

Sequential Changepoint Detection in Factor Models for Time Series

Ragvir Sabharwal

London School of Economics (LSE)

1 February 2016

I. Summary

Research Question

(1) HOW TO DETECT CHANGEPONTS IN FMs

- ▶ Structural instabilities in factor models for time series:

1. Changes in Loadings (Λ); and/or
2. Changes in Number of Factors (r).

(2) ...ON A REAL-TIME BASIS?

- ▶ **Unique?** Existing literature only addresses offline setting.
- ▶ **Necessary?** Important for applications such as “Nowcasting”.

My Contributions

(1) NEW SEQUENTIAL CHANGEPPOINT ESTIMATOR

- ▶ I propose to monitor the value of an eigenvalue ratio

$$\delta_{r+1}(\tau_s, \tau_e) = \frac{\mu_{r+1}^x(\tau_s, \tau_e)}{\mu_{r+1}^x(\tau_s - 1, \tau_e - 1)}$$

using observations within a **rolling window** over time, and

My Contributions

(1) NEW SEQUENTIAL CHANGEPPOINT ESTIMATOR

- ▶ I propose to monitor the value of an eigenvalue ratio

$$\delta_{r+1}(\tau_s, \tau_e) = \frac{\mu_{r+1}^x(\tau_s, \tau_e)}{\mu_{r+1}^x(\tau_s - 1, \tau_e - 1)}$$

using observations within a **rolling window** over time, and

- ▶ declare a changepoint when it breaches some **threshold** (H).

My Contributions

(1) NEW SEQUENTIAL CHANGEPPOINT ESTIMATOR

- ▶ I propose to monitor the value of an eigenvalue ratio

$$\delta_{r+1}(\tau_s, \tau_e) = \frac{\mu_{r+1}^x(\tau_s, \tau_e)}{\mu_{r+1}^x(\tau_s - 1, \tau_e - 1)}$$

using observations within a **rolling window** over time, and

- ▶ declare a changepoint when it breaches some **threshold** (H).
- ▶ So, with window of fixed length (z), my estimator is of type

$$\inf\{\tau_e > z : \delta_{r+1}(\tau_e - z + 1, \tau_e) \geq H\} - 1$$

My Contributions

(2) THEORETICAL JUSTIFICATION ($N \rightarrow \infty$)

- ▶ In **Theorem 3.1**, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.

My Contributions

(2) THEORETICAL JUSTIFICATION ($N \rightarrow \infty$)

- ▶ In **Theorem 3.1**, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.
- ▶ **What's the intuition?**

Switch in asymptotic behaviour of $(r + 1)^{th}$ eigenvalue:

My Contributions

(2) THEORETICAL JUSTIFICATION ($N \rightarrow \infty$)

- ▶ In **Theorem 3.1**, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.
- ▶ **What's the intuition?**

Switch in asymptotic behaviour of $(r + 1)^{th}$ eigenvalue:

Pre- κ : the $(r + 1)^{th}$ eigenvalue remains bounded for all N ;

My Contributions

(2) THEORETICAL JUSTIFICATION ($N \rightarrow \infty$)

- ▶ In **Theorem 3.1**, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.
- ▶ **What's the intuition?**

Switch in asymptotic behaviour of $(r + 1)^{th}$ eigenvalue:

Pre- κ : the $(r + 1)^{th}$ eigenvalue remains bounded for all N ;

Post- κ : the $(r + 1)^{th}$ eigenvalue diverges to infinity with N .

My Contributions

(2) THEORETICAL JUSTIFICATION ($N \rightarrow \infty$)

- ▶ In **Theorem 3.1**, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.
- ▶ **What's the intuition?**

Switch in asymptotic behaviour of $(r + 1)^{th}$ eigenvalue:

Pre- κ : the $(r + 1)^{th}$ eigenvalue remains bounded for all N ;

Post- κ : the $(r + 1)^{th}$ eigenvalue diverges to infinity with N .

Ratio comparing successive values of this eigenvalue over time should spike at the changepoint and remain stable otherwise.

My Contributions

(3) FULL DETECTION PROCEDURE

- ▶ In **Theorem 3.2**, I prove that my eigenvalue ratio can be consistently estimated from sample data (as $T \rightarrow \infty$).

My Contributions

(3) FULL DETECTION PROCEDURE

- ▶ In **Theorem 3.2**, I prove that my eigenvalue ratio can be consistently estimated from sample data (as $T \rightarrow \infty$).
- ▶ **What else?**

Rolling and expanding window methodologies;

My Contributions

(3) FULL DETECTION PROCEDURE

- ▶ In **Theorem 3.2**, I prove that my eigenvalue ratio can be consistently estimated from sample data (as $T \rightarrow \infty$).
- ▶ **What else?**

Rolling and expanding window methodologies;

Block-bootstrap procedure to obtain alarm thresholds;

My Contributions

(3) FULL DETECTION PROCEDURE

- ▶ In **Theorem 3.2**, I prove that my eigenvalue ratio can be consistently estimated from sample data (as $T \rightarrow \infty$).
- ▶ **What else?**

Rolling and expanding window methodologies;

Block-bootstrap procedure to obtain alarm thresholds;

Simulations; Application to FTSE100 data (detect Brexit);

My Contributions

(3) FULL DETECTION PROCEDURE

- ▶ In **Theorem 3.2**, I prove that my eigenvalue ratio can be consistently estimated from sample data (as $T \rightarrow \infty$).
- ▶ **What else?**

Rolling and expanding window methodologies;

Block-bootstrap procedure to obtain alarm thresholds;

Simulations; Application to FTSE100 data (detect Brexit);

Extension to emerging and disappearing factors.

Merits of Proposed Procedure

- ▶ Simple idea which works well in practice
 - ...in fact, with no detection delay in FTSE100 data example;
- ▶ Allows us to detect different break types
 - ...and distinguish among break types;
- ▶ Builds on standard modelling framework from the literature;
- ▶ Quick to implement.

II. Structural Instability

Key Insight

- ▶ A FM with breaks in the loadings **has a representation as** a FM with constant loadings but a larger set of factors.

Key Insight

- ▶ A FM with breaks in the loadings **has a representation as** a FM with constant loadings but a larger set of factors.
- ▶ Consider a one-factor model with a structural break.

$$\mathbf{x}_t = \begin{cases} \lambda_1 f_t + \mathbf{e}_t, & t \leq \kappa \\ \lambda_2 f_t + \mathbf{e}_t, & t > \kappa \end{cases}$$

Key Insight

- ▶ A FM with breaks in the loadings **has a representation as** a FM with constant loadings but a larger set of factors.
- ▶ Consider a one-factor model with a structural break.

$$\mathbf{x}_t = \begin{cases} \lambda_1 f_t + \mathbf{e}_t, & t \leq \kappa \\ \lambda_2 f_t + \mathbf{e}_t, & t > \kappa \end{cases}$$

- ▶ Define $g_{1t} = \begin{cases} f_t, & t \leq \kappa \\ 0, & t > \kappa \end{cases}$ and $g_{2t} = \begin{cases} 0, & t \leq \kappa \\ f_t, & t > \kappa \end{cases}$

Key Insight

- ▶ A FM with breaks in the loadings **has a representation as** a FM with constant loadings but a larger set of factors.
- ▶ Consider a one-factor model with a structural break.

$$\mathbf{x}_t = \begin{cases} \lambda_1 f_t + \mathbf{e}_t, & t \leq \kappa \\ \lambda_2 f_t + \mathbf{e}_t, & t > \kappa \end{cases}$$

- ▶ Define $g_{1t} = \begin{cases} f_t, & t \leq \kappa \\ 0, & t > \kappa \end{cases}$ and $g_{2t} = \begin{cases} 0, & t \leq \kappa \\ f_t, & t > \kappa \end{cases}$
- ▶ $\mathbf{x}_t = \lambda_1 g_{1t} + \lambda_2 g_{2t} + \mathbf{e}_t$, an equivalent stable model.

Asymptotic Behaviour of Eigenvalues ($N \rightarrow \infty$)

- ▶ Effectively, we have a piece-wise stationary setup.

Asymptotic Behaviour of Eigenvalues ($N \rightarrow \infty$)

- ▶ Effectively, we have a piece-wise stationary setup.
- ▶ We begin by examining the covariance structure of \mathbf{x}_t

$$\Sigma^x(\tau_s, \tau_e) = \frac{1}{\tau_e - \tau_s + 1} \sum_{t=\tau_s}^{\tau_e} E[\mathbf{x}_t \mathbf{x}_t']$$

within a (potentially moving) window of time points.

Asymptotic Behaviour of Eigenvalues ($N \rightarrow \infty$)

- ▶ Effectively, we have a piece-wise stationary setup.
- ▶ We begin by examining the covariance structure of \mathbf{x}_t

$$\Sigma^x(\tau_s, \tau_e) = \frac{1}{\tau_e - \tau_s + 1} \sum_{t=\tau_s}^{\tau_e} E[\mathbf{x}_t \mathbf{x}_t']$$

within a (potentially moving) window of time points.

- ▶ Lemma 3.1 - Behaviour of eigenvalues of Common part;
- Lemma 3.2 - Behaviour of eigenvalues of Idiosyncratic part;
- Lemma 3.3 - Behaviour of eigenvalues of $\Sigma^x(\tau_s, \tau_e)$.

Lemma 3.3 - Eigenvalue Behaviour under Instability

- ▶ For any $N \in \mathbb{N}$, there exist constants $\underline{M}_4, \overline{M}_4, \underline{M}_5, \overline{M}_5$ s.t.
 - (i) $0 < \underline{M}_4 \leq N^{-1} \mu_j^x(\tau_s, \tau_e) \leq \overline{M}_4 < \infty$ for $j = 1, \dots, r^*$; and
 - (ii) $0 < \underline{M}_5 \leq \mu_{r^*+1}^x(\tau_s, \tau_e) \leq \overline{M}_5 < \infty$

where

$$r^* = \begin{cases} r, & \tau_s < \tau_e \leq \kappa \\ r + q, & \tau_s \leq \kappa < \tau_e \\ r, & \kappa < \tau_s < \tau_e \end{cases}$$

and $q \in \{1, \dots, r\}$ is the # of breaking factors.

Lemma 3.3 - Eigenvalue Behaviour under Instability

- For any $N \in \mathbb{N}$, there exist constants $\underline{M}_4, \overline{M}_4, \underline{M}_5, \overline{M}_5$ s.t.
 - (i) $0 < \underline{M}_4 \leq N^{-1} \mu_j^x(\tau_s, \tau_e) \leq \overline{M}_4 < \infty$ for $j = 1, \dots, r^*$; and
 - (ii) $0 < \underline{M}_5 \leq \mu_{r^*+1}^x(\tau_s, \tau_e) \leq \overline{M}_5 < \infty$

where

$$r^* = \begin{cases} r, & \tau_s < \tau_e \leq \kappa \\ r + q, & \tau_s \leq \kappa < \tau_e \\ r, & \kappa < \tau_s < \tau_e \end{cases}$$

and $q \in \{1, \dots, r\}$ is the # of breaking factors.

- $(r + q)$ eigenvalues diverge when window straddles κ ; but only r eigenvalues diverge otherwise.

Theorem 3.1 - Upward Spike in Detection Statistic

► As $N \rightarrow \infty$,

(i) if $\kappa \neq (\tau_e - 1)$, then there exists a constant \overline{M}_6 s.t.

$$\delta_{r+\rho}(\tau_s, \tau_e) \leq \overline{M}_6 < \infty;$$

(ii) but if $\kappa = (\tau_e - 1)$, then

$$\delta_{r+\rho}(\tau_s, \tau_e) \rightarrow \infty,$$

for $\rho = 1, \dots, q$.

Theorem 3.1 - Upward Spike in Detection Statistic

- ▶ As $N \rightarrow \infty$,

(i) if $\kappa \neq (\tau_e - 1)$, then there exists a constant \overline{M}_6 s.t.

$$\delta_{r+\rho}(\tau_s, \tau_e) \leq \overline{M}_6 < \infty;$$

(ii) but if $\kappa = (\tau_e - 1)$, then

$$\delta_{r+\rho}(\tau_s, \tau_e) \rightarrow \infty,$$

for $\rho = 1, \dots, q$.

- ▶ Proof is evident from analysis of Lemma 3.3.
- ▶ Corollary 3.1 - Useful secondary result (downward spike).

III. Changepoint Detection

Lemma 3.4/Theorem 3.2 - Estimation

Lemma 3.4

For any $N \in \mathbb{N}$ and $j \in \{1, \dots, N\}$,

$$\left| \frac{\hat{\mu}_j^x(\tau_s, \tau_e)}{N} - \frac{\mu_j^x(\tau_s, \tau_e)}{N} \right| = O_p\left((\tau_e - \tau_s + 1)^{-1/2}\right).$$

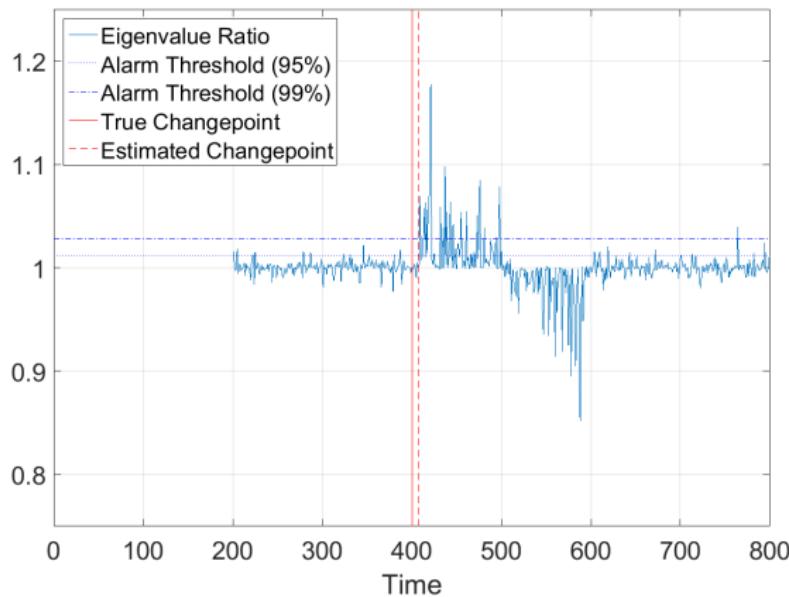
Theorem 3.2

For $j \in \{1, \dots, N\}$,

$$\hat{\delta}_j(\tau_s, \tau_e) \xrightarrow{P} \delta_j(\tau_s, \tau_e) \text{ as } (\tau_e - \tau_s + 1) \rightarrow \infty.$$

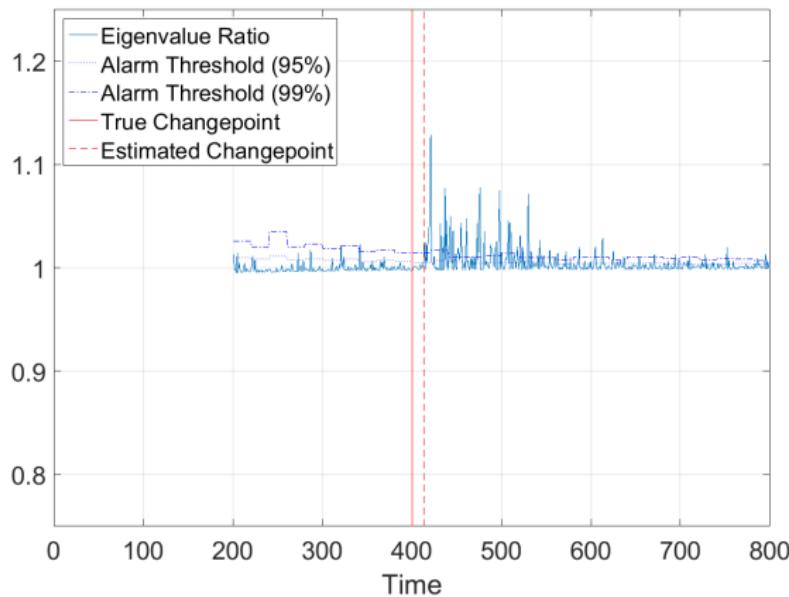
Simulation using Rolling Window Methodology

Figure 3.1



Simulation using Expanding Window Methodology

Figure 3.4



Bootstrapping Alarm Thresholds

- ▶ Overlapping blocks resampling scheme from Kunsch(1989).

Bootstrapping Alarm Thresholds

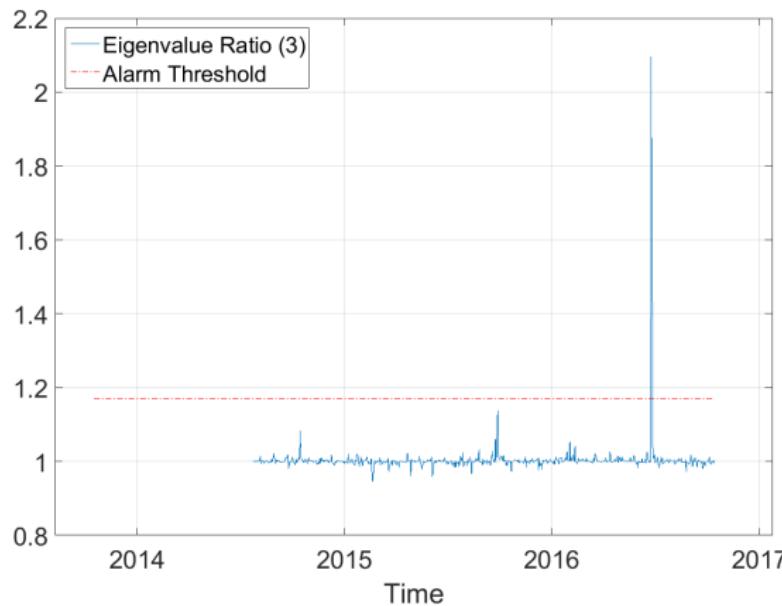
- ▶ Overlapping blocks resampling scheme from Kunsch(1989).
- ▶ Rolling Window:
 - (i) bootstrap from training period; choose $100(1 - \alpha)^{th}$ pctile;
 - (ii) generate a single threshold for use over time.

Bootstrapping Alarm Thresholds

- ▶ Overlapping blocks resampling scheme from Kunsch(1989).
- ▶ Rolling Window:
 - (i) bootstrap from training period; choose $100(1 - \alpha)^{th}$ pctile;
 - (ii) generate a single threshold for use over time.
- ▶ Expanding Window:
 - (i) ongoing bootstrap every (or every w) period(s);
 - (ii) resample from training period with equal probability AND from observations thereafter with geometrically declining probability;
 - (iii) choose $100(1 - \alpha)^{th}$ pctile;
 - (iv) relevant threshold declines step-wise over time.

June 23, 2016: Changepoint Detected!

Figure 3.8



IV. Concluding Remarks

Research Plan

High Frequency Data

- ▶ Jump Detection in continuous-time models.
- ▶ Pelger (2015) and Ait-Sahalia and Xiu (2015).
- ▶ Adapt existing method (eigenvalue-based criterion)?
- ▶ Develop new method (test statistic)?

Thank you, Kostas and Matteo!

RECAP:

Real-time Detection of Changepoints in FMs:

- ▶ Introduced detection statistic based on eigenvalue ratio;
- ▶ Provided theoretical justification for changepoint estimator;
- ▶ Developed a sequential changepoint detection procedure;
- ▶ Tested procedure using simulations and real-world data.

...and a special thanks to Matteo for all his help with my research!