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Abstract

Panel data, whose series length T is large but whose cross-section size N

need not be, are assumed to have a common time trend. The time trend is of

unknown form, the model includes additive, unknown, individual-speci�c com-

ponents, and we allow for spatial or other cross-sectional dependence and/or

heteroscedasticity. A simple smoothed nonparametric trend estimate is shown

to be dominated by an estimate which exploits the availability of cross-sectional

data. Asymptotically optimal choices of bandwidth are justi�ed for both es-

timates. Feasible optimal bandwidths, and feasible optimal trend estimates,

are asymptotically justi�ed, the �nite sample performance of the latter being

examined in a Monte Carlo study. A number of potential extensions are dis-

cussed.
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1. INTRODUCTION

Much econometric modelling of nonstationary time series employs deterministic

trending functions that are polynomial, indeed frequently linear. However the penal-

ties of mis-specifying parametric functions are well appreciated, and nonparametric

modelling is increasingly widely accepted, at least in samples of reasonable size. The

inability of polynomials to satisfactorily globally approximate general functions of

time deters study of polynomial functions whose order increases slowly with sample

size, and rather leads one to consider the possibility of a smooth trend mapped into

the unit interval and approximated by a smoothed kernel regression. For example,

Starica and Granger (2005) employed this approach in modelling series of stock prices.

There is a huge literature on such �xed-design nonparametric regression, principally

in the setting of a single time series.

Here we are concerned with panel data, where N series of length T have a common,

nonparametric, time trend but also additive, �xed, individual e¤ects, for which we

have to correct before being able to form a trend estimate. We assume an asymptotic

framework in which T is large; but not necessarily N; so that the cross-sectional mean

at a given time point is not necessarily consistent for the trend, hence the recourse

to smoothed nonparametric regression. A major feature of the paper is concern

for possible cross-sectional correlation and/or heteroscedasticity. These in�uence

the asymptotic variance of our trend estimate, and thence also the mean squared

error and consequent optimal rules for bandwidth choice. The availability of cross-

sectional data enables us to propose a trend estimate, based on the generalized least

squares principle, that reduces the asymptotic variance. This estimate, along with

its asymptotic variance (and that of the original trend estimate), depends on the

cross-sectional covariance matrix. In general this is not wholly known, and possibly

not known at all. Using residuals from the �tted trend, we consistently estimate
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its elements, so as to obtain a feasible improved trend estimate, and a consistent

estimate of its variance, as well as feasible optimal bandwidths that are asymptotically

equivalent to the infeasible versions. These results are valid with N remaining �xed

as T increases, and they continue to hold if N is also allowed to increase, in which

case there is a faster rate of convergence, and in this latter situation our results hold

irrespective of whether or not the covariance matrix is �nitely parameterized.

Section 2 describes the basic model. In Section 3 we present a simple trend estimate

and its mean squared error properties. Improved estimation is discussed in Section

4. In Section 5 optimal bandwidths are reported. Section 6 suggests estimates of the

cross-sectional covariance matrix, with asymptotic justi�ication for their insertion in

the optimal bandwidths and improved trend estimates. Section 7 suggests some

directions for further research. Proof details may be found in two appendices.

2. PANEL DATA NONPARAMETRIC MODEL

We observe yit, i = 1; :::; N , t = 1; :::; T , generated by

yit = �i + �t + xit; (2.1)

where the �i and �t are unknown constants, and the xit are unobservable zero-mean

random variables, uncorrelated and homoscedastic across time, but possibly corre-

lated and heteroscedastic over the cross section. Thus we impose

Assumption 1 For all i; t,

E(xit) = 0; (2.2)

for all i; j; t there exist �nite constants !ij such that

E (xitxjt) = !ij; (2.3)

and for all i; j; t; u,

E (xitxju) = 0; t 6= u: (2.4)
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Our focus is on estimating the time trend. Super�cially this is represented in (2.1)

by �t, but the �i and �t are identi�ed only up to location shift. To resolve this

problem we initially impose the (arbitrary) restriction

NX
i=1

�i = 0: (2.5)

An immediate consequence of (2.5) is the relationship

�yAt = �t + �xAt; (2.6)

de�ning the cross-sectional means

�xAt = N
�1

NX
i=1

xit; �yAt = N
�1

NX
i=1

yit: (2.7)

We use theA subscript to denote averaging, in (2.7) with respect to i and subsequently

also with respect to t. In view of (2.2) an obvious estimate of �t is thus

��t = �yAt: (2.8)

This can be a good estimate if N is large. For any �xed t, it is trivially seen that ��t

is mean-square consistent for �t if

lim
N!1

1

N2

NX
i=1

NX
j=1

!ij = 0: (2.9)

Condition (2.9) is trivially satis�ed if the xit are uncorrelated over i, but more gen-

erally if cross-sectional dependence is limited by the condition

lim
N!1

1

N

NX
i=1

NX
j=1

!ij <1: (2.10)

We mention (2.10) because it is analogous to a common weak dependence condition

for time series, indeed it would correspond to an extension of the latter condition to

stationary spatial lattice processes. Also (2.10) is slightly weaker than Condition C.3
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of Bai and Ng (2002), in a di¤erent panel data context. The more general condition

(2.9) permits a type of cross-sectional long range dependence.

While it can also cover certain models including additive factors, (2.9) does not,

however, hold for factor models in which the xit, for all i, are in�uenced by the same

factor or factors. For this reason, and because we do not wish to model the �t in

terms of �nitely many parameters (as would be the case for a polynomial trend, say),

we use nonparametric smoothing across time which requires T to be large, but not

necessarily N . In order to achieve consistent estimates we assume the existence of a

function �(�), 0 � � � 1, that is suitably smooth, such that

�t = �(t=T ); t = 1; :::; T: (2.11)

The T -dependent argument in (2.11) enables information to be borrowed so as to

permit consistent estimation of �(�) for any �xed � as T !1. Thus �t, and hence

in turn yit, should be regarded as triangular arrays, i.e. �t = �tT , yit = yitT , but for

ease of notation we suppress reference to the T -subscript. Also, though our work is

relevant in part to the case of a �xed N (as T !1), we also allow N !1 (slowly,

as T !1). In the latter circumstances, the �i should also be regarded as triangular

arrays, �i = �iN , in view of the restriction (2.5), and this would imply dependence

of the yit on N also, though again we suppress reference to an N subscript. In

terms of practical applications, on the other hand, one envisages data for which T is

much larger than N , one example being many frequent time series observations on a

relatively modest number of stock prices.

Smoothed nonparametric estimation has been considered previously in a panel data

setting. For example, Ruckstuhl, Welsh and Carroll (2000) considered a model in

which �t is replaced by a nonparametric function of a stochastic explanatory vari-

able, which can vary across both i and t, the �i are stochastic, and independent and

homoscedastic across i; t, and N is �xed. Thus there is an explicit factor structure
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built in, with no other source of cross-sectional dependence (and no heteroscedas-

ticity). We discuss a factor structure for xit but as a special case only, and here

as elsewhere we consider the possibility that N , like T; diverges. Also, Hart and

Wehrly (1986) considered the special case of (2.1) with no individual-speci�c e¤ects,

i.e. �i � 0, and with no cross-sectional correlation or heteroscedasticity. A determin-

istic nonparametric trend also features in the panel data partly linear semiparametric

regression models considered by Severini and Stanisvalis (1994), Moyeed and Diggle

(1994), for example.

3. SIMPLE TREND ESTIMATION

We introduce a kernel function k(u), �1 < u <1, satisfying
1Z

�1

k(u)du = 1; (3.1)

and a positive scalar bandwidth h = hT . Then with the abbreviation

kt� = k

�
T� � t
Th

�
; (3.2)

de�ne the estimate

~�(�) =
TX
t=1

kt� �yAt=
TX
t=1

kt� ; � 2 (0; 1): (3.3)

Important measures of goodness of nonparametric estimates, which lead to optimal

choices of bandwidth h, are mean squared error, i.e.

MSE
n
~�(�)

o
= E

n
~�(�)� �(�)

o2
; (3.4)

and mean integrated squared error, i.e.

MISE
n
~�
o
=

1Z
0

E
n
~�(u)� �(u)

o2
du: (3.5)
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To approximate these we require conditions on �; k and h.

Assumption 2 �(�) is twice continuously di¤erentiable, 0 � � � 1.

Assumption 3 k(u) satis�es (3.1) and is even, non-negative, and twice boundedly

di¤erentiable at all but possibly �nitely many points, k(u) and its derivative k0(u) =

(d=du)k(u) satisfying

k(u) = O
�
(1 + u4)�1

�
, k0(u) = O

�
(1 + jujc)�1

�
; some c > 2: (3.6)

Assumption 4 As T !1

h+ (Th)�1 ! 0: (3.7)

The smoothness condition on � in Assumption 2 could be relaxed at cost of inferior

optimal rates of convergence, or on the other hand strengthened, which would lead to

better rates if Assumption 3 were modi�ed to permit higher order kernels; in any case

the non-negativity condition on k is imposed only to simplify proofs. Assumption 4

is as usual a minimal condition for consistent estimation.

De�ne the N�N cross-sectional disturbance covariance matrix 
; having (i; j)�th

element !ij (see Assumption 1), de�ne by ` the N � 1 vector of 1�s, and also de�ne

� =

1Z
�1

k2(u)du; � =

1Z
�1

u2k(u)du; (3.8)

�(�) = �00(�)2, � =

1Z
0

�00(u)2du; (3.9)

where �00(u) = (d2=du2) �(u):

Assumption 5 �(�) > 0, � > 0:
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Theorem 1 Let Assumptions 1-5 hold. Then as T !1

MSE
n
~�(�)

o
� �

Th

`0
`

N2
+
�(�)�2h4

4
; (3.10)

MISE
n
~�
o

� �

Th

`0
`

N2
+
��2h4

4
: (3.11)

Theorem 1 contains nothing new in itself, for �xed N; `0
`=N2 being just the vari-

ance of the dependent variable �yAt in the nonparametric regression. Versions of this

result were given long ago, e.g. by Benedetti (1977), though conditions employed in

Theorem 1 are essentially taken from Robinson (1997), and no proof is required. Hart

and Wehrly (1986) also considered nonparametric regression of cross-sectional means

in a panel data setting, but without allowing for individual-speci�c e¤ects. However,

the availability of cross-sectional data o¤ers the possibility of improved estimation,

in terms of variance-reduction, as explored in the following section.

4. IMPROVED TREND ESTIMATION

Improved estimation of the trend requires it to be identi�ed in a di¤erent way from

that in Section 2, in particular to shift its location. Consider the representation

yit = �
(w)
i + �

(w)
t + xit; (4.1)

where the bracketed superscript w represents a vector w = (w1; :::; wn)
0 of weights,

such that

w0` = 1; (4.2)

w0�(w) = 0; (4.3)

where ` is a N � 1 vector of 1�s. This represents a generalisation of (2.1), (2.5),

in which w = (1=N; :::; 1=N)0. It is convenient to write (4.1), for i = 1; :::; N , in

8



N -dimensional column vector form as

y�t = �
(w) + �

(w)
t `+ x�t; (4.4)

where

�(w) =

26664
�
(w)
1

...

�
(w)
N

37775 ; x�t =
26664
x1t
...

xNt

37775 ; y�t =
26664
y1t
...

yNt

37775 : (4.5)

For given w consider a smooth function �(w)(�) such that �(w)t = �(w)(t=T ). For any

two weight vectors wa; wb we have

�(wa) + �(wa)(�)` = �(wb) + �(�)(wb)`: (4.6)

Thus

�(wb)(�) = �(wa)(�) + w0b�
(wa); (4.7)

�(wb) = �(wa) +
�
�(wa)(�)� �(wb)(�)

�
`

= (IN � `w0b)�(wa); (4.8)

where IN is the N �N identity matrix.

The location shift in �(wb)t relative to �(wa)t is thus +w0b�
(wa) (and that in �(wb)i

relative to �(wa)i is �w0b�(wa), for each i). However, the time trend is scale- and

shape-invariant to choice of w. Moreover, de�ning the estimate

e�(w)(�) = TX
t=1

kt�w
0y:t=

TX
t=1

kt� ; (4.9)

we have, with � as de�ned in Section 1,

E
n
~�
(w)
(�)
o
� �(w)(�) =

TX
t=1

n
�(w)(t=T )� �(w)(�)

o
kt�=

TX
t=1

kt�

=

TX
t=1

f�(t=T )� �(�)g kt�=
TX
t=1

kt� (4.10)
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for any w, so bias is invariant to w. Thus,

MSE
n
~�
(w)
(�)
o
= E

n
~�
(w)
(�)� �(w)(�)

o2
(4.11)

and

MISE
n
~�
(w)
o
=

1Z
0

E
n
~�
(w)
(u)� �(w)(u)

o2
du (4.12)

are a¤ected by w only through the variance. This is approximated by the leading

term on the right sides of (4.13) and (4.14) in Theorem 2 below, which requires the

additional

Assumption 6 
 is non-singular.

Theorem 2 Let Assumptions 1-6 hold. Then as T !1,

MSE
n
~�
(w)
(�)
o

� �
(w0
w)

Th
+
h4�2

4
�(�); (4.13)

MISE
n
~�
(w)
o

� �
(w0
w)

Th
+
h4�2

4
�: (4.14)

Again no proof is needed. The bias contributions in Theorems 1 and 2 are identical

as discussed above, or alternatively due to � and � having identical second derivatives.

The right hand sides of (4.13) and (4.14) are minimized, subject to (4.2), by w = w�,

where

w� =

�1`

`0
�1`
; (4.15)

For notational ease denote �(�) = �(w
�)(�) = �(�) + (`0
�1�)=(`0
�1`); ~�(�) =

~�
(w�)
(�). Disregarding the vertical shift, ~�(�) can be said to be at least as good

an estimate as ~�(�).

We have

w�0
w� =
�
`0
�1`

��1
: (4.16)
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Thus the asymptotic variance, and MSE and MISE, of ~�(�) equal those of ~�(�) when

`0
`

N2
= `0
�1`: (4.17)

This is true if 
 has an eigenvector `. One such situation of interest arises when the

cross-sectional dependence in xit is described by a spatial autoregressive model with

row- and column-normalized weight matrix: in particular,

x�t = �Wx:t + ":t; (4.18)

where ":t is an N � 1 vector of zero-mean uncorrelated, homoscedastic random vari-

ables (with variance constant also across T ); the scalar � 2 (�1; 1); and W is an

N �N matrix with zero diagonal elements and satisfying W` = W 0` = `. In practice

elements of W are a measure of inverse economic distance between the correspond-

ing elements of x:t. Thus W is often, though not always, symmetric, in which case

if one of the latter equalities holds, so do both. This is the case in the familiar

"farmers-districts" setting in which W is block-diagonal with symmetric blocks, in-

cluding spatial correlation across farmers within a district, but not across districts.

However, if W is non-symmetric, and only row-normalized, ~�(�) is better than ~�(�).

As another example, suppose xit has factor structure such that


 = aIN + bb
0 (4.19)

where the scalar a > 0 and b is an N � 1 non-null vector. Then

`0
`

N2
=

a

N
+
(`0b)2

N2
; (4.20)

(`0
�1`)�1 = a

�
N � (`0b)2

a+ b0b

��1
; (4.21)

and (4.17) holds if and only if b is proportional to `, i.e. if all factor weights are

identical. Another simple example in which (4.17) holds is when there is no cross-

sectional dependence in xit but not all variances !ii are identical.
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In terms of the impact on (4.13) and (4.14) of N increasing in the asymptotic

theory, note that `0
�1` � N= k
k ; denoting by kAk the square root of the greatest

eigenvalue of A0A. Thus if k
k increases more slowly than N (it cannot increase

faster) the variance components of (4.13) and (4.14) decrease faster than if N were

�xed, indeed if k
k remains bounded the variance rate is (NTh)�1 ; and the latter

property holds even in the factor case (4.19), where k
k increases at rate N but, as

(4.21) indicates, (`0
�1`)�1 = O(N�1) if

limN!1(`
0b)2= fN(a+ b0b)g < 1; (4.22)

where the expression whose upper limit is taken is clearly less than 1 for all �xed N

(by the Cauchy inequality), but converges to 1 as N ! 1 if, say, b is proportional

to `; essentially the requirement for (6.17) to hold for this factor model is one of

su¢ cient variability in the factor weights.

5. OPTIMAL BANDWIDTH CHOICE

A key question in implementing either ~� or ~� is the choice of bandwidth h. Choices

that are optimal in the sense of minimizing asymptotic MSE or MISE are conven-

tional. The following theorem di¤ers only from well known results in indicating the

dependence of the optimal choices on 
 and N; and so again no proof is given.

Theorem 3 Let Assumptions 1-5 hold. The h minimizing asymptotic MSE and

MISE of ~� are respectively

h�;MSE(�) =

�
�
`0
`

TN2
=�2�(�)

�1=5
; (5.1)

h�;MISE =

�
�
`0
`

TN2
=�2�

�1=5
: (5.2)
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Let Assumption 6 also hold. The h minimizing asymptotic MSE and MISE of ~� are

respectively

h�;MSE(�) =

(
�
(`0
�1`)

�1

T
=�2�(�)

)1=5
; (5.3)

h�;MISE =

(
�
(`0
�1`)

�1

T
=�2�

)1=5
: (5.4)

For �xed N , these optimal h all have the conventional T�1=5 rate. If N is regarded

as increasing also then unless (2.9) does not hold the rates of (5.1) and (5.2), and thus

(5.3) and (5.4) (in view of (4.15)), are of smaller order. In any case (4.15) implies

generally smaller optimal bandwidths for ~� than ~�.

6. FEASIBLE OPTIMAL BANDWIDTH CHOICE AND TREND

ESTIMATION

In practice the optimal bandwidths of the previous section cannot be computed.

The constants � and � are trivially calculated, but �(�) and � are unknown. Dis-

cussion of their estimation can be found in the nonparametric smoothing literature,

see e.g. Gasser, Kneip and Kohler (1991), and there is nothing about our setting to

require additional treatment here, apart from the improved estimation possible by

averaging over the cross section. More notable is the need to approximate the partly

or wholly unknown 
. This arises also if, instead of employing a plug-in proxy to the

optimal bandwidths of the previous section, some automatic method such as cross-

validation is employed. Estimation of 
 is also required in order to form a feasible

version of the optimal trend estimate ~�(�)

In the simplest realistic situation, of no cross-sectional heteroscedasticity or depen-

dence, 
 = !IN , with ! unknown, in which case ~�(�) � ~�(�). More generally we have

a parametric structure permitting dependence and/or heteroscedasticity, such as in
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the examples of the previous section. Of course if N remains �xed as T increases,


 is by de�nition parametric, so there is no theoretical loss in regarding 
 as an

unrestricted positive de�nite N � N matrix. If then N is allowed to increase this

corresponds to a nonparametric treatment of 
. In all cases 
 is estimated by means

of residuals.

It is natural to base the residuals on the originally parameterized model (2.1), but

there is a choice of residuals depending on whether or not N is regarded as increasing

with T , and, if it does, on the properties of the 
 sequence as N increases. De�ne

the temporal means

�xiA = T
�1

TX
t=1

xit; �yiA = T
�1

TX
t=1

yit; (6.1)

and the overall means

�xAA = N
�1

NX
i=1

�xiA; �yAA = N
�1

NX
i=1

�yiA: (6.2)

Then we have, using (2.5),

yit � �yiA + �yAA = �t + xit � �xiA + �xAA: (6.3)

Employing also (2.6) gives

yit � �yiA � �yAt + �yAA = xit � �xiA � �xAt + �xAA: (6.4)

This suggests the residual

~xit = yit � �yiA � �yAt + �yAA: (6.5)

Clearly �xiA = Op(T�
1
2 ) uniformly in i and �xAA = Op(T�

1
2 ), helping to justify (6.5).

However, it is necessary also that �xAt = op(1) and this requires N ! 1 , and, as

discussed previously, will not hold even then in models such as (4.19) due to the

strength of the cross-sectional dependence. Moreover, a satisfactory convergence rate
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may be required in order to show that the optimal bandwidth, and ~�(�), are suitably

closely approximated.

Thus, instead of considering (6.5) further, we rely solely on T being large and in

view of (6.3) consider instead the residual

x̂it = yit � �yiA � ~�t + �yAA; (6.6)

where ~�t = ~�(t=T ). Thus estimate !ij by

!̂ij =
1

T

TX
t=1

x̂itx̂jt: (6.7)

We strengthen Assumption 4 to

Assumption 7 As T !1;

h+
�
T 2h3

��1 ! 0: (6.8)

Theorem 4 Let Assumptions 1-3, 6 and 7 hold. Then as T !1

E j!̂ij � !ijj = O
�
h3 +

h3=2

T
1
2

+
1

Th
1
2

�
; (6.9)

uniformly in i and j.

The proof appears in Appendix A.

Now de�ne 
̂ to be the N �N matrix with (i; j)-th element !̂ij, and consider the

replacement of 
 by 
̂ in the optimal bandwidths (5.1)-(5.4). For completeness we

also assume estimates of �̂(�), �̂ of �(�), � respectively. Notice that from Theorem 4





̂� 



 � ( NX
i=1

NX
j=1

(!̂ij � !ij)2
) 1

2

= Op

�
Nh3 +

Nh3=2

T
1
2

+
N

Th
1
2

�
: (6.10)
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Assumption 8

�̂(�)� �(�) = Op
�
k
k�1





̂� 



� ; �̂ � � = Op �k
k�1 



̂� 



� : (6.11)

Assumption 8 is expressed in a somewhat unprimitive way, but the order in (6.10)

is actually what is required to ensure that the e¤ect of estimating bias is negligible,

and as the bias issue is of very secondary importance here we do not go into details

about the rates attainable by a particular estimate. However the rate would de-

pend inter alia on the rate of decay of a bandwidth (not necessarily h) used in the

nonparametric estimation of �00, or more particularly, in view of (6.1), on its rate

relative to that of h: Note that if N remains �xed as T increases the rate in (6.11)

must be Op

�
h3 + h3=2T�

1
2 +

�
Th

1
2

��1�
; whereas if N increases then the latter rate

is still relevant in, for example, the factor case (4.19), but if k
k does not increase or

increases more slowly than N; then (6.11) entails a milder restriction.

De�ne

ĥ�;MSE(�) =

(
�
`0
̂`

T
=�2�̂(�)

)1=5
; (6.12)

ĥ�;MISE =

(
�
`0
̂`

T
=�2�̂

)1=5
; (6.13)

ĥ�;MSE(�) =

(
�
(`0
̂�1`)�1

T
=�2�̂(�)

)1=5
; (6.14)

ĥ�;MISE =

(
�
(`0
̂�1`)�1

T
=�2�̂

)1=5
: (6.15)

Assumption 9 If N !1 as T !1 then

Nh3 +
Nh3=2

T
1
2

+
N

Th
1
2

! 0: (6.16)

Assumption 10 If N !1 as T !1 then


�1

+ N`0
�2`

(`0
�1`)2
= O(1): (6.17)
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Boundedness of the �rst term on the left is equivalent to 
 having smallest eigen-

value that is bounded away from zero for su¢ ciently large N , as in Assumption 6.

By the Cauchy inequality, the second term on the left of (6.17) is no less than 1, so

it cannot converge to zero. On the other hand, since

`0
�1` � max
�
`0
�2`

k
�1k ;
N

k
k

�
; (6.18)

it follows that if also the greatest eigenvalue of 
 is bounded, the second term on the

left of (6.17) is also bounded. But the greatest eigenvalue of 
 can diverge with N ,

as in the factor example (4.19), whereas (6.17) may be held even in this case. To see

this, note that `0
�2` = a�2 fN � (`0b)2 (2a+ b0b) =(a+ b0b)2g = O(N); so in view of

(4.21) it is su¢ cient that (4.22) holds.

Theorem 5 Let Assumptions 1-3 and 5-10 hold. Then as T ! 1, and possibly

N !1 also,

ĥ�;MSE(�)

h�;MSE(�)
;
ĥ�;MISE

h�;MISE

;
ĥ�;MSE(�)

h�;MSE(�)
;
ĥ�;MISE

h�;MISE

!p 1: (6.19)

The proof is in Appendix A.

We can also use 
̂ to obtain a feasible version of ~�(�), namely

�̂(�) =
`0
̂�1

`0
̂�1`

TX
t=1

kt�y�t=

TX
t=1

kt� : (6.20)

Theorem 2 indicates that

~�(�)� �(�) = Oe

 
(`0
�1`)

� 1
2

(Th)
1
2

+ h2

!
; (6.21)

where Oe denotes an exact stochastic order. It is of interest to show that �̂(�) achieves

the same asymptotic MSE as ~�(�), in other words that ~�(�)� ~�(�) is of smaller order

than (6.21). For this purpose we introduce:
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Assumption 11 If N !1 as T !1 then

Nh+
N

Th
1
2

! 0: (6.22)

Theorem 6 Let Assumptions 1-4 and 5-11 hold. Then as T ! 1, and possibly

N !1 also,

�̂(�)� ~�(�) = op

 
(`0
�1`)

� 1
2

(Th)
1
2

+ h2

!
: (6.23)

The proof is in Appendix A.

7. MONTE CARLO STUDY OF FINITE SAMPLE PERFORMANCE

As always when large sample asymptotic results are presented, the issue of �nite-

sample relevance arises. In the present case, one interesting question is the extent to

which �̂(�) matches the e¢ ciency of ~�(�), and whether it is actually better than ~�(�),

given the sampling error in estimating 
. We study this question by Monte Carlo

simulations in the case where 
 has the factor structure (4.19).

In (2.1), we thus take

xit = bi�i +
p
a"it; (7.1)

where the �i and "it have mean zero and variance 1, and there is independence

throughout the f�i; i = 1; :::; "it; i; t = 1; 2; :::g, more particularly we take the �i,

"it to be normally distributed. We tried various values of a (a = 1
2
; 1; 2) and set the bi

factor weights by �rst generating b1; :::; bN independently from a normal distribution,

but then keeping them �xed across replications; in particular we considered the three

choices b � N (0; IN), N (0; 5IN) and N(0; 10IN). With respect to the deterministic

component of (2.1), we took �(u) = (1 + u2)�1 throughout and �xed the individual

e¤ects �i by �rst generating �1; :::; �N�1 independently from the standard normal

distribution, then taking �N = ��1� :::��N�1 in order to satisfy (2.5), then keeping
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these �i �xed across replications. The estimates ~�(�), ~�(�) and �̂(�) were computed

at points � = 1
4
; 1
2
; 3
4
. For k we used the uniform kernel on [�1

2
; 1
2
], and the band-

width values used were h = 0:1; 0:5; 1. Two (N; T ) combinations employed, (5; 100)

and (10; 500). Monte Carlo MSE, "\MSE" in Tables 1-3, was computed in each case,

based on 1000 replications. In Table 1 V ar bi = 1, in Table 2 V ar bi = 5, and in

Table 3 V ar bi = 10.

(Tables 1-3 about here)

When (N; T ) = (5; 100) it was found that in every case �̂ had larger \MSE than

~� but smaller \MSE than ~�. However, when (N; T ) = (10; 500) �̂ was always worse

than �̂ when the bi were generated from a distribution with variance 1, though when

the latter variance was increased to 5 �̂ was better in nearly half of the cases (13 out

of 27), and when this variance was 10 �̂ was worse than ~� in only one case. It would

appear that these results re�ect the fact that the di¤erence between variances of ~�

and �̂, namely
�

Th

�
`0
`

N2
�
�
`0
�1`

��1�
; (7.2)

has to be large enough relative to the variability increase due to estimation of 
, in

order for �̂ to beat ~�. In some sense the farther away 
 is from an identity matrix

the better for �̂�s relative performance, explaining why a large variance in generating

the bi helps, though for given such variance increasing N hurts �̂ relatively (despite

the helpful simultaneous increase of T ).

The above description of the results is not informative of the extent to which �̂ and

~� are close, or to whether �̂ beats or is beaten by ~�, and Tables 1-3 reveal these details.

As a increases so does the variance of ~�, so again the potential for �̂ to improve over

~� is reduced, and the tables illustrate this. For (N; T ) = (5; 100), �̂�s performance

is often very roughly midway between those of �̂ and ~�. Also for (N; T ) = (5; 100),

\MSE is often U -shaped in h in Tables 1 and 2, and also for ~� and �̂ in Table 3, but
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tends to be decreasing in h for ~� in Table 3. The pattern of performance relative to

h is less clear when (N; T ) = (10; 500).

In these simulations we have not pursued the discussion of optimal bandwidth

choice (see Theorem 3) by incorporating feasible optimal bandwidths (as justi�ed

in Theorem 5). Some discussion of this issue was presented in Section 6, but a

more explicit one is included in the following sequence of steps. Given use of a twice

di¤erenciable k, a feasible ĥ�;MISE (6.13) can be computed (or approximated, perhaps

by cross-validation), and employed in place of h in the estimate ~�(�) (3.3). Then the

residuals (6.6) are calculated, followed by 
̂, using (6.7). Finally, ĥ�;MISE (6.13) is

computed and used in the estimate �̂(�) (6.20).

8. FURTHER DIRECTIONS FOR RESEARCH

1. Our asymptotic variance formulae for �̂(�) and �̂(�) appear also in central

limit theorems, under some additional conditions, indeed one could develop

joint central limit theorems for both ~�(�) and ~�(�) at �nitely many, r, �xed

frequencies � 1; :::; � r, with asymptotic independence across the � i. When the

bias is negligible relative to the standard deviation, the convergence rate will be

(Th)
1
2 when N is �xed, and faster if N is allowed to increase with T . We could

also develop a central limit theorem for �̂(� i), i = 1; :::; r, giving the same limit

distribution.

2. The assumption of regular spacing across t is easily relaxed with some regu-

larity conditions on the spacings, since much of the �xed-design nonparametric

regression estimation literature permits this.

3. Temporal correlation can also be introduced. For example, suppose

x�t =

1X
j=0

Aj"�t�j; (8.1)
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where the "�t are uncorrelated with covariance matrix IN , and the N�N matrix

Aj satis�es

1X
j=0

Ajz
j 6= 0; jzj = 1; (8.2)

1X
j=0

kAjk < 1: (8.3)

Then

V ar
n
~�(�)

o
� �`

0f(0)`

N2Th
(8.4)

as T !1, where

f(0) =

 1X
j=0

Aj

! 1X
j=0

Aj

!0
; (8.5)

which is proportional to the value of the spectral density matrix of x�t at fre-

quency zero. Likewise as T !1

V ar fe�(�)g � �(`0f(0)�1`)�1
Th

: (8.6)

We can consistently estimate f(0) by procedures of smoothed probability den-

sity estimation, and thence extend the results of Section 6.

4. We could proceed further by relaxing (8.3) to permit long memory, or on the

other hand relax (8.2) to permit antipersistence. Relevant variance formula for

univariate �xed-design regression with long memory or antipersistent distur-

bances can be found in Robinson (1997), whose results can be extended to our

otherwise more general setting, one further issue arising being the possibility of

varying memory parameters over the cross-section.

5. Unknown individual-speci�c multiplicative e¤ects can also be incorporated. To

extend (2.1),

y�t = �+ 
�t + x�t; (8.7)
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where 
 is an N � 1 unknown vector. Since the scale, as well as location, of �t
is not �xed we need a normalization restriction on 
. Imposing

`0
 = N; (8.8)

in addition to (2.5), we readily see that ~�(�) retains the properties described in

Theorem 1. However, improving on ~�(�) along the lines discussed in Section 4 is

more problematic. It was seen in Section 4 that changing w does not change the

bias of ~�
(w)
(�) as an estimate of �(w)(�), and changes the asymptotic variance

by a factor that depends only on w. But consider any �(w); 
(w); �(w)(�), where

w0�(w) = 0; w0
(w) = 1 (8.9)

and

�+ 
�(�) = �(w) + 
(w)�(w)(�): (8.10)

We deduce that

�(w)(�) = w0�+ (w0
)�(�) (8.11)

and thence

�(w) =

�
IN �


w0

w0


�
�; (8.12)


(w) =



w0

: (8.13)

Then the bias

E
n
~�
(w)
(�)
o
� �(w)(�) =

TX
t=1

kt�

n
�(w)(t=T )� �(w)(�)

o
=

TX
t=1

kt�

= (w0
)BIAS
n
~�
(w)
(�)
o
; (8.14)

where BIAS
n
~�
(w)
(�)
o
is (4.10). Thus, varying w changes the bias by a factor

which re�ects the unknown multiplicative e¤ects, so the incorporation of these

complicates the study of optimal trend estimation.
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6. Analogous methods and theory could be developed for corresponding models

in which the regressor in the nonparametric function is stochastic (and possi-

bly multivariate), rather than deterministic. Robinson (2007) considers static

stochastic-design nonparametric regression but without distinguishing between

a time and cross-sectional dimension, and without individual e¤ects, but his

conditions on spatial dependence in regressors and disturbances are quite gen-

eral and could be employed in more general settings, such as that just envisaged.

Appendix A: Proofs of Theorems

Proof of Theorem 4 We have

!̂ij � !ij =
1

T

TX
t=1

(x̂itx̂jt � xitxjt) +
1

T

TX
t=1

(xitxjt � !ij) : (A.1)

The second term on the right has mean zero and variance bounded by CT�1, where

C throughout denotes a generic constant (so in the present case there is uniformity

in i and j). From (6.3) and (6.6) we may write

x̂it = xit + di + et; (A.2)

where

di = �xAA � �xiA; et = �t � ~�t: (A.3)

Then

x̂itx̂jt � xitxjt = (x̂it � xit) (x̂jt � xjt) + xit (x̂jt � xjt) + (x̂it � xit)xjt

= (di + et) (dj + et) + xit (dj + et) + (di + et)xjt: (A.4)

The �rst term on the right of (A.4) is bounded in absolute value by 2
�
d2i + d

2
j + e

2
t

�
.

From Assumption 1, E(d2i ) � CT�1 uniformly in i. Next write

et = ft=kt �mt=kt; (A.5)
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where

ft = (Th)�1
TX
s=1

kst(�t � �s); (A.6)

mt = (Th)�1
TX
s=1

kst�xAs; (A.7)

kt = (Th)�1
TX
s=1

kst: (A.8)

By Lemma 3, jktj�1 � C uniformly in t and T . Next, mt has mean zero and variance

bounded by

C(Th)�2
TX
s=1

k2st � C(Th)�1; (A.9)

applying Lemma 1. By the mean value theorem

�s � �t =
�
s� t
T

�
�0t +

1

2

�
s� t
T

�2
�00st; (A.10)

where �0t = �
0(t=T ) and j�00stj � C: Thus

jftj � j�0tj
�����(Th)�1

TX
s=1

�
s� t
T

�
kst

�����+ (Th)�1
TX
s=1

�
s� t
T

�2
jkst�00stj : (A.11)

The last term is O(h2) by Lemma 1. The �rst factor of the �rst term on the right is

uniformly bounded and the second factor may be written

h

������(Th)�1
TX
s=1

�
s� t
Th

�
kst �

1Z
�1

uk(u)du

������ : (A.12)

From Lemma 2 this is bounded by

Ch

(
1

Th
+

1

T 2h3
+

�
t

Th

��1
+

�
T � t
Th

��1)
(A.13)

for Th � t � T � Th. For other t we use the bound Ch from Lemma 1. It follows
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from Lemma 3 that ft=kt has the same bounds. Thus

1

T

TX
t=1

�
ft
kt

�2
� C

Th

T
h2 + C

 
1

T 2
+

1

T 4h4
+
h2

T

X
t�Th

(t=Th)�2

!

� C

�
h3 +

1

T 2
+

1

T 4h4
+
h2:Th

T

�
� C

�
h3 +

1

T 2
+

1

T 4h4

�
: (A.14)

Thus, for large T ,

E

(
1

T

TX
t=1

�
d2i + d

2
j + e

2
t

�)
� C

�
h3 +

1

Th

�
: (A.15)

Next, looking at the second term in (A.4) we have

E

�����dj 1T
TX
t=1

xit

����� �
(
Ed2j

1

T 2

TX
t=1

E
�
x2it
�) 1

2

� CT�1: (A.16)

Also

E

����� 1T
TX
t=1

xitft=kt

����� � C

T

(
TX
t=1

�
ft
kt

�2) 1
2

� C

T
1
2

�
h3=2 +

1

T
+

1

T 2h2

�
: (A.17)

Write

xitmt =
k(0)

Th
xit�xAt +

xit
Th

TX
s=1
s 6=t

kst�xAs: (A.18)

Thus

E

�����
TX
t=1

xit
mt

kt

����� � k(0)

Th
E

�����
TX
t=1

xit�xAt
kt

�����
+
1

Th

8><>:E
0B@ TX

t=1

xit
kt

TX
s=1
s 6=t

kst�xAs

1CA
29>=>;

1
2

: (A.19)
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The �rst term on the right is bounded by C=(T
1
2h). The second term is

1

Th

8><>:E
TX
t=1

x2it
k2t

0B@ TX
s=1
s 6=t

kst�xAs

1CA
29>=>;

1
2

+
1

Th
E

0BB@ TX
t=1

TX
v=1

v 6=t

k2tv
ktkv

xit�xAvxiv�xAt

1CCA
1
2

� C

Th

 
TX
t=1

TX
s=1

k2sv

! 1
2

� C=h 1
2 (A.20)

by Lemma 1. It follows that

E

�����T�1
TX
t=1

xitmt=kt

����� � C=(Th 1
2 ): (A.21)

Thus,

E j!̂ij � !ijj � C

�
h3 +

1

Th

�
+
C

T
1
2

�
h3=2 +

1

T
+

1

T 2h2

�
+

C

Th
1
2

� C

�
h3 +

h3=2

T
1
2

+
1

Th

�
: (A.22)

The proof is completed.

Proof of Theorem 5 It su¢ ces to consider only the MISE-optimal bandwidths,

the proofs for the MSE-optimal ones being identical. We have

ĥ�;MISE � h�;MISE =

�
�

�2TN2

�1=58<:
 
`0
̂`

�̂

!1=5
�
�
`0
`

�

�9=;
1=5

: (A.23)

By the mean value theorem, the last factor is bounded in absolute value by

1

5
j~r1j
���`0 �
̂� 
� `���+ 1

5
j~r2j
����̂ � ���� ; (A.24)

where ~r1 lies between (`0
`)�4=5�
�1=5 and (`0
̂`)�4=5�̂

�1=5
and ~r2 lies between (`0
`)1=5�

�6=5
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and (`0
̂`)1=5�̂
�6=5

. Then straightforwardly we deduce that (A.24) is�
(`0
`)

�4=5
n
N




̂� 



+ (`0
`) ����̂ � ����o�

= Op

�
N1=5

�



̂� 



+ k
k ����̂ � ������
= Op

�
N1=5





̂� 



� (A.25)

by Assumption 8. Thus (A.23) is

Op

 �
`0
`

TN2

�1=5�
N

`0
`

�1=5 



̂� 



!

= Op

 �
`0
`

TN2

�1=5 



̂� 



! = op (h�;MSE) : (A.26)

Next consider

ĥ�;MSE � h�;MSE =

�
�

�2T

�1=58><>:
�
`0
̂�1`

��1=5
�̂
1=5

� (`
0
�1`)

�1=5

�1=5

9>=>; : (A.27)

The last factor is bounded in absolute value by

1

5
j~s1j
�����`0
̂�1`��1 � �`0
�1`��1����+ 15 j~s2j ����̂ � ���� ; (A.28)

where ~s1 lies between (`0
�1`)
4=5
��1=5 and

�
`0
̂�1`

�4=5
�̂
�1=5

and ~s2 lies between

(`0
�1`)
�1=5

��6=5 and
�
`0
̂�1`

��1=5
�̂
�6=5

. Now

�����`0
̂�1`��1 � �`0
�1`��1���� �

���`0 �
̂�1 � 
�1� `����
`0
̂�1`

�
(`0
�1`)

=

���`0
̂�1 �
̂� 
�
�1`����
`0
̂�1`

�
(`0
�1`)

= Op

�
(`0
�2`)

(`0
�1`)2





̂� 



�

= Op

0@




̂� 




N

1A : (A.29)
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Thus (A.28) is

Op

0@�`0
�1`�4=5




̂� 




N

+
�
`0
�1`

��1=5 ����̂ � ����
1A

= Op

 
(`0
�1`)

4=5

N

�



̂� 



+ k
k ����̂ � �����! : (A.30)

It follows from Assumption 8 that

ĥ�;MISE � h�;MISE = Op

 
(`0
�1`)

4=5

NT 1=5





̂� 



!
= Op

��
T`0
�1`

��1=5 



̂� 



�
= op (h�;MISE) : (A.31)

The proof is completed.

Proof of Theorem 6 We have

�̂(�)� ~�(�) =

(
`0
̂�1

`0
̂�1`
� `0
�1

`0
�1`

)
TX
t=1

kt� (�+ �t`+ x�t) =
TX
t=1

kt�

=

(
`0
̂�1

`0
̂�1`
� `0
�1

`0
�1`

)
TX
t=1

kt� (�+ x�t) =
TX
t=1

kt� : (A.32)

It clearly su¢ ces to show that the factor in braces has norm op�
(`0
�1`)

� 1
2

�
h2 +N� 1

2 (Th)�
1
2

��
. This norm is bounded by




`0
̂�1


 �����`0
̂�1`��1 � �`0
�1`��1����
+
�
`0
�1`

��1 


`0(
̂�1 � 
�1)


 : (A.33)

From the proof of Theorem 5,

�����`0
̂�1`��1 � �`0
�1`��1���� = Op
0@




̂� 




N

1A ; (A.34)
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so since



`0
̂�1


 � N 1

2





̂�1


 the �rst term is Op
�
N� 1

2





̂� 



�. Also,


`0(
̂�1 � 
�1)


 = Op ��`0
�2`� 12 



̂� 



� (A.35)

and thus from Assumption 10 the second term has the same bound. This bound is

Op

��
`0
�1`

�� 1
2





̂� 



�
� Op

��
`0
�1`

�� 1
2 N

�
h3 +

h3=2

T
1
2

+
1

Th
1
2

��
: (A.36)

Now Nh3 = o(h2) if Nh ! 0 and Nh3=2=T
1
2 = o(h2) if N = o

�
(Th)

1
2

�
. Also,

N=(Th
1
2 ) = o

�
(Th)�

1
2

�
if N = o(T

1
2 ) but this is implied by the last condition. The

conclusion follows.

Appendix B: Technical Lemmas

Lemma 1 For given d � 0 let the function g(u) be such that for c > d, jg(u)j �

C (1 + uc)�1. Then

max
1�t2T

(
1

Th

TX
s=1

����s� tTh

����d ����g�s� tTh

�����
)
� C: (B.1)

Proof. The expression in braces is bounded by

C(Th)�d�1
X

js�tj�U

js� tjd + C(Th)c�d�1
X

js�tj�U

js� tjd�c ; (B.2)

for any positive U . This is bounded by

C(Th)�d�1Ud+1 + C(Th)c�d�1Ud�c+1: (B.3)

Choosing U � Th gives the result.

Lemma 2 Let the function g be twice boundedly di¤erentiable, and let

g(u) = (1 + jujc)�1 (B.4)
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for c > 1, and let g(u) and its derivative g0(u) be integrable. Then for t � Th,

t � T � Th,������ 1Th
TX
s=1

g

�
s� t
Th

�
�

1Z
�1

g(u)du

������ � C
 
1

Th
+

1

T 2h3
+

�
t

Th

�1�c
+

�
T � t
Th

�1�c!
:

(B.5)

Proof. The left side is

TX
s=1

(s�t)=ThZ
(s�t�1)=Th

�
g

�
s� t
Th

�
� g(u)

�
du (B.6)

�
1Z

(T�t)=Th

g(u)du�
�t=ThZ
�1

g(u)du: (B.7)

The �rst integrand is

g0
�
s� t
Th

��
s� t
Th

� u
�
+
1

2
g00st

�
s� t
Th

� u
�2
; (B.8)

where jg00stj � C. Thus (B.6) is bounded in absolute value by

1

(Th)2

TX
s=1

����g0�s� tTh

�����+ CT

(Th)3
� C

Th
+

C

T 2h3
; (B.9)

using Lemma 1. On the other hand (B.7) is bounded in absolute value by

C

�
T � t
Th

�1�c
+ C

�
t

Th

�1�c
: (B.10)

Lemma 3 For all su¢ ciently large T

min
1�t�T

kt � 1=8: (B.11)

Proof. De�ne

�t =

(T�t)=(Th)Z
�t=(Th)

k(u)du: (B.12)
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Then

kt � �t =
TX
s=1

(T�t)=(Th)Z
�t=(Th)

�
k

�
s� t
Th

�
� k(u)

�
du: (B.13)

The integrand is

k0
�
s� t
Th

��
s� t
Th

� u
�
+ Ct

�
s� t
Th

� u
�2
; (B.14)

where

max
1�t�T

Ct <1: (B.15)

Thus (B.13) is bounded in absolute value by

(Th)�2
TX
s=1

����k0�s� tTh

�����+ CtT (Th)�3 � C(Th)�1 + CT�2h3
� 1=8; (B.16)

say, for large enough T , using Lemma 1 and Assumption 7. Now for large enough T ,

min
1�t�T

�t �
1=(2h)Z
0

k(u)du � 1

4
(B.17)

and thus

min
1�t�T

kt = min
1�t�T

�t � max
1�t�T

jkt � �tj > 1=8: (B.18)
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