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ABSTRACT

A stationary and invertible time series with a spectral density f (!) � j!j�� L (!) as

! ! 0 where j�j < 1 and L (!) positive and varies slowly at ! = 0 is said to have long

memory if 0 < � < 1, short memory if � = 0 and negative memory if �1 < � < 0.

Maximum likelihood estimates for Gaussian time series were shown to be consistent and

asymptotically normal by Hannan (1973) in the short memory case and by Dahlhaus (1989)

in the long memory case. The main objective of this work is to generalize these results to

include possibly long, short or negative memory, without a priori knowledge of the memory

of the time series. We adapt the proof technique of Dahlhaus (1989) essentially based on the

asymptotic behaviour of Toeplitz matrices, but many of Dahlhaus�s arguments are extended

and simpli�ed. The applicability of the results for fractional Gaussian noise and fractional

ARMA processes is shown, and the performance of the estimates on simulated fractional

ARMA data is illustrated.
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Chapter 1

INTRODUCTION

1.1 Background

Stationary time series with long range dependence have been considered in many �elds as

diverse as hydrology, astronomy, biology, computer networks, chemistry, agriculture, geo-

physics and economics. The property of long range dependence (or long memory) implies

that the time series is characterized by a slow (hyperbolic) decay of the correlations be-

tween observations that become farther away for each other (An accurate de�nition and a

discussion on this property are given in the Chapter 2 of the thesis).

Many of the classical results that are typical for time series with short range dependence

(or short memory) does not hold anymore under long memory. For instance, the variance

of the sample mean at a time series with long memory converges to zero in a slower rate

than the classical rate of O
�
N�1�. Generally, in the framework of long-range dependence, it

turns out that most point estimates and test statistics have a slower rate of convergence than

in the case of short range dependence. Equivalently, one may also consider the possibility

of negative-memory, in which some of these estimates may converge faster than in the short

memory case.

According to Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and Surgailis (1990),

Sowell (1992), Beran (1994a) and others, many common Gaussian likelihood-based para-

metric methods perform e¢ ciently under long memory with the same �rst order properties

as under short memory. Particularly, Dahlhaus (1989, 2005) proved that under some mild

regularity conditions the exact Gaussian MLE of stationary Gaussian long memory time

series is consistent, asymptotically normally distributed and e¢ cient in the sense of Fisher.

However, due to a troublesome balance between a slow numerical computation in large
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sample sizes on the one hand, and relatively weak performances in small sample sizes on

the other hand (cf. Cheung and Diebold 1994), it seems that a relatively few attention in

the �eld of parametric inference was given to exploration of further theoretical properties

of the Gaussian MLE for time series with long memory. While there are some published

simulations studies that analyze the Gaussian MLE performances in both long and short-

range dependence (see Sowell 1992, Cheung and Diebold 1994, Hauser 1999 and Nielsen and

Frederiksen 2005), to our knowledge, there is no available theoretical result in the literature

that generalizes Dahlhaus�s (1989, 2005) results to hold over these cases, without a priori

knowledge of the dependence range.

In contrast to that, the vast literature of long memory time series is dedicated to ex-

pansion and re�nement of other methods of estimation, and particularly of methods in the

frequency domain, usually endowed with a simpler implementation and a relatively intuitive

theory.

1.2 Objectives and Motivation

The Gaussian MLE, fairly perceived as a fundamental estimation technique, is of major

importance in the theory and practice of estimation. Indeed, Chapter 3 shows that many

of the most popular methods of estimation for long memory are derived as approximations

to the Gaussian MLE.

Moreover, some recent empirical results show that the Gaussian MLE may be more

e¢ cient than other approximation-based parametric methods of estimation for some para-

meter ranges, particularly in medium sample sizes (see Nielsen and Frederiksen 2005). Some

other theoretical work on higher order asymptotics suggests adding correction terms for the

Gaussian MLE that may signi�cantly improve its performance (see Lieberman 2005, Lieber-

man and Phillips 2005). Finally, bearing in mind today�s powerful computing resources, the

computational burden involved in the procedure even for large sample sizes is still relatively

mild. Particularly, Doornik and Ooms (1999) report that their ARFIMA package for Ox

system works fast even for very long time series (see also Doornik and Ooms 2003).

Overall, as mentioned in the last section, it seems that there is a theoretical gap that
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needs to be �lled, concerning the statistical properties of the Gaussian MLE. This thesis

attempts to make a contribution in this respect. We prove in Chapter 4 that Dahlhaus�s

(1989, 2005) conclusions holds if the parameter space is extended to contain short and

negative memory, without a priori knowledge of the memory of the series. Such an expansion

resorts to limit theorems of symmetric Toeplitz and inverse-Toeplitz matrices, motivated by

the key fact that the covariance matrix of a stationary process is a Toeplitz matrix. The

slow decay of the correlations requires careful handling of many of the matrix manipulations

needed for the establishment of the result. Luckily, some work of Fox and Taqqu (1987),

Avram (1988), Dahlhaus (1989, 2005) as well as Lieberman and Phillips (2004) shed light

on some crucial asymptotic properties of symmetric Toeplitz matrices that may be applied

to re�ne Dahlhaus�s (1989, 2005) result.

1.3 Chapters Outline

The rest of the thesis is organized as follows. In Chapter 2 the reader is presented with

background knowledge on the unique characteristics of time series with long memory, and

introduced to some possible ways to model these memory characteristics within a parametric

framework. Chapter 3 surveys some prominent popular methods of estimation of stationary

long memory time series. Chapter 4 extends Dahlhaus�s (1989, 2005) results to include

possibly short-memory or anti-persistent time series. Chapetr 5 presents some simulation

results of the Gaussian MLE of several time series with long memory. Chapter 6 brie�y

concludes and summarizes the achieved results and possible directions for future research

which arise directly out of the thesis.
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Chapter 2

PRELIMINARIES

2.1 Introduction

In the �eld of time series analysis, it is sometimes taken for granted that stationary time

series are weakly correlated in the sense that the e¤ect of the correlations between far

away observations is negligible. Long-range dependence, on the other hand, is sometimes

mistakenly viewed as a property that implies nonstationary, as in the case of random walk.

In this chapter we introduce to the reader some of the last century�s developments in the

theory of time series that led statisticians and econometricians to realize the possibility and

necessity of modeling stationary time series that exhibit behaviour of long memory.

The rest of Chapter 2 is organized as follows. In Section 2.2 we the reader is presented

to some basic de�nitions essentially concerning with the L2 structure of a stationary time

series. In section 2.3 we introduce the notions of long memory and anti-persistent time series

and we provide some references from the literature for evidence of time series that seem to

exhibit long memory behavior. Section 2.4 presents the fractional Gaussian noise process,

following essentially the line of Beran�s (1994b) presentation of the topic, which also deals

with it in the context of long memory time series. Section 2.5 deals with an extension of the

known Box and Jenkins�ARIMA models to fractionally integrated ARMA models, called

the ARFIMA models.

2.2 Stationary Time Series

Consider a real-valued discrete time series X = fXtgt2Z. A common assumption is that

the time series has some particular characteristics of statistical equilibrium, in the following

sense.

De�nition 2.2.1 (Strict Stationarity) A time series is said to be strictly stationary
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if the joint probability distributions of (Xt1 ; Xt2 ; :::; Xtk) and (Xt1+h; Xt2+h; :::; Xtk+h) are

identical for any positive integer k and t1; t2; :::; tk; h 2 Z.

Strict stationarity, however, is quite a strong assumption and in most application only a

weaker form of stationarity is assumed. This weaker form (henceforth stationary) assumes

�nite variances but restricts the time-homogeneous requirement to means, variances and

covariances.

De�nition 2.2.2 (Stationarity) A time series X in L2 (R) is said to be stationary (or

weak stationary, second-order stationary or covariance stationary) if E (Xt) does not depend

on t and Cov (Xs; Xt) is a function of js� tj for all s; t 2 Z.

Example 2.2.1 (Gaussian Time Series) Let X be a time series, all of whose �nite-

dimensional joint distributions are multivariate normal. Because Gaussian distributions

completely determined by its mean and covariances, then if X is stationary, then it is

strictly stationary.

Example 2.2.2 (White noise) In many respects, the simplest kind of time series, X,

is one in which the observations are iid with zero mean and �nite variance �2. From a

second order point of view, i.e., ignoring all properties of the joint distributions of X except

those which can be deduced from the means, covariances and variances, such time series are

identi�ed with the class of all stationary time series having mean zero, and autocovariance

function


 (k) =

8<: �2 if k = 0

0 if k 6= 0
: (2.1)

If X has zero mean and autocovariance function (2.1), then the time series is called a white

noise, denoted by

X �WN
�
0; �2

�
:

Figure 2.1 presents a WN (0; 1) series of length 400. The disorderly ragged path of the

series is a consequence of the fact that each two observations at di¤erent times are uncor-

related.De�ne the covariance matrix of the �rst N observations of a time series X by
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Figure 2.1: Simulated series of WN(0,1).

�N = [Cov (Xs; Xt)]s;t=1;:::;N :

If X is stationary then �N has the form,

�N =

266666666666664


 (0) 
 (1) 
 (2) � � � � � � 
 (N)


 (1) 
 (0) 
 (1)
. . .

...


 (2) 
 (1)
. . . . . . . . .

...
...

. . . . . . . . . 
 (1) 
 (2)
...

. . . 
 (1) 
 (0) 
 (1)


 (N) � � � � � � 
 (2) 
 (1) 
 (0)

377777777777775
;

where


 (k) = Cov (Xs; Xt) for all s; t 2 f1; 2; :::; Ng such that js� tj = k: (2.2)

De�nition 2.2.3 (Toeplitz Matrix) A Toeplitz matrix � is a matrix in which each de-

scending diagonal from left to right is constant. If a Toeplitz matrix � is symmetric then we

call � a symmetric Toeplitz matrix.
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A covariance matrix of a stationary time series is therefore a symmetric Toeplitz matrix.

We will recall this fact again in Chapter 4 when we derive the asymptotic properties for the

Likelihood function of a stationary time series.

2.3 The Memory of a Time Series

There are several possible de�nitions of the property of "long memory" and they are not

necessarily identical (cf. Guégan 2005). In order to cover all types of memory, it is probably

best to describe the memory of a series in terms of the spectral density structure in case of

stationary time series. The following de�nition is of Robinson (2003).

De�nition 2.3.1 (Memory of a Time Series) A stationary time series X with spectral

density f (!) has long memory (or long-range dependence) if

f (0) =1; (2.3)

so that f (!) has a pole at frequency zero. In the opposite situation of a zero at ! = 0;

f (0) = 0; (2.4)

X is said to be anti-persistent or to have negative memory. We then said that X has short

memory (or short-range dependence) if

0 < f (0) <1: (2.5)

Notice that

f (0) =
1

2�

1X
k=�1


 (k) :

Thus, the memory of a time series is essentially a measure of the dependence between all

the variables in the series, considering the e¤ect of all correlations simultaneously.

For many reasons, it is important to characterize the rate at which the spectral density

tends to f (0) as ! ! 0. An alternative de�nition of the memory of a time series (see, for

instance, Beran 1994b) entails the existence of � < 1 such that

f (!) � c1 j!j�� as ! ! 0; (2.6)
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where c1 > 0 and "�" indicates that the ratio of left- and right-hand sides tends to 1.

Corresponding to the De�nition 2.3.1, X is then said to have long memory if 0 < � < 1,

short memory if � = 0 and to be anti-persistent if � < 0. Note that � � 1 implies

f (!) =2 L1 (�), and thus f (!) cannot represent a spectral density of a stationary time

series. On the other hand, if � � �1; then the series is not invertible in a sense that it

cannot be used to reconstruct a series of a white noise by passing X through a linear �lter

(see Brockwell and Davies 1991, Section 4.10).

One aspect of condition (2.6) is that for the case � < 1, � 6= 0, this condition is equivalent

to a hyperbolic decay of the autocovariances (cf. Yong 1974 and Zygmund 2002, Chapter

V.2)

j
 (k)j � c2k
��1 as k !1; (2.7)

with

c2 = 2c1� (1� �) sin
��
2
�
�
:

If � > 0, then all the correlations of the series are positive, and they decay so slowly to

zero that (2.3) holds. This is in contrast to other known dependent time series models such

as ARMA processes (see Section 2.4), in which the asymptotic decay of the correlations is

exponential, so that

j
 (k)j < abk;

where 0 < a <1 and 0 < b < 1. Because the absolute value of b is less than 1, (2.5) holds

in this case, and the such processes have a short memory.

Note that equation (2.7) determines only the asymptotic decay of the correlations, and it

does not imply the values of the correlations in some speci�c lags. Moreover, it determines

only the rate of convergence and not the absolute size of the correlations. The e¤ect of long

memory on statistical inference can be extreme even for small sample sizes. Most estimates

and test statistics have a slower rate of convergence so that assuming short memory leads

to underrating uncertainty (measured by the size of the con�dence interval) by a factor that

tends to in�nity as the sample size tends to in�nity (see Beran 1994b, Section 2.1). For

example, consider the variation in the sample mean XN = N�1PN
t=1Xt. If X is a short
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memory time series and f (!) is continuous at ! = 0, then according to Féjèr�s theorem we

get

V ar
�
XN

�
=

1

N2

NX
i;j=1


 (ji� jj) = 1

N

N�1X
k=�(N�1)

�
1� jjj

N

�

 (k) � 2�f (0)

N
; as N !1;

(2.8)

Equation (2.8) can be viewed as a generalization of the �2
�
N rule frequently used to

evaluate V ar
�
XN

�
if the correlation of the series are assumed to be negligible. However

(2.8) shows that if the autocorrelations decay at a hyperbolic rate as in (2.7), then the

variance of XN di¤ers from �2
�
N not just by a constant factor but by the speed at which

it converges to zero. The behaviour of the sample mean under such circumstances was

discussed by Adenstedt (1974). He proved that if (2.6) holds for any �1 < � < 1, then

V ar
�
XN

�
� c3N

��1; (2.9)

where c3 > 0.

There is not many evidence of time series showing anti-persistency. That is because

equality (2.4) can only hold if the positive variance 
 (0) is precisely balanced by predom-

inantly negative autocovariances 
 (j) ; j 6= 0. In practice, this condition is very unstable

since any arbitrarily small disturbance added to the series destroys property (2.4). However,

condition (2.4) may be a result of di¤erencing, for instance, if we observe the di¤erenced se-

riesrX � fXt+1 �Xtgt2Z whenX is a nonstationary ARFIMA(0,d,0) series with d 2
�
1
2 ; 1
�

then rX is an anti-persistent and stationary ARFIMA(0,d,0) series with d 2
�
�1
2 ; 0
�
(see

Section 2.5.2).

On the other hand, there is ample historical evidence that long memory processes occur

in �elds as diverse as hydrology, astronomy, biology, computer networks, chemistry, agricul-

ture, geophysics and economics. In some of these �elds long memory is in fact recognized

to be the rule rather than the exception (cf. Beran 1992). Newcomb (1886) discussed

the phenomenon of long memory in astronomical data sets and called it "semi-systematic"

errors. Pearson (1902) observed slowly decaying correlations in simulated astronomical ob-

servations. Student (1927) also found long memory behaviour in the context of chemical

measurements. Perhaps the most well-known example of long memory is the so-called Hurst
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Figure 2.2: Yearly minimum water levels of the Nile River at the Roda Gauge (622-1284

A.D.)

e¤ect in hydrology (see Section 3.4.1). Motivated to design the capacity of water reservoirs,

Hurst (1951, 1956) analyzed runo¤ time series from the river Nile and other hydrological

records. Hurst found deviations from the expected short range dependence behaviour of the

time series. Figure 2.2 presents one of the time series that led to the discovery of the Hurst

e¤ect. This �gure displays the yearly minimal water level of the Nile River for the years 622-

1284, measured at the Roda Gauge near Cairo (The data of the Nile River is due to Beran

(1994b, pp. 237-239). Also available at StatLib archive: http://lib.stat.cmu.edu/S/beran).

This Figure re�ects some of the typical characteristics of time series with long memory

behaviour (Beran 1994b): There are long periods where the observations tend to stay at a

high level, and, on the other hand, there are long periods with low levels. Looking at short

time periods, there seem to be cycles or local trend. However, looking at the whole series,

there is no apparent persisting cycle. In fact, the series seems to be homoscedastic and to

�uctuate around a constant mean, perhaps consistent with stationarity. The Correlogram
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Figure 2.3: Nile River minima: sample autocorrelations

of this series in Figure 2.3 shows that the sample autocorrelations exhibit a clear pattern

of slow decay and persistence. Recall that the Nile river is the site of the Biblical story of

Joseph, the son of Jacob. Mandelbrot and Wallis (1968) suggested the term �Joseph E¤ect�

for describing these characteristics of long memory, since these �gures may be viewed as an

reminiscent of the seven fat and seven lean years foreseen by Joseph in the Biblical story.

The presence of long memory in the Nile River behaviour may provide an explanation why

corresponding averages of the �ow of the Nile River di¤er greatly from each other, and

therefore from their common expectation, over successive intervals of several years.

There is also substantial evidence that long memory processes describe rather well eco-

nomic and �nancial data such as forward premiums, interest rate di¤erentials, and in�ation

rates. Apart from Mandelbrot�s pioneering work on self-similar processes and their diverse

applications (see Mandelbrot 1997), the importance of long memory in economic data was

recognized by Granger (1966). Granger used di¤erent kinds of estimates of the spectral

density for economic time series after known business cycles and trends are removed. He
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observed that the typical shape of the spectral density is that it has a pole at the origin

and it decays monotonically with the absolute value of the frequency. The �rst character-

istic corresponds to long memory behavior, while the second one can be modeled by many

long memory models such as the Fractional Gaussian Noise and Fractional ARIMA models

discussed below.

Perhaps the most dramatic empirical success of long memory processes has been in

work on modeling the volatility of asset prices. Asset returns frequently exhibit little au-

tocorrelations consistent with the e¢ cient market hypothesis, whereas their squares are

noticeably correlated. While commonly used models in �nance like ARCH and GARCH try

to represent this phenomena (see Engle 1982 and Bollerslev 1986), they imply that the auto-

correlations of the squared asset returns decay exponentially. However, empirical evidence

(see, for example, Whistler 1990, Ding, Granger and Engle 1993, and Dacorogna, Muller,

Nagler, Olsen and Pictet 1993) rather suggests a slow decay of the correlations, consistent

with long memory behaviour. These �ndings have led to formulation of a long memory

conditional heteroscedastic model of time series, called the FIGARCH (Baillie, Bollerslev,

and Mikkelsen 1996), a model that has since been widely applied in �nance and may o¤er

potentially important insights on market behavior.

A possible explanation for how long memory behaviour might arise has been provided

by Robinson (1978) and Granger (1980). In some statistical applications, the observed

time series can be regarded as aggregates of many individual time series. For instance,

Macroeconomic series can be regarded as aggregates across many micro-units. Granger

(1980) considered

XN
t =

NX
i=1

Xt (�i) ;

which is the aggregate of N components of independent processes, Xt (�i), such that for

i = 1; 2; :::; N;

Xt (�i) = � (�i)Xt�1 (�i) + �t (�i) ;

where �t (�i) are independent zero mean and homoscedastic random variables, and � (�i)

are drawn from the Beta (c; 2 � �) distribution with support (0; 1), and c > 0, 0 < � < 1.

Conditionally on the �0is, Xt (�i) are stationary short memory AR(1) processes. Granger
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(1980) showed that in the limit as N ! 1, the unconditional autocovariance function of

XN
t decays like k��1, as in (2.7). Thus, although each individual time series, Xt (�i), is a

simple AR(1) process, the aggregated series XN
t approaches a limiting time series that has

a long memory. Previously, Mandelbrot (1971) suggested a similar idea in the context of

Monte Carlo simulation of ARFIMA(0,d,0) model (to be discussed below).

Further references on long memory behavior, evidence of long memory and possible

physical explanations for the behaviour that is typical of long memory time series, may be

found in many survey type resources on long memory such as Taqqu (1986), Hampel (1987),

Beran (1992, 1994b), Baillie (1996) and Robinson (1994, 2003).

2.4 Stationary Increments of Self-Similar Processes

2.4.1 Self-Similar Processes

The theory of self similar processes was developed by Kolmogorov (1940) and Lamperti

(1962). The importance of such processes was recognized by Mandelbrot and co-workers who

introduced them to into statistics. In general, self-similarity means that the phenomenon

in interest seems to have a similar structure across a wide range of scale (cf. Mandelbrot

1971, 1983 and Taqqu 1986). In the context of stochastic processes, self-similarity is de�ned

in terms of the distribution of the process, as in the following de�nition.

De�nition 2.4.1 (Self-Similar process) Let Y = fYtgt2R be a real valued stochastic

process. Y is called self-similar with self-similarity parameter H (abbreviated as H-ss),

if for any c > 0,

Yct =d c
HYt; (2.10)

where =d is equality in distribution.

Equation (2.10) is also equivalent to

(Yct1 ; :::; Yctk) =d c
H (Yt1 ; :::; Ytk)

for any �nite sequence of time point t1; :::; tk.
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A sample path of an H-ss can be very complex, and we are not guaranteed in general that

the process is stochastically continuous, nor also measurable. The following Proposition is

due to Lamperti (1962, Theorem 2. See also Vervaat 1985).

Proposition 2.4.1 A stochastically continuous (continuous in probability) process Y is an

H-ss process if and only if there exists a process St and a positive function a : R+ ! R+

with a (c)!1 as c!1; such that

Sct=a (c)!d Yt as c!1. (2.11)

An important class of self similar processes is the class of self similar processes with

stationary increments, de�ned as follow.

De�nition 2.4.2 (Stationary Increments) A stochastic process Y has stationary incre-

ments (or, in short, we say that Y is an si process) if for every c 2 R

Yt+c � Yc =d Yt � Y0: (2.12)

Although H-ss with H � 0 is a relevant possibility for other classes of processes, there

are only trivial (or pathological) H � 0-ss si processes, as the next theorem shows (Vervaat

1985, Theorem 1.3).

Proposition 2.4.2 Suppose that Y is a self-similar process with self-similarity parameter

H and stationary increments.

(i) If H < 0, then Yt = 0 a.s. for each real t.

(ii) If H = 0 and Yt is measurable, then Yt = Y0 a.s. for each real t..

Remark 2.4.1 There are nontrivial nonmeasurable 0-ss si processes. For example, Y iid

and nondegenerate.

Thus, in the following we consider only H-ss si processes, Y , with H > 0. We also want

to exclude the trivial event Y = 0 a.s., and we assume that this event has zero probability.

Then, If H > 0, The properties
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Y0 =d a
HY0 for every a > 0;

and

Yt =d t
HY1 for every t > 0;

imply that Y0 =d 0 and Yt !d 1 as t tends to in�nity. In particular, we may conclude

that a non-degenerate H-ss si process cannot be stationary. However, we are guaranteed

that the sample path of any H-ss si with H > 0 is stochastically continuous, since all such

processes arise in (2.11) directly from (2.10) with S = Y; a (c) = cH and =d instead of

!d. Furthermore, It is easy to see that Y in (2.11) is si if St is discretely si, i.e., satis�es

(2.12) only for t 2 Z. So stochastic continuous ss si processes may arise as limits in (2.11)

with discretely si St. This fundamental relation between stochastically continuous H-ss si

processes and limits in distribution of discretely si processes was derived by Lamperti (1962,

Theorem 2). The following proposition summarizes this idea (Beran 1994b).

Proposition 2.4.3 Suppose that Y is a stochastic process such that Y1 6= 0 with positive

probability, and Yt is the limit in distribution of the sequence of normalized partial sums

a�1n Snt = a�1n

[nt]X
i�1

Xt; n = 1; 2; :; ; ;

Here [nt] denotes the integer part of nt, X1; X2; ::: is a stationary sequence of random

variables, and a1; a2; ::: is a sequence of positive normalizing constants such that logan !1.

Then there exists an H > 0 such that Y (t) is a stochastic continuous H-ss si process.

Conversely, all stochastic continuous H-ss si processes with H > 0 can be obtained as the

limit of such partial sums.

The form of the covariance function Cov (Yt; Ys) of an ss si process follows directly

from the de�nitions. To simplify notation, assume here E (Y ) = 0. The process X =

fYt � Yt�1gt2Z is called the (stationary) increments process of Y , and we denote its variance

by �2. Since

�2 = E
h
(Yt � Yt�1)2

i
= E

h
(Y1 � Y0)2

i
= E

�
Y 21
�
,
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we then have

E
h
(Yt � Ys)2

i
= E

�
Y 2t�s

�
= �2 (t� s)2H :

On the other hand,

E
h
(Yt � Ys)2

i
= E

�
Y 2t
�
+ E

�
Y 2s
�
� 2E [YtYs] = �2t2H + �2s2H � 2
y (t; s) .

Hence,


y (t; s) =
1

2
�2
h
t2H � (t� s)2H + s2H

i
: (2.13)

It is possible to obtain the autocovariance function of the increments process Xt = Yt�Yt�1.


 (k) = Cov (Xt; Xt+k) = Cov (X1; Xk+1)

= Cov (Y1; Yk+1 � Yk) = Cov (Y1; Yk+1)� Cov (Y1; Yk) :

Using (2.13),


 (k) =
1

2
�2
h
(k + 1)2H � 2k2H + (k � 1)2H

i
(2.14)

for k � 0 and 
 (k) = 
 (�k) for k < 0.

The asymptotic behaviour of 
 (k) follows by Taylor expansion, from which it can be

shown that if 0 < H < 1, H 6= 1
2 , then as k tends to in�nity


 (k) � H (2H � 1) k2H�2:

For 12 < H < 1, the correlations decay to zero so slowly that

1X
k=�1


 (k) =1; (2.15)

Thus, the increments process X has long memory. For H = 1
2 , all the correlations at non-

zero lags are zero, i.e., the observations are uncorrelated and the process has short memory.

For 0 < H < 1
2 , it can be shown that

1X
k=�1


 (k) = 0; (2.16)

and therefore the process is anti-persistent.

For H = 1 (2.14) implies � (k) � 1. This case is hardly of any practical importance in

the stationary setup. For H > 1; 
 (k) diverges to in�nity. This contradicts the fact that



17

� (k) must be between �1 and 1. We conclude that if the second moments are �nite and

limk!1 � (k) = 0, then

0 < H < 1:

Under these assumptions, the spectral density of the increment process X is given by (Sinai

1976)

f (!) = F
�
�2;H

�
(1� cos!)

1X
k=�1

j! + 2�kj�1�2H ; ! 2 �;

where �2 = V ar (X) and F
�
�2;H

�
is a normalizing factor designated to ensure

�Z
��

f (!) d! =

�2,

F
�
�2;H

�
= �2

(Z �

��
(1� cos!)

1X
k=�1

j! + 2�kj�1�2H d!
)�1

= �2
�Z 1

�1
(1� cos!) j!j�1�2H d!

��1
:

The behaviour of f (!) near the origin follows by Taylor expansion of (1� cos!) at zero,

and it can be shown (see Theorem 4.2.1) that

f (!) � c1
�
�2;H

�
j!j1�2H as ! ! 0:

Thus, the form of the spectral density f (!) is uniquely determined by only two parameters

�2 and H. Particularly, the behaviour of f (!) near ! = 0 is compatible with property (2.6)

of long memory with � = 2H � 1.

Figure 2.4 shows the theoretical autocorrelation function of several fractional Gaussian

noise (FGN) series, a de�nition of which is given below. Figure 2.5 illustrates some typical

sample paths of FGN series with H = 0:9; 0:7; 0:3; 0:1, produced by applying an FGN

�lter on the white noise series used in Figure 2.1. The characteristics of long memory are

prominent for H = 0:9 but can also be seen for H = 0:7. In the cases of H = 0:1 and

H = 0:3 the series has a more ragged path than that of a white noise, which is typical

for anti-persistent series. Some more distinctive characteristics of long memory and anti-

persistent time series are illustrated in Section 2.5.2.
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Figure 2.4: Autocorrelation function of FGN(H) series with H = 0:9 (ACF1), H = 0:7

(ACF2), H = 0:3 (ACF3), and H = 0:1 (ACF4).
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Figure 2.5: Simulated series of FGN(H) with H = 0:9 (X1), H = 0:7 (X2), H = 0:3 (X3),

and H = 0:1 (X4).
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2.4.2 Fractional Brownian Motion and Gaussian Noise

This section introduces a Gaussian model obtained as the increments of a Gaussian H-ss

process with independent increments. The model was developed by Mandelbrot and Van

Ness (1968, see also Mandelbrot and Walliss 1968, 1969(a,b)), although being implicitly

considered earlier by Kolmogorov (1940), Hunt (1951) and Lamperti (1962). Results on

non-Gaussian ss processes and their increments processes can be found, for instance, in

Samorodnitsky and Taqqu (1994).

Consider an H-ss si, Gaussian, zero mean process Y with 0 < H < 1. The distribution of

Y is fully speci�ed by the covariances of the process given by equation (2.13). Therefore, any

0 < H < 1 uniquely de�nes a Gaussian stationary increment process, X = fYt � Yt�1gt2Z.

The self-similar process Y is called a fractional Brownian motion, denoted by BH , and the

corresponding increments process is called fractional Gaussian noise. A more constructive

de�nition of fractional Brownian motion is given below.

For H = 1
2 , the corresponding self-similar process B

1
2 turns out to be the standard

Brownian motion.

De�nition 2.4.3 (Brownian Motion) A real-valued random process B = fBtgt2[0;1)
with a.s. continuous sample path and starting point B0 = 0 a.s. is said to be a standard

Brownian motion (henceforth BM) if

1. It is an independent increments process, i.e., if 0 � s � t � u � v then Bt � Bs

and Bv �Bu are independent random variables, and

2. Bt �Bs � N
�
0; �2 jt� sj

�
for every t; s 2 [0;1) :

It is straightforward to verify from de�nition that BM is a stochastic continuous si

process. We now show that standard BM, B; is also an H-ss with H = 1
2 . Because B is

Gaussian, it is su¢ cient to look only at the expectation and covariances of B. We have for

each t

E [Bt] = E [Bt �B0] = 0:

Particularly, for any positive factor c;

E [Bct] = c
1
2Bt: (2.17)
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Consider now the covariances Cov (Bt; Bs) and assume wlg that t � s. Because the incre-

ments are independent,

Cov (Bt; Bs) = Cov ([Bt �Bs] + [Bs �B0] ; Bs)

= V ar (Bs �B0) = �2s = �2min (t; s) :

Therefore, for any c > 0

Cov (Bct; Bcs) = c�2min (t; s) = Cov
�
c
1
2Bt; c

1
2Bs

�
: (2.18)

Thus, according to (2.17) and (2.18), B is 12 -ss si process.

Fractional BM can be constructed as a weighted average of a standard BM over the

in�nite past. A mathematically stringent de�nition along this line can be given in terms of

a stochastic integral with respect to the Brownian motion (cf. Ash and Gardner 1975) of

a kernel function whose form is determined by the self similarity parameter H. Fractional

BM is then de�ned as follows (Beran 1994b).

De�nition 2.4.4 (Fractional Brownian Motion, Fractional Gaussian Noise) Let B

be a standard BM, 0 < H < 1, � > 0 and

wH (t; u) =

8>>><>>>:
0 if t � u;

(t� u)H�
1
2 if 0 � u < t;

(t� u)H�
1
2 � (�u)H�

1
2 if u < 0:

Also let BH =
�
BHt
	
t2[0;1) be de�ned by the stochastic integral

BHt = �

Z
wH (t; u) dBu; (2.19)

where the convergence of the integral is to be understood in the L2 (L)-norm where L de-

notes the Lebesgue measure on the real numbers. Then BH is said to be a fractional BM

(henceforth FBM) with self-similarity parameter H: The corresponding increments process

of FBM is called fractional Gaussian noise (henceforth FGN).

H-ss of BH follows directly from the 1
2 -ss of Bt. Note that

wH (ct; u) = cH�
1
2wH

�
t; uc�1

�
:
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Therefore,

BHct = �

Z
wH (ct; u) dB (u) = �cH�

1
2

Z
wH

�
t; uc�1

�
dBu:

De�ning v = uc�1, we obtain

�cH�
1
2

Z
wH (t; v) dBcu:

By self-similarity of Bt, this is equal in distribution to

�cH�
1
2 c

1
2

Z
wH (t; v) dBu = cHBHt :

Thus, BHt de�ned by (2.19) is an H-ss si process.

It is informative to take a closer look at the weight function wH (t; u). Figure 2.6 shows

wH (t; u) as a function of u for several values of H. For H = 1
2

wH (t; u) =

8<: 1 if 0 � u < t;

0 otherwise.

This imply that the increments of B
1
2
t are iid as expected. If H is in the intervals

�
0; 12
�
or�

1
2 ; 1
�
, then the weight function is proportional to jujH�

3
2 as u! �1. For H > 1

2 , juj
H� 3

2

tends so slowly to zero that Z t

�1
wH (t; v) du =1

for all t 2 R. For H < 1
2 , juj

H� 3
2 dies o¤ very quickly andZ t

�1
wH (t; v) du = 0:

These properties are re�ected in the corresponding properties of the correlations � (k) of

the increments process, (2.15) and (2.16).

2.5 Autoregressive Moving Average Processes

2.5.1 ARMA and ARIMA models

ARMA and ARIMA models were proposed by Box and Jenkins (1970). Because of their

simplicity and �exibility, they became very popular among time series practitioners. The
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Figure 2.6: Weight function wH (t; u) for fractional Brownian motion with H = 0:7 (w.H1),

h = 0:5 (w.H2), and H = 0:3 (w.H3).
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importance of these models arises from the fact that for any autocovariance function 
 (�)

such that limh!1 
 (h) = 0 it is possible to �nd an ARMA process with autocovariance

function that identify with 
 (�) up to an arbitrarily large �nite lag, K, even though it is

possible that the number of the parameters required for the ARMA process will tend to

in�nity as K !1.

Let us brie�y recall the de�nition of ARMA time series and some of its main properties.

To simplify notations, assume � = E (X) = 0. Otherwise, Xt needs to be replaced by Xt��

in all formulas. Denote by B the backshift operator, such that for a time series X;

BjXt = Xt�j: (2.20a)

Let p and q be integers and de�ne the polynomials on C

� (z) = 1� �1z � :::� �pzp;

and

� (z) = 1 + �1z + :::+ �qz
q:

De�nition 2.5.1 (ARMA Process) The process X is said to be an ARMA(p,q) process

if for every t

� (B)Xt = � (B) �t; (2.21)

where �t �WN
�
0; �2

�
. The polynomials � (z) and � (z) are referred to as the autoregressive

and moving average polynomials, respectively, of the ARMA process.

A fundamental result for ARMA models formulates an intimate relation between the

properties of the ARMA process and the roots of the polynomials � (z) and � (z). We

shall focus attention on autoregressive and moving average polynomials, � (z) and � (z)

respectively, with no common zeros, and such that all solutions of � (z) � (z) = 0 are outside

the unit circle jzj � 1. In this case (cf. Box and Jenkins 1970, Chapter 3, and Brockwell and

Davies 1991, Chapter 3), the asymptotic decay of the autocovariance function is exponential

in the sense that there is an upper bound

j
 (k)j < abk
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where 0 < a <1 and 0 < b < 1.

We now turn to describe ARFIMA models.

De�nition 2.5.2 Let d be a nonnegative integer such that the d�th di¤erence (1�B)dXt is

an ARMA(p,q). In this case X is said to be an integrated ARMA(p,d,q) or ARIMA(p,d,q)

process, satisfying a di¤erence equation of the form

�� (B)Xt = � (B) (1�B)dXt = � (B) �t; �t �WN
�
0; �2

�
: (2.22)

Thus, for ARIMA(p,d,q) processes the autoregressive polynomial �� (z) of equation

(2.22) has a zero of order d at z = 1. ARIMA(p,d,q) process X is stationary if and only

if d = 0, in which case it reduces to an ARMA(p,q) process. For such process it would be

natural to apply the operator r = 1 � B repeatedly d times, as rdX =
�
rdXt

	
t2Z will

be a stationary process with rapidly decaying sample autocorrelation function, compatible

with that of an ARMA process with no zeros of the autoregressive polynomial on the unit

circle.

The spectral density of an ARMA process is given (cf. Priestly 1981) by

fX (!) =
�2

2�

��� �e�i!���2
j� (e�i!)j2

: (2.23)

Since fX (!) is a rational function of e�i!, it is uniquely determined by �2 and the autore-

gressive and moving average polynomials of the ARMA process.

2.5.2 Fractional ARIMA Models

Fractional autoregressive integrated moving average model of order p,d,q, abbreviated as

ARFIMA(p,d,q), was proposed independently by Granger and Joyeux (1980) and Hosk-

ing (1981) as a natural extension of the classic ARIMA(p,d,q) model. In contrast to the

ARIMA models, in ARFIMA models the di¤erencing parameter, d, may take any real value.

ARFIMA models have become very popular since they o¤er much e¢ cacy in modeling both

the long and short-run behaviour of a time series. While any stationary process can always

be approximated by a simple ARMA(p,q) process, the orders p and q required to achieve a

reasonably good approximation may be so large as to become unwieldy for estimation. In
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cases of long memory or anti-persistent time series, ARIMA(p,d,q) models o¤er a convenient

and e¤ective formulation of the dependence structure of the series.

The extension of ARIMA models to fractionally di¤erenced models is achieved by the

following way. For any real number, d, we de�ne the di¤erence operator rd = (1�B)d by

means of the binomial expansion,

rd = (1�B)d =
1X
j=0

�jB
j ;

where B is the backshift operator (2.20a), and

�j =
� (j � d)

� (�d) � (j + 1) =
Y

0<k�j

k � 1� d
k

; j = 0; 1; 2; :::: (2.24)

Here, � is the Gamma function

� (x) =

8>>>><>>>>:

Z 1

0
tx�1e�tdt; x > 0;

1; x = 0;

x�1� (1 + x) ; x < 0:

De�nition 2.5.3 (ARFIMA process) Let d be a real number such that the d�th dif-

ference rdX is an ARMA(p,q). In this case X is said to be an fractionally integrated

ARMA(p,d,q) or ARFIMA(p,d,q) process, satisfying a di¤erence equation of the form

� (B)rdXt = � (B) �t; �t �WN
�
0; �2

�
; (2.25)

where � (z) and � (z) are the autoregressive and moving average polynomials of degree p and

q, respectively.

As in Section 2.5.1, � (z) and � (z) are assumed hereinafter to have no common zeros,

and to have no zeros in the complex unit circle jzj � 1.

For d < 1
2 the ARFIMA process can be shown to be stationary (see Brockwell and Davies

1991, Section 13.2) and to have a spectral density, f (!) ; given by

f (!) = fARMA (!)
��1� e�i!���2d (2.26)

=
�2

2�

��� �e�i!���2
j� (e�i!)j2

��1� e�i!���2d ; ! 2 �:
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Similarly to the spectral density of an ARMA process (2.23), it is uniquely determined by

� (z) ; � (z) ; �2 and by d:

Since e�i! � 1 � ! as ! ! 0, we see from (2.26) that the behaviour of the spectral

density very close to the origin is given by

f (!) � �2

2�

j� (1)j2

j� (1)j2
��1� e�i!���2d � fARMA (0) j!j�2d : (2.27)

For 0 < d < 1
2 , the spectral density has a pole at zero and the time series, hence, has long

memory. For �1
2 < d < 0, on the the hand, we have f (0) = 0; and the time series is, thus,

anti-persistent. The rate at which the spectral density tends to f (0) is compatible with

property (2.6) of long memory where the memory parameter � corresponds to 2d.

The range of the memory parameter corresponding to both causality and invertibility

of the time series is jdj < 1
2 (see Theorem 2.5.1 below). The cases d > 1

2 or d � �1
2

can be reduced to the case �1
2 < d � 1

2 by taking
�
jdj+ 1

2

�
di¤erences or partial sums,

respectively, where bxc denotes the integer part of d. For instance, if X is an ARFIMA

process with d = 0:8, then the di¤erenced process rX = fXt �Xt�1gt2Z is a stationary

ARFIMA process with d = �0:2. On the other hand, if X is an ARFIMA process with

d = �0:8, then the partial sums St =
Xt

j=1
Xj are an ARFIMA process with d = 0:2.

For ARFIMA(0,d,0) with jdj < 1
2 the unique solution of (2.25) is given by

Xt = r�d�t =
1X
j=0

 j�t�j :

Hosking (1981) gave the explicit expression for the coe¢ cients  j of the causality represen-

tation of the ARFIMA(0,d,0) process with jdj < 1
2 as

 j =
� (j + d)

� (d) � (j + 1)
=

Y
0<k�j

k � 1 + d
k

; j = 0; 1; 2; :::. (2.28)

Also, in this case, the coe¢ cients �j of the invertibility representation of the process are

given by (2.24). The form of the covariances of ARFIMA(0,d,0) processes follows from a

formula in Gradshteyn and Ryzhik (1965, p. 372),


 (k) = �2
1X
j=0

 j j+jkj = �2
(�1)k � (1� 2d)

� (k � d+ 1)� (1� k � d) :
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Then, the correlations are equal to

� (k) =
(�1)k � (1� d)2

� (k � d+ 1)� (1� k � d) (2.29)

=
� (k + d) � (1� d)
� (k � d+ 1)� (d) =

Y
0<k�h

k � 1 + d
k � d ; h = 1; 2; ::::

Applying the Stirling�s approximation � (x) =
p
2�/x

�
x
e

�x �
1 +O

�
x�1

��
to (2.24), (2.28)

and (2.29), we obtain

�j � c1
1

� (�d) j
�d�1 as j !1; (2.30)

 j � c2
1

� (d)
jd�1 as j !1;

and

� (k) � c3
� (1� d)
� (d)

jkj2d�1 as j !1;

where c1; c2; c3 are positive constants. Figure 2.7 shows the autocorrelation function of

several ARFIMA(0,d,0) series. This Figure demonstrates the e¤ect of di¤erent values of d

on the form of the correlations.

For general ARFIMA(p,d,q), the explicit formulas for the coe¢ cients  j , �j and the

autocovariances 
 (k) are quite complex (cf. Sowell 1992). However, similar limiting results

are obtained as in the ARFIMA(0,d,0) case. The following proposition summarizes some

of the properties of general ARFIMA(p,d,q) processes (cf., Brockwell and Davies 1991, pp.

524-525 and Beran 1994, pp. 63-65).

Proposition 2.5.1 Suppose that d 2 (�0:5; 0:5) and let � (z) and � (z) be the autoregressive

and moving average polynomials of order p and q respectively. Suppose also that � (z) and

� (z) have no common zeros, and � (z) � (z) 6= 0 for all z 2 C such that jzj � 1. Then

(i) The ARFIMA equation (2.25) has a unique stationary solution, X, satisfying

Xt = r�d��1 (B) � (B) �t =
1X
j=0

 j�t�j ; (2.31)

Thus,  j is the corresponding coe¢ cient of z
j , determined by the expansion of

(1� z)�d ��1 (z) � (z)
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Figure 2.7: Autocorrelation function of ARFIMA(0,d,0) time series with d = 0:4 (ACF1),

d = 0:2 (ACF2), d = �0:2 (ACF3), and d = �0:4 (ACF4).
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as power series in z for jzj � 1. Furthermore,

�� j�� � c1j
d�1 as j !1;

for some c1 > 0.

(ii) X is causal, where the coe¢ cients  j of the causality representation of X are

determined by (2.31).

(iii) X is invertible, where the coe¢ cients �j of the invertibility representation of X

are determined by the relation

�t = ��1 (B)� (B)rdXt =
1X
j=0

�jXt�j ; (2.32)

Thus, �j is the corresponding coe¢ cient of zj , determined by the expansion of

��1 (z)� (z) (1� z)d

as power series in z for jzj � 1. Furthermore,

j�j j � c2 j
�d�1 as j !1;

for some c2 > 0.

(iv) The autocovariance function of X satisfy, for d 6= 0

j
 (K)j � c3k
2d�1 as k !1;

where c3 > 0.

Figures 2.8 and 2.9 show sample paths of several ARFIMA(0,d,0) time series with d =

0:4; 0:2;�0:2;�0:4 and of AR(1) time series (AR(1) is an ARMA(1,0) process) with the

same lag-1 correlation, respectively, as in Figure 2.8. Both �gures were produced after

applying ARFIMA and AR �lters on the white noise series used for Figure 2.1. Again, we

can see the prominent characteristics of the long and negative memory behaviour in Figure

2.8, while in Figure 2.9 it can be seen that although the series are certainly correlated, the

correlations fade away rapidly. This can be seen, for example, by looking at time points

where the series seems to have a sudden large "jump". Large jumps can be the result of an
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instantaneous large noise term, say j�t1 j ' 2�, that was added to the series at time t1. If

the time series has long memory or anti-persistent time series, then any such jump in the

series is more probable to have an e¤ect on the behaviour of the consequent observations,

Xt; t > t0; in relatively long times after t0. While for time series with long memory this

e¤ect is results in relatively long period where the consequent observations tend to stay with

similar level to that of the jump, for anti-persistent time series it results in relatively long

period (though shorter than in the long memory case) where the consequent observations

tend to stay in the opposite level to that of the jump. On the other hand, if the series is

correlated with short-memory, then any such large jump would have a possibly sharp but

short-lasting e¤ect on the behaviour of the observations in consequent times after t0.
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Chapter 3

LITERATURE REVIEW

3.1 Introduction

This chapter provides a summary of some prominent methods used for estimation of long

memory time series. The basic idea that stands behind each of the techniques of estimation

is discussed, as well as the advantages and disadvantages of these methods. Some references

to the literature are provided as a complement to the topics not covered here in detail. Since

we could not possibly cover here all estimation methods used for long memory time series,

we had to leave out some methods, and sometimes mention others only brie�y. Some other

comprehensive surveys on estimation of long range dependence, which consist also of other

methods that are not included here, are Beran (1994b), Taqqu, Teverovski and Willinger

(1995), Baillie (1996), Giraitis and Robinson (2003), Moulines and Soulier (2003), Chan and

Palma (2006).

For ease of exposition, we use the memory parameter � related to the form of the spectral

density near the origin, as in (2.6). Note that � = 2H�1 ifH is the self-similarity parameter

of an FGN, and � = 2d if d is the fractional-di¤erencing parameter of an ARFIMA process

(Sections 2.4-2.5).

The rest of Chapter 3 is organized as follows. Section 3.2 considers direct estimation of

the mean and the variance of a time series with long-range dependence. In Section 3.3 we

present some parametric methods for estimation. While the issue of order-determination

is not discussed here, it should be noted that standard model choice procedures developed

for short-memory models (see, e.g., Akaika 1973, Schwarz 1978, Parzen 1974, Hannan 1980,

Shibata 1980) may also be applied for long memory time series (Crato and Ray 1996, Beran,

Bhansali and Ocker 1998). Since parametric estimation may be a demanding procedure in

terms of the required CPU time, we also discuss the computational aspects of the parametric
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methods and we provide their order of complexity, as given by Chan and Palma (2006). In

Section 3.4 the reader is presented to semiparametric methods of estimation of the memory

parameter. These methods are generally less e¢ cient than the parametric ones, in case

where the model is correct. This is true for all the semiparametric methods of estimation,

which have a slower rate of convergence of the estimator to the true estimator. However,

the semiparametric methods are naturally more robust, essentially having much weaker

assumptions on the process, and therefore they are more reliable in cases that we do not

have much knowledge about the underlying process.

3.2 Point Estimation

3.2.1 Estimation of Location

A widely used class of estimators of the mean, �; of a time series is the class of linear

unbiased estimators. An estimate of this class is given by a weighted average of X1; :::; Xn;

b�c = NX
j=1

cjXj = c
0X;

such that
NX
j=1

cj = c
01 = 1: (3.1)

Here we used c = (c1; :::; cN )
0 ; X = (X1; :::; XN )

0 and 1 = (1; :::; 1)0. The sample mean,

for example, is obtained by cj = 1
N for all j = 1; :::; N . The variance of a general linear

unbiased estimator b�c is equal to
V ar (b�c) = NX

j;l=1

cjcl
 (j � l) = c0�Nc: (3.2)

where �N = [
 (j � l)]j;l=1;:::;N is the covariance matrix of X. Minimizing (3.2) with respect

to c, under the constraint (3.1), yields

c = ��1N 1
�
10��1N 1

��1
; (3.3)

and thus the best linear unbiased estimator (BLUE) is given by
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b�BLUE = c0X =
�
10��1N 1

��1
10��1N X: (3.4)

Its variance is equal to

V ar (b�BLUE) = �10��1N 1��1 :
b�BLUE is therefore optimal in the sense that it has the smallest possible variance among all
unbiased estimators. Adenstedt (1974) discussed the form and behaviour of the BLUE in

the case where the spectral density of the process f (!) behaves, in accordance to property

(2.6), like c1 � j!j�� at the origin, where c1 > 0 and � < 1. Adenstedt (1974) found that, for

a large class of spectral densities, the asymptotic form of V ar (b�BLUE) is determined solely
by the behaviour of f (!) near ! = 0, and he proved that V ar (b�) = O

�
N��1� as N !1

(see Lemma 4.4.1 of this thesis).

Although (3.3) and (3.4) are simple, one needs to know all covariances 
 (0) ; :::; 
 (n� 1)

in order to calculate b�BLUE and V ar (b�BLUE). Usually, the covariances are unknown and
have to be substituted by their estimated values. This makes the estimation of � rather

complicated, and the distribution of b� becomes complex as well. A simple alternative

estimate of �, which can be calculated without knowing �N ; is the sample mean. Samarov

and Taqqu (1988) investigated the relative asymptotic e¢ ciency of XN compared to the

BLUE in long memory time series. They found that under mild regularity conditions the

ratio of (3.4) divided by V ar
�
XN

�
is asymptotically equal to

eff
�
XN ; BLUE

�
=

8<: (�+ 1)
�(1+�

2 )�(2��)
�(1��) : �1 < � < 1

0 : � < �1
: (3.5)

Figure 3.1 displays eff
�
XN ; BLUE

�
as a function of � 2 (�1; 1). For � � 0 (in the cases of

short and long memory), the asymptotic e¢ ciency is always above 98%. Therefore, in these

cases it is su¢ cient to use the sample mean instead of the much more complicated BLUE.

However, as the values of � become negative (in the case that corresponds to negative

memory), the sample mean tends to be ine¢ cient. Particularly, if the spectrum has a zero

at the origin of order 1 or greater, the sample mean has a slower rate of convergence than

the BLUE. Vitale (1973) had earlier discussed similar issues in this case.



37

a l p h a

ef
fic

ie
nc

y

­1.0 ­0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

~ 0 . 9 8 1

Figure 3.1: Asymptotic e¢ ciency of the sample mean as a function of alpha.

If X is Gaussian, the BLUE is also the maximum likelihood estimator of �. This implies

also that for Gaussian long-memory processes, the sample mean is almost optimal. In

practice, however, deviations from the normal distribution are expected. The BLUE and

the sample mean are both very sensitive to outliers and other deviations from normality.

A large number of useful location estimators that are less sensitive to deviations from the

ideal distribution can be de�ned as or approximated by M-estimators (see e.g. Huber 1981,

Hampel et al. 1986). An M-estimator b� of the location parameter � of a distribution
F�;� (x) = F

�x��
�

�
is de�ned by

NX
i=1

	

�
Xi � b�
�

�
= 0; (3.6)

where 	 is a function such thatZ
	

�
x� �
�

�
dF�;� (x) = 0:

If the scale is unknown, we have to replace � by a suitable estimate. For example, the

sample mean is de�ned by (3.6) with 	(x) = x. The median is obtained by setting 	
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equal to the sign of x. Particularly applicable are bounded 	�functions, as the resulting

estimates are not sensitive to deviations from the ideal distribution (see, e.g., Hampel et al.

1986). Beran (1991) investigated the asymptotic distribution of M-estimators of location

for processes of the form

Xt = �+G (Zt) ;

wherefZtgt2Z is a stationary Gaussian process with zero mean, variance 1 and long-range

dependence de�ned by (2.6), and where G (�) is a real measurable function. Beran (1991)

proved that under some mild regularity conditions, the relative asymptotic e¢ ciency of b�
compared to the sample mean is equal to a positive constant, 0 < c � 1, which depends

on the function 	. In the special case of Gaussian observations with long memory, i.e.

G (x) � x, all M-estimators are asymptotically equivalent, that is c = 1, and no e¢ ciency

is lost by robusti�cation. Beran (1991) also considered the special case of intermediate-

memory processes where the sum of all correlations is zero, and proved that in this case,

the asymptotic e¢ ciency of all M-estimators with nonlinear 	-function is zero. The rea-

son is that the variance of the sample mean converges to zero at a faster rate than N�1.

This follows from the fact that V ar
�
XN

�
is equal to the sum of all covariances 
 (i� j)

(i; j = 1; :::; N) and the assumption that the sum of all covariances is zero. This link is

destroyed when a nonlinear 	-function issued. The variance of the resulting estimator

converges to zero at the rate N�1.

3.2.2 Estimation of Scale

Consider now direct estimation of the variance �2 = V ar(Xt) of a stationary dependent

series. Assuming �rst that X has known zero mean, we can estimate �2 by

s2 =
1

N

NX
t=1

X2
t :

For a very wide range of dependent series under (2.6) with �1 < � < 1
2 , s

2 is asymptotically

normally distributed (Taqqu 1975, 1979). Particularly if X is Gaussian, we have

p
N
�
s2 � �2

�
! N

 
0; 2

1X
n=�1


 (n)2
!
; (3.7)
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For � > 1
2 , however, 
 (n) is not square summable, and the rate at which s

2 converges

to �2 is di¤erent. Rosenblatt (1961) showed that N�
�
s2 � �2

�
has a nonnormal limiting

distribution, which Taqqu (1975) termed the Rosenblatt distribution. If the mean of X is

unknown, and instead we estimate �2 by

s2 =
1

N � 1

NX
t=1

�
Xt �XN

�2
then, for �1 < � < 1

2 , (3.7) still holds, but the limit distribution of N
�
�
s2 � �2

�
for � > 1

2

contains an additional �2-distributed term, besides the Rosenblatt one. At any rate, for

� > 1
2 , the e¢ ciency of the classical scale estimator s

2 is equal to zero, because its rate

of convergence is slower than
p
N . This is in contrast to estimators obtained by maximum

likelihood and related parametric methods discussed in the next section. They are
p
N

consistent for all � 2 (�1; 1) and asymptotically normal.

3.3 Parametric Estimation

3.3.1 Exact Gaussian MLE

Suppose that X is a stationary Gaussian process with mean �0 and covariance matrix

�N = [
 (j � l)]j;l=1;:::;N . Let the spectral density be characterized by an unknown �nite

dimensional parameter vector, � 2 �. Thus, we assume that the spectral density belongs

to a parametric family f (!) = f� (!) where � 2 � � Rp.

The Gaussian likelihood function of X is equal to

fN (X; �) = 2�
�N

2 j�N j�
1
2 e�

1
2
(X��1)0�N (�)�1(X��1); (3.8)

where, as before, � represents the mean of the process, X = (X1; :::; XN )
0
is the data vector

and 1 is the N -length vector (1; :::; 1)0. The log-likelihood function is then given by

�N
2
log (2�)� 1

2
log j�N (�)j �

1

2
(X� �1)0�N (�)�1 (X� �1) :

Since the log transformation is monotonic, the ML estimate is obtained by

b�N = argmin �LN (x; �) ; (3.9)
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where LN (X; �) is the normalized log-likelihood function

LN (X; �) = � 1
N
log fN (X; �)�

1

2
log (2�) (3.10)

=
1

2N
log j�N (�)j+

1

2N
(X� �1)0�N (�)�1 (X� �1) :

The literature on the Gaussian MLE for dependent observations developed �rst for

short memory processes. Hannan (1973) established asymptotic normality and e¢ ciency of

the estimator in the case of the true mean �0 being known. Hannan also considered the

Whittle�s (1953) approach discussed in Section 3.3.3. For the long memory case, Yajima

(1985) considered the Gaussian MLE of an ARFIMA(0,d,0) with 0 < d < 1
2 , or equivalently

0 < � < 1. Dahlhaus (1989) generalized Yajima�s (1985) result to general Gaussian long

memory processes, 0 < � < 1; where the true mean of the process is possibly unknown.

Dahlhaus (1989) proved that under some mild regularity conditions,

p
N
�
�̂N � �0

�
!
d
N
�
0;� (�0)

�1
�
; (3.11)

where �0 denotes the true parameter of the process and �(�) is the Fisher information

matrix given by

�(�) = �E
�

@2

@�j@�k
LN (�)

�
j;k=1;:::;p

:

Particularly, the asymptotic variance of
�
�̂N � �0

�
reaches the Cramér-Rao bound, and

thus Dahlhaus proved e¢ ciency of the Gaussian MLE in the sense of Fisher.

When �0 is unknown, Dahlhaus (1989) required to substitute the unknown mean �;

that appears in the Gaussian likelihood function, by any Nf1��g=2-consistent estimate of

�. The arithmetic mean is the most common estimate of �; and it provides this required

property (see Section 3.2.1). Thus, in the case of an unknown mean, a plug-in estimator

is required, which usually replaces the unknown mean parameter � with the sample mean,

before estimating the other parameters with the exact or approximated MLE. For ease

of exposition in this thesis, we frequently refer to Dahlhaus�s Gaussian MLE as the exact

Gaussian MLE (or just exact MLE) in both cases where the mean � is assumed to be known

or not. However, as mentioned by Lieberman (2005), the plug-in MLE can only be exact if

the estimator of � is its pro�le MLE (3.4).
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In general, the solution of (3.9) does not have a closed form, and it needs to be assessed

numerically by evaluating the normalized log-likelihood function, (3.10), for many trial

values of � 2 �. Particularly, for each trial value of �, this requires the calculation of the

determinant and the inverse of �N (�). The computation of the determinant and the inverse

of a nonsingular square N�N matrix has arithmetic complexity of order O(N3), i.e., by the

Cholesky decomposition (cf. Press et al. 1992, p. 34). That makes the procedure very costly

in terms of CPU, in particular if the dimension of � is high or if the time series is very long.

The number of trial values of � may be reduced by using gradient descent procedure to search

for the Likelihood maximum, usually with several starting values for the parameter �. This

was suggested by Sowell (1992), who discussed other computational aspects of the exact

MLE procedure as well. Sowell (1992) derived an explicit numerical iterative procedures for

obtaining the exact MLE of the Gaussian ARFIMA(p,d,q) process with known mean, and

he analyzed the procedure performance for the whole range of d 2
�
�1
2 ;
1
2

�
; or equivalently,

� 2 (�1; 1). In order to carry out the evaluations of the Likelihood function faster, Sowell

proposed an improvement for the Cholesky decomposition based on a recursive calculation

of the determinant and the inverse of �N (�) with the Levinson�s algorithm (Sowell 1989).

Sowell�s method reduces the arithmetic complexity of the procedure to O(N2). However,

Sowell�s method still su¤er from computational drawback, since it requires an excessive

memory in order to store the Cholesky factors (see Doornik and Ooms 2003). A di¤erent

approach to handle the computational problem (cf. Beran 1994b, Chan and palma 2006) is

to decompose the log-likelihood function as

fN (X; �) = f1 (X1; �) f1 (X2; �jX1) � � � f1 (XN ; �jX1; :::; XN�1) ; (3.12)

where f1 (Xj ; �jX1; :::; Xj�1) denotes a one-dimensional normal density function of Xj given

X1; :::; Xj�1. Since X is a stationary Gaussian process, then the conditional expectation

E (Xj jX1; :::; Xj�1) is equal to the best linear prediction of Xj given X1; :::; Xj�1,

�Xj jX1;:::;Xj�1 = E (Xj ; �jX1; :::; Xj�1) =
j�1X
s=1

�j�1;s (Xj�s � �) ;

and the conditional variance is

�2Xj jX1;:::;Xj�1 = E

��
Xj � bXj+1�2 ; �jX1; :::; Xj�1� ;
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(see, e.g., Brockwell and Davis 1987, section 2.7). In fact
�
Xt � �XtjX1;:::;Xt�1

�
t=1;:::;N

is

a sequence of uncorrelated Gaussian heteroscedastic noise. The coe¢ cients �j;s and the

variance �2Xj jX1;:::;Xj�1 may be directly computed with the Durbin-Levinson algorithm (see

Durbin 1960, see also, e.g., Brockwell and Davis 1987, pp. 169-170). The arithmetic com-

plexity of this approach is O(N2), as in Sowell�s method, while it avoids the computational

drawback of Sowell�s method. However, although the Durbin-Levinson algorithm enables a

relatively fast evaluation of the likelihood function, the next sections will introduce some

faster methods for �nding the solution of (3.9). These methods are based on approximations

of the exact Gaussian likelihood function.

Another sort of weakness of the Gaussian plug-in MLE was noted by Cheung and Diebold

(1994). While it was shown by Sowell (1992) that when the mean of the process is known, the

exact MLE of the di¤erencing parameter d is substantially more e¢ cient than the Whittle

MLE (see Section 3.3.3) and the log-regression estimator (see Section 3.4.3) of d, Cheung

and Diebold (1994) conducted a Monte Carlo simulation study and found out that when the

mean of the process is unknown (as happens in most cases), the discrete Whittle estimator

is much preferable to the exact MLE in terms of mean squared error (MSE). They showed

that while the exact Gaussian MLE of d su¤ers from a weak negative bias, the sample

mean plug-in MLE has a much higher negative bias than the exact MLE (see also Chapter

5). Lieberman (2005) derived asymptotic expansion for the exact and discrete Whittle

likelihoods with either known mean or the plug-in versions with the sample mean replacing

the unknown true mean. He showed that the plug-in Gaussian likelihood is contaminated

by an additional second order negative bias term, which does not exist in the case of known

mean. Lieberman (2005) proposed a bias correction for the plug-in Gaussian MLE as well

as for the plug-in Whittle MLE, which seems to capture much of the di¤erence between the

cases of known mean and unknown mean. A di¤erent approach to handle this weakness of

the plug-in MLE is to consider instead the di¤erenced data series (Smith, Sowell and Zin

1997). Another suggested approach is to use a "modi�ed" pro�le MLE, as was suggested by

Cox and Reid (1987) and An and Bloom�eld (1993). The idea of this estimator is to use a

linear transformation of the parameters of interest and to make them orthogonal to nuisance
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parameters, and particularly in our case, to the mean �. The asymptotic distribution of

the modi�ed pro�le MLE is unchanged compared to the exact MLE, and it eliminates some

degree of the bias in the exact likelihood estimates (see An and Bloom�eld 1993, Hauser

1999). Overall, however, empirical results show that both the exact MLE and the modi�ed

MLE are inferior to the Whittle MLE in most cases (Nielsen and Frederiksen 2005).

3.3.2 Autoregressive Approximation

The following method is based upon on the autoregressive representation of invertible time

series. In the literature it is mostly been applied to ARFIMA(p,d,q) models, in which the

inversion of the series may be translated into a simple Taylor expansion procedure (see

Theorem 2.5.1). Thus, we will refer in this section particularly to ARFIMA(p,d,q) models

and recall that the regular memory parameter � is just 2d in this case. An invertible

ARFIMA(p,d,q) process X ful�lls the relation

�t =
X1

j=0
�jXt�j ; (3.13)

where �t � WN
�
0; �2"

�
; and the coe¢ cients �j � �j (�) are given to us by the equation

(2.32). Wlg we may �x �0 = 1 by a proper normalization of the equation (3.13), and replace

the sign of the rest of the coe¢ cients, so the white noise series, �t, may be regarded as a

series of error terms achieved by the AR (1) representation of the process,

�t = Xt �
X1

j=1
�jXt�j : (3.14)

This suggests that instead of formulating the Likelihood function in terms of the observa-

tions X, as in (3.8), we may express it in terms of the white noise disturbances �t, which

can be computed directly from the relation (3.14). The alternative log-likelihood function

(normalized by �N) is then

LN (X; �) =
N

2
log 2� +

N

2
log �2" +

1

2

NX
t=1

�
�t
�"

�2
: (3.15)

In practice, however, only �nite number of past observations, Xt; Xt�1; :::; X1; are available

to us, and therefore one needs to evaluate �t in a di¤erent manner, rather than by (3.14).
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It is possible, however, to consider instead the truncated linear model

e�t = Xt �
Xt�1

j=1
�jXt�j ; (3.16)

where the coe¢ cients in (3.16) are the coe¢ cients of the best linear prediction of Xt given

Xt�1; Xt�2; :::; X1. In this approach, the resulted likelihood function is the exact likelihood

(3.12), attained by multiplying the density functions of each of the disturbances conditional

on the past observations. The coe¢ cients, �1; �2; :::; �t, as well as the variance of the

prediction errors, e�t, of the best linear prediction may be calculated, for example, with the
Durbin-Levinson algorithm, which has arithmetic complexity of order O(N2).

Hasslett and Raftery (1989) dealt with the computational problem of the exact MLE

procedure when they analyzed a very long time series in a spatial context. They modeled

their data with an ARFIMA model, and they allowed the di¤erencing parameter to have

values in the range 0 � d � 1
2 . Using some heuristic approximation arguments, they

proposed an applicative approximate version of the likelihood (3.15), designed to accelerate

the CPU time of the exact MLE procedure, and seems to perform very well. Their idea

was to approximate the "tail" of the truncated series in the RHS of (3.16),
Xt�1

j=M
�jXt�j ,

where M is some large integer smaller than t� 1 (Hasslett and Raftery 1989 suggested the

value M = 100, which gives good results over a wide range of values of d and N). Hasslett

and Raftery�s (1989) approximation is obtained by the formula

Xt�1

j=1
�jXt�j �

XM

j=0
�jXt�j �M�Md

�1
n
1� (M/ t)d

o
XM+1;t+1�M ;

where �M is the M�th coe¢ cient of the AR (1) representation (3.14) and XM+1;t+1�M =

1
t�1�2M

Pt+1�M
j=M+1Xj :The arithmetic complexity of Haslett and Raftery�s method is of order

O(NM), which signi�cantly improves the CPU time of the exact MLE procedure.

Beran (1994a) suggested to use a simpler Likelihood approximation, based on the trun-

cated autoregressive approximation, for which he managed to show that similar �rst-order

asymptotic results as those of the exact MLE holds, under the conditions that � = 0 is

known and 0 < d < 1
2 . Beran used the following approximation for the disturbances,

�t = Xt �
Xt�1

j=1
�jXt�j ; (t = 2; :::; N) ; (3.17)
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where �j are the usual coe¢ cient of the AR (1) representation (3.14). Beran�s approxima-

tion is therefore equivalent to assuming that all the observations before time t � 0 are equal

to the mean 0. Beran�s MLE is then obtained by minimizing

N

2
log 2� +

N

2
log �2" +

1

2

NX
t=2

�
�t
�"

�2
:

Beran (1994a) proposed a further re�nement to his method. Let the �rst parameter �1 be

�2", and de�ne

rt (�) =
�tp
�1
:

Then Beran�s MLE may be attained by minimizing

N log �1 +
NX
t=2

rt (�)
2

with respect to �. Under mild regularity conditions, it is equivalent to the following system

of p nonlinear equations,

NX
t=2

rt (�)
@

@�j
rt (�) = 0; j = 2; :::; p

and

�2" = �1 =
1

N � 1

NX
t=2

r2t (�) :

Beran (1994a) proved consistency, asymptotic normality and e¢ ciency of his approximated

MLE, with the same properties as in (3.11).

A year later, Beran (1995) dealt with a more-general model, in which them�th di¤erenced

process, (1 � B)mXt�j � �, is an ARFIMA(p,�,q), where � is unknown and � 2
�
�1
2 ;
1
2

�
.

While Beran�s (1995) consistency proof seems to contain an invalid circular argument, as

Velasco and Robinson (2000) point out, Beran�s (1995) reported simulations support his

conclusion that
p
N
�
�̂N � �0

�
!
d
N
�
0;� (��)�1

�
;

where � (��) is the Fisher information matrix evaluated at the parameter vector �� that

equals to the true parameter �0; besides that � 2
�
�1
2 ;
1
2

�
replaces the true di¤erencing
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parameter d = m + �. Particularly note that �� = �0 if m = 0. Thus, for d 2
�
�1
2 ;
1
2

�
the

last result reduces to the same asymptotic property (3.11) that was proved for the exact

MLE only for the cases of short memory, d = 0, or long memory with d 2
�
0; 12
�
.

The arithmetic complexity of Beran�s method is of order O(N2). Thus, from this respect,

it is not preferable to the exact likelihood approach. Moreover, the conditional variance

of the disturbances (3.17) depends on the number of given observations, t, while Beran�s

method represents the conditional disturbances as an homoscedastic process. This e¤ect

is asymptotically negligible, but for short time series it may yield relatively poor results

(Beran 1995).

3.3.3 Whittle�s Approximation

The Whittle MLE is named after Whittle (1951, 1953), who proposed a frequency-based

approximation to the Gaussian Likelihood in the context of short memory time series. The

method is based on two di¤erent approximations for the inverse and the determinant of the

covariance matrix, �N (�)
�1 and j�N (�)j, respectively. These approximations are justi�ed

by the general theory (cf. Grenander and Szegö 1958) of symmetric Toeplitz matrices of

the form

�N (f) =

�Z �

��
ei(r�s)!f (!) d!

�
r;s=1;:::;N

; (3.18)

where f (!) is a symmetric, nonnegative and integrable function de�ned on � = [��; �].

Thus, the r; s-entry of the Toeplitz matrix is assumed to be the jr � sj Fourier coe¢ cient

of f (!). Note that if f (!) is the spectral density of the time series, f� (!), then �N (f�)

is the covariance matrix of the process (see Section 2.2.2). For clear exposition, we shall

frequently denote the covariance matrix by �N (f�), to indicate that it depends on � through

the spectral density f� (!).

There are few di¤erent versions of the Whittle�s approximations, depending on the model

and the norm of interest, see for example Hannan (1973, Lemma 4), Dahlhaus (1989, Lemma

5.2) and Theorem (4.3.2) in this thesis. The Whittle�s approximations are given informally

by

�N (f�)
�1 � 1

4�2
�N

�
f�1�

�
;
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and

1

N
log j�N (f�)j �

1

2�

�Z
��

log f� (!) d!;

where both of the approximations are justi�ed asymptotically as N !1.

Substituting these approximations into (3.10), we get that the Whittle estimate of �0,

given by minimizing

�Z
��

log f� (!) d! +
1

2�

(X� �1)0�N
�
f�1�

�
(X� �1)

N
: (3.19)

This likelihood enables to avoid the heavy CPU time required for the computation of the

inverse and the determinant of the covariance matrix. However though, the computation of

(3.19) requires to compute the quadratic form (X� �1)0�N
�
f�1�

�
(X� �1) for every trial

value of �. In order to evaluate �N
�
f�1�

�
one has to calculate N integrals of the form�Z �

��
eik!f�1� d!

�
k=0;:::;N�1

(3.20)

(see (3.18). Note that since f�1� is a symmetric function,
R �
�� e

ik!f�1� d! =
R �
�� e

�ik!f�1� d!,

we may consider here only k � 0). That can still be very costly in CPU time, in particular

for large sample sizes and if � has a high dimension.

A major improvement in the computation time may be achieved by representing the

Whittle likelihood (3.19) by means of the periodogram of the process,

I (!) =
1

2�N

������
NX
j=1

�
Xj �XN1

�
eij!

������
2

=
1

2�

N�1X
k=�(N�1)

b
 (k) e�ik!; ! 2 �; (3.21)

where b
 (k)k=1;2;:::N�1 are the sample autocovariances
b
 (k) = 1

N

N�jkjX
t=1

�
Xt �XN1

� �
Xt+jkj �XN1

�
;

and XN is the sample mean XN = 1
N

NX
t=1

Xt. A frequency-domain representation of the
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Whittle�s MLE is obtained by the following argument.

1

2�

(X� �1)0�N
�
f�1�

�
(X� �1)

N

=
1

2�N

NX
i;j=1

(Xi � �1) (Xj � �1)
Z �

��
ei(i�j)!f�1� (!) d!

=

Z �

��

24 1

2�N

NX
i;j=1

(Xi � �1) (Xj � �1) ei(i�j)!
35 f�1� (!) d!

=

�Z
��

24 1
2�

N�1X
k=�(N�1)

0@ 1

N

N�jkjX
t=1

(Xt � �1)
�
Xt+jkj � �1

�1A e�ik!

35 f�1� d!

=

�Z
��

1
2�

NX
k=1

b
 (k) e�ik!
f� (!)

d!

=

�Z
��

I (!)

f� (!)
d!:

Hence, the Whittle MLE may be obtained by computing the periodogram function I (!)

and minimizing
�Z
��

log f� (!) d! +

�Z
��

I (!)

f� (!)
d! (3.22)

with respect to �. The evaluation of the Whittle Likelihood in this form may be done very

fast by computing the periodogram via the Fast Fourier Transform with computational

order of O (N logN) (Press et al., 1992, p. 498).

A further re�nement of the method may be obtained by replacing the integrals in (3.22)

by simple sums. In most applications, we usually assume that the spectral density of the

process satis�es positivity a.e. and

f (!) = O
�
j!j��

�
for some � > �1 (It basically corresponds to the invertibility condition). Thus 1

f(�;�) is a

Rieman-integrable function on � and we may get the following discrete approximation of

the Whittle Likelihood,



49

4�

N

[N=2]X
j=0

�
log f (!j;N ; �) +

I (!j;N )

f (!j;N ; �)

�
: (3.23)

where

!j;N =
2�j

N
; j = 1; :::; N�;

and N� is the integer part of N�12 .

Hannan (1973) considered both the Whittle�s likelihood (3.22) and the discrete version of

it, (3.23), for linear time series with absolutely positive and twice continuously di¤erentiable

spectral densities. Hannan�s (1973) result is thus applicable only for the short-memory case,

for which he proved consistency and asymptotic normality of the Whittle�s estimates. Fox

and Taqqu (1986) dealt again with the Whittle MLE (3.22) for the long memory case,

� 2 (0; 1) ; with � known or zero, and they were able to show that the Whittle�s estimator

is being asymptotically normal with the same rate of convergence as in the short memory

case. Dahlhaus (1989) extended Fox and Taqqu�s (1986) result to the case where �0 is

unknown. Dahlhaus (1989) also proved asymptotic e¢ ciency of the Whittle estimate for

long memory processes, and showed that the exact and the Whittle MLE obtain the same

�rst order asymptotic properties as was shown in (3.11). Giraitis and Surgailis (1990)

relaxed Gaussianity and established similar results with the Whittle MLE of general linear

processes with long memory,

Xt =

k=1X
k=�1

 j(k)�t�j ;

where �t are any zero mean and iid disturbances. Heyde and Gay (1993) and Hosoya (1997)

considered multivariate non-Gaussian case. Velasco and Robinson (2000) considered the

discrete Whittle likelihood (3.23) and proved asymptotic normality and e¢ ciency of the

Whittle MLE for any memory parameter in the range � > �1, where � is permitted to

exist in the nonstationary region [1;1). However, in the case of nonstationarity the spectral

density is not de�ned. In this case, it is common to de�ne a generalized spectral density,

and the periodogram is then viewed as an estimate of that generalized spectral density.

In addition, in the case of nonstationarity, some smoothing operation on the periodogram,
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called tapering, is usually required to reduce the periodogram bias (see, e.g., Priestly 1981

p. 563).

Overall, the Whittle MLE is a very popular technique for estimation of long memory,

and is considered to be a competitive rival for the exact MLE. It is a relatively fast and

e¢ cient method. As mentioned in Section 3.3.1, Cheung and Diebold (1994) and Nielsen and

Frederiksen (2005) showed that the discrete Whittle MLE is preferable to the exact MLE

(and also to the non-discrete Whittle MLE) in the case of unknown mean. Hauser (1999),

however, showed by simulations that the discrete Whittle estimate has serious de�ciencies

for large parameter ranges. He recommends using the Whittle Likelihood with a tapered

periodogram in all cases.

3.4 Semi-Parametric Estimation

3.4.1 R/S Statistics

Hurst (1951, 1956) discovered the characteristics of long memory while investigating the

Nile river�s �ow stream as well as other records of hydrological time series (see Section 2.3).

For a given time series, X, Hurst (1951, 1956) examined the behaviour of adjusted rescaled

range (R=S) statistic, given at time point t and lag k by

R=S (t; k) =

max
1�i�k

�
St+i � St � i

k (St+k � St)
�
� min
1�i�k

�
St+i � St � i

k (St+k � St)
�

�
k�1

t+kP
i=t+1

�
Xi �Xt;k

�2�1=2 ; (3.24)

where St =
tP
i=1
Xi. He observed that for many of his records, R=S (t; k) can be described

to behave asymptotically like ckH where c is some positive constant and H > 1
2 . This

empirical �nding was in contradiction to results for stationary process with short-memory

usually considered at that time, from whom R=S (t; k) should behave asymptotically like a

constant times k
1
2 . Hurst�s �nding that the R=S (t; k) statistic behaves like kH with H > 1

2

is called the Hurst e¤ect. Motivated by Hurst�s empirical �ndings, Mandelbrot and co-

workers later introduced FGN as a statistical model with long memory (see Section 2.4.2),

where the memory parameter of the model is denoted by H for Hurst.



51

Mandelbrot (1975) showed that under mild regularity conditions k�HR=S (t; k) con-

verges in distribution to a nondegenerate random variable in the limit where k !1. This

suggests that for large values of k, a plot of logR=S against log k should be randomly

scattered around a straight line with slope H,

logE [R=S] � a+H log k:

For a given time series with length N , we may sample N � k + 1 di¤erent values of the

R=S (t; k) statistics that correspond to lag k in 1; ::; N; by taking all possible values of time

points t = 0; 1; 2; :::; N � k. The Hurst coe¢ cient H is then estimated by �tting a linear

line to the plot and �nding its slope for large values of k with a least squares regression or

"by eye".

A desired property of the R=S-statistic proved by Mandelbrot (1975) is that this method

is robust against long-tailed marginal distribution, in the sense that ifX is iid with E
�
X2
t

�
<

1 and it is in the domain of attraction of stable distributions with index 0 < � < 2, the

asymptotic slope in the R=S plot remains 1
2 . However, many other di¢ culties arise while

using this method. The distribution of the R=S-statistic seems to be very complex, and it

is neither normal, nor symmetric. The values of R=S (t; k) for di¤erent time points t and

lags k are not independent from each other, and as k tends to N we get less samplings of

the R=S-statistic.

3.4.2 Correlogram-Based Estimation

The plot of the sample correlations b� (k) against the lag k (correlogram) is a standard
tool for a preliminary analysis of a time series analysis. A common rule of thumb is to

consider only correlations outside of the band of � 2p
N
(see, e.g., Priestly 1981, p. 340). As

we have seen in Chapter 2, one of the characteristics of long-memory processes is that the

autocorrelations � (k) decay at a hyperbolic rate as k !1 (see (2.7)). This asymptotic rule

suggests estimating the memory parameter � by evaluating the asymptotic rate of decay of

the sample autocorrelations.

For example, a suitable plot can be obtained by taking the plot of log j� (k)j against log k.
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If the asymptotic decay of the correlations is hyperbolic, then for large lags, the points in

the plot should be scattered around a straight line with negative slope approximately equal

to � � 1. In contrast, for short-memory processes, the log-log correlogram should show

divergence to minus in�nity at a rate that is at least exponential. A closed-form estimate

based on this idea was proposed by Robinson (1994) and was studied by Hall, Koul and

Turlach (1997). A di¤erent proposal of Robinson (1994) is to consider the estimator obtained

by nonlinear regression that minimizes the sum of square
PN
k=M

�b� (k)� c2k��1�2, where
M increases with N but signi�cantly slower than N . Hall, Koul and Turlach (1997) also

discuss this suggestion.

Essentially, similar di¢ culties, as with the R=S plot method, apply here. The distrib-

ution of the regression coe¢ cients is complex, and it is not clear how to build con�dence

intervals for the estimators. Because of these reasons, the semiparametric time domain

methods are usually considered only as heuristic methods. This is in contrast to semipara-

metric methods of estimation in the frequency domain, discussed in the next sections.

We �nally mention brie�y that Tieslau, Schmidt and Baillie (1995) proposed a para-

metric version of the minimum distance estimator, which is similar to Robinson�s (1994)

semiparametric nonlinear regression estimator, but where the autocorrelations are taken to

be those of an ARFIMA(p,d,q) process. Tieslau, Schmidt, and Baillie (1995) and Chung

and Schmidt (1995) managed to achieve with this method the
p
N rate of convergence of

the parameter estimates as in the other parametric methods.

3.4.3 Log-Periodogram Regression

The log-periodogram regression method is a frequency domain semiparametric estimator

for the memory of the series, �. It does not require the speci�cation of a parametric model

for the data, but only relies on the shape of the spectral density near the origin (2.6). This

behaviour of the spectral density can be formulated by a simple linear relation in �,

log f (!) ' log c1 � � log j!j as j!j ! 0; (3.25)
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suggesting that a linear regression on very low frequencies can be applied for estimation of

�.

Geweke and Porter-Hudak (1983) suggested a semiparametric estimator (also referred

to as the GPH estimator) achieved by regressing the periodogram on the low frequencies in

a log-log scale. With analogy to (3.25), the Geweke and Porter-Hudak�s (1983) proposed

model is

log I (!j;N ) ' log c� � log!j;N + "j : (3.26)

Here !j;N are taken to be only the low frequencies

!j;N =
2�j

N
; j = 1; :::;M;

whereM increases with N but signi�cantly slower than N , so that particularly !M;N ! 0 as

N !1. The estimate b� of the true memory parameter � is then obtained by calculating the
regression slope. Relying on some heuristic arguments, Geweke and Porter-Hudak (1983)

claimed that under this setting

p
M (b�� �)!

d
N

�
0;
�2

6

�
: (3.27)

In fact, in the case of a long memory process where the periodogram is calculated at increas-

ing number of Fourier frequencies, and in particular if !j;N ! 0 for �xed j, it was shown by

Künsch (1986), Hurvich, and Beltrao (1993) and Robinson (1995a) that the "j in (3.26) may

have a complex distribution, not taken into account by Geweke and Porter-Hudak (1983).

Particularly, the "j are not homoscedastic and they may be seriously biased and correlated,

even asymptotically. Nevertheless, Robinson (1995a) proved (3.27) to hold for Gaussian,

zero mean, stationary processes with memory parameter in the range �1 < � < 1. Robinson

(1995a) also showed that by pooling the periodogram values at J adjacent frequencies

!j;N ; !j�1;N ; :::; !j�J;N ; j = J + 1; :::;M;

(J does not depend on N , so particularly it is assumed that J << N), the asymptotic

variance in (3.27) can be reduced. Particularly, it converges to 1 from above as J !1.

Hurvich and Ray (1995) extended Robinson�s (1995a) result for all the range � < 3.

Thus, they provided a uniform theory that covers the whole range of noninvertibility, and
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also the possibility of some degree of nonstationarity, in which they used a tapered pe-

riodogram. Velasco (1999a) further developed the use of tapering for this method and

established a general tapered version of the method for every � > 1. Velasco (2000) also re-

laxed Gaussianity and provided a version of (3.27) for general Gaussian processes. Hurvich,

Deo and Brodsky (1998) dealt with the issue of choosing a bandwidth, M; and proved that

M � N4=5 implies an optimal estimator of � in the Mean Square Error sense. However,

they also showed that the multiplying constant of the optimal M depends on the unknown

parameters. Hurvich and Deo (1999) proposed a data-dependent consistent estimate of this

constant.

Log-periodogram regression has become a popular method for estimation or for �rst

diagnostic of the memory of a time series. It is simple to apply and in contrast to the

parametric methods discussed above, almost no assumptions are made on the underlying

process, besides on the shape of the spectral density near the origin. On the other hand, the

rate of convergence of the memory parameter is slower than the
p
N rate achieved by the

parametric methods. Moreover, small sample studies of the the log-periodogram regression

have indicated a serious bias of the estimator b�, which is a consequence of the non-ideal
distribution of the "j , addressed above (see Hurvich and Beltrao 1993).

3.4.4 Local Whittle

The local Whittle estimate was proposed by Künsch (1987) and was later developed by

Robinson (1995b). They consider a narrow band version of the discrete Whittle MLE

(3.23) that, in a similar way to the log-periodogram Regression, relies only on the shape of

the spectral density near the origin (2.6).

The local Whittle estimation is obtained by minimizing the objective function, given by

1

M

MX
j=1

(
log
�
c1!

��
j;N

�
+
I (!j;N )

c1!
��
j;N

)
(3.28)

with respect to parameters c1 > 0 and � 2 �. Here, !j;N , M plays the same role as in the

log-periodogram regression, that is to say, M increases with N but signi�cantly slower than

N such that !M;N ! 0 as N !1.
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Note also that we may plug-in the (local) pro�le estimator of the parameter

bc1 = 1

M

MX
j=1

I (!j;N )

!��j;N

into (3.28) instead of the unknown true c1 to get an objective function that depends on the

memory parameter only,

Q(H) = log

8<: 1

M

MX
j=1

I (!j;N )

!��j;N

9=;� � 1M
MX
j=1

log!j;N : (3.29)

As in the parametric methods discussed above, the local Whittle estimation requires a

numerical procedure for �nding the maximum of (3.28) or (3.29). However, the parameter

dimension is low and the estimator is usually easy to locate.

Robinson (1995b) established for the local Whittle estimator b� that under j�j < 1 and
zero mean,

p
M (b�� �)!

d
N (0; 1) : (3.30)

Thus, the local Whittle estimation performs asymptotically better then the log-periodogram

method (see (3.27)). In particular, the limit result (3.30) corresponds to the pooled log-

periodogram estimator of Robinson (1995a) when the degree of pooling, J , tends to in�nity.

Lobato (1999) proposed a multivariate extension for the local Whittle estimation. Ve-

lasco (1999b) extended Robinson�s (1995b) results for the whole range of � > �1. As with

all the previous estimators in the frequency domain, a tapering procedure is required for

the nonstationary region of the memory parameter. Particularly for the local Whittle esti-

mator, tapering is required to ensure consistency of the estimator for � > 2 and asymptotic

normality for � � 112 .

A main problem with tapering is that tapering may strongly in�ate the variance of

the estimator � (see Velasco 1999(a,b)). Hurvich and Chen (2000) proposed a taper that

improves the e¢ ciency of the local whittle estimator for di¤erenced data with memory

parameter � < 3; but for � � 112 it still does not reach the asymptotic variance achieved in

the range � < 112 . Moreover, Phillips (1999), Phillips and Shimotsu (2003), Kim and Phillips

(2006) showed that when � > 2 the local whittle, as well as the untaperred log-periodogram
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regression estimators, are inconsistent, and when � � 112 they exhibit a nonstandard limit

distribution. Shimotsu and Phillips (2004) proposed a new semiparametric estimation,

called the exact local Whittle, which is similar to the local Whittle estimation in that it is

based on a narrow band of the discrete Whittle MLE, but when the periodogram I (!j;N )

is replaced by a more e¢ cient data-dependent approximation of the spectral density near

the origin, basically relying on the relation (Phillips 1999, Theorem 2.2)

I (!)!�j;N � Ir�=2X (!) ; as ! ! 0; (3.31)

where Ir�=2X (!j;N ) is the periodogram of the (short memory) fractionally di¤erenced series

r�=2X. The exact local Whittle estimator is then obtained by minimizing

Q(G;H) =
1

M

MX
j=1

�
log
�
c1!

��
j;N

�
+
Ir�=2X (!)

c1

�
(3.32)

with respect to parameters c1 > 0 and � 2 �. Shimotsu and Phillips (2004) proved that

the exact local Whittle estimator is consistent and achieves the asymptotic result (3.30) for

each value of � 2 R if the true mean of the series is known. Shimotsu (2006) showed that

the same result holds in the feasible case of unknown mean and � 2 (�1; 4).
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Chapter 4

MAIN RESULTS

4.1 Introduction

Throughout this chapter we consider a stationary Gaussian time series X with mean �0 and

spectral density f�0 (!) ; ! 2 � � [��; �], where �0 and �0 are unknown parameters of the

process which have to be estimated. We are interested in sequences with spectral densities

f�0 (!) that belongs to the parametric family ff� : � 2 � � Rpg such that for all � 2 �

f� (!) � j!j��(�) L� (!) as ! ! 0;

where �1 < � (�) < 1 and L� (!) positive and varies slowly in the sense that

L� (!) = O
�
j!j��

�
for each � > 0:

Note that according to the de�nition described in Section 2.3, such a series is said to have

long memory if 0 < � (�0) < 1, short memory if � (�0) = 0 and intermediate memory if

�1 < � (�0) < 0. Under this setting, the Gaussian maximum likelihood estimates (MLE)

might be expected to have optimal asymptotic statistical properties.

As seen in Section 3.3.1, Hannan (1973) proved consistency and asymptotic normality of

the Gaussian MLE for the case of possibly dependent observations, but with short memory.

The corresponding proof for the case of long memory, � (�) 2 (0; 1) ; where �0 is possi-

bly unknown, is due to Dahlhaus (1989, 2005). He considered the estimator obtained by

minimizing the plug-in log-likelihood function (normalized by �N),

1

2N
log det�N (f�) +

1

2N
(X� �̂N1)0�N (f�)�1 (X� �̂N1) ;

with respect to �, where �N (f�) =
hR �
�� e

i(r�s)xf� (x) dx
i
r;s=1;:::;N

is the covariance matrix

of the process, 1 = (1; :::; 1)0 and �̂N is a consistent estimator of �0 (e.g., the arithmetic
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mean. see Section 3.2.1) that is plugged into the likelihood functions instead of the unknown

mean. Dahlhaus (1989, 2005) proved

p
N
�
�̂N � �0

�
!
d
N
�
0;� (�0)

�1
�
;

where �̂N denotes the maximum likelihood estimate and �(�) is the Fisher information

matrix given by

�(�) = �E
�

@2

@�j@�k
LN (�)

�
j;k=1;:::;p

:

Thus, Dahlhaus proved the e¢ ciency of plug-in MLE.

The main object of this chapter is to extend Dahlhaus�s (1989, 2005) results to include

possibly short-memory or anti-persistent time series, without a priori knowledge of the

memory of the time series. We adapt the proof technique of Dahlhaus essentially based

on the asymptotic behaviour of Toeplitz matrices. Many of Dahlhaus�s arguments are

extended and simpli�ed by a development of a uniform limit for the plug-in log-likelihood

function that is valid on any compact parameter subspace �1 of � in which � (�) > � (�0)�

1. Not surprisingly, this limit is identical to the limit of the Whittle log-likelihood in

the same parameter subspace (cf. Fox and Taqqu 1986 and Velasco and Robinson 2000).

In order to derive this limit result, we use a uniform version of Dahlhaus�s Theorem 5.1

due to Lieberman, Rousseau and Zucker (2003) and Lieberman and Phillips (2004). We

also establish a uniform version of Grenander and Szegö�s (1958) Theorem on the limit of

determinants of Toeplitz matrices.

The rest of Chapter 4 is organized as follows. Section 4.2 states the assumptions for

the rest of the chapter. These assumptions are proved to hold for both FGN with memory

parameter 0 < H < 1 and for ARFIMA time series with memory parameter �1
2 < d < 1

2 .

Section 4.3 introduces some limit theorems for the traces and log-determinants of Toeplitz

and inverse-Toeplitz matrices. These results assist us in Section 4.4 to derive the limit

distribution of quadratic forms that involve inverse Toeplitz matrices. Section 4.5 contains

a proof of the consistency of the exact MLE. Section 4.6 provides a proof of asymptotic

normality and e¢ ciency of the estimator.
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4.2 Model Assumptions

The results are proved under the following assumptions:

(A.0) (a) X = fXtgt2Z is a stationary Gaussian sequence with mean �0 and spectral

density f�0 (!) ; ! 2 � � [��; �], where �0 and �0 2 � � Rp are unknown parameters.

If � and �0 are distinct elements of �, we assume that the set f!jf� (!) 6= f�0 (!)g has a

positive Lebesgue measure.

(b) We suppose that �0 lies in the interior of �, and that � is compact.

In addition, we require the following assumptions on f� (!). There exists � : �! (�1; 1)

such that for each � > 0

(A.1) f� (!) ; f
�1
� (!) ; @=@!f� (!) are continuous at all (!; �), ! 6= 0, and

f� (!) = O
�
j!j��(�)��

�
;

f�1� (!) = O
�
j!j�(�)��

�
;

@

@!
f� (!) = O

�
j!j��(�)�1��

�
:

(A.2) @=@�jf� (!) and @2=@�j�kf� (!) are continuous at all (!; �), ! 6= 0, and

@

@�j
f� (!) = O

�
j!j��(�)��

�
; 1 � j � p;

@2

@�j@�k
f� (!) = O

�
j!j��(�)��

�
; 1 � j; k � p:

(A.3) The function � (�) is continuous, and the constants appearing in the O (�)

above can be chosen independently of � (not of �).

If assumptions (A.1)-(A.3) hold for f� (!) on some parameter subspace, say �� � �,

and not necessarily on �, we say that f� (!) satis�es assumption (A.1)-(A.3) on �� with

exponent �� : �� ! (�1; 1).

Assumptions (A.0)-(A.3) are modi�cations of Dahlhaus�s (1989) assumptions (A0), (A2),

(A3) and (A7)-(A9) to our case. The most important aspect of the assumptions is that � (�)

may have values in the interval (�1; 1). It is, as aforesaid, extending Dahlhaus (1989) who

limited � (�) to the interval (0; 1). As a result, f�1� and its derivatives in � are not assumed

to be continuous at all (!; �), as in Dahlhaus. It should be also noted that besides the
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assumption f� (!) = O
�
j!j��(�)��

�
; the rest of Dahlhaus�s assumptions are presented in

terms of f�1� and its derivatives instead of f�. However, because f� (!) and f
�1
� (!) have

lower bounds (see (4.1) and the related discussion below), it is easily seen that the two

presentations are equivalent. For example,���� @@�j f�1� (!)

���� = ���� @@�j f� (!)
����� f2� (!) :

Assumption (A.0) is a background assumption of the model, and it corresponds to

assumption (A0) of Dahlhaus (1989). We have divided this assumption into two parts.

While part (a) indicates the general features of the parametric representation of the process,

part (b) is in fact a technical condition on the form of the boundaries of the parameter

space. This latter condition is required to ensure uniform consistency of the MLE. It is

always possible, however, in our situation to "extend" the boundaries of the parameter space

and to make (A.0)(b) hold, without changing the validity of the rest of the assumptions.

Assumption (A.1) and (A.2) are needed to derive the limit of the plug-in log-likelihood

function and its derivatives in �. Assumption (A.1) corresponds to assumptions (A2) and

(A7) (for k = 0; 1) of Dahlhaus (1989), and assumption (A.2) corresponds to assumption

(A3) (without the third order di¤erentiability) of Dahlhaus (1989). Dahlhaus also assumed

that @2

@!2
f� (!) and @3

@�j@�k@�l
f� (!) are continuous at all (!; �), ! 6= 0, and @2

@!2
f� (!) =

O
�
j!j��(�)�2��

�
; @3

@�j@�k@�l
f� (!) = O

�
j!j��(�)��

�
for every � > 0. He used the second

order di¤erentiability in ! in order to bound f� (!) uniformly above zero, and the third

order di¤erentiability in � to establish asymptotic equicontinuity of quadratic forms that

involve inverse Toeplitz matrices. However, it turned up that both these conditions are not

necessary for the establishment of the results. Assumption (A.3) corresponds to Dahlhaus�s

(1989, 2005) assumptions (A8) and (A9). This assumption is required for the uniform

approximation of the log-likelihood function, as in Lieberman, Rousseau and Zucker (2003).

Note that the upper bounds for f� (!) and f
�1
� (!) that appear in assumption (A.1)

imply that for each � > 0 there are positive constants C1; C2 such that

C1 j!j��(�)+� � f� (!) � C2 j!j��(�)�� : (4.1)

Condition (4.1) appears explicitly, e.g., in Fox and Taqqu (1986, Section 4) for the case of
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long memory. Dahlhaus (1989) also relies on this implication in his proof of Lemma 5.3 (see

also Lemma 4.3.1 of this thesis). We will make a direct use of the lower bound of f� in the

proof of the consistency of the plug-in MLE.

In addition to the foregoing assumptions, an additional assumption is required on the

plug-in estimate of �0. This assumption will be formally presented in Section 5.4 as as-

sumption (A.4).

We show now that assumptions (A.0)(a) and (A.1)-(A.3) hold if fXt � �gt2Z is FGN

or Gaussian ARFIMA process (Condition (A.0)(b) is assumed to be satis�ed anyway by a

proper choice of ��s boundaries). Recall from Chapter 2 that the spectral density fH (!)

of an FGN is given by

f�2;H (!) = F
�
�2;H

�
(1� cos!)

1X
k=�1

j! + 2�kj�1�2H ; ! 2 �;

with

F
�
�2;H

�
= �2

(Z �

��
(1� cos!)

1X
k=�1

j! + 2�kj�1�2H d!
)�1

(4.2)

and �2 = V ar (Xi). ARFIMA(p,d,q), on the other hand, has a more-easy to handle spectral

density fd;�;� (!) given by

f�2;d;�;� (!) =
�2

2�

��� �e�i!���2
j� (e�i!)j2

��1� ei!���2d ; ! 2 �;

with � (z) = 1 +
Pp
j=1 �jz

j and � (z) = 1 +
Pq
j=1 �jz

j . The polynomials � (z) and � (z) are

assumed to have have no common zeros and to have all their zeros outside the unit circle.

This implies that both �(z)
�(z) and

�(z)
�(z) have a power series expansion for all z 2 C; jzj � 1

(see Box and Jenkins 1970).

Theorem 4.2.1 Suppose that the parameter space � is compact. Then conditions (A.0)(a)

and (A.1)-(A.3) are ful�lled if fXt � �gt2Z is an FGN where � =
�
�2;H

�
and 0 < H < 1

or a Gaussian ARFIMA(p,d,q) where � =
�
�2; d; �1; :::; �p; �1; :::; �p

�
and jdj < 1

2 .

Proof. Note that (A0)(a) is satis�ed for both FGN and ARFIMA(p,d,q) by the Gaussianity

of the processes and by the fact that f�2;H (!) and f�2;d;�;� (!) are determined uniquely by
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�
�2;H

�
and

�
�2; d; �1; :::; �p; �1; :::; �p

�
, respectively (see Sections 2.4-2.5). We start by

proving that (A.1)-(A.3) hold for an FGN with � (�) = 2H � 1. We write f�2;H (!) as

f�2;H (!) = �2

(Z �

��

1X
k=�1

fk (!;H) d!

)�1 1X
k=�1

fk (!;H) :

where

fk (!;H) = (1� cos!) j! + 2�kj�1�2H :

f0 (!;H) = (1� cos!) j!j�1�2H is twice continuously di¤erentiable and positive at all

(!;H), ! 6= 0, and

@

@!
f0 (!;H) = sin! j!j�1�2H + (1� cos!) j!j�2�2H ;

@

@H
f0 (!;H) = �2 (1� cos!) j!j�1�2H log (j!j) ; 1 � j � p;

@2

@H2
f0 (!;H) = 4 (1� cos!) j!j�1�2H log2 (j!j) ; 1 � j; k � p:

Since 1� cos! � j!j2 =2 and sin! � j!j as ! ! 0, we get that

f0 (!;H)/ j!j1�2H ; f�10 (!)
�
j!j�1+2H ; @

@!
f0 (!;H)

�
j!j�2H ;

@

@H
f0 (!;H)

�h
j!j1�2H log (j!j)

i
and

@2

@H2
f0 (!;H)

�h
j!j�1�2H log2 (j!j)

i
are continuous at all (!;H), ! 6= 0, and note the discontinuity in ! 6= 0 is removable.

These imply that f0 (!;H) satis�es assumption (A.1)-(A.3), where the uniform bounding

assumption in (A.3) is ful�lled because of the compactness of �.

Consider now
P
k 6=0 fk (!;H). For each k 6= 0; fk (!;H) is nonnegative, twice continu-

ously di¤erentiable and bounded from above by gk = 4� jkj�1�2Hm at all (!;H) ; where

Hm = min
�2�

H:

Since Hm > 0, we have
P
k 6=0 gk < �, and by Weierstrass�s M-test the series

P
k 6=0 fk (!;H)

converges uniformly. As a result,
P
k 6=0 fk (!;H) is continuous, and hence also bounded, at

all (!;H). Similar arguments show that the derivatives of
P
k 6=0 fk (!;H) are given as the

in�nite sum over k 6= 0 of the corresponding derivatives of the summands fk (!;H), and
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that they are also continuous and bounded at all (!;H). As a results from what we have

proved so far, it follows that
P1
k=�1 fk (!;H) satis�es assumption (A.1)-(A.3).

We also get now that the normalizing factor
R 2�
�2�

P1
k=�1 fk (!;H) d! can be bounded

from below and above by some positive constants that are independent of H. Hence,

the assertion will follow if
R 2�
�2�

P1
k=�1 fk (!;H) d! is twice continuously di¤erentiable at

all (!;H). This can be shown with the dominated convergence theorem. For example,

the continuity of
R 2�
�2�

P1
k=�1 fk (!;H) d! follows from the fact that

P1
k=�1 fk (!;H) �

K j!j�1�2H , where K is independent of H, and therefore

lim
!�!!

Z 2�

�2�

1X
k=�1

fk (!
�;H) d! =

Z 2�

�2�
lim
!�!!

1X
k=�1

fk (!
�;H) d!:

For Gaussian ARFIMA(p,d,q) process it is much simpler to verify conditions (A.1)-(A.3)

with � (�) = 2d. The polynomials � (z) and � (z) are assumed to have all their roots outside

the unit circle, and therefore j�(e
�i!)j2

j�(e�i!)j2 is a positive and twice continuously di¤erentiable at

all
�
!; �1; :::; �p; �1; :::; �p

�
. Since by Taylor expansion

��1� ei!�� � j!j as ! ! 0, assumptions

(A.1) and (A.2) are satis�ed by f�2;d;�;�. The uniform bounding assumption in (A.3) is also

ful�lled, as above, by the fact that � is compact.

4.3 Limit Theorems for Toeplitz Matrices

Toeplitz matrices arise quite naturally in the study of stationary processes, since the N �N

covariance matrices of such processes are Toeplitz. To be precise, in the general case of

stationary processes we are concerned with N �N matrices of the form

�N (f) =

�Z �

��
ei(r�s)!f (!) d!

�
r;s=1;:::;N

(4.3)

where f (!) is the spectral density of the process, which is nonnegative, integrable, real and

symmetric on � � [��; �] (see Section 2.2). The most common and complete reference

describing the Theory of Toeplitz matrices is Grenander and Szegö (1958). However, some

essential theory of Grenander and Szegö is applicable for Toeplitz matrices corresponding

to spectral density functions which are positive and uniformly bounded from beneath and

from above. For long memory or anti-persistency cases a more general setting is required.
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Some more recent theory of Fox and Taqqu (1987), Avram (1988), Dahlhaus (1989, 2005),

Lieberman, Rousseau and Zucker (2003) as well as Lieberman and Phillips (2004) sheds

light on some crucial asymptotic properties of Toeplitz matrices of the form (4.3) that may

be applied in exploring the likelihood function of long or anti-persistent Gaussian process.

The goal of this section is to present some of these asymptotic results in a uniform version

required for our later arguments.

Suppose A is an N �N matrix and denote by kAk the spectral norm of A, that is,

kAk = sup
x2Cn

�
x�A�Ax

x�x

�1=2
;

where A� is the conjugate transpose of A. The following well known relations between

matrix norms are used in the rest of the chapter without further reference (see, for instance,

Golub and Van Loan 1996, Section 2.2).

(i) kABk � kAk � kBk ;

(ii) kA+Bk � kAk+ kBk :

If A is Hermitian and positive-de�nite, then

(iii) x�Ax � x�x kAk for x 2 CN .

The following Lemma is a direct extension of Lemma 5.3 of Dahlhaus (1989), established

in a similar way to the proof of Dahlhaus (1989, Lemma 5.3). Nevertheless, we provide here

an expository proof.

Lemma 4.3.1 Let �� be a compact subset of �. Suppose that f� (!) and g� (!) are sym-

metric nonnegative functions, ! 2 �; � 2 ��, such that there exist continuous functions

� (�) ; � (�) < 1 and positive constants C1; C2 that are not dependent of �, with

f�1� (!) � C1 j!j�(�) ;

g� (!) � C2 j!j��(�) :

Then we obtain with a positive constant K independent of � and N




�N (f�)�1=2�N (g�)1=2


 = 


�N (g�)1=2�N (f�)�1=2


 � KNmaxf (�(�)��(�))/2; 0g:
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Proof. Referring to Lemma 5.3 of Dahlhaus (1989), Dahlhaus stated his Lemma for strictly

positive f� (!) and g� (!) with 0 < � (�) ; � (�) < 1 and where C1; C2; and hence also K;

may depend on � and N . In a similar way to Dahlhaus (1989, Lemma 5.3) we achieve the

bound 


�N (f�)�1=2�N (g�)1=2


2
= sup

jxj=1

R �
�� g� (x)

���PN
n=1 xn exp (�i
n)

���2 d
R �
�� f� (x)

���PN
n=1 xn exp (�i
n)

���2 d

� K1 sup

h2PN

R �
�� j
j

��(�) h (
) d
R �
�� j
j

��(�) h (
) d

;

where PN =
n
h (
) : h (
) � N and

R �
�� h (
) = 1

o
. Here, K1 is a positive constant that

can be chosen independently of � and N because C1 and C2 are independent of �. For each

� 2 �� such that � (�) � � (�) ; the above expression is bounded. For each � 2 �� such that

� (�) > � (�) ; the sup is attained by h (
) = N�fj
j<1=2Ng and


�N (f�)�1=2�N (g�)1=2


2 � K2N
�(�)��(�);

where K2 can be chosen independently of of � since � (�) ; � (�) � 1� � for some � (��) > 0.

The next Theorem is a generalized version of Theorem 5.1 of Dahlhaus (1989) and it

deals with asymptotic approximation of traces of products of Toeplitz and inverse-Toeplitz

matrices. Part (a) of the Theorem is a direct adaptation of Theorem 7 of Lieberman

and Phillips (2004), which extended Dahlhaus�s Theorem 5.1 to a wider range of Toeplitz

matrices and also established error orders for the limits approximation. The uniformity in

� is obtained by similar arguments to those of Lieberman, Rousseau and Zucker (2003),

which developed a uniform version of Dahlhaus�s Theorem 5.1. Part (b) of the Theorem

obtains similar result to those of Theorem 1(b) of Fox and Taqqu (1987) and Theorem 1(b)

of Avram (1988), but when also inverse Toeplitz matrices are allowed in the products within

the trace term. The proof of part (b) follows directly with the same lines of arguments as

in Theorem 5.1 of Dahlhaus (1989) and Theorem 7 of Lieberman and Phillips (2004), but

when part (b) of Theorem 1 of Fox and Taqqu (1987) is used instead of part (a).
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Theorem 4.3.1 Let �� be a compact subset of �. Let p 2 N [ f0g and let f
�;j
(!) and

g
�;j
(!) ; j = 1; :::; p + 1, be symmetric, real-valued functions on �. Suppose that for each

j = 1; :::; p + 1; f
�;j
(!) satis�es assumptions (A.1)-(A.3) on �� with exponent � (�) that

does not depend on j. Suppose also that for each � > 0

jg�;j (!)j � K (�) j!j��(�)�� ; j = 1; :::; p;

and

jg�;p+1 (!)j � K (�) j!j��
�(�)�� :

where � (�) ; �� (�) < 1, continuous on �� and do not depend on j. Then

(a) If [pmax (� (�)� � (�) ; 0) + max (�� (�)� � (�) ; 0)] < 1 at all � 2 ��,

lim
N!1

1

N
tr

24p+1Y
j=1

n
�N (f�;j)

�1�N (g�;j)
o35 = 1

2�

Z �

��

8<:
p+1Y
j=1

g�;j (!)

f�;j (!)

9=; d!

uniformly in � 2 ��.

(b) Let � > 1. If [pmax (� (�)� � (�) ; 0) + max (�� (�)� � (�) ; 0)] < � at all � 2

��,

lim
N!1

1

N�
tr

24p+1Y
j=1

n
�N (f�;j)

�1�N (g�;j)
o35 = 0

uniformly in � 2 ��.

Remark 4.3.1 The result of Theorem 4.3.1 also holds for more general f
�;j
(!) and g�;j (!)

that satisfy similar conditions with �j (�) ; �j (�) that may depend on j. Note however that

the proof of Theorem 5.1 of Dahlhaus (1989) uses a chaining of matrices square roots of

the form �N (gj�1)
1=2�N (fj)

�1�N (gj)
1=2 and �N (gk�1)

1=2�N

n�
4�2fk

��1o
�N (gk)

1=2.

Therefore, in the general case, the conditions on the value of

[pmax (� (�)� � (�) ; 0) + max (�� (�)� � (�) ; 0)] ;

need to be replaced by equivalent conditions on the value of

p+1X
j=1

�
max

��
�j (�)� �j (�)

��
2; 0
	
+max

��
�j (�)� �j+1 (�)

��
2; 0
	�

where �p+2 = �1.
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The second Theorem presented in this section is a uniform version of Grenander and

Szegö�s (1958) Theorem, which represents the �rst part of the Whittle approximation, i.e.

of 1N logdet�N (f) by the integral
1
2�

�Z
��

log 2�f(!)d!. The next Lemma is the original result

of Grenander and Szegö, and it is followed by its uniform version.

Lemma 4.3.2 (Grenander and Szegö 1958, p. 65(12)) Let f(!) be a real-valued, non-

negative and integrable function on � such that
�Z

��

log f (!) d! > �1:

Then

lim
N!1

1

N
logdet�N (f) =

1

2�

�Z
��

log (2�f (!)) d!: (4.4)

Remark 4.3.2 Result (4.4) of Grenander and Szegö (1958) is in fact formulated for a

function f� (!) with positive and �nite lower and upper bounds, where f� (!) represents

1
2�f (!) in Lemma 4.3.2. The condition on the bounds of f

� (!) is then used to obtain a

weaker version of Theorem 4.3.1. Grenander and Szegö�s proof (p. 66(d)) of (4.4) is based

on the fact that the minimum, �N , of the integral

Tn =
1

2�

�Z
��

��1 + u1ei! + :::+ uNei!N �� f� (!) d!
where u1; :::; uN are complex variables, is given by

�N =
det�N (f

�)

det�N�1 (f�)
; (4.5)

while on the other hand they show that

lim
N!1

�N = exp

8<: 1

2�

�Z
��

log f� (!) d!

9=; : (4.6)

Hence, by using (4.5) and (4.6),

lim
N!1

det�N (f
�)

det�N�1 (f�)
= exp

8<: 1

2�

�Z
��

log f� (!) d!

9=; :

This implies (4.4). Both (4.5) and (4.6), however, hold for any f� (!) that obeys the weaker

conditions of Lemma 4.3.2 (see Grenander and Szegö 1958, 2.2(a) and 3.1(a)).
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The following Theorem states a uniform version for Grenander and Szegö�s result.

Theorem 4.3.2 Let �� be a compact subset of �. Suppose (A.1)-(A.3) hold. Then

lim
N!1

1

N
logdet�N (f�) =

1

2�

�Z
��

log (2�f� (!)) d!

uniformly in � 2 ��:

Proof. Set " > 0. We prove �rst that for each �0 2 � there exists a � > 0 and an integer

M� such that for all N �M�

sup
j���0j<�

������ 1N logdet�N (f�)�
1

2�

�Z
��

log (2�f� (!)) d!

������ < "; (4.7)

that is, 1
N logdet�N (f�) converges uniformly to

1
2�

�Z
��

log (2�f� (!)) d! on the �-ball with

center at �0, B
�
�0; �

�
. Since � (�) is continuous, we may suppose that � is always chosen

such that � (�) � �� < 1 on B
�
�0; �

�
. Note that the LHS of (4.7) is smaller than

sup
j���0j<�

���� 1N logdet�N (f�)�
1

N
logdet�N (f�0)

���� (4.8)

+

������ 1N logdet�N (f�0)�
1

2�

�Z
��

log (2�f�0 (!)) d!

������
+ sup
j���0j<�

������ 12�
�Z

��

log (2�f�0 (!)) d! �
1

2�

�Z
��

log (2�f� (!)) d!

������ :
Consider now the �rst term in (4.8). We obtain with a mean value ��

1

N
logdet�N (f�)�

1

N
logdet�N (f�0) �

pX
j=1

�
�j � �0j

� 1
N
tr

�
�N

�
@

@�j
f��

�
��1N (f��)

�
;

which converges uniformly to
pX
j=1

�
�j � �0j

�
� 1
2�

R �
��

n
@
@�j

f�� (!) f
�1
�� (!)

o
d! by Theorem

4.3.1. Since���� 12�
Z �

��

�
@

@�j
f�� (!) f

�1
�� (!)

�
d!

���� � 1

2�

Z �

��

����� @@�j f�� (!)
���� ��f�1�� (!)��� d!;
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assumptions (A.1)-(A.3) imply that
��� 12� R ��� n @

@�j
f�� (!) f

�1
�� (!)

o
d!
��� is bounded by some

positive constant, K, that is independent of �� and j. Therefore we have

sup
j���0j<�

���� 1N logdet�N (f�)�
1

N
logdet�N (f�0)

���� � �pK + j"�N j

with "�N ! 0. The last expression can be made as small as desired by appropriate choices of

� and N (or M�), and particularly it can be made smaller than "
3 . The second term in (4.8)

can also be made smaller than "
3 for large enough M� due to the fact that 1

N logdet�N (f�0)

converges to 1
2�

�Z
��

log (2�f�0 (!)) d! by Lemma 4.3.2. Since log (2�f�0 (!)) is continuous

and integrable, 1
2�

�Z
��

log (2�f�0 (!)) d! is continuous as well by the dominated convergence

theorem, and the third term in (4.8) can also be made smaller than "
3 for su¢ ciently small

�. Thus, we proved (4.7). Now, since �� is compact, it is possible to construct a �nite open

covering of �� by �j-balls with centers at �0j , j = 1; :::;K, such that (4.7) holds for each �
0
j .

As a result, we get that 1
N logdet�N (f�) converges uniformly to

1
2�

�Z
��

log (2�f� (!)) d! on

��.

4.4 Distribution of Quadratic Forms

It is convenient to adopt Dahlhaus�s (1989) notation, so rg� and r2g� are the gradient

vector and Hessian matrix of g� with respect to �, that is,

rg� =
�
@

@�j
g�

�
j=1;:::;p

and r2g� =
�

@2

@�j@�k
g�

�
j;k=1;:::;p

:

Denote �N (rf�) = r�N (f�) as the p-length gradient vector with j�th component equals

to the N � N matrix �N
�
@
@�j

f�

�
. Alternatively, �N (rf�) can be viewed as a three-

dimensional matrix (called cubix) in Rp�N�N , where the ijk entry of �N (rf�) repre-

sents the partial derivative of the jk�th entry of �N (f�) with respect to �j . Similarly,

�N
�
r2f�

�
= r2�N (f�) is the p � p Hessian matrix, with jk�th component equal to the

N � N matrix �N
�

@2

@�j@�k
f�

�
, or alternatively, a four-dimensional matrix (called quartix)
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in Rp�p�N�N . (cf. Dattorro 2005, Appendix D). Note that as an example,

jk�N (rf�)kj =

0@ pX
j=1





�N � @

@�j
f�

�



2
1A1=2 :

In many cases we use �� and �r;� as �N (f�) and �N (rf�), respectively. The following

notations are used as well:

A
(0)
� = �N (f�)

�1 ;

A
(1)
� = �N (f�)

�1�N (rf�) �N (f�)�1 ;

A
(2)
� = �N (f�)

�1�N
�
r2f�

�
�N (f�)

�1

and

A
(3)
� = �N (f�)

�1�N (rf�) �N (f�)�1�N (rf�)0�N (f�)�1 :

In the present section we aim to derive the asymptotic distribution of the quadratic

forms

(X� �̂N1)0A
(i)
� (X� �̂N1) ; i = 0; 1; 2; 3;

where �̂N is a consistent estimate of �0. The following Proposition states a well-known

expression for the joint cumulants for quadratic forms of stationary Gaussian time series

where the true mean of the series is known (see, e.g., Dahlhaus 1989, p. 1757).

Proposition 4.4.1 For each j = 1; :::; l, suppose that RN;j is an N�N nonnegative de�nite

matrix, and let

QN;j = (X� �01)0RN;i (X� �01) ; j = 1; :::; l;

be the corresponding quadratic form with matrix RN;j. Then, the l�th order joint cumulant

of (QN;1; :::; QN;l) is given by

kl (QN;1; :::; QN;l) = 2
l�1 1

l

X
tr

"
lY

k=1

(�N (f�0)RN;ik)

#
; (4.9)
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where the summation is over all permutations (i1; :::; il) of (1; :::; l). Particularly, if QN;i =

QN ; i = 1; :::; l, the ordinary l�th order cumulant of QN is given by

kl (QN ) = 2
l�1 (l � 1)!tr

h
(�N (f�0)RN )

l
i
: (4.10)

Because of the nonuniform behaviour of tr
h
�N (f�)

�1�N (f�0)
i
around � (�0)�� (�) =

1, implied by Theorem 4.3.1, we need to consider separately the case where � lies in some

compact subset of � in which max� (� (�0)� � (�)) < 1, and the case where it is possible

that � (�0)� � (�) � 1. A similar distinction between the two cases was taken by Fox and

Taqqu (1987) and Terrin and Taqqu (1990), who considered the distribution of the quadratic

form QN = (X� �01)0�N (f�) (X� �01). In the context of estimation, a similar treatment

appears in Robinson�s (1995b) consideration of semiparametric estimation for nonstationary

and invertible time series and Velasco and Robinson�s (2000) discrete-frequency version of

Whittle Likelihood estimation. We therefore de�ne

�1 = � \ f� 2 Rp : � (�) � � (�0)� 1 + "g (4.11)

for some " 2 (0; 1). " can be taken as small as desired. Particularly, if � (�0) � 0 we consider

�1 = �.

Theorem 4.4.1 Suppose (A.0)-(A.3) hold, and let Q(i)N;� = (X� �01)
0A

(i)
� (X� �01). Then

1

N
�Q(0)N ! p

1

2�

Z �

��

f�0 (!)

f� (!)
d!;

1

N
�Q(1)N ! p

1

2�

Z �

��

f�0 (!)rf� (!)
f� (!)

2 d!;

1

N
�Q(2)N ! p

1

2�

Z �

��

f�0 (!)r2f�
f� (!)

2 d!;

and
1

N
�Q(3)N !p

1

2�

Z �

��

f�0 (!) (rf� (!))
2

f� (!)
3 d!

uniformly in � 2 �1.

Proof. We prove the result for Q(3)N . The results for Q
(i)
N where i = 0; 1; 2 are obtained

similarly. Using the cumulants formula (4.10) we have

E
�
Q
(3)
N

�
=
1

N
tr
h
A
(3)
� ��0

i
;
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which converges to 1
2�

R �
��

f�0 (!)rf�(!)
2

f�(!)
3 d! uniformly on �1 by Theorem 4.3.1. Similarly,

Cov
�
Q
(3)
N

�
=

2

N2
tr

��
A
(3)
� ��0

�2�
;

which decays to 0 uniformly on �1 by Theorem 4.3.1. The result is then obtained with

Markov�s inequality.

The next two Lemmas derive asymptotic order for 10A(i)� 1, i = 0; 1; 2; 3. The �rst

Lemma is for i = 0, and it is due to Adenstedt (1974, Theorem 5.2). The second Lemma is

of Dahlhaus (1989, Lemma 5.4d), who proved a more general result for A(i)� with i = 0; 1; 2; 3.

Lemma 4.4.1 (Adenstedt 1974, Theorem 5.2) Suppose f (!) = 1
2�

��1� ei!���� � g (!)
where g (!) is symmetric, real valued, has positive upper and lower bounds and continuous

at ! = 0:Then as N !1;

��10��1� 1�� � B
�
1� �

2 ; 1�
�
2

�
� (1� �) g (0) N1��;

where B (p; q) = � (p) � (q)/ � (p+ q) is the Beta function and � (p) is the gamma function.

Lemma 4.4.2 (Dahlhaus 1989, Lemma 5.4d) Let �� be a compact subset of �. Sup-

pose (A.0)-(A.3) hold on ��. Then for each � 2 ��, � > 0 and i = 0; 1; 2; 3,���10A(i)� 1��� � KN1��(�)+�;

where K is positive and independent of � and N:

In order to obtain an analogous result to Theorem 4.4.1 with �̂N substituted for �0 in

the quadratic form Q
(i)
N , we assume that �̂N ful�lls the following condition.

(A.4) With � (�) as in assumptions (A.1)-(A.3), the following holds for each � > 0

(a) If �̂N is independent of � then

Nf1��(�0)g=2�� j�̂N � �0j = op (1) :

(b) If �̂N = �̂N (�) then

sup
�2�

h
Nf1�max(�(�0);�(�))g=2�� j�̂N � �0j

i
= op (1) :
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Part (a) of assumption (A.4) corresponds to the assumption on �̂N in Theorem 3.2 of

Dahlhaus (1989). This condition is ful�lled, for example, by the arithmetic mean and linear

M-estimates (see Section 2.4). The case where �̂N is dependent of � is also of particular

interest, for example, for the pro�le MLE of �0 (3.4), which depends on � through the

covariance matrix �N (f�). In the latter case we expect a di¤erent rate of convergence of

�̂N to �0 for di¤erent ��s (see, for example, Sections 7-8 of Adenstedt 1974). Consequently,

some additional considerations are required to derive a uniform convergence of the plug-in

log-likelihood and its derivatives. The next two Theorems show that we may get the desired

extension for any estimate of �0 that ful�lls assumption (A.4).

The following Theorem summarizes and generalizes some of the ideas of Dahlhaus (1989,

pp. 1757-1758), and it states an upper bound for the asymptotic order of the expression��� bQ(i)N �Q(i)N
��� where bQ(i)N = (X� �̂N1)0A

(i)
� (X� �̂N1)

and

Q
(i)
N = (X� �01)0A

(i)
� (X� �01) :

Theorem 4.4.2 Suppose (A.0)-(A.4) hold. Then for every � > 0, i = 0; 1; 2; 3;

(a) If � (�0) � � (�), ��� bQ(i)N �Q(i)N
��� � KN�(�0)��(�)+�;

with K is positive and independent of � and N:

(b) if � (�0) < � (�), ��� bQ(i)N �Q(i)N
��� � KN �;

with K is positive and independent of � and N:

Proof. Statements (a) and (b) are proved together for i = 3. The results for i = 0; 1; 2 are

obtained similarly. We have

��� bQ(i)N �Q(i)N
��� =

���2 (�0 � �̂N )10A(3)� (X� �01) + (�0 � �̂N )2 10A
(3)
� 1

���
� 2 j�0 � �̂N j

���10A(3)� (X� �01)
���+ j�0 � �̂N j2 ���10A(3)� 1��� :



74

The second term is smaller than KNmax(�(�0);�(�))��(�)+3� = KNmax(�(�0)��(�);0)+3�

with Lemma 4.4.2. Concentrate now on the �rst term. We prove that

2 j�0 � �̂N j
���10A(3)� (X� �01)

��� � KNmax(�(�0)��(�);0)+4�: (4.12)

We obtain

E�0

����10A(3)� (X� �01)
���2� (4.13)

�
���10A(3)� ��0A(3)� 1���

�



��1=2� �r;��

�1
� ��0�

�1
� �r;��

�1=2
�




 ���10A(3)� 1���
�




��1=2� �r;��
�1=2
�




2 


��1=2� ��0�
�1=2
�




 ���10A(3)� 1���
Let rf� = g+� � g

�
� with g

+
� ; g

�
� � 0.


��1=2� �r;��

�1=2
�




 � 


��1=2� �N
�
g+�
�
�
�1=2
�




+ 


��1=2� �N
�
g��
�
�
�1=2
�




 :
We may therefore assume here wlg that rf� is nonnegative, and by Lemmas 4.3.1 and 4.4.2

we get that (4.13) is smaller than

KNmax(�(�0)��(�);0)+2�N1��(�)+� = KNmax(1+�(�0)�2�(�);1��(�))+3�;

for each � > 0; with K independent of � and N . An application of the Markov�s inequality

then yields (4.12).

As a direct corollary from Theorems 4.4.1 and 4.4.2, the following Theorem is obtained.

Theorem 4.4.3 Suppose (A.0)-(A.4) hold, and let Q(i)N = (X� �̂N1)0A
(i)
� (X� �̂N1).

Then

1

N
�Q(0)N ! p

1

2�

Z �

��

f�0 (!)

f� (!)
d!;

1

N
�Q(1)N ! p

1

2�

Z �

��

f�0 (!)rf� (!)
f� (!)

2 d!;

1

N
�Q(2)N ! p

1

2�

Z �

��

f�0 (!)r2f�
f� (!)

2 d!;

and
1

N
�Q(3)N !p

1

2�

Z �

��

f�0 (!) (rf� (!))
2

f� (!)
3 d!

uniformly in � 2 �1.
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We now provide a short proof that the condition in assumption (A.4)(b) is satis�ed by

Adenstedt�s (1974) pro�le MLE of �0, (3.4), denoted here as �̂
A
N . This Theorem is not

needed for the rest of chapter, and it may be safely skipped.

Lemma 4.4.3 Suppose (A.1) and (A.3) hold on a compact set �. Then (A.4)(b) holds for

�̂AN (�).

Proof. Adenstedt�s estimator is given by

�̂AN =
�
10�N (f�)

�1 1
��1

10�N (f�)
�1XN

It is easily seen that

E
�
�̂AN
�
=
�
10�N (f�)

�1 1
��1

10�N (f�)
�1 1�0 = �0:

Furthermore,

V ar
�
�̂AN
�
=

�
10�N (f�)

�1 1
��2

� tr
�
�N (f�0) �N (f�)

�1 110�N (f�)
�1
�

=
�
10�N (f�)

�1 1
��2

�
���10�N (f�)�1�N (f�0) �N (f�)�1 1���

�
�
10�N (f�)

�1 1
��2

�
�
10�N (f�)

�1 1
�
�



�N (f�)�1=2�N (f�0) �N (f�)�1=2




=
�
10�N (f�)

�1 1
��1 


�N (f�)�1=2�N (f�0) �N (f�)�1=2


 :

By Lemmas 4.3.1 and 4.4.1 this term is equal to Nfmax(�(�0);�(�))�1g��, which yields the

result.

4.5 Consistency of the MLE

Let �̂N be the maximum likelihood estimator, obtained by minimizing the normalized (by

�N) Gaussian plug-in log-Likelihood function

LN (�) =
1

2N
log det�N (f�) +

1

2N
(X� �̂N1)0�N (f�)�1 (X� �̂N1) (4.14)

with respect to �, where �N (f�) is the covariance matrix of X given by (4.3) and �̂N is an

estimate of �0.
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In this section the consistency of �̂N is established. The proof makes use of the results

established in the former sections in order to derive an asymptotic limit for LN (�) if � 2

�1. However, since the desirable parameter space includes all � 2 (�1; 1), an additional

theory is required in order to handle the possibility that � 2 ��11 , in which our knowledge

about the limit distribution of the quadratic form QN = (X� �̂N1)0�N (f�)�1 (X� �̂N1)

is relatively poor. To handle this case, we have adapted the idea of Velasco and Robinson

(2000, Theorem 1), who considered a parametric estimation based on a generalization of

the discrete-frequency of Whittle estimation, and proved that in the region of �0s where

� (�0)� � (�) � 1, the Whittle log-Likelihood (normalized by �N) diverges to +1 a.s. as

N ! 1. Our proof shows a similar property for the plug-in Likelihood, and therefore �̂N
cannot be found in that region for N large enough.

Theorem 4.5.1 Suppose (A.0)-(A.4) hold. Then

�̂N !p �0: (4.15)

Proof. Suppose that �̂N a the minimizer of LN (�) in � such that for all �0 2 � we have

LN
�
�̂N

�
� LN

�
�0
�
. For any � 2 (0; 1) with U� (�0) = f� 2 � : j� � �0j < �g

lim
N!1

P�0

�����̂N � �0��� > �
�

� lim
N!1

P�0

�
9�� 2 arginf

�2�
LN (�) ; �� 2 f�r U� (�0)g

�
= lim

N!1
P�0

�
inf

�2f�rU�(�0)g
LN (�) = inf

�2�
LN (�)

�
= lim

N!1
P�0

�
inf

�2f�rU�(�0)g
LN (�) � inf

�2U�(�0)
LN (�)

�
:

Consider �rst subspace �1 � � de�ned as in (4.11), and assume that " in the de�nition is

small enough such that U� (�0) ( �1. We prove that

lim
N!1

P�0

�
inf

�2f�1rU�(�0)g
LN (�) > LN (�0)

�
= 1: (4.16)

With Theorems 4.3.2 and 4.4.3 we obtain for all � 2 �1

sup
�2�1

jLN (�)� L (�)j !p 0; (4.17)

where

L (�) = 1

4�

�Z
��

log (2�f�(!)) d! +
1

4�

Z �

��

f�0 (!)

f� (!)
d!:



77

It is therefore su¢ ce to show that

1

4�

�Z
��

log (2�f�(!)) d! +
1

4�

Z �

��

f�0 (!)

f� (!)
d!

>
1

4�

�Z
��

log (2�f�0(!)) d! +
1

2
for all � 2 �1; � 6= �0;

or, equivalently, that

1

2�

Z �

��

f�0 (!)

f� (!)
d! > 1 +

1

2�

�Z
��

log
f�0 (!)

f� (!)
d! for all � 2 �1; � 6= �0: (4.18)

By (4.1),
f�0 (!)

f�(!)
is positive and �nite almost everywhere on �. Moreover, by (A.0) the setn

! :
f�0 (!)

f�(!)
6= 1
o
has a positive Lebesgue measure. Therefore, the inequality

x � 1 + log x; for all x > 0;

where the inequality is strict for all x 6= 1, immediately yields (4.18), and (4.16) is estab-

lished.

Suppose now that � =2 �1. With the same " as in the de�nition of �1, let

�2 = �
�1
1 = � \ f� 2 Rp : � (�) < � (�0)� 1 + "g :

In this case � is just �1 [�2 and for any � 2 (0; 1)

lim
N!1

P�0

�
inf

�2f�rU�(�0)g
LN (�) � inf

�2U�(�0)
LN (�)

�
(4.19)

� lim
N!1

P�0

�
inf

�2f�1rU�(�0)g
LN (�) � inf

�2U�(�0)
LN (�)

�
+ lim
N!1

P�0

�
inf
�2�2

LN (�) � inf
�2U�(�0)

LN (�)
�
;

where the �rst probability tends to 0 as N !1 by (4.16). To show that the second probability

is negligible as well, note �rst that for any two parameter vectors �1; �2 2 � such that

� (�1) � � (�2) ;

inf
x 6=0

x0�N (f�2)
�1 x

x0�N (f�1)
�1 x

= inf
x 6=0

x0x

x0�N (f�2)
1=2�N (f�1)

�1�N (f�2)
1=2 x

(4.20)

=

"
sup
x 6=0

 
x0�N (f�2)

1=2�N (f�1)
�1�N (f�2)

1=2 x

x0x

!#�1
=




�N (f�1)�1=2�N (f�2)1=2


�2 ;
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which, by Lemma 4.3.1, is greater than some positive constant K independent of �1; �2 and

N . Consider now any parameter vectors �2 2 �2 and �1 on the boundary of �1. We have

� (�2) < � (�1) = � (�0)� 1 + ":

Substituting x = X� �̂N1 into (4.20) yields

1

2N
(X� �̂N1)0�N (f�2)

�1 (X� �̂N1) � K
1

2N
(X� �̂N1)0�N (f�1)

�1 (X� �̂N1) :

(4.21)

If �̂N = �̂N (�), then �̂N in both sides of (4.21) should be computed at the same �, say �2.

In this case, replace �̂N (�2) in the RHS of (4.21) by �̂
�
N (�1), where

�̂�N (�) =

8<: �̂N (�2) � = �1

�̂N (�) otherwise
:

Note also that �̂�N satis�es (A.4)(b). This result, together with Theorems 4.3.2 and 4.4.3,

yields for some positive K1; K2; c1; c2 2 R, independent of �1; �2 and N;

lim
N!1

LN (�2) � 1

4�

�Z
��

log (2�f�2(!)) d! +
K1

4�

�Z
��

f�0 (!)

f�1 (!)
d!

� 1

4�

�Z
��

log
�
2�c1 j!j��(�2)+�

�
d! +

K1

4�

�Z
��

c2 j!j�(�1)��(�0)+2� d!

� �K2 +
K1c2
4�

�Z
��

j!j�1+"+2� d! = K1c2
2�

�"+2�

"+ 2�
�K2 = C ("; �) :

for each � > 0. The last term can be made as large as desired for any �0 and �2 2 �2 by

taking su¢ ciently small "; � > 0. Particularly, � and " in the de�nitions of �1 and �2 may

be chosen such that C (") > LN (�0). Therefore, the second probability in (4.19) tends to 0

as N !1, and thus �̂N !p �0:

4.6 Central Limit Theorem

Theorem 4.6.1 Suppose (A.0)-(A.4) hold. Then
p
N
�
�̂N � �0

�
tends in distribution to a

normal random vector with mean 0 and covariance matrix � (�0)
�1 where

� (�) =
1

4�

Z �

��
(r log f� (!)) (r log f� (!))0 d!:
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Proof. An application of the mean value theorem yields

rLN
�
�̂N ; �̂N

�
�rLN (�0; �̂N ) = r2LN

�
�N ; �̂N

� �
�̂N � �0

�
:

with
���N � �0�� � ���b�N � �0���. The assertion will follow if we prove

(i)
p
NrLN

�
�̂N ; �̂N

�
!p 0:

(ii)
p
NrLN (�0; �̂N )!D N (0;� (�0)) ;

(iii) r2LN
�
�N ; �̂N

�
!p � (�0) :

Start with (i). LN (�N ; �̂N ) is minimized by b�N and therefore rLN ��̂N ; �̂N� = 0 if b�N
is in the interior of �. Since �0 lies in the interior of �, we get for all positive "

lim
N!1

P�0

�p
NrLN

�
�̂N ; �̂N

�
> "
�

= lim
N!1

P�0

�p
NrLN

�
�̂N ; �̂N

�
> " and b�N lies on the boundary of ��

� lim
N!1

P�0

�b�N lies on the boundary of �� = 0
by Theorem 4.5.1.

For part (ii), we have

p
NrLN (�0; �̂N ) =

1

2
p
N
tr
n
��1�0 �r;�0

o
� 1

2
p
N
(X� �̂N1)0A

(1)
�0
(X� �̂N1) :

According to Theorem 4.4.2

sup
�2�

p
N jrLN (�0; �̂N )�rLN (�0; �0)j !p 0;

and hence it is su¢ cient to prove the assertion for
p
NrLN (�0; �0). We denote by QN;j , j 2

f1; :::; pg, the j�th entry of the p-length vector (X� �01)0A
(1)
�0
(X� �01). By Proposition

4.4.1 the lth joint cumulant of (QN;j1 ; :::; QN;jl) is given by

kl (QN;j1 ; :::; QN;jl) = 2
l�1 1

l

X
tr

"
lY

k=1

�
�N (f�0)

�
A
(1)
�0

�
ik

�#
;

where the summation is over all permutations (i1; :::; il) of (j1; :::; jl). Thus, the lth joint

cumulant of
�p

NrLN (�0; �0)j1 ; :::;
p
NrLN (�0; �0)jl

�
is

kl

�p
NrLN (�0; �0)j1 ; :::;

p
NrLN (�0; �0)jl

�

=

8>><>>:
0 if l = 1

1
2N

�l=2 (�1)l 1l
X

tr

"
lY

k=1

n
��1�0 �

�
@
@�j

f�0

�o#
if l � 2

:
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An application of Theorem 4.3.1 yields

lim
N!1

kl

�p
NrLN (�0; �0)

�
=

8<: 0 if l 6= 2

� (�0) if l = 2

and therefore (ii) is obtained.

For part (iii), we have

r2LN (�; �̂N ) =
1

2N
tr
�
��1� �N

�
r2f�

�	
� 1

2N
tr
�
��1� �r;��

�1
� �r;�

	
� 1

2N
(X� �̂N1)0A

(2)
� (X� �̂N1) +

1

N
(X� �̂N1)0A

(3)
� (X� �̂N1) :

If � 2 �1 then r2LN (�; �̂N ) converges in probability by Theorems 4.3.1 and 4.4.3 to

1

4�

Z �

��

r2f� (!)
f� (!)

d! � 1

4�

Z �

��

(rf� (!))2

f� (!)
2 d!

� 1

4�

Z �

��

f�0 (!)r2f� (!)
f� (!)

2 d! +
1

2�

Z �

��

f�0 (!) (rf� (!))
2

f� (!)
3 d!

Moreover, since
���N � �0�� � ���b�N � �0���!p 0, we obtain by the smoothness conditions (A.1)-

(A.2) that

r2LN
�
�N ; �̂N

�
!p

1

4�

Z �

��

(rf�0 (!))
2

f�0 (!)
2 d! = � (�0)

which establishes (iii).

To conclude the chapter, the asymptotic e¢ ciency of the estimator �̂N is now proved.

Since X is assumed to be Gaussian, it is su¢ cient to show that the achieved asymptotic

variance of �̂N is equal to the Cramér-Rao bound. This property may be established in a

direct way, as in Dahlhaus (1989, Theorem 4.1).

Theorem 4.6.2 Suppose (A.0)-(A.4) hold. Then �̂N is an e¢ cient estimate of �0 in the

sense of Fisher.

Proof. Denote the Fisher information matrix by �N (�0), and note that because of the

smoothness conditions (A.1) and (A.2) we have

�N (�0) = NE�0r2LN (�0; �0) :
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As in the proof of part (iii) in Theorem 4.6.1, we obtain

N�1�N (�0)! � (�0) :

Therefore, according to the Cramér-Rao theorem, � (�0)
�1 is the lower bound on the asymp-

totic variance of
p
N
�e�N � �0�, where e�N is any unbiased estimator of �. Hence, Theorem

4.6.2 is proved.
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Chapter 5

MONTE CARLO STUDY

5.1 Introduction

In this chapter we analyze the �nite sample properties of the exact and plug-in Gaussian

MLE of several Gaussian ARFIMA(0,d,0), ARFIMA(1,d,0) and ARFIMA(0,d,1) time series.

Similar studies of the BIAS and MSE of the Exact and plug-in Gaussian MLE were

conducted, for example, by Sowell (1992), Cheung and Diebold (1994), Hauser (1999) and

Nielsen and Frederiksen (2005). They showed that the exact Gaussian MLE of the di¤er-

encing parameter d su¤ers from a systematic negative bias that increases with d, and that

the plug-in MLE with the sample mean has a generally higher negative bias than the exact

MLE. They also showed that the bias in the estimates decreases in absolute value with the

series length, N; so asymptotically we get an unbiased estimate in accordance with Theorem

(4.6.1). While similar aspects are studied here, we also compare between the performance of

the plug-in Gaussian MLE of ARFIMA(0,d,0) series with either the standard sample mean

or the pro�le mean estimate of Adenstedt (1974, see Section 3.2.1). Some aspects of the

MLE�s �nite sample distribution are examined as well.

5.2 Summary of results

We generated several Gaussian ARFIMA(0,d,0), ARFIMA(1,d,0) and ARFIMA(0,d,1) time

series with zero-mean, unit variance and di¤erent values of the memory parameter and

the AR or MA parameters, accordingly to the simulated model. For the ARFIMA(0,d,0)

time series, we considered � = d where d 2 [�0:49; 0:49]. The true parameter values were

d0 = 0;�0:1;�0:2;�0:3;�0:4. For the simulated ARFIMA(1,d,0) and ARFIMA(0,d,1) time

series, the AR and MA parameters � and �, respectively, were estimated as well. In these

cases we had � = (d; �) 2 �d;� and � = (d; �) 2 �d;�, respectively to the ARFIMA(1,d,0)
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or ARFIMA(0,d,1) process. Here again, we considered d 2 [�0:49; 0:49], while both � and

� were limited to [�0:99; 0:99]. The true parameter values in these cases were d0 = 0;�0:3,

and both �0 and �0 took the values �0:6. For each of the models, 1000 replications of

lengths N = 100; 200; and also N = 500 for the ARFIMA(0,d,0) models, were simulated for

each value of �0. The likelihood was numerically maximized on a grid of length 0:01 with

respect to the parameter�s components.

The simulations were made with R 2.6.1 program. In the program we used Davies

and Harte�s (1987) method to simulate a stationary Gaussian time series based on the

Fourier transform of the autocovariances (see also Beran 1994, pp. 216-217). Sowell�s

(1992) procedure was used to compute the autocovariances of an ARFIMA(p,d,q) model in

terms of sums of hypergeometric functions. We implemented the Durbin-Levinson algorithm

in order to reduce the time required for direct computation of the determinants and the

inverses of the covariance matrices (see Section 3.3.1).

We now turn to the simulations results. Tables 5.1, 5.2 and 5.3 summarize the sample

bias, the sample standard deviation and the square root of the sample MSE that were

obtained for the parameter estimates in each of the generated processes. Figures 5.1-5.5

present some kernel density plots of the marginal sample probability density of the estimates.

The plots were made by using Gaussian kernel density estimators. The kernel�s bandwidths

were chosen by Scott�s (1992) variation of Silverman�s (1986) "rule of thumb", both methods

aimed to minimize the mean integrated squared error. In cases where some of the estimates

were lying on the parameter space boundary (for instance, bd = �0:49), the total area below
the density plot is equal to 1 minus the estimated mass of probability on the boundary.

Figures 5.6-5.10 display normal Q-Q plots to asses whether the marginal distributions of

the MLE are close to a normal distribution.

We see that the estimates of d are negatively biased, with larger bias in absolute value

for the plug-in estimates. In addition, for �xed N; the negative bias in the estimates of d

generally increases as d0 becomes larger. On the other hand, for a �xed d0; the bias decreases

in absolute value with N . The short memory parameters � and � in the ARFIMA(1,d,0) and

ARFIMA(0,d,1) models su¤er in most of the cases from a positive bias. Relatively highly

biased results were obtained in the cases of ARFIMA(1,d,0) series with d = 0:3; � = 0:6; or
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ARFIMA(0,d,1) with d = 0:3; � = �0:6. Overall, our results compare with previous studies

(e.g., Cheung and Diebold 1994, Hauser 1999, Nielsen and Frederiksen 2005).

A comparison between the exact MLE and the two plug-in estimates for ARFIMA(0,d,0)

series shows that the plug-in MLE with the pro�le mean does not perform better than the

plug-in MLE with the sample mean for all values of the memory parameter. In fact, in

all cases where d0 is negative, the plug-in MLE with the sample mean has a lower MSE

than its counterpart with the pro�le mean. This result is somewhat surprising in view of

the fact that the sample mean is asymptotically less e¢ cient than the pro�le mean where

the memory parameter is negative (see Section 3.2.1). However, it may stem from the

fact that the pro�le mean plugged in to the likelihood function depends on the parameter

values in which the likelihood is evaluated. This may cause a larger dependency between

the estimated mean and the other estimated parameters, which may adversely a¤ect the

estimation of the parameters of interest. In general, we conclude that the bene�t gained by

plugging in the pro�le mean to the likelihood function is limited, while in addition it is a

less convenient estimate relatively to the sample mean.

Figures 5.1-5.5 demonstrate the tendency of the MLE�s �nite sample probability den-

sity toward a narrow and symmetric distribution around the true parameter values as N

increases, while Figures 5.1-5.5 presents the Q-Q-plots corresponding to these distributions.

In some cases, and in particular in the ARFIMA(1,0.3,0) series with � = 0:6 and the

ARFIMA(0,0.3,1) series with � = �0:6, the distribution of the plug-in MLE is relatively

skewed and dispersed, even when the sample size is N = 200. In most other cases, the

distribution of the MLE is close to a Normal when the sample size is N = 200, with some

exceptions where d0 is relatively low and the distribution of the MLE of d has a "chopped

left tail" as a result of an accumulation of estimates on the parameter space boundary

d = �0:49.
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d0

� known

BIAS STD
p
MSE

b� sample mean
BIAS STD

p
MSE

b� pro�le
BIAS STD

p
MSE

N=100
-0.4 -0.0004 0.0694 0.0694 -0.0124 0.0707 0.0718 -0.0235 0.0670 0.0710
-0.3 -0.0094 0.0827 0.0833 -0.0303 0.0861 0.0913 -0.0402 0.0865 0.0954
-0.2 -0.0108 0.0844 0.0851 -0.0372 0.0898 0.0972 -0.0438 0.0914 0.1014
-0.1 -0.0113 0.0832 0.0839 -0.0416 0.0912 0.1002 -0.0451 0.0914 0.1019
0 -0.0117 0.0815 0.0824 -0.0444 0.0913 0.1016 -0.0465 0.0904 0.1017
0.1 -0.0122 0.0794 0.0803 -0.0472 0.0909 0.1024 -0.0483 0.0894 0.1016
0.2 -0.0136 0.0767 0.0779 -0.0506 0.0894 0.1027 -0.0513 0.0878 0.1017
0.3 -0.0155 0.0722 0.0738 -0.0559 0.0858 0.1023 -0.0565 0.0843 0.1015
0.4 -0.0207 0.0615 0.0649 -0.0672 0.0777 0.1027 -0.0677 0.0768 0.1024

N=200
-0.4 -0.0037 0.0538 0.0539 -0.0102 0.0540 0.0549 -0.0160 0.0536 0.0559
-0.3 -0.0058 0.0577 0.0580 -0.0174 0.0596 0.0621 -0.0211 0.0613 0.0649
-0.2 -0.0058 0.0570 0.0573 -0.0203 0.0600 0.0634 -0.0216 0.0615 0.0652
-0.1 -0.0059 0.0565 0.0568 -0.0219 0.0602 0.0641 -0.0222 0.0612 0.0651
0 -0.0060 0.0558 0.0561 -0.0233 0.0600 0.0644 -0.0231 0.0606 0.0648
0.1 -0.0063 0.0551 0.0554 -0.0247 0.0597 0.0647 -0.0242 0.0601 0.0648
0.2 -0.0067 0.0539 0.0543 -0.0260 0.0590 0.0644 -0.0257 0.0591 0.0645
0.3 -0.0073 0.0524 0.0529 -0.0288 0.0573 0.0642 -0.0285 0.0577 0.0643
0.4 -0.0105 0.0469 0.0481 -0.0357 0.0522 0.0632 -0.0358 0.0532 0.0641

N=500
-0.4 -0.0020 0.0365 0.0366 -0.0063 0.0354 0.0360 -0.0080 0.0362 0.0371
-0.3 -0.0021 0.0370 0.0371 -0.0088 0.0361 0.0372 -0.0085 0.0371 0.0380
-0.2 -0.0020 0.0368 0.0369 -0.0101 0.0361 0.0375 -0.0086 0.0369 0.0379
-0.1 -0.0019 0.0368 0.0369 -0.0109 0.0362 0.0378 -0.0087 0.0368 0.0379
0 -0.0018 0.0365 0.0365 -0.0113 0.0362 0.0379 -0.0089 0.0365 0.0376
0.1 -0.0019 0.0361 0.0361 -0.0118 0.0360 0.0379 -0.0094 0.0361 0.0373
0.2 -0.0018 0.0358 0.0359 -0.0125 0.0359 0.0380 -0.0100 0.0357 0.0371
0.3 -0.0019 0.0352 0.0353 -0.0136 0.0354 0.0379 -0.0113 0.0354 0.0371
0.4 -0.0031 0.0330 0.0331 -0.0164 0.0337 0.0375 -0.0143 0.0334 0.0363

Table 5.1: Estimated Bias, standard deviation (STD) and square root of MSE obtained by

1000 replications of the Gaussian MLE of ARFIMA(0,d,0) time series with length N=100,

200, 500.
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�0
b�i d0= �0:3

BIAS STD
p
MSE

d0= 0

BIAS STD
p
MSE

d0= 0:3

BIAS STD
p
MSE

N=100
-0.6 d: -0.0336 0.0959 0.1017 -0.0578 0.1128 0.1268 -0.0822 0.1073 0.1352

� : 0.0340 0.1009 0.1064 0.0390 0.1024 0.1096 0.0494 0.1061 0.1170
0.6 d: -0.0323 0.1741 0.1771 -0.1553 0.1630 0.2251 -0.2441 0.1393 0.2810

� : -0.0031 0.1705 0.1706 0.0845 0.1426 0.1658 0.1525 0.1031 0.1841

N=200
-0.6 d: -0.0218 0.0689 0.0723 -0.0283 0.0709 0.0764 -0.0435 0.0697 0.0822

� : 0.0191 0.0672 0.0699 0.0204 0.0694 0.0723 0.0261 0.0698 0.0745
0.6 d: -0.0478 0.1467 0.1543 -0.1420 0.1544 0.2098 -0.1845 0.1416 0.2326

� : 0.0225 0.1473 0.1490 0.0949 0.1324 0.1629 0.1263 0.1141 0.1702

Table 5.2: Estimated Bias, standard deviation (STD) and square root of MSE obtained by

1000 replications of the Gaussian MLE of ARFIMA(1,d,0) time series with length N=100,

200.

�0 b�i d0= �0:3
BIAS STD

p
MSE

d0= 0

BIAS STD
p
MSE

d0= 0:3

BIAS STD
p
MSE

N=100
-0.6 d: 0.0777 0.2243 0.2374 -0.1672 0.2268 0.2818 -0.3084 0.1974 0.3662

� : -0.0696 0.2064 0.2178 0.1482 0.2482 0.2891 0.2902 0.2089 0.3576
0.6 d: -0.0305 0.0983 0.1029 -0.0535 0.1027 0.1158 -0.0772 0.0982 0.1249

� : 0.0179 0.0961 0.0978 0.0217 0.0976 0.0999 0.0349 0.0916 0.0980

N=200
-0.6 d: 0.0177 0.1898 0.1906 -0.1321 0.1846 0.2270 -0.1916 0.1542 0.2460

� : -0.0121 0.1809 0.1813 0.1286 0.1890 0.2286 0.1831 0.1646 0.2462
0.6 d: -0.0179 0.0694 0.0716 -0.0277 0.0702 0.0755 -0.0431 0.0675 0.0801

� : 0.0085 0.0672 0.0677 0.0118 0.0691 0.0701 0.0174 0.0653 0.0675

Table 5.3: Estimated Bias, standard deviation (STD) and square root of MSE obtained by

1000 replications of the Gaussian MLE of ARFIMA(1,d,0) time series with length N=100,

200.
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b� sample mean, d0 = �0:4 b� pro�le, d0 = �0:4

b� sample mean, d0 = 0 b� pro�le, d0 = 0

b� sample mean, d0 = 0:4 b� pro�le, d0 = 0:4
Figure 5.1: Kernel density plots of the sample mean and the pro�le mean plug-in Gaussian

MLE of d obtained by 1000 replications of ARFIMA(0,d,0) series with length N=100, 200,

500.
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�0 = �0:6; d0 = �0:3 �0 = 0:6; d0 = �0:3

�0 = �0:6; d0 = 0 �0 = 0:6; d0 = 0

�0 = �0:6; d0 = 0:3 �0 = 0:6; d0 = 0:3

Figure 5.2: Kernel density plots of the sample mean plug-in Gaussian MLE of d obtained

by 1000 replications of ARFIMA(1,d,0) series with length N=100, 200.
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�0 = �0:6; d0 = �0:3 �0 = 0:6; d0 = �0:3

�0 = �0:6; d0 = 0 �0 = 0:6; d0 = 0

�0 = �0:6; d0 = 0:3 �0 = 0:6; d0 = 0:3

Figure 5.3: Kernel density plots of the sample mean plug-in Gaussian MLE of the AR

parameter obtained by 1000 replications of ARFIMA(1,d,0) series with length N=100, 200.
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�0 = �0:6; d0 = �0:3 �0 = 0:6; d0 = �0:3

�0 = �0:6; d0 = 0 �0 = 0:6; d0 = 0

�0 = �0:6; d0 = 0:3 �0 = 0:6; d0 = 0:3

Figure 5.4: Kernel density plots of the sample mean plug-in Gaussian MLE of d obtained

by 1000 replications of ARFIMA(0,d,1) series with length N=100, 200.
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�0 = �0:6; d0 = �0:3 �0 = 0:6; d0 = �0:3

�0 = �0:6; d0 = 0 �0 = 0:6; d0 = 0

�0 = �0:6; d0 = 0:3 �0 = 0:6; d0 = 0:3

Figure 5.5: Kernel density plots of the sample mean plug-in Gaussian MLE of the MA

parameter obtained by 1000 replications of ARFIMA(0,d,1) series with length N=100, 200.
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b� sample mean, d0 = �0:4

b� sample mean, d0 = 0
Figure 5.6: Normal Q-Q plots of the sample mean and the pro�le mean plug-in Gaussian

MLE of d obtained by 1000 replications of ARFIMA(0,d,0) series with length N=100, 200,

500.
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b� sample mean, d0 = 0:4

b� pro�le, d0 = �0:4
Figure 5.6 (continued): Normal Q-Q plots of the sample mean and the pro�le mean

plug-in Gaussian MLE of d obtained by 1000 replications of ARFIMA(0,d,0) series

with length N=100, 200, 500.
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b� pro�le, d0 = 0

b� pro�le, d0 = 0:4
Figure 5.6 (continued): Normal Q-Q plots of the sample mean and the pro�le mean

plug-in Gaussian MLE of d obtained by 1000 replications of ARFIMA(0,d,0) series

with length N=100, 200, 500.
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�0 = �0:6; d0 = �0:3

�0 = �0:6; d0 = 0

Figure 5.7: Normal Q-Q plots of the sample mean plug-in Gaussian MLE of d obtained by

1000 replications of ARFIMA(1,d,0) series with length N=100, 200.
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�0 = �0:6; d0 = 0:3

�0 = 0:6; d0 = �0:3

Figure 5.7 (continued): Normal Q-Q plots of the sample mean plug-in Gaussian MLE

of d obtained by 1000 replications of ARFIMA(1,d,0) series with length N=100, 200.
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�0 = 0:6; d0 = 0

�0 = 0:6; d0 = 0:3

Figure 5.7 (continued): Normal Q-Q plots of the sample mean plug-in Gaussian MLE

of d obtained by 1000 replications of ARFIMA(1,d,0) series with length N=100, 200.
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�0 = �0:6; d0 = �0:3

�0 = �0:6; d0 = 0

Figure 5.8: Normal Q-Q plots of the sample mean plug-in Gaussian MLE of the AR para-

meter obtained by 1000 replications of ARFIMA(1,d,0) series with length N=100, 200.



99

�0 = �0:6; d0 = 0:3

�0 = 0:6; d0 = �0:3

Figure 5.8 (continued): Normal Q-Q plots of the sample mean plug-in Gaussian MLE of

the AR parameter obtained by 1000 replications of ARFIMA(1,d,0) series with length N=

100, 200.
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�0 = 0:6; d0 = 0

�0 = 0:6; d0 = 0:3

Figure 5.8 (continued): Normal Q-Q plots of the sample mean plug-in Gaussian MLE of

the AR parameter obtained by 1000 replications of ARFIMA(1,d,0) series with length N=

100, 200.
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�0 = �0:6; d0 = �0:3

�0 = �0:6; d0 = 0

Figure 5.9: Normal Q-Q plots of the sample mean plug-in Gaussian MLE of d obtained by

1000 replications of ARFIMA(0,d,1) series with length N=100, 200.
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�0 = �0:6; d0 = 0:3

�0 = 0:6; d0 = �0:3

Figure 5.9 (continued): Normal Q-Q plots of the sample mean plug-in Gaussian MLE

of d obtained by 1000 replications of ARFIMA(0,d,1) series with length N=100, 200.
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�0 = 0:6; d0 = 0

�0 = 0:6; d0 = 0:3

Figure 5.9 (continued): Normal Q-Q plots of the sample mean plug-in Gaussian MLE

of d obtained by 1000 replications of ARFIMA(0,d,1) series with length N=100, 200.
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�0 = �0:6; d0 = �0:3

Figure 5.10: Normal Q-Q plots of the sample mean plug-in Gaussian MLE of the MA

parameter obtained by 1000 replications of ARFIMA(0,d,1) series with length N=100, 200.
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�0 = 0:6; d0 = �0:3

Figure 5.10 (continued): Normal Q-Q plots of the sample mean plug-in Gaussian MLE of

the MA parameter obtained by 1000 replications of ARFIMA(0,d,1) series with length N=

100, 200.
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�0 = 0:6; d0 = 0

�0 = 0:6; d0 = 0:3

Figure 5.10 (continued): Normal Q-Q plots of the sample mean plug-in Gaussian MLE of

the MA parameter obtained by 1000 replications of ARFIMA(0,d,1) series with length N=

100, 200.
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Chapter 6

SUMMARY

In this work the exact and the plug-in Gaussian MLE of a stationary and invertible

time series were proved to be consistent, asymptotically normal and e¢ cient. We showed

that the same �rst-order asymptotic properties of the Gaussian MLE that were established

for time series with short-memory (Hannan 1973) or with long-memory (Dahlhaus 1989,

2005), still hold when the parameter space is expanded so that the true memory parameter

may take values in the range that includes both cases of long-memory, short-memory and

anti-persistent time series.

The contribution of this work was enabled mainly through an extension of Dahlhaus�s

(1989) proof of consistentcy along the following lines. Using an extended uniform version

of Dahlhaus�s (1989) Theorem 5.1 on the asymptotic behaviour of products of Toeplitz and

inverse-Toeplitz matrices due to Lieberman, Rousseau and Zucker (2003) and Lieberman

and Phillips (2004), the normalized Gaussian log-likelihood was shown to converge uniformly

to a known, �nite limit function that is uniquely maximized at the true parameter �0 in

any compact subset � of the parameter space � that contains �0; as long as � is such that

for all � 2 � the memory parameter, � (�) ; satis�es � (�) � � (�0)� 1, where � (�0) is the

true memory parameter of the series. On the other hand, when � (�) < � (�0)� 1, we used

a similar argument to that of Velasco and Robinson (2000, Theorem 1) in the context of a

discrete Whittle MLE and showed that the Gaussian likelihood function converges to zero

w.p. 1 (in fact, it was shown that the normalized minus log-likelihood is asymptotically

larger than any constant w.p. 1).

A simulation study was conducted to test the Gaussian MLE performance in �nite

samples, whose results seems to conform with the asymptotic theory.

There is much room for future research on the Gaussian MLE of long memory time

series. We point out some directions left open for further research in this area:
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� Our results on the exact Gaussian MLE are restricted to time series with memory

parameter �1 < � < 1. For instance, when dealing with a nonstationary Gaussian

time series with a memory parameter � � 1, it would be necessary to di¤erence

the series until getting stationarity of the di¤erenced series. This may be done by

exploratory way or by more formal tests (see, for instance, Dickey and Fuller 1979).

Recall that � represents 2d where d is a di¤erencing order required to get a short

memory series as in the fractional ARIMA models (see Section 2.5.2), so di¤erencing

the series n-times would result in a series with memory parameter � � 2n. Thus,

unless the memory parameter is exactly an odd integer, di¤erencing the series a proper

number of times would yield a series with memory parameter within the open interval

(�1; 1), for which we may apply our exact Gaussian MLE. A similar approach may

be used in the case of noninvertibility where the memory parameter satis�es � � �1.

Here, we would use partial sums of the original series instead of di¤erences. However,

so far there is no theory that seems to handle the nonstationarity or noninvertibility

cases by means of the Gaussian MLE. A possible approach to extend our result to

nonstationary time series may be to use the Autoregressive-based exact Gaussian MLE

along the lines of Beran�s (1995) Autoregressive-based pseudo MLE (see Section 3.3.2).

� While our results apply only for univariate Gaussian time series, it may be worthwhile

to consider relaxing the Gaussianity assumption as well as extending the results to

the multivariate case. While both generalizations seem rather complicated, a possible

starting point toward achieving them, might be considering similar generalizations that

already exist in the literature for the Whittle approximate MLE (see Section 3.3.3)

such as Giraitis and Surgailis (1990), Heyde and Gay (1993) and Hosoya (1997).

� It is required is to develop a better understanding of the behaviour of the exact

and plug-in Gaussian MLE in small samples sizes and di¤erent parameter regions.

Such theories may assist in improving the Gaussian MLE accuracy, and particularly

reducing its relatively large bias. Some recent works on higher order expansions such

as Lieberman, Rousseau and Zucker (2003), Lieberman (2005) and Lieberman and
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Phillips (2005) made a progress toward this goal. Bearing in mind that the exact

Gaussian MLE is a relatively e¢ cient method in the case where the true mean of the

process is known, developing a rigorous procedure that reduce the bias of the exact

Gaussian MLE even when the mean of the process is unknown may yield some more

practicable and competitive MLE-based procedures of estimation.

� As explained above, whenever � (�) � � (�0)� 1, we may establish a uniform limit of

the normalized log-likelihood function, while in the cases in which

� (�) < � (�0)� 1; (6.1)

our knowledge about the behaviour of the log-likelihood function is much more limited.

The main e¤ort in establishing a limit theory for the (exact or Whittle) log-likelihood

function is put into developing the limit distribution of the quadratic forms

X0�N (f�)X (6.2)

and

X0�N (f�)
�1X; (6.3)

where X here represents a zero-mean Gaussian stationary time series with true para-

meter value �0, and �N (f�) is the covariance matrix evaluated at parameter �. While

in this work, we heavily relied on some limit theorems for traces of products Toeplitz

and inverse Toeplitz matrices, and particularly on Theorem (4.3.1), there are also

other approaches to establish asymptotic properties of the quadratic forms (see, for

instance, Avram and Taqqu 2005). Unfortunately, so far none of these methods seem

to provide a full description of the limit distribution of the quadratic forms (6.2) or

(6.3) in the case of (6.1). A signi�cant progress in this direction was made by Terrin

and Taqqu (1990) who handle the quadratic form (6.2) under (6.1). They showed that

in this case, under proper normalization and by subtracting its mean, (6.2) converges

weakly to a non-Gaussian self similar process that can be viewed as a generalization

of the Rosenblatt process. However still, the asymptotic mean of (6.2), as well as the

limit distribution of (6.3), remained unclear.
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Finally, and in a broader view, the general research goals in this area are to provide

researchers with e¢ cient and simple tools to test, estimate and make predictions in long

memory time series. As seen in Chapter 3, many di¤erent approaches were developed and

proposed, but it seems that there is still much more to be done in �lling some left-open

gaps, re�ning existing methods and gaining a better understanding of the pros and cons of

the di¤erent approaches.
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  תקציר

fሺסידרה עתית סטציונרית והפיכה עם פונקציה ספקטרלית המקיימת ל             

ω-כש אנו אומרים שיש זכרון ארוך  ,ω -חיובית ומשתנה לאט ב Lሺ -ו |כאשר ,  

הוכח כי אומד ניראות מקסימלי  .െוזכרון שלילי אם  αזכרון קצר אם , 0אם 

 Hannanעל ידי  נורמליתאסימפטוטית  התפלגות בעלעקיב ו הוא סידרה עתית גאוסיאנית של

מטרתה העיקרית . למקרה של זכרון ארוך Dahlhaus (1989)למקרה של זכרון קצר ועל ידי  (1973)

ללא ידע מוקדם  ,יקצר או שליל, לו למקרים של זכרון ארוךהלתוצאות את השל עבודה זו היא להכליל 

 Dahlhaus (1989)אנחנו מאמצים את טכניקת ההוכחה של . על הזכרון של הסדרה העתית

אולם רבים מהטיעונים , Toeplitzעל ההתנהגות האסימפטוטית של מטריצות בעיקרה המסתמכת 

 fractional Gaussianישימותן של התוצאות עבור סדרות . שטיםופמוכללים ומ Dahlhausשל 

noise ו- fractional ARMA סימולציות של  באמצעותוכן מודגמים הביצועים של האומדנים , מוכחת

  .fractional ARMAסדרות 

ωሻ ׽ |ω|ିαLሺωሻ

՜ 0α| ൏ 1ωሻൌ 0

൏ α ൏ 1ൌ 01 ൏ α ൏ 0
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