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Abstract

Fractional cointegration is viewed from a semiparametric viewpoint as a narrow-
band phenomenon at frequency zero. We study a narrow-band frequency domain
least squares estimate of the cointegrating vector, and related semiparametric methods
of inference for testing the memory of observables and the presence of fractional
cointegration. These procedures are employed in analysing empirical macroeconomic
series; their usefulness and feasibility in 0nite samples is supported by results of a
Monte Carlo experiment. ? 2001 Elsevier Science S.A. All rights reserved.

JEL classi,cation: C22

Keywords: Semiparametric analysis; Fractional cointegration

1. Introduction

Modelling of long term relationships between macroeconomic variables has
mostly centred around the possibility of cointegration of time series with
one or more autoregressive (AR) unit roots. The unobservable input to the
0nite-degree vector AR is typically a vector I(0) process, namely one that
is (covariance) stationary with spectral density matrix that is continuous and
positive de0nite at frequency zero. If single di6erencing of the AR observable,
denoted by the p× 1 column vector zt , t ∈Z , Z = {t: t=0;±1; : : :} produces
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an I(0) process, zt is said to be in I(1), if twice di6erencing, I(2), and
so on; the argument of I is referred to as the integration order. The input
process may have parametric autocorrelation, in an e6ort to simultaneously
model short-run behaviour, or it may have nonparametric autocorrelation,
recognizing that misspeci0cation of even short-run behaviour can invalidate
inferences on long-run behaviour; the modelling of zt is then said to be, re-
spectively, parametric or semiparametric. Empirical analysis typically begins
with testing for the presence of unit roots; given a positive outcome, there is a
search for possible cointegrating relationships, namely linear combinations of
form

�′zt = et ; (1)

where �′ is the transpose of the p× 1 vector �, usually unknown, and et has
a lower integration order than zt . Such et , referred to as a cointegrating error,
is I(0) when zt is I(1), and is I(0) or I(1) when zt is I(2). Work on the
parametric I(1) observable case began with Engle and Granger (1987) and
Johansen (1991); for semiparametric models, see e.g. Phillips (1991a, b).
The AR-based unit root testing and cointegration methods have been widely

applied, suggesting that many economic time series could be I(1) or I(2), and
providing information on the presence or absence of cointegration in many
data sets. However, I(1) and I(2) are specialized forms of nonstationarity,
while I(0) is a specialized form of stationarity. In particular, scalar I(0) pro-
cesses are also nested within a much more general stationary and invertible
fractional I(d) class, for |d|¡ 1

2 , de0ned in the following section, such that
the spectral density behaves like �−2d near �=0, � denoting frequency, so the
spectrum has a pole when 0¡d¡ 1

2 , or a zero when − 1
2 ¡d¡ 0, at �=0.

We call d the integration order; I(d) nonstationary sequences, for d¿ 1
2 , can

be de0ned such that their integer di6erence of suitable degree is a stationary
and invertible (for d¿ 1

2 ) fractional, or as suitable 0lter of an I(0) sequence,
as described in the following section. It is then possible that, for example,
a test that a macroeconomic variable is I(1) directed against fractional I(d)
alternatives might produce a di6erent outcome from one directed against the
usual stationary AR alternatives. Further, fractional processes might better
approximate either zt or et or both, and cointegration of stationary I(d) pro-
cesses can be entertained, where et is stationary I(de) for de ¡d, and may
be of interest in some 0nancial series exhibiting long range dependence.
Now that large sample rules of inference for fractional I(d) processes

are available, analysing fractional integration and cointegration is a realistic
possibility. For parametric stationary I(d) processes, asymptotic theory of Fox
and Taqqu (1986) has been extended by various subsequent authors, while
for nonparametric stationary I(d) processes (where the spectral density is
unrestricted away from zero frequency) Robinson (1995a, b) has established
asymptotic distributional properties of estimates of d, his results extended to
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nonstationary series by Velasco (1999a, b); limit distributions are standard.
Notions of fractional cointegration have been explored, indeed the early paper
of Engle and Granger (1987) stressing AR-based cointegration included a
de0nition covering fractional processes; the stationary case has been studied
by Robinson (1994a), the nonstationary one by Chan and Terrin (1995) and
others.
Fractional modelling considerably expands the possibilities of cointegration

analysis and poses considerable new challenges. The various methods de-
veloped for AR-based cointegration analysis depend on the presumed, integer-
valued, integration orders of zt and et , and appear to lose validity when
the true integration orders di6er. Such methods may be generalizable to
pre-speci0ed alternative, possibly fractional, integration orders, but faced with
an uncountable in0nity of possible integration orders it may be hard to choose
ones even to be the subject of a pre-test. Generally, it seems more natural
to allow integration orders to be unknown. This constitutes a radical depar-
ture from the AR-based approach, where integration orders, after testing, are
treated as given. Additional complications that arise in the fractional setting
are the possibility of a variety of integration orders in the vector zt and, when
it also is a vector, the cointegrating error et . Study of identi0cation problems,
of testing for the presence and degree of cointegration, and inference on the
unknown coeEcients of the cointegrating errors, is in its infancy.
The present paper develops and numerically evaluates methodology for in-

ference on (possibly fractional) integration orders and (possibly fractional)
cointegration, and for estimation of the cointegrating vector. In the follow-
ing section, we discuss notions of fractional integration and cointegration.
The cointegrating regression vector estimates are those of Robinson and
Marinucci (1999a, b), denoted narrow-band frequency domain least squares
(FDLS) and described in Section 3. Section 4 discusses estimates and test
procedures in relation to integration orders of Robinson (1995a, b), Lobato
(1996), Lobato and Robinson (1998), and proposes a related, Hausman-type
test for the presence of fractional cointegration. Section 5 applies the proce-
dures of Sections 3 and 4 to macroeconomic data sets used in the early papers
of Engle and Granger (1987) and Campbell and Shiller (1987). The emphasis
here is on gaining information on whether cointegration exists, which requires
in the 0rst place testing whether observable series have equal integration or-
ders. In Section 6, Monte Carlo simulations assess 0nite sample performance
of our Hausman-type test and compare various estimates of cointegrating co-
eEcients, a main question there being how the di6ering theoretical results
on asymptotic (higher order) bias of various estimates are relevant in 0nite
samples. In view of our theoretical discussion and the empirical results, we
recommend semiparametric frequency domain statistics in general, and the
FDLS and Hausman-type test in particular, as feasible and useful procedures
for general fractional cointegration analysis.
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2. Fractional integration and cointegration

Various de0nitions of a, fractionally integrated, I(d) process are possible.
One asserts that a scalar process at , t ∈Z , is said to be I(d), d¿ 0, if there
exists a zero mean scalar I(0) process �t; t ∈Z , and a scalar �, such that

at =�+ �−d�t1(t ¿ 0); t ∈Z; d¿ 0; (2)

where 1(·) is the indicator function �=1 − L, L is the lag operator, and
formally

(1− z)d= 1
�(−d)

∞∑
j=0

�(j − d)zj
�(j + 1)

; �(�)=
∫ ∞

0
e−xx�−1 dx;

results for integer d following from taking �(0)=�(0)=1 and then �(−d)=∞,
d=0; 1; : : : .
In (2), at can be said to be asymptotically stationary when d¡ 1

2 ; it is
nonstationary solely due to the truncation on the right-hand side. The trun-
cation is designed to cater for cases d¿ 1

2 , because otherwise the right-hand
side of (2) does not converge in mean square and hence at is not well de-
0ned; we might refer to at given by (2) for d¿ 1

2 as purely nonstationary.
An alternative I(d) de0nition for d¿ 1

2 is

at =�+ �−k�t1(t ¿ 0); t ∈Z; (3)

where �t is stationary I(d− k), for the integer k such that d− 1
2 ¡k6d+ 1

2 .
The distinction between (2) and (3) is discussed by Marinucci and Robinson
(1999a); in particular, it is shown there that for 1

2 ¡d¡ 3
2 0rst di6erences

of (3) and (2) are asymptotically equivalent in the mean square sense, and
consequently it seems diEcult to statistically distinguish between them. In
this paper, we focus on (2), which we consider more natural and direct as
a data generating process; adopting (3) would a6ect the limiting distribution
of some statistics which we use, but not their rates of convergence.
Several de0nitions relevant to fractional cointegration can be found in the

literature (as reviewed by Robinson and Yajima, 2000), but for our purposes
it is convenient to elaborate on (1) as follows. We partition zt as zt =(x′t ; yt)

′,
where yt is a scalar and xt =(x1t ; : : : ; xp−1; t)′. We say that zt is cointegrated
(of orders d1; : : : ; dp−1; dy;d(�)) if xit is I(di), i=1; : : : ; p−1, and yt is I(dy)
and if there exists a (p−1)×1 vector � such that et =yt−�′xt is I(d(�)), for
d(�)¡dy. Clearly d(0)=dy, and this de0nition entails di=dy ¿d(�) for at
least one i. In (1) we did not normalize �, but of course if �′zt is in I(d(�))
then so is c�′zt for any c 
=0. However, while the choice of nonzero value
for the coeEcient of yt is thence arbitrary, the selection of yt to have, of
necessity, a nonzero coeEcient inIuences the investigation. Alternative nor-
malizations to �=(−�′; 1)′ could provide nontrivially di6erent cointegrating
relations, for example et =�1x1t + �2x2t , when d(�)¡d1 =d2¡dy, �i being
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the ith element of �. If d1 = · · ·=dp−1 =dy, say, this cannot arise, but our
de0nition reIects the fact that a normalization of a unit type, which is natural
in the context of the regression procedures we shall use, requires selection
of the normalized variate.
Our cointegration de0nition implies invariance to inclusion of further vari-

ates having integration order no greater than d(�). However, the coeEcients
of these would be unidenti0ed, as indeed are �i for i such that di6d(�).
On the other hand, if � is already identi0ed, but we then go on to include
further variates that satisfy di6d(�), then by partitioned regression it may
be shown that the large sample properties described for estimates of � in the
following section still hold. Note that when p¿ 3, the existence of cointe-
gration need not identify even �i for which di ¿d(�). If there is more than
one cointegrating relation, so that for some (p−1)×1 vector � 
=�, yt − �′xt
is I(d(�)) for d(�)¡dy, then it follows that (� − �)′xt is I(d(�; �)), where
d(�; �)6max(d(�); d(�))¡dy, and it may then be shown that there exists
no (p− 1)× (p− 1) diagonal matrix �n such that �n

∑n
t=1 xtx

′
t�n converges

weakly to a matrix that is both 0nite and nonsingular. However, with k ¿ 1
nontrivial, di6erent, cointegrating relations we can rede0ne xt as a (p − k)
vector and yt as a k×1 vector, whence the regression theory referred to in the
following section applies to each of the k regressions. Robinson and Yajima
(2000) have presented methods for determining fractional cointegrating rank
in this situation. Here, we shall proceed in the context of at most one coin-
tegrating relation, and while our stress on the dependence of the integration
order of this on � was important to the above discussion, we shall henceforth
abbreviate d(�) to de.

3. Estimation of cointegrating vectors

We discuss estimation of � in the representation

yt =�′xt + et (4)

for the observable vector zt =(x′t ; yt)
′ introduced in the previous section. The

setting is that of our de0nition of cointegration, so that the unobservable
process et is I(de), de ¡dy, while we assume that � is identi0ed. Further to
the discussion concluding the previous section, we assume zt is observed for
t=1; : : : ; n.
For a generic column vector or scalar sequence at , t=1; : : : ; n, de0ne the

discrete Fourier transform

wa(�)=
1

(2!n)1=2

n∑
t=1

ateit�: (5)
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With also a column vector or scalar sequence bt , t=1; : : : ; n, possibly identical
to at , de0ne the (cross-) periodogram

Iab(�)=wa(�)w′
b(−�): (6)

Now denote by �j=2!j=n, for integer j, the Fourier frequencies, and de0ne
the averaged (cross-) periodogram

F̂ab(m)=2Re


2!
n

m∑
j=1

Iab(�j)


− 2!

n
Iab(!)1

(
m=

n
2

)
; (7)

where 1(·) is the indicator function and the integer m satis0es 16m6 n=2.
The last term in (7) only contributes when n is even and m achieves its
maximum value, n=2. The case m=[n=2], where [ · ] denotes integer part, is
of particular interest, as we deduce that

F̂ab
([n

2

])
=

1
n

n∑
t=1

(at − Ma)(bt − Mb)′; (8)

the mean-corrected sample covariance, with Ma= n−1∑n
t=1 at . We observe that

F̂ab(m) represent the contributions from frequencies [1; �m] to the sample co-
variances in (8); the case where mean-correction is absent from (7)=(8) could
also be considered but we omit it due to pressure of space and because it
seems less relevant for empirical applications.
We estimate � by the frequency domain least squares (FDLS) statistic

�̂m= F̂xx(m)
−1F̂xy(m); (9)

assuming the inverse exists. Robinson (1994a) proposed (9) when p=2, with
stationary xt ; yt in mind. In view of (8), a special case is the ordinary least
squares (OLS) estimate with intercept,

�̂[n=2] =

(
n∑
t=1

(xt − Mx)(xt − Mx)′
)−1 n∑

t=1

(xt − Mx)(yt − My)′: (10)

For m¡ [n=2], there are broadly two cases of interest in the asymptotic
context where n→ ∞, namely

m ∼ Cn; 0¡C¡ 1
2 ; (11)

and
1
m

+
m
n

→ 0: (12)

In case (11), a nondegenerate subset of frequencies is used; for this case, �̂m
was introduced by Hannan (1963), and subsequently considered by Robinson
(1973) and Engle (1974), who named the approach ‘band-spectrum regression’.
In case (12), an increasing number of Fourier frequencies is again used, but
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estimation is carried out over only a degenerating band of frequencies, around
the origin.
The OLS estimates (10) have been widely used in AR-based analysis of

cointegration for I(1) and I(2) series zt , initially as estimates of interest in
themselves (e.g. Engle and Granger, 1987; Stock, 1987) and latterly as initial
estimates used to compute residuals which are then employed in producing
estimates of � with superior properties (e.g. Phillips, 1991a, b; Phillips and
Hansen, 1990). The classical regression assumption of orthogonality between
et and xt in (3) is not imposed, but nevertheless �̂m is still consistent because
of the asymptotic dominance of et by xt .
This lack of orthogonality results, however, in loss of consistency of least

squares when xt is stationary (so di ¡ 1
2 , all i), the usual simultaneous equa-

tions bias resulting. This motivated the 0rst consideration of �̂m under (12)
in the cointegration setting, by Robinson (1994a), who showed that despite
correlation between the stationary xt and et , �̂m is consistent for � due to the
dominance of the spectrum of xt over that of et near zero frequency (this
is not the case under (11)). Thus �̂m under (12) is superior to OLS (10)
for stationary observables. In practice, one may not be sure whether or not
observables are stationary, especially in a fractional context where the transi-
tion between stationarity and nonstationarity is smooth. This partly motivated
Robinson and Marinucci’s (1997, 1999, 2000) theoretical study of �̂m for
purely nonstationary I(d) zt , another motivation being that, since cointegra-
tion as discussed above is essentially a low frequency phenomenon, inclusion
of high frequency contributions might seem unwarranted. Indeed, a major
technical focus of this work was avoidance of assumptions on behaviour at
frequencies away from zero, so that the input process (see �t in (2)) is I(0)
in the very general sense described at the start of Section 1.
The properties of �̂m depend on the integration orders d1; : : : ; dp−1 and de,

and they also vary in a more qualitative fashion between several regions of
the d1; : : : ; dp−1; de-space. To keep the description simple we omit detailed reg-
ularity conditions and suppose that each of the d1; : : : ; dp−1 satis0es the same
restrictions; in fact the discussion of Robinson and Marinucci (1999a), where
the main focus was the properties of the averaged periodogram itself, was
con0ned to p=2. We denote by �̂im the ith element of �̂m, and assume (12)
holds throughout. We report only rates of convergence, taking Xn vd h(n) to
mean that h(n)−1Xn converges in distribution to a well-de0ned, nondegener-
ate random variable, so that this implies Xn=Op(h(n)). For i=1; : : : ; p− 1,
we have the following cases:

(i) (‘Less than unit root nonstationarity’): di ¿ 1
2 ; de¿ 0, di + de ¡ 1.

�̂i[n=2] − �i vd n1−di−dmin ; �̂im − �i vd nde−dim1−dmin−de : (13)
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(ii) (‘Boundary case’): 1
2 6di=1− de ¡ 1.

�̂i[n=2] − �i vd n2de−1 log n; �̂im − �i vd n2de−1logm: (14)

(iii) (‘I(1)=I(0) case’): d1 = · · ·=dp−1 = 1; de=0.

�̂i[n=2] − �i vd n−1; �̂im − �i vd n−1: (15)

(iv) (‘Greater than unit root nonstationarity’): d1 = · · ·=dp−1¿ 1
2 ; de ¿ 0;

di + de ¿ 1.

�̂i[n=2] − �i vd nde−di ; �̂im − �i vd nde−di : (16)

The limit random variables here all have nonstandard distributions, further
details of which can be found in Robinson and Marinucci (1999), who em-
ploy functional limit theory of Marinucci and Robinson (2000). Case (iii) is
the usual I(1)=I(0) one from the AR-based cointegration literature, and our
presentation obscures the fact that FDLS enjoys some ‘second-order bias’ su-
periority over OLS; this case is discussed in greater detail by Marinucci and
Robinson (1999b). (14) indicates that the degenerate FDLS can converge
slightly faster, or have a more concentrated limit distribution, than OLS,
while case (i) demonstrates a clear-cut superiority in the former approach;
(16) shows that so long as at least an arbitrarily slowly increasing number m
of frequencies is included, omission of higher frequencies makes no di6er-
ence at all to limit distributional behaviour when the collective memory of the
regressor and the cointegrating error et exceeds 1. The reason why omission
of frequencies causes no damage, and even some improvement, is that on
the one hand it eliminates the simultaneous equation bias due to the omitted
frequencies, while on the other, variance is dominated by contributions from
low frequencies, due to nonstationarity.
We shall not be concerned with the possibility of deterministic compo-

nents, a situation discussed by Robinson and Marinucci (2000): the results
described under cases (i)–(iv) continue to hold when the deterministic trends
are e6ectively dominated by the stochastic ones, whereas if the determinis-
tic trends dominate then �̂im is asymptotically normal, to contrast with the
nonstandard limit laws in (13)–(16).

4. Statistical inference on integration orders

In view of De0nition 2, inference on integration orders d1; : : : ; dp; de is
bound to be a key part of any investigation of fractional cointegration. As
with estimation of �, semiparametric methods based on only a degenerating
band of low frequencies are stressed. Semiparametric estimates are robust
in that they achieve consistency without the need for a parametric model,
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misspeci0cation of which can cause inconsistency of estimates of integration
orders.
Our fractional de0nitions in Section 2 describe only scalar sequences,

whereas we will sometimes be concerned with inference on integration or-
ders for a vector process, and this requires us to think in terms of a model
for jointly dependent fractional processes. Estimation of integration orders
has principally been developed under covariance stationarity assumptions,
which allow a spectral density to exist. We will discuss the topic in this
setting, because the same asymptotic statistical properties are likely to hold
for asymptotically stationary processes (i.e. d¡ 1

2 ), while purely nonstation-
ary processes (such that d¿ 1

2 ) might be handled by integer di6erencing to
produce at least asymptotic covariance stationarity, whereupon the methods
of integration order estimation which we discuss, justi0ed for stationary series
by Robinson (1995a, b), Lobato (1999), can be applied, and then the order
of integer di6erencing added back. Notice that whereas in an AR setting in-
ference based on di6erenced data can be very ineEcient, this is not the case
in a fractional setting, where indeed rules that are eEcient in the classical
sense are based on the null di6erenced data, see Robinson (1994b). Also,
0rst di6erencing caters automatically for a linear trend as it reduces it to a
constant, to which the discrete Fourier transform (5) evaluated at �=2!j=n,
j=1; : : : ; n=2 is invariant. To estimate the integration order de of et we can
apply our techniques with the generic process )t discussed below representing
ê t =yt − �̂

′
xt , where �̂ is one of the estimates described in Section 3.

Consider a q×1 covariance stationary vector process )t; t=0;±1; : : : ; hav-
ing spectral density matrix f(�), whose (k; ‘)th element fk‘(�) satis0es

fk‘(�) ∼ gk‘ei(!=2)(.k−.‘)�−.k−.‘ as �→ 0+ (17)

for k; ‘=1; : : : ; q; with ∼ indicating that the ratio of real parts of left- and
right-hand sides, and the ratio of imaginary parts of left- and right-hand sides,
both tend to 1, and − 1

2 ¡.k ¡ 1
2 ; k=1; : : : ; q: The matrix G=(gk‘) is positive

de0nite if )t is not cointegrated, and positive semide0nite otherwise; in any
case gkk ¿ 0; k=1; : : : ; q:
Two basic approaches to estimation of .=(.1; : : : ; .q)′ will be employed.

The 0rst is the log periodogram estimate of Geweke and Porter-Hudak (1983),
justi0ed asymptotically by Robinson (1995a) and Hurvich et al. (1998). De-
note by Ikk(�) the kth diagonal element of I))(�); (see (6)). For integer
s, de0ne Ykj= log(Ikk(�j)); k=1; : : : ; q; j=1; : : : ; s; where s¡ [n=2]; s is a
bandwidth parameter, somewhat analogous to m introduced in the previous
section, but it must tend to ∞ with n no faster than a rate determined by the
smoothness of the functions fkk(�)�2.k at �=0: De0ne

.̃k =−
∑s

j=1 2jYkj
2
∑s

j=1 2
2
j
; 2j= log j − s−1

s∑
j=1

log j; k=1; : : : ; q: (18)
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We have the approximations .̃k ∼ N (.k ; !2=24s); k=1; : : : ; q (Robinson,
1995a); a Wald-type test of the hypothesis H0 :5.=6; for a prescribed u×q
matrix 5 and u× 1 vector 6, is given by rejecting the null if

W̃ =4s(5.̃− 6)′(59̃5′)−1(5.̃− 6) (19)

is signi0cantly large relative to the :2u distribution, where .̃=(.̃1; : : : ; .̃q)′

and 9̃; a consistent estimate of the limiting variance matrix of 2s1=2(.̃ − .);
is de0ned by Robinson (1995a). Note that these and other semiparametric
estimates of integration orders are less-than-n1=2-consistent (by contrast with
estimates of � from nonstationary data), so that reliable inference on the .i
requires a large enough sample.
In case restrictions in the .k are detected, more eEcient estimates are avail-

able, again on the lines of Robinson (1995a). Assume it has been established
that .1 = · · ·= .q; and we wish to estimate the common value .∗: We consider
the GLS-type estimate

.̃∗=−
∑s

j=1 1
′
q9̃

−1
Yj2j

21′q9̃
−1
1q
∑s

j=1 2
2
j

; (20)

where Yj=(Y1j; : : : ; Yqj)′: We can use the approximation .̃∗ ∼ N (.∗;

(1′q9̃
−1
1q)−1=4s); so a Wald test that .∗ takes on a particular value can

readily be conducted.
The eEciency of .̃; .̃∗ is inferior to another class of semiparametric esti-

mates, the narrow-band Gaussian or Whittle estimate, introduced by KSunsch
(1987) and developed by Robinson (1995b) and Lobato (1999). This essen-
tially optimizes an approximate form of Gaussian likelihood, but extending
only over the s smallest Fourier frequencies �j. Consider 0rst the q individual
univariate objective functions

Rk(.k)= log


1
s

s∑
j=1

Ikk(�j)j2.k


− 2.k

s

s∑
j=1

log j; (21)

and estimates M.k =argmin(Rk(.k)); for k=1; : : : ; q; minimizing over a suit-
able compact subset of (− 1

2 ;
1
2 ); to impose stationarity and invertibility. Then,

individually, we have the approximation M.k ∼ N (.k ; (4s)−1); k=1; : : : ; q; so
the M.k are more eEcient than the .̃k (Robinson, 1995b). A further eEciency
improvement, when q¿ 1; follows from the multivariate objective function
(Lobato, 1996)

R(.)= log

∣∣∣∣∣∣
1
s

s∑
j=1

Aj(.)

∣∣∣∣∣∣−
2
s

q∑
j=1

.k
s∑
j=1

log j; (22)
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where Aj(.)=Re{�j(.)I))(�j) M�j(.)}; �j(.)=diag{ei!.1=2j.1 ; : : : ; ei!.q=2j.q}:
Then de0ne .̂=argmin R(.); minimizing over a compact subset of (− 1

2 ;
1
2 )
q.

Unlike .̃ and .̃∗; the M.k and .̂ are not de0ned in closed form. However,
commencing from an initial s1=2-consistent estimate, an estimate with identi-
cal asymptotic eEciency is achieved by a single approximate Newton step;
further such steps o6er no further 0rst order eEciency improvement, though
they may improve higher order eEciency (see Robinson, 1988). Considering
only .̂; to describe the (v+ 1)th step in such a procedure, v¿ 0; denote by

.̂
[v]

the current estimate and

.̂
[v+1]

= .̂
[v] − {2(Iq + Ĝ

[v] ◦ Ĝ[v]−1

)}−1 @R(.̂
[v]
)

@.
; (23)

where ‘◦’ denotes Hadamard product and Ĝ
[v]
= Ĝ(.̂

[v]
); where Ĝ(.)= s−1∑s

j=1 Aj(.): The matrix in braces in (23) is a simple consistent estimate of

the probability limit of @2R(.̂
[v]
)=@.@.′; note that 2(Iq + Ĝ

[v] ◦ Ĝ[v]−1

) reduces

to 4 when q=1: A possible choice for .̂
[0]

is .̃; since the latter estimate is
like .̂; s1=2-consistent, though it is less eEcient. We stress that the desirable
properties described above assume no cointegration when )t is a vector, but
as before apply to individual elements of )t when it is cointegrated.
A 0nal eEciency improvement is available if any a priori restrictions are

incorporated. Considering again the case .1 = · · ·= .q= .∗; with .∗ unknown,
de0ne

R∗(.)= log

∣∣∣∣∣∣
1
s

s∑
j=1

Aj(.∗1q)

∣∣∣∣∣∣−
2q
s

s∑
j=1

log j; (24)

and .̂∗=argmin R∗(.): Equal eEciency is achieved by the estimates

.̂
[v+1]
∗ = .̂

[v]
∗ − 1

4q
@R(.̂

[v]
1q)

@.
; v¿ 0; (25)

given an initial s1=2-consistent .̂
[0]
∗ (such as .̂∗):

Wald tests based on M.; .̂; .̂∗ and the corresponding Newton steps are avail-
able; for example, under the null hypothesis 5.=6, the statistic

Ŵ5.=6=(5.̂− 6)′{25(Iq + Ĝ(.̂) ◦ Ĝ(.̂)−1)5′}(5.̃− 6); (26)

has a limiting :2u distribution. Likewise, a test on .∗ can be based on the
approximation .̂∗ ∼ N (.∗; (4qs)−1): The objective functions (21), (22) and
(24) suggest also the use of tests based on the Lagrange Multiplier (LM) and
Likelihood Ratio (LR) principles. In fact, an LM-type test of .1 = · · ·= .q=0;
against a somewhat di6erent alternative than (17), was proposed by Lobato
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and Robinson (1998), while an LR type test in case q=1 was proposed by
Robinson (1998). In our context, an LM statistic for testing 5.=6 is

LM5.=6= s
@R(.̂0)
@.′

{25(Iq + Ĝ(.̂0) ◦ Ĝ(.̂0)−1)5′}@R(.̂0)
@.

; (27)

where .̂0 minimizes R(.) subject to 5.=6, or else is a Newton approxima-
tion to this, computed along the lines described above. Then, from asymptotic
theory of Robinson (1995b), Lobato (1996), (27) has a limiting null :2u dis-
tribution. To test H0 : .∗= .∗0 an LM statistic is

LM.∗=.∗0 = s
{
@R∗(.0)
@.

}2
/

4q; (28)

and has a limiting null :21 distribution. LR-type statistics for testing H0 :5.=6
and H0 : .∗= .∗0 are, respectively,

LR5.=6=2s{R(.̂0)− R(.̂)}; LR.∗=.∗0 = 2s{R∗(.̂∗0)− R(.̂∗)}; (29)

and have asymptotic null :2u and :21 distributions, respectively.
We now consider the problem of testing for the presence, or absence, of

cointegration, given that we have established from the procedures described
above that at least two observables have the same integration order. Robinson
and Yajima (2000) consider an approach for determining fractional cointe-
grating rank in a general vector context that requires introduction of an ad-
ditional user-chosen tuning number. Our present approach does not but, for
simplicity of exposition, and because it suEces for the empirical examples
of the following section, we focus on a bivariate observable, so p=2; and
at most one cointegrating relation can exist. We present a test for the null
hypothesis of no cointegration based on the same principle as that employed
by Hausman (1978) in other settings. We do not provide rigorous theoretical
support, but in addition to using it in our empirical examples we will report
Monte Carlo experiments that investigate its validity and power. Consider
again the set-up of Section 4, with p=2. Focusing on the Gaussian ap-
proach, under the necessary condition .1 = .2 = .∗ for cointegration, with .∗
unspeci0ed, recall that the univariate estimates ( M.1; M.2) consistently estimate
(.1; .2)= (.∗; .∗): However, both M.1 and M.2 are less eEcient asymptotically
than the restricted estimate .̂∗ when .1 = .2 and G is positive de0nite, so
there is no cointegration. On the other hand, if )t is cointegrated, it appears
that .̂∗ is inconsistent for .∗; the original Gaussian objective function is not
well de0ned when G is singular, and so there is no basis for considering the
concentrated form (24) as an objective function in the 0rst place. We can
thus test for no cointegration indirectly, comparing .̂∗ with, say, M.1. Because
M.1 has asymptotic variance 1=4s, while .̂∗ has asymptotic variance 1=8s under
d=de, it follows by an argument along the lines of Hausman (1978) that
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.̂∗ − M.1 has asymptotic variance 1=4s− 1=8s=1=8s; and then proceeding as in
Robinson (1995b),

H1s=8s(.̂∗ − M.1)2 →d :21 as
1
s
+
s
n
→ 0: (30)

This argument is heuristic but seems suEciently convincing for the test to
warrant serious consideration.

5. Empirical examples

Our empirical work employs macroeconomic data of Engle and Granger
(1987) (consumption and income, quarterly data, 1947Q1-1981Q2) and
Campbell and Shiller (1987) (stock prices and dividends, annual data, 1871–
1986). For each bivariate series, denote by y the variable chosen to be
‘dependent’ and by x the ‘independent’ one in our de0nition of cointegra-
tion, and by dy; dx the respective integration orders. Our results, based on the
methodology described in Sections 3 and 4, are presented in three steps.

5.1. Memory of raw data

We estimated dx; dy by supposing that both lie between 1
2 and 3

2 , 0rst-di6er-
encing the x and y series, applying procedures of Section 4 to estimate
.x=dx−1 and .y=dy−1; and then adding 1. As motivated in Section 4, we
computed univariate log-periodogram (.̃x; .̃y) and Gaussian ( Mdx; Mdy) estimates;
bivariate, unrestricted Gaussian estimates d̂x; d̂y; bivariate, log-periodogram
(d̃∗) and Gaussian (d̂∗) estimates of a common dx=dy:

We report the estimates in Tables 1 and 2. For all but the univariate
log-periodogram estimates we report also approximate 95% con0dence inter-
vals (denoted CI in the tables) based on the (normal) asymptotic distribution
theory developed by Robinson (1995a, b), Lobato (1996, 1999). In order to
judge sensitivity to choice of bandwidth s; we chose a grid of three values
for each data set analysed.
Gaussian estimates were approximated by the Newton steps described in

Section 4, iterating until convergence to 5 decimal places. In the univariate
and constrained cases, the objective function is globally concave, as shown
for the univariate case by application of the Cauchy inequality to (4:3) of
Robinson (1995b), and the version of Newton iteration employed guarantees
eventual convergence in such circumstances. On the other hand, for one data
set (consumption and income) we found lack of convergence of the uncon-
strained bivariate Newton step procedures for the smallest s, s=22; this may
be due to the presence of cointegration, as argued in Section 4, or could
instead be due to poor model 0t. We omit the corresponding results from
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Table 1
Consumption (C) and income (I) (Eqs. (18; 20; 23; 25))

s d̃ Md CI d̂ CI d̃∗ CI d̂∗ CI

C 22 1.13 1.13 0:92; 1:34 — 0:67; 1:04 0.95 0:94; 0:97 0.89 0:74; 1:03
30 1.04 1.11 0:93; 1:29 0.97 0:81; 1:13 0.98 0:97; 0:99 0.96 0:83; 1:08
40 1.04 1.12 0:97; 1:28 1.00 0:86; 1:14 1.02 1:02; 1:03 1.02 0:91; 1:13

I 22 0.89 0.99 0:78; 1:20 — 0:74; 1:11 0.95 0:94; 0:97 0.89 0:74; 1:03
30 0.95 1.03 0:85; 1:21 0.96 0:80; 1:12 0.98 0:97; 0:99 0.96 0:83; 1:08
40 1.02 1.08 0:92; 1:23 1.03 0:89; 1:17 1.02 1:02; 1:03 1.02 0:91; 1:13

Table 2
Stock prices (S) and dividends (D) (Eqs. (18; 20; 23; 25))

s d̃ Md CI d̂ CI d̃∗ CI d̂∗ CI

S 22 0.96 1.04 0:83; 1:25 0.89 0:71; 1:06 0.94 0:92; 0:96 0.88 0:73; 1:03
30 0.83 0.91 0:73; 1:09 0.78 0:62; 0:94 0.84 0:83; 0:85 0.77 0:65; 0:90
40 0.84 0.90 0:75; 1:06 0.82 0:68; 0:96 0.87 0:86; 0:87 0.82 0:71; 0:93

D 22 0.91 0.88 0:67; 1:09 0.84 0:67; 1:02 0.94 0:92; 0:96 0.88 0:73; 1:03
30 0.86 0.86 0:68; 1:03 0.75 0:59; 0:91 0.84 0:83; 0:85 0.77 0:65; 0:90
40 0.91 0.95 0:80; 1:11 0.83 0:70; 0:97 0.87 0:86; 0:87 0.82 0:71; 0:93

Table 1, and ones dependent on those cases in subsequent tables. The univari-
ate estimates are consistent both under cointegration and under no-
cointegration, and they tend to produce very close estimates for a given s;
con0dence intervals always refer to estimates to their immediate left.
Although only dx=dy is necessary for cointegration in our fractional ap-

proach, to comply with tradition we 0rst test dx=dy=1, that is .x= .y=0;
note that this case occupies a set of measure zero in the fractional domain.
We employ (see Table 3) Ŵ5.=6 and LM5.=6, with 5= I2 and 6=(0; 0)′;
so that .̂=(0; 0)′ in (27), denoting this version of (27) by LM (2) in the ta-
bles, as well as LR.∗=.∗0 with .∗0 = 0: Because these procedures, based on
the bivariate series, are liable to be invalid under cointegration, we also used
univariate versions of LM5.=6; with 5=1; 6=0; on each individual series
yt; xt ; denoting the statistics LM (1)

y ; LM (1)
x ; respectively. The 5% and 1% :22

critical values for W5.=6 and LM (2) are 5.99 and 9.21, and the 5% and 1%
critical values for LR.∗=.∗0 ; LM

(1)
y and LM (1)

x are 3.84 and 6.63. We used the
same values of s as in Tables 1–2.
Globally, we fail to reject the I(1) null in all 15 cases for consumption

and income; the evidence provided by stock prices and dividends is mixed,
with four rejections out of 15 at 5%.
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We now abandon the unit root null to focus on the restriction dx=dy,
whose value is unknown under the null. We report in Table 4 the statistics
W̃ ; Ŵ5.=6; LR5.=6 and LM5.=6; where 5=(1;−1)′; 6=0, comparing with
:21 critical values.
Since the null dx=dy nests the joint I(1) assumption, it is not surprising

that we fail to reject in all 12 cases for consumption and income; there is
also evidence that stock prices and dividends share the same, possibly nonunit,
integration order.

5.2. Cointegrating regression estimates and diagnostics

Table 5 contains OLS as well as, for three other values of m, FDLS; the
values of m used (3, 4 and 6) are much smaller than the bandwidths s used
in inference on dx and dy due to the anticipation of nonstationarity in the raw
data; for stationary xt ; yt optimal rules of bandwidth choice would lead to m
that are more comparable with the s we have used. For each m, we report
also the fractions

rxx;m=
F̂xx(1; m)

F̂xx(1; [(n− 2)=2])
; rxy;m=

F̂xy(1; m)

F̂xy(1; [(n− 2)=2])
; (31)

their closeness to unity being an indicator of support for the basic rationale
behind our approach, that sample variability eventually concentrates at zero
frequency for nonstationary processes (though note that rxy;m need not lie in
[0; 1].)

5.3. Memory of cointegrating error

We computed several estimates of de: In Table 6, we report d̃e and d̂e,
the log-periodogram and Gaussian estimates of (i) and (iii) above, using 0rst
di6erences of the residuals and then adding unity. However, in case there is
cointegration, nonstationary et seem rather unlikely a priori in our series, and
so we also report, in Table 7, corresponding estimates of de based simply
on raw data and without addition. Also, we report 95% con0dence intervals
based on the asymptotic theory of Robinson (1995a, b), though strictly this
has not been justi0ed in case of the residuals ê t; we conjecture that asymp-
totic distributions are una6ected by the presence of estimated parameters, at
least when FDLS are more-than-n1=2-consistent, as is often the case under
nonstationarity, see (13)=(16).
Tests were also conducted in order to more directly investigate the pos-

sibility of cointegration. We begin by again catering to the reader schooled
in traditional cointegration analysis by testing I(1) and I(0) hypotheses, al-
beit against fractional alternatives. Table 8 reports univariate LM statistics
(27) based on residuals for testing de=1 and de=0; these being equivalent
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Table 3
Tests for unit roots (Eqs. (26; 29; 27))

W5.=6 LR.∗=.∗0 LM (2) LM (1)
y LM (1)

x

s=22 s=30 s=40 s=22 s=30 s=40 s=22 s=30 s=40 s=22 s=30 s=40 s=22 s=30 s=40

C=I — 0.37 0.23 1.4 0.26 0.05 1.1 0.37 0.10 0.39 0.56 1.2 0.00 0.05 0.61
S=D 3.4 13.3 9.6 0.98 6.5 5.4 0.78 3.2 2.9 0.05 0.49 0.77 0.14 0.50 0.09

Table 4
Tests for dy =dx (.y = .x) (Eqs. (19; 26; 27))

W̃ Ŵ5.=6 LR5.=6 LMX.=6

s=22 s=30 s=40 s=22 s=30 s=40 s=22 s=30 s=40 s=22 s=30 s=40

C=I 1.06 0.02 0.02 — 0.07 0.66 — 0.04 0.28 0.10 0.01 0.11
S=D 0.07 0.04 0.36 0.75 0.43 0.12 0.33 0.19 0.05 0.03 0.04 0.01

Table 5
Cointegration analysis (Eqs. (9; 13))

�̂m1
�̂m2

�̂m3
�̂[n=2] rxx;m1 rxx;m2 rxx;m3 rxy;m1 rxy;m2 rxy;m3

C=I 0.231 0.232 0.232 0.229 0.85 0.88 0.93 0.86 0.88 0.93
S=D 33.2 33.6 32.5 31.0 0.78 0.79 0.85 0.84 0.85 0.89
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Table 6
Log-periodogram estimates of de (Eq. (18))

Di6erences of residuals Raw residuals

s=22 s=30 s=40 s=22 s=30 s=40

d̃e CI d̃e CI d̃e CI d̃e CI d̃e CI d̃e CI

C=I 0.56 0:39; 0:74 0.84 0:58; 1:1 0.86 0:66; 1:06 0.19 −0:07; 0:46 0.57 0:26; 0:87 0.61 0:38; 0:84
S=D 0.72 0:35; 1:1 0.57 0:28; 0:87 0.64 0:40; 0:88 0.74 0:47; 1:01 0.60 0:38; 0:82 0.64 0:45; 0:83

Table 7
Gaussian estimates of de (Eq. (23))

Di6erences of residuals Raw residuals

s=22 s=30 s=40 s=22 s=30 s=40

Mde CI Mde CI Mde CI Mde CI Mde CI Mde CI

C=I 0.62 0:41; 0:83 0.78 0:60; 0:96 0.87 0:71; 1:02 0.44 0:23; 0:65 0.68 0:50; 0:86 0.76 0:61; 0:91
S=D 0.77 0:56; 0:98 0.62 0:44; 0:80 0.65 0:50; 0:81 0.77 0:56; 0:98 0.62 0:44; 0:80 0.62 0:46; 0:77
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Table 8
Testing for (no) cointegration (Eqs. (27; 30))

LM on de =1 LM on de =0 Hys Hxs

s=22 s=30 s=40 s=22 s=30 s=40 s=22 s=30 s=40 s=22 s=30 s=40

C=I 2.23 0.96 0.61 4.54 14.90 33.84 10.79 5.42 3.55 2.00 1.12 1.30
S=D 0.75 4.57 4.76 16.51 30.68 55.10 4.61 4.37 1.96 0.00 1.56 5.21

respectively to no-cointegration and cointegration in an AR set-up. It is no-
table, then, that the I(0) null for et is rejected on all occasions. Finally, the
Hausman test of Section 4 was also employed. Because our stress on testing
estimates of .1 in Section 4 was arbitrary, we report in Table 8 not only Hxs
but also Hys; see (30).

We now discuss the implications of the tables for our two pairs of empirical
series.

(a) For consumption (y) and income (x); Engle and Granger (1987) found
evidence of CI(1) cointegration. Table 1 suggests an integration order
very close to one for both variables, the estimates ranging from 0.89 to
1.08 for income and from 0.89 to 1.13 for consumption. The hypoth-
esis dx=dy can safely not be rejected as the test statistics are at most
1.06. The �̂m are about 0.232, which is close to OLS (0.229). Variabil-
ity concentrates rapidly around frequency zero, 85.1% of the variance
of income being accounted for by the three smallest periodogram or-
dinates, less than 5% of the total. This proportion rises to 92.6% for
m=6 frequencies, and is even greater for the cross-periodogram, con-
0rming the high coherency of the two series at low frequencies. The
residual diagnostics are less clear-cut, but in only one case out of 12
does the con0dence interval for de include zero, providing strong evi-
dence against weak dependence; likewise, the LM test for I(0) is always
signi0cant at 5%. The estimates of de vary quite noticeably with s and
the procedure adopted, ranging from 0.19 to 0.87. The Hausman test
for no cointegration rejects in two out of six cases. Overall, it seems
the I(1)=I(0) framework can produce a satisfactory approximation for
the behaviour of the raw series, but not so for cointegrating residu-
als. Note that these data are seasonally adjusted, but because in this
paper we use only local-to-zero frequency assumptions on the behaviour
of the spectral density, seasonal adjustment procedures have no e6ect
asymptotically.

(b) The idea that stock prices (y) and dividends (x) might be cointegrated
follows mainly from a present value model, which asserts that an as-
set price is linear in the present discounted value of future dividends,
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yt = C(1 − .)
∑∞

i=0 .
iEt(xt+i) + c, where . is the discount factor; see

Campbell and Shiller (1987). In Table 2, the estimates of dx; dy ap-
pear close to unity, although now the hypothesis that dividends are
mean-reverting (dx ¡ 1) appears to be supported. The statistics for test-
ing dx=dy are always manifestly insigni0cant; the evidence on the unit
root assumption is more ambiguous, with 4 rejections out of 12 cases.
Empirical evidence of cointegration is weak; the estimates of de range
from 0.57 to 0.77; the Hausman test of no cointegration rejects in three
out of six cases. The results of Campbell and Shiller on this data set
were, in their own words, inconclusive; our 0ndings are possibly closer
to those of Phillips and Ouliaris (1988), who were unable to reject the
null of no cointegration at the 10% level.

6. Monte Carlo evidence

To compare the performance of versions of FDLS with OLS in moderate
sample sizes a small Monte Carlo study was conducted. Let ut =(u1t ; u2t)′

be a sequence of independent bivariate normal variates such that u1t and u2t
have zero mean, unit variance, and correlation 0.5. We consider the model

yt =�xt + et ; �=2; (32)

xt =�−dx{u1t1(t ¿ 0)}; et =�−de{u2t1(t ¿ 0)}: (33)

In terms of cases (i)–(iv) of Section 3, we include three versions of case (i)
((de; dx)= (0; 0:8); (0:2; 0:5); (0:4; 0:5)); one of case (ii) ((de; dx)= (0:2; 0:8))
and four of case (iv) ((de; dx)= (0; 1:2); (0:2; 1:2); (0:4; 0:8); (0:4; 1:2)); along
with (de; dx)= (0; 0:5) which is excluded from the discussion of Section 3
but is of interest as xt is on the stationary=nonstationary boundary. We ex-
cluded case (iii) as this was examined in detail by Marinucci and Robinson
(1999b).
We generated series of lengths n=64; 128, for each of which we com-

puted �̂m for three values of m: (m1; m2; m3)= (3; 4; 5); (3; 4; 6) and (6; 8; 10),
respectively, as well as �̂[n=2]: Tables 9 and 10 report Monte Carlo bias and
mean squared error (MSE) across 5000 replications. OLS is always beaten
by FDLS; to bear out remarks in Section 3, the relative improvement over
OLS seems greatest overall in cases (i) and (ii), while mostly the choice
of m in FDLS seems to make little di6erence, though it is striking that �̂m;
using the smallest m; is often best even in MSE. It is important to stress
that FDLS is unlikely to be the best approach for estimating �: In I(1)=I(0)
cointegration analysis, fully modi0ed and system estimates can lead to greater
eEciency and standard asymptotics (Phillips, 1991a, b; Phillips and Hansen,
1990), but while work is underway to extend such ideas to our setting this is
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Table 9
Bias for FDLS and OLS (Eqs. (9; 10))

n dx =0:5 dx =0:8 dx =1:2

de �̂m1
�̂m2

�̂m3
�̂[n=2] �̂m1

�̂m2
�̂m3

�̂[n=2] �̂m1
�̂m2

�̂m3
�̂[n=2]

64 0.0 0.49 0.51 0.53 0.63 0.24 0.26 0.27 0.37 0.04 0.04 0.04 0.07
64 0.2 0.61 0.63 0.64 0.71 0.32 0.33 0.35 0.43 0.06 0.07 0.07 0.10
64 0.4 0.77 0.78 0.78 0.81 0.43 0.45 0.45 0.52 0.10 0.11 0.11 0.14
128 0.0 0.41 0.42 0.44 0.49 0.16 0.17 0.19 0.28 0.01 0.02 0.02 0.03
128 0.2 0.53 0.55 0.57 0.66 0.23 0.25 0.26 0.34 0.03 0.03 0.04 0.05
128 0.4 0.74 0.74 0.75 0.79 0.35 0.36 0.38 0.44 0.06 0.06 0.07 0.08

Table 10
MSE for FDLS and OLS (Eqs. (9; 10))

n dx =0:5 dx =0:8 dx =1:2

de �̂m1
�̂m2

�̂m3
�̂[n=2] �̂m1

�̂m2
�̂m3

�̂[n=2] �̂m1
�̂m2

�̂m3
�̂[n=2]

64 0.0 0.28 0.29 0.30 0.41 0.08 0.09 0.09 0.15 0.01 0.01 0.01 0.01
64 0.2 0.41 0.43 0.44 0.51 0.13 0.14 0.14 0.21 0.01 0.01 0.01 0.02
64 0.4 0.66 0.65 0.65 0.67 0.23 0.23 0.24 0.29 0.02 0.02 0.02 0.03
128 0.0 0.19 0.20 0.21 0.34 0.04 0.04 0.04 0.09 0.00 0.00 0.00 0.00
128 0.2 0.32 0.33 0.34 0.45 0.07 0.08 0.08 0.13 0.00 0.00 0.00 0.01
128 0.4 0.60 0.59 0.59 0.63 0.15 0.15 0.16 0.21 0.01 0.01 0.01 0.01

a highly challenging task when integration orders are unknown, and in any
case preliminary estimates of � will still be needed and the capacity of FDLS
to improve on OLS here is still an advantage. Certainly, while biases still
remain high in many cases under FDLS, our experiment shows that we can
do better with FDLS than OLS, in terms not only of bias but MSE for a
range of bandwidths.
In a previous, extended, version of the paper we included also Monte

Carlo information (available upon request) on the procedures of Section 4
for testing integration orders of raw data. In short, LR-type procedures enjoy
some superiority in terms of empirical size, as is consistent with the existing
literature on higher order asymptotics for these tests in other settings.
Finally we consider the performance of the Hausman test. One thousand

series of lengths n=64; 128; 256 were generated according to (32=33); the
null of no-cointegration is identi0ed by de=dx. The test is based upon com-
parison of .̂x and .̂∗; where both estimates are evaluated on di6erenced data;
power and size refer to 5% critical values. We considered dx=0:8; 1:2 and
de=0:0; 0:2; 0:4; dx, and also the I(1)=I(0) case dx=1; de=0; 1. Empirical size
and power are reported in Table 11.
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Table 11
Size and power of the Hausman test at 5% (Eq. (30))

de dx n=64 n=128 n=256

10 (%) 20 (%) 30 (%) 20 (%) 30 (%) 40 (%) 30 (%) 40 (%) 50 (%)

0.0 0.8 30.3 33.0 35.2 44.3 51.4 56.5 64.5 75.1 80.0
0.2 0.8 25.4 25.1 29.1 32.3 40.9 42.7 51.3 59.3 64.2
0.4 0.8 24.1 18.0 19.4 22.1 27.2 29.5 33.6 38.0 45.4
0.8 0.8 22.9 15.1 14.3 12.9 13.2 10.1 12.9 9.9 9.7
0.0 1 38.4 46.8 49.2 65.5 74.5 81.1 87.4 92.7 94.2
1 1 21.4 14.6 11.1 14.0 12.8 10.5 11.3 11.6 7.8
0.0 1.2 55.6 64.2 62.1 83.7 90.4 94.2 97.9 99.3 99.8
0.2 1.2 47.2 56.0 57.9 76.9 83.9 88.6 95.1 97.7 98.9
0.4 1.2 39.7 46.1 47.2 65.1 71.5 76.9 87.9 92.1 96.2
1.2 1.2 19.4 15.3 11.7 15.0 13.7 10.8 12.3 11.6 10.4

Sizes are larger than one might like, but not unsatisfactory, and they im-
prove with increasing n, as do the powers, which also noticeably increase
with dx − de; for example, in the I(1)=I(0) case with n=128 and s=40, the
size under the null is slightly above 10% whereas the power exceeds 80%.
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