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Abstract

A valid asymptotic expansion for the covariance of functions of multivariate normal
vectors is applied to approximate autocovariances of time series generated by nonlinear
transformation of Gaussian latent variates, and nonlinear functions of these, with special
reference to long memory stochastic volatility models, serving to identify the roles played
by the underlying Gaussian processes and the nonlinear transformation. Implications for
simple stochastic volatility models are examined in detail, with numerical and Monte
Carlo calculations, and applications to cyclic behaviour, cross-sectional and temporal
aggregation, and multivariate models are discussed. ( 2001 Elsevier Science S.A. All
rights reserved.

JEL classixcation: C22

Keywords: Stochastic volatility; Long memory; Nonlinear functions of Gaussian pro-
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1. Introduction

A major theme of nonlinear time-series analysis in "nance and econometrics
concerns the in#uence of instantaneous nonlinear transformation on measures
of memory. One class of measures which has featured frequently in asymptotic
theory for time-series statistics is mixing numbers, which are known to be
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essentially invariant to such transformation (see e.g. Ibragimov and Linnik,
1971) in the sense that their rate of decay is unchanged. However, mixing
numbers cannot properly be estimated from data, and some empirical
evidence about measures that can be estimated prompts further theoretical
investigation.

For stationary time series the measures of this type that come most immedi-
ately to mind are autocovariances (and autocorrelations, which decay at the
same rate). In particular, a well-established empirical "nding is that "nancial
time series levels x

t
, such as daily asset returns, are apt to exhibit little or no

autocorrelation, whereas, their squares x2
t

have noticeable autocorrelation.
Attempts to model this phenomenon began with the ARCH(p) model of Engle
(1982), followed by its GARCH(p, q) extension (Bollerslev, 1986), and the
stochastic volatility model of Taylor (1986), with numerous elaborations on
these themes.

The model of Engle (1982), and the bulk of its successors, have the property
that Cov(x

t
, x

t`j
)"0, for all nonzero j, whereas Cov(x2

t
, x2

t`j
) decays exponenti-

ally to zero as jPR. Linear processes are incapable of describing this phenom-
enon, but, mathematically speaking, this divergence in the properties of the
levels and squares is not dramatic, and relatively recent empirical studies (see e.g.
Ding et al., 1993; Granger and Ding, 1995; Ding and Granger, 1996; Andersen
and Bollerslev, 1997) suggest a degree of persistence in Cov(x2

t
, x2

t`j
), which

might be modelled in terms of a much slower rate of decay.
In fact models had already been proposed that might explain this behaviour.

Robinson (1991) considered extensions of the ARCH(p) and GARCH(p, q) that
might entail arbitarily slow decay of autocorrelations of x2

t
, including long

memory, where autocorrelations are not summable, and Whistler (1990) applied
relevant tests he developed to "nancial data. Ding and Granger (1996) and
others have developed such models further. On the other hand, Andersen and
Bollerslev (1997), Breidt et al. (1998), Harvey (1998) considered a long-memory
version of Taylor's (1986) stochastic volatility model, Robinson and Za!aroni
(1998) considered an alternative &2-shock' functional form, Robinson and Zaf-
faroni (1997) considered a nonlinear moving average whose squares have long
memory, while Teyssiere (1998) has discussed a variety of ARCH type long
memory functional forms involving various forms of nonlinearity.

At the same time, other empirical "ndings must be borne in mind. A body of
opinion asserts that fourth moments of many "nancial series are in"nite, in
which case autocovariances of x2

t
are not well de"ned. Partly in response,

autocovariances of other instantaneous transformations of x
t
have been studied,

such as Dx
t
Dh, for real-valued h (for example h"1), so that for h(2 the fourth

moment problem is avoided. Ding et al. (1993), Ding and Granger (1996),
Granger and Ding (1995) found a tendency over a range of series for sample
autocorrelations to be relatively large for speci"c h, such as h"1. Apart from
the question of "niteness of moments, absolute powers Dx

t
Dh are mathematically
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hard to handle in the context of the ARCH models of Engle (1982), Bollerslev
(1986), Robinson (1991) when h is not an even integer.

The present paper demonstrates that, for a wide variety of processes, the
autocovariances at long lags of instantaneous nonlinear functions of a general
type can be rigorously approximated su$ciently accurately to enable the pres-
ence or absence of long memory in the instantaneous function to be determined
from the speci"cation of the original process. As well as enabling us to thereby
deal with particular, parametrically speci"ed, processes, our results help to
explain empirical "ndings of long-memory stochastic volatility in terms of
a general class of data-generating processes, allowing also the practitioner
freedom to choose the form of nonlinear transformation in such a way as to
minimize moment conditions, if desired.

A scalar observable (possibly transformed) series y
t
will be modelled as

y
t
"f (g

t
), (1.1)

where g
t
is a p-dimensional stationary Gaussian process and f : RpPR. A par-

ticular case of (1.1) that is of interest speci"es f to have separable form, such that

y
t
"f

1
(g

1t
) f

2
(g

2t
), (1.2)

taking g
t
"(g@

1t
, g@

2t
)@, where g

it
is p

i
]1, i"1, 2, p

1
#p

2
"p, Cov(g

1t
, g

2t
)"0

and f
i
:RpiPR, i"1, 2. If x

t
has form (1.2), then so (for a new f

1
, f

2
) does Dx

t
Dh,

for any h. Moreover, subject to "niteness of appropriate moments, if
Ef

1
(g

1t
)"0, then Ey

t
"0 while if also g

1t
is an iid sequence and g

1t
is indepen-

dent of g
2s

, s(t, then Cov(y
t
, y

t`j
)"0, for all jO0, so that the classical

zero-autocovariance properties of asset returns y
t
"x

t
are described, whereas

when we take y
t
"Dx

t
Dh, or its logarithm, then Ef

1
(g

1t
)O0 and moreover we can

then get autocorrelation.
The form (1.2) does not cover ARCH-type models (because p(R) but it

covers such models as

x
t
"g

1t
ea`bg2t (1.3)

and

x
t
"g

1t
(a#bg

2t
) (1.4)

with g
1t

white noise (having zero mean), g
2t

either depending only on g
1s

, s(t
or being independent of g

1s
for all s, t, and y

t
"x

t
or y

t
"Dx

t
Dh. Model (1.3) is

a standard stochastic volatility model (Taylor, 1986), where Andersen and
Bollerslev (1997), Breidt et al. (1998), Harvey (1998) took g

2t
to have long

memory. Model (1.4) is in Robinson and Za!aroni (1997, 1998) with again
g
2t

having long memory, though they also permitted g
2t

to be a non-Gaussian
linear process. Breidt et al. (1998), Robinson and Za!aroni (1997, 1998) gave
exact formulae for autocovariances of x2

t
based on (1.3) and (1.4), respectively.

Andersen and Bollerslev (1997) gave approximate formulae for autocovariances
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at long lags of certain nonlinear functions of (1.3). Our asymptotic expansion
rigorously justi"es and re"nes such asymptotic formulae in a variety of settings.
For parametric "tting of a particular parametric form such as (1.3) or (1.4) the
autocorrelation in g

t
would be parameterized, but this possibility does not

concern us here, except insofar as we have to employ a parameterization in
generating Monte Carlo observations.

A wide range of models is covered by (1.2), entailing both short and long
memory in g

t
. We impose no smoothness on f

1
and f

2
and can choose them such

that only the second moment requirement

Ef 2
i

(g
it
)(R, i"1, 2, (1.5)

is required, notwithstanding the Gaussianity of g
t
. By way of illustration, and

also partial motivation for our allowance of p
i
*2, consider

f
1
(g

1t
)"

g(1)
1t

(p
1
!1)1@2

Mg(2)2
1t

#2#g(p1 )2
1t

N1@2
, (1.6)

where g(j)
1t

is the jth element of g
1t

and the g(j)
1t

, 1)j)p
1
, are mutually indepen-

dent (see the remark after (2.1) below) but can have autocorrelation. Then (1.6)
has a t

p1~1
distribution, having "nite integer moments up to degree p

1
!2 only,

for example when 2)p
1
)5 it has in"nite fourth moment. Of course (1.6) has

mean zero so it might be substituted for g
1t

in (1.3) and (1.4) (cf. Bollerslev, 1987),
whence x

t
inherits its moment properties. Other random variables expressible as

functions of "nitely many normals are truncated and censored normals, b and
F variates. More generally, many scalar non-normal random variables can be
represented as a nonlinear function (depending on the normal and desired
distribution functions) of a scalar normal variable. Nonlinear functions of
Gaussian processes (1.1) featured in early work on modelling of nonlinear time
series (e.g. Kuznetsov et al., 1965; Hannan, 1970, Chapter 2; Hannan and
Boston, 1972). They have also played a major role in the asymptotic statistical
theory of long-memory processes (see e.g. Rosenblatt, 1961; Taqqu, 1975; Ho
and Sun, 1987; Sanchez de Naranjo, 1993). However, this literature stresses how
certain nonlinear transformations of a long-memory process have less memory,
even short memory, whereas we, by the product form (1.2), seek to describe
a reverse phenomenon, such as when levels have zero autocorrelation but
nonlinear transformations have short- or long-memory autocorrelation.

The following section develops our expansion for the covariance between
functions of two sets of normal vectors. The expansion is shown to be a proper
asymptotic one as the covariance between the normal vectors tends to zero,
while its form, and in particular its leading terms, are governed by the nature of
the nonlinear functions involved. Approximations of autocovariances for mod-
els (1.3) and (1.4) are derived in Section 3, with numerical calculations and
Monte Carlo evidence of the accuracy of the approximations. Section 4 outlines
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extensions to multivariate observable processes, cyclic phenomena and tem-
poral and cross-sectional aggregation. Section 5 contains some "nal remarks.

2. Covariance of nonlinear functions of Gaussian variates

The present section makes no reference to time series applications, and we
drop t subscripts and consider the covariance between f (g) and g(f), where
f :RpPR and g : RqPR, g and f are, respectively, p- and q-dimensional normal
vectors, and

Ef 2(g)#Eg2(f)(R. (2.1)

We take g and f to individually be spherical normal, that is vectors of indepen-
dent standard normal variates; no generality is thereby lost, as noted by, e.g. Ho
and Sun (1987) and Sanchez de Naranjo (1993). We refer to the above speci"ca-
tion as Assumption A.

Write

R"E(gf@)

where R has (k, l)th element o
kl

, k"1,2, p, l"1,2, q. Denote by /( ) ) the
standard normal density function and by H

j
( ) ) the kth Hermite polynomial,

given by

H
j
(s)/(s)"

1

J2nPR (it)j/(t)e~*stdt. (2.2)

Let c
h
, 1)h)p, d

j
, 1)j)q, be nonnegative integers and de"ne

c"(c
1
,2, c

p
)@, d"(d

1
,2, d

q
)@ (2.3)

and

F
c
"P

R
p

f (u)
p
<
h/1

MH
ch
(u

h
)/(u

h
) du

h
N, (2.4)

G
d
"P

R
q

g(u)
q

<
j/1

MH
dj

(v
j
)/(v

j
) dv

j
N, (2.5)

taking u"(u
1
,2, u

p
), v"(v

1
,2, v

q
). Now de"ne

m
h
"

q
+
l/1

Do
hl

D, 1)h)p, s
j
"

p
+
k/1

Do
kj

D, 1)j)q,

q"
p
+
h/1

m
h
"

q
+
j/1

s
j

and denote by

mm"(m
1
,2, m

p
), ns"(n

1
,2, n

q
),
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the vectors of non-negative integers such that

mm"argmax
c G

p
<
h/1

mch
h

D F
c
O0H,

ns"argmax
d G

q
<
j/1

sdj
j

DF
d
O0H.

The mm , ns are extensions of the Hermite rank introduced by Taqqu (1975) in
scalar problems. In case o

kl
,o, say, for 1)k)p, 1)l)q, we write

m
H
"mm , n

H
"ns ,

where

mm"min
c G

p
+
h/1

c
h
D F

c
O0H, ns"min

d G
q
+
j/1

d
j
D F

d
O0H,

which do not depend on the m
h

(,po) or s
j

(,qo).
In the statement of the following theorem, and its proof, the sums are over all

non-negative integers satisfying the indicated conditions, 1
s

denotes the s]1
vector of 1's, and r

h.
"(r

h1
,2, r

hq
)@, r

.j
"(r

1j
,2, r

pj
)@.

Theorem 1. Let Assumption A hold and

q(1. (2.6)

Then

Cov( f (g), g(f))"
=
+
i/1

a
i
, (2.7)

where

a
i
" +

ch ,djxhxp,1xjxq,1@
p c`1@

qd/2i

F
c
G

dG +
rkl >1xkxp,1xlxq,1@

q rh./ch ,1@
p r.j/dj

orkl
kl

r
kl

!H,
(2.8)

where the sum in (2.7) converges absolutely, indeed for all i*1

Da
i
D)MEf 2(g)Eg2(f)N1@2minAqi, G

p
<
h/1

mmh

h
1!m

h

q
<
j/1

snj
j

1!s
j
H

1@2

B (2.9)

for all i*1, so that for all n*1

=
+
i/n

Da
i
D)MEf 2(g)Eg2(q)N1@2

qn
1!q

. (2.10)
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Proof. The Theorem is similar to a number of others in the literature, following
from work of Kendall (1941), and, in the more recent long-memory literature,
Taqqu (1975), but we present a brief proof. We have

Ef (g)g(f)"(2n)~(p`q)@2P
R

p`q

f (u)g(v) GP
R

p`q

exp(!is@u!it@v)

]expA!
1

2
(s@, t@)C

I
p

R

R@ I
q
DC

s

tDBdsdtHdu dv, (2.11)

where here s and t denote the vectors s"(s
1
,2, s

p
)@, t"(t

1
,2, t

q
)@. The second

exponential factor can be written

expA!
s@s
2
!

t@t
2 B

p
<
k/1

q
<
l/1

exp(!s
k
tlokl

),

in which the double product can be written

p
<
k/1

q
<
l/1

=
+

rkl/0

(!s
k
tlokl

)rkl

r
kl

!

" +
rkl >1xkxp,1xlxq

G
p
<
k/1

q
<
l/1

orkl
kl

r
kl

!H
p
<
h/1

(is
h
)ch

q
<
j/1

(it
j
)dj ,

where c
h

and d
j

are as in (2.8). Thus from (2.2), the factor in braces in (2.11) is

(2n)(p`q)@2 +
rkl >1xkxp,1xlxq

G
p
<
k/1

q
<
l/1

orkl
kl

r
kl

!H
]

p
<
h/1

MH
ch
(u

h
)/(u

h
)N

q
<
j/1

MH
dj
(v

j
)/(v

j
)N

so that, from (2.4) and (2.5), (2.11) is

+
rkl >1xkxp,1xlxq

G
p
<
k/1

q
<
l/1

orkl
kl

r
kl

!HFc
G

d

with c and d given in (2.3). Noting that Ef (g)"F
0
, Eg(g)"G

0
, where the zero

subscripts here denote vectors of zeros, substraction and rearrangement pro-
duces (2.7). To prove (2.9), the factor in braces in (2.8) is bounded in absolute
value by

G
p
<
h/1

+
rhl >1xlxq,1@

q rh > /ch

q
<
l/1

Do
hl

Drhl

r
hl

! H
1@2

G
q

<
j/1

=
+

rkj >1xkxp,1@
p r>j/dj

p
<
k/1

Do
kj

Drkj
r
kj

! H
1@2

"G
p
<
k/1

mch
h

c
h
!H

1@2

G
q
<
j/1

sdj
j

d
j
!H

1@2
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by the multinomial theorem. Thus, writing

S"Mc: c
h
*m

h
, 1)h)pN, ¹"Md: d

j
*n

j
, 1)j)qN,

noting that F
c
"0, c N S, F

d
"0, d N¹, and applying the Schwarz inequality,

Da
i
D)G +

ch >1xhxp

F2
c

<p
h/1

c
h
!

=
+

dj >1xjxq

G2
d

<q
j/1

d
j
!H

1@2

]G +
ch ,dj >1xhxp,1xjxq,1@

p ch`1@
q dj/2i,c|S,d|T

p
<
h/1

mch
h

q
<
j/1

sdj
j H

1@2
.

The "rst term in braces is bounded by Ef 2(g)Eg2(f)(R from (2.1), whereas the
second is bounded by

+
ch ,dj >1xhxp,1xjxq,1@

pch`1@
qdj/2i

p
<
h/1

mch
h

q
<
j/1

sdj
j
"q2i

by the multinomial theorem, and, on the other hand, also by

+
ch ,dj >1xhxp,1xjxq,c|S,d|T

p
<
h/1

mch
h

q
<
j/1

sdj
j
)

p
<
h/1

mmh

h
1!m

h

q
<
j/1

snj
j

1!s
j

,

by summation of geometric series, to prove (2.9). Then (2.10) follows immediate-
ly. h

Note that if the "rst element (say) of g is independent of f, and
:
R

f (u)/(u
1
) du

1
"0 for all (u

2
,2, u

p
), then Cov ( f (g), g(f))"0. The Theorem's

bounds are then sharp, +=
i/1

Da
i
D"0, because it follows that m

1
"0 and m

1
'0.

Note also that by the inequality between geometric and arithmetic means and
the inequality <n

1
(1!x

j
)*1!+n

1
x
j
, for 0)x

j
)1, 1)j)n, we have

G
p
<
h/1
A

mmh

h
1!m

h
B

q
<
j/1
A

snj
j

1!s
j
BH

1@2
) A

max
h

m
h

+m
h
B

+mh @2

A
max

j

n
j

+n
j
B

+nj @2

]q1@2(+mh`+ni)

For q small enough this provides a sharper bound for Da
i
D than the one of order

qi when i(1
2
(+m

h
#+n

j
), but it is the latter which is eventually important and

ensures validity of the expansion

CovM f (g), g(f)N"(1#o(1))
n~1
+
i/1

a
i

for all n*2, if

qn"o(Do
kl

Dn~1), 1)k)p, 1)l)q,
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as these o
kl

all tend to zero, which entails q tending to zero and thence that (2.6)
is eventually satis"ed. Note that (2.6) implies m

h
(1, 1)h)p, and s

j
(1,

1)j)q.
We have presented the Theorem in the form (2.7) and (2.8), because a

i
involves

powers of degree i in the o
kl

, and is thus of order qi. In particular, denoting by
c(k), d(l) the values of c and d such that c

i
"d

ik
, 1)i)p, d

j
"d

jl
, 1)j)p,

where d is the Kronecker delta, we have

a
1
"

p
+
k/1

q
+
l/1

F
c(k)

G
d(l)

o
kl

(2.12)

and denoting by c(k,m), d(l, n) the values of c and d such that c
i
"d

ik
#d

im
,

1)i)p, d
j
"d

jl
#d

jn
, 1)j)q, we have

a
2
"

1

2

p
+
k/1

q
+
l/1

F
c(k,k)

G
d(l,l)

o2
kl

#

p
+
k/1

q
+
l/1

p
+

m/1

q
+

n/1
(k,l)E(m,n)

F
c(k,m)

G
d(l,n)

o
kl

o
mn (2.13)

and so on. It is thus the question of whether the relevant F
c
G

d
is zero or not that

determines the presence or absence of <p
k/1

<q
l/1

orkl
kl

for a particular
Mr

kl
; 1)k)p, 1)l)qN, while in our applications it is the lowest order

powers that are not thereby eliminated that tend to dominate.

3. Autocovariances for simple stochastic volatility models

We shall investigate autocovariance properties of y
t
in (1.2) by applying the

Theorem in the simple case p
1
"p

2
"1, which is motivated by the speci"ca-

tions (1.3) and (1.4), though the results are not restricted to these models. To
apply the Theorem we take

f"f
1

f
2
, g"f

1
f
2
,

g
t
"(g

1t
, g

2t
)@, f"(g

1,t`j
, g

2,t`j
)@,

o
kl
"Cov(g

kt
, gl,t`j

) $%&" c
kl

( j), k, l"1, 2.

We then have

F
c
"G

c
"F

1c1
F
2c2

,

where we de"ne

F
ij
"PR

f
i
(u)h

j
(u)/(u) du.
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For brevity, write f
it
"f

i
(g

it
). Condition (2.1) is equivalent to

Ef 2
1t
#Ef 2

2t
(R.

De"ne c( j)"Cov(g
t
, g

t`j
). We deduce from (2.12) and (2.13) that the two

&leading' terms in the expansion of c( j) are

a
1
"c

11
( j)F2

11
F2
20

#c
12

( j)F
11

F
20

F
10

F
21

#c
22

( j)F2
10

F2
21

,

a
2
"1

2
Mc2

11
( j)F2

12
F2
20

#c2
12

( j)F
12

F
20

F
10

F
22

#c2
22

( j)F2
10

F2
22

N

#2Mc
11

( j)c
12

( j)F
12

F
20

F
11

F
21

#c
11

( j)c
22

( j)F2
11

F2
21

# c
12

( j)c
22

( j)F
11

F
21

F
10

F
22

N.

Further, for K(R, the Theorem gives +=
j/3

Da
i
D)Kd( j)3, for d( j)"

Dc
11

( j)D#Dc
12

( j)D#Dc
22

( j)D(1. If g
t
is ergodic, so d( j)P0 as jPR, then

c( j)"a
1
(1#o(1))

if d( j)2"o(Dc
kl

( j)D) for (k, l)"(1, 1), (1, 2), (2, 2); further, we have the re"ne-
ment

c( j)"(a
1
#a

2
)(1#o(1))

if d( j)3"o(c2
kl

( j)) for (k, l)"(1, 1), (1, 2), (2, 2).
Before describing special cases, we note that Ey

t
"Ef

1t
Ef

2t
, which is zero if

Ef
it
"F

i0
"0 for i"1 or 2 as is true for y

t
"x

t
in (1.3) and (1.4).

Case I.

F
10

"0, (3.1)

so Ef
1t
"0. Then

c( j)"c
11

( j)F2
11

F2
20

(1#o(1)), (3.2)

so the autocorrelation in g
1t

dominates. If

c
11

( j)"0, jO0, (3.3)

we deduce exactly

c( j)"0, jO0,

from the Theorem (because m
1
"0, m

1
'0) or from direct calculation. This is

the familiar outcome of white noise levels, (3.1) holding for (1.3) and (1.4) if
y
t
"x

t
.

Case II. (3.3) is true but (3.1) is not, so f
1t

is white noise with non-zero mean.
This is the case for many nonlinear transformations of x

t
given by (1.3) and (1.4).

We have

c( j)"Mc
12

( j)F
11

F
20

F
10

F
21

#c
22

( j)F2
10

F2
21

N(1#o(1)) as jPR. (3.4)
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Suppose also that

c
12

( j)"0, j'0, (3.5)

so g
1s

and g
2t

are independent for all s, t. This is the usual speci"cation in (1.3),
and is imposed in (1.4) by Robinson and Za!aroni (1998), but not by Robinson
and Za!aroni (1997). Then

c( j)"c
22

( j)F2
10

F2
21

(1#o(1)) as jPR, (3.6)

so now the autocorrelation in g
2t

dominates.
Case III. Eq. (3.3) and

g
2t
"

=
+
j/0

a
j
g
1,t~j

, (3.7)

where

a
j
&cjd~1, 0(d(1

2
, (3.8)

for a nonzero constant c, which will take di!erent values in the sequel, and with
&&' indicating that the ratio of left- and right-hand sides tends to 1. We do not
impose (3.1) or (3.5). The speci"cation (3.7) is just a consequence of Gaussianity,
independence of g

1t
, g

2t
, and (3.3), but with also (3.8) it follows that

c
12

( j)&cjd~1, c
22

( j)&cj2d~1 as jPR, (3.9)

the latter relation indicating that g
2t

has long memory; for example, g
2t

could be
a fractionally integrated autoregressive moving average (FARIMA) process.
Then (3.4) and (3.8) imply that we again get (3.6), and indeed

c( j)&cj2d~1 as jPR, (3.10)

so y
t
inherits the long memory of g

2t
; this property was derived more heuristi-

cally for (1.3) by Andersen and Bollerslev (1997).
Case IV. As in Case III but with (3.8) replaced by

a
j
&!cjd~1, !1

2
(d(0, (3.11)

a
j
!a

j`1
"OA

Da
j
D

j B (3.12)

and

=
+
j/0

a
j
"0. (3.13)

Then for j'0,

c
22

( j)"
*j@2+
+
i/0

a
i
a
i`j

#

=
+

i/*j@2+`1

a
i
a
i`j
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and the second sum is O( j2d~1) by (3.10) and the Cauchy inequality, while the
"rst is, by summation by parts,

*j@2+~1
+
i/j

(a
i`j

!a
i`j`1

)
i
+
h/0

a
h
#a

*j@2+

*j@2+
+
i/0

a
i

"!

*j@2+~1
+
i/j

(a
i`j

!a
i`j`1

)
=
+

h/i`1

a
i
!a

*j@2+

=
+

i/*j@2+

a
i

"O( jd~1 ) jd)"O( j2d~1) as jPR.

Also, +=
j/~=

c
22

(j)"0 from (3.13), so that the spectral density of g
2t

is zero at
frequency zero. Thus g

2t
has negative dependence or antipersistence; the condi-

tions (3.11)}(3.13) are again satis"ed by FARIMA models, (3.12) being a quasi-
monotonicity condition (see Yong, 1974). Because also c

12
( j)&!cjd~1 we

deduce from (3.4) that, instead of (3.6) and (3.10),

c( j)"c
12

( j)F
11

F
20

F
10

F
20

(1#o(1)) as jPR

&cjd~1. (3.14)

Case V

F
11

"0, (3.15)

as is true when f
1t
"Dg

1t
Dh, as can arise from (1.3) and (1.4). There can be

autocorrelation in g
1t

, and we have

c( j)"c
22

( j)F2
10

F2
21

#

1

2
Mc2

11
( j)F2

12
F2

20

#c2
12

( j)F
12

F
20

F
10

F
22

N (1#o(1)). (3.16)

Under (3.5) or the long-memory speci"cation (3.7) and (3.8), we deduce (3.6) and
(3.10) again, unless g

1t
has su$ciently long memory for the c2

11
( j) term to

dominate.
Case VI: (3.3) and either (3.5) or (3.7) and (3.8), as well as

F
21

"0,

which holds if f
2

is an even function, as in f
2t
"Dbg

2t
Dh, as follows from (1.4) with

a"0 and y
t
"Dx

t
Dh. Then

c( j)"1
2

c2
22

(j)F2
10

F2
22

(1#o(1)). (3.17)

This is cj4d~2(1#o(1)) under (3.7) and (3.8) so that long memory in g
2t

produces
long memory in y

t
only when 1

4
(d(1

2
, and even then y

t
has less memory than

g
2t

. The same result for (1.4), when h"2, was deduced by Robinson and
Za!aroni (1997, 1998) from exact formulae for c( j).
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We can calculate the factors F
ij

arising in such approximations as (3.2), (3.4),
(3.6), (3.14), (3.16) and (3.17) in special cases. In view of the earlier discussion we
consider as &leading cases' (3.6) and (3.17), under models prompted by (1.3) and
(1.4) which lead to analytic formulae.

First consider (3.6), when y
t
"Dx

t
Dh, h'0, under (1.3). With C( ) ) denoting the

Gamma function,

F
10

"PDsDh/(s) ds"
2h@2
Jn

CA
h
2
#

1

2B, (3.18)

F
21

"eahPsebhs/(s) ds"eahbh expA
b2h2

2 B,
so that

F2
10

F2
21

"

2h
n

e2ahb2h2CAh#
1

2Bexp(b2h2).

We can also develop corresponding approximations for autocorrelations, as is
relevant because the variance will also depend on h, a and b. We have

<ar(Dx
t
Dh)"

2he2ah
Jn

exp(b2h2)GCAh#
1

2B!
C2(h/2#1/2)exp(b2h2)

Jn H.
After rearrangement, we deduce from (3.7) that, for all a,

oh( j)
$%&
" Corr(Dx

t
Dh, Dx

t`j
Dh)"C(h, b)c

22
( j)(1#o(1)) as jPR, (3.19)

where

C(h, b)"
b2h2B(h/2#1/2, h/2#1/2)/2

exp(b2h2)B(h/2#1/2, 1/2)!B(h/2#1/2, h/2#1/2)
,

B(.,.) being the b function. Ding et al. (1993), Ding and Granger (1996) reported
empirical evidence suggesting stronger autocorrelation in Dx

t
Dh when h"1 in

case of asset returns, and when h"1
4

in case of exchange rate series, than for
other values of h which they tried, including h"2. Our results can only be
capable of explaining such phenomena for large enough j, and, if (1.3) is
a reasonable model for such data, (3.19) indicates that variation in oh ( j) over h is
due solely to variation in C(h, b). In Table 1 we give C(h, b) for h" 0.1, 0.5, 1.0,
1.5, 2.0, 4.0, and b" 0.1, 0.2, 0.3, 0.5, 0.7. The mode of C(h, b) with respect to
h varies with b, which itself is an indicator of the departure of x

t
from an iid

sequence. For b"0.1, 0.2, the mode is at h"2, for b"0.3 at h"1.5, for
b"0.5, 0.6 at h"1, and for b"1 at h"0.5.
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Table 1
C(h, b)

h b

0.1 0.2 0.3 0.5 0.7 1.0

0.1 0.00068 0.00277 0.00680 0.01679 0.03180 0.06057
0.5 0.00300 0.01168 0.02520 0.06188 0.10234 0.15321
1.0 0.00490 0.01849 0.03787 0.07972 0.10819 0.11270
1.5 0.00594 0.02148 0.04110 0.07095 0.07332 0.04354
2.0 0.00632 0.02166 0.03803 0.05064 0.03586 0.00920
4.0 0.00450 0.01091 0.01082 0.00229 0.00010 0.00000

To illustrate (3.17), take f
1t
"Dg

1t
Dh, f

2t
"Dg

2t
Dht, h'0, t'0, so that

y
t
"Dx

t
Dh when

x
t
"g

1t
Dbg

2t
Dt (3.20)

or also, when t"1,

x
t
"bg

1t
g
2t

. (3.21)

Model (3.21) comes from (1.4) of Robinson and Za!aroni (1997, 1998), with
a"0, whereas (3.20) is a partial extension of Robinson and Za!aroni's (1997,
1998) models. We have

F
22

"

1

2P(s2!1)DsDht/(s) ds"
2(1@2)ht~1

Jn
htCA

ht
2

#

1

2B,
so that from (3.15)

F2
10

F2
22

"DbD2ht
2h`ht
n2

h2t2C2A
h
2
#

1

2BC2A
ht
2

#

1

2B.
We can also derive

<ar(Dx
t
Dh)"DbD2ht2h`ht

C(h#1/2)C(ht#1/2)

n

]G1!
C(h#1/2)C(ht#1/2)

n H,
whence we have, for all bO0

oh( j)"D(h, t)c2
22

( j)(1#o(1)) as jPR, (3.22)
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Table 2
D(h, t)

h t

0.1 0.5 1.0 1.5 2.0 4.0

0.1 0.00032 0.00508 0.01569 0.02973 0.04326 0.09657
0.5 0.00135 0.02292 0.06250 0.10202 0.13673 0.21474
1.0 0.00219 0.03418 0.08333 0.12079 0.14286 0.12903
1.5 0.00263 0.03474 0.08034 0.10162 0.10404 0.05000
2.0 0.00278 0.03572 0.06667 0.07258 0.06349 0.01564
4.0 0.00199 0.01587 0.01569 0.00880 0.00391 0.00006

where

D(h,t)"

h2t2B(h/2#1/2, h/2#1/2)B(ht/2#1/2, ht/2#1/2)/4

B(h/2#1/2, 1/2)B(ht/2#1/2, 1/2)!B(h/2#1/2, h/2#1/2)B(ht/2#1/2, ht/2#1/2)
.

The factor D(h, t) is tabulated in Table 2 for the same h as in Table 1, and
t"0.1, 0.5, 1.0, 1.5, 2.0 and 4.0. Overall, except for t"0.1, D(h, t) tends to be
notably larger than C(h, b), over the range of parameter values considered,
though it must be remarked that D(h, t) is a factor of c2

22
( j) not c

22
( j), so it by

no means follows that the corresponding oh( j) will have the same ordering. The
shape of D(h, t) is very similar to that of C(h, b), with the mode in h falling o!
from h"2 to h"0.5 as t, an index of nonlinearity of x

t
, increases.

Broader classes of models than (3.20) and (3.21) are, respectively,

x
t
"g

1t
Da#bg

2t
Dt (3.23)

and (1.4), with aO0 in each case. We stressed (3.20) and (3.21) because when
aO0 we are in Case II and deduce (3.6), which is similar to the outcome for (1.3);
because unlike for (1.3) the scale factor in the approximation for oh ( j) for (3.23)
varies with a; and because a closed-form expression for the scale factor is only
available for aO0 when h is an even integer under (1.4), and when ht is an even
integer under (3.23).

It is of interest to numerically compare our approximations with actual
autocovariances. Only in very special cases are exact formulae for the latter
available, so we employ Monte Carlo simulations. We consider y

t
"Dx

t
Dh with

x
t

given by (3.20) for b"1 and with g
1t

white noise and g
2t

the simple
fractionally integrated model (1!¸)dg

2t
"e

t
, where ¸ is the lag operator, e

t
is

white noise and 0(d(1
2
(see Adenstedt, 1974). Then c

22
(j) satis"es (3.9) and we

are in the setting of Case VI. For selected values of d, t and h we wish to
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Fig. 1.

compare the approximation with the actual autocorrelations, which are cal-
culated by simulation. For given d, the series g

2t
, t"1,2, n"1000, was

generated by the algorithm of Davies and Harte (1987). Then the y
t
, t"1,2, n,

were calculated for given t, h, and their sample autocorrelations at lags
j"1,2,m"100 were computed. For the given d, t, h, this process was re-
peated r"5000 times, and compared with the leading term in (3.22). We
employed each combination of d"0.15, 0.3, 0.45, t"1, 2 and h"0.5, 1, 2,
that is 18 cases in all, but only plot, in Figs. 1}6, the cases in which d"0.3. The
approximations, across all t, h, appear poor for lags less than 20, but later seem
satisfactory, and very good for lags greater than 45. There is little sensitivity to
either the nonlinearity parameter t, or the transformation parameter h.

4. Further applications

We brie#y describe how the theorem can be used to derive informative
approximations in more elaborate circumstances than those discussed so far,
namely in the context of cyclic variation, cross-sectional aggregation, temporal
aggregation, and multivariate models.
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Fig. 2.

4.1. Cyclic behaviour

Formulae such as (3.16) suggest that &linear' terms, when present, might
sometimes be dominated by &quadratic' or higher-order terms, depending on the
autocorrelation of the various latent variates. Even when this is not the case it is
important to stress that "rst-order approximations may only be useful for very
large j, and for more moderate j can be improved by including terms of smaller
order. The qualitative impact of such terms is notable in series with a cyclic
component. Andersen and Bollerslev (1997) have found evidence of strong
intraday periodicity in return volatility in foreign exchange and equity model
markets. To model this kind of phenomenon, note that a lag-j autocovariance
proportional to r( j; u, d)"cos( ju) j2d~1 as jPR, for 0(d(1

2
, 0(u(n,

has the long memory property of non-summability, but also oscillates, changing
sign every n/u lags; a class of parametric models with this property was studied
by Gray et al. (1989). Suppose y

t
is given by (1.2) with g

2t
having two elements,

g(1)
2t

with autocorrelation decaying like r( j; 0, d
1
)"j2d1~1, and g(2)

2t
with auto-

correlation decaying like r( j; u, d
2
), for 0(u(n. Then if, for example, g

1t
is

white noise and independent of g
2s

for all t, s, then from the theorem
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Fig. 3.

c( j)"Cov(y
t
, y

t
) has linear terms in j2d1~1 and cos ( ju) j2d2~1, as jPR. If

d
1
'd

2
then the second is of smaller order, but nevertheless its exclusion is

liable to give a misleading picture of c( j). However, nonlinear modelling of cyclic
phenomena by (1.2) needs more careful thought. For example, if two elements of
g
t
have lag-j autocovariance decaying like r( j; u

1
, d

1
), r( j; u

2
, d

2
), respectively,

the theorem implies in general a contribution to c( j) decaying like

2
<
l/1

r ( j; u
1
, d

1
)"

1

2
[cosM j(u

1
#u

2
)N#cosM j(u

1
!u

2
)N] j2d1`2d1~2.

(4.1)

When d
1
#d

2
'1/2, a second-order approximation displays cycles at frequen-

cies u
1
#u

2
and u

1
!u

2
, along with linear terms with cycles at u

1
and u

2
(when (4.1) corresponds to &squared' terms, so for u

1
"u

2
, d

1
"d

2
, there is

a contribution to non-cyclic long memory). Inclusion of terms of even higher
order complicates matters further; the absence of such terms in (1.4) might make
it preferable to (1.3) in this context. As an alternative approach, Andersen and
Bollerslev (1997) modelled periodicity in returns by means of deterministic
weights.
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Fig. 4.

4.2. Cross-sectional aggregation

For series that result from cross-sectional aggregation, such as stock indices,
one might prefer to model the underlying micro-series. Suppose there are m of
these Mx

it
N, i"1,2, m, and the data available are

x
t
"

m
+
i/1

x
it
, t"1, 2,2 .

Taking x
it
"f

i
(g(i)

t
), where g(i)

t
is a p(i)]1 vector, it follows that y

t
"g(x

t
) is

of form (1.1) with g
t
"(g(i){

t
,2, g(m){

t
)@ if the stationary g(i)

t
are spherical normal

and mutually independent. In this set-up the units x
it

are independent across
i, but can be heterogeneous owing to possible variability with i of f

i
and

C(i)( j)"Cov(g(i)
t
, g(i)

t`j
). We approximate c( j)"Cov(y

t
, y

t`j
) by applying the

theorem with R a block-diagonal matrix with ith diagonal block C(i)( j). In the
event of some long memory in the g(i)

t
, linear terms in the C(i)( j) will generally

dominate. Units with the strongest autocorrelation will determine asymptotic
behaviour, but these may give a misleading impression of c( j) at moderate j, as
they need not be the largest or most numerous. Notice that, unless y

t
"xh

t
, for
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Fig. 5.

integer h, y
t
cannot be represented as a sum of terms of the form (1.2), even if

individual x
it

have such product form, except for example if one of the functions
of x

it
is constant across i.

4.3. Temporal aggregation and skip-sampling

Data can be time-aggregated or skip-sampled, especially in view of the
processing problems posed by the extremely long, "nely-sampled "nancial series
nowadays available. The e!ect of temporal aggregation on model (1.3) in case of
long memory has been considered by Andersen and Bollerslev (1997) and
Bollerslev and Wright (2000). More generally, consider series z

t
, t"1, 2,2 .

De"ne, for m*1, the temporally aggregated series

x
t
"

m~1
+
s/1

z
t`s~1

, t"1, 2,2 .

Suppose that z
t
"g(f

t
) for an s]1 stationary Gaussian vector process f

t
, such

that Ef
t
"0, Ef

t
f@
t
"I

s
(so that f

t
has the same basic form as g

t
in (1.1)). Denote

the rank of the covariance matrix X of f(m)
t

"(f@
t
,2, f@

t`m~1
)@ by r, and de"ne
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Fig. 6.

an r]1 vector r"Af(m)
t

, where A is an r]ms matrix such that AXA@"I
r
.

When s'1 it is possible that r(ms; for example, take s"2, f
t
"

(1!o2)~1@2(m
t
!om

t~1
, (1!o2)1@2m

t~1
)@ for a scalar Gaussian process m

t
with

zero mean, unit variance and lag-one autocorrelation o, so that we can write
z
t
"g(f

t
)"gH(m

t
, m

t~1
) for some gH and think of the two latent variates generat-

ing z
t
as consecutive variates from the same process. Now denote by y

t
"h(x

t
)

the instantaneous function of interest of the aggregated series x
t
. Thus we have

y
t
"h(g(f

t
)#2#g(f

t`m~1
))"f (g

t
)

for some function f, so that we are back to precisely the situation of (1.1). On
applying the Theorem, c( j)"Cov(y

t
, y

t`j
) can be expanded in terms of the

autocovariance matrix of f
t
at lags j#1!m,2, j as jPR (with m "xed), but

the rate of decay will be una!ected by the aggregation. The case of skip-
sampling of a process y

t
"f (g

t
), temporally aggregated or not, is trivially

handled. If g
t

is observed at intervals n'1, we deduce from the Theorem
approximations for the c(nj)"Cov(y

t
, y

t`nj
), as njPR; this can be interpreted

for "xed j with the sampling becoming coarser (nPR), but n is regarded as
"xed in case n"m with m as above, where we replace each consecutive block of
m z

t
by an aggregate.
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4.4. Jointly dependent series

It is routine to extend (1.1) to the r jointly dependent processes y
it
"f

i
(g

t
),

1)i)r. Approximations for cross autocovariances between y
it

and
y
k,t`j

, 1)i, k)r, are then readily deduced from the Theorem. It is of interest,
however, to view this general setup in the context of a model for underlying
observables x

it
, i"1)i)s. If x

it
"g

i
(g

t
), 1)i)s, and y

it
"g

i
(x

1t
,2, x

st
) is

an instantaneous function of these x
it
, then indeed we can write y

it
"f

i
(g

t
). We

may wish to consider some particular structure for the x
it
, such as

x
it
"

p1

+
k/1

g(k)
1t

h
ik
(g

2t
), i"1,2, s,

where g(k)
1t

is the kth element of g
1t

, to cover multivariate extensions of (1.3) and
(1.4). Notice that in order to allow for general contemporaneous correlation in
x
it
, g(k)

1t
for any k will in general be common to two or more x

it
, so that processes

y
it
"Dx

it
Dh will not have the product structure (1.2). However in one case of

empirical interest (see Granger and Ding, 1996) there is a single underlying
observable, s"1, but two or more functions y

it
, for example y

1t
"x

t
and

y
2t
"Dx

t
Dh, when product structure in x

t
implies the same for the y

it
.

5. Final comments

As much of our discussion indicates, cases when we can derive analytic
formulae for scale factors of terms in our expansions are the exception rather
than the rule. In simple models such as (1.4), or (3.23) with aO0 and y

t
"Dx

t
Dh,

the typical absence of analytic functions is not a major disadvantage as numer-
ical integration is entirely feasible. However, this may not be the case when
multidimensional integrals are involved, and in any case the ability to contem-
plate either analytic or numerical integration presupposes a rather precise
speci"cation of the observable process. Our results are still useful in their ability
to explain how long memory can arise in a variety of circumstances, and to
elucidate the role of particular properties of the functional form (determining
whether various terms in the expansion are eliminated). Further, they provide
some justi"cation for &semiparametric' statistical inference on long memory.
Asymptotic relations like (3.10) form the basis of estimates of d based on long
lags (see Robinson, 1994), and are equivalent under a mild additional condition
to asymptotic power law behaviour for the spectral density near frequency zero,
which form the basis of estimates based on low-frequency periodograms (see
Geweke and Porter-Hudak, 1985; Robinson, 1995). It is also possible to obtain
an approximation for the spectral density of a nonlinear function of Gaussian
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processes by applying the techniques of Hannan (1970, pp. 82}88) to the leading
terms of our autocovariance expansion.
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