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Abstract

Panel data, whose series length T is large but whose cross-section size N
need not be, are assumed to have a common time trend. The time trend is of
unknown form, the model includes additive, unknown, individual-specific com-
ponents, and we allow for spatial or other cross-sectional dependence and/or
heteroscedasticity. A simple smoothed nonparametric trend estimate is shown
to be dominated by an estimate which exploits the availability of cross-sectional
data. Asymptotically optimal choices of bandwidth are justified for both es-
timates. Feasible optimal bandwidths, and feasible optimal trend estimates,
are asymptotically justified, the finite sample performance of the latter being
examined in a Monte Carlo study. A number of potential extensions are dis-
cussed.
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1. INTRODUCTION

Much econometric modelling of nonstationary time series employs deterministic
trending functions that are polynomial, indeed frequently linear. However the penal-
ties of mis-specifying parametric functions are well appreciated, and nonparametric
modelling is increasingly widely accepted, at least in samples of reasonable size. The
inability of polynomials to satisfactorily globally approximate general functions of
time deters study of polynomial functions whose order increases slowly with sample
size, and rather leads one to consider the possibility of a smooth trend mapped into
the unit interval and approximated by a smoothed kernel regression. For example,
Starica and Granger (2005) employed this approach in modelling series of stock prices.
There is a huge literature on such fixed-design nonparametric regression, principally
in the setting of a single time series.

Here we are concerned with panel data, where N series of length 7" have a common,
nonparametric, time trend but also additive, fixed, individual effects, for which we
have to correct before being able to form a trend estimate. We assume an asymptotic
framework in which T is large, but not necessarily N, so that the cross-sectional mean
at a given time point is not necessarily consistent for the trend, hence the recourse
to smoothed nonparametric regression. A major feature of the paper is concern
for possible cross-sectional correlation and/or heteroscedasticity. —These influence
the asymptotic variance of our trend estimate, and thence also the mean squared
error and consequent optimal rules for bandwidth choice. The availability of cross-
sectional data enables us to propose a trend estimate, based on the generalized least
squares principle, that reduces the asymptotic variance. This estimate, along with
its asymptotic variance (and that of the original trend estimate), depends on the
cross-sectional covariance matrix. In general this is not wholly known, and possibly

not known at all. Using residuals from the fitted trend, we consistently estimate



its elements, so as to obtain a feasible improved trend estimate, and a consistent
estimate of its variance, as well as feasible optimal bandwidths that are asymptotically
equivalent to the infeasible versions. These results are valid with N remaining fixed
as T increases, and they continue to hold if N is also allowed to increase, in which
case there is a faster rate of convergence, and in this latter situation our results hold
irrespective of whether or not the covariance matrix is finitely parameterized.
Section 2 describes the basic model. In Section 3 we present a simple trend estimate
and its mean squared error properties. Improved estimation is discussed in Section
4. In Section 5 optimal bandwidths are reported. Section 6 suggests estimates of the
cross-sectional covariance matrix, with asymptotic justifiication for their insertion in
the optimal bandwidths and improved trend estimates. Section 7 suggests some

directions for further research. Proof details may be found in two appendices.

2. PANEL DATA NONPARAMETRIC MODEL

We observe y;;, i =1,..., N, t=1,...,T, generated by
Yit = @ + By + T, (2.1)

where the «; and 3, are unknown constants, and the x;; are unobservable zero-mean
random variables, uncorrelated and homoscedastic across time, but possibly corre-

lated and heteroscedastic over the cross section. Thus we impose

Assumption 1 For all i,t,
for all i, j,t there exist finite constants w;; such that
E (xitxjt) = Wij; (23)

and for all ,j,t,u,
E(xyxj,) =0, t#u. (2.4)
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Our focus is on estimating the time trend. Superficially this is represented in (2.1)
by f,, but the «; and [, are identified only up to location shift. To resolve this

problem we initially impose the (arbitrary) restriction

i a; =0. (2.5)

An immediate consequence of (2.5) is the relationship

gAt = ﬁt + fAt; (26)

defining the cross-sectional means

N N
Ta= N1 Z Ty, Yar=N"" Z Yit - (2.7)
i=1 i=1

We use the A subscript to denote averaging, in (2.7) with respect to i and subsequently

also with respect to t. In view of (2.2) an obvious estimate of /3, is thus
By = Yar. (2.8)

This can be a good estimate if N is large. For any fixed t, it is trivially seen that [}
is mean-square consistent for 3, if
N
J\}Enmm ; ; wi; = 0. (2.9)
Condition (2.9) is trivially satisfied if the z;; are uncorrelated over i, but more gen-

erally if cross-sectional dependence is limited by the condition

N@O%ZZ% < 0. (2.10)

We mention (2.10) because it is analogous to a common weak dependence condition
for time series, indeed it would correspond to an extension of the latter condition to

stationary spatial lattice processes. Also (2.10) is slightly weaker than Condition C.3
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of Bai and Ng (2002), in a different panel data context. The more general condition
(2.9) permits a type of cross-sectional long range dependence.

While it can also cover certain models including additive factors, (2.9) does not,
however, hold for factor models in which the x;, for all 7, are influenced by the same
factor or factors. For this reason, and because we do not wish to model the 3, in
terms of finitely many parameters (as would be the case for a polynomial trend, say),
we use nonparametric smoothing across time which requires 7' to be large, but not
necessarily N. In order to achieve consistent estimates we assume the existence of a

function 5(7), 0 < 7 < 1, that is suitably smooth, such that

Br=pE/T), t=1,..T (2.11)

The T-dependent argument in (2.11) enables information to be borrowed so as to
permit consistent estimation of 3(7) for any fixed 7 as T' — oo. Thus ,, and hence
in turn y;;, should be regarded as triangular arrays, i.e. 8, = 8,7, ¥yit = Yirr, but for
ease of notation we suppress reference to the T-subscript. Also, though our work is
relevant in part to the case of a fixed N (as T' — o0), we also allow N — oo (slowly,
as T'— 00). In the latter circumstances, the «; should also be regarded as triangular
arrays, o; = qyy, in view of the restriction (2.5), and this would imply dependence
of the y;; on N also, though again we suppress reference to an N subscript. In
terms of practical applications, on the other hand, one envisages data for which T is
much larger than N, one example being many frequent time series observations on a
relatively modest number of stock prices.

Smoothed nonparametric estimation has been considered previously in a panel data
setting. For example, Ruckstuhl, Welsh and Carroll (2000) considered a model in
which f3, is replaced by a nonparametric function of a stochastic explanatory vari-
able, which can vary across both ¢ and ¢, the «; are stochastic, and independent and

homoscedastic across i,t, and N is fixed. Thus there is an explicit factor structure



built in, with no other source of cross-sectional dependence (and no heteroscedas-
ticity). We discuss a factor structure for x; but as a special case only, and here
as elsewhere we consider the possibility that NV, like T, diverges. Also, Hart and
Wehrly (1986) considered the special case of (2.1) with no individual-specific effects,
i.e. a; =0, and with no cross-sectional correlation or heteroscedasticity. A determin-
istic nonparametric trend also features in the panel data partly linear semiparametric
regression models considered by Severini and Stanisvalis (1994), Moyeed and Diggle

(1994), for example.

3. SIMPLE TREND ESTIMATION

We introduce a kernel function k(u), —oo < u < oo, satisfying

o

/k(u)du =1, (3.1)

—0o0

and a positive scalar bandwidth A = hy. Then with the abbreviation

Tr—t

define the estimate
~ T T
B(r) = Z/ﬂn@m/zkm 7€ (0,1). (3.3)
t=1 t=1

Important measures of goodness of nonparametric estimates, which lead to optimal

choices of bandwidth h, are mean squared error, i.e.

use{Bm} = 2 {3 -sm)} . (34)

and mean integrated squared error, i.e.
1

MISE {5} _ /E {B(u) _ ﬁ(u)}2 du. (3.5)
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To approximate these we require conditions on 3, k and h.
Assumption 2 [3(7) is twice continuously differentiable, 0 < 7 < 1.

Assumption 3 k(u) satisfies (3.1) and is even, non-negative, and twice boundedly
differentiable at all but possibly finitely many points, k(u) and its derivative k'(u) =
(d/du)k(u) satisfying

k(w) =0 ((T+uh)™), K@) =0 (1+u)"), somec> 2. (3.6)

Assumption 4 As T — o

h+ (Th)™ = 0. (3.7)

The smoothness condition on 3 in Assumption 2 could be relaxed at cost of inferior
optimal rates of convergence, or on the other hand strengthened, which would lead to
better rates if Assumption 3 were modified to permit higher order kernels; in any case
the non-negativity condition on £ is imposed only to simplify proofs. Assumption 4
is as usual a minimal condition for consistent estimation.

Define the N x N cross-sectional disturbance covariance matrix €2, having (7, j) —th

element w;; (see Assumption 1), define by £ the N x 1 vector of 1’s, and also define

K= /kQ(u)du, X = /qu(u)du, (3.8)
Clr) = B'r s €= [B" (i (3.9

where 3" (u) = (d?/du?) 3(u).

Assumption 5 ((7) >0, ¢ > 0.



Theorem 1 Let Assumptions 1-5 hold. Then as T — oo

. I2sY, 24
MSE{ﬁ(T)} ~ Tith +C(T)i< , (3.10)
_ 0 Ex2ht
MISE{3} ~ —-— 5X4 . (3.11)

Theorem 1 contains nothing new in itself, for fixed N, £'QQ¢/N? being just the vari-
ance of the dependent variable 74, in the nonparametric regression. Versions of this
result were given long ago, e.g. by Benedetti (1977), though conditions employed in
Theorem 1 are essentially taken from Robinson (1997), and no proof is required. Hart
and Wehrly (1986) also considered nonparametric regression of cross-sectional means
in a panel data setting, but without allowing for individual-specific effects. However,
the availability of cross-sectional data offers the possibility of improved estimation,

in terms of variance-reduction, as explored in the following section.

4. IMPROVED TREND ESTIMATION

Improved estimation of the trend requires it to be identified in a different way from

that in Section 2, in particular to shift its location. Consider the representation
(W) (w) ‘ 4.1
Yir = o+ By + Tar, (4.1)

where the bracketed superscript w represents a vector w = (wy, ..., wn)/ of weights,

such that

w't = 1, (4.2)

w'ao™ = 0, (4.3)

where ¢ is a N x 1 vector of 1’s. This represents a generalisation of (2.1), (2.5),

in which w = (1/N,...,1/N). Tt is convenient to write (4.1), for i = 1,..., N, in
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N-dimensional column vector form as
Yy = a®) 4 ng)ﬁ + 4,

where

aq L1t Y1t

af,@“) TNt YNt

For given w consider a smooth function () such that B,Sw)

two weight vectors w,, w;, we have
o(wa) + 5(% ( )g — o(wp) + ﬁ( )(’wb

Thus
B(wb)(T) _ 5(% (r )—l—w a(wa)

o) = glwe 4 (ﬁ v (r) = g (x )>
= (Iy — tw)) o),

where I is the N x N identity matrix.

(4.4)

(4.5)

B“)(t/T). For any

(4.6)

(4.7)

(4.8)

The location shift in 55“’ relative to 4" is thus +wja®) (and that in o

(wa)

relative to aj* is —w,a(*®) for each i). However, the time trend is scale- and

shape-invariant to choice of w. Moreover, defining the estimate

N(w Z ktrw Z/t/ Z Kz,

we have, with 3 as defined in Section 1,

]~

B{8" 0} -8 =

t

1

Mﬂ

o~
Il

1

(4.9)

{B/T) = 87 } b/ ETZ bier

{B(t/T) = B(7)} kur/ Z Fir (4.10)



for any w, so bias is invariant to w. Thus,

use {3 ) = B {3 @) - s} (4.11)

and
1

MISE {B(“’)} — / E {B(w) (u) — 8@ (u)}2 du (4.12)

are affected by w only through the variance. This is approximated by the leading
term on the right sides of (4.13) and (4.14) in Theorem 2 below, which requires the

additional

Assumption 6 () is non-singular.

Theorem 2 Let Assumptions 1-6 hold. Then as T — oo,

~(w 'Q h4 2
MSE{ﬁ( )(7)} ~ m(wThw)+ 4XC(7'), (4.13)
= (w) (w'Qw)  hix?
M]SE{B } ~ R E (4-14)

Again no proof is needed. The bias contributions in Theorems 1 and 2 are identical
as discussed above, or alternatively due to § and p having identical second derivatives.
The right hand sides of (4.13) and (4.14) are minimized, subject to (4.2), by w = w*,
where 1

oS s
For notational ease denote p(r) = BY)(r) = B(r) + ('Q'a)/(0Q10), p(1) =
B(w*)(T). Disregarding the vertical shift, p(7) can be said to be at least as good
an estimate as 3(7).

We have
w'Qu* = (£Q71) 7" (4.16)
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Thus the asymptotic variance, and MSE and MISE, of 3(7) equal those of p(7) when

1494 1
This is true if 2 has an eigenvector ¢. One such situation of interest arises when the
cross-sectional dependence in x;; is described by a spatial autoregressive model with

row- and column-normalized weight matrix: in particular,
Ty = )\W.Tt + €4 (418)

where £, is an N x 1 vector of zero-mean uncorrelated, homoscedastic random vari-
ables (with variance constant also across T'), the scalar A € (—1,1), and W is an
N x N matrix with zero diagonal elements and satisfying W¢ = W'¢ = (. In practice
elements of W are a measure of inverse economic distance between the correspond-
ing elements of x;. Thus W is often, though not always, symmetric, in which case
if one of the latter equalities holds, so do both. This is the case in the familiar
"farmers-districts" setting in which W is block-diagonal with symmetric blocks, in-
cluding spatial correlation across farmers within a district, but not across districts.
However, if T is non-symmetric, and only row-normalized, p(7) is better than (7).

As another example, suppose x;; has factor structure such that
Q=aly+bb (4.19)

where the scalar ¢ > 0 and b is an N X 1 non-null vector. Then

roe a (02

Nz = NJF N (4.20)
ro—1,—1 __ - (glb)2 -
Q) = a{N O (4.21)

and (4.17) holds if and only if b is proportional to ¢, i.e. if all factor weights are
identical. Another simple example in which (4.17) holds is when there is no cross-

sectional dependence in z;; but not all variances w;; are identical.
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In terms of the impact on (4.13) and (4.14) of N increasing in the asymptotic
theory, note that ¢/Q='¢ > N/ ||Q||, denoting by || A|| the square root of the greatest
eigenvalue of A’A.  Thus if ||| increases more slowly than N (it cannot increase
faster) the variance components of (4.13) and (4.14) decrease faster than if N were
fixed, indeed if ||Q2|| remains bounded the variance rate is (NTh)™", and the latter
property holds even in the factor case (4.19), where ||€2|| increases at rate N but, as

(4.21) indicates, (¢'Q~1)"t = O(N71) if
limy o0 (¢'0)?/ {N(a +b'b)} <1, (4.22)

where the expression whose upper limit is taken is clearly less than 1 for all fixed NV
(by the Cauchy inequality), but converges to 1 as N — oo if, say, b is proportional
to (; essentially the requirement for (6.17) to hold for this factor model is one of

sufficient variability in the factor weights.

5. OPTIMAL BANDWIDTH CHOICE

A key question in implementing either 3 or p is the choice of bandwidth . Choices
that are optimal in the sense of minimizing asymptotic MSE or MISE are conven-
tional. The following theorem differs only from well known results in indicating the

dependence of the optimal choices on €2 and N, and so again no proof is given.

Theorem 3 Let Assumptions 1-5 hold. The h minimizing asymptotic MSE and
MISE of B are respectively

Qe 15

oaiss(r) = {epei) (5.1)
/ 1/5

hgmise = {n;xi/x%} : (5.2)

12



Let Assumption 6 also hold. The h minimizing asymptotic MSE and MISE of p are
respectively

1 1/5
homse(T) = {/{M/X%(T)} , (5.3)

_ 1/5
o)
hp,MISE = {F&%/X%} . (5'4)

For fixed N, these optimal & all have the conventional 7-'/5 rate. If N is regarded
as increasing also then unless (2.9) does not hold the rates of (5.1) and (5.2), and thus

(5.3) and (5.4) (in view of (4.15)), are of smaller order. In any case (4.15) implies
generally smaller optimal bandwidths for p than B.

6. FEASIBLE OPTIMAL BANDWIDTH CHOICE AND TREND
ESTIMATION

In practice the optimal bandwidths of the previous section cannot be computed.
The constants x and y are trivially calculated, but ((7) and ¢ are unknown. Dis-
cussion of their estimation can be found in the nonparametric smoothing literature,
see e.g. Gasser, Kneip and Kohler (1991), and there is nothing about our setting to
require additional treatment here, apart from the improved estimation possible by
averaging over the cross section. More notable is the need to approximate the partly
or wholly unknown €2. This arises also if, instead of employing a plug-in proxy to the
optimal bandwidths of the previous section, some automatic method such as cross-
validation is employed. Estimation of {2 is also required in order to form a feasible
version of the optimal trend estimate p(7)

In the simplest realistic situation, of no cross-sectional heteroscedasticity or depen-
dence, Q = wly, with w unknown, in which case p(7) = 5(7). More generally we have

a parametric structure permitting dependence and/or heteroscedasticity, such as in
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the examples of the previous section. Of course if N remains fixed as T' increases,
) is by definition parametric, so there is no theoretical loss in regarding €) as an
unrestricted positive definite N x N matrix. If then N is allowed to increase this
corresponds to a nonparametric treatment of €. In all cases 2 is estimated by means
of residuals.

It is natural to base the residuals on the originally parameterized model (2.1), but
there is a choice of residuals depending on whether or not N is regarded as increasing
with T, and, if it does, on the properties of the {2 sequence as N increases. Define

the temporal means

T T
Tia=T"" Z Tit, Gia =T Z Yits (6.1)
=1 t=1
and the overall means
N N
Taa = N_lzfm, Yaa = N_lzﬂm- (6.2)
i=1 i=1

Then we have, using (2.5),
Yit — Yia +Yaa = By + Tit — Tia + Taa. (6.3)

Employing also (2.6) gives
Yit = Yia — Yar T Yaa = Tig — Tia — Tar + Taa. (6.4)

This suggests the residual
Tit = Yir — Yia — Yar + Yaa. (6.5)

Clearly 7;4 = Op(T*%) uniformly in ¢ and Z44 = Op(T*%), helping to justify (6.5).
However, it is necessary also that Z4; = 0,(1) and this requires N — oo , and, as
discussed previously, will not hold even then in models such as (4.19) due to the

strength of the cross-sectional dependence. Moreover, a satisfactory convergence rate
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may be required in order to show that the optimal bandwidth, and p(7), are suitably
closely approximated.
Thus, instead of considering (6.5) further, we rely solely on 7" being large and in

view of (6.3) consider instead the residual
B = Yir — Jia — By + Jaa, (6.6)

where (3, = B(t/T). Thus estimate w;; by

T
- 1 FOA
Wij = T Z Tt jt- (6-7)
t=1
We strengthen Assumption 4 to
Assumption 7 As T — oo,
h+ (T?h°) " = 0. (6.8)

Theorem 4 Let Assumptions 1-3, 6 and 7 hold. Then as T — oo

X 5 h3/2 1
E|w,~j—wij|:O h + T% +ﬁ y (69)

uniformly in i and j.

The proof appears in Appendix A.
Now define Q to be the N x N matrix with (i, j)-th element &;;, and consider the
replacement of by € in the optimal bandwidths (5.1)-(5.4). For completeness we

also assume estimates of ¢ (1), £of ¢ (1), € respectively. Notice that from Theorem 4

Nh3/2 N
) . (6.10)

1

N 2
Q-0 <A @y —wy)f =0 (VB + =t s
_{ :1(‘*)] WJ)} p( + T3 +Th5

2

=1 j
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Assumption 8

= =0o,(Ia1 [e-ef). e-¢=o, (la [a-ef). @)

Assumption 8 is expressed in a somewhat unprimitive way, but the order in (6.10)
is actually what is required to ensure that the effect of estimating bias is negligible,
and as the bias issue is of very secondary importance here we do not go into details
about the rates attainable by a particular estimate. However the rate would de-
pend inter alia on the rate of decay of a bandwidth (not necessarily h) used in the
nonparametric estimation of 3", or more particularly, in view of (6.1), on its rate
relative to that of h. Note that if NV remains fixed as T' increases the rate in (6.11)
must be O, (h3 + B3P 4 (Th%) _1) , whereas if N increases then the latter rate
is still relevant in, for example, the factor case (4.19), but if ||| does not increase or

increases more slowly than N, then (6.11) entails a milder restriction.

Define

N 1/5
- Qe A
h,B,MSE(T) = {fﬁ? T /XQC(T)} ) (6-12)
Z9Yi e
R 1/5
A Q! A
hp,MSE('r) = {H%/XQC(T)} ) (614)
N 1/5
N Q)L A
hmMISE = {H%/XQ} . (6-15)
Assumption 9 If N — o0 as T — oo then
NRr3¥?2 N
Nh3 + —— + —5 — 0. (6.16)
T2 Thz

Assumption 10 If N — oo as T — oo then

NEQH

il T a0z =0(1). (6.17)
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Boundedness of the first term on the left is equivalent to €2 having smallest eigen-
value that is bounded away from zero for sufficiently large N, as in Assumption 6.
By the Cauchy inequality, the second term on the left of (6.17) is no less than 1, so

it cannot converge to zero. On the other hand, since

(6.18)

I0O)—2
K'Q_%Zmax{gg ¢ N}

[
it follows that if also the greatest eigenvalue of €2 is bounded, the second term on the
left of (6.17) is also bounded. But the greatest eigenvalue of 2 can diverge with N,
as in the factor example (4.19), whereas (6.17) may be held even in this case. To see
this, note that £'Q2¢0 =a 2 {N — (¢'b)? (2a + V'b) /(a + V'b)*} = O(N), so in view of
(4.21) it is sufficient that (4.22) holds.

Theorem 5 Let Assumptions 1-3 and 5-10 hold. Then as T — oo, and possibly

N — oo also,

~

ilﬁ,MSE(T) ilﬂ,MISE ilp,MSE(T) homise

, , , —, 1. 6.19
hgnse(T) hgaise howse(T)” hourse  © (6.19)

The proof is in Appendix A.

We can also use € to obtain a feasible version of p(7), namely

p(r) = jg : Z tTyt/ZktT (6.20)

Theorem 2 indicates that

p(1) — p(1) = O, (% + h2> : (6.21)
where O, denotes an exact stochastic order. It is of interest to show that p(7) achieves
the same asymptotic MSE as p(7), in other words that p(7) — p(7) is of smaller order
than (6.21). For this purpose we introduce:
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Assumption 11 If N — oo as T — oo then

N
Nh+ — — 0. (6.22)

h2

Theorem 6 Let Assumptions 1-4 and 5-11 hold. Then as T — oo, and possibly

. 200 — o (glgflf)_% 2
p(1) = b(1) = 0, <—(Th)% +h ) - (6.23)

N — oo also,

The proof is in Appendix A.

7. MONTE CARLO STUDY OF FINITE SAMPLE PERFORMANCE

As always when large sample asymptotic results are presented, the issue of finite-
sample relevance arises. In the present case, one interesting question is the extent to
which p(7) matches the efficiency of p(7), and whether it is actually better than 3(r),
given the sampling error in estimating 2. We study this question by Monte Carlo
simulations in the case where € has the factor structure (4.19).

In (2.1), we thus take
zi = bin; + Vaeq, (7.1)

where the 7, and ¢; have mean zero and variance 1, and there is independence
throughout the {n,,i = 1,...;e4;i,t = 1,2,...}, more particularly we take the 7,,
gi+ to be normally distributed. We tried various values of a (a = %, 1,2) and set the b;
factor weights by first generating by, ..., by independently from a normal distribution,
but then keeping them fixed across replications; in particular we considered the three
choices b ~ N (0, Ix), N(0,5I5) and N(0,101y). With respect to the deterministic
component of (2.1), we took 8(u) = (1 + u?)~! throughout and fixed the individual
effects «; by first generating «;,...,an_1 independently from the standard normal

distribution, then taking oy = —ay —... — ay_1 in order to satisfy (2.5), then keeping
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these ; fixed across replications. The estimates 3(7), p(r) and p(7) were computed

at points 7 = 4—11, %, %. For k we used the uniform kernel on [—%, %], and the band-
width values used were h = 0.1,0.5,1. Two (N,T) combinations employed, (5,100)
and (10,500). Monte Carlo MSE, "MSE” in Tables 1-3, was computed in each case,
based on 1000 replications. In Table 1 Var b; = 1, in Table 2 Var b; = 5, and in

Table 3 Var b; = 10.
(Tables 1-3 about here)

When (N, T) = (5,100) it was found that in every case p had larger MSE than
p but smaller MSE than 3. However, when (N,T) = (10,500) p was always worse
than B when the b; were generated from a distribution with variance 1, though when
the latter variance was increased to 5 p was better in nearly half of the cases (13 out
of 27), and when this variance was 10 p was worse than /3 in only one case. It would
appear that these results reflect the fact that the difference between variances of p

and p, namely

Kk [0QF y~e1 o —1
T—h{ 2w } (7.2)

has to be large enough relative to the variability increase due to estimation of €2, in
order for p to beat 3. In some sense the farther away  is from an identity matrix
the better for p’s relative performance, explaining why a large variance in generating
the b; helps, though for given such variance increasing N hurts p relatively (despite
the helpful simultaneous increase of T').

The above description of the results is not informative of the extent to which p and
p are close, or to whether p beats or is beaten by (3, and Tables 1-3 reveal these details.
As a increases so does the variance of p, so again the potential for p to improve over
# is reduced, and the tables illustrate this. For (N,T) = (5,100), p’s performance
is often very roughly midway between those of 3 and p. Also for (N, T) = (5,100),
MSE is often U -shaped in h in Tables 1 and 2, and also for p and p in Table 3, but
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tends to be decreasing in h for B in Table 3. The pattern of performance relative to
h is less clear when (N,T') = (10, 500).

In these simulations we have not pursued the discussion of optimal bandwidth
choice (see Theorem 3) by incorporating feasible optimal bandwidths (as justified
in Theorem 5). Some discussion of this issue was presented in Section 6, but a
more explicit one is included in the following sequence of steps. Given use of a twice
differenciable k, a feasible ﬁ[;, wmise (6.13) can be computed (or approximated, perhaps
by cross-validation), and employed in place of & in the estimate 3(7) (3.3). Then the
residuals (6.6) are calculated, followed by €, using (6.7). Finally, hs sz (6.13) is
computed and used in the estimate p(7) (6.20).

8. FURTHER DIRECTIONS FOR RESEARCH

1. Our asymptotic variance formulae for 3(7) and p(7) appear also in central
limit theorems, under some additional conditions, indeed one could develop
joint central limit theorems for both 3(7) and p(7) at finitely many, r, fixed
frequencies 74, ..., 7, with asymptotic independence across the 7,. When the
bias is negligible relative to the standard deviation, the convergence rate will be
(Th)z when N is fixed, and faster if N is allowed to increase with 7. We could
also develop a central limit theorem for p(7;), i = 1,...,r, giving the same limit

distribution.

2. The assumption of regular spacing across t¢ is easily relaxed with some regu-
larity conditions on the spacings, since much of the fixed-design nonparametric

regression estimation literature permits this.

3. Temporal correlation can also be introduced. For example, suppose

Tt = ZAj&.t_j, (81)
j=0
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where the € are uncorrelated with covariance matrix Iy, and the N x N matrix

A; satisfies

iAij 7& 0, |Z’ =1, (82)
S OlI4l < oo (8.3)
j=0
Then
~ v 14
Var {6(7‘)} ~ K ]\Lff?(;)h (8.4)

as T' — oo, where
/

10) = (i Aj) (i Aj)

which is proportional to the value of the spectral density matrix of =, at fre-
quency zero. Likewise as T" — o0

()0

Var {p(r)} ~ v——r

(8.6)

We can consistently estimate f(0) by procedures of smoothed probability den-

sity estimation, and thence extend the results of Section 6.

. We could proceed further by relaxing (8.3) to permit long memory, or on the
other hand relax (8.2) to permit antipersistence. Relevant variance formula for
univariate fixed-design regression with long memory or antipersistent distur-
bances can be found in Robinson (1997), whose results can be extended to our
otherwise more general setting, one further issue arising being the possibility of

varying memory parameters over the cross-section.

. Unknown individual-specific multiplicative effects can also be incorporated. To
extend (2.1),
Yyr=a+ 8, + x4, (8.7)
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where v is an N x 1 unknown vector. Since the scale, as well as location, of 3,

is not fixed we need a normalization restriction on . Imposing
l'v =N, (8.8)

in addition to (2.5), we readily see that 3(7) retains the properties described in
Theorem 1. However, improving on 3(7) along the lines discussed in Section 4 is
more problematic. It was seen in Section 4 that changing w does not change the
bias of B(w) (1) as an estimate of 5)(7), and changes the asymptotic variance

by a factor that depends only on w. But consider any o), v®), () (1), where

w'a™ =0, wHy™ =1 (8.9)
and
a+yB(r) = ol 44w (7). (8.10)
We deduce that
B(r) = wa+ (w'y)B3(T) (8.11)

and thence

!/
o) = <1N _ ) a, (8.12)

(O (8.13)

Then the bias
E{B" ()} - p¥(r) = i ke {BO(1/T) - 8(7)} /i e
= (wBras {3}, (8.14)

where BIAS { B(w) (T)} is (4.10). Thus, varying w changes the bias by a factor
which reflects the unknown multiplicative effects, so the incorporation of these

complicates the study of optimal trend estimation.
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6. Analogous methods and theory could be developed for corresponding models
in which the regressor in the nonparametric function is stochastic (and possi-
bly multivariate), rather than deterministic. Robinson (2007) considers static
stochastic-design nonparametric regression but without distinguishing between
a time and cross-sectional dimension, and without individual effects, but his
conditions on spatial dependence in regressors and disturbances are quite gen-

eral and could be employed in more general settings, such as that just envisaged.

Appendix A: Proofs of Theorems

Proof of Theorem 4 We have
1 « 1
(;Jij — Wi = ? tzl (jjitaéjt - witxjt) + f tzl (xitxjt — wi]’) . (Al)
The second term on the right has mean zero and variance bounded by CT~!, where

C' throughout denotes a generic constant (so in the present case there is uniformity

in ¢ and j). From (6.3) and (6.6) we may write

Ty = Ty + d; + ey, (A.2)
where
di =Taa — Tia, € = Bt - Bt- (AS)
Then
TuZj — xutipy = (T — i) (Tjp — xje) + T (Tje — ) + (i — Tit) Tj
= (dl + 6t> (d] + et) ‘I— Tt (dj + et) ‘I— (dz + et) l’jt. (A4)

The first term on the right of (A.4) is bounded in absolute value by 2 (d? + d? + ¢7).

From Assumption 1, E(d?) < CT~! uniformly in i. Next write

€t = ft/kt - mt/ku (A-5)
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where

ft = (Th)ilzkst(ﬁt_ﬁs% (A~6)
me = (Th)™)  kalas, (A7)
ke = (Th)™)  ka. (A.8)

By Lemma 3, |k;| ™" < C uniformly in ¢ and 7. Next, m; has mean zero and variance

bounded by
T
C(Th)*) K, <C(Th)™, (A.9)

s=1

applying Lemma 1. By the mean value theorem

—t\ ., 1/s—t\?,
Bs— By = (%) 5t+§<87> Bits (A.10)

where 3, = 3'(t/T) and |5%,| < C. Thus

(Th)™> < > K

s=1
The last term is O(h?) by Lemma 1. The first factor of the first term on the right is

s—t
5l <18 -

T s — ¢t 2
+(Th)1z( = ) koY) . (A.11)
s=1

uniformly bounded and the second factor may be written

h|(Th)™ ) (ST_ht

) kst — fuk:(u)du . (A.12)

—0o0

From Lemma 2 this is bounded by

1 1 O\t T—t\ "
e e () "+ () ) i

for Th <t <T —Th. For other ¢ we use the bound Ch from Lemma 1. It follows
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from Lemma 3 that f;/k; has the same bounds. Thus

1 i\’ Th. 1 1 R L,
il I < -
P (f) < CTh+C<T2 S (/T

t=1 t>Th
1 h2.Th
< 34—
C (h + 5+ Tan + s )

< C(h3+——|—T4h4) (A.14)
Thus, for large T',

1 — 1

— 24 2 <C|h+ — Al

{T;d+d+et}_0( +Th) (A.15)

Next, looking at the second term in (A.4) we have

L T 3
2
djfzxit < {EdJT2 Z }
t=1 t=1
< Ccr . (A.16)
Also
T T 2) 2
1 C ft
B szitft/kt < T{ (k_t) }
t=1 =1
C 1 1
< Z (Rp¥24L = : Al
= 73 (h Tt T2h2) (A.17)
Write T
k 0 T; _
Tigmy = %%@At + T_;L Z; kst as. (A.18)
it
Thus

By Z kaias | ¢ - (A.19)
t=



The first term on the right is bounded by C/(T'zh). The second term is

1 1
2\ 2 2
1 o2 [ & 1 T k2
— EE —ut E kT as +—F E E T A Tin T
Th =1 ki s=1 o Th t=1 v=1 Rk e v
s#t vt

T T

C ) : L
< ﬂ<22k> < C/h2 (A.20)

t=1 s=1

by Lemma 1. It follows that

T
E|T™Y " aymy/ke| < C/(Th3). (A.21)
t=1

Thus,

Th
C 1 1 C
h3/2
+T% ( T T2h2> * Ths
g, W21
< C(h + I +T—h). (A.22)

The proof is completed.

Proof of Theorem 5 It suffices to consider only the MISE-optimal bandwidths,
the proofs for the MSE-optimal ones being identical. We have

15 1/5
) p 1/5 VzeY 14914
) s ¢ B , A2
hsmrse — hgmise (XzTNQ) £ ( 3 ) 42

By the mean value theorem, the last factor is bounded in absolute value by

v (Q—Q)€‘+%|f2| é—g‘, (A.24)

- 17

—|F

A
where 7 lies between (£/Q¢)~4/5¢~1/% and (E’Qﬁ)_4/5§71/5 and 7, lies between (£/Q0)"/5¢75/5
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and (£Q0)Y/ 5&"_6/5. Then straightforwardly we deduce that (A.24) is

((gw)*‘*/f’ {N ‘Q _ QH 4 (00 (é _ g(})
- 0, (v (-] + o1 - )
- 0, <N1/5HQ—QH) (A.25)

by Assumption 8. Thus (A.23) is

o (1) (7o) lo-ol)
- o () -2l ) = s s (A20)

Next consider

r—1 —1/5 1/5
) s\ | (e0) (a1 \
hoyse = pvse = XQ_T 51/5 - 51/5 : (A.27)

The last factor is bounded in absolute value by

N -1 SN — 1 .
(cae) = (ea70) 7+ £ 15

1 A
5 |5 é-¢. (A-28)

. 45 . _
where 5; lies between (@’9_16)4/5 &% and (E’Q_lﬁ) £ Y5 and 5, lies between

_ N —-1/5 _
()P and (e6e) T

Now
r(ar-ot)e

(mfle) (Q-10)

'(m—le)_l — (e )™

<

7O (Q _ Q) Q—lé‘

(mfw) (Q-10)

:<%(5g5% @_qD

~ 0 (M) | (A.29)
P N
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Thus (A.28) is

op((WQu0”5—?7€¥M + (0 ”5k ﬂ)
=<%<Q9%ﬁiiwﬂ—aﬂ+mmk—gb). (A.30)

It follows from Assumption 8 that

. vt
hpmise — hpvrse = Op (Q
= 0, ((rea)) o))

NT1/5
Op (hp,MIS'E> . (A31)

The proof is completed.

Proof of Theorem 6 We have

)~ i) = {ff; dis }

E’Q 1 K'Q 1 T
- {m }Z (a+ 2 /ka (A32)

It clearly suffices to show that the factor in braces has norm o,

<(£’Q_1£)7% <h2 - N*%(Th)’%». This norm is bounded by

Mq

(a4 Bl + xy) /Zktﬂ'

o (”Q%@_{—@ﬂ”@_l

+ (et

fxﬂ—l—er)H. (A.33)

From the proof of Theorem 5,

‘QQAQ_K-MQ*Q*
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So since

m*lH < Nz

Q*IH the first term is O, <N_%

Q- QH) Also,

f’(ﬂ_l _ Q—l)

=0, ((r020)?

Q- QH) (A.35)
and thus from Assumption 10 the second term has the same bound. This bound is
0, ((r0710)

119\ "3 5 P2 1
< O () 2Nk ot ) (A.36)

)

Now Nh? = o(h?) it Nh — 0 and Nh¥/2/T% = o(h?) it N = o((Th)%). Also,
N/(Thz) = o <(Th)_%> if N = o(T2) but this is implied by the last condition. The

conclusion follows.

Appendix B: Technical Lemmas

Lemma 1 For given d > 0 let the function g(u) be such that for ¢ > d, |g(u)| <

C(1+u)". Then
T
1 s—1
— <C. .
E%’%{Th; g(Th)‘}_O (B-1)

Proof. The expression in braces is bounded by

s—td

Th

C(Th)™ " Y [s—t[*+ C(Th) ™ Y s =", (B.2)

|s—t|<U |s—t|2U

for any positive U. This is bounded by
C(Th)~ Uttt 4 C(Th)*tyd=—<tt, (B.3)
Choosing U ~ T'h gives the result. m
Lemma 2 Let the function g be twice boundedly differentiable, and let
g(u) = (1+[u[) ™" (B.4)

29



for ¢ > 1, and let g(u) and its derivative g'(u) be integrable. Then for t > Th,

t<T—Th,

[e.e]

s —t 1 1 t\"¢ (T—t
< - -
Th Zg( ) /g(u)d“ =0 (Th W (Th) +( Th

—0o0

Proof. The left side is

o, (s=)/Th
> g(220) — gw) b du
Th
=Lt 1)/Th
00 —t/Th
- / g(u)du — /g(u)du
(T—t)/Th —00

The first integrand is

,(s—1 s—t_u +1,, s—t_u 2
9\ "1h Th 29t \ ", ’

where |¢7,| < C. Thus (B.6) is bounded in absolute value by

XT: s—t CT <£+ C
Th £ (Th)3 =Th " T2p3

using Lemma 1. On the other hand (B.7) is bounded in absolute value by
T ¢ 1—c ¢ 1—c
c(7) +elsm)

Lemma 3 For all sufficiently large T

min k; > 1/8.
1<t<T

Proof. Define

(B.9)

(B.10)

(B.11)

(B.12)



Then

;o (T=0)/(Th)

s—1
k:t—/ft:z / {k:( Th ) —k:(u)}du. (B.13)
=L _y/(n)
The integrand is
[ s—1 s—1 s—1 2
() () va () B9
where
max C; < 00. (B.15)
1<t<T

Thus (B.13) is bounded in absolute value by
a s—t
Th)2Y |k | == C/T(Th)™ < C(Th)™ + CT?h?
w3 (g )|+ eyt < o+

< 1/8, (B.16)

say, for large enough 7', using Lemma 1 and Assumption 7. Now for large enough T,

1/(2h)
1
i > > — .
11%%1%@ > / k(u)du > 1 (B.17)
0

and thus

lgngkt = [nin K, — max |k — K| > 1/8. (B.18)
|
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