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I. Summary

Research Question

(1) How 1O DETECT CHANGEPOINTS IN FMS

» Structural instabilities in factor models for time series:
1. Changes in Loadings (A); and/or
2. Changes in Number of Factors (r).

(2) ...oN A REAL-TIME BAsIs?

» Unique? Existing literature only addresses offline setting.

» Necessary? Important for applications such as “Nowcasting”.
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I. Summary

My Contributions

(1) NEW SEQUENTIAL CHANGEPOINT ESTIMATOR

> | propose to monitor the value of an eigenvalue ratio

1y 41(Ts, Te)
wreq(rs = 1,7e — 1)

6r+1(7—57 7—e) =

using observations within a rolling window over time, and
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using observations within a rolling window over time, and

» declare a changepoint when it breaches some threshold (H).
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I. Summary

My Contributions

(1) NEW SEQUENTIAL CHANGEPOINT ESTIMATOR

> | propose to monitor the value of an eigenvalue ratio

1y 41(Ts, Te)
wreq(rs = 1,7e — 1)

6r+1(7—57 7—e) =

using observations within a rolling window over time, and
» declare a changepoint when it breaches some threshold (H).

» So, with window of fixed length (z), my estimator is of type

inf{re >z:0,41(7e — 2+ 1,7) > H} — 1
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I. Summary

My Contributions

(2) THEORETICAL JUSTIFICATION (N — 00)

> In Theorem 3.1, | prove that my eigenvalue ratio exhibits
distinctive (spiking) behaviour exactly at the changepoint.
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» What's the intuition?
Switch in asymptotic behaviour of (r + 1) eigenvalue:
Pre-x: the (r 4+ 1) eigenvalue remains bounded for all N;

Post-#: the (r 4+ 1) eigenvalue diverges to infinity with N.
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My Contributions

(2) THEORETICAL JUSTIFICATION (N — 00)

> In Theorem 3.1, | prove that my eigenvalue ratio exhibits
distinctive (spiking) behaviour exactly at the changepoint.

» What's the intuition?
Switch in asymptotic behaviour of (r + 1) eigenvalue:
Pre-x: the (r 4+ 1) eigenvalue remains bounded for all N;
Post-#: the (r 4+ 1) eigenvalue diverges to infinity with N.

Ratio comparing successive values of this eigenvalue over time
should spike at the changepoint and remain stable otherwise.
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My Contributions

(3) FuLL DETECTION PROCEDURE

> In Theorem 3.2, | prove that my eigenvalue ratio can be
consistently estimated from sample data (as T — o).
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I. Summary

My Contributions

(3) FuLL DETECTION PROCEDURE

> In Theorem 3.2, | prove that my eigenvalue ratio can be
consistently estimated from sample data (as T — o).

> What else?
Rolling and expanding window methodologies;
Block-bootstrap procedure to obtain alarm thresholds;
Simulations; Application to FTSE100 data (detect Brexit);

Extension to emerging and disappearing factors.
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I. Summary

Merits of Proposed Procedure

v

Simple idea which works well in practice

...in fact, with no detection delay in FTSE100 data example;

v

Allows us to detect different break types

...and distinguish among break types;

v

Builds on standard modelling framework from the literature;

v

Quick to implement.
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[I. Structural Instability
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Il. Theoretical Justification

Key Insight

» A FM with breaks in the loadings has a representation as
a FM with constant loadings but a larger set of factors.
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Il. Theoretical Justification

Key Insight

» A FM with breaks in the loadings has a representation as
a FM with constant loadings but a larger set of factors.

» Consider a one-factor model with a structural break.

)\lfi‘—i_et)tg’%

Xt =
)\zﬂ+et,t>/€
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Il. Theoretical Justification

Key Insight

» A FM with breaks in the loadings has a representation as
a FM with constant loadings but a larger set of factors.

» Consider a one-factor model with a structural break.

)\lfi‘—i_et)tg’%

Xt =
)\zﬂ+et,t>/€
. ;. t<k 0.t<k
» Definegie =< — and gor =< |
0,t>«k fi,t >k
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Il. Theoretical Justification

Key Insight

v

A FM with breaks in the loadings has a representation as
a FM with constant loadings but a larger set of factors.

Consider a one-factor model with a structural break.

v

)\lfi‘—i_et)tg’%

Xt =
)\zﬂ+et,t>/€

fe,t <k 0,t <k
and go¢ =
0,t>«k fi,t >k

v

Define g1+ =

v

Xt = Mg&1r + A2go: + €, an equivalent stable model.
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Il. Theoretical Justification

Asymptotic Behaviour of Eigenvalues (N — o)

» Effectively, we have a piece-wise stationary setup.
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Il. Theoretical Justification

Asymptotic Behaviour of Eigenvalues (N — o0)

» Effectively, we have a piece-wise stationary setup.

» We begin by examining the covariance structure of x;
YX(7s,Te) = 1t i E[xext']
S e Te —Ts + 1

t=7s

within a (potentially moving) window of time points.

Sequential Changepoint Detection in Factor Models for Time Series / London School of Economics (LSE)



Il. Theoretical Justification

Asymptotic Behaviour of Eigenvalues (N — o0)

» Effectively, we have a piece-wise stationary setup.

» We begin by examining the covariance structure of x;

1 =
YX(7s,Te) = p—— E E[xext']
€ s t=7s

within a (potentially moving) window of time points.
» Lemma 3.1 - Behaviour of eigenvalues of Common part;
Lemma 3.2 - Behaviour of eigenvalues of ldiosyncratic part;

Lemma 3.3 - Behaviour of eigenvalues of ¥*(7s, Te).
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Il. Theoretical Justification

Lemma 3.3 - Eigenvalue Behaviour under Instability

» For any N € N, there exist constants M,, My, Mg, Ms s.t.
(i) o< M, < N_lu;-‘(Ts,Te) <My <ooforj=1,.,r* and

(i) 0< Mg < ¥ 1(7s,7e) < Ms < 00

where
r, Ts < Te < K
r'=<r+q, 7s<K<Te
r, k< Ts < Te

and g € {1, ..., r} is the # of breaking factors.
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Il. Theoretical Justification

Lemma 3.3 - Eigenvalue Behaviour under Instability

» For any N € N, there exist constants M,, My, Mg, Ms s.t.
(i) o< M, < N_lu;-‘(Ts,Te) <My <ooforj=1,.,r* and

(i) 0< Mg < ¥ 1(7s,7e) < Ms < 00

where
r, Ts < Te < K
r'=<r+q, 7s<K<Te
r, k< Ts < Te

and g € {1, ..., r} is the # of breaking factors.

» (r + q) eigenvalues diverge when window straddles x;
but only r eigenvalues diverge otherwise.
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Il. Theoretical Justification

Theorem 3.1 - Upward Spike in Detection Statistic

» As N — oo,
(i) if K # (e — 1), then there exists a constant Mg s.t.
Orip(Ts, Te) < Mg < o0;
(ii) but if Kk = (1 — 1), then

5r+p(7-57 7—e) — 00,

forp=1,...,q
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Il. Theoretical Justification

Theorem 3.1 - Upward Spike in Detection Statistic

> As N — oo,
(i) if K # (e — 1), then there exists a constant Mg s.t.
Orip(Ts, Te) < Mg < o0;
(ii) but if Kk = (1 — 1), then
Or4p(Ts, Te) — 00,
forp=1,...,q

> Proof is evident from analysis of Lemma 3.3.

» Corollary 3.1 - Useful secondary result (downward spike).
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I1l. Changepoint Detection

l1. Changepoint Detection
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I1l. Changepoint Detection

Lemma 3.4/Theorem 3.2 - Estimation

Lemma 3.4

Forany Ne Nandj € {1,..., N},

=0, ((re — T+ 1)1/2>.

ﬁ}((Ts,Te) N}((Ts,Te)

N N

Theorem 3.2
Forj e {1,...,N},

Sj(Ts,Te) LA 0j(7s,Te) as (Te — 7s + 1) — oo.
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I1l. Changepoint Detection

Simulation using Rolling Window Methodology

Figure 3.1
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I1l. Changepoint Detection

Simulation using Expanding Window Methodology

Figure 3.4
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I1l. Changepoint Detection

Bootstrapping Alarm Thresholds

» Overlapping blocks resampling scheme from Kunsch(1989).
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I1l. Changepoint Detection

Bootstrapping Alarm Thresholds

» Overlapping blocks resampling scheme from Kunsch(1989).

> Rolling Window:
i) bootstrap from training period; choose 100(1 — )" pctile;
(i)

(i) generate a single threshold for use over time.
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I1l. Changepoint Detection

Bootstrapping Alarm Thresholds

» Overlapping blocks resampling scheme from Kunsch(1989).

> Rolling Window:
i) bootstrap from training period; choose 100(1 — )" pctile;
(i)

(i) generate a single threshold for use over time.

» Expanding Window:
(i) ongoing bootstrap every (or every w) period(s);

(i) resample from training period with equal probability AND from
observations thereafter with geometrically declining probability;

(iii) choose 100(1 — ) pctile;

(iv) relevant threshold declines step-wise over time.

Sequential Changepoint Detection in Factor Models for Time Series / London School of Economics (LSE)



I1l. Changepoint Detection

June 23, 2016: Changepoint Detected!

Figure 3.8
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IV. Remarks

V. Concluding Remarks
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IV. Remarks

Research Plan

High Frequency Data

v

Jump Detection in continuous-time models.
Pelger (2015) and Ait-Sahalia and Xiu (2015).

Adapt existing method (eigenvalue-based criterion)?

v

v

v

Develop new method (test statistic)?
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IV. Remarks

Thank you, Kostas and Matteo!

RECAP:
Real-time Detection of Changepoints in FMs:

> Introduced detection statistic based on eigenvalue ratio;
» Provided theoretical justification for changepoint estimator;
» Developed a sequential changepoint detection procedure;

» Tested procedure using simulations and real-world data.

...and a special thanks to Matteo for all his help with my research!
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