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Abstract

This paper develops methods of investigating the existence and extent of cointe-
gration in fractionally integrated systems. We focus on stationary series, with some
discussion of extension to nonstationarity. The setting is semiparametric, so that
modelling is e0ectively con1ned to a neighbourhood of frequency zero. We 1rst dis-
cuss the de1nition of fractional cointegration. The initial step of cointegration analysis
entails partitioning the vector series into subsets with identical di0erencing parame-
ters, by means of a sequence of hypothesis tests. We then estimate cointegrating rank
by analysing each subset individually. Two approaches are considered here, both of
which are based on the eigenvalues of an estimate of the normalized spectral density
matrix at frequency zero. An empirical application to a trivariate series of oil prices
is included. ? 2002 Elsevier Science S.A. All rights reserved.

JEL classi+cation: C22

Keywords: Fractional cointegration; Long memory

1. Introduction

Cointegration analysis has principally been developed theoretically, and
applied empirically, in the “I(1)=I(0)” context, in which components of a
multivariate empirical series displaying evidence of unit root nonstationarity
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(I(1))) are examined for the existence of one or more stationary, short mem-
ory (I(0)) linear relations. We call a scalar time series ut; t=0;±1;±2; : : : ; I(0)
if it is covariance stationary and has spectral density that is 1nite and positive
at zero frequency; for such a ut series we call the scalar series vt =(u1+ · · ·+
ut)1(t ¿ 0); t=0;±1;±2; : : : ; I(1); where 1(:) is the indicator function. Then
a p×1 vector variate Xt with I(1) elements has been said to be cointegrated
if there exists a linear combination �′Xt , the prime denoting transposition, that
is I(0). If there are r; 16 r6p−1, such relations, with linearly independent
coeEcients, we can express Xt in terms of unobservable components,

Xt =AFt + Vt; t¿ 1; (1)

where Ft is a (p−r)×1 vector of unobservable (not cointegrated) I(1) series,
A is a full rank p× (p− r) matrix, and Vt is a p× 1 vector of unobservable
I(0) series; Ft can be interpreted as a vector of common trends (see e.g.,
Stock and Watson, 1988). The integer r is termed the cointegrating rank and
the �′Xt are termed cointegrating errors. This basic setup has been extended
in various directions, for example to incorporate deterministic trends, but the
basic notion of observables with an I(1) component, and of I(0) cointegrating
errors, is standard. Many tools of statistical inference have been developed to
investigate the existence of such cointegration, and widely applied empirically
(see e.g. Banerjee et al., 1993; Engle and Granger, 1991; Hatanaka, 1996;
Johansen, 1996), for example in connection with consumption and income
data, term structure of interest rates, and purchasing power parity between
exchange rates.
The possibility of a long-run stable relationship existing between nonsta-

tionary series Xt exists irrespective of whether or not the series are I(1),
however. Indeed, one can also envisage the possibility of cointegration with
�′Xt stationary but not necessarily I(0), while cointegration can also be de-
1ned for stationary Xt . There is considerable interest in identifying structure
in multivariate series, and thus a strong case for a Iexible approach. This is
permitted by the class of I(d) series, with real-valued d. For d¡ 1=2, we
say vt is I(d) if ut =(1− L)dvt is I(0), where L is the lag operator and

(1− L)d =
∞∑
j=0

�(j − d)
�(−d)�(j + 1)

Lj; (2)

where �(a)=
∫∞
0 xa−1e−x dx for a¿ 0, while for a= − n; n=0; 1; : : : ; �(a)

has simple poles with residues (−1)n=n, and for other a¡ 0; �(a) is obtainable
by the recursion �(a)=�(a + 1)=a. Then vt is covariance stationary. For
d¿ 1=2, we de1ne a nonstationary I(d) series vt =(1 − L)−d{ut1(t ¿ 0)}.
Clearly, this I(d) class nests the I(0) and I(1) series. The parameter d, called
the fractional di:erencing parameter, can be said to describe the memory
of vt . In fact, while the early paper of Engle and Granger (1987) focussed
principally on cointegration in the “I(1)=I(0)” context, it included a de1nition
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which applies to I(d) series (though its I(d) class is much narrower than
ours): Xt can be said to be cointegrated CI(d; b) if Xt has I(d) elements
and, for some b¿ 0, there exists � such that �′Xt is I(d − b). Thus, the
original de1nition takes d= b=1. If either d and=or b is non-integral, we
have fractional cointegration. Representation (1) now applies with Ft a vector
with I(d) components and Vt a vector with I(d− b) components.

Some empirical study of fractional cointegration has already been carried
out, see e.g. Cheung and Lai (1993), Robinson and Marinucci (1998). How-
ever, rigorously justi1ed procedures are currently in short supply, especially
in the most practically interesting situation in which d and=or b are unknown.
Here, the study of fractional cointegration clearly presupposes a good under-
standing of statistical inference on I(d) series, in particular on a theory of
estimation of d. At present this has been much better developed in case of
stationary and invertible series, that is when −1=2¡d¡ 1=2, than for nonsta-
tionary ones, and partly for that reason the present paper focusses principally
on the possibility of cointegration in stationary series. This may be of direct
interest in 1nancial series, for example exchange rates between three or more
currencies, and some empirical series that have been regarded as having unit
roots could be better modelled as I(d) with even d¡ 1=2. Indeed, Robinson
(1994) considered cointegration of stationary I(d) series, showing that � can
be consistently estimated here, and Robinson and Marinucci (1998) devel-
oped his approach. This estimate of � converges at only a nonparametric
rate, requiring only the assumptions on spectral behaviour of Xt entailed in
our I(d) de1nition: de1ning the spectral density matrix f(�) of Xt to satisfy
E{(Xt − �)(Xt+j − �)′}= ∫ �

−� f(�) e
ij� d�, where �=E(Xt), we have

f(�)v G�−2d as � → 0+; (3)

where ‘v’ is taken elementwise, to mean that the ratio of real parts, and of
imaginary parts, of left and right sides tends to 1, and G is a 1nite nonnegative
de1nite matrix each of whose diagonal elements is non-null, G being positive
de1nite if and only if Xt is not cointegrated (cf. Robinson and Marinucci,
1998). Under similar assumptions, with G positive de1nite, a theory of “semi-
parametric” estimation of d has been developed that entails similar conver-
gence rates. More eEcient inferences are possible on the basis of parametric
models for the autocorrelation in Xt , such as fractionally integrated autore-
gressive moving average (FARIMA) models, developed by Adenstedt (1974)
and subsequent authors, but model misspeci1cation (under-specifying either
the autoregressive or moving average orders or over-specifying both) is liable
to lead to inconsistent estimation of fractional di0erencing and other param-
eters. Thus, the present paper focusses on a semiparametric, low-frequency,
approach, as seems natural in the sense that cointegration is essentially a
low-frequency phenomenon, and justi1able insofar as many 1nancial series
are suEciently long that nonparametric rates a0ord acceptable precision.
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A basic question of interest is the existence of cointegration, or, more gen-
erally, the value of the cointegrating rank r. This problem has been quite well
solved in some cases of integer d; b; especially d= b=1 (see e.g. Johansen,
1996; Phillips and Ouliaris, 1988, 1990). Of course, the methods developed
there would not necessarily be expected to detect cointegration when in fact
alternative values of d and=or b prevail (see e.g. Abadir and Taylor, 1999),
and indeed the unit root tests directed against stationary autoregressive (AR)
alternatives of Dickey and Fuller (1981) that are commonly employed do not
have very good power against fractional alternatives (see e.g., Cheung and
Lai, 1993; Diebold and Rudebusch, 1991). While one might envisage some
relatively straightforward extension to a fractional context, involving speci-
fying and testing null values of d and b (ideally using tests directed against
fractional alternatives), it seems preferable to treat d and b as nuisance pa-
rameters throughout. Here, while proposals have been made for analysing
cointegration, little rigorous theoretical justi1cation is available. The present
paper makes some attempt to redress this situation. We do not discuss esti-
mation of � or b in the event of cointegration, and consider estimation of d
only for the purposes of testing for cointegration.
The paper is organized as follows. Cointegration requires at least two

elements of Xt to have the same di0erencing parameters, but in the follow-
ing section we discuss a de1nition of fractional cointegration that allows for
some variation in the di0erencing parameters of elements of Xt when p¿ 3
(in which case a more general representation than (1) would apply). When
all elements have the same di0erencing parameter, as in (3), r=p−rank(G).
When they do not, on reordering and partitioning the elements of Xt into sub-
vectors that have the same di0erencing parameter, we have a representation
of type (3) for the spectral density matrix of each subvector, and the overall
cointegrating rank is p minus the sum of the ranks of the “G” matrices for
each subvector. Thus, the problem essentially reduces to one of determining
the rank of G in (3). First, however, in Section 3, we describe a testing al-
gorithm, of a type previously used in the analysis of variance, for the initial
partitioning of Xt; this problem is complicated by the fact that the theory of
estimating di0erencing parameters varies depending on whether or not there
is cointegration, which is not known at the partitioning stage. We may then
focus on (3) in Section 4, deriving the limit distribution of eigenvalues of
an estimate of G under no-cointegration, and thence proposing two methods
for determining its rank, one an extension of that of Phillips and Ouliaris
(1988) for investigating CI(1; 1) cointegration, the other a model selection
procedure. In Section 5, we apply the procedures to a trivariate series
of prices of crude oil. Section 6 contains 1nal comments, including a brief
discussion of implications of our work for investigating fractional cointe-
gration in a nonstationary context. Proofs of theoretical results are left to
Appendix A.
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2. Fractional integration and cointegration

We 1rst extend our I(d) de1nition to Xt whose p elements are permitted to
have distinct di0erencing parameters. For |da|¡ 1=2; a=1; : : : ; p, and �¿ 0,
de1ne the p× p matrix

!(�)=diag{ei�d1=2�−d1 ; : : : ; ei�dp=2�−dp} (4)

and its complex conjugate N!(�).

De+nition 1. We call Xt an I(d1; : : : ; dp) series if and only if

f(�) ∼ !(�)G N!(�) as � → 0+ (5)

and all diagonal elements of the p× p matrix G are nonzero.

Remark 1. (i) If d1 = · · ·=dp =d, then (5) reduces to (3), and so an
I(d; : : : ; d) series is a vector of I(d) series.
(ii) We can relate the de1nition to fractionally di0erenced time-series

models such as FARIMAs. De1ne the p× p matrix functions

E(L)=diag{(1− L)d1 ; : : : ; (1− L)dp}; C(L)=
∞∑
j=0

CjLj (6)

for p×p matrices Cj such that
∑∞

j=0 tr{CjC ′
j}¡∞, and consider Xt given by

E(L)(Xt − �)=C(L)et ; t=0;±1; : : : ; (7)

where the p×1 vectors et are such that Eet =0; Eese′t =0 for s �= t, and Eete′t
is positive de1nite, and thus taken with no loss of generality to be the identity
matrix. Then

f(�)=E(ei�)−1C(ei�)C(e−i�)′E(e−i�)−1=(2�): (8)

Now for � �=0; mod(�), and |d|¡ 1=2; (1 − ei�)−d =
∑∞

j=0 aj(cos(j�)
+ i sin(j�)), where aj =�(j + d)=(�(d)�(j + 1)). Because the aj decrease
monotonically to zero and aj ∼ jd−1 it follows from Theorem III-I of Yong
(1974) that as � → 0+; (1 − ei�)−d → �−d(sin((1 − d)�=2) + i cos((1 −
d)�=2))= �−deid�=2. Thus, De1nition 1 is satis1ed with

G=C(1)C(1)′=(2�) (9)

if all rows of C(1) are non-null. One choice of C(L) is C(L)=$(L)−1%(L),
where $(L) and %(L) are 1nite-degree polynomial matrices such that all
zeros of det{$(z)} and det{%(z)} lie outside the unit circle. Then Xt has the
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vector FARIMA representation

$(L)E(L)(Xt − �)=%(L)et ; t=0;±1; : : : ; (10)

see e.g. Lobato (1995), Robinson (1995a). Note that Engle and Granger
(1987) de1ned a vector I(d) series by (10) with d1 = · · ·=dp =d. With
unequal da we can alternatively de1ne a vector FARIMA as

E(L)$(L)(Xt − �)=%(L)et ; t=0;±1; : : : (11)

(see Lobato, 1995). To relate this to (5) we order elements of Xt such that

d1 = · · ·=di1 ¿di1+1 = · · ·=di2 ¿ · · ·¿dis−1+1 = · · ·=dis ; (12)

where 16 s6p; 16 i1 ¡i2 ¡ · · ·¡is =p with i0 = 0; Eq. (12) will also be
employed in our discussion of cointegration. Writing 'ab for the (a; b)th ele-
ment of $(1)−1 and  ′

b for the bth row of %(1), de1ne )al =
∑il

b=il−1+1 'ab b

and d̃a =dil(a) , where l(a)= argmaxl:)al �=0 dil . Then if )al(a) �=0; a=1; : : : ; p, it
follows that Xt is an I(d̃1; : : : ; d̃p) series, such that in (5) !(�) is replaced by
diag{ei�d̃1=2�−d̃1 ; : : : ; ei�d̃p=2�−d̃p}andG=++′=2�,where+=()1l(1); : : : ; )pl(p))′.
If Xt is generated by (10) or (11) it cannot be cointegrated under the above

conditions on $(z); %(z), but we now discuss cointegration of I(d1; : : : ; dp)
series Xt . Let �=(�1; �2; : : : ; �p)′ be a p-dimensional vector, and under (12)
write

�=(�(1)′; : : : ; �(s)′)′; (13)

where for l=1; : : : ; s; �(l)= (�il−1+1; : : : ; �il)
′ is a pl = il − il−1-dimensional

vector, conforming to the partition of d. We correspondingly write Xt =
(X (1)′

t ; : : : ; X (s)′
t )′ where X (l)

t =(Xil−1+1; t ; : : : ; Xil; t)
′; for l=1; : : : ; s.

De+nition 2. If there exists a non-null vector �(l) such that �(l)′X (l)
t is

I(du) with du ¡dil , then we say Xt is cointegrated with cointegrating vector
�=(0′; : : : ; 0′; �(l)′; 0′; : : : ; 0′)′. The number of such linearly independent �(l)
is rl, and the cointegrating rank of Xt is r=

∑p
l=1 rl.

Remark 2. (i) An individual cointegrating vector can be uniquely de1ned by
a normalization. The r cointegrating errors �′Xt can have di0erent di0erencing
parameters du. Our de1nition does not cover “polynomial cointegration”, in
which two or more X (l)

t are linked in a cointegrating relation.
(ii) If d1 = · · ·=dp =d, and d and du =d−b are integers, our de1nition is

identical with CI(d; b) given by Engle and Granger (1987), except that their
I(d) de1nition pertains only to FARIMA series (10).
(iii) The de1nition implies pl¿ 2, but this is not entailed if we adapt the

de1nition of Johansen (1996) (whose treatment concerned only I(d) processes
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for integer d, and in an AR context). Johansen’s de1nition would include as
a cointegrating vector any � such that �′Xt is I(du) for du ¡d1.
(iv) Flôres and Szafarz (1996) de1ne Xt to be cointegrated if there exists �

with �(1) �=0 such that �′Xt is I(du) with du ¡d1. If De1nition 2 provides no
cointegrating vector of form �=(�(1)′; 0′; : : : ; 0′)′, then Xt is not cointegrated
by Flôres and Szafarz’s de1nition.
(v) Robinson and Marinucci (1998) de1ne Xt to be cointegrated if there

exists � �=0 such that �′Xt is I(du) with du ¡dp.
To illustrate the di0ering implications of the various de1nitions, consider

the example

Xt =(ut + ,1t ; aut + ,2t ; vt + ,3t ; bvt + ,4t ; ,5t)′; (14)

where a �=0; b �=0; ut is I(d); vt is I(e) with 0¡e¡d, and ,it ; i=1; : : : ; 5,
are I(0). We list the values of r and � provided by each of the four de1ni-
tions:

De1nition 2: r=2; �=(a;−1; 0; 0; 0)′; (0; 0; b;−1; 0)′.
Johansen: r=4; �=(a;−1;0;0;0)′; (0;0;b;−1;0)′; (0;0;0;1;0)′; (0;0;0;0;1)′.
Flôres and Szafarz: r=1; �=(a;−1; 0; 0; 0)′.
Robinson and Marinucci: r=0.

On the other hand if the system consists of only the 1rst two elements of
(14) then we get r=1; �=(a;−1)′ from all four de1nitions.

We introduce

Assumption A. Xt is I(d1; : : : ; dp).

Theorem 1. Let Assumption A hold and impose (12). Then if G(l) is the
pl × pl matrix whose (i; j)th element is the (p1 + · · ·+ pl−1 + i; p1 + · · ·+
pl−1 + j)th element of G (meaning; when l=1; the (i; j)th element); then

rl =pl − rank(G(l)); r=p−
s∑

l=1

rank(G(l)): (15)

Remark 3. Under De1nitions 1 and 2 and (12), r can be estimated by a
two-stage procedure, to be discussed subsequently, namely 1rst partitioning Xt

into subvectors X (l)
t ; l=1; : : : ; s, for 16 s6p, such that (12) holds, and

then estimating rl; l=1; : : : ; s. On the other hand, by applying a modi1ed
version of such a procedure repeatedly, we can also detect polynomial
cointegration and cointegration covered by de1nitions of Flôres and Szafarz
(1996), Robinson and Marinucci (1998), but not covered by De1nition 2. If
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De1nition 2 has identi1ed cointegrating vectors of form (�a(1)′; 0′; : : : ; 0′)′;
16 a6 q, where 16 q¡ i1, we may de1ne the (p− i1 + q)× 1 vector Yt to
have ath element

Yat =

{
�a(1)′X

(1)
t ; 16 a6 q;

Xa+i1−q; t ; q+ 16 a6p− i1 + q:

(Of course, in practice, it is only possible to statistically estimate q and the
�a(1) from 1nitely many data.) We might then investigate Yt for cointegra-
tion in the same way as we did Xt , then rede1ne Yt , and continue in this
fashion until all cointegrating vectors under these other de1nitions have been
determined. However, we do not pursue this approach, but rather the one
referred to at the start of the paragraph.

3. Testing the homogeneity of fractional di�erence parameters

We propose a speci1c-to-general type of procedure for partitioning Xt into
subvectors X (l)

t , l=1; : : : ; s, with common di0erencing parameters, as in (12).
A similar procedure is employed in other problems, for example the analysis
of variance (see Marcus et al., 1976). Hsu (1996) provides a comprehensive
survey of possible solutions. For s=1; : : : ; p, let (/1; /2; : : : ; /s) be a partition
of (1; 2; : : : ; p) and de1ne the hypothesis

H/1/2 ;:::;/s : {da =db for a; b∈ /l and da �=db

for a∈ /l; b∈ /l′ ; l �= l′; l; l′=1; : : : ; s}:
We 1rst take s=1 and test

H/1 : d1 =d2 = · · ·=dp: (16)

If H/1 is not rejected, the procedure terminates. If H/1 is rejected, we test each
hypothesis H/1/2 and terminate if at least one of these is not rejected. Other-
wise, we proceed to test each hypothesis H/1/2/3 , and so on. If we eventually
reach s=p − 1, and then reject each H/1/2 ;:::;/p−1 , we can conclude there is
no cointegration, and so in no case do we test H/1/2 ;:::;/p . Thus, we test at
most

∑p
s=1 S(p; s) − 1 hypotheses, where S(p; s)=1=s!

∑s
i=0(−1)i( si )(s − i)p

is the Stirling number of the second kind (see Liu, 1968, pp. 38–39). On
the other hand if we do not reject more than one of H/1/2 ;:::;/s , for some
s=2; : : : ; p−1, then we can either investigate each of the corresponding sub-
vectors of Xt , or else select the one with the most insigni1cant test statistic.
We now consider the testing of H/1/2 ;:::;/s . Noting that H/1/2 ;:::;/s is a joint

hypothesis, composed of the hypotheses H1l ; l=1; : : : ; s, where

H1l : {da are equal for a∈ /l};
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we test each such H1l individually and reject H/1/2 ;:::;/l if and only if at
least one is rejected . Of course, since we do not need to test H1l with
nl =#{/l}=1, actually H/1/2 ;:::;/s is composed only of H1l such that nl ¿ 1.
A test of H1l can be based on d̂a − d̂b, for a¡b; a; b∈ /l, where d̂a; d̂b are

estimates of da, db. Several consistent semiparametric estimates of di0erenc-
ing parameters have been proposed (see e.g. Geweke and Porter-Hudak, 1983;
KUunsch, 1987; Robinson, 1994, 1995a, b). We shall use the Gaussian semi-
parametric or local Whittle estimate of KUunsch (1987), Robinson (1995b),
because it has similarly nice asymptotic properties to the log periodogram
estimate, but is more eEcient.
Given observations Xt; t=1; 2; : : : ; n, introduce the discrete Fourier trans-

form

wa(�)=
1√
2�n

n∑
t=1

Xateit�; a=1; : : : ; p;

where mean-correction is unnecessary because wa(�) will be computed only
at frequencies �j =2�j=n for j=1; : : : ; m¡n=2. The (cross-)periodogram of
Xat and Xbt is

Iab(�)=wa(�)wb(−�):

For brevity, we write Iab; j for Iab(�j). De1ne

d̂a =arg min
4∈[41 ; 42]

Ra(4); (17)

where 41 and 42 satisfy −1=2¡41 ¡42 ¡ 1=2; and

Ra(4)= log

 1
m

m∑
j=1

j24Iaa; j

− 24
1
m

m∑
j=1

log j:

We introduce the following further assumptions.

Assumption B. De+ning A(L)=
∑∞

j=0 AjLj, where the Aj are p×p matrices,

Xt =�+ A(L)et ; t=0;±1; : : : ;
where; almost surely, E(et |Ft−1)=0;E(ee′t |Ft−1)= Ip, the p × p identity
matrix; and the matrices E(et ⊗ ete′t |Ft−1), E(etet ⊗ ete′t |Ft−1) are +nite;
nonstochastic and constant in t, Ft being the 6-+eld of events generated by
es; s6 t.

Assumption C. Writing Aab(L) for the (a; b)th element of A(L),

d
d�

Aab(ei�)=O(
{|Aaa(ei�)||Abb(ei�)|

}1=2
=�) as � → 0+;

for a; b=1; : : : ; p.
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Assumption D. With C(L)=E(L)A(L) as in (6), (7), we have for 7∈ (0; 2],

C(ei�)=C(1)(1 + O(�7)) as � → 0 + :

Assumption E. For the same 7 as in Assumption D,

1
m

+
m1+27(logm)2

n27
→ 0 as n → ∞:

Assumption F.

da ∈ (41; 42); a=1; : : : ; p:

Assumptions B, C and E are the same as Assumptions A2, A3 and A4 of
Lobato (1999), respectively, and are analogous to Assumptions A3′, A2′ and
A4′ of Robinson (1995b) for scalar Xt . Assumption D implies that the error
in approximating the left-hand side of (3) by the right is O(�7), which is a
similar assumption to A1′ of Robinson (1995b) and A1 of Lobato (1999). The
case 7=2 applies to FARIMA models, for example, and is standard in other
circumstances of smoothed nonparametric estimation, such as probability and
spectral density estimation. The interior-point Assumption F is standard in
central limit theory for implicitly de1ned extremum estimates.
For the sequel we rede1ne d as the p × 1 vector d=(d1; : : : ; dp)′. De1ne

also d̂=(d̂1; : : : ; d̂p)′ and D=diag{G11; : : : ; Gpp} where Gab is the (a; b)th
element of G, and denote Hadamard product by ◦ and transposition combined
with complex conjugation by ∗.

Proposition 1. Under Assumptions A–F;

m1=2(d̂− d) →d N
(
0; 14D

−1(G ◦G)D−1) as n → ∞:

A consistent estimate of G is

Ĝ=
1
m

m∑
j=1

Re{!̂(�j)−1Ij!̂(�j)−1∗}; (18)

where Ij = I(�j); I(�)=w(�)w(�)∗; w(�)= (w1(�); : : : ; wp(�))′; and !̂(�) is
!(�) with d replaced by d̂.

We apply this result to a single test of pairwise equality

Hab:da =db: (19)

Denote by Gab, Ĝab the (a; b)th elements of G; Ĝ, respectively. Noting that
GaaGbb − G2

ab is the determinant of the matrix formed by omitting from G
all rows and columns but the ath and bth, if Xat and Xbt are cointegrated
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G2
ab =GaaGbb, while if they are not, G2

ab ¡GaaGbb. It thus follows from Propo-
sition 1 and the delta method that under Hab the limit distribution of

T̃ ab =m1=2(d̂a − d̂b)={ 1
2 (1− Ĝ

2
ab=(ĜaaĜbb))}1=2

is standard normal if Xat and Xbt are not cointegrated, but is not well de1ned
if they are. Since the presence or absence of cointegration is not known at
the time of testing Hab, we require a test statistic that is informative under
both circumstances. De1ne

T̂ab =
m1=2(d̂a − d̂b)

{ 1
2 (1− Ĝ

2
ab=(ĜaaĜbb))}1=2 + h(n)

;

where h(n)¿ 0. We introduce

Assumption G.

h(n) +
(logm)m1=2+7=n7 + (logm)2m−1=6

h(n)
→ 0 as n → ∞:

Theorem 2. Let Assumptions A–G hold. Then under Hab (19); as n → ∞:

(i) If Xat and Xbt are not cointegrated; T̂ab →d N(0; 1);
(ii) If Xat and Xbt are cointegrated; T̂ab →p 0.

Of course, T̂ab is potentially highly sensitive to choice of h(n), but a signif-
icantly large value of |T̂ab|, relative to the N(0; 1) distribution, can be taken
as evidence against Hab, irrespective of whether or not there is cointegration,
whereas a decision of non-rejection under h(n)=0 (i.e. based on T̃ ab) would
be made with greater con1dence for any positive h(n).
To test H1l we can consider

T̂1l = max
a; b∈/l

|T̂ab|:

The level of the test of each H1l must provide a level-; test of H/1/2 ;:::;/s .
Unlike in classical analysis of variance, the test statistics T̂1l are not mutually
independent. For s′=#{l: nl ¿ 1; l=1; : : : ; s}, a level-(1 − (1 − ;)1=s

′
) test

based on T̂1l for each H1l does thus not necessarily assure a level-; test for
H/1/2 ;:::;/s . However, by the Bonferroni inequality, if a level-;=s′ test for H1l

with nl ¿ 1 is given by T̂1l , which in turn is given by a level-2;=(s′nl(nl−1))
test for Hab based on the nl(nl−1)=2 statistics |T̂ab|, a¡b; a; b∈ /l, it assures
a level-; test for H/1/2 ;:::;/s . Speci1cally, if we reject H/1/2 ;:::;/s when at least one
of |T̂ab|; a¡b; a; b∈ /l; l=1; : : : ; s, exceeds z;=(s′(nl(nl−1)) where zc is the 1−c
quantile of N(0; 1), we achieve, asymptotically, a level-; test for H/1/2 ;:::;/s .



228 P.M. Robinson, Y. Yajima / Journal of Econometrics 106 (2002) 217–241

An alternative approach, which avoids a user-chosen sequence such as h(n),
involves applying in the same way

NTab =(2m)1=2(d̂a − d̂b); NT1l = max
a; b∈/l

| NTab|;

which is more conservative than T̂1l because the asymptotic variance of NTab

is generally less than one.
According to the above pairwise approach, nl(nl − 1)=2 separate tests are

involved in the testing of H1l alone. These ideas can be extended, when
nl¿ 3, to permit a single test of H1l . We can write H1l as Sd=0, where, with
/l =(a1; : : : ; anl), S is the (nl − 1)×p matrix whose jth row has 1 as its ajth
element and −1 as its aj+1th element and the remainder 0; j=1; : : : ; nl − 1.
Denote D̂=diag{Ĝ11; : : : ; Ĝpp}. Then, for example, in view of Proposition 1,
under H1l the statistic

(Sd̂)′
(
S 1

4 D̂
−1
(Ĝ ◦ Ĝ)D̂

−1
S ′ + h(n)2Inl−1

)−1
(Sd̂)

has a limiting =2nl−1 distribution when there is no cointegration, and converges
in probability to zero otherwise.

4. Determination of fractional cointegrating rank

We now suppose that Xt has already been partitioned into subvectors
X (l)

t ; l=1; : : : ; s, satisfying (12), perhaps by applying the procedures of the
previous section. We shall only attempt to estimate the cointegrating ranks of
such X (l)

t individually, in which case for notational convenience we can take
s=1, so that (16) holds, and consider the cointegrating rank of Xt itself. We
denote by d∗ the common value of d1; : : : ; dp. In view of (3) and Theorem 1
we commence by obtaining estimates of G and its eigenvalues, and determine
their limit distribution. Consider (cf. (18))

Ĝ(d∗)=
1
m

m∑
j=1

�2d∗
j Re(Ij): (20)

Note that �Ĝ(0) was used by Phillips and Ouliaris (1988) in testing the
cointegrating rank of an I(1) vector. Let Ga be the ath column of G.

Proposition 2. Let Assumptions A–G hold. Then as n → ∞
m1=2vec(Ĝ(d∗)−G) →d N

(
0; 12 (G ⊗G + (G ⊗G1; : : : ; G ⊗Gp))

)
: (21)

Since d∗ is unknown this result is not of direct use. We might think of
estimating d∗ by versions of the multivariate log periodogram method of
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Robinson (1995a) or multivariate local Whittle method (cf. (17)) of Lobato
(1995, 1999) that gain eEciency by exploiting the fact that the elements
of Xt have the same di0erencing parameters; denoting such an estimate d̂∗,
we might then estimate G by Ĝ(d̂∗). There are two problems with this ap-
proach. First, if d̂∗ uses the same bandwidth m as in (20) then, as found by
Robinson (1995a), Ĝ(d̂∗) does not have the limit distribution of (21), but
rather, though it is normal, it is undesirably asymptotically perfectly corre-
lated with d̂∗ and indeed is only m1=2=log n-consistent. Second, these results
of Robinson (1995a), Lobato (1995, 1999) assume G has full rank and are
thus not valid if Xt is cointegrated. We deal with both diEculties by instead
pooling estimates of d∗ based on the individual elements of Xt (which make
no presumption about cointegration) and computing the latter with a band-
width m1 that increases suEciently faster than m that the e0ect of estimating
d∗ has no e0ect on (21). Denote by d̃a the estimate da given by (17) but
with m replaced by m1 and de1ne

Nd∗=
1
p

p∑
a=1

d̃a:

Assumption H. For any 7¿ 0

m1=2−>n>

m1=2
1

+
m1+27

1 (logm1)2

n27
→ 0; as n → ∞:

Proposition 3. Let Assumptions A–F and H hold. Then as n → ∞;

m1=2vec(Ĝ( Nd∗)−G) →d N
(
0;
1
2
(G ⊗G + (G ⊗G1; : : : ; G ⊗Gp))

)
:

Assumption I. rank(G)=p− r, for 06 r¡p, and the nonzero eigenvalues
of G are distinct.

Let ?a(?̂a) be the ath eigenvalue of G (Ĝ( Nd∗)); a=1; : : : ; p, ordered such
that ?1 ¿?2 ¿ · · ·¿?p−r ¿ 0; with ?p−r+1 = · · ·= ?p =0, for r¿ 1, and ?̂1¿
?̂2 ¿ · · ·¿ ?̂p.

Proposition 4. Let Assumptions A–F; H and I hold. Then the m1=2(?̂a − ?a)
are asymptotically independent for a=1; : : : ; p; converge in distribution to
N(0; ?2a) variates for a=1; : : : ; p− r; and are op(1) for a=p− r + 1; : : : ; p.

Proposition 4 can be interpreted as a variant of Theorem 9:4:4 of Brillinger
(1975) as m and n tend to in1nity simultaneously, and suggests that
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Theorem 1 of Anderson (1963) and Theorem 13:5:1 of Anderson (1984)
are still true in the singular case.
Now de1ne, for j=1; : : : ; p− 1,

�j =
6(1)
p−j+1;p

6(1)
1;p

; �̂j =
6̂(1)
p−j+1;p

6̂(1)
1;p

;

where

6(i)
k; l =

l∑
a=k

?i
a; 6̂(i)

k; l =
l∑

a=k

?̂
i
a:

Also de1ne

sj =

(
6̂(1)2
p−j+1;p6̂

(2)
1;p−j + 6̂(1)2

1;p−j6̂
(2)2
p−j+1;p

)1=2
6̂(1)2
1;p

:

Theorem 3. Let Assumptions A–F; H and I hold; and let r=0. Then for
j=1; : : : ; p− 1

m1=2(�̂j − �j)=sj →d N(0; 1) as n → ∞:

The application of Theorem 3 in determining r by hypothesis testing is
hampered by the assumption that r=0. We propose two rather ad hoc solu-
tions, both of which might be applied for increasing values of r:

(i) This directly follows the proposal of Phillips and Ouliaris (1988) for
the case of CI(1; 1) cointegration. To test that the cointegrating rank is r we
consider the 100(1−;)% upper con1dence interval for �r based on Theorem
3, namely

�̂r + srz;=m1=2: (22)

We 1nd evidence in favour of the hypothesis that the cointegrating rank is r
if this is smaller than some prescribed threshold, such as 0:1=p (as suggested
by Phillips and Ouliaris, 1988).
(ii) We can apply Theorem 3 to test that �r is some suEciently small

positive value @, e.g. @=0:01=p. Then if we reject this hypothesis in favour
of the alternative �r ¿@ we 1nd evidence against a cointegrating rank of r.
The speci1cation of a small null value of �r might seem more attractive than
the speci1cation of a threshold for (22), but one expects that the central limit
theory of Theorem 3 for ?̂a may provide a poor approximation as ?a → 0.
Alternatively, we may consider a model selection procedure which con-

sistently estimates r (cf. Fujikoshi, 1985; Fujikoshi and Veitch, 1979;
Gunderson and Muirhead, 1997). De1ne, for v(n)¿ 0,

L(u)= v(n)(p− u)− 6̂(1)
1;p−u (23)
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and estimate r by

r̂=arg min
u=1;:::;p−1

L(u):

Assumption J.

v(n) +
1

m1=2v(n)
→ 0 as n → ∞:

Theorem 4. Let Assumptions A–F and H–J hold. Then

lim
n→∞P(r̂= r)=1:

If elements of Xt are measured in di0erent units, scale-invariant statistics
might seem preferable, as suggested in the CI(1; 1) case by Phillips and
Ouliaris (1988). For example, we might wish to base the analysis not on
Ĝ( Nd∗) but rather on the correlation matrix P̂( Nd∗)= D̂( Nd∗)−1=2Ĝ( Nd∗)D̂( Nd∗)−1=2,
where D̂( Nd∗) is the diagonal matrix whose ath diagonal element is the same
as that of Ĝ( Nd∗). Unfortunately, the limiting covariance structure of the eigen-
values of P̂( Nd∗) is much more complicated than those of Ĝ( Nd∗); and so testing
procedures of corresponding simplicity to those derived from Theorem 3 are
not available. However, because its probability limit has the same rank as
Ĝ( Nd∗), P̂( Nd∗) can be used in a model choice procedure analogous to that
justi1ed in Theorem 4.

5. Empirical example

We apply the procedure developed in the preceding sections to a trivariate
series of 146 observations on spot closing prices of crude oil, namely West
Texas Intermediate (WTI), Brent, and Dubai (which are said to be key mark-
ers in the US, European and Asian markets, respectively), recorded on the last
trading day of each month from January 1986 through February 1998. (The
price of WTI for October 1991 was not observed due to a pipeline accident
and is replaced by the mean of the September and November 1991 observa-
tions.) We analyse log prices, taking p=3 and X1t = logWTIt; X2t = logBrentt
and X3t = logDubait in the notation of the paper.
Since unit root analysis in an AR setting is standard in econometrics, we

commenced in this fashion, using the model

Xat = c+ 1aXa; t−1 +
Na−1∑
i=1

'ai(Xa; t−i − Xa; t−1−i) + ,at ; a=1; 2; 3:

We applied the augmented Dickey–Fuller test (see e.g. Dickey and Fuller,
1981; Said and Dickey, 1984) because the series (see Fig. 1) appear to have
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Fig. 1. Log prices of crude oil.

Table 1
ADF test

Series t-ratio 5% critical value 1% critical value

WTI −3:489 −2:883 −3:480
Brent −3:019 −2:883 −3:479
Dubai −4:691 −2:882 −3:477

nonzero mean but reveal no distinctive seasonal pattern or trend except for
the upturn around the period of the Gulf War from late 1990 to early 1991.
Choosing the AR order Na to attain the minimum AIC between 0 and 15, we
obtained N1 = 11; N2 = 9 and N3 = 5. Table 1 shows t-ratios for 1a − 1 with
5% and 1% critical values, based on Table 1 of MacKinnon (1991), allowing
for a constant but no trend. We rejected the unit root null hypothesis at 1%
for WTI and Dubai and at 5% for Brent.
The AR orders chosen by AIC are on the large side, particularly for WTI

and Brent, and so stationary long memory is an alternative possibility. Table
2 presents the estimates d̂a; a=1; 2; 3 of (17), using m=20 and 15, along
with standard errors, obtained from the asymptotic variance formula 1=4m
for univariate estimates (cf. Proposition 1). With the exception of WTI with
m=20; all estimates are less than 0:5. We focus on the estimates with m=15;
which are consistent with stationarity.
In Table 3, we report Ĝ (18) with m=13, thereby deducing the test statis-

tics T̃ 12 = 2:626; T̃ 13 = 2:768 and T̃ 23 = 1:273. Thus, H123 : d1 =d2 =d3 is not
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Table 2
Estimates d̂a of da; a=1; 2; 3; with standard errors in parentheses

Series m=20 m=15

WTI 0.5336 (0.112) 0.4714 (0.129)
Brent 0.4538 (0.112) 0.3748 (0.129)
Dubai 0.4367 (0.112) 0.3076 (0.129)

Table 3
Estimates Ĝ of G; m=13

Series WTI Brent Dubai

WTI 0.0037456 0.0046078 0.0055116
Brent 0.0046078 0.0064323 0.0073090
Dubai 0.0055116 0.0073090 0.0090621

Table 4
Estimates Ĝ( Nd∗) of G based on Nd∗ =(d̂1 + d̂2 + d̂3)=3; and eigenvalues of Ĝ( Nd∗); P̂( Nd∗);
m=13; m1 = 15

Series WTI Brent Dubai

WTI 0.0049261 0.0054196 0.0057460
Brent 0.0054196 0.0062486 0.0065317
Dubai 0.0057460 0.0065317 0.0072951

Eigenvalues 1 2 3

G(×10−2) 1.80704 0.02750 0.01244
P 2.93521 0.04298 0.02182

rejected at 1%, and would be more strongly supported by T̂12; T̂13 and T̂23

with h(m)¿ 0, while H23 : d2 =d3 is not rejected at level 5%.
In consequence, we investigate the presence of cointegration on the basis

of both s=1 and 2, where in the latter case Brent and Dubai are supposed
to have a common di0erencing parameter. Table 4 considers the case s=1;
showing Ĝ( Nd∗) and its eigenvalues and those of P̂( Nd∗), while Table 5 con-
siders s=2, showing the 2×2 matrix Ĝ(1)( Nd∗) and its eigenvalues and those
of P̂(1)( Nd∗); Ĝ(1)( Nd∗) estimating G(1) and P̂(1)( Nd∗) thence de1ned analogously
to P̂( Nd∗); in each case m=13; m1 = 15. The largest eigenvalue greatly domi-
nates throughout, so that for any reasonable value of ? the objective function
L(u) will support the conclusion r=2 when s=1, and r=1 when s=2.
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Table 5
Estimates Ĝ(1)( Nd∗) of G(1) (Brent and Dubai only) based on Nd∗ =(d̂1 + d̂2)=2, and eigenvalues
of Ĝ(1)( Nd∗); P̂(1)( Nd∗); m=13; m1 = 15

Series Brent Dubai

Brent 0.0071133 0.0073984
Dubai 0.0073984 0.0082350

Eigenvalues 1 2

G(×10−2) 1.50938 0.02545
P 1.96665 0.03335

Also, with r=2 and ;=0:05; (22) is 0:0338 w 1=30=0:10=p. This is the
threshold suggested by Phillips and Ouliaris (1988) so that the conclusion
concerning r=2 is rather uncertain. Since H23 seemed more strongly sup-
ported than H123 we might thus prefer r=1, for which Table 5 provides
support.

6. Final comments

1. The procedures suggested all involve choice of a bandwidth m (and
also m1 involved in Nd∗): User-chosen bandwidth numbers are inevitable in
smoothed nonparametric estimation, and as usual the results will be sensitive
to the choice made. Some proposals for choosing m in (17) are made by
Henry and Robinson (1996).
2. Perhaps more seriously, the procedures also depend on other user-chosen

numbers, namely h(n); v(n) and the threshold for (22) (or the null hypothesis
on �r). Our introduction of these is an indication of the diEculty of the
problems tackled, but clearly it would be desirable to develop more objective
methods.
3. There is interest in extending the methods to cover nonstationary Xt .

The extension of De1nition 2 here is straightforward. If, on the other hand,
we have suEcient prior knowledge to 1rst-di0erence the raw series to the
stationary=invertible region (−1=2; 1=2); then our results may be applicable,
though this may depend also on the di0erenced cointegrating errors having
di0erencing parameters that lie in this region. If we then go on to estimate �
it is important that the undi0erenced series be used here in order to achieve
a fast rate of convergence (see Robinson and Marinucci,1998). So far as ap-
plicability of our present procedures to raw nonstationary Xt is concerned,
Velasco (1999) showed that in case of scalar series, at least suitably tapered
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versions of estimates (17) can still be m1=2-consistent and asymptotically nor-
mal. Thus, it seems that suitable modi1cations of our procedures may directly
apply to nonstationary Xt; though it remains to provide rigorous justi1cation.
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Appendix A. Proofs

Proof of Theorem 1. From (3) the spectral density matrix f�l(�) of �
′(l)X (l)

t
satis1es

f�l(�)v �−2dl�′(l)G(l)�(l) as � → 0 + :

Hence, �(l) is a cointegrating vector for X (l)
t if and only if �′(l)G(l)�(l)=0:

Then (15) follows immediately.

Proof of Proposition 1. We only brieIy summarize the proof since it follows
like that of Theorem 2 of Robinson (1995b). We write R(i)

a (4)= @iRa(4)=@4i:
With probability approaching 1, as n → ∞, d̂a satis1es

0=R(1)
a (d̂a)=R(1)

a (da) + R(2)
a ( Nd

∗
a)(d̂a − da);

where | Nd∗
a − da|6 |d̂a − da|. Now

m1=2(R(1)
1 (d1); : : : ; R(1)

p (dp))′ →d N(0; 4D−1=2(G ◦G)D−1=2)

and R(2)
a ( Nd

∗
a) →p 4; whence the result follows immediately.

Proof of Theorem 2. The proof of (i) follows quickly from Proposition 1
and h(n) → 0. To prove (ii) it suEces, from Assumption G, to show that
d̂a − d̂b = Op((logm)(m=n)7 + (logm)2m−2=3). Note 1rst that under Hab; with
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da =db =d∗; the mean value theorem gives, with probability approaching 1
as n → ∞,

d̂a − d̂b =

(
R(1)

b (d∗)

R(2)
b (d∗)

− R(1)
a (d∗)

R(2)
a (d∗)

)

−1
2

(
R(3)

a ( Nda)

R(2)
a (d∗)

(d̂a − d∗)2 − R(3)
b ( Ndb)

R(2)
b (d∗)

(d̂b − d∗)2
)

;

where | Nda−d∗|6 |d̂a−d∗|, | Ndb−d∗|6 |d̂b−d∗|. The second term on the right
is Op(m−1), by the same argument as that of Theorem 2 of Robinson (1995b)
and, for all a; R(2)

a (d∗) →p 4; R
(3)
a ( Nd∗) →p −16 and d̂a − d∗=Op(m−1=2). The

1rst term is

R(1)
b (d∗)− R(1)

a (d∗)

R(2)
a (d∗)

+ R(1)
b (d∗)

(
1

R(2)
b (d∗)

− 1

R(2)
a (d∗)

)
:

As found by Robinson (1995b), R(i)
a (d∗) is scale-free, so bearing in mind

also that G2
ab =GaaGbb; we may take

Gaa = |Gab|=Gbb =1: (24)

Also as found by Robinson (1995b), R(i)
a (d∗) is a di0erentiable function of

Y (l)
a =

1
m

m∑
j=1

(log j)lIaa; j�2dj ; l=0; 1; : : : ; i:

As shown by Robinson (1995b) and Lobato (1999, Appendix C), for l¿ 0;
Y (l)
a di0ers from

Z (l)
a =

1
m

m∑
j=1

(log j)lC ′
aJjCa (25)

by O((logm)l(m=n)7 + (logm)l+1m−2=3); l=0; 1; : : : ; i, where C ′
a is the ath

row of C(1) and Jj is de1ned like Ij but with et replacing Xt: Thus, consid-
eration of R(i)

a (d∗)−R(i)
b (d∗) reduces to consideration of Z (l)

a −Z (l)
b ; l=0; : : : ; i.

Now note from (9) that for all a; b; C ′
aCb =2�Gab: Then from (26) it follows

that ||Ca||2 = ||Cb||2 = |C ′
aCb|, with || · || denoting Euclidean norm, to imply,

by the Schwarz inequality, that Ca = ± Cb, so that Z (l)
a − Z (l)

b is identically
zero. Thus, the 1rst term in (25) is Op((logm)(m=n)7+(logm)2m−2=3): Since
R(1)

b (d∗)=Op(m−1=2); the second term in (25) is Op((logm)2(m=n)7m−1=2 +
(logm)2m−7=6); and the proof is completed.
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Proof of Proposition 2. We give only partial details as much of the proof
is similar to that of Theorem 2 of Robinson (1995b) and the Theorem of
Lobato (1999). We have

m1=2{Ĝ(d∗)−G}= 1
m1=2

m∑
j=1

�2d∗
j (Re(Ij)−G)= H+ >;

where

H=m−1=2
m∑

j=1

{�2d∗
j (Re(Ij − AjJjA∗

j )) + (�2dj f(�j)−G)};

>=m−1=2
m∑

j=1

Re(Bj(Jj − Ip=2�)B∗
j )=

m−1=2

2

∑
j

′
Bj(Jj − Ip=2�)B∗

j ;

where
∑′

j =
∑m

j=1 +
∑n−1

j=n−m and we write Aj =A(ei�j); Bj = �d
j Aj; 16 j6m;

Bj = �d
n−jAj; n − m6 j6 n − 1; and use the fact that �2d∗

j f(�j)=BjB∗
j =2�;

16 j6m:
Appendices C and D of Lobato (1999) assure under Assumptions A, C

and D that H=op(1): Now >= >1 + >2; where

>1 =
m−1=2

2

∑
j

′
Bj

(
1

2�n

n∑
t=1

(ete′t − Ip)

)
B∗

j ;

>2 =
m−1=2

2

∑
j

′
Bj

 1
2�n

n∑
t=1

n∑
s=1; s �=t

ete′se
−i(t−s)�j

B∗
j :

Because
∑n

t=1 (ete
′
t − Ip)=Op(n1=2); we have >1 =Op((m=n)1=2)=op(1): By

the Cramer–Wold device it remains to show that for any non-null p2 × 1
vector I,

I′vec(>2) →d N
(
0; 12I

′{G ⊗G + (G ⊗G1; : : : ; G ⊗Gp}I
)
:

Now, writing Hj = NBj ⊗ Bj, vec(>2) is m−1=2=4�n times
n∑

t=1

n∑
s=1; s �=t

∑
j

′
Hjei(s−t)�j(es ⊗ et)

=
n∑

t=1

n∑
s=1; s¡t

(Cst(es ⊗ et) + Cts(et ⊗ es))

=
n∑

t=1

{
n∑

s=1; s¡t

(Cst + CtsP)(es ⊗ Ip)

}
et ;
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where Cst =
∑′

j Hjei(s−t)�j and P is the p2 ×p2 permutation matrix such that
x⊗ y=P(y⊗ x) for all p× 1 vectors x; y: Thus, I′vec(>2)=

∑n
t=1 Zt , where,

with Ut =(m−1=2=4�n)I′(
∑n

s=1; s¡t(Cst +CtsP)(es ⊗ Ip)); Zt =Utet is a martin-
gale di0erence with respect to Ft . Put V 2

n =
∑n

t=1 E{Z2
t |Ft−1}; where F0 is

the trivial 6-1eld {';L} and s2n =
∑n

t=1 E(Zt)2. By the same argument as in
the proof of Theorem 2 of Robinson (1995b), and in Appendix A of Lobato
(1999), as n → ∞V 2

n s
−2
n →p 1 and, for any ,¿ 0; s−2

n
∑n

t=1 E{Z2
t 1(|Zt |¿ ,sn)}

→ 0. Hence by Theorem 2 of Brown (1971),
∑n

t=1 Zt=sn →d N(0; 1). It thus
remains to show that sn → 1

2I
′{G⊗G+(G⊗G1; : : : ; G⊗Gp)}I,which is easily

seen to reduce to showing that

1
mn2

n∑
t=1

n∑
s=1; s¡t

(Cst + CtsP)(C ′
st + P′C ′

ts)

→ 8�2{G ⊗G + (G ⊗G1; : : : ; G ⊗Gp)}:
The left-hand side is

1
2mn2

n∑
t=1

n∑
s=1; s �=t

∑
j

′
Hj(ei(s−t)�j + ei(t−s)�jP)

∑
k

′
(ei(t−s)�k + ei(s−t)�kP)H∗

k

=
1
m

∑
j

′
Hj(H∗

j + PH∗
n−j)−

1
2mn

∑
j

′
Hj(Ip2 + P)

∑
k

′
(Ip2 + P)H∗

k :

The second term is easily seen to be Op(m=n). The 1rst term can be written

1
m

∑
j

′{( NBjB′
j ⊗ BjB∗

j ) + ( NBj ⊗ Bj)(B′
j ⊗ B∗

1j; : : : ; B
′
j ⊗ B∗

pj)};

where B∗
ij is the ith column of B∗

j . Since B(ei�)B(ei�)∗=2� → G as � → 0,
and G is symmetric, the proof is readily completed.

Proof of Proposition 3. From Proposition 2 it suEces to show that Ĝ( Nd∗)−
Ĝ(d∗)=op(m−1=2). From Proposition 1 we have Nd∗−d∗=Op(m

−1=2
1 ): We thus

have, for any ,¿ 0; H¿ 0

P{m1=2||Ĝ( Nd∗)− Ĝ(d∗)||¿,}
6P{m1=2||Ĝ( Nd∗)− Ĝ(d∗)||¿,; | Nd∗ − d∗|6 H}+ o(1)

as n → ∞. By the mean value theorem, for small enough H and | Nd∗ −
d∗|6 H; ||Ĝ( Nd∗)− Ĝ(d∗)|| is bounded by

2log n
m

| Nd∗ − d∗|
m∑

j=1

�2(d∗−H)
j tr{Ij}=Op

 log n
m

| Nd∗ − d∗ |
m∑

j=1

�−2H
j
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due to EIaa(�j)=O(�−2d
j ); a=1; : : : ; p (see Robinson, 1995a, Theorem 2).

The right-handside is Op(m
−1=2
1 (n=m)2H log n)=Op(m

−1=2
1 (n=m)>) for >¿ 2H:

From Assumption H, this is op(m−1=2); to complete the proof.

Proof of Proposition 4. Let Q be a p × p orthogonal matrix such that
QGQ′=4=diag{?1; : : : ; ?p}: Then the eigenvalues of Ĝ( Nd∗) are identical
with those of QĜ( Nd∗)Q′. Put U (n)=m1=2(QĜ( Nd∗)Q′ − 4). From Proposi-
tion 3 it readily follows that

vec{U (n)} →d N(0; 12{4⊗ 4+ (4⊗ 41; : : : ; 4⊗ 4p)});
where 4i is the ith column of 4. The proof can then be completed by the
argument of Theorem 1 of Anderson (1963) and Theorem 13:5:1 of Anderson
(1984), noting that the limit distribution in Proposition 3 is the same as that
of m1=2vec{Wp(2m;G)=(2m)− G} as m → ∞; Wp denoting a Wishart variate,
and, on p. 141 of Anderson (1963), replacing r by p− r + 1; taking qi =1,
qp−r+1 = r; and then putting �i = ?i; i=1; : : : ; p− r; �p−r+1 =0.

Proof of Theorem 3. A straightforward application of Proposition 4 and the
delta method.

Proof of Theorem 4. We have

P(r̂ ¿ r)6
p−1∑

u=r+1

P(L(u)¡L(r))6pP(?̂p−r ¡pv(n)) → 0

as n → ∞ since ?̂p−r →p ?p−r ¿ 0 and v(n) → 0 by Proposition 4 and
Assumption J. On the other hand,

P(r̂ ¡ r)6
r−1∑
u=1

P(L(u)¡L(r))6 rP(m1=2?̂p−r+1 ¿m1=2v(n)) → 0

as n → ∞ since ?̂p−r+1 →p 0 and m1=2v(n) → ∞ by Proposition 4 and
Assumption J. The proof is complete.
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