones as special cases, and can be designed
to have a Lagrange multiplier interpretation with respect to certain spatially correlated alternatives to
the null of uncorrelatedness, for example against a SAR alternative, when the test statistic depends
on the chosen spatial weight matrix or matrices. For certain choices, several members of this class of
statistics, including ones with �nite-sample corrections, were computed, for the four regressions with
proportion of irrigated land (IL), fertilizer use (FU), log(yield 15 crops) (L15), and log(rice yield) (LR)
as dependent variable Y . For the most part the tests rejected, suggesting possible spatial correlation in
disturbances (though as always some other source of misspeci�cation could be the cause). The detailed
results can be obtained from the authors on request.
We next carried out some simple Nadaraya-Watson nonparametric regression �ts, of each of the

same four Y on NL. Under similar assumptions to ours, Robinson (2007b) showed consistency and
asymptotic normality of this estimate. Though his conditions require the explanatory variable to be
continuous, whereas as previously noted NL has a mixed distribution, nevertheless the exercise may be
helpful in re�ecting nonlinearity and hinting at its form. Figures 1-4 contain scatter plots for the four
dependent variables and nonparametric regression �ts using a Gaussian kernel with bandwidth 0:3. This
choice was the smallest one that did not give very unsmooth curves, and much larger ones appeared to
oversmooth, indeed NL takes values in [0,1]. In any case the purpose of the nonparametric regression is
only exploratory, to hint at possible structure. The Figures suggest in each case a mode, and possibly
a mild secondary one, and thus evidence of nonlinearity, contrary to the modelling of Banerjee and Iyer
(2005).

Figures 1-4 about here

Our parametric and semiparametric regression models included (unlike in Banerjee and Iyer (2005))
the square (NL2) of NL as a regressor (as well as NL itself), as just suggested by the nonparametric
�tting. We also replaced two of Banerjee and Iyer�s (2005) explanatory variables by proxies which may
be more appropriate. For their panel data set, mean annual rainfall was constructed over 1931-1960,
but rainfall records from several decades earlier than 1984, the only year which we analyze, may not be
relevant, especially for agricultural yields. We used instead a precipitation variable (PRE) constructed
by Mitchell and Jones (2005), based on a method which they argued o¤ers some improvement over
existing ones in the climatology literature: their dataset included 6 monthly climate elements over a
0:5 � grid, over which variation is small, and we used longitude and latitude of district headquarters to
obtain a weighted average at surrounding grids for 1984, district headquarters tending to be in areas of
high population density which themselves tend to be relatively fertile. Second, Banerjee and Iyer (2005)
included latitude (but not longitude) as an explanatory variable, but latitude behaves like a linear trend
in a time series regression, and thus a¤ects the rate of convergence of estimates, in a way determined
by the scatter of district headquarters. We replaced latitude by annual temperature (TEM), which
varies considerably across India and is more likely to in�uence agricultural yields and hence investment
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decisions. As an additional modi�cation, we discarded Thanjavur district because it appears to have
serious measurement error: it is the only district having IL exceeding unity, and FU in Thanjavur was
79.44 in 1981, rose to 301.18 in 1982, and has remained high since, whereas average FU excluding
Thanjavur in 1984 was only 61.15.
IV estimation in the presence of the additional, NL-dependent, regressor NL2, requires an additional

instrument. The one selected, denoted C1, takes the value unity if a district was acquired between
1820 and 1856, and otherwise its value is determined by the cause of acquisition: 0:1 for "lapse",
0:3 for "misrule", 0:5 for conques, 0:7 for "grant", and 0:8 for "ceded". The ordering is based on
a likely strategy for security of the British administration, the higher value for "ceded" to "grant"
due to the latter being more common at the beginning of the British colonisation when landlord land-
revenue systems predominated. C1 can be considered as a �ner version of C0, and should likewise be
uncorrelated with omitted districts�characteristics which determine 1984 investment and productivity;
both are one-o¤ historical events. On the other hand C0 and C1 are not highly correlated but are both
highly correlated with NL. We used C0 and C1 as instruments for NL2 and NL respectively, C1 having
relatively higher sample correlation with NL.
In (1) we took Y = IL, FU, L15 and LR, as above (n = 164; 164; 165 and 165 respectively), with

X1 = (1;NL,NL2,DBC,CD,BSD,RSD,ASD,ALT,PRE,TEM)0;

where DBC = date district came under British control, CD=coastal dummy, BSD=black soil dummy,
RSD=red soil dummy, ASD=alluvial soil dummy, and ALT=altitude. We computed e� both with
X2 = X1 (LS) and with

X2 = (1;C1,C0,DBC,CD,BSD,RSD,ASD,ALT,PRE,TEM)0;

(IV). Standard errors (SEs) were computed using b�; b�2 and b�3 as described in Sections 5 and 6, with
for m = 2; 4; 6: Next, in (5) we took

X1 = (NL,NL2,DBC,CD,BSD,RSD,ASD)0; Z = (ALT
�,PRE�,TEM�)

0
;

where ALT�, PRE�, TEM� are ALT, PRE, TEM normalized to have sample variances approximately
1 (in order to better justify use of a scalar bandwidth). This selection keeps NL, NL2 and DBC in the
parametric part, these being the explanatory variables of most interest, along with the dummies, and
puts into the nonparametric part control variables that can be taken to be continuous. We computedb� with Z as above, and both with X2 = X1 ("partly LS") and

X2 = (C1,C0,DBC,CD,BSD,RSD,ASD)0

("partly IV"). For choosing the bandwidth a we tried the partial LS cross-validation procedure (and
an IV modi�cation) of Gao (1988), justi�ed by Gao and Yee (2000), though this does not quite �t with
our density-weighted estimate b�: (The elements of Z were previously normalized to have unit sample
variance.) Unfortunately this tended to deliver data-dependent bandwidths that are far too large.
There was a tendency for the cross-validation objective function to �rst decrease rapidly as a increases,
then remain quite �at over a wide range before increasing. Thus we proceeded in a semi-automatic
way, choosing two relatively small a that lie in the �at region of the cross-validation objective function,
these bandwidths varying across the partly LS and IV estimates and across the same two kernels, k2
and k4; as used in the previous section. SEs were computed using b	; b
2 and b
3 as described in Sections
5 and 6, the latter being implemented in the same way as b�3; and for m = 2; 4; 6; we justify these
smallish values by the fact that the data locations locations of the Indian districts data �t within a 25
17 rectangle, where the units are latitude and longitude. The results are presented in Tables 6-9, for
respectively irrigated land (IL), fertilizer use (FU), log(yield 15 crops) (L15), and log(rice yield) (LR)
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as dependent variable, with point estimates in bold-face and SEs reported in parentheses beneath them
(non-robust ones above the three robust ones).

Tables 6-9 about here

Considering �rst the parametric LS and IV estimates, sometimes marked di¤erences between them
are seen and neither estimate is statistically signi�cant. In Tables 6, 7 and 8 none of the IV estimates
on NL and NL2 is signi�cant, but all the LS is signi�cant, and in Table 9 NL is signi�cant. This
outcome also re�ects the larger SEs for IV, which were anticipated. The signs of both LS and IV
estimates of coe¢ cients of NL and NL2 are mostly consistent with the inverted U-shape seen in Figures
1-4. Also in accordance with Banerjee and Iyer (2005), DBC was nearly always found to have a
signi�cantly negative e¤ect; the exceptions were for the larger m; SEs tending to increase with m; a
fairly general feature, though in most cases the variation did not a¤ect the question of signi�cance.
Nor did the non-robust SEs often di¤er much from the robust ones. Turning to the semiparametric
estimates, both the LS and IV versions of b� tend to be in the same ball-park as LS (but not IV) e�; at
least where NL, NL2 and DBC are concerned, though in Table 8, where LS and IV are relatively close,
there is a larger discrepancy for NL and NL2 with semiparametric IV exceeding in absolute value all the
other estimates in case of NL and NL2. Again, using instruments tends to increase SE. There is some
sensitivity to choice of bandwidth a and kernel k; though seldom enough to a¤ect signi�cance, keeping
m �xed. With respect to kernel choice, k4 does not necessarily produce larger SEs than k2; perhaps
because of our simultaneous variation in bandwidth a: On the whole it could be said that Banerjee
and Iyer�s (2005) fully linear speci�cations are not contradicted by our results, except of course, and
importantly, where our extra regressor NL is concerned, and the results here do strongly con�rm the
pattern found in our nonparametric regression �ts.

7 Final Comments

We have developed asymptotic properties useful in statistical inference on regression coe¢ cients in
parametric and semiparametric partly linear models, in the context of a potentially wide range of
spatial or spatio-temporal data. Consistent estimation of limiting covariance matrices is required, and
we have also discussed this topic both when the disturbances are uncorrelated, and when they are
spatially correlated. Finite-sample performance has been investigated in a simulation study, and the
methods applied to an Indian regional data-set.
A number of related issues and extensions can be pursued.

1. As mentioned in the Introduction, mixing conditions represent an alternative class of dependence
conditions, to replace our linear process assumption on disturbances and density-based assump-
tions on regressors. A recent econometric reference is Jenish and Prucha (2008), who develop the
(regular lattice) mixing condition theory of Bolthausen (1982), establishing asymptotic normality
(and laws of large numbers) for the sample mean of a scalar process observed on a possibly irregu-
lar lattice whose exogenous locations are separated by distances that are bounded away from zero.
Analogous conditions can undoubtedly be developed for our more complicated statistics, depen-
dent on multivariate data (with probably faster convergence of mixing rates required), and this
kind of approach would enable a relaxation of our assumption of independence between regressors
and observables. On the other hand, our conditions are potentially applicable beyond their irreg-
ular lattice context (in particular when observation locations are not known even approximately),
and further discussion of the advantages and disadvantages of mixing conditions relative to ours
can be found in Robinson (2007b). Another kind of condition that has been employed in the
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spatial lattice context is based on "FKG inequalities" (see Newman, 1980), but it appears to be
very restrictive.

2. As also mentioned in the Introduction, more e¢ cient estimates than ours may be available. For
example, by comparison with our simple IV estimate, when the number of available estimates
exceeds the number of regressors a two-stage least squares (2SLS) estimate will be more e¢ cient
given disturbances that are both uncorrelated and homoscedastic. However, when either or both
of these conditions are not met, 2SLS is not guaranteed to beat even a simple IV estimate. This
drawback can be overcome by suitable GLS or generalized method-of-moment estimates, entailing
either a parametric or nonparametric modelling of disturbance correlation or heteroscedasticity,
but this would require further structure.

3. In the partly linear model (5), there may also be interest in estimating the nonparametric function
�(z). A simple estimate is

�̂(z) =
nX
i=1

�
Yi � �̂

0
X1i

�
K

�
z � Zi
h

�
=

nX
i=1

K

�
z � Zi
h

�
:

Under related conditions to ours, �̂(z) is likely to share the (simple, normally distributed) asymp-
totic properties of the infeasible estimate for which Yi � �0X1i is replaced by �(Zi) + Ui.

4. We have focussed on relatively simple models in this paper, but undoubtdly analogous conditions
to ours can be employed in establishing, in a similarly general spatial context, asymptotic proper-
ties of estimates in more general parametric models (such as nonlinear regression and simultaneous
equation models) and semiparametric models (such as those described in Robinson, 1988, Section
7).

Appendix 1: Proofs of Theorems A and B
Proof of Theorem A The proof modi�es one in Robinson and Hidalgo (1997). De�ning rn =

r = n�1=2
Pn

i=1X2iUi; by Assumption A2 it su¢ ces to show that r !d N (0;
) : Now

r = n�1=2
1X
k=1

Wk"k;

where Wk = WkN =
Pn

i=1X2ibik: By Lemma A1, there is a sequence fN = Nng ; increasing in n
without bound, such that r � r(N) = op (1) ; where

r(N) = n
�1=2

NX
k=1

Wk"k:

Let D = Dn = n�1
PN

k=1WkW
0
k. From the proof of Lemma A1, limn!1 E

�
n�1

P1
k=N+1 kWkk2

�
=

0; so from Assumption A4, D !p �. For any � 2 Rp such that k�k = 1; let cN = �0D� 1
2 r(N) and wk =

wkn = n
�1=2�0D� 1

2Wk. Then cN =
PN

k=1 wk"k; where by Assumption A4 fwk"k; 1 � k � Ng is a mar-
tingale di¤erence sequence for each N � 1. It su¢ ces to show that conditional on fX2ig ;

PN
k=1 wk"k

d!
N (0; 1) ; which follows from Theorem 2 of Scott (1973) if, conditional on fX2ig ; as n!1;

E

 
NX
k=1

w2k"
2
k

�� "j ; j < k!!p 1; (9)
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and for all � > 0;

E

(
NX
k=1

w2kE
�
"2k1 (jwk"kj > �)

�� fX2ig�)! 0: (10)

The left side of (9) is �0D� 1
2

�
1
n

PN
k=1WkW

0
k

�
D� 1

2� = 1; so (9) holds. The left side of (10) is bounded

by

E

(
NX
k=1

w2kE
�
"2k1 j"kj > �=�

�)
+ P

�
max
1�k�N

jwkj > �
�

� sup
1�k�N

E
�
"2k1 j"kj > �=�

�
+ P

�
max
1�k�N

jwkj > �
�
; (11)

for � > 0: By Assumption A3, the �rst term on the right can be made arbitrarily small by choosing �
small enough, so it su¢ ces to show that max1�k�N jwkj = op (1) : By Assumptions A2, A3 and A4,

max
1�k�N

jwkj � n�1=2



D� 1

2




 max
1�k�N







nX
i=1

X2ibik






 = op (1) :
Proof of Theorem B The proof modi�es ones of Robinson (1988), Fan and Li (1999). We have

�̂ � � = S�1X2X1
(SX2� + SX2U ) ;

where SX2� involves the array f�i = � (Zi)g : We show that SX2X1
!p 	;

p
nSX2� !p 0;

p
nSX2U !d

N(0;
): With likewise �ti = �t (Zi) ; t = 1; 2; we have

SX2X1 = S�2�1 + S�2V1 + SV2�1 + SV2V1 ; SX2� = S�2� + SV2�; SX2U = S�2U + SV2U :

Applying the Cauchy inequality, i.e. E kSABk � (E kSAAkE kSBBk)1=2 ; and the propositions of the
following appendix; the proof is completed by noting that S�2�1 !p 0 (Propositions B2 and B3), S�2V1
!p 0 (Proposition B4), SV2�1 !p 0 (Proposition B5), SV2V1 !p 	 (Proposition B6),

p
nS�2� !p

0 (Propositions B1 and B2),
p
nSV2� !p 0 (Proposition B7),

p
nS�2U !p 0 (Proposition B8) andp

nSV2U !d N(0;�) (Proposition B9).

Appendix 2: Propositions for proofs of Theorems A and B
In this and the following appendix, it is frequently the case that a particular result requires an order

bound for several quantities, but because these are often similarly handled details are not given for all,
in order to conserve on space.
De�ne, for 1 � i � n;

f̂i = f̂i(Zi) = (na
q)
�1

nX
j 6=i

Kij ;

and for a triangular array fAig, Ai = (naq)�1
Pn

j 6=iAjKij ; so that A�i = Aif̂i �Ai in the de�nition of
SAB :

Proposition B1 As n!1;

E (S��) = o
�
n�1=2

�
:
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Proof. We have

E (S��) =
1

n3a2q

nX
i=1

nX
j 6=i

nX
k 6=i

E f(�i � �j) (�i � �k)KijKikg

=
1

n3a2q

24 nX
i;j

E
n
(�i � �j)2K2

ij

o
+

nX
i;j;k

E f(�i � �j) (�i � �k)KijKikg

35 :
The result follows from Lemmas B1, B2 in the following appendix, and Assumption B13.

Proposition B2 As n!1;

E


S�2�2

 = o�n�1=2� :

Proof. Similar to that of Proposition B1.

Proposition B3 As n!1;
E


S�1�1

 = o (1) :

Proof. Similar to that of Proposition B1, except that the result is weaker because milder conditions
are mposed on �1 than on �2 or �:

Proposition B4 As n!1;
S�2V1 !p 0:

Proof. The left side is

n�1
nX
i=1

n
��2iV

0
1ifi + �

�
2iV

0
1i

�
f̂i � fi

�
� ��2iV

0
1i

o
: (12)

By Proposition B2, Lemmas B4 and B5, and the Cauchy inequality, the contributions from the last two
summands in (12) are op(1). Due to Assumptions B5, B7 and B10 for t = 1; 2;

E

 
1

n

nX
i=1

kVtik2 fi
2

!
� max

1�i�n

���
(t)ii ��� sup
z2Rq

f (z)
2
Z
j�t (z; z)j f (z) dz = O (1) : (13)

Proposition B2, (13) and the Cauchy inequality imply that the contribution from the �rst summand in
(12) is also op(1).

Proposition B5 As n!1;
S�1V2 !p 0:

Proof. Similar to that of Proposition B4.

Proposition B6 As n!1;
SV2V1 !p 	:
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Proof. The left side is

n�1
nX
i=1

�
V2iV

0
1if̂

2
i � V2iV

0
1if̂i � V 2iV 01if̂i + V 2iV

0
1i

�
: (14)

For t = 1; 2;

n�1
nX
i=1

kVtik2 f̂2i = n�1
nX
i=1

kVtik2
�
f
2

i + 2f i

�
f̂i � f i

�
+
�
f̂i � f i

�2�
: (15)

Lemma B4, (13) and the Cauchy inequality imply that the left side of (15) is Op (1). Hence with Lemma
B5 and the Cauchy inequality, the contributions from the last three summands in (14) are op(1). The
contribution from the �rst summand in (14) is

n�1
nX
i=1

V2iV
0
1i

�
f
2

i + 2f i

�
f̂i � f i

�
+
�
f̂i � f i

�2�
:

The proof is completed by applying Assumption B5, Lemma B4, (13) and the Cauchy inequality.

Proposition B7 As n!1;

SV2� = op

�
n�1=2

�
:

Proof. The left side is

1

n

nX
i=1

n
V2i�

�
i f i + V2i�

�
i

�
f̂i � f i

�
� V 2i��i

o
: (16)

By Proposition B1, Lemmas B4 and B5, and the Cauchy inequality, the contribution from the last
two summands are op

�
n�1=2

�
. The squared norm of the contribution from the �rst summand has

expectation

n�2
nX
i=1



(2)
ii E

�
�2 (Zi; Zi) �

�2
i f

2

i

�
+ n�2

nX
i;j



(2)
ij E

�
�2 (Zi; Zj) �

�
i �
�
jfifj

�
: (17)

The �rst term in (17) is bounded by

max
1�i�n

���
(2)ii ���n�2 nX
i=1

E
�
�2 (Zi; Zi) �

�2
i f

2

i

�
= o

�
n�1

�
;

by repeating the proof of Proposition B1. The second term in (17) is

1

n4a2q
E

24 nX
i;j;k;l



(2)
ij �2 (Zi; Zj) (�i � �k) (�j � �l)KikKjlf ifj

+
nX
i;j;k

�
(�i � �k) (�j � �k)KikKjk + (�i � �k) (�j � �i)KikKji + (�i � �j) (�j � �k)KijKjk

�

�f ifj�2 (Zi; Zj)
�
� 1

n4a2q

nX
i;j



(2)
ij E

n
�2 (Zi; Zj) (�i � �j)2K2

ijf ifj

o
: (18)
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Lemma B6 and Assumption B13 imply that the contribution from the �rst term in square brackets is

o
�
n�1a2 + n�1=2a2min(�+1;�) + n�1=2a��2q

�
= o

�
n�1

�
:

The remaining contributions to (18) can likewise be shown to be o
�
n�1

�
.

Proposition B8 As n!1;

S�2U = op

�
n�1=2

�
:

Proof. Similar to that of Proposition B7.

Proposition B9 As n!1;
n1=2SV2U !d N (0;
) :

Proof. The left side is

n�1=2
nX
i=1

�
V2iUif̂

2
i � V2iU if̂i � V 2iUif̂i + V 2iU i

�
: (19)

By Lemma B5, the contribution from the last summand is op (1) : The contribution from the third
summand in (19) is

n�1=2
nX
i=1

n
V 2iUif i + ViUi

�
f̂i � f i

�o
= op (1) ;

by Lemmas B4, B5 and B8 and the Cauchy inequality, and that from the second summand in (19) can
simlarly be shown to be op (1). The contribution from the �rst summand in (19) is

n�1=2
nX
i=1

V2iUi

�
f
2

i + 2f i

�
f̂i � f i

�
+
�
f̂i � f i

�2�
:

The proof is completed by applying Lemmas B4 and B10, and proceeding as in the proof of Lemma A1
and Theorem A.

Appendix 3 : Technical Lemmas for proofs of Theorems A
and B
Lemma A1 There exists an increasing sequence N = Nn such that N !1 as n!1 and

lim
n!1

E


rn � r(N)

2 = 0:

Proof. By independence of the "k;

E


r � r(N)

2 =

1

n

1X
k=N+1

E kWkk2

=
1

n

1X
k=N+1

nX
i=1

nX
j=1

E (X 0
2iX2j) bikbjk

�
 
n max
1�i�n

1X
k=N+1

b2ik

!(
1

n

nX
i=1

�
E kX2ik2 + 1

�)2
:
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The result follows from Assumptions A1, A2 and Lemma C1:

We repeatedly use the following consequences of De�nition 1:

sup
u2Rq

jK (u)j+
Z
kuk jK (u)j du+

Z
kuk2K2 (u) du <1; sup

kuk��=a
jK (u)j = O

�
a�
�
for all � > 0:

We also introduce the abbreviations

�(z1; z2) = � (z1)� � (z2) ; K (z1;z2) = K
�
z2 � z1
a

�
:

:

Lemma B1 As n!1;

n�3E

8<:
nX
i;j

(�i � �j)2K2
ij

9=; = o(aq+2n�3=2) +O
�
n�1aq+2 + n�1a2�

�
:

Proof. The left side is

1

n3

Z
�(z1; z2)

2K (z1;z2)
2

nX
i;j

fij (z1; z2) dz1dz2 �
1

n

8<:
Z
�(z1; z2)

2K (z1;z2)
2 1

n2

nX
i;j

Fj:i (z2; z1) dz1dz2

+

Z
�(z1; z2)

2K (z1;z2)
2
f (z1) f (z2) dz1dz2

�
: (20)

Let

p (z; au) = � (z; z + au)
2
K2 (u)

1

n2

nX
i;j

Fj:i (z + au; z) :

The �rst integral in braces in (20) is

aq
Z
Rq

Z
Rq
p (z; au) dudz = aq

"Z
Rq

Z
J1(")

p (z; au) dudz +

Z
Rq

Z
J2(")

p (z; au) dudz

#
;

where
J1 (") = fu : kauk < "g ; J2 (") = fu : kauk � "g :

Let

B =
�
z : f (z) > 0

	
; m (z1; z2) = n

�2f (z1)
�1

nX
i;j

jFj:i (z2; z1)j :

Note that BC � Rq, where BC is the complement of B; is a null set with respect to the probability
measure of Zi; Zj for all i 6= j: Then by Assumptions B6 and B9,Z

Rq

Z
J1(")

jp (z; au)j dudz �
Z
B

Z
J1(")

� (z; z + au)
2
K2 (u)m (z; z + au) f (z) dudz

� a2

 
sup
z12B

sup
z22N (z1)

m (z1; z2)

!Z
G2 (z) f (z) dz

Z
kuk2K2 (u) du

= o
�
a2n�1=2

�
:
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Now Z
Rq

Z
J2(")

jp (z; au)j dudz � 1

n2aq
sup

kauk�"
K2 (u)

Z
R2q
�(z1; z2)

2
nX
i;j

ffij (z1; z2) + fi (z1) fj (z2)g dz1dz2

= O
�
a2��q

�
;

because the double integral is

n�2
nX
i;j

n
E (�i � �j)2 + E

�
�2i
�
+ E

�
�2j
�
� 2E (�i)E (�j)

o
= O (1) ; (21)

by Assumption B9. Hence the �rst integral in braces in (20) is o
�
aq+2n�1=2) +O(a2�

�
: The second

integral in braces in (20) is

aq
Z
� (z; z + au)

2
K2 (u) f (z) f (z + au) dzdu = aq

 Z
Rq

Z
J1(")

+

Z
Rq

Z
J2(")

!
: (22)

The �rst integral on the right in (22) is bounded by

a2
�
sup
z2Rq

f (z)

�Z
kuk2K2 (u) du

Z
G2 (z) f (z) dz = O

�
a2
�
;

and the second integral is bounded by

a�q sup
kauk�"

K2 (u)

24 2
n

nX
i=1

E
�
�2i
�
+ 2

 
1

n

nX
i=1

E (�i)

!235 = O �a2��q� :
Hence the second integral in (20) is O

�
aq+2 + a2�

�
:

Lemma B2 As n!1;

n�3E

8<:
nX
i;j;k

(�i � �j) (�i � �k)KijKik

9=; = o
�
n�1=2a2q+2

�
+O

�
a� + a2fq+min(�;�+1)g

�
:

Proof. With the abbreviation s (z1; z2; z3) = �(z1; z2)�(z1; z3)K (z1; z2)K (z1; z3) ; the left side is

1

n3

nX
i;j;k

Z
s (z1; z2; z3) fijk (z1;z2; z3)

3

�
i=1
dzi =

Z
s (z1; z2; z3)

1

n3

nX
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Fjk:i(z2; z3; z1)
3
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i=1
dzi

+

Z
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1

n3

nX
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3
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dzi
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Z
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1

n3

nX
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�
fi (z1) fj (z2) fk (z3)� f (z1) f (z2) f (z3)
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dzi
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(n� 1) (n� 2)
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Z
s (z1; z2; z3) f (z1) f (z2) f (z3)

3

�
i=1
dzi: (23)

25



With the further abbreviation p (z; u; v; a) = � (z; z + au)� (z; z + av)K (u)K (v) ; the �rst integral in
(23) is

a2q

n3

Z
p (z; u; v; a)

nX
i;j;k

Fjk:i (z + au; z + av; z) dzdudv

= a2q
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+

Z
Rq

Z
J2(")

+

Z
Rq

Z
J3(")

+

Z
Rq

Z
J4(")

!
;

where

J1 (") = fu; v : kauk < "; kavk < "g ; J2 (") = fu; v : kauk < "; kavk � "g ;
J3 (") = fu; v : kauk � "; kavk < "g ; J4 (") = fu; v : kauk � "; kavk � "g :

Let B =
�
z1 : f (z1) > 0

	
andm (z1; z2; z3) = n�3f (z1)

�1Pn
i;j;k jFjk:i(z2; z3; z1)j. Then by Assumption

B6 the �rst integral is bounded by
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a2n�1=2

�
:

By similar reasoning to that in (21) in the proof of Lemma B1,�����a2q
Z
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The same result holds for
���a2q RRq RJ3(")��� : Finally�����a2q
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= O
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:

The �rst integral in (23) is thus o
�
a2q+2n�1=2) +O(a�

�
: The second integral in (23) is

n�3a2q
Z
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Now
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Then proceeding as above, the second integral of (23) is o(n�1=2a2q+2) +O(a�): Because

nX
i;j;k

�
fi (z1) fj (z2) fk (z3)� f (z1) f (z2) f (z3)

	

=
3n� 2
n2

nX
i;j;k
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35 ;
proceeding as in the last part of the proof of Lemma B1, using Assumption B7, the third integral of
(23) is O

�
n�1a2q+2 + n�1a�

�
: Finally by Assumptions B7, B9 and B12, Lemma 5 of Robinson (1988)

implies that the last integral of (23) is O
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a2fq+min(�;�+1)g

�
:
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Proof. Denoting g (z1; z2; z3) = �2 (z1; z1)
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Writing L (z1; z2; z3) = �2 (z1; z1)K (z1; z2)K (z1; z3) ; the �rst integral in (24) is
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n3

Z
�2 (z1; z1)K (z1; z2) f (z1)

nX
i;j;k

�
fij (z1; z2)� f (z1) f (z2)

	
dz1dz2: (25)

The �rst term is

1

n3

Z
L (z1; z2; z3)

nX
i;j;k

�
Fjk:i (z2; z3; z1) + fi (z1)Fk:j (z3; z2) +

�
fi (z1) fj (z2) fk (z3)� f (z1) f (z2) f (z3)

	� 3

�
i=1
dzi;
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which, as in Lemma B2, is o
�
n�1=2a2q) +O(a�

�
: The last two terms in (25) are bounded in absolute

value by

2aq

n2

8<:
Z
�2 (z1; z1) f (z1) jK (z1; z2)j

nX
i;j

��fij (z1; z2)� f (z1) f (z2)�� dz1dz2
9=; ;

which, by Assumption B6, can be shown to be o
�
n�1=2a2q

�
+O

�
a�+q

�
: Finally by Lemma 4 of Robinson

(1988) and Assumption B4, the second integral in (24) is O
�
a2(q+�)

�
:

The left side of (ii) is bounded by

n�2
Z
jg (z1; z2; z2)j

nX
i;j

jFj:i (z2; z1)j dz1dz2 +
Z
jg (z1; z2; z2)j f (z1) f (z2) dz1dz2:

To estimate the �rst integral complete the square and proceed as in Lemma B1. The second integral is
dominated by aq supz f(z)

R
�2 (z; z)K

2 (u) f (z) dudz = O (aq) :

Lemma B4 As n!1;

n�1
nX
i=1

�
U2i + kV1ik

2
+ kV2ik2

��
f̂i � f i

�2
= op

�
n�

1
2

�
: (26)

Proof. By Assumption B4, the expectation of the last contribution to (26) is

E

(
1

n

nX
i=1



(2)
ii �2 (Zi; Zi)

�
f̂i � f i

�2)

� max
1�i�n

���
(2)ii ��� 1n
nX
i=1

E

��������2 (Zi; Zi)
0@ 1

naq

nX
j 6=i

Mij �
f i
n

1A2
�������

� C

n3

nX
i=1

E

8><>:j�2 (Zi; Zi)j
0@ 1

aq

nX
j 6=i

Mij

1A2

+ j�2 (Zi; Zi)j f
2

i

9>=>; :
where Mij = Kij � aqf i: By Assumption B7 the contribution from the second term in brackets is
O
�
n�2

�
: That from the �rst term is

C

n3a2q

nX
i;j;k

E fj�2 (Zi; Zi)jMijMikg+
C

n3a2q

nX
i;j

E
�
j�2 (Zi; Zi)jMij

2
	
:

Lemma B3 and Assumption B13 imply that

E

(
1

n

nX
i=1

kV2ik2
�
f̂i � f i

�2)
= o

�
n�1=2

�
+O

�
a��2q + a2(�+1) + n�1a�q

�
= o

�
n�1=2

�
:

The remainder of the proof is very similar.
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Lemma B5 As n!1;

E

 
1

n

nX
i=1

U
2

i

!
= o

�
n�1=2

�
; E

 
1

n

nX
i=1



V 1i

2! = o (1) ; E 1
n

nX
i=1



V 2i

2! = o�n�1=2� :
Proof. The last expectation is

E

0@ 1

n3a2q

nX
i=1

nX
j 6=i

nX
k 6=i

V 02jV2kKijKik

1A =
1

n3a2q

nX
i;j;k



(2)
jk E (�2 (Zj ; Zk)KijKik)

+
1

n3a2q

X
i;j



(2)
jj E

�
�2 (Zj ; Zj)K

2
ij

�
: (27)

Denoting l (z1; z2; z3) = �2 (z2; z3)K (z1; z2)K (z1; z3) ; the �rst term on the right is

1

n3a2q

Z
l (z1; z2; z3)

nX
i;j;k



(2)
jk Fjk:i (z2; z3; z1)

3

�
i=1
dzi +

1

n3a2q

Z
l (z1; z2; z3)

nX
i;j;k



(2)
jk fi (z1)Fk:j(z3; z2)

3

�
i=1
dzi

+
1

n3a2q

Z
l (z1; z2; z3)

nX
i;j;k



(2)
jk

�
fi (z1) fj (z2) fk (z3)� f (z1) f (z2) f (z3)

	 3

�
i=1
dzi

+
1

n3a2q

nX
i;j;k



(2)
jk

Z
l (z1; z2; z3)

3

�
i=1

�
f (zi) dzi

	
: (28)

The last term in (28) is bounded in absolute value by

1

n3a2q

nX
i;j;k

���
(2)jk ��� Z j�2 (z2; z3)� �2 (z1; z1)j jK (z1; z2)K (z1; z3)j
3

�
i=1

�
f (zi) dzi

	
+

1

n3a2q

nX
i;j;k

���
(2)jk ��� Z j�2 (z1; z1)K (z1; z2)K (z1; z3)j
3

�
i=1

�
f (zi) dzi

	
: (29)

Applying the last part of the proof of Lemma B1, Assumptions B7 and B10 imply that the integral of
the �rst term in (29) is O

�
a2q+1 + a�

�
: Hence by Assumptions B5 and B13, the �rst term of (29) is

o
�
n�1=2

�
: The second term in (29) is bounded by

1

n3

nX
i;j;k

���
(2)jk ��� Z jK (u)K (v)j j�2 (z; z)j f (z) f (z + au) f (z + av) dudvdz

� 1

n2

nX
i;j

���
(2)jk ��� � sup
z2Rq

f (z)

�2�Z
jK (u)j du

�2 Z
j�2 (z; z)j f (z) dz = o

�
n�1=2

�
by Assumptions B5 and B7. For other terms in (28), apply the proof of Lemma B2. Altogether it is
found that the �rst term of (27) is o(n�1=2) +O(a��2q):
The second term of (27) is bounded by

max
1�i�n

���
(2)ii ��� 1

n3a2q

nX
i;j

E
���2 (Zj ; Zj)K2

ij

��
� C

n3a2q

nX
i;j

�
E j�2 (Zj ; Zj)� �2 (Zi; Zi)jK2

ij + E
���2 (Zi; Zi)K2

ij

��	 : (30)
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Applying the proof of Lemma B1, (30) is O
�
n�3=2a�q

�
+ O

�
n�1a�q + n�1a2��2q

�
: This proves the

last result. The others can be shown similarly.

Lemma B6 As n!1;

1

n3

nX
i;j;k;l



(2)
ij E

�
�2 (Zi; Zj) (�i � �k) (�j � �l)KikKjlf if j

	
= o(a2+2q + n1=2a� + n1=2a2fq+min(�+1;�)g):

Proof. Writing u (z1; z2; z3; z4) = �2 (z1; z2)�(z1; z3)�(z2; z4)K (z1; z3)K (z2; z4) ; the left side is

n�3
Z
u (z1; z2; z3; z4) f (z1) f (z2)

nX
i;j;k;l



(2)
ij Fij:k:l (z1; z2; z3; z4)

4

�
i=1
dzi

+n�3
Z
u (z1; z2; z3; z4) f (z1) f (z2)

nX
i;j;k;l



(2)
ij fij (z1; z2)

�
fk (z3) fl (z4)� f (z3) f (z4)

	 4

�
i=1
dzi

+
1

n3

nX
i;j;k;l



(2)
ij

Z
u (z1; z2; z3; z4) fij (z1; z2)

�
4

�
i=1
f (zi) dzi

�
: (31)

As in Lemma B2, the �rst integral is o
�
a2+2q) + o(n1=2a�

�
. Similarly, the second term in (31) can be

shown to be of no greater order. The integral of the last term of (31) is bounded in absolute value by�
sup
z1;z2

fij (z1; z2)

�Z
R2q

����Z
Rq
�(z1; z3)K (z1; z3) f (z3) dz3

��������Z
Rq
�(z2; z4)K (z2; z4) f (z4) dz4

�����2 (z1; z2) f (z1) f (z2) dz1dz2
= O(a2fq+min(�+1;�)g)

by Lemma 4 of Robinson (1988), Assumptions B7 and the Cauchy inequality. Thus the last term in
(31) is o(n1=2a2fq+min(�+1;�)g) by Assumption B5.

Lemma B7 For distinct i; j; k and l; uniformly in 1 � i; j; k; l � n; n � 1;

E
����2 (Zk; Zl)KikKjlf if j

��+ ���2 (Zi; Zk)KikKijf if j
��+ ���2 (Zk; Zk)KikKjkf if j

��
+
���2 (Zj ; Zk)KijKjkf if j

��+ ����2 (Zj ; Zk)KijKikf
2

i

���o
= O

�
a2q
�
;

and
E
n���2 (Zi; Zj)K2

ijf if j
��+ ����2 (Zj ; Zj)K2

ijf
2

i

���o = O (aq) :
Proof. Writing lij:kl (z1; z2; z3; z4) = K (z1; z3)K (z2; z4) f (z1) f (z2) fijkl (z1; z2; z3; z4)

E
���2 (Zk; Zl)KikKjlf if j

��
=

Z
j�2 (z3; z4) lij:kl (z1; z2; z3; z4)j

4

�
i=1
dzi

�
Z
fj�2 (z3; z4)� �2 (z1; z2)j+ j�2 (z1; z2)jg jlij:kl (z1; z2; z3; z4)j

4

�
i=1
dzi: (32)
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The second term in (32) is bounded by

a2q sup fijkl (z1; z2; z3; z4)

Z
j�2 (z1; z2)j f (z1) f (z2) dz1dz2

�Z
jK (u)j du

�2
:

By Assumption B7, it is uniformlyO
�
a2q
�
:Writing p (z1; z2; u; v; a) = j�2 (z1 + au; z2 + av)� �2 (z1; z2)j jK (u)K (v)j,

the �rst term in (32) is

a2q
Z
p (z1; z2; u; v; a) f (z1) f (z2) fijkl (z1; z2; z1 + au; z2 + av) dz1dz2dudv

=

 Z Z
J1("=2)

+

Z Z
J2("=2)

+

Z Z
J3("=2)

+

Z Z
J4("=2)

!
; (33)

where Ji (") ; i = 1; :::; 4 are de�ned as in the proof of Lemma B2. By Assumptions B7 and B10, the
�rst integral is uniformly O (a) : SinceZ Z

J2("=2)

� sup
kavk�"=2

jK (v)j sup
u
jK (u)j a�2q

n
sup f (z)

2 E j�2 (Zi; Zj)j

+sup fij (z1; z2)

Z
j�2 (z1; z2)j f (z1) f (z2) dz1dz2

�
;

Assumption B7 and B10 imply that
R R

J2(")
is uniformly O

�
n1=2a��2q

�
: Similarly for the other terms

in (33). The remaining terms of the lemma can be dealt with similarly.

Lemma B8 As n!1;
nX
i=1

V 2iUif i = op

�
n1=2

�
;

nX
i=1

V2iU if i = op

�
n1=2

�
:

Proof. The expectation of the squared norm of the �rst sum is

E







 1

naq

nX
i;j

UiV2jKijf i








2

� 1

n2a2q
max
1�i�n



(U)
ii E

0@ nX
i=1

nX
j 6=i

nX
k 6=i

V 02jV2kKijKikf
2

i

1A
+

1

n2a2q

nX
i;j

nX
k 6=i

nX
l 6=j



(U)
ij 


(2)
kl E

�
�2 (Zk; Zl)KikKjlf if j

�
: (34)

The �rst term in (34) is bounded in absolute value by

C

n2a2q

8<: max
1�j�n

���
(2)jj ��� nX
i;j

E
����2 (Zj ; Zj)K2

ijf
2

i

���+ nX
i;j;k

���
(2)jk ���E ����2 (Zj ; Zk)KijKikf
2

i

���
9=; : (35)

By Lemma B7 the double sum in (35) is O
�
n2aq

�
and, with Assumption B5, the the triple sum in (35)

is o
�
n5=2a2q

�
. Hence the �rst term in (34) is O (a�q) + o(n1=2) = o(n): The second term in (34) is
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bounded in absolute value by

1

n2a2q

8<:
nX

i;j;k;l

���
(U)ij 

(2)
kl

���E ���2 (Zk; Zl)KikKjlf if j
��+ nX

i;j;k

���
(U)ij 

(2)
ik

���E ���2 (Zi; Zk)KikKijf if j
��

+
nX
i;j;k

���
(U)ij 

(2)
kk

���E ���2 (Zk; Zk)KikKjkf if j
��+ nX

i;j

���
(U)ij 

(2)
ij

���E ���2 (Zi; Zj)K2
ijf if j

��
+

nX
i;j;k

���
(U)ij 

(2)
jk

���E ���2 (Zj ; Zk)KijKjkf if j
��9=; :

By Lemma B7 and Assumption B5, the second term in (34) is o
�
n+ n1=2 + n�1=2a�q

�
= o(n): This

proves the �rst result. The other can be shown similarly.

Lemma B9 As n!1;

1

n3
E

nX
i;j;k;l



(2)
ij 


(U)
ij �2 (Zi; Zj)

�
Kik � aqf i

� �
Kjl � aqf j

�
f if j = o

�
a2q + n1=2a� + n1=2a2(�+q)

�
:

Proof. Writing v(z1; z2) = K(z1; z2)� aqf (z1) and

w (z1; z2; z3; z4) = n
�3

nX
i;j;k;l



(2)
ij 


(U)
ij

�
fijkl (z1; z2; z3; z4)� fij (z1; z2) f (z3) f (z4)

	
;

the left side is Z
�2 (z1; z2) v(z1; z3)v(z2; z4)f (z1) f (z2)w (z1; z2; z3; z4)

4

�
i=1
dzi

+
1

n3

nX
i;j;k;l



(2)
ij 


(U)
ij

Z
�2 (z1; z2) v(z1; z3)v(z2; z4)fij (z1; z2)

4

�
i=1

�
f (zi) dzi

	
: (36)

The �rst term in (36) isZ
�2 (z1; z2)K(z1; z3)v(z2; z4)w (z1; z2; z3; z4) f (z1) f (z2)

4

�
i=1
dzi

�aq
Z
�2 (z1; z2)K(z2; z4)w (z1; z2; z3; z4) f

2
(z1) f (z2)

4

�
i=1
dzi; (37)

because Z
R2q

�
fijkl (z1; z2; z3; z4)� fij (z1; z2) f (z3) f (z4)

	
dz3dz4 � 0:

A leading term in (37) is

Z
�2 (z1; z2)K (z1; z3)K (z2; z4) f (z1) f (z2)

24 1
n3

nX
i;j;k;l



(2)
ij 


(U)
ij Fij:k:l (z1; z2; z3; z4)

+
1

n3

nX
i;j;k;l



(2)
ij 


(U)
ij fij (z1; z2)

�
fk (z3) fl (z4)� f (z3) f (z4)

	35 4

�
i=1
dzi: (38)
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Similar to the proof of Lemma B2, the integral of the �rst sum in (38) can be shown to be o
�
a2q + n1=2a�

�
:

Proceeding as in the proofs of Lemmas B6 and B3, remaining terms can be dealt with such that the
�rst term in (36) is o

�
a2q + n1=2a�

�
: Proceeding as in the proof of Lemma B6, the second term in (36)

is o
�
n1=2a2(�+q)

�
by Assumptions B5 and B7 and Lemma 4 of Robinson (1988).

Lemma B10 As n!1;
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V2iUi
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f̂i � f i

�
f i







2

= o (n) :

Proof. The left side is

E
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(U)
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�
f̂i � f i
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2

i

+E
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(2)
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(U)
ij �2 (Zi; Zj)

�
f̂i � f i

��
f̂j � f j

�
f if j : (39)

The �rst term in (39) is bounded by

max
1�i�n

���
(2)ii ��� max
1�i�n



(U)
ii sup

z2Rq
f (z)

2
nX
i=1

E
�����2 (Zi; Zi)�f̂i � f i�2���� = o(n1=2)

by the proof of Lemma B4 and Assumptions B1, B5 and B7. The second term in (39) is

1

n2a2q
E

nX
i;j

nX
k 6=i

nX
l 6=j



(2)
ij 


(U)
ij �2 (Zi; Zj)MikMjlf if j

� 1

n2aq
E

nX
i;j

nX
l 6=j



(2)
ij 


(U)
ij �2 (Zi; Zj)Mjlf

2

i f j

� 1

n2aq
E

nX
i;j

nX
k 6=i



(2)
ij 


(U)
ij �2 (Zi; Zj)Mikf if

2

j +
1

n2
E

nX
i;j



(2)
ij 


(U)
ij �2 (Zi; Zj) f

2

i f
2

j : (40)

By Assumptions B5 and B7, the last term in (40) is o
�
n�1=2

�
: The absolute value of the second term

in (40) is bounded by

1

n2aq

nX
i;j

nX
l 6=j

���
(2)ij 
(U)ij

��� nE ����2 (Zi; Zj)Kjlf
2

i f j

���+ aqE ����2 (Zi; Zj) f2i f2j ���o : (41)

By Assumptions B7 and B10, the last expectation is uniformly bounded, whereas the �rst is bounded
by

aq sup fijl (z1; z2; z3) sup f (z)

Z
j�2 (z1; z2)j f (z1) f (z2) jK (u)j dudz1dz2

which, by Assumption B7, is uniformly O (aq) : Thus by Assumption B5, (41) is o(n1=2). The same
conclusion can be drawn for the third term in (40). The �rst term in (40) is

1

n2a2q
E

nX
i;j;k;l



(2)
ij 


(U)
ij �2 (Zi; Zj)MikMjlf if j +

1

n2a2q
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E
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ij 


(U)
ij �2 (Zi; Zj) (MikMji +MikMjk +MijMjk) f if j :
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Lemma B9 and Assumption B13 imply that the �rst term is o (n). Other terms can likewise be shown
to be o(n).

Lemma C1 For all 1 � i � n; n � 1; let cijn � 0 for all j � 1 and
P1

j=1 cijn < C . Then for
any K <1; there exists a sequence fNng increasing in n without bound such that

nK max
1�i�n

1X
j=Nn+1

cijn ! 0 as n!1:

Proof. Fix n � 1 and 1 � i � n: There exists Min such that
P1

j=m+1 cijn < n�K�1 for all
m � Min: Let Mn = max1�i�nMin. Then for each n � 1; max1�i�n

P1
j=m+1 cijn < n�K�1 for all

m �Mn: Put Nn = max (Nn�1;Mn) + 1: Then nK max1�i�n
P1

j=Nn+1
cijn < n

�1 ! 0 as n!1:

Appendix 4: Proof of Theorem C
Each element of

E
�
�n � e�3� = X

u2L�
Sn (u) f1� w (u;m)g

is bounded in absolute value by that ofX
u2L�

Gu f1� w (u;m)g :

Then proceed as Robinson (2007a) and conclude that

E
�
�n � e�3� = O kq rX

k=1

m�q
k

X
u2Zr

jukjq Gu

!
:

The variance of the (t; s)-th element of e�3 is, by Assumption C4,
1

n2

nX
i=1

nX
j=1

nX
k=1

nX
l=1

E (xtixtkUiUk)E (xsjxslUjUl)w (si � sj ;m)w (sk � sl;m)

+
1

n2

nX
i=1

nX
j=1

nX
k=1

nX
l=1

E (xtixslUiUl)E (xsjxtkUjUk)w (si � sj ;m)w (sk � sl;m) +O
�
n�1

�
:

The �rst term has modulus �����n�2 X
u2L�

X
v2L�

w (u;m)w (v;m)
X
u12L�

S1rs;n (u; v; u1)

�����
� n�1

X
u2L�

X
v2L�

jw (u;m)w (v;m)j
X
u12L�


u1;u1+v�u

� n�1
X
u12L�

X
v12L��


u1;u1�v1

X
u2L�

jw (u;m)j

� cn�1
dY
k=1

mk

X
u2Zr

X
v2Zr


u;v:
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The second term can be handled similarly.
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Table 1
Linear regression (1): Empirical sizes of tests with size �

�X = 0:2; �U = 0:3 �X = 0:4; �U = 0:5
n m � = 0:01 � = 0:05 � = 0:10 m � = 0:01 � = 0:05 � = 0:10

C :021 :058 :125 C :037 :119 :185
H :027 :063 :138 H :049 :123 :196
2 :026 :058 :125 6 :029 :088 :154

100 4 :024 :052 :117 8 :029 :085 :152
6 :022 :050 :115 10 :029 :084 :152
8 :023 :052 :119 12 :027 :082 :153
10 :024 0:56 :122 14 :027 :085 :151

C :013 :052 :106 C :025 :084 :159
H :017 :056 :114 H :028 :095 :163
3 :016 :054 :109 6 :023 :069 :130

169 6 :013 :050 :104 9 :019 :067 :121
9 :013 :049 :115 12 :019 :066 :120
12 :014 :051 :118 15 :020 :067 :125
15 :016 :061 :120 18 :020 :070 :131

Table 2
Linear regression (1): Empirical powers of tests with � = 0:8 and size �

n m � = 0:01 � = 0:05 � = 0:10 n m � = 0:01 � = 0:05 � = 0:10
C :605 :827 :902 C :869 :962 :980
H :620 :838 :902 H :877 :966 :983
2 :618 :838 :901 3 :879 :964 :983
4 :628 :838 :897 6 :876 :964 :981

100 6 :637 :834 :900 169 9 :881 :963 :982
8 :641 :834 :897 12 :881 :969 :983
10 :641 :837 :900 15 :889 :970 :982
12 :655 :841 :904 18 :893 :971 :982
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Table 3
Partly linear regression (5): Empirical sizes of tests with size � using k2

�X = 0:2; �U = 0:3
� = 0:01 � = 0:05 � = 0:10

n m=a 1:0 1:2 1:4 1:0 1:2 1:4 1:0 1:2 1:4
C :012 :011 :009 :057 :048 :047 :111 :094 :087
H :013 :015 :015 :056 :053 :064 :109 :109 :107
2 :015 :014 :014 :055 :050 :061 :109 :106 :106

100 4 :013 :016 :015 :053 :051 :060 :107 :106 :105
6 :013 :016 :015 :053 :052 :060 :107 :110 :102
8 :014 :016 :016 :058 :054 :063 :109 :110 :108
12 :014 :015 :018 :061 :059 :067 :114 :113 :119
C :008 :004 :003 :052 :041 :030 :106 :090 :081
H :009 :006 :005 :045 :040 :039 :096 :088 :087
3 :009 :006 :005 :045 :043 :040 :094 :088 :085

169 6 :010 :007 :008 :051 :043 :044 :091 :083 :083
9 :012 :011 :009 :051 :046 :044 :087 :083 :084
12 :014 :012 :011 :053 :050 :047 :093 :087 :089
15 :013 :012 :011 :057 :051 :048 :103 :095 :090

�X = 0:4; �U = 0:5
� = 0:01 � = 0:05 � = 0:10

n m=a 1:0 1:2 1:4 1:0 1:2 1:4 1:0 1:2 1:4
C :021 :018 :016 :069 :064 :063 :127 :123 :117
H :017 :019 :027 :076 :071 :073 :133 :143 :135
6 :014 :014 :024 :066 :065 :070 :116 :125 :119

100 8 :013 :014 :022 :069 :068 :072 :117 :124 :120
10 :014 :017 :024 :070 :067 :077 :121 :126 :127
12 :016 :020 :026 :076 :077 :081 :124 :128 :128
14 :018 :025 :029 :077 :084 :088 :127 :133 :134
C :011 :006 :004 :065 :049 :050 :124 :098 :085
H :010 :009 :010 :056 :054 :059 :104 :100 :102
6 :010 :007 :009 :053 :053 :053 :099 :097 :099

169 9 :010 :009 :010 :056 :052 :055 :098 :095 :091
12 :010 :013 :011 :056 :052 :054 :095 :090 :091
15 :015 :016 :012 :056 :055 :053 :102 :098 :095
18 :016 :018 :014 :061 :055 :055 :109 :109 :104
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Table 4
Partly linear regression (5): Empirical sizes of tests with size � using k4

�X = 0:2; �U = 0:3
� = 0:01 � = 0:05 � = 0:10

n m=a 1:4 1:6 1:8 1:4 1:6 1:8 1:4 1:6 1:8
C :015 :011 :010 :065 :055 :051 :126 :109 :101
H :015 :016 :016 :066 :057 :065 :116 :117 :113
2 :014 :015 :015 :063 :054 :058 :114 :113 :112

100 4 :013 :017 :016 :063 :051 :058 :112 :114 :112
6 :013 :016 :016 :066 :051 :055 :113 :116 :118
8 :013 :016 :018 :067 :058 :060 :120 :115 :117
12 :016 :018 :019 :070 :070 :065 :125 :120 :118
C :015 :009 :005 :060 :050 :037 :119 :098 :090
H :011 :010 :007 :051 :044 :042 :097 :097 :099
3 :010 :011 :010 :050 :045 :045 :099 :091 :093

169 6 :014 :013 :010 :055 :047 :049 :096 :094 :090
9 :014 :014 :012 :055 :048 :054 :102 :091 :088
12 :015 :015 :012 :056 :055 :057 :106 :094 :092
15 :017 :015 :012 :057 :056 :057 :109 :010 :102

�X = 0:4; �U = 0:5:
� = 0:01 � = 0:05 � = 0:10

n m=a 1:4 1:6 1:8 1:4 1:6 1:8 1:4 1:6 1:8
C :024 :018 :020 :084 :068 :067 :154 :138 :134
H :017 :020 :020 :074 :078 :080 :133 :145 :149
6 :017 :014 :020 :068 :073 :072 :122 :133 :131

100 8 :015 :013 :020 :071 :074 :076 :124 :132 :132
10 :016 :014 :023 :079 :076 :081 :131 :133 :135
12 :020 :018 :024 :081 :078 :082 :141 :135 :139
14 :022 :022 :027 :081 :085 :091 :146 :140 :143
C :016 :010 :008 :074 :058 :054 :133 :114 :099
H :012 :014 :012 :057 :056 :062 :111 :107 :111
6 :011 :012 :010 :055 :052 :056 :109 :103 :104

169 9 :011 :012 :011 :058 :054 :056 :107 :098 :102
12 :011 :013 :015 :064 :057 :059 :104 :099 :103
15 :015 :017 :017 :062 :062 :060 :109 :105 :110
18 :016 :018 :018 :063 :065 :063 :117 :119 :113
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Table 5
Partly linear regression (5): Empirical powers of tests with � = 0:7 using k2, k4 at level �:

k2
� = 0:01 � = 0:05 � = 0:10

n m=a 1:0 1:2 1:4 1:0 1:2 1:4 1:0 1:2 1:4
C :536 :521 :485 :760 :744 :728 :830 :826 :826
H :519 :527 :535 :743 :744 :744 :817 :831 :842
2 :515 :531 :534 :739 :750 :750 :817 :834 :846

100 4 :511 :534 :537 :741 :752 :751 :818 :831 :844
6 :511 :543 :541 :743 :757 :761 :819 :831 :845
8 :521 :543 :556 :745 :757 :762 :823 :829 :841
12 :530 :547 :559 :744 :754 :767 :827 :835 :844
C :810 :794 :788 :929 :929 :918 :962 :960 :958
H :775 :795 :801 :917 :923 :928 :950 :957 :964
3 :778 :796 :804 :914 :925 :927 :951 :956 :961

169 6 :778 :798 :804 :916 :925 :926 :947 :956 :963
9 :777 :807 :810 :910 :920 :927 :949 :958 :958
12 :782 :808 :816 :913 :922 :929 :949 :958 :959
15 :790 :815 :823 :914 :922 :927 :946 :959 :958

k4
� = 0:01 � = 0:05 � = 0:10

n m=a 1:4 1:6 1:8 1:4 1:6 1:8 1:4 1:6 1:8
C :546 :523 :499 :753 :737 :730 :825 :814 :812
H :508 :517 :523 :723 :737 :738 :797 :813 :820
2 :503 :519 :524 :723 :736 :743 :797 :812 :821

100 4 :508 :519 :523 :721 :735 :740 :796 :810 :821
6 :501 :518 :535 :724 :735 :743 :799 :811 :821
8 :508 :529 :538 :723 :742 :745 :802 :812 :823
12 :518 :536 :548 :725 :743 :747 :804 :817 :827
C :805 :791 :787 :924 :925 :918 :955 :956 :955
H :759 :774 :791 :903 :916 :918 :943 :952 :955
3 :759 :773 :793 :903 :919 :922 :945 :952 :955

169 6 :766 :774 :796 :902 :916 :923 :944 :952 :953
9 :760 :779 :798 :897 :914 :922 :946 :949 :956
12 :764 :784 :805 :900 :913 :921 :945 :950 :956
15 :767 :792 :804 :902 :914 :924 :943 :951 :956
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Table 6: Y = Proportion of irrigated land (IR)

LS IV Partly LS Partly IV
k2 k4 k2 k4

a=2 a=2.5 a=1.4 a=1.9 a=1.7 a=2.2 a=1.4 a=1.9
NL :72 :37 :95 :96 :85 :90 :80 :81 :76 :78

(:21) (:63) (:18) (:18) (:16) (:17) (:41) (:42) (:40) (:41)
m=2 (:23) (:58) (:22) (:22) (:22) (:22) (:43) (:44) (:42) (:42)
m=4 (:25) (:69) (:24) (:24) (:24) (:24) (:52) (:53) (:51) (:52)
m=6 (:27) (:73) (:25) (:25) (:25) (:25) (:54) (:55) (:53) (:54)
NL2 �:71 �:29 �:91 �:92 �:83 �:87 �:70 �:69 �:71 �:70

(:19) (:61) (:17) (:17) (:16) (:16) (:41) (:42) (:40) (:41)
m=2 (:20) (:60) (:20) (:20) (:19) (:19) (:45) (:46) (:43) (:44)
m=4 (:23) (:74) (:21) (:21) (:21) (:21) (:56) (:58) (:53) (:55)
m=6 (:24) (:79) (:22) (:22) (:21) (:21) (:58) (:60) (:54) (:57)

DBC�10�3 �1:62 �1:90 �1:53 �1:40 �2:02 �1:77 �1:87 �1:80 �2:07 �1:94
(:66) (:77) (:63) (:64) (:57) (:60) (:70) (:73) (:62) (:67)

m=2 (:74) (:77) (:72) (:73) (:70) (:70) (:68) (:70) (:68) (:68)
m=4 (:85) (:87) (:82) (:84) (:80) (:80) (:77) (:78) (:77) (:77)
m=6 (:83) (:82) (:80) (:83) (:75) (:75) (:72) (:74) (:70) (:71)

CD�10�1 :41 :38 �:60 �:65 �:39 �:49 �:69 �:80 �:43 �:60
(:57) (:72) (:51) (:50) (:54) (:52) (:55) (:55) (:58) (:56)

m=2 (:56) (:63) (:54) (:54) (:51) (:52) (:56) (:58) (:53) (:55)
m=4 (:52) (:58) (:59) (:60) (:55) (:57) (:64) (:67) (:58) (:62)
m=6 (:48) (:53) (:63) (:64) (:57) (:60) (:69) (:72) (:59) (:66)
BSD �:16 �:21 �:13 �:13 �:11 �:12 �:15 �:17 �:12 �:14

(:05) (:07) (:04) (:05) (:04) (:04) (:06) (:06) (:05) (:05)
m=2 (:04) (:06) (:04) (:04) (:03) (:04) (:06) (:06) (:05) (:05)
m=4 (:05) (:09) (:04) (:04) (:04) (:04) (:07) (:08) (:06) (:07)
m=6 (:06) (:10) (:05) (:05) (:04) (:04) (:08) (:09) (:06) (:07)

RSD�10�1 :14 :25 �:44 �:49 �:23 �:33 �:37 �:43 �:20 �:31
(:48) (:57) (:44) (:44) (:42) (:43) (:46) (:46) (:46) (:45)

m=2 (:51) (:60) (:51) (:52) (:47) (:49) (:53) (:54) (:53) (:52)
m=4 (:40) (:55) (:56) (:47) (:42) (:44) (:50) (:50) (:51) (:49)
m=6 (:34) (:51) (:43) (:44) (:40) (:41) (:47) (:48) (:50) (:47)

ASD�10�1 :62 :54 :81 :79 :84 :83 :75 :71 :82 :78
(:35) (:38) (:35) (:35) (:33) (:34) (:36) (:37) (:34) (:35)

m=2 (:35) (:36) (:38) (:38) (:38) (:38) (:37) (:38) (:37) (:37)
m=4 (:37) (:37) (:41) (:42) (:39) (:40) (:39) (:40) (:38) (:39)
m=6 (:34) (:34) (:38) (:39) (:36) (:36) (:36) (:37) (:35) (:35)

Slope estimates are in bold; SEs are in parentheses; with non-robust ones in the top row, and
robust ones below computed using truncation vectors (m;m) where m = 2; 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel (k2; k4) :
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Table 7: Y = Fertilizer use (FU)

LS IV Partly LS Partly IV
k2 k4 k2 k4

a=1.8 a=2.3 a=1.6 a=2.2 a=1.4 a=1.9 a=1.5 a=2.0
NL 115:90 30:51 115:58 119:07 111:94 114:15 104:47 88:28 117:28 100:84

(42:28) (135:11) (31:37) (32:69) (28:48) (30:80) (75:57) (79:25) (71:92) (76:32)
m=2 (36:40) (118:17) (32:40) (33:28) (32:63) (32:20) (74:91) (74:19) (78:04) (74:43)
m=4 (40:00) (121:92) (36:84) (37:94) (37:17) (36:55) (82:85) (80:17) (87:87) (81:98)
m=6 (42:56) (123:52) (38:23) (39:77) (37:91) (37:73) (84:12) (80:50) (90:01) (83:10)
NL2 �82:02 32:98 �87:23 �88:74 �86:64 �86:52 �65:05 �42:94 �81:10 �60:93

(39:57) (130:50) (29:66) (30:95) (26:88) (29:09) (73:40) (77:75) (69:32) (74:24)
m=2 (34:80) (118:89) (30:59) (31:52) (30:58) (30:37) (78:54) (78:56) (80:64) (78:22)
m=4 (36:28) (127:68) (33:09) (34:27) (33:08) (32:77) (87:99) (86:88) (91:52) (87:41)
m=6 (36:53) (132:60) (32:42) (34:00) (32:08) (31:94) (89:33) (87:87) (93:42) (88:65)
DBC �:31 �:43 �:24 �:25 �:21 �:24 �:26 �:30 �:23 �:26

(:14) (:16) (:11) (:11) (:10) (:11) (:11) (:12) (:10) (:11)
m=2 (:14) (:19) (:10) (:11) (:10) (:10) (:11) (:12) (:11) (:11)
m=4 (:17) (:24) (:12) (:13) (:11) (:12) (:13) (:15) (:11) (:13)
m=6 (:18) (:25) (:12) (:14) (:10) (:12) (:12) (:15) (:10) (:13)
CD 2:84 �1:59 �3:55 �3:89 �6:59 �3:61 �8:55 �7:59 �11:61 �7:87

(11:59) (15:51) (10:43) (10:11) (11:43) (10:59) (11:74) (11:32) (12:35) (11:63)
m=2 (16:10) (17:12) (12:13) (12:11) (12:20) (12:18) (12:13) (12:08) (12:58) (12:17)
m=4 (17:53) (17:80) (12:93) (13:35) (11:14) (12:70) (11:15) (12:32) (10:02) (11:42)
m=6 (18:61) (18:68) (14:10) (14:72) (11:43) (13:74) (11:27) (13:19) (9:10) (11:65)
BSD �9:26 �22:85 1:24 �1:09 5:64 2:22 �1:07 �6:87 3:32 �1:90

(9:78) (14:30) (7:80) (8:16) (7:17) (7:65) (9:49) (10:25) (8:89) (9:61)
m=2 (9:10) (15:29) (8:10) (8:15) (8:24) (8:13) (12:25) (12:70) (12:04) (12:34)
m=4 (9:54) (18:45) (8:22) (8:26) (8:51) (8:26) (13:73) (14:65) (13:19) (13:88)
m=6 (9:92) (20:28) (8:25) (8:29) (8:57) (8:30) (14:01) (15:38) (13:14) (14:23)
RSD 3:19 5:13 6:23 4:02 11:08 7:24 8:60 6:18 10:91 8:20

(9:76) (12:18) (8:07) (8:24) (7:86) (8:00) (8:95) (8:92) (9:09) (8:91)
m=2 (12:00) (12:78) (10:07) (9:87) (11:10) (10:22) (11:85) (10:89) (13:26) (11:67)
m=4 (12:68) (13:76) (11:53) (11:24) (12:67) (11:72) (13:85) (12:72) (15:39) (13:66)
m=6 (13:55) (15:04) (12:49) (12:15) (13:81) (12:70) (15:27) (14:06) (16:97) (15:07)
ASD 18:72 15:60 23:18 22:55 25:11 23:55 23:15 21:55 24:73 22:98

(7:23) (8:03) (6:29) (6:50) (5:97) (6:21) (6:23) (6:60) (6:02) (6:29)
m=2 (8:31) (9:26) (6:53) (7:02) (5:76) (6:34) (6:15) (6:90) (5:77) (6:26)
m=4 (8:55) (10:30) (6:51) (7:14) (5:50) (6:25) (6:16) (7:26) (5:46) (6:32)
m=6 (8:77) (10:77) (6:46) (7:15) (5:45) (6:20) (6:19) (7:43) (5:37) (6:37)

Slope estimates are in bold; SEs are in parentheses; with non-robust ones in the top row, and robust ones
below computed using truncation vectors (m;m) where m = 2; 4 and 6 respectively; columns under Partial
LS and Partial IV refer to choices of bandwidth a and kernel (k2; k4) :
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Table 8: Y = Log(yield 15 major crops) (L15)

LS IV Partly LS Partly IV
k2 k4 k2 k4

a=1.4 a=1.9 a=1.4 a=1.7 a=1.4 a=1.9 a=1.5 a=2.1
NL 1:71 2:07 1:65 1:54 1:74 1:69 2:29 1:81 2:61 2:15

(:35) (1:03) (:30) (:31) (:29) (:30) (:76) (:76) (:76) (:77)
m=2 (:40) (1:02) (:38) (:37) (:40) (:39) (:88) (:82) (:94) (:86)
m=4 (:44) (1:16) (:41) (:40) (:43) (:42) (:99) (:95) (1:02) (:98)
m=6 (:34) (1:19) (:40) (:39) (:40) (:40) (1:03) (1:00) (1:05) (1:03)
NL2 �1:41 �1:66 �1:38 �1:27 �1:47 �1:42 �1:96 �1:47 �2:28 �1:82

(:33) (1:00) (:29) (:29) (:27) (:28) (:74) (:75) (:73) (:75)
m=2 (:37) (1:02) (:34) (:33) (:35) (:34) (:90) (:85) (:94) (:89)
m=4 (:38) (1:17) (:35) (:35) (:36) (:36) (1:02) (1:00) (1:05) (1:02)
m=6 (:37) (1:20) (:33) (:32) (:33) (:33) (1:07) (1:04) (1:09) (1:07)

DBC�10�3 �2:65 �3:06 �2:61 �2:73 �2:42 �2:55 �2:95 �3:04 �2:84 �3:01
(1:12) (1:26) (1:04) (1:08) (1:00) (1:03) (1:12) (1:17) (1:09) (1:14)

m=2 (1:11) (1:15) (1:10) (1:11) (1:10) (1:10) (1:10) (1:12) (1:11) (1:11)
m=4 (1:30) (1:33) (1:32) (1:35) (1:29) (1:32) (1:28) (1:14) (1:25) (1:31)
m=6 (1:33) (1:33) (1:38) (1:42) (1:30) (1:36) (1:28) (1:14) (1:20) (1:33)

CD�10�1 :51 :06 �1:07 �7:73 �1:61 �1:27 �1:39 �1:03 �1:80 �1:29
(:95) (1:17) (1:10) (1:01) (1:25) (1:15) (1:18) (1:08) (1:30) (1:14)

m=2 (:92) (1:22) (1:16) (1:05) (1:30) (1:21) (1:34) (1:21) (1:47) (1:30)
m=4 (:95) (1:29) (1:04) (1:01) (1:03) (1:04) (1:25) (1:19) (1:27) (1:24)
m=6 (:95) (1:26) (1:01) (1:01) (:92) (:99) (1:16) (1:14) (1:13) (1:16)

BSD�10�1 �1:60 �1:58 �1:29 �1:58 �1:01 �1:17 �:97 �1:59 �:54 �1:16
(:80) (1:09) (:75) (:77) (:74) (:74) (:96) (:99) (:94) (:97)

m=2 (:82) (1:09) (:85) (:86) (:84) (:85) (1:07) (1:08) (1:08) (1:07)
m=4 (:84) (1:13) (:87) (:88) (:86) (:87) (1:08) (1:12) (1:05) (1:09)
m=6 (:84) (1:14) (:84) (:85) (:83) (:84) (1:01) (1:09) (:96) (1:04)

RSD�10�1 :22 :01 :21 :23 :25 :21 �:16 :09 �:36 �:08
(:80) (:93) (:80) (:79) (:82) (:81) (:90) (:85) (:95) (:88)

m=2 (:74) (:85) (:86) (:81) (:96) (:89) (:97) (:88) (1:10) (:93)
m=4 (:70) (:87) (:88) (:82) (1:00) (:91) (1:01) (:93) (1:13) (:97)
m=6 (:68) (:89) (:91) (:84) (1:06) (:95) (1:06) (:98) (1:19) (1:02)

ASD�10�1 2:56 2:44 2:45 2:65 2:22 2:37 2:39 2:58 2:24 2:45
(:60) (:62) (:62) (:62) (:62) (:62) (:63) (:63) (:64) (:63)

m=2 (:58) (:58) (:68) (:67) (:70) (:69) (:68) (:66) (:70) (:67)
m=4 (:55) (:56) (:66) (:68) (:62) (:65) (:64) (:66) (:62) (:65)
m=6 (:50) (:51) (:64) (:66) (:59) (:62) (:62) (:65) (:57) (:63)

Slope estimates are in bold; SEs are in parentheses; with non-robust ones in the top row, and
robust ones below computed using truncation vectors (m;m) where m = 2; 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel (k2; k4) :
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Table 9: Y = Log(rice yield) (LR)

LS IV Partly LS Partly IV
k2 k4 k2 k4

a=1.5 a=2.0 a=1.3 a=1.5 a=0.9 a=1.3 a=1.3 a=1.6
NL :99 :35 1:25 1:15 1:43 1:38 1:12 :93 1:14 1:03

(:43) (1:28) (:38) (:39) (:37) (:37) (:96) (:96) (:95) (:96)
m=2 (:48) (1:16) (:54) (:51) (:59) (:57) (1:04) (1:02) (1:05) (1:03)
m=4 (:56) (1:37) (:63) (:61) (:68) (:66) (1:19) (1:19) (1:20) (1:21)
m=6 (:57) (1:38) (:63) (:62) (:67) (:65) (1:18) (1:20) (1:20) (1:21)
NL2 �:53 :08 �:85 �:71 �1:07 �1:01 �:94 �:69 �:96 �:80

(:40) (1:24) (:36) (:37) (:35) (:35) (:92) (:93) (:91) (:93)
m=2 (:42) (1:22) (:46) (:44) (:50) (:41) (1:09) (1:09) (1:09) (1:10)
m=4 (:46) (1:44) (:51) (:49) (:55) (:53) (1:27) (1:29) (1:28) (1:30)
m=6 (:45) (1:44) (:49) (:48) (:53) (:51) (1:27) (1:29) (1:29) (1:31)

DBC�10�3 �4:23 �4:08 �3:65 �3:81 �3:21 �3:38 �2:67 �3:01 �2:76 �2:95
(1:39) (1:56) (1:32) (1:34) (1:27) (1:29) (1:36) (1:40) (1:36) (1:39)

m=2 (1:61) (1:69) (1:61) (1:60) (1:62) (1:62) (1:52) (1:47) (1:51) (1:48)
m=4 (2:02) (2:18) (2:03) (2:02) (2:01) (2:02) (1:76) (1:82) (1:76) (1:80)
m=6 (2:21) (2:42) (2:20) (2:20) (2:10) (2:16) (1:75) (1:92) (1:76) (1:88)

CD�10�1 1:33 1:73 �:05 :03 :05 :01 :82 :60 :70 :57
(1:18) (1:46) (1:36) (1:24) (1:66) (1:55) (1:78) (1:53) (1:75) (1:53)

m=2 (1:12) (1:38) (1:48) (1:29) (1:99) (1:80) (2:23) (1:81) (2:25) (1:95)
m=4 (1:26) (1:52) (1:55) (1:42) (1:82) (1:72) (2:09) (1:80) (2:11) (1:90)
m=6 (1:34) (1:58) (1:64) (1:56) (1:69) (1:68) (1:95) (1:81) (1:96) (1:86)

BSD�10�1 �:39 �:80 :73 :43 1:12 1:01 1:46 1:05 1:41 1:19
(:99) (1:35) (:95) (:96) (:95) (:95) (1:17) (1:20) (1:17) (1:19)

m=2 (1:08) (1:32) (1:17) (1:17) (1:17) (1:17) (1:32) (1:34) (1:32) (1:33)
m=4 (1:19) (1:51) (1:29) (1:29) (1:28) (1:28) (1:47) (1:51) (1:47) (1:50)
m=6 (1:21) (1:54) (1:25) (1:33) (1:30) (1:31) (1:43) (1:47) (1:43) (1:54)

RSD�10�1 2:30 2:60 2:25 2:07 2:61 2:49 2:90 2:64 2:89 2:71
(:99) (1:15) (1:01) (:98) (1:07) (1:05) (1:26) (1:15) (1:25) (1:19)

m=2 (:98) (1:11) (1:10) (1:00) (1:33) (1:25) (1:56) (1:30) (1:54) (1:38)
m=4 (:98) (1:20) (1:19) (1:08) (1:48) (1:37) (1:76) (1:45) (1:74) (1:54)
m=6 (1:00) (1:25) (1:25) (1:12) (1:58) (1:45) (1:90) (1:54) (1:88) (1:64)

ASD�10�1 2:48 2:52 2:34 2:57 1:86 2:03 1:93 2:33 1:93 2:20
(:74) (:77) (:78) (:77) (:80) (:79) (:81) (:80) (:81) (:80)

m=2 (:81) (:83) (1:03) (:99) (1:09) (1:07) (1:08) (1:02) (1:08) (1:04)
m=4 (:83) (:89) (1:02) (1:01) (1:04) (1:04) (1:03) (1:03) (1:03) (1:03)
m=6 (:75) (:83) (:90) (:89) (:90) (:90) (:90) (:92) (:90) (:92)

Slope estimates are in bold; SEs are in parentheses; with non-robust ones in the top row, and
robust ones below computed using truncation vectors (m;m) where m = 2; 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel (k2; k4) :

4



Nonparametric regressions

29


	draft14.pdf
	Pages from RTSETA2008Revision part.pdf



