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a b s t r a c t

A semiparametric multivariate fractionally cointegrated system is considered, integration orders possibly
being unknown and I(0) unobservable inputs having nonparametric spectral density. Two estimates of
the vector of cointegrating parameters ν are considered. One involves inverse spectral weighting and the
other is unweighted but uses a spectral estimate at frequency zero. Both corresponding Wald statistics
for testing linear restrictions on ν are shown to have a standard null χ2 limit distribution under quite
general conditions. Notably, this outcome is irrespective of whether cointegrating relations are ‘‘strong’’
(when the difference between integration orders of observables and cointegrating errors exceeds 1/2), or
‘‘weak’’ (when that difference is less than 1/2), or when both cases are involved. Finite-sample properties
are examined in a Monte Carlo study and an empirical example is presented.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Semiparametric modelling has become popular in cointegra-
tion analysis of I(1) time series with I(0) cointegrating errors.
In the simplest parametric setting, observables follow a random
walk and cointegrating errors are serially uncorrelated. Vector au-
toregressive (VAR) extensions have been developed (e.g. Johansen,
1991), but optimal inference on the unknown cointegrating rela-
tions loses validity if the VAR order is under-specified, or if the
process lies outside the VAR class. Phillips and Hansen (1990) and
Phillips (1991a) and others showed that one can do as well allow-
ing the I(0) inputs to have nonparametric autocorrelation, under
suitable conditions on the bandwidth employed in the smoothed
nonparametric spectrum estimate.
Another source of possible misspecification is the basic

I(1)/I(0) framework itself. Recently, optimal inference has devel-
oped in a fractional setting (see e.g. Jeganathan, 1999; Robinson
andHualde, 2003). Here, integration orderswere allowed to be un-
known, to non-trivially generalize the I(1)/I(0) assumption, but
theory was developed only in a fully parametric setting, incur-
ring the familiar concern about misspecification, and just for a bi-
variate situation, hence avoiding the complexity in simultaneously
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dealingwithmultiple cointegrating relationswhere integration or-
ders of errors may differ. Dolado and Marmol (1996) and Kim and
Phillips (2000) allowed nonparametric autocorrelation in I(0) in-
puts but, respectively assuming knowledge of integration orders,
and proposing sub-optimal procedures.
The present paper develops inference on cointegrating relations

in a semiparametric fractional setting, with unknown integration
orders. To describe our model, we introduce the following
definitions corresponding to ones in Robinson and Hualde (2003)
(hereafter RH). For any scalar or vector sequence vt , t = 0,±1,
. . . , we denote

v#t = vt1(t > 0),

where 1(·) is the indicator function. Defining the difference
operator ∆ = 1 − L, where L is the lag operator, the fractional
difference operator is given formally, for any real α, α 6= −1,−2,
. . . , by

∆−α =

∞∑
j=0

aj(α)Lj, aj(α) =
0(j+ α)

0(α)0(j+ 1)
,

with 0 denoting the gamma function. Denoting by ait the ith
component of an arbitrary vector process at , we say that a scalar
process ζt is integrated of order d, ζt ∼ I(d), if for any l×1 (l <∞)
covariance stationary process ξt whose spectral density matrix is
continuous and nonsingular at all frequencies,

ζt =

l∑
k=1

∆−dkξ#kt , (1)
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for d = max1≤k≤l dk. Robinson and Gerolimetto (2006) refer to
each summand of (1) as ‘‘basic fractional’’, so our I(d) process, like
theirs, is a linear combination of ‘‘basic fractional’’ processes, with
maximal order d. We say that a vector process is I(d) if at least
one of its components is I(d), the rest having integration orders no
greater than d. This definition is identical to that of Hualde (2008)
and resembles that of Johansen (2008), which allows I(d) vectors
to have individual components of smaller order than d.
For any r0 × 1 vector d = (d1, . . . , dr0)

′, the prime denoting
transposition, denote ∆(d) = diag

{
∆d1 , . . . ,∆dr0

}
. Let ut , t =

0,±1, . . . , be an r0×1 covariance stationary unobservable process
with zero mean and nonparametric spectral density matrix f (λ),
given by

E(u0u′j) =
∫ π

−π

eijλf (λ)dλ,

that is at least continuous and nonsingular at all frequencies. For a
r0× r0 nonsingular matrixΥ and a r0×1 possibly unknown vector
δ = (δ1, . . . , δr0)

′, we define the r0 × 1 vector observable process
zt , t = 0,±1, by

Υ zt = ∆−1(δ)u#t , (2)

where, without loss of generality we set

0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δr0 , (3)

which implies zt ∼ I(δr0). We exclude antipersistent processes
(having negative integration order), which seem to have limited
economic relevance, except in an over-differencing context.
The system (2) is the general framework in which we will

discuss the cointegrating properties of zt . We say that a vector
ξt ∼ I(d) is cointegrated if there exists a vector α 6= 0
such that α′ξt ∼ I(c) with c < d. This definition covers the
standard notion of cointegration where the observables share the
same integration order (as in, e.g., Engle and Granger, 1987), but
also many others, where observables with different integration
orders might combine in the cointegrating relation. The definition
is identical to that in Hualde (2008), which is similar to that of
Johansen (1996), andmore general than those in Flores and Szafarz
(1996) and Robinson and Yajima (2002) or Robinson andMarinucci
(2003).
The system (2) is very general, but unless δ and Υ are further

restricted, it does not necessarily represent a cointegrated model
and moreover, is nonidentifiable. As will be seen in Section 2,
additional restrictions on δ and Υ are motivated by the particular
cointegrating structurewhich characterizes our observables. Apart
from other possible constraints, we will assume in all cases that Υ
is upper-triangular with 1’s in themain diagonal. We justify below
that there is no loss of generality in this restriction, especially in
connection to (3). As a very relevant improvement over existing
literature we do not assume that all observables share the same
integration order (unlike, e.g., Kim and Phillips, 2000; Chen and
Hurvich, 2003, 2006; and effectively also Robinson and Yajima,
2002), although this possibility is considered and materializes if
the last column of Υ −1 contains no zeroes. In addition, we allow
the orders of the cointegrating errors to possibly vary, unlike
in the standard cointegration literature where all these orders
are assumed zero. We will deal with the case of an arbitrary
cointegrating rank (that is the number of linearly independent
cointegrating vectors) r1 ∈ {1, . . . , r0−1}, but our results are new
even if r1 = 1, for any r0 ≥ 2. Given there are no prior restrictions
on f , thosewhichwill be imposed onΥ and δ ensure identification,
and imply that (given consistent estimates of Υ and δ) consistent
estimation of f is possible, which is fundamental to our approach.
The truncation in (2) is motivated by systems where at least

δr0 falls in the nonstationary region, δr0 > 1/2. This version of
fractional integration (‘‘Type II’’ process) and cointegration accords
with that in RH. An alternative one (‘‘Type I’’ process), for which
the procedures developed below nevertheless apply, was used
by Dolado and Marmol (1996), Jeganathan (1999) and Kim and
Phillips (2000). None of these references covers δr0 within the
stationary region, δr0 ∈ (0, 1/2), which will be permitted by our
setting; in this case we say that our relations display ‘‘stationary
cointegration’’. This arose in Robinson (1994a), and it has been
stressed in a finance context by Bandi and Perron (2004) and
Christensen and Nielsen (2006). A larger class (where δr0 > 1/2
is possible) consists of cases where the cointegrating gap (the
difference between the integration order of the observables
and cointegrating error) falls in the (0, 1/2) region, which we
denote ‘‘weak cointegration’’. Empirical evidence of this, with
nonstationary observables, was found by Robinson and Marinucci
(2003), and it has been further discussed by Hualde and Robinson
(2007). The case where the gap is greater than 1/2, which includes
the usual I(1)/I(0) situation, is called ‘‘strong cointegration’’.
It is desired to conduct inference on the unknown elements

of Υ , in the presence of unknown δ. The present paper does not
merely extend nontrivially the bivariate model in RH to a richer
multivariate framework, and allow also for nonparametric f , but
simultaneously covers relations of weak and strong cointegration,
which, as we understand, has not been attempted before. While
asymptotics for point estimates of unknown parameters in Υ dif-
fer significantly across these cases, the same rules of inference
prevail throughout, with the same Wald test statistic (for a linear
hypothesis on these parameters) having a null limit χ2 distribu-
tion. The borderline situation between strong and weak cointe-
gration, with a cointegrating gap of 1/2, will be excluded largely
because it seems too special to warrant the space necessary to
present the somewhat separate technical treatment that it would
require. However, while the convergence rate of our estimates dif-
fers from those under both strong andweak cointegration, it seems
that the same limit distribution for theWald statistic will still hold,
so that slight limitation of our analysis can be dispensed with.
We find it convenient to treat the nonparametric autocorre-

lation in the frequency domain. This prompts consideration of
two alternative methods of estimating and testing hypotheses on
ν. One involves a ratio of weighted periodogram averages either
across all frequencies in the Nyquist band, or only over those
within a shrinking neighbourhood of zero frequency. The weight-
ing is inverse with respect to smoothed estimates of f . Because of
the concentration of spectral mass around zero frequency, where
f changes little, computationally simpler statistics, with the same
asymptotic properties, replace the weights by multiplicative fac-
tors based on an estimate of f (0).
The plan of the paper is as follows. In Section 2 additional re-

strictions on δ andΥ and estimates of the cointegratingmatrix and
test statistics will be introduced. Regularity conditions and asymp-
totic properties are presented in Section 3. Section 4 contains a
Monte Carlo study of finite-sample behaviour, and Section 5, the
analysis of an empirical example. Some concluding remarks are
made in Section 6. Proofs are relegated to an Appendix.

2. Estimation of cointegrating parameters and test statistics

As previously mentioned, we need to introduce additional
restrictions onΥ , δ, which ensure cointegration and identification,
and then propose estimates of the unrestricted parameters in Υ .
Our basic assumption (which materializes in Assumption 1) is
that the cointegrating properties of zt are characterized by the
following structure. First, S(1)r1 ⊂ Rr0 represents the cointegrating
space of dimension r1 < r0. This implies the existence of a full rank
r0×r1matrixβ(1) (whose columns are cointegrating vectors) such
that β(1)′zt ∼ I(δr1), with δr1 < δr0 . Hualde (2008) shows that δr1
is uniquely identified, in the sense that for any other arbitrary r0×
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r1 matrix whose columns are linearly independent cointegrating
vectors, say β(1), β(1)′zt ∼ I(δr1).
In addition, we also assume that S(1)r1 has a subspace S

(2)
r2 ⊂ S

(1)
r1

of dimension r2 < r1, such that there exists a r0 × r2 matrix
β(2) (whose columns are linear combinations of those of β(1)) so
S(2)r2 = sp(β(2)) (where sp(·) denotes column space of a matrix)
and β(2)′zt ∼ I(δr2), with δr2 < δr1 (again Hualde, 2008, ensures
the uniqueness of δr2 in the previous sense). Thus, the column
vectors in β(2) represent particular directions in the cointegrating
spacewhich achieve a greater reduction in the integration orders of
the observables (from δr0 to δr2 ) instead of the ‘‘typical’’ reduction
(from δr0 to δr1 ) achievedbymost cointegrating vectors. Proceeding
in this fashion, we assume that the whole cointegrating structure
of zt is characterized by subspaces S

(s)
rs ⊂ S

(s−1)
rs−1 ⊂ · · · ⊂ S

(1)
r1 , of

dimensions rs, rs−1, . . . , r1, respectively, where 1 ≤ rs < rs−1 <
· · · < r1 < r0, and letting β(j) be r0 × rj matrices such that
S(j)rj = sp(β(j)), j = 1, . . . , s, β(j)

′zt ∼ I(δrj), where δrs < δrs−1 <
· · · < δr1 < δr0 .
Two issues appear to be relevant here. First, Hualde (2008)

presents a procedure to infer the dimension of all possible
cointegrating subspaces, and, furthermore, proposes consistent
estimates of these subspaces. Second, one of the implications of
Hualde’s (2008) results is that under such a cointegrating structure
for zt , defining for any p-dimensional vector ξt , a < b < p, ξ

(a,b)
t =

(ξat , . . . , ξbt)
′, ξ−b,t = (ξb+1,t , . . . , ξpt)

′, there exist (rj − rj+1) ×
(r0 − rj)matrices D(j), j = 1, . . . , s, (setting throughout rs+1 = 0),
such that the individual observables in zt can be ordered in such a
way that

z(1,rs)t + D(s)z−rs,t = w
(1,rs)
t ,

z(rs+1,rs−1)t + D(s−1)z−rs−1,t = w
(rs+1,rs−1)
t ,

...

z(r3+1,r2)t + D(2)z−r2,t = w
(r3+1,r2)
t ,

z(r2+1,r1)t + D(1)z−r1,t = w
(r2+1,r1)
t ,

z−r1,t = w
(r1+1,r0)
t , (4)

where the components ofw
(rj+1+1,rj)
t are individually I(δrj) and not

cointegrated. Also, the procedure in Hualde (2008) specifies which
variables should appear on the left and right hand sides of the
different equations of system (4). The main implication of (4) is
that, settingwt = ∆−1(δ)u#t , (2) holds with

Υ =


Irs D(s)

0rs−1−rs,rs Irs−1−rs D(s−1)

0rs−2−rs−1,rs 0rs−2−rs−1,rs−1−rs
. . .

...
...

...
... Ir1−r2 D(1)

0r0−r1,rs 0r0−r1,rs−1−rs · · · 0r0−r1,r1−r2 Ir0−r1

 , (5)
where Is is the s-rowed identity matrix, and 0i,j the i × jmatrix of
zeroes. We formalize the restrictions on Υ implied by (5) and the
equalities and strict inequalities among the elements of δ implied
by the previous discussion in Assumption 1.

Assumption 1. The relations (2) hold for a possibly unknown
vector δ whose components satisfy

0 ≤ δ1 = · · · = δrs < δrs+1 = · · · = δrs−1

< · · · < δr2+1 = · · · = δr1 < δr1+1 = · · · = δr0 ,

δri − δrj 6= 1/2, i < j, j ∈ {1, . . . , s} ,
(6)

and for

Υ =

(
Υ1 Υ2

0r0−r1,r1 Ir0−r1

)
,

where Υ1 is a r1 × r1 matrix consisting of s × s blocks Υ
(i,j)
1 of

dimensions (rs−i+1 − rs−i+2) × (rs−j+1 − rs−j+2), i, j = 1, . . . , s,
such that Υ (i,j)

1 = 0 if i > j,Υ (i,i)
1 = Irs−i+1−rs−i+2 , but Υ1, like Υ2

(which is an r1 × (r0 − r1) matrix), are otherwise unknown and
unrestricted.

Note that when

δ1 = δ2 = · · · = δr1 = 0, δr1+1 = δr1+2 = · · · = δr0 = 1, (7)

(2) is the usual I(1)/I(0) cointegrated system with cointegrating
rank r1.
Denote by νk the vector of unrestricted parameters in the kth

row of Υ , for k ∈ {1, . . . , r1}, so νk is a (r0 − rj) × 1 vector if
k ∈ {rj+1 + 1, . . . , rj}, j = 1, . . . , s. Thence form the unknown
elements of Υ into the q × 1 vector ν = (ν ′1, . . . , ν

′
r1)
′, where

q = Σ sk=1(r0 − rk)(rk − rk+1). We equivalently write

vecΥ = Cν − c, (8)

where c is a r20 × 1 vector of zeroes except for −1 in positions
1, r0 + 2, 2r0 + 3, 3r0 + 4, . . . , r20 and C is the r

2
0 × q matrix

C = (C1, . . . , Cr1), where for k ∈ {rj+1 + 1, . . . , rj}, j = 1, . . . , s,

Ck =
(
irjr0+k, i(rj+1)r0+k, . . . , i(r0−1)r0+k

)
,

with ij a r20 × 1 vector of zeroes except for 1 in the jth component.
Define the r20 × r0 matrix-valued process z

d
t , whose ith r0× r0 sub-

matrix is diagonal with (j, j)th element∆djzit . For generic, possibly
matrix-valued, sequences ξt , χt , define the discrete Fourier trans-
form

wξ (λ) =
1

(2πn)
1
2

n∑
t=1

ξteitλ,

and the cross-periodogram and periodogram

Iξχ (λ) = wξ (λ)wχ (−λ)′, Iξ (λ) = Iξξ (λ),

for real λ. Denote by λj = 2π j/n, j = 0, . . . , [n/2], the Fourier
frequencies, where [·]means integer part.
Given observations zt , t = 1, . . . , n, and a nonsingular estimate

f̂ (λ) of f (λ), based on these data, define the statistics

âm(d) = C ′
m∑
j=0

sjRe
{
wzd(−λj)̂f

−1(λj)w
′

zd(λj)
}
c,

b̂m(d) = C ′
m∑
j=0

sjRe
{
wzd(−λj)̂f

−1(λj)w
′

zd(λj)
}
C,

â◦m(d) = C
′

m∑
j=0

sjRe
{
wzd(−λj)̂f

−1(0)w′zd(λj)
}
c,

b̂◦m(d) = C
′

m∑
j=0

sjRe
{
wzd(−λj)̂f

−1(0)w′zd(λj)
}
C, (9)

for an integerm such that

m→∞ as n→∞, 1 ≤ m ≤ n/2, (10)

and for sj = 1, j = 0, n/2, sj = 2, otherwise.
Defining

ν̂m(d) = b̂−1m (d)̂am(d), ν̂◦m(d) = b̂
◦

m(d)
−1̂a◦m(d),

we consider the two sets of estimates of ν,

W (‘‘weighted’’): ν̂m(δ), ν̂m(̂δ);

Z (‘‘zero-frequency’’): ν̂◦m(δ), ν̂
◦

m(̂δ),
(11)

where δ̂ is an estimate of δ. The estimates (11) are of generalized
least squares type, and effectively ‘‘whiten’’ the data, as their
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desirable asymptotic properties will confirm. The estimates
ν̂m(δ), ν̂

◦
m(δ), treat δ as known (as is usual in the I(1)/I(0) case),

but in our context they are generally regarded as infeasible,
and included in part for completeness and to demonstrate that
estimation of δmakes no asymptotic difference, aswell as to imply,
with ν̂m(̂δ), ν̂◦m(̂δ), cases where δ is partly known (e.g. δr0 = 1 is
known but δ1, . . . , δr1 are unknown).
When m = [n/2], (11) are semiparametric multivariate

counterparts of the parametric estimates in (2.18) and (3.13) of RH,
because the real operators and sj can be dropped and summations
over [0, [n/2]] replaced by ones over [1, n], due to symmetry
properties. As noted there, the computational simplicity of the
Z estimates over the W estimates is due not only to having to
estimate f at only frequency zero, but to

â◦
[n/2](d) =

1
2π
C ′

n∑
t=1

zdt f̂
−1(0)(zdt )

′c, b̂◦
[n/2](d)

=
1
2π
C ′

n∑
t=1

zdt f̂
−1(0)(zdt )

′C .

However, RH found, in their parametric setting with strong
cointegration, that ‘‘zero-frequency’’ estimates only do as well
as ‘‘weighted’’ ones when the cointegrating gap is larger than 1;
when it is 1, a ‘‘second-order bias’’ appears, and when it is less
than 1 (but greater than 1/2) convergence is slower due to sub-
optimalweighting, and in each case themixed-normal asymptotics
underlying the desirable null χ2 limit distribution of Wald test
statistics is lost. As seen in the following section, limiting the
increase of m appropriately repairs this defect (see (26)). In case
of weak cointegration, we also limit the increase of m, which,
as in the previous case, corrects for simultaneity bias due to
correlation between regressors and cointegrating errors. This idea
was already present in Robinson (1994a), who found that m/n→
0 is necessary for consistency of the narrow band least squares
estimate in case of stationary cointegration, whereas Robinson and
Marinucci (2001, 2003) found that m/n → 0 reduces the bias of
this estimate in nonstationary cointegration situations where the
collective memory of regressor and cointegrating error is smaller
than 1. Earlier, Phillips (1991a) considered similar estimates to
ν̂m(δ), ν̂

◦
m(δ) in the standard I(1)/I(0) situation (7)with δ assumed

known and with additional conditions imposed on Υ , namely
Υ1 = Ir1 , which are natural restrictions if S

(1)
r1 describes the whole

cointegrating structure, but not in our more complex and general
setting.
Alternatively, by elementary row operations on the r1 × r0

sub-matrix (Υ1,Υ2), we can transform our Assumption 1 set-up
with upper-triangular Υ1 to that with Υ1 = Ir1 , but this would in
general reduce the ‘‘achievement’’ of a cointegration analysis, since
the cointegrating relations would in general each have integration
order maxi∈{1,...,r1} δi. In particular, this transformation would lead
to estimation of the cointegrating space S(1)r1 , but all information
contained in the different cointegrating subspaces allowed by
Assumption 1 would be, in general, lost. Thus, while this type of
transformation seems innocuous in the traditional cointegrating
framework (where maxi∈{1,...,r1} δi = 0), in our present fractional
setting it implies a very strong simplification.
There have been numerous attempts to validate economic hy-

potheses on long-run relationships among economic variables by
testing the parameters of potentially cointegrated models, in par-
ticular, whether these satisfy certain linear restrictions. Without
being exhaustive, we briefly describe three examples in distinct
economic environments. First, Johansen and Juselius (1992) (see
also MacDonald and Marsh, 1997) studied jointly the purchasing
power parity (PPP) and uncovering interest rate hypotheses by ex-
amining relations among five observables (domestic and foreign
prices, exchange rate, domestic and foreign interest rates), testing
for example whether the PPP holds in every cointegrating relation,
and also whether the presence of the interest rates in the cointe-
grating relations is simply constrained to their differential. Second,
Johansen and Juselius (1994), in an ISLM multivariate model with
five observables (money, income, price, three-month commercial
bill and ten-year bond rates) tested restrictions that cointegrating
relations are consistent with a money demand equation together
with interest rate differential and the deviation of the bond rate
from an inflation ratemeasure. Finally, in a different setting, Jacob-
son et al. (1998) investigated, in a multivariate cointegratedmodel
with four observables (real output, employment, labour force, real
wage), the behaviour of real wages and unemployment, testing (by
examining restrictions among cointegrating parameters) the joint
hypothesis that unemployment and labour’s share of value added
are I(0).
Thus consider the null hypothesis

H0 : Rν = v, (12)

where v is a given J × 1 vector and R is a given J × q matrix. For
j = 1, . . . , s and k ∈ {rj+1 + 1, rj}, partition νk = (ν

(j)′
k , . . . , ν

(1)′
k )′,

where ν(l)k are the parameters in νk corresponding to regressors
z(rl+1,rl−1)t , l = 1, . . . , j. Then R must satisfy the following condi-
tion:

Assumption 2. R has full row rank and, partitioning it column-
wise corresponding to the partition of ν into the ν(l)k , k ∈ {rj+1 +
1, rj}, l = 1, . . . , j, j = 1, . . . , s, in each row of R the only non-
null subvectors correspond to a unique choice of j = 1, . . . , s and
l = 1, . . . , j.
This assumption avoids commutativity problems due to the

different convergence rates of the estimates of particular linear
combinations of the νk. As it stands, it permits linear restrictions
among coefficients corresponding to regressors z

(rj+1,rj−1)
t , j =

1, . . . , s, within each block of equations in (4), and also covers
exclusion restrictions.
TheW and Z Wald statistics on which the test of (12) is based

are given by

Wm(d) = (R̂νm(d)− v)′(R̂b−1m (d)R
′)−1(R̂νm(d)− v), (13)

W ◦m(d) = (R̂ν
◦

m(d)− v)
′(R̂b◦m(d)

−1R′)−1(R̂ν◦m(d)− v), (14)

with d = δ or δ̂.

3. Main results

We introduce further regularity conditions. For theW estimates
we require:

Assumption 3. The process ut , t = 0,±1, . . . , has representation

ut = A(L)εt , A(z) = Ir0 +
∞∑
j=1

Ajz j, (15)

where the Aj are r0 × r0 matrices such that

det{A(z)} 6= 0, |z| = 1, (16)

A(eiλ) is differentiable in λ ∈ [−π, π] with derivative in
Lip(η), η > 1/2, and with ‖ · ‖ denoting the Euclidean norm,
the r0 × 1 vector variables εt are independent and identically
distributed vectors with mean zero, positive definite covariance
matrix Ω, E‖εt‖µ < ∞, µ ≥ 4, and if δri − δrj > 1/2 for some
i < j, j ∈ {1, . . . , s}, µ > 2/(2mini,j:i<j,δri−δrj>1/2(δri − δrj)− 1).
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This is a multivariate extension of Assumption 1 of RH and is
easily satisfied if ut is a stationary and invertible ARMA, imposing
a global smoothness condition on f (λ)which implies that
∞∑
j=1

j
∥∥Aj∥∥ <∞, ∞∑

j=−∞

|j| ‖0(j)‖ <∞,

where 0(j) = E(utu′t−j). It is imposed even under m/n →
0 because it enables the use of the functional limit theorem of
Marinucci and Robinson (2000). For the Z estimateswe can slightly
relax it to:

Assumption 3◦. Assumption 3 holds with the condition det{A(1)}
6= 0, replacing (16).

Throughout we denote by K a generic, positive, finite constant.
BothW and Z estimates use:

Assumption 4.

‖̂δ‖ ≤ K , (17)

and there exists κ > 0 such that

δ̂ = δ + Op(n−κ), (18)

and, as n→∞,

n−κm1−max
{
min(mini,j:i<j(δri−δrj ),1),1/2

}
logm→ 0. (19)

On f̂ we impose the following two assumptions, for theW and
Z estimates respectively.

Assumption 5. Uniformly in j = 0, 1, . . . , n − 1, there exist ~ >
0, φ > 0, such that

f̂ (λj)− f (λj) = Op(n−~), (20)

f̂ (λj+1)− f (λj+1)− (̂f (λj)− f (λj)) = Op(n−φ), (21)

and, as n→∞,

n−~m1−max
{
min(mini,j:i<j(δri−δrj ),1),1/2

}
→ 0, (22)

n−φm2−max
{
min(mini,j:i<j(δri−δrj ),1),1/2

}
→ 0. (23)

Assumption 5◦. There exists ~ > 0 such that, as n→∞,

f̂ (0)− f (0) = Op(n−~), (24)

for which (22) is satisfied.

Finally the following assumptions are additionally imposed on
the bandwidthm in the case of theW and Z estimates respectively.

Assumption 6. For all i < j, j ∈ {1, . . . , s} such that δri−δrj < 1/2,
for η in Assumption 3,

mδri−δrj−1/2 log1/2 n+m3+2η/n2+2η → 0 as n→∞. (25)

Assumption 6◦. Assumption 6 holds, and in addition, for all i <
j, j ∈ {1, . . . , s}, such that δri − δrj > 1/2,

m/nδri−δrj → 0 as n→∞. (26)

Part (17) of Assumption 4 is again taken from RH, where it is
discussed. Primitive conditions for (18), (19) and for Assumptions 5
and 5◦ are presented by Hualde and Robinson (2006), and further
relevant discussions can be found in Chen and Hurvich (2006)
and Robinson (2005), but we briefly discuss how they might be
satisfied, and how one might proceed in practice.
Regarding the integration orders, in view of (6) we need to

estimate δrj , j = 0, . . . , s. Denote by δ̂rj the estimate of δrj . We
first estimate δr0 , and as this is the common integration order of
the individual components of the (r0 − r1) × 1 vector z−r1,t , we
would likely employ a common estimate. We can obtain such an
estimate by univariate semiparametric techniques such as versions
of log periodogram regression or local Whittle, applied to only
a single element of z−r1,t , or obtain one of these estimates for
each element and then estimate δr0 by a linear combination of
these, such as the arithmetic mean. In order to allow for non-
stationarity, tapering can be employed, as proposed by Velasco
(1999a,b)—he assumed Type I non-stationarity, but according to
Robinson (2005) this does not affect convergence rates, at least.
An alternative approach is due to Shimotsu and Phillips (2005).
All these estimates have nonparametric convergence rates that are
consistentwith (18). It is possible to impose the equality restriction
in a more formal way, to obtain a more efficient estimate of δr0
than any linear combination of univariate estimates. Robinson
(1995a) proposed log-periodogram estimates for a vector process
in which integration orders can satisfy linear restrictions, and the
same can be done with Lobato’s (1999) multivariate local Whittle
estimate. They only justified their estimates under stationarity, but
non-stationarity can doubtless be covered, as in the scalar case.
More important, they assumed their vector observables were not
cointegrated, as in our present situation, where the components of
z−r1,t are not cointegrated.
The estimation of δrj , j = 1, . . . , s, is necessarily based on

residuals. Noting (4), denote by D(j) the narrow band least squares
(NBLS) estimate (see Robinson, 1994a) of D(j), j = 1, . . . , s, and
for two nonnegative real numbers a, b, such that a > b, define
gn(a, b) = na−bmb−a, if a < 1/2;= na−bma+b−1, if a + b < 1;=
na−b log−1m, if a + b = 1, b > 0;= na−b, otherwise. Then, by
results in Hualde (2008), D(j) − D(j) = Op(g−1n (δrj−1 , δrj)), although
particular components ofD(j) could enjoy faster convergence rates.
Thus, we can form residuals

ŵ
(rj+1+1,rj)
t = z

(rj+1+1,rj)
t + D(j)z−rj,t , j = 1, . . . , s,

and apply to them the previously mentioned techniques, noting
that, as mentioned before, the individual components of the
(rj − rj+1) × 1 vector w

(rj+1+1,rj)
t are I(δrj) and not cointegrated.

Under suitable regularity conditions these estimates will have the
same first-order asymptotic properties as corresponding estimates
based on the unobservablew

(rj+1+1,rj)
t (cf. Robinson, 2005) andwill

thence have convergence rates consistent with (18).
Next, denoting by ν the preliminary estimate of ν based on D(j),

we estimate f from the fractionally differenced residual sequence

ũt (̂δ, ν) = (ŵ
(1,rs)′
t (̂δrs), . . . , ŵ

(r3+1,r2)′
t (̂δr2),

ŵ
(r2+1,r1)′
t (̂δr1), z

′

−r1,t (̂δr0))
′, t ∈ {1, . . . , n} ,

where we introduce the notation

vt(c) = ∆cv#t ,

for a generic sequence vt . In particular we can form smoothed
weighted autocovariance or periodogram estimates f̂ (λj) from
ũt (̂δ, ν), t ∈ {1, . . . , n}. Again, under suitable regularity conditions
these will have the same first-order asymptotic properties as
corresponding estimates based on the unobservable ut , whence
the literature on smoothed nonparametric spectrum estimation
indicates convergence rates that can be consistent with (20), (21)
and (24).
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However the rates in (18), (20) and (21) have implications for
the choice of m, because (19), (22) and (23), (25) and (26) have
also to be satisfied. The estimates of integration orders and spectral
densities referred to above have convergence rates no better than
n2/5, so for example (19) and (22) cannot hold when m grows as
fast as n, while satisfying (10), and mini<j δri − δrj ≤ 3/5. Since
bias tends to increase with m, for a given rate for m satisfying
(19), (22), (23), (25) and (26), bias-reduction may be needed in
order to satisfy (18), (20) and (21). Various devices are available for
achieving this. With respect to f̂ , Parzen (1957) employed higher-
order kernels in the frequency domain, while with respect to the
δ̂’s Andrews and Sun (2004), Hurvich andBrodsky (2001),Moulines
and Soulier (1999) and Robinson and Henry (2003) employed
various methods (albeit justified only in case of integration orders
falling in the stationarity region). All these methods entail an
increase in computation, they rely on greater smoothness in f , and
in practice they can sometimes exhibit disappointing small-sample
properties. Hualde and Robinson (2006) provide practical guidance
on appropriate choices of kernels in order to exploit the greater
smoothness in f . However, thesemethods are not needed if we are
prepared to contemplate an arbitrarily slow increase of m with n,
since then it is possible to satisfy (19), (22), (23) for arbitrarily small
κ, ~, φ, this is at cost of a slow convergence rate of estimates of
cointegration coefficients when δri − δrj < 1/2 (see Proposition
1 in the Appendix) but it does not directly affect our theorems.
Assumption 6 applies when for some i < j, δri − δrj < 1/2, while
Assumption 6◦ applies when one or more differences δri − δrj are
larger than 1/2. The first part of (25) holds whenever m increases
with n at algebraic rate, while the second standardly reflects the
smoothness index, η.
We next show that our ν estimates (11) have mixed normal

asymptotics when for all i, j, i < j, j ∈ {1, . . . , s}, δri − δrj > 1/2;
normal asymptotics when for all i, j, i < j, j ∈ {1, . . . , s}, δri −
δrj < 1/2; and that when both kinds of relation are present
there is a corresponding combination of limiting distributions.
Before presenting the general results, we introduce some further
notation. Denote byW (w) the r0×1 vector Brownianmotionwith
covariance matrixΩ . Define

G(v; δ) =
(
G(s)(v; δ)′,G(s−1)(v; δ)′, . . . ,G(1)(v; δ)′

)′
,

where for j = 1, . . . , s,G(j)(v; δ) = (0r0−rj,rj ,H
(j)(v; δ)), where

H(j)(v; δ) is a (r0 − rj) × (r0 − rj) block diagonal matrix with ith
block given by

v
δrj−i−δrj−10−1

(
δrj−i − δrj

)
Irj−i−rj−i+1 .

For i = 1, . . . , j, define

W̃ (w; δ) =
∫ w

0
G(w − v; δ)A(1)dW (v),

W (w) = P(0)A(1)W (w),

where P(λ) = (P (s)(λ)′, P (s−1)(λ)′, . . . , P (1)(λ)′)′, with

P (j)(λ) =

1r0−rj,1prj+1+1(λ)...
1r0−rj,1prj(λ)

 ,
in which 1i,j is the i × j matrix of ones, and letting ij be a r0 × 1
vector of zeroes except for 1 in the jth component,

pa(λ) = i′af
−1(λ), a = 1, . . . , r1.

Let T be a q × q block diagonal matrix with jth block given by
Irs−j+1−rs−j+2 ⊗ Υ(rs−j+1), j = 1, . . . , s, where

Υ(ri) = (0r0−ri,ri , Ir0−ri)Υ (0r0−ri,ri , Ir0−ri)
′, for i = 1, . . . , s.
Let ΛS(n) be a q × q block diagonal matrix with jth block given by
Irs−j+1−rs−j+2 ⊗ Λ

S
rs−j+1 , j = 1, . . . , s, where Λ

S
ri , i = 1, . . . , s, is a

block diagonal matrix with kth block given by nδri−k−δri Iri−k−ri−k+1 ,
for k = 1, . . . , i. Similarly, letΛW(n) be a q× q block diagonal matrix
with jth block given by Irs−j+1−rs−j+2 ⊗Λ

W
rs−j+1 , j = 1, . . . , s, where

ΛWri , i = 1, . . . , s, is a block diagonal matrix with kth block given

bym1/2λ
δri−δri−k
m Iri−k−ri−k+1 , for k = 1, . . . , i. Also, let F(λ) be a q×q

matrix consisting of s× s blocks, the (i, j)th one being

Fij(λ) =

f
rs−i+2+1,rs−j+2+1(λ) · · · f rs−i+2+1,rs−j+1(λ)

...
. . .

...

f rs−i+1,rs−j+2+1(λ) · · · f rs−i+1,rs−j+1(λ)


⊗1r0−rs−i+1,r0−rs−j+1 ,

i, j = 1, . . . , s, where f a,b is the (a, b)th element of f −1. Let D be
a q × (sr0 −

∑s
j=1 rj) block diagonal matrix with ith block given

by 1rs−i+1−rs−i+2,1 ⊗ Ir0−rs−i+1 , i = 1, . . . , s, and let A a matrix
consisting of s× s blocks,

A =

A(s,s) · · · A(s,1)
...

. . .
...

A(1,s) · · · A(1,1)

 ,
where for k, l = 1, . . . , s,

A(k,l) =


A(rk+1+1,rl+1+1)(k,l) · · · A(rk+1+1,rl)(k,l)

...
. . .

...

A(rk,rl+1+1)(k,l) · · · A(rk,rl)(k,l)

 ,
in which for v = rk+1 + 1, . . . , rk, w = rl+1 + 1, . . . , rl, A

(v,w)

(k,l) is a
(r0 − rk)× (r0 − rl)matrix with (y, z)th element given by

f vw(0)fyz(0)
2(1− (δy − δrk)− (δz − δrl))

, y = rk + 1, . . . , r0,

z = rl + 1, . . . , r0,

fa,b being the (a, b)th element of f . Finally, letO = (O(s)′, . . . ,O(1)′)′
be the vector which collects the integration orders of the
transformed regressors (see Appendix), where

O(j) = 1rj−rj+1,1 ⊗

(
11,rj−1−rj(δrj−1 − δrj), 11,rj−2−rj−1

× (δrj−2 − δrj), . . . , 11,r0−r1(δr0 − δrj)

)′
,

for j = 1, . . . , s. By⇒ we mean convergence in the Skorohod J1
topology of D[0, 1], and by→d convergence in distribution.

Theorem 1. Let Assumptions 1 and 3–6 hold. Then,

(i) if δri − δrj > 1/2 for all i < j, j ∈ {1, . . . , s},

ΛS(n)(T
′)−1(̂νm(̂δ)− ν)

⇒

(
F(0) ◦ D

∫ 1

0
W̃ (w; δ)W̃ ′(w; δ)dwD′

)−1
×

∫ 1

0
DW̃ (w; δ) ◦ dW (w);

(ii) if δri − δrj < 1/2 for all i < j, j ∈ {1, . . . , s},

ΛW(n)(T
′)−1(̂νm(̂δ)− ν)→d N(0, A−1);
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(iii) if there are qS × q and qW × q selection matrices SS and SW ,
respectively, such that qS + qW = q and all integration order
differences in SSO and SWO are larger and smaller than 1/2,
respectively,(
SSΛS(n)
SWΛW(n)

)
(T ′)−1(̂νm(̂δ)− ν)⇒ M−1N, (27)

where

M =

SS (F(0) ◦ D ∫ 1

0
W̃ (w; δ) W̃ ′(w; δ)dwD′

)
S ′S 0qS×qW

0qW×qS SWAS ′W

 ,
and

N =

SS ∫ 1

0
DW̃ (w; δ) ◦ dW (w)

X

 ,
where X is a qW×1Gaussian vector independent of the processes
W̃ (w; δ),W (w), with mean zero and variance covariance
matrix SWAS ′W .

Theorem 2. Let Assumptions 1, 3◦, 4, 5◦ and 6◦ hold. Then identical
results to those in Theorem 1 apply to ν̂◦m(̂δ).

Finally, we present the useful and interesting global outcome
that the limit distributions presented in Theorems 1 and 2 all lead
to the Wald test statistics (13), (14) having the same, standard,
limit behaviour. Denote by χ2J a chi-square variate with J degrees
of freedom.

Corollary 1. Let Assumptions 1–6 hold. Then under H0,

Wm(δ),Wm(̂δ)→d χ
2
J .

Corollary 2. Let Assumptions 1, 2, 3◦, 4, 5◦ and 6◦ hold. Then under
H0,

W ◦m(δ),W
◦

m(̂δ)→d χ
2
J .

Corollaries 1 and 2 are direct consequences of Theorems 1
and 2, respectively, along with Assumption 2. Note that the
standard limit theory of Wald tests, familiar in many classical
situations in econometrics and associatedwith optimal procedures
in the I(1)/I(0) cointegration literature (see, e.g., Johansen, 1991;
Phillips, 1991a,b), is shown to hold here simultaneously for weak
(including stationary) and strong relations, and in the possible
presence of unknown integration orders of observables and/or
cointegrating errors.

4. Finite sample evidence

A Monte Carlo study of finite sample behaviour was carried
out, comparing the performance of our W estimates of the
cointegrating parameterswith that of the NBLS estimates (in terms
of Monte Carlo bias and standard deviation), and also the goodness
of the χ2 approximation established in Corollary 1. We consider
(2), (15), with r0 = 3, A(z) = (1 − φz)−1I3, for values φ =
0, 0.3, the εt being Gaussian with covariance matrixΩ having ijth
element ωij, fixing ωii = 1, i = 1, 2, 3, ωij = ρ = 0, 0.5,−0.4, for
i 6= j. We also impose r1 = 2, r2 = 1, which implies δ1 < δ2 < δ3
in (2). Thus, we estimate the model

z1t + ν12z2t + ν13z3t = ∆−δ1u#1t , (28)

z2t + ν23z3t = ∆−δ2u#2t , (29)

z3t = ∆−δ3u#3t ,
where we set ν12 = ν13 = ν23 = 1 and consider combinations
(δ1, δ2, δ3) = (0, 1, 2), (0.4, 0.8, 1.6), (0.2, 1, 1.4), (0, 0.4, 0.8),
noting that with the parameter values of ν = (ν12, ν13, ν23)

′,
by construction, z2t , z3t , are individually I(δ3), whereas z1t is
I(δ2), so we capture the phenomenon of multicointegration, z1t
cointegratingwith the cointegrating error arising from the relation
between z2t and z3t , producing a new cointegrating error which
further reduces the integration order of the observables.
We generated 1000 series of lengths n = 64, 128, 256, and for

the estimates of ν we chose bandwidths m = 4, 5, 6, depending
on whether n = 64, 128, 256, respectively, whereas for the
estimates of δ and f we employed the two possibilities (I, II) =
(30, 25), (60, 45), (120, 75) for n = 64, 128, 256, respectively.
Marinucci and Robinson (2001) justified the appropriateness of the
relatively small bandwidthsm. We employ a sequential procedure
in order to obtain our final estimates of ν. The first step consists of
obtaining a preliminary estimate of ν (the NBLS estimate), taking
the form

(ν12, ν13)
′
= −

(
m∑
j=0

sjRe
{
Iz−1(λj)

})−1 m∑
j=0

sjRe
{
Iz−1z1(λj)

}
, (30)

ν23 = −

(
m∑
j=0

sjRe
{
Iz3(λj)

})−1 m∑
j=0

sjRe
{
Iz3z2(λj)

}
.

Note that (29) is a standard cointegrating relation with cointegrat-
ing gap δ3 − δ2, so the asymptotic properties of ν23 can be directly
derived fromRobinson andMarinucci (2001, 2003). The estimation
results concerning (28) need to be discussed with caution. The re-
gressors in that equation are I(δ3), so given that the cointegrating
error is I(δ1), one might think that the cointegrating gap δ3 − δ1
should drive the convergence rate of (ν12, ν13)′. However, this is
not the case because the regressors z2t , z3t , in (28) are cointegrated,
which invalidates the standard results, although the problem is
easily solved by a simple linear transformation. Replacing (28) in
(30),

(ν12 − ν12, ν13 − ν13)
′
= −

(
m∑
j=0

sjRe
{
Iz−1(λj)

})−1

×

m∑
j=0

sjRe
{
Iz−1∆−δ1u#1 (λj)

}
,

and defining

T =
(
1 ν23
0 1

)
(which corresponds to the definition of T given in the previous
section), clearly

(T ′)−1 (ν12 − ν12, ν13 − ν13)′ = −

(
m∑
j=0

sjRe
{
IR(λj)

})−1

×

m∑
j=0

sjRe
{
IR∆−δ1u#1 (λj)

}
,

where IR(·) is the periodogram of the bivariate process (∆−δ2u#2t ,
z3t)′, and IR∆−δ1u#1 (·) is the cross-periodogram between (∆

−δ2u#2t ,

z3t)′ and ∆−δ1u#1t . Thus, in this particular case, it is just the gap
δ2 − δ1 which drives the convergence rate of (ν12, ν13)′.
In the second step we estimate δ1, δ2, δ3, by Shimotsu and

Phillips’ (2005) exact local Whittle procedure applied to series
r1t , r2t , z3t , where r1t = z1t + ν12z2t + ν13z3t , r2t = z2t + ν23z3t ,
where the respective optimization intervals are taken [δi − 1, δi +
1], i = 1, 2, 3. Alternative semiparametric estimation procedures
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Table 1
Monte Carlo bias of estimates of ν for φ = 0, ρ = 0.5, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 −0.004 −0.104 −0.006 −0.080 −0.002 −0.053 −0.003 −0.063 0.000 −0.036 0.000 −0.037
ν̂ II12 −0.006 −0.111 −0.008 −0.085 −0.002 −0.059 −0.004 −0.068 −0.001 −0.043 −0.001 −0.044
νNB12 −0.022 −0.196 −0.047 −0.183 −0.010 −0.144 −0.029 −0.158 −0.005 −0.114 −0.017 −0.123

ν̂ I13 −0.004 −0.101 −0.004 −0.078 −0.002 −0.052 −0.002 −0.057 0.000 −0.036 0.000 −0.034
ν̂ II13 −0.005 −0.107 −0.005 −0.085 −0.002 −0.058 −0.003 −0.062 −0.001 −0.042 −0.001 −0.042
νNB13 −0.021 −0.193 −0.042 −0.193 −0.010 −0.143 −0.026 −0.158 −0.005 −0.113 −0.016 −0.123

ν̂ I23 0.005 0.007 −0.040 −0.057 0.002 0.004 −0.028 −0.032 0.001 0.001 −0.009 −0.019
ν̂ II23 0.005 0.006 −0.043 −0.060 0.003 0.004 −0.031 −0.035 0.001 0.001 −0.010 −0.025
νNB23 −0.010 −0.033 −0.130 −0.147 −0.005 −0.018 −0.112 −0.112 −0.003 −0.011 −0.075 −0.090
Table 2
Monte Carlo bias of estimates of ν for φ = 0, ρ = 0, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.000 −0.002 0.001 −0.003 0.000 −0.006 −0.001 −0.002 −0.001 −0.003 0.000 0.010
ν̂ II12 0.000 −0.004 0.001 −0.002 0.000 −0.005 0.000 −0.002 −0.001 −0.003 0.000 0.009
νNB12 0.000 −0.001 −0.001 −0.001 −0.001 −0.005 0.000 −0.001 −0.001 −0.003 0.000 0.008

ν̂ I13 0.000 −0.004 0.000 −0.004 0.000 −0.006 −0.001 −0.002 −0.001 −0.004 0.000 0.010
ν̂ II13 0.000 −0.006 0.000 −0.004 0.000 −0.006 −0.001 −0.001 −0.001 −0.004 0.000 0.009
νNB13 0.000 −0.003 −0.002 −0.004 −0.001 −0.005 0.000 −0.001 −0.001 −0.004 0.000 0.007

ν̂ I23 −0.004 −0.004 0.001 0.003 −0.001 0.003 0.000 0.002 0.000 0.001 0.000 0.001
ν̂ II23 −0.004 −0.004 0.000 0.003 −0.001 0.003 0.000 0.002 0.000 0.001 −0.001 −0.001
νNB23 −0.005 −0.004 −0.003 0.009 −0.002 0.000 0.001 0.004 0.000 0.001 −0.003 −0.001
Table 3
Monte Carlo bias of estimates of ν for φ = 0, ρ = −0.4, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 −0.005 0.054 0.001 0.073 −0.002 0.030 −0.002 0.051 0.000 0.021 0.000 0.036
ν̂ II12 −0.004 0.061 0.002 0.083 −0.001 0.036 −0.001 0.059 0.000 0.028 0.000 0.041
νNB12 0.009 0.145 0.035 0.198 0.003 0.102 0.020 0.160 0.001 0.087 0.013 0.126

ν̂ I13 −0.005 0.053 −0.001 0.078 −0.002 0.030 −0.003 0.054 0.000 0.021 0.000 0.037
ν̂ II13 −0.004 0.061 0.000 0.091 −0.001 0.037 −0.002 0.063 0.000 0.028 0.000 0.043
νNB13 0.008 0.151 0.043 0.252 0.003 0.105 0.023 0.194 0.001 0.088 0.013 0.144

ν̂ I23 −0.008 −0.008 0.056 0.055 −0.003 0.000 0.015 0.040 −0.001 0.000 0.012 0.017
ν̂ II23 −0.008 −0.007 0.066 0.061 −0.003 0.001 0.021 0.044 −0.001 0.000 0.015 0.020
νNB23 0.013 0.024 0.133 0.126 0.007 0.018 0.088 0.103 0.002 0.009 0.062 0.069
(e.g., Robinson, 1995a,b) are available, but the exact local Whittle
procedure is specifically designed to be applied to fractionally
integrated processes, as in our present situation. Then, residuals

ũt (̂δ, ν) =
(
∆δ̂1z#1t + ν12∆

δ̂1z#2t

+ ν13∆
δ̂1z#3t ,∆

δ̂2z#2t + ν23∆
δ̂2z#3t ,∆

δ̂3z#3t
)

are computed, and we estimate f (λj) by

f̂ (λj) =
1

2m+ 1

j+b∑
k=j−b

Ĩu(̂δ,ν)(λk), (31)

to compute finally the feasible estimate of ν, ν̂m(̂δ), as in (11).
In Tables 1–12 we report Monte Carlo biases and standard

deviations (SD) of three different estimates of νij, 1 ≤ i < j =
2, 3:̂ν Iij, ν̂

II
ij , which denote our semiparametric estimates where

bandwidths I, II, are employed in the estimation of δ, f , and νNBij ,
which is the NBLS estimate, for the different ρ, φ, (δ1, δ2, δ3),
combinations (noting that the orders’ combinations are uniquely
identified in the tables by δ3). The Monte Carlo results should be
interpreted in relation to the respective convergence rates of the
estimates for the different (δ1, δ2, δ3) combinations: for (0, 1, 2)
all estimates are n-consistent; for (0.4, 0.8, 1.6), those of ν23 are
n0.8-consistent, whereas those of ν12, ν13, are n0.4m0.1-consistent
(for I and II estimates) and n0.4-consistent (for NBLS estimates); for
(0.2, 1, 1.4), estimates of ν23 are n0.4m0.1-consistent (for I and II
estimates) and n0.4-consistent (for NBLS estimates), whereas those
of ν12, ν13, are n0.8-consistent in all cases; finally, for (0, 0.4, 0.8),
the I and II estimates are in all cases n0.4m0.1-consistent, whereas
the NBLS estimate of ν23 is n0.4-consistent, and those of ν12, ν13,
are n0.4m−0.4-consistent (but n0.4m0.1-consistent if ρ = 0). Note
also that in view of our theoretical results it is expected (and
reflected in the Monte Carlo) that the results for the estimates of
ν12, ν13 will be very similar, because in our present situation the
limiting distribution of the vector of estimates of these parameters
is singular.
In the white noise situation, detailed results for bias are

presented in Tables 1–3. Overall the I estimates dominate, the I



500 J. Hualde, P.M. Robinson / Journal of Econometrics 157 (2010) 492–511
Table 4
Monte Carlo bias of estimates of ν for φ = 0.3, ρ = 0.5, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.000 −0.107 −0.006 −0.083 0.000 −0.054 −0.001 −0.065 0.000 −0.036 0.000 −0.040
ν̂ II12 −0.003 −0.113 −0.008 −0.088 −0.001 −0.061 −0.003 −0.070 0.000 −0.042 −0.001 −0.046
νNB12 −0.023 −0.195 −0.047 −0.182 −0.010 −0.143 −0.029 −0.157 −0.005 −0.113 −0.017 −0.123

ν̂ I13 0.001 −0.101 −0.003 −0.078 0.000 −0.053 0.000 −0.058 0.000 −0.035 0.000 −0.036
ν̂ II13 −0.002 −0.107 −0.005 −0.085 −0.001 −0.059 −0.002 −0.064 0.000 −0.041 −0.001 −0.043
νNB13 −0.021 −0.193 −0.042 −0.192 −0.010 −0.142 −0.026 −0.157 −0.005 −0.113 −0.016 −0.123

ν̂ I23 0.006 0.007 −0.049 −0.064 0.002 0.005 −0.031 −0.038 0.001 0.001 −0.013 −0.019
ν̂ II23 0.005 0.005 −0.051 −0.067 0.002 0.004 −0.035 −0.041 0.001 0.001 −0.012 −0.025
νNB23 −0.010 −0.033 −0.130 −0.146 −0.005 −0.018 −0.112 −0.112 −0.003 −0.011 −0.075 −0.090
Table 5
Monte Carlo bias of estimates of ν for φ = 0.3, ρ = 0, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.000 −0.002 0.001 −0.001 −0.001 −0.005 −0.001 −0.004 −0.001 −0.003 0.000 0.011
ν̂ II12 0.000 −0.003 0.000 0.000 −0.001 −0.005 0.000 −0.003 −0.001 −0.003 0.000 0.010
νNB12 −0.001 −0.001 −0.001 −0.001 −0.001 −0.006 0.000 −0.002 −0.001 −0.003 0.000 0.008

ν̂ I13 0.000 −0.004 0.000 −0.001 −0.001 −0.006 −0.001 −0.005 −0.001 −0.003 0.000 0.011
ν̂ II13 0.000 −0.006 −0.001 −0.001 −0.001 −0.005 −0.001 −0.003 −0.001 −0.003 0.000 0.010
νNB13 0.000 −0.003 −0.002 −0.004 −0.001 −0.005 0.000 −0.001 −0.001 −0.004 0.000 0.007

ν̂ I23 −0.003 −0.006 −0.001 −0.002 −0.001 0.004 −0.001 −0.001 0.000 0.001 0.001 0.003
ν̂ II23 −0.003 −0.006 −0.002 −0.001 −0.001 0.004 −0.002 −0.001 0.000 0.001 0.000 0.000
νNB23 −0.005 −0.004 −0.004 0.009 −0.002 0.000 0.000 0.004 0.000 0.001 −0.003 −0.001
Table 6
Monte Carlo bias of estimates of ν for φ = 0.3, ρ = −0.4, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 −0.007 0.055 0.001 0.076 −0.003 0.033 −0.004 0.053 −0.001 0.020 0.000 0.039
ν̂ II12 −0.006 0.062 0.002 0.086 −0.002 0.039 −0.002 0.061 −0.001 0.027 0.000 0.043
νNB12 0.008 0.145 0.035 0.197 0.003 0.102 0.020 0.160 0.001 0.087 0.013 0.126

ν̂ I13 −0.007 0.054 −0.003 0.078 −0.003 0.033 −0.006 0.054 −0.001 0.020 0.000 0.039
ν̂ II13 −0.006 0.061 −0.001 0.092 −0.002 0.039 −0.004 0.064 −0.001 0.027 0.000 0.044
νNB13 0.008 0.151 0.043 0.251 0.003 0.105 0.023 0.193 0.001 0.088 0.013 0.144

ν̂ I23 −0.010 −0.010 0.062 0.060 −0.005 0.000 0.018 0.043 −0.001 0.001 0.015 0.020
ν̂ II23 −0.009 −0.009 0.071 0.065 −0.004 0.001 0.022 0.046 −0.001 0.000 0.016 0.021
νNB23 0.013 0.024 0.133 0.125 0.007 0.018 0.088 0.103 0.002 0.009 0.062 0.069
and II estimates being clearly superior to NBLS, except for some
cases when ρ = 0, although in this case the three estimates
behave very similarly with very small biases. Our results reflect
clearly the differences in rates of convergence corresponding to
the different (δ1, δ2, δ3) combinations, all the estimates behaving
similarly when (δ1, δ2, δ3) = (0, 1, 2), (0, 0.4, 0.8), those of
ν23 being superior to corresponding estimates of ν12, ν13, when
(δ1, δ2, δ3) = (0.4, 0.8, 1.6), and the opposite happening when
(δ1, δ2, δ3) = (0.2, 1, 1.4). Biases react in the appropriate
direction as n increases, and positive (negative) correlation induces
negative (positive) bias in general. Results for bias under the AR
structure with φ = 0.3 are reported in Tables 4–6. Results for the
NBLS estimate (and also those for I, II estimates when ρ = 0) are
almost unaffected by the AR structure, with minor changes which
tend to improve the I, II estimates when (δ1, δ2, δ3) = (0, 1, 2)
(and ρ 6= 0), worsening them slightly for other combinations.
Results for SD are presented in Tables 7–12. Regarding ν12, ν13,

the NBLS estimate emerges as competitive relative to the I, II
estimates, whereas the NBLS estimates of ν23 are substantially
worse (except in the (δ1, δ2, δ3) = (0, 0.4, 0.8) case). In fact,
when (δ1, δ2, δ3) = (0, 1, 2), (0.2, 1, 1.4), the three estimates of
ν12, ν13, perform similarly, NBLS being best when (δ1, δ2, δ3) =
(0.4, 0.8, 1.6) for small n, but worsening relative to the I, II
estimates as n increases. In the (δ1, δ2, δ3) = (0, 0.4, 0.8) case
NBLS dominates, but again differences shrink noticeably as n
increases, so for n = 256 all estimates are similar in terms of SD.
The II estimate appears to be slightly worse than I, and variations
in ρ do not have an important impact on the results, although
estimates seem to perform best and worst when ρ = −0.4 and
ρ = 0, respectively. The same qualitative conclusions apply in
the presence of AR structure, although the overall results worsen
slightly in this case.
We next studied the Wald statistic for testing the (correct) null

hypothesis ν = (1, 1, 1)′, which is computed as

W = (̂νm(̂δ)− ν)′̂bm(̂δ)(̂νm(̂δ)− ν).

Tables 13–15 contain empirical sizes corresponding to nominal
α = 0.01, 0.05, 0.10. The first main finding of our experiment is
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Table 7
Monte Carlo SD of estimates of ν for φ = 0, ρ = 0.5, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.058 0.259 0.093 0.270 0.026 0.157 0.048 0.173 0.013 0.112 0.026 0.113
ν̂ II12 0.059 0.263 0.094 0.270 0.026 0.162 0.048 0.175 0.013 0.114 0.026 0.115
νNB12 0.058 0.220 0.094 0.195 0.027 0.143 0.050 0.138 0.014 0.109 0.029 0.099

ν̂ I13 0.058 0.252 0.085 0.245 0.026 0.155 0.045 0.163 0.013 0.112 0.024 0.105
ν̂ II13 0.058 0.255 0.086 0.243 0.025 0.159 0.045 0.164 0.013 0.114 0.024 0.107
νNB13 0.058 0.214 0.082 0.171 0.027 0.141 0.045 0.127 0.014 0.108 0.026 0.091

ν̂ I23 0.038 0.079 0.283 0.221 0.018 0.039 0.194 0.150 0.009 0.021 0.109 0.098
ν̂ II23 0.038 0.079 0.288 0.223 0.018 0.038 0.200 0.154 0.009 0.021 0.119 0.101
νNB23 0.068 0.108 0.336 0.193 0.034 0.059 0.266 0.144 0.018 0.037 0.179 0.100
Table 8
Monte Carlo SD of estimates of ν for φ = 0, ρ = 0, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.070 0.282 0.109 0.299 0.030 0.192 0.053 0.190 0.016 0.128 0.029 0.126
ν̂ II12 0.070 0.279 0.113 0.295 0.030 0.192 0.053 0.189 0.016 0.131 0.029 0.128
νNB12 0.064 0.225 0.091 0.201 0.029 0.164 0.051 0.137 0.016 0.117 0.028 0.099

ν̂ I13 0.070 0.287 0.115 0.309 0.030 0.193 0.054 0.196 0.016 0.128 0.029 0.128
ν̂ II13 0.070 0.284 0.118 0.306 0.030 0.194 0.055 0.194 0.016 0.131 0.029 0.130
νNB13 0.064 0.230 0.100 0.216 0.029 0.165 0.052 0.143 0.016 0.117 0.029 0.101

ν̂ I23 0.044 0.077 0.373 0.252 0.020 0.042 0.230 0.164 0.010 0.022 0.132 0.109
ν̂ II23 0.045 0.078 0.392 0.253 0.021 0.042 0.238 0.166 0.010 0.022 0.143 0.112
νNB23 0.075 0.117 0.421 0.218 0.041 0.066 0.288 0.160 0.020 0.037 0.201 0.113
Table 9
Monte Carlo SD of estimates of ν for φ = 0, ρ = −0.4, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.060 0.253 0.085 0.232 0.025 0.158 0.048 0.153 0.011 0.094 0.023 0.101
ν̂ II12 0.058 0.255 0.086 0.234 0.025 0.159 0.049 0.154 0.011 0.097 0.024 0.101
νNB12 0.063 0.227 0.088 0.180 0.029 0.154 0.049 0.129 0.014 0.106 0.027 0.094

ν̂ I13 0.060 0.259 0.101 0.266 0.025 0.160 0.053 0.170 0.011 0.095 0.025 0.109
ν̂ II13 0.058 0.260 0.101 0.270 0.025 0.161 0.054 0.171 0.011 0.097 0.026 0.108
νNB13 0.063 0.231 0.099 0.207 0.030 0.156 0.053 0.143 0.014 0.107 0.029 0.100

ν̂ I23 0.045 0.077 0.288 0.213 0.018 0.037 0.201 0.144 0.009 0.019 0.119 0.103
ν̂ II23 0.043 0.077 0.292 0.212 0.018 0.037 0.209 0.145 0.009 0.019 0.132 0.105
νNB23 0.073 0.100 0.338 0.184 0.036 0.056 0.255 0.141 0.018 0.031 0.200 0.107
Table 10
Monte Carlo SD of estimates of ν for φ = 0.3, ρ = 0.5, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.067 0.271 0.106 0.291 0.030 0.167 0.055 0.192 0.015 0.123 0.030 0.124
ν̂ II12 0.064 0.268 0.102 0.284 0.027 0.165 0.051 0.186 0.013 0.117 0.027 0.119
νNB12 0.059 0.222 0.095 0.195 0.027 0.144 0.050 0.139 0.014 0.110 0.029 0.099

ν̂ I13 0.067 0.263 0.099 0.263 0.030 0.166 0.052 0.182 0.014 0.122 0.028 0.116
ν̂ II13 0.064 0.261 0.095 0.256 0.027 0.164 0.048 0.175 0.013 0.117 0.025 0.110
νNB13 0.058 0.216 0.083 0.172 0.027 0.141 0.046 0.127 0.014 0.108 0.026 0.091

ν̂ I23 0.046 0.094 0.300 0.236 0.022 0.048 0.205 0.165 0.012 0.025 0.118 0.110
ν̂ II23 0.043 0.088 0.296 0.229 0.020 0.043 0.205 0.159 0.010 0.022 0.121 0.103
νNB23 0.067 0.109 0.339 0.195 0.034 0.059 0.267 0.145 0.018 0.037 0.179 0.100
that even if the choice of bandwidthwas not affecting dramatically
the bias and SD results, it affects heavily sizes, which increase
substantially as the bandwidth decreases, so I Wald statistics, W I
(based on I estimates) are in general undersized (most noticeably
when (δ1, δ2, δ3) = (0, 1, 2)), whereas Wald statistics W II
(based on II estimates) are usually oversized (especially when
(δ1, δ2, δ3) = (0, 0.4, 0.8)), although in most cases the distance
fromnominal sizes is not of overriding concern, taking into account
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Table 11
Monte Carlo SD of estimates of ν for φ = 0.3, ρ = 0, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.082 0.300 0.120 0.324 0.035 0.205 0.060 0.208 0.018 0.139 0.033 0.138
ν̂ II12 0.077 0.290 0.119 0.312 0.032 0.199 0.057 0.200 0.016 0.135 0.030 0.133
νNB12 0.064 0.228 0.091 0.200 0.029 0.165 0.051 0.137 0.016 0.117 0.029 0.099

ν̂ I13 0.082 0.305 0.126 0.334 0.035 0.205 0.061 0.216 0.018 0.138 0.033 0.142
ν̂ II13 0.077 0.295 0.124 0.323 0.032 0.200 0.058 0.206 0.016 0.135 0.030 0.136
νNB13 0.063 0.233 0.100 0.216 0.029 0.167 0.052 0.143 0.016 0.117 0.029 0.102

ν̂ I23 0.054 0.094 0.399 0.276 0.025 0.051 0.246 0.182 0.012 0.027 0.141 0.122
ν̂ II23 0.051 0.090 0.403 0.269 0.023 0.046 0.246 0.174 0.010 0.024 0.145 0.115
νNB23 0.075 0.118 0.424 0.221 0.042 0.066 0.289 0.161 0.020 0.037 0.201 0.113
Table 12
Monte Carlo SD of estimates of ν for φ = 0.3, ρ = −0.4, 1000 replications.

n 64 128 256

δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

ν̂ I12 0.070 0.262 0.095 0.252 0.028 0.170 0.055 0.168 0.013 0.104 0.027 0.110
ν̂ II12 0.064 0.259 0.092 0.246 0.027 0.164 0.053 0.161 0.012 0.100 0.025 0.104
νNB12 0.063 0.230 0.089 0.180 0.029 0.155 0.049 0.129 0.014 0.106 0.027 0.094

ν̂ I13 0.070 0.268 0.113 0.289 0.029 0.172 0.061 0.188 0.013 0.104 0.029 0.121
ν̂ II13 0.064 0.264 0.108 0.283 0.027 0.166 0.058 0.179 0.012 0.100 0.027 0.112
νNB13 0.063 0.233 0.100 0.207 0.030 0.157 0.054 0.143 0.014 0.107 0.029 0.100

ν̂ I23 0.054 0.093 0.302 0.231 0.024 0.047 0.210 0.158 0.011 0.025 0.127 0.114
ν̂ II23 0.050 0.087 0.300 0.223 0.021 0.042 0.213 0.152 0.009 0.021 0.134 0.109
νNB23 0.073 0.101 0.340 0.185 0.036 0.056 0.256 0.141 0.018 0.031 0.201 0.107
Table 13
Rejection frequencies ofW I,W II for ρ = 0.5, 1000 replications.

α n 64 128 256
δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

0.01 I 0.033 0.082 0.049 0.088 0.009 0.021 0.024 0.034 0.003 0.011 0.010 0.014
0.01 II 0.062 0.139 0.108 0.174 0.041 0.071 0.093 0.116 0.039 0.082 0.060 0.099

WN 0.05 I 0.066 0.146 0.103 0.182 0.023 0.055 0.065 0.100 0.009 0.043 0.026 0.046
0.05 II 0.124 0.234 0.200 0.274 0.098 0.158 0.172 0.237 0.098 0.158 0.126 0.213

0.10 I 0.092 0.199 0.153 0.244 0.042 0.091 0.096 0.173 0.021 0.067 0.050 0.094
0.10 II 0.173 0.294 0.266 0.366 0.146 0.231 0.249 0.324 0.134 0.229 0.204 0.297

0.01 I 0.003 0.016 0.012 0.020 0.000 0.003 0.004 0.003 0.000 0.000 0.000 0.000
0.01 II 0.014 0.053 0.038 0.068 0.006 0.018 0.022 0.037 0.003 0.016 0.015 0.019

VAR 0.05 I 0.011 0.047 0.034 0.068 0.002 0.010 0.011 0.017 0.000 0.002 0.000 0.002
0.05 II 0.035 0.113 0.095 0.156 0.009 0.048 0.050 0.096 0.013 0.051 0.035 0.075

0.10 I 0.017 0.088 0.067 0.115 0.002 0.014 0.024 0.036 0.000 0.007 0.003 0.008
0.10 II 0.049 0.161 0.140 0.210 0.016 0.078 0.088 0.170 0.027 0.090 0.063 0.124
Table 14
Rejection frequencies ofW I,W II for ρ = 0, 1000 replications.

α n 64 128 256
δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

0.01 I 0.018 0.040 0.048 0.055 0.007 0.014 0.016 0.019 0.001 0.002 0.004 0.006
0.01 II 0.061 0.074 0.099 0.118 0.037 0.048 0.059 0.078 0.033 0.041 0.040 0.055

WN 0.05 I 0.043 0.081 0.094 0.124 0.024 0.026 0.039 0.062 0.010 0.014 0.016 0.022
0.05 II 0.109 0.149 0.175 0.204 0.075 0.105 0.125 0.167 0.064 0.090 0.105 0.127

0.10 I 0.080 0.118 0.125 0.176 0.037 0.059 0.068 0.100 0.020 0.029 0.033 0.050
0.10 II 0.161 0.199 0.238 0.286 0.121 0.155 0.197 0.247 0.115 0.153 0.172 0.192

0.01 I 0.000 0.008 0.010 0.013 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000
0.01 II 0.011 0.024 0.034 0.045 0.001 0.016 0.013 0.019 0.003 0.005 0.006 0.010

VAR 0.05 I 0.004 0.020 0.029 0.041 0.000 0.008 0.006 0.006 0.000 0.000 0.000 0.001
0.05 II 0.024 0.058 0.072 0.101 0.010 0.030 0.037 0.054 0.009 0.014 0.017 0.034

0.10 I 0.011 0.038 0.049 0.074 0.000 0.016 0.019 0.022 0.000 0.001 0.001 0.002
0.10 II 0.038 0.092 0.107 0.149 0.018 0.049 0.064 0.094 0.020 0.036 0.045 0.072
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Table 15
Rejection frequencies ofW I,W II for ρ = −0.4, 1000 replications.

α n 64 128 256
δ3 2 1.6 1.4 0.8 2 1.6 1.4 0.8 2 1.6 1.4 0.8

0.01 I 0.044 0.081 0.089 0.119 0.014 0.034 0.038 0.069 0.004 0.012 0.014 0.031
0.01 II 0.089 0.137 0.163 0.215 0.057 0.108 0.124 0.175 0.043 0.080 0.096 0.141

WN 0.05 I 0.080 0.158 0.159 0.220 0.038 0.093 0.086 0.153 0.011 0.034 0.044 0.076
0.05 II 0.162 0.247 0.261 0.324 0.113 0.208 0.217 0.298 0.094 0.155 0.193 0.254

0.10 I 0.127 0.217 0.227 0.289 0.056 0.142 0.141 0.221 0.033 0.063 0.075 0.126
0.10 II 0.218 0.323 0.326 0.407 0.160 0.305 0.272 0.369 0.141 0.233 0.262 0.345

0.01 I 0.007 0.020 0.032 0.051 0.000 0.008 0.010 0.009 0.000 0.001 0.000 0.000
0.01 II 0.021 0.058 0.070 0.103 0.008 0.030 0.038 0.061 0.004 0.012 0.029 0.044

VAR 0.05 I 0.014 0.062 0.072 0.109 0.001 0.022 0.020 0.044 0.000 0.003 0.003 0.009
0.05 II 0.053 0.118 0.138 0.197 0.019 0.078 0.089 0.145 0.014 0.056 0.068 0.114

0.10 I 0.026 0.096 0.109 0.160 0.002 0.039 0.035 0.075 0.000 0.006 0.006 0.022
0.10 II 0.080 0.170 0.191 0.264 0.036 0.120 0.130 0.209 0.032 0.085 0.105 0.170
our relatively complex semiparametric setting. Sizes decrease
substantially for larger cointegrating gaps and when AR structure
is present, due in this latter case to overestimation of integration
orders. Note that with the bandwidth choice I, we are close
to parametric estimation when φ = 0, so I is definitely not
a good choice if we suspect that the short memory structure
which characterizes our system is of AR form. In this case, the
smaller bandwidth alternative II, as expected, is more appropriate,
mitigating the undersizing produced by the AR structure. Finally,
the largest and smallest sizes occur under negative and no
correlation respectively.

5. Empirical example

Numerous studies have been devoted to study the purchasing
power parity (PPP) hypothesis by means of cointegration tech-
niques. In the standard I(1)/I(0) framework this includes Corbae
and Ouliaris (1988) and Kim (1990), whereas in the fractional set-
ting Cheung and Lai (1993) analysed a fractional version of the PPP
model, which has recently been revisited by Gil-Alana and Hualde
(2009), who employed the parametric techniques proposed by RH
to discuss the plausibility of the absolute or homogeneous version
of the PPP. Basically, these authors justified the fractionally cointe-
grated bivariate model

p∗t − et = a+ νpt + vt , (32)

with pt representing the log of the domestic (US) price index,
p∗t being the log of foreign (UK) price index, et the log of the
exchange rate, the cointegrating error accounting for deviations
in the equilibrium between the two observable variables p∗t − et
and pt . They estimated ν parametrically, and tested by means
of a parametric Wald test the plausibility of ν = 1, which
represents the absolute version of the PPP, providing evidence
in favour of this hypothesis in the US/UK data. We extend their
analysis in two different directions. First, we analyze the whole
cointegrating structure which characterizes the long run relation
among the observable variables in zt = (et , p∗t , pt)

′, and discuss
whether the restricted parameterization (32) with ν = 1 fits the
data adequately. Second, we employ semiparametric techniques
instead of parametric ones, and check whether our alternative
procedure leads to different conclusions. By using quarterly US and
UKCPI for price indexes andBritish Pound/US dollar (end of period)
exchange rate for the period 1957.Q1–2003.Q4 (188 observations)
collected from the IFS database, we infer the cointegrating
structure of zt by means of Hualde’s (2008) procedure, which
we briefly detail below. As in Hualde (2008), assuming zt ∼
I(δ3), we say that a subvector of zt has a ‘‘reduced order linear
combination’’ (ROLC) if the linear combination is I(γ )with γ < δ3.
Thus, for at , bt = et , p∗t , pt , we define the null and alternative
hypotheses

Hab : (at , bt)′ has no ROLC,
Hab : Hab is not true,

and also

H1(1) : Hpp∗ ∪ Hpe ∪ Hp∗e, (33)

H1(1) : Hpp∗ ∩ Hpe ∩ Hp∗e,

where by Theorem 2 of Hualde (2008), r1 < 2 if and only if H1(1)
holds, whereas r1 = 2 if and only if H1(1) holds. Note that, as
mentioned in Hualde (2008), Theorem 1 of Berger (1982) ensures
that if the individual tests Hab in (33) have level α,H1(1) is also
α-level. The implementation of Hab is

Hab : {at ∼ I(δ3)} ∩ {bt ∼ I(δ3)}
∩ {at and bt are not cointegrated} . (34)

This, requires testing three different hypotheses, so to guarantee
that the test for Hab has level α, by Bonferroni’s inequality
the individual tests must have level α/3 (although as will be
shown below, this will be slightly modified). The individual
tests in (34) will be Robinson and Yajima (2002) and Robinson
(2008) procedures, which are based on Gaussian semiparametric
estimation of the integration orders, hence, even though in the
Monte Carlo experiment we employed the alternative exact local
Whittle method, we carried out the whole analysis below based on
the usual local Whittle estimate (see e.g. Robinson, 1995b).
As a preliminary step, we estimate semiparametrically the

integration orders of the three observables by local Whittle,
using first differences of the series and then adding back 1.
For a wide selection of bandwidths the maximum estimated
integration order corresponds in all cases to pt , so we work
under the assumption that pt ∼ I(δ3). Then we test Hpp∗ ,
which, given the assumption that pt has the maximum integration
order, consists of two individual hypotheses (p∗t ∼ I(δ3) and
pt and p∗t are not cointegrated), each of which will be tested
with level α/2 (to preserve the level α for Hpp∗ ). We test for
p∗t ∼ I(δ3) by means of Robinson and Yajima’s (2002) statistic T̂ab
(comparing the integration orders of pt and p∗t ), with the trimming
sequence h(n) chosen as b−1/(5+2i), i = 1, . . . , 4, with b the
bandwidth used in the estimation. Choosing as bandwidths all
integer values in the interval [55, 65] the hypothesis p∗t ∼ I(δ3)
is never rejected even at α = 0.10. Next, we perform the test for
no cointegration of Robinson (2008), which for the same choice
of bandwidths the null of no cointegration is always rejected at
α = 0.05 (and also for 9 out of 11 bandwidths at α = 0.01).
Thus, there seems to be strong evidence to rejectHpp∗ . Note that the
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Table 16
PPP empirical example: estimates and Wald tests of US/UK data.

(m, b) n′ 183 182 181 180 179 178 177 176 175 174

ν̂12 −0.709 −0.728 −0.761 −0.823 −0.841 −0.793 −0.774 −0.806 −0.840 −0.788
(6, 40) ν̂13 0.562 0.602 0.669 0.770 0.808 0.736 0.704 0.762 0.827 0.746

ν̂23 −1.33 −1.30 −1.24 −1.19 −1.15 −1.12 −1.10 −1.08 −1.05 −1.08
W 0.343 0.303 0.249 0.150 0.144 0.219 0.253 0.212 0.196 0.269

ν̂12 −0.613 −0.652 −0.651 −0.693 −0.755 −0.754 −0.766 −0.776 −0.804 −0.779
(6, 85) ν̂13 0.438 0.482 0.502 0.561 0.662 0.668 0.689 0.706 0.750 0.708

ν̂23 −1.45 −1.46 −1.47 −1.46 −1.45 −1.46 −1.46 −1.48 −1.46 −1.46
W 0.669 0.527 0.547 0.411 0.272 0.283 0.269 0.248 0.199 0.241

ν̂12 −0.860 −0.896 −0.891 −0.985 −1.03 −0.999 −0.987 −1.03 −1.05 −1.02
(10, 40) ν̂13 0.798 0.861 0.867 1.01 1.09 1.05 1.03 1.10 1.16 1.11

ν̂23 −1.36 −1.33 −1.28 −1.23 −1.19 −1.16 −1.15 −1.13 −1.11 −1.14
W 0.117 0.068 0.084 0.025 0.056 0.051 0.047 0.078 0.154 0.141

ν̂12 −0.841 −0.901 −0.882 −0.947 −1.01 −1.01 −1.02 −1.04 −1.08 −1.06
(10, 85) ν̂13 0.787 0.863 0.854 0.945 1.04 1.06 1.07 1.11 1.18 1.15

ν̂23 −1.49 −1.49 −1.51 −1.50 −1.49 −1.49 −1.50 −1.51 −1.51 −1.51
W 0.172 0.063 0.102 0.027 0.020 0.028 0.039 0.049 0.100 0.082
choice of the relatively large bandwidths is motivated by the poor
power results reported by Robinson (2008) for small bandwidths.
Next, Hpe is tested, and is strongly rejected because, using again

Robinson and Yajima’s (2002) procedure, the hypothesis et ∼ I(δ3)
is always rejected atα = 0.01 for all values of b and h(n). Similarly,
Hp∗e is also rejected at α = 0.01, which implies that H1(1) is
rejected, so there is evidence that r1 = 2, to conclude the first level
of the analysis of cointegration.
Next, we search for the possibility of a cointegrating subspace

which, following Hualde (2008), amounts to checking the possible
cointegration between cointegrating errors arising from the first
level analysis. Noting that there is strong statistical evidence that
et has a different (smaller) order than pt , et could be considered
as one of the cointegrating errors, the second arising from the
cointegrating relation between pt and p∗t . This second cointegrating
error, say wt , is obviously unobservable, but can be approximated
by the NBLS residual ŵt (using bandwidth choices m = 6, 10), so
we test for

H2(1) ≡ Hew : {et ∼ I (δ2)} ∩ {wt ∼ I(δ2)}
∩ {et andwt are not cointegrated} ,

where δ2 < δ3, using ŵt instead of wt . As before, we commence
the analysis by estimating semiparametrically the individual
integration orders of et and wt , the second one always being the
larger for a wide choice of bandwidths. Thus, the possibility that
wt ∼ I(δ2) is taken as known, and we proceed with the two
individual tests (et ∼ I(δ2) and et and wt are not cointegrated)
modifying their respective levels appropriately. By using the
previous testing procedures (again for the grid of bandwidths
[55, 65], using the two choices m = 6, 10), we never reject et ∼
I(δ2) at α = 0.10, whereas {et andwt are not cointegrated} is
always rejected at α = 0.01, which implies directly that H2(1) is
rejected, sowe conclude that r2 = 1. Thus, thewhole cointegrating
structure is characterized by the system

et + ν12p∗t + ν13pt = α1 +∆
−δ1u#1t , (35)

p∗t + ν23pt = α2 +∆
−δ2u#2t , (36)

pt = α3 +∆−δ3u#3t , (37)

where αi, i = 1, 2, 3, are (possibly nonzero) constants and δ1 <
δ2 < δ3.
Next we detail the estimation of this system. The first step is

to obtain the NBLS estimates of ν = (ν12, ν13, ν23)′, which lead to
preliminary estimates of δ1, δ2, δ3 and f . As before, the estimates
of the orders are local Whittle and f is estimated by (31). These
estimates of the nuisance parameters lead to our estimate of ν
(noting that due to the filtering applied to the series the presence
of αi 6= 0 is eliminated, see Robinson and Iacone, 2005). We report
below the NBLS estimates of ν and the local Whittle estimates of
the integration orders for the bandwidth combination m = 6, 10,
and b = 40, 85.

1. m = 6 : ν12 = −0.553, ν13 = 0.477, ν23 = −1.493;

1a. b = 40 : δ̂3 = 1.779, δ̂2 = 1.343, δ̂1 = 1.022;
1b. b = 85 : δ̂3 = 1.566, δ̂2 = 1.238, δ̂1 = 1.036;

2. m = 10 : ν12 = −0.584, ν13 = 0.525, ν23 = −1.491;

2a. b = 40:̂δ3 = 1.779, δ̂2 = 1.343, δ̂1 = 1.021:
2b. b = 85:̂δ3 = 1.556, δ̂2 = 1.238, δ̂1 = 1.036.

In all cases the signs of the estimates of the cointegrating
parameters are consistent with what theory predicts, although
they are relatively far from ν12 = −1, ν13 = 1, which represents
the absolute version of the PPP. These estimates are not very much
affected by the choice of m, whereas b has a noticeable effect on
the estimates of δ, a small value of b leading to larger estimated
cointegrating gaps.
As in Gil-Alana and Hualde (2009), we examine the matter

of truncation, which is inherent to the modelling of (35)–(37).
This model reflects the time when the data begins, and its
misspecification could have an important effect on the degree
of filtering applied to the series. This effect is moderated by
omitting the possibly badly filtered observations which occur at
the beginning of the sample. Thus, we report in Table 16 values
of our estimates (for the four different bandwidth combinations)
based on the last n′ = n − j observations for j = 5, 6, . . . , 14,
in order to explore sensitivity to starting values. Here, we also
report theWald statistic (W ) corresponding to the joint hypothesis
ν12 = −1, ν13 = 1. Our main findings are as follows. First, the
value of b has an important impact on ν̂23, which is close to −1
(when it stabilizes for n′ < 179) for small b, being substantially
larger (in absolute value) when b = 85. Alternatively, ν̂12, ν̂13, are
not much affected by b, but are clearly larger in absolute value
for larger m. In all cases signs are consistent with theory, with
values very close to the absolute version of the PPP for m = 10,
after the estimates stabilize. Note that if we are willing to assume
that et has a smaller integration order than pt or p∗t , the absolute
version of the PPP should be accompanied by the value ν23 = −1,
so the bandwidth combination (m, b) = (10, 40) is the most
favourable to this possibility. However, in any of the four scenarios
we presented we never reject this absolute version, which as in
Gil-Alana and Hualde (2009) is strongly supported by our data.
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6. Final comments

In our semiparametric approach, the choice of bandwidth m
is of primary importance. As is typically the case with such
asymptotic conditions, (19), (22), (23), (25) and (26) provide no
practical guide. Nor, especially in view of the varying convergence
rates liable to occur in a multivariate setting, is it likely to be
feasible to develop a usable theory of bandwidth choice based
on minimizing approximate mean squared error. Rather, as in
a number of other complex problems involving smoothing, one
might choose to perform the analysis over a grid of m values
and assess sensitivity. This can be done without altering the
estimation of δ and f . This estimation in turn requires choice of
a further bandwidth, and it is the oversmoothing here, relative
to m, which is responsible for the property that estimation of δ
and f does not affect asymptotic behaviour of the ν estimates.
With this in mind, and depending on the choice of m, data-
dependent choices of b from the semiparametric integration
order estimation, smooth spectral estimation, and autocorrelation-
consistent-variance-estimation literatures may be suitable.
It is natural to then ask to what extent there is a parametric

counterpart to our results, assuming f (λ) = f (λ; τ), λ ∈ (−π, π],
where f (λ; τ) is a known function of λ and an unknown finite-
dimensional vector τ (as if, for example, we assume ut is a VAR
of prescribed degree). Given an estimate τ̂ of τ , the f (λj; τ̂ ) can
be inserted in place of the f̂ (λj) in (9), with m = [n/2]. This
gives a multivariate extension of one of the ν estimates of RH (the
other being an asymptotically-equivalent ‘‘time domain’’ one). In a
bivariate setting, under strong cointegration, RH showed precisely
the same mixed-normal asymptotics for this estimate as ours, for
an arbitrary

√
n-consistent τ̂ , so the present paper has established

a kind of adaptivity property. However, under weak cointegration,
this parametric estimate of ν is, like ours, asymptotically normal
but with a faster,

√
n, rate, and moreover is not asymptotically

independent of τ̂ , or of the estimate of δ, which also needs to be√
n-consistent. In particular we can obtain optimal estimates of

ν, δ and τ by jointly optimizing an approximate form of Gaussian
likelihood. It is possible to concentrate out of this only the scale
matrix Ω (see Assumption 3), leaving a numerical optimization
problem of possibly dauntingly high dimension. With respect to
weak cointegration then, our semiparametric estimates of ν are
less efficient than optimal ones based on a correctly-specified f ,
but are likely to be much easier to compute, as well as having the
desirable property of providing Wald tests which are valid under
both weak and strong cointegration.
We have assumed that the dimensions of the different

cointegration subspaces, rs, rs−1, . . . , r2, r1, are known. In practice
the presence and extent of cointegration has to be determined
from the data, a difficult task in itself. As already mentioned,
Hualde (2008) proposed an algorithm for choosing these values,
which is based on the tests for equality of integration orders
and cointegration proposed by Robinson and Yajima (2002), and
extended by Nielsen and Shimotsu (2007) to cover nonstationary
variables. A serious drawback of these procedures is the need (in
addition to a bandwidth like our b) for user-chosen tuning numbers
in both steps of the procedure. This is avoided in the algorithm
of Robinson (2008), which consists of a sequence of Hausman-
type tests using integration order estimates for observables,
and is explicitly justified for both stationary and non-stationary
observables. Lasak (2005) extended the parametric procedure
of Johansen (1991) to fractional series, assuming the (common)
integration order of the observables is known and equal to 1, but
allowing that of the cointegrating errors (which is also assumed to
be constant across all cointegrating relations) to be unknown.
One can include over-identifying restrictions in (8), whence ν

represents a vector of unrestricted parameters of dimension less
than q, and C and c are correspondingly re-defined, and used in
(9). Though our proofs in the Appendix quickly substitute for C
and c their just-identified forms, they can be straightforwardly
extended, so long as no constraints link parameters whose
estimates have different convergence rates. The same kind of
problem arises in other multiparameter problems involving
varying convergence rates, such as multiple time series linear
regression (see Hannan, 1970, p. 447). Of course this is not an issue
when the over-identifying restrictions are all of exclusion type.
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Appendix

Proof of Theorem 1. Denoting νm(δ), bm(δ), the equivalent of
ν̂m(δ), b̂m(δ), with f replacing f̂ , respectively, clearly

νm(δ)− ν = −b−1m (δ)em(δ),

where

em(δ) = C ′
m∑
j=0

Re
{
sjwzd(−λj)f

−1(λj)wu(λj)
}
.

With C as defined it is straightforward to show that

bm(δ) =
m∑
j=0

sjRe
{
F(λj) ◦ Iz(δ)(−λj)

}
, (38)

where zt(δ) = (11,rs ⊗ z
′
−rs,t(δrs), 11,rs−1−rs ⊗ z

′
−rs−1,t(δrs−1), . . . ,

11,r1−r2 ⊗ z
′
−r1,t(δr1))

′. Also

em(δ) =
m∑
j=0

sjRe
{
wz(δ)(−λj) ◦ P(λj)wu(λj)

}
. (39)

To avoid the problem of cointegrated regressors, we will deal with
Tbm(δ)T ′ and Tem(δ), where the only change with respect to (38),
(39), is that the process zt(δ) is replaced bywt(δ), where

wt(δ) =

(
11,rs ⊗ w

′

−rs,t(δrs), 11,rs−1−rs ⊗ w
′

−rs−1,t

× (δrs−1), . . . , 11,r1−r2 ⊗ w
′

−r1,t(δr1)

)′
,

noting (4), so wt(δ) is composed of s subvectors wt(δ) = (w
(s)′
t

(δ), . . . , w
(1)′
t (δ))′, noting that for l = 1, . . . , s, an arbitrary

element of w(l)t (δ) will be wkt(δl), where k ∈ {rl + 1, . . . , r0} and
we use the simplifying notation δl = δrl . Note also that wkt(δl) is
I(δk− δl), where for fixed j = 0, . . . , l− 1, if k ∈ {rj+1+ 1, . . . , rj},
then δk = δrj , so in all cases δk − δl > 0 in view of Assumption 1.
Parts (i) and (ii) of the theorem are justified on showing

ΛS(n)(T
′)−1(νm(δ)− ν)

⇒

(
F(0) ◦ D

∫ 1

0
W̃ (w; δ)W̃ ′ (w; δ) dwD′

)−1
×

∫ 1

0
DW̃ (w; δ) ◦ dW (w), (40)
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under (i), and

ΛW(n)(T
′)−1(νm(δ)− ν)→d N(0, A−1), under (ii), (41)

and

ΛL(n) (νm(δ)− ν̂m(δ)) = op(1), (42)

ΛL(n)(̂νm(̂δ)− ν̂m(δ)) = op(1), (43)

where L = S under (i) and L = W under (ii). First we show (40),
dealing initially with the convergence of the elements of Tem(δ),
and showing first that

(ΛS(n))
−1Tem (δ) = (ΛS(n))

−1Tem(δ)+ op(1), (44)

where

Tem(δ) =
1
2π

n∑
t=2

wt−1(δ) ◦ P(0)A(1)εt .

We show that an arbitrary element of Tem(δ) has expectation of
smaller order. More precisely we show that

E

(
m∑
j=0

sjRe
{
pa(λj)Iuwk(δl)(λj)

})
= o(nδk−δl), (45)

where noting the previous discussion, a ∈ {rl+1 + 1, . . . , rl}. We
can write the left side of (45) as the real part of

1
2πn

m∑
j=0

sjpa(λj)
∫ π

−π

Dn(λj − µ)

×

n∑
t=1

e−i(n−t)λjDt(µ− λj)f (µ)an−t(δk − δl)ikdµ, (46)

where Dt(λ) =
∑t
k=1 e

ikλ is the Dirichlet kernel, where for 0 <
λ < π ,

|Dt(λ)| < K min
{
|λ|−1 , t

}
. (47)

Noting that for any λ, k > a,

pa(λ)f (λ)ik = 0, (48)

by periodicity we can write (46) as

1
2πn

m∑
j=0

sjpa(λj)
∫ π

−π

Dn(−µ)

×

n−1∑
t=0

e−itλjDn−t(µ)[f (µ+ λj)− f (λj)]at ikdµ, (49)

where at = at(δk − δl). Next, by summation by parts, (49) is

1
2πn

m∑
j=0

sjpa(λj)
∫ π

−π

Dn(−µ)

×

{
D1(µ)[f (µ+ λj)− f (λj)]an−1ik

n−1∑
t=0

e−itλjdµ

− [f (µ+ λj)− f (λj)]
n−2∑
t=0

(at+1Dn−t−1(µ)

− atDn−t(µ))ik
t∑
h=0

e−ihλjdµ

}
. (50)

Because
n−1∑
t=0

e−itλj = n, j = 0,mod n;= 0, otherwise, (51)
the contribution of the first term in braces in (50) is bounded in
modulus by

K |an−1|
∫ π

−π

|Dn(µ)| dµ = O
(
nδk−δl−1 log n

)
,

since f is boundedly differentiable, |as(c)| ≤ K(1 + s)c−1, for
c > 0, s ≥ 0 by Stirling’s approximation, and∫ π

−π

|Dn(µ)| dµ = O (log n) , (52)

(see e.g. Zygmund, 1977). Regarding the second term in (50), note
that

at+1Dn−t−1(µ)− atDn−t(µ)

= (at+1 − at)Dn−t−1(µ)− ei(n−t)µat . (53)

When δk − δl = 1, the contribution of the first term on the right of
(53) to the second termof (50) is null, because at+1(1) = at(1), t =
0, . . . , n − 2. For δk − δl 6= 1, this contribution is bounded in
modulus by

Kn−1
{
m∑
j=0

∫ π

−π

|Dn(µ)|2
∥∥f (µ+ λj)− f (λj)∥∥ dµ}

1
2

×

 m∑
j=0

∫ π

−π

∣∣∣∣∣n−2∑
t=0

(at+1 − at)Dn−t−1(µ)(Dt(−λj)+ 1)

∣∣∣∣∣
2

×
∥∥f (µ+ λj)− f (λj)∥∥ dµ


1
2

. (54)

The term in the first braces is bounded by

Km
∫ π

−π

|µ| |Dn(µ)|2 dµ = O(m log n),

by (47) and (52), since f is boundedly differentiable. The term in
the second braces is bounded by

K
m∑
j=0

∫ π

−π

|µ|

n−2∑
t=0

n−2∑
s=0

(at+1 − at)Dn−t−1(µ)

× (Dt(−λj)+ 1)(as+1 − as)Dn−s−1(−µ)(Ds(λj)+ 1)dµ

= O

n2 log n m∑
j=1

j−2
(

n∑
t=1

tδk−δl−2
)2 ,

by Lemma C.1 of RH and (47), which is O(n2 log n) if δk− δl < 1, or
O(n2(δk−δl) log n) if δk − δl > 1, implying that (54) is O(m1/2 log n)
if δk − δl < 1, or O(nδk−δl−1m1/2 log n) if δk − δl > 1. Finally, the
contribution of the second term on the right of (53) to the second
term of (50) is bounded in modulus by

Kn−1
m∑
j=0

{∫ π

−π

|µDn(µ)|2 dµ

×

∫ π

−π

∣∣∣∣∣n−2∑
t=0

ei(n−t)µat(Dt(−λj)+ 1)

∣∣∣∣∣
2

dµ

} 1
2

. (55)

The first integral is O(1) by (47), whereas the second is bounded by
K
∑n
t=1 a

2
t

∣∣Dt(λj)∣∣2, since∫ π

−π

e−i(s−t)µdµ = 2π, s = t;= 0, otherwise.
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Thus (55) is bounded by Kn−1
∑m
j=1

{
n2(δk−δl)+1j−2

}1/2
= O(

nδk−δl−1/2 logm
)
, to conclude the proof of (45).

Next, in view of Propositions 1, 2 of RH,
m∑
j=0

Re
{
sjpa(λj)

(
Iuwk(δl)(λj)− EIuwk(δl)(λj)

)}
=
pa(0)
2π

n∑
t=1

wk,t−1(δl)A(1)εt + op
(
nδk−δl

)
holds on showing Var{Re{

∑[n/2]
j=m+1 sjpa(λj)Iuwk(δl)(λj)}} = o

(n2(δk−δl)), but, as mentioned in Robinson and Marinucci (2001),
this follows by a simplemodification of their Theorem 5.1, as pa(λ)
is a well-behaved function without poles. This completes the proof
of (44).
Next, wt(δ) = Dwt(δ), where wt(δ) = (w′

−rs,t(δrs), w
′
−rs−1,t

(δrs−1), . . . , w
′
−r1,t(δr1))

′, and set c(v) = (c ′1(v), c
′

2(v))
′, where

c1(v) = n−
1
2 (Λ

S
(n))
−1

×

(
w′
−rs,[nv](δrs), w

′

−rs−1,[nv](δrs−1), . . . , w
′

−r1,[nv](δr1)
)′
,

c2(v) = n−
1
2

[nv]∑
t=1

P(0)A(1)εt ,

whereΛS(n) is the (sr0 −
∑s
j=1 rj)× (sr0 −

∑s
j=1 rj) block diagonal

matrix with jth block given by ΛSrs−j+1 , j = 1, . . . , s. By Marinucci
and Robinson (2000) and a standard functional central limit
theorem for martingales (see e.g. Brown, 1971)

c(v)⇒
(
W̃ ′ (v; δ) ,W

′
(v)
)′
, (56)

to conclude that

(ΛS(n))
−1Tem(δ)⇒

∫ 1

0
DW̃ (v; δ) ◦ dW (v),

by Theorem 2.2 of Kurtz and Protter (1991).
Next, noting that by Theorem 4.4 and a simple modification of

Theorem 5.1 of Robinson and Marinucci (2001) and Assumption 3

(ΛS(n))
−1
[n/2]∑
j=m+1

sjRe
{
F(λj) ◦ Iw(δ)(−λj)

} (
ΛS(n)

)−1
= op(1),

then

(ΛS(n))
−1Tbm (δ) T ′(ΛS(n))

−1

⇒ F(0) ◦ D
∫ 1

0
W̃ (v; δ)W̃ ′(v; δ)dvD′,

by (56) and a simple multivariate extension of Propositions 4, 5, 6
of RH, to conclude the proof of (40).
Next, we show (41), for which we initially justify that

(ΛW(n))
−1Tem(δ) = Rm + op(1), (57)

where Rm = (R
(s)′
m , . . . , R

(1)′
m )′, with R(l)m = (R

(l,rl+1+1)′
m , . . . , R(l,rl)′m )′

for l = 1, . . . , s, R(l,a)m =

(
R(l,a,rl+1)m , . . . , R(l,a,r0)m

)′
, a ∈ {rl+1 +

1, . . . , rl}, where

R(l,a,k)m =

n∑
t=2

ε′t

t−1∑
v=1

c(l,a,k)t−v εv,

for k ∈ {rl + 1, . . . , r0}, and

c(l,a,k)t =
λ
δk−δl
m

2πnm1/2

m∑
j=1

Re
(
E(l,a,k)(λj)eitλj

)
,

where E(l,a,k)(λj) is a Hermitian matrix given by

E(l,a,k)(λj) =
(
1− e−iλ

)−(δk−δl) A′ (eiλ) p′a(λ)i′kA(e−iλ)
+ (1− eiλ)−(δk−δl)A′(eiλ)ikpa(−λ)A(e−iλ),

using again the notation δl = δrl , and noting that for any fixed
j = 0, . . . , l− 1, if k ∈ {rj+1 + 1, . . . , rj}, δk = δrj .
First, define

w̃kt(δl) = ∆
δl−δkukt ,

which is the covariance stationary version of wkt(δl), noting the
absence of truncation in the right hand side. We show first that
m∑
j=0

Re
{
sjpa(λj)Iuwk(δl)(λj)

}
= 2

m∑
j=1

Re
{
pa(λj)Iuw̃k(δl)(λj)

}
+ op(nδk−δlm

1
2−(δk−δl)). (58)

The left side of (58) is

2
m∑
j=1

Re
{
pa(λj)Iuw̃k(δl)(λj)

}
+ pa(0)Iuw̃k(δl)(0)+ pa(0)

(
Iuwk(δl)(0)− Iuw̃k(δl)(0)

)
+ 2

m∑
j=1

Re
{
pa(λj)

(
Iuwk(δl)(λj)− Iuw̃k(δl)(λj)

)}
. (59)

Clearly, the second term in (59) is Op
(
nδk−δl

)
= op(nδk−δl

m1/2−(δk−δl)), because under Assumption 3,
∑n
t=1 ut = Op(n

1/2),∑n
t=1 w̃kt(δl) = Op(n1/2+δk−δl) (see e.g. Robinson, 1994b). The

third term in (59) is

pa(0)
2πn

n∑
t=1

ut
n∑
s=1

(wkt(δl)− w̃kt(δl)) , (60)

where the second summation in (60) has mean 0 and variance

i′k
n∑
s=1

n∑
t=1

∞∑
r=0

∞∑
v=0

∫ π

−π

as+r f (µ) ei(r−v)µat+v ikdµ. (61)

Clearly, (61) is bounded by

K
∫ π

−π

∣∣∣∣∣ n∑
s=1

∞∑
r=0

as+reirµ
∣∣∣∣∣
2

dµ

≤ K
n∑
t=1

n∑
s=1

∞∑
r=0

(t + r)δk−δl−1 (s+ r)δk−δl−1

≤ K
n∑
t=1

∞∑
r=0

(t + r)2(δk−δl)−2

+ K
n∑
t=2

t−1∑
s=1

∞∑
r=0

(t + r)δk−δl−1(s+ r)δk−δl−1

≤ K
n∑
t=1

∞∑
r=t

r2(δk−δl)−2 + K
n∑
t=2

t−1∑
s=1

∞∑
r=0

(s+ r)2(δk−δl)−2

≤ Kn2(δk−δl)+1.

Thus
∑n
s=1 (wks(δl)− w̃ks(δl)) = Op

(
n(δk−δl)+1/2

)
, with the same

conclusion as for the second term. The expectation of the fourth
term is the real part of

1
πn

∫ π

−π

m∑
j=1

pa
(
λj)Dn(λj − µ

)
×

∞∑
s=0

n∑
r=1

e−irλj f (µ) ar+sike−isµdµ,
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which by (48) and periodicity has modulus∣∣∣∣∣ 1πn
∫ π

−π

m∑
j=1

pa(λj)Dn (−µ)
∞∑
s=0

n+s∑
r=s+1

e−irλj

×
(
f (µ+ λj)− f (λj)

)
ar ike−is(µ−λj)dµ

∣∣∣∣∣
≤
K
n


∫ π

−π

m∑
j=1

∣∣Dn(−µ) ∥∥f (µ+ λj)− f (λj)∥∥∣∣2 dµ
×

∫ π

−π

m∑
j=1

∣∣∣∣∣ ∞∑
s=0

n+s∑
r=s+1

are−irλje−is(θ−λj)
∣∣∣∣∣
2

dθ


1
2

.

By Assumption 3 and (47) the first integral is O(m). The second
integral is

2π
m∑
j=1

∞∑
s=0

n+s∑
k=s+1

n+s∑
r=s+1

akarei(r−k)λj

≤ K
m∑
j=1

∞∑
s=0

(s+ 1)2(δk−δl)−2∣∣λj∣∣2 = O(n2),

by Lemma 3.2 of Robinson and Marinucci (2001), to conclude that
the expectation of the fourth term of (59) is O(m1/2). The variance
of the fourth term in (59) is bounded by the real part of

1
π2n2

m∑
j=1

m∑
v=1

n∑
t=1

n∑
r=1

n∑
s=1

n∑
q=1

∞∑
w=0

∞∑
p=0

eiλj(t−s)−iλv(r−q)

×

[
pa(λj)E(utu′r)p

′

a(−λv)i
′

kas+wE(u−wu
′

−p)aq+pik + pa(λj)

× E(utu′−p)aq+piki
′

kas+wE(u−wu
′

r)p
′

a(−λv)+ κ

]
, (62)

where κ is the fourth cumulant matrix of pa(λj)ut , pa(−λv)ur , i′k
as+wu−w, i′kaq+pu−p. We just detail the contribution to the variance
of the first term in braces in (62). By simple application of the
Cauchy inequality the second and third terms have the same order
as the first term. This contribution is bounded by

Kn−2
∣∣∣∣∣ m∑
j=1

m∑
k=1

∞∑
v=0

n∑
s=1

as+ve−iλjs
n∑
q=1

aq+veiλkq
n∑
t=1

eit(λj−λk)
∣∣∣∣∣

≤ Kn−1
∣∣∣∣∣ m∑
j=1

∞∑
v=0

n∑
s=1

as+ve−iλjs
n∑
q=1

aq+veiλjq
∣∣∣∣∣ , (63)

by (51), while (63) is bounded by

Kn−1m
∞∑
v=0

n∑
s=1

a2s+v + Kn
−1

×

∣∣∣∣∣ m∑
j=1

∞∑
v=0

n∑∑
s6=q

as+vaq+veiλj(q−s)
∣∣∣∣∣ . (64)

Clearly, the first term in (64) is O(mn2(δk−δl)−1), and by (47) the
second is bounded by

Kn−1
∞∑
v=0

n∑∑
s6=q

∣∣as+vaq+v∣∣ 1∣∣λq−s∣∣
≤ K

∞∑
v=0

n∑
q=2

q−1∑
s=1

(s+ v)δk−δl−1(q+ v)δk−δl−1

q− s
≤ K
n∑
q=2

q−1∑
s=1

1
q− s

∞∑
v=s

v2(δk−δl)−2 ≤ K
n∑
q=2

q−1∑
s=1

s2(δk−δl)−1

q− s

= K
n−1∑
q=1

q−1
n−q∑
s=1

s2(δk−δl)−1 ≤ Kn2(δk−δl) log n.

Thus, the fourth term in (59) is Op
(
m1/2 + nδk−δl log1/2 n

)
, which is

op
(
nδk−δlm1/2−(δk−δl)

)
, by (25), to conclude the proof of (58). Now

(57) follows straightforwardly. Next, defining Rm(v) as Rm but with

R(l,a,k)m (v) =

[nv]∑
t=2

ε′t

t−1∑
v=1

c(l,a,k)t−v εv,

where [·] denotes integer part, by a standard functional central
limit theorem for martingales (see e.g. Brown, 1971), Rm(v) ⇒
Ŵ (v), where Ŵ (v) is a Brownian motion with covariance matrix
given by A. This result is straightforwardly obtained following the
steps of Lobato (1999), Christensen and Nielsen (2006) and Nielsen
and Frederiksen (2008), noting that some cancellations take place
due to (48). Thus, we conclude

(ΛW(n))
−1Tem (δ)→d N(0, A).

Finally, the proof of (41) is completed on showing

(ΛW(n))
−1Tbm (δ) T ′(ΛW(n))

−1
→p A. (65)

Weomitmost details because the proof is similar to that for Tem(δ).
First, it is possible to show that Tbm(δ)T ′ can be approximated by

2
m∑
j=1

Re
{
F(λj) ◦ Iw̃(δ)(−λj)

}
,

where w̃t(δ) is the covariance stationary version of wt(δ), by
following similar steps to those in the proof of (58). Then (65)
follows straightforwardly, noting again the cancellations due to
(48).
Next, we show (42), which follows on showing

(ΛL(n))
−1T (̂em(δ)− em(δ)) = op(1), (66)

(ΛL(n))
−1T

(̂
bm(δ)− bm(δ)

)
T ′
(
ΛL(n)

)−1
= op(1), (67)

where L = S under (i) and L = W under (ii).We just prove (66), the
proof for (67) being significantly simpler. Taking again an arbitrary
element, this result holds if
m∑
j=0

Re
{
sj
(̂
pa(λj)− pa(λj)

)
Iuwk(δl)(λj)

}
= op

(
nδk−δlm1/2−min{1/2,δk−δl}

)
. (68)

Noting that

p̂a(λ)− pa(λ) = i′af (λ)
−1 [f (λ)− f̂ (λ)] f̂ (λ)−1,

the two possible terms for which sj = 1 are Op(nδk−δl−~) =
op(nδk−δlm1/2−min{1/2,δk−δl}) by (22), because by Assumption 3∑n
t=1 ut = Op(n1/2), and by results in Robinson and Marinucci

(2001) and previous arguments,
∑n
t=1wkt(δl) = Op(n

δk−δl+1/2). By
summation by parts, the remaining terms in (68) equal

2Re

{
(̂pa(λm∗)− pa(λm∗))

m∗∑
j=1

Iuwk(δl)(λj)−
m∗−1∑
j=1

(̂pa(λj+1)

− pa(λj+1)− (̂pa(λj)− pa(λj)))
j∑
h=1

Iuwk(δl)(λh)

}
, (69)
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where m∗ = m − 1 if m = n/2 or m∗ = m, otherwise. Using
techniques in Robinson and Marinucci (2003) it is not difficult to
show that
j∑
h=1

Iuwk(δl)(λh) = Op
(
nδk−δlm1−(δk−δl)1(δk − δl < 1)

+ nδk−δl1(δk − δl ≥ 1)
)
, (70)

uniformly in j ∈ {1, . . . ,m}. Thus, by Assumption 5, the first term
of (69) is

Op
(
nδk−δl−~m1−(δk−δl)1(δk − δl < 1)+ nδk−δl−~1(δk − δl ≥ 1)

)
,

which is op(nδk−δlm1/2−min{1/2,δk−δl}) noting (22). Similarly, by (70)
and Assumptions 3 and 5, the second term of (69) is

Op
((
nδk−δl−1−~ + nδk−δl−φ

)
m2−(δk−δl)

)
, if δk − δl < 1,

Op
((
nδk−δl−1−~ + nδk−δl−φ

)
m
)
, if δk − δl ≥ 1,

which is op(nδk−δlm1/2−min{1/2,δk−δl}) by (23), to conclude the proof
of (66).
Finally, noting that ν̂m(̂δ)− ν = −̂b−1m (̂δ)̂em(̂δ), where

êm(̂δ) =
m∑
j=0

sjRe
{
wz (̂δ)(−λj) ◦ P̂(λj)wû(λj)

}
,

where zt (̂δ) =
(
11,rs ⊗ z

′
−rs,t (̂δrs), 11,rs−1−rs ⊗ z

′
−rs−1,t (̂δrs−1), . . . ,

11,r1−r2 ⊗ z
′
−r1,t (̂δr1)

)′
, P̂(λ) is as P(λ), replacing f by f̂ , and ût =

∆(̂δ)∆−1(δ)u#t . Then, (43) follows on establishing

(ΛL(n))
−1T (em(̂δ)− em(δ)) = op(1), (71)

(ΛL(n))
−1T (̂em(̂δ)− em(̂δ)− êm(δ)+ em(δ)) = op(1), (72)

(ΛL(n))
−1T (bm(̂δ)− bm(δ))T ′(ΛL(n))

−1
= op(1), (73)

(ΛL(n))
−1T (̂bm(̂δ)− bm(̂δ)− b̂m(δ)

+ bm(δ))T ′(ΛL(n))
−1
= op(1), (74)

where em(̂δ) is like êm(̂δ) but with f (λ) replacing f̂ (λ). We just
prove (71), (72), the proofs for (73), (74) being similar but simpler.
The left side of an arbitrary element of (71) is the real part of

m∑
j=0

sjpa(λj)
[
wwk (̂δl)(−λj)− wwk(δl)(−λj)

]
×[wû(λj)− wu(λj)] +

m∑
j=0

sjpa(λj)wwk(δl)(−λj)

×
[
wû(λj)− wu(λj)

]
+

m∑
j=0

sjpa(λj)

×
[
wwk (̂δl)(−λj)− wwk(δl)(−λj)

]
wu(λj). (75)

We just consider the third term of (75), as, following similar
techniques to those of RH, one could easily show that the same
order of magnitude obtained applies also to the whole of (75). By
Taylor’s theorem, the third term of (75) is the real part of

R−1∑
r=1

(δl − δ̂l)
r

r!

m∑
j=0

sjpa(λj)w
(r)
wk(δl)

(−λj)wu(λj)

+
(δl − δ̂l)

R

R!

m∑
j=0

sjpa(λj)w
(R)
wk(δl)

(−λj)wu(λj), (76)
where for a scalar b, w(r)wk(b)(λ) = (2πn)
−1/2∑n

t=2
∑t−1
s=1 a

(r)
s (b)ut−s

eitλ, a(r)s (b) = dras(b)/dbr , and
∣∣δl − δl∣∣ ≤ ∣∣̂δl − δl∣∣. By a straight-

forward extension of results in Robinson and Marinucci (2001,
2003)
m∑
j=0

sjpa(λj)w
(r)
wk(δl)

(−λj)wu(λj)

=

{
Op
(
nδk−δl(logm)rm1−(δk−δl)

)
if δk − δl < 1

Op(nδk−δl(logm)r) if δk − δl ≥ 1,

the only differences being that the weights a(r)s (δk − δl) that are
involved (see Lemma C.1 of RH), are not covered by the weights
of Robinson and Marinucci (2001) (but it can be easily shown
that they just contribute the (logm)r factors), and the smooth
weighting factor sjpa(λj), which, as mentioned before, can be
handled by simple modification of the proofs of Robinson and
Marinucci (2001, 2003). Next, the summation in the second term
of (76) is bounded by

K
m∑
j=0

∣∣∣w(R)
wk(δl)

(−λj)

∣∣∣ ∥∥wu(λj)∥∥
≤ Kn2

m∑
j=1

∣∣∣a(R)j (δk − δl)∣∣∣ = Op(nδk−δl+ε+2),
for any ε > 0 in view of Lemma C.5 of RH. Thus, by Assumption 4,
choosing R > (κ + 2)/κ , the third term of (75) is

Op(nδk−δl−κ logm(m1−(δk−δl)1(δk − δl < 1)+ 1(δk − δl ≥ 1)))

= op(nδk−δlm1/2−min{1/2,δk−δl}),

in view of (19).
Next, noting that the left side of an arbitrary element of (72) is

the real part of
m∑
j=0

sj
(̂
pa(λj)− pa(λj)

)
wwk (̂δl)(−λj)

[
wû(λj)− wu(λj)

]
+

m∑
j=0

sj
(̂
pa(λj)− pa(λj)

)
×
[
wwk (̂δl)(−λj)− wwk(δl)(−λj)

]
wu(λj), (77)

by summation by parts, similar analysis to that of (75) and a
straightforward extension of (70), it can be easily shown that by
Assumptions 4 and 5, (77) is

Op(nδk−δl−κ logm(n−~ + n−φm)(m1−(δk−δl)1(δk − δl < 1)
+ 1(δk − δl ≥ 1))),

which is op(nδk−δlm1/2−min{1/2,δk−δl}) by (19), (22), (23), to conclude
the proof of (43).
Finally we show (iii) which, from previous results, will be

established on justifying (27) for νm(δ). Setting S = (S ′S, S
′

W )
′, note

that the first qS components of Swt(δ) are purely nonstationary,
whereas the last qW are asymptotically stationary. Also, noting that
(S ′)−1 = S, it is evident that

S(T ′)−1(νm(δ)− ν) = −(STbm(δ)T ′S ′)−1STem(δ). (78)

In view of the proofs of (i), (ii), it can be shown that the proper
normalization for the left of (78) is given by ΛM(n) = (ΛS(n)S

′

S,

ΛW(n)S
′

W )
′S ′, noting that (ΛM(n))

−1
= ((ΛS(n))

−1S ′S, (Λ
W
(n))
−1S ′W )

′S ′.
Thus,

ΛM(n)S(T
′)−1(νm(δ)− ν) = −((Λ

M
(n))
−1STbm(δ)T ′S ′(ΛM(n))

−1)−1

× (ΛM(n))
−1STem(δ),
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(
SS(ΛS(n))

−1Tbm(δ)T ′(ΛS(n))
−1S ′S SS(ΛS(n))

−1Tbm(δ)T ′(ΛW(n))
−1S ′W

SW (ΛW(n))
−1Tbm(δ)T ′(ΛS(n))

−1S ′S SW (ΛW(n))
−1Tbm(δ)T ′(ΛW(n))

−1S ′W

)−1 (
SS(ΛS(n))

−1Tem (δ)

SW (ΛW(n))
−1Tem (δ)

)
.

Box I.
so that (ΛS(n)S
′

S,Λ
W
(n)S
′

W )
′(T ′)−1(νm(δ) − ν) equals the expression

in Box I.
Next, setting c1(v) = Dc1(v) and c(v) = (c ′1(v)S

′

S, c
′

2(v), R
′
m

(v)S ′W )
′, as in the proofs of (i), (ii), by Marinucci and Robinson

(2000) and Brown (1971)

c(v)⇒
(
W̃ ′ (v; δ)D′S ′S,W

′
(v), Ŵ ′(v)S ′W

)′
, (79)

the Gaussian processes on the right of (79) are mutually indepen-
dent because SSc1(w), c2(w), SWRm(w), aremutually uncorrelated
processes. Then (27) holds by Theorem 2.2 of Kurtz and Protter
(1991), noting that by results in Robinson and Marinucci (2001)

SS(ΛS(n))
−1Tbm (δ) T ′(ΛW(n))

−1S ′W = op(1). �

Proof of Theorem 2. Theorem 2 is a direct consequence of obtain-
ing for ν̂◦m(δ) and ν̂

◦
m(̂δ) results identical to those derived for ν̂m(δ)

and ν̂m(̂δ). Because (42), (43) imply that the result for ν◦m(δ) applies
also to ν̂◦m(δ) and ν̂

◦
m(̂δ), we only give the proof for the infeasible es-

timate ν◦m(δ) = b
◦
m(δ)

−1a◦m(δ), where b
◦
m(δ) and a

◦
m(δ) are defined

like b̂◦m(δ) and â
◦
m(δ) respectively, with f replacing f̂ . Clearly

ν◦m(δ)− ν = −b
◦

m (δ)
−1 e◦m(δ),

e◦m(δ) = C
′

m∑
j=0

Re
{
sjwzd(−λj)̂f

−1(0)wu(λj)
}
.

Based on the proof of Theorem1 the required result holds on show-
ing

(ΛS(n))
−1T (e◦m(δ)− em(δ)) = op(1), under (i), (80)

(ΛW(n))
−1T (e◦m(δ)− em(δ)) = op(1), under (ii), (81)

(ΛS(n))
−1T (b◦m(δ)− bm(δ))T

′(ΛS(n))
−1
= op(1), under (i), (82)

(ΛW(n))
−1T (b◦m(δ)− bm(δ))T

′(ΛW(n))
−1
= op(1), under (ii), (83)

SS(ΛS(n))
−1T (b◦m(δ)− bm(δ))T

′(ΛW(n))
−1S ′W = op(1),

under (iii). (84)

First, in order to prove (80), we show that

ΛS(n)−1E(Te◦m(δ)) = o(1),

by proving this for an arbitrary element of Te◦m(δ), namely
∑m
j=0

Re{sjpa(0)Iuwk(δl)(λj)}. If δk−δl > 1 andm = [n/2], it can be shown
(see e.g. Robinson and Marinucci, 2001) that E(

∑n
t=1wkt(δl)ut) =

o(nδk−δl). Form < [n/2],
m∑
j=0

Re
{
sjIuwk(δl)(λj)

}
=

n∑
j=1

Iuwk(δl)(λj)+ op(n
δk−δl),

by Propositions 4.1, 4.2 of Robinson andMarinucci (2003); we then
conclude as in the casem = [n/2]. For δk− δl = 1, noting (26), the
result follows by (4.21) in Robinson andMarinucci (2001) and (26).
For δk − δl < 1, the expectation can be written as the real part of

1
2πn

m∑
j=0

sjpa(0)
∫ π

−π

Dn(λj − µ)

×

n∑
t=1

e−i(n−t)λjDt(µ− λj)(f (µ)− f (λj))an−t ikdµ (85)
+
1
2πn

m∑
j=0

sjpa(0)
∫ π

−π

Dn(λj − µ)

×

n∑
t=1

e−i(n−t)λjDt(µ− λj)(f (λj)− f (0))an−t ikdµ. (86)

First, the proof of (45) readily implies that (85) is o(nδk−δl). Next,
(86) is equal to

n−1
m∑
j=1

pa(0)(f (λj)− f (0))
n−1∑
t=0

at ik(n− t)e−itλj . (87)

By summation by parts, (87) has modulus∣∣∣∣∣−n−1 m∑
j=1

pa(0)(f (λj)− f (0))

×

n−2∑
t=0

[(at+1 − at)(n− t)− at+1]ik(Dt(−λj)+ 1)

∣∣∣∣∣
≤ Km

n∑
t=1

tδk−δl−2 + Kn−1m
n∑
t=1

tδk−δl−1 = O(m) = o(nδk−δl),

by (26) and (47).
Next, as in the proof of (i) of Theorem 1 it is not difficult to show

that
m∑
j=0

Re
{
sjpa(0)

[
Iuwk(δl)(λj)− EIuwk(δl)(λj)

]}
=
pa(0)
2π

n∑
t=1

wk,t−1(δl)A (1) εt + op(nδk−δl),

so we conclude (80).
Next, working again with an arbitrary element, (81) holds on

showing

m∑
j=0

Re
{
sj
(
pa(λj)− pa(0)

)
Iuwk(δl)(λj)

}
= op

(
nδk−δlm1/2−(δk−δl)

)
. (88)

By the bounds for periodogram expectations given in Robinson
(1995a, 2005) and Assumption 3, the expectation of the modulus
of the left side of (88) is bounded by

K

{
m∑
j=1

∥∥pa(λj)− pa(0)∥∥ E ∥∥Iu(λj)∥∥
×

m∑
v=1

‖pa(λv)− pa(0)‖ EIwk(δl)(λv)

} 1
2

≤ K

{
n2(δk−δl)−2−2η

m∑
j=1

j1+η
m∑
v=1

v1+η−2(δk−δl)

} 1
2

≤ Knδk−δl−1−ηm2+η−(δk−δl),

so that (88) holds asm3/2+η/n1+η → 0 as n→∞, by (25).
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Next, (82), (84) hold by similar arguments to those for (80), (81),
and finally (83) holds if
m∑
j=0

Re
{
sj(f ab(λj)− f ab(0))Iwk(δl)wi(δv)(λj)

}
= op

(
nδk+δi−δl−δvm1−(δk+δi−δl−δv)

)
, (89)

k > l, i > v, where if a, b ∈ {rj+1 + 1, . . . , rj}, necessarily k, i ∈{
rj + 1, . . . , r0

}
. By similar arguments to those in the proof of (88),

the expectation of themodulus of the left side of (89) is bounded by

K
m∑
j=1

λ
1+η
j E

∣∣Iwk(δl)wi(δv)(λj)∣∣
≤ Knδk+δi−δl−δv−1m2+η−(δk+δi−δl−δv),

so that (89) holds as m1+η/n1+η → 0 as n→∞, again by (25), to
conclude the proof. �

References

Andrews, D.W.K., Sun, Y., 2004. Adaptive local polynomial Whittle estimation of
long-range dependence. Econometrica 72, 569–614.

Bandi, F., Perron, B., 2004. Long memory and the relation between implied and
realized volatility. Preprint.

Berger, R.L., 1982. Multiparameter hypothesis testing and acceptance sampling.
Technometrics 24, 295–300.

Brown, B.M., 1971. Martingale central limit theorems. Annals of Mathematical
Statistics 42, 59–66.

Chen, W., Hurvich, C., 2003. Semiparametric estimation of multivariate fractional
cointegration. Journal of the American Statistical Association 98, 629–642.

Chen, W., Hurvich, C., 2006. Semiparametric estimation of fractional cointegrating
subspaces. Annals of Statistics 27, 2939–2979.

Cheung, Y.-W., Lai, K., 1993. A fractional cointegration analysis of purchasing power
parity. Journal of Business and Economics Statistics 11, 93–101.

Christensen, B.J., Nielsen, N.O., 2006. Asymptotic normality of narrowed band
least squares in the stationary fractional cointegration model and volatility
forecasting. Journal of Econometrics 133, 343–371.

Corbae, D., Ouliaris, S., 1988. Cointegration and tests of purchasing power parity.
Review of Economics and Statistics 70, 508–511.

Dolado, J., Marmol, F., 1996. Efficient estimation of cointegrating relationships
among higher order and fractionally integrated processes. Banco de España-
Servicio de Estudios, Madrid. Preprint.

Engle, R.F., Granger, C.W.J., 1987. Cointegration and error correction model.
Representation, estimation and testing. Econometrica 55, 251–276.

Flores, R., Szafarz, A., 1996. An enlarged definition of cointegration. Economics
Letters 50, 193–195.

Gil-Alana, L.A., Hualde, J., 2009. Fractional integration and cointegration: an
overview and an empirical application. In: Patterson, K., Mills, T.C. (Eds.),
Palgrave Handbook of Econometrics, vol. II. MacMillan, Palgrave, pp. 434–469.

Hannan, E.J., 1970. Multiple Time Series. Wiley, New York.
Hualde, J., 2008. Consistent estimation of cointegrating subspaces. Universidad
Pública de Navarra. Preprint.

Hualde, J., Robinson, P.M., 2006. Semiparametric estimation of fractional cointegra-
tion. STICERD—Econometrics Paper Series No. EM/2006/502.

Hualde, J., Robinson, P.M., 2007. Root-n-consistent estimation of weak fractional
cointegration. Journal of Econometrics 140, 450–484.

Hurvich, C.M., Brodsky, J., 2001. Broadband semiparametric estimation of the
memory parameter of a long-memory time series using fractional exponential
models. Journal of Time Series Analysis 22, 221–249.

Jacobson, T., Vredin, A.,Warne, A., 1998. Are realwages and unemployment related?
Economica 65, 69–96.

Jeganathan, P., 1999. On asymptotic inference in cointegrated time series with
fractionally integrated errors. Econometric Theory 15, 583–621.

Johansen, S., 1991. Estimation and hypothesis testing of cointegrating vectors in
Gaussian vector autoregressive models. Econometrica 59, 1551–1580.

Johansen, S., 1996. Likelihood Based Inference in Cointegrated Vector Autoregres-
sive Models. Oxford University Press, Oxford.

Johansen, S., 2008. A representation theory for a class of vector autoregressivemoels
for fractional processes. Econometric Theory 24, 651–676.
Johansen, S., Juselius, K., 1992. Testing structural hypotheses in a multivariate
cointegration analysis of the PPP and the UIP for UK. Journal of Econometrics
53, 211–244.

Johansen, S., Juselius, K., 1994. Identification of the long-run and the short-run
structure. An application to the ISLM model. Journal of Econometrics 63, 7–36.

Kim, Y., 1990. Purchasing power parity in the long run. A cointegration approach.
Journal of Money, Credit and Banking 22, 491–503.

Kim, C.S., Phillips, P.C.B., 2000. Fully modified estimation of fractional cointegration
models. Yale University, New Haven. Preprint.

Kurtz, T.G., Protter, P., 1991. Weak limit theorems for stochastic integrals and
stochastic differential equations. Annals of Probability 19, 1035–1070.

Lasak, K., 2005. Likelihood based testing for fractional cointegration. Universitat
Autonoma de Barcelona. Preprint.

Lobato, I.N., 1999. A semiparametric two-step estimator in a multivariate long
memory model. Journal of Econometrics 90, 129–153.

MacDonald, R., Marsh, I.W., 1997. On fundamentals and exchange rates: a Casselian
perspective. The Review of Economics and Statistics 79, 655–664.

Marinucci, D., Robinson, P.M., 2000. Weak convergence of multivariate fractional
processes. Stochastic Processes and their Applications 86, 103–120.

Marinucci, D., Robinson, P.M., 2001. Semiparametric fractional cointegration
analysis. Journal of Econometrics 105, 225–247.

Moulines, E., Soulier, P., 1999. Broadband log-periodogram regression of time series
with long-range dependence. Annals of Statistics 27, 1415–1439.

Nielsen, M.O., Frederiksen, P., 2008. Fully modified narrow-band least squares
estimation of stationary fractional cointegration. Preprint.

Nielsen,M.O., Shimotsu, K., 2007. Determining the cointegrating rank in nonstation-
ary fractional systems by the exact localWhittle approach. Journal of Economet-
rics 141, 574–596.

Parzen, E., 1957. On consistent estimates of the spectrum of a stationary time series.
Annals of Mathematical Statistics 28, 329–348.

Phillips, P.C.B., 1991a. Spectral regression for cointegrated time series. In: Bar-
nett, W.A., Powell, J., Tauchen, G. (Eds.), Nonparametric and Semiparamet-
ric Methods in Econometrics and Statistics. Cambridge University Press, Cam-
bridge.

Phillips, P.C.B., 1991b. Optimal inference in cointegrated systems. Econometrica 59,
283–306.

Phillips, P.C.B., Hansen, B.E., 1990. Statistical inference in instrumental variables
regression with I(1) processes. Review of Economic Studies 57, 99–125.

Robinson, P.M., 1994a. Semiparametric analysis of longmemory time series. Annals
of Statistics 22, 515–539.

Robinson, P.M., 1994b. Time series with strong dependence. In: Sims, C.A. (Ed.),
Advances in Econometrics. Sixth World Congress. Cambridge University Press,
Cambridge, pp. 47–95.

Robinson, P.M., 1995a. Log-periodogram regression of time series with long range
dependence. Annals of Statistics 23, 1048–1072.

Robinson, P.M., 1995b. Gaussian semiparametric estimation of long range
dependence. Annals of Statistics 23, 1630–1661.

Robinson, P.M., 2005. The distance between rival nonstationary fractional
processes. Journal of Econometrics 128, 283–300.

Robinson, P.M., 2008. Diagnostic testing for cointegration. Journal of Econometrics
143, 206–225.

Robinson, P.M., Gerolimetto, M., 2006. Instrumental variables estimation of
stationary and non-stationary cointegrating regressions. Econometrics Journal
9, 291–306.

Robinson, P.M., Henry,M., 2003. Higher-order kernel semiparametricM-estimation
of long memory. Journal of Econometrics 114, 1–27.

Robinson, P.M., Hualde, J., 2003. Cointegration in fractional systems with unknown
integration orders. Econometrica 71, 1727–1766.

Robinson, P.M., Iacone, F., 2005. Cointegration in fractional systems with
deterministic trends. Journal of Econometrics 129, 263–298.

Robinson, P.M., Marinucci, D., 2001. Narrow-band analysis of nonstationary
processes. Annals of Statistics 29, 947–986.

Robinson, P.M., Marinucci, D., 2003. Semiparametric frequency-domain analysis
of fractional cointegration. In: Robinson, P.M. (Ed.), Time Series with Long
Memory. Oxford University Press, Oxford, pp. 334–373.

Robinson, P.M., Yajima, Y., 2002. Determination of cointegrating rank in fractional
systems. Journal of Econometrics 106, 217–241.

Shimotsu, K., Phillips, P.C.B., 2005. Exact local Whittle estimation of fractional
integration. Annals of Statistics 33, 1890–1933.

Velasco, C., 1999a. Non-stationary log-periodogram regression. Journal of Econo-
metrics 91, 325–371.

Velasco, C., 1999b. Gaussian semiparametric estimation of non-stationary time
series. Journal of Time Series Analysis 20, 87–127.

Zygmund, A., 1977. Trigonometric Series. Cambridge University Press, Cambridge.


	Semiparametric inference in multivariate fractionally cointegrated systems
	Introduction
	Estimation of cointegrating parameters and test statistics
	Main results
	Finite sample evidence
	Empirical example
	Final comments
	Acknowledgements
	Appendix
	References


