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Research Question

(1) How to Detect Changepoints in FMs

I Structural instabilities in factor models for time series:

1. Changes in Loadings (Λ); and/or

2. Changes in Number of Factors (r).

(2) ...on a Real-Time Basis?

I Unique? Existing literature only addresses offline setting.

I Necessary? Important for applications such as “Nowcasting”.
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My Contributions

(1) New Sequential Changepoint Estimator

I I propose to monitor the value of an eigenvalue ratio

δr+1(τs , τe) =
µxr+1(τs , τe)

µxr+1(τs − 1, τe − 1)

using observations within a rolling window over time, and

I declare a changepoint when it breaches some threshold (H).

I So, with window of fixed length (z), my estimator is of type

inf{τe > z : δr+1(τe − z + 1, τe) ≥ H} − 1
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My Contributions

(2) Theoretical Justification (N →∞)

I In Theorem 3.1, I prove that my eigenvalue ratio exhibits
distinctive (spiking) behaviour exactly at the changepoint.

I What’s the intuition?

Switch in asymptotic behaviour of (r + 1)th eigenvalue:

Pre-κ: the (r + 1)th eigenvalue remains bounded for all N;

Post-κ: the (r + 1)th eigenvalue diverges to infinity with N.

Ratio comparing successive values of this eigenvalue over time
should spike at the changepoint and remain stable otherwise.
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My Contributions

(3) Full Detection Procedure

I In Theorem 3.2, I prove that my eigenvalue ratio can be
consistently estimated from sample data (as T →∞).

I What else?

Rolling and expanding window methodologies;

Block-bootstrap procedure to obtain alarm thresholds;

Simulations; Application to FTSE100 data (detect Brexit);

Extension to emerging and disappearing factors.
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Merits of Proposed Procedure

I Simple idea which works well in practice

...in fact, with no detection delay in FTSE100 data example;

I Allows us to detect different break types

...and distinguish among break types;

I Builds on standard modelling framework from the literature;

I Quick to implement.
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II. Structural Instability
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Key Insight

I A FM with breaks in the loadings has a representation as
a FM with constant loadings but a larger set of factors.

I Consider a one-factor model with a structural break.

xt =

{
λ1ft + et, t ≤ κ
λ2ft + et, t > κ

I Define g1t =

{
ft , t ≤ κ
0, t > κ

and g2t =

{
0, t ≤ κ
ft , t > κ

I xt = λ1g1t + λ2g2t + et, an equivalent stable model.
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Asymptotic Behaviour of Eigenvalues (N →∞)

I Effectively, we have a piece-wise stationary setup.

I We begin by examining the covariance structure of xt

Σx(τs , τe) =
1

τe − τs + 1

τe∑
t=τs

E [xtxt
′]

within a (potentially moving) window of time points.

I Lemma 3.1 - Behaviour of eigenvalues of Common part;

Lemma 3.2 - Behaviour of eigenvalues of Idiosyncratic part;

Lemma 3.3 - Behaviour of eigenvalues of Σx(τs , τe).
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Lemma 3.3 - Eigenvalue Behaviour under Instability

I For any N ∈ N, there exist constants M4, M4, M5, M5 s.t.

(i) 0 < M4 ≤ N−1µx
j (τs , τe) ≤ M4 <∞ for j = 1, .., r∗; and

(ii) 0 < M5 ≤ µx
r∗+1(τs , τe) ≤ M5 <∞

where

r∗ =


r , τs < τe ≤ κ
r + q, τs ≤ κ < τe

r , κ < τs < τe

and q ∈ {1, ..., r} is the # of breaking factors.

I (r + q) eigenvalues diverge when window straddles κ;
but only r eigenvalues diverge otherwise.
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Theorem 3.1 - Upward Spike in Detection Statistic

I As N →∞,

(i) if κ 6= (τe − 1), then there exists a constant M6 s.t.

δr+ρ(τs , τe) ≤ M6 <∞;

(ii) but if κ = (τe − 1), then

δr+ρ(τs , τe)→∞,

for ρ = 1, ..., q.

I Proof is evident from analysis of Lemma 3.3.

I Corollary 3.1 - Useful secondary result (downward spike).
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III. Changepoint Detection
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Lemma 3.4/Theorem 3.2 - Estimation

Lemma 3.4

For any N ∈ N and j ∈ {1, ...,N},∣∣∣∣ µ̂xj (τs , τe)

N
−
µxj (τs , τe)

N

∣∣∣∣ = Op

(
(τe − τs + 1)−1/2

)
.

Theorem 3.2

For j ∈ {1, ...,N},

δ̂j(τs , τe)
p→ δj(τs , τe) as (τe − τs + 1)→∞.
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Simulation using Rolling Window Methodology

Figure 3.1
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Simulation using Expanding Window Methodology

Figure 3.4
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Bootstrapping Alarm Thresholds

I Overlapping blocks resampling scheme from Kunsch(1989).

I Rolling Window:

(i) bootstrap from training period; choose 100(1− α)th pctile;

(ii) generate a single threshold for use over time.

I Expanding Window:

(i) ongoing bootstrap every (or every w) period(s);

(ii) resample from training period with equal probability AND from
observations thereafter with geometrically declining probability;

(iii) choose 100(1− α)th pctile;

(iv) relevant threshold declines step-wise over time.
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June 23, 2016: Changepoint Detected!

Figure 3.8
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IV. Concluding Remarks
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Research Plan

High Frequency Data

I Jump Detection in continuous-time models.

I Pelger (2015) and Ait-Sahalia and Xiu (2015).

I Adapt existing method (eigenvalue-based criterion)?

I Develop new method (test statistic)?

Sequential Changepoint Detection in Factor Models for Time Series 20 / 21 London School of Economics (LSE)



I. Summary II. Theoretical Justification III. Changepoint Detection IV. Remarks

Thank you, Kostas and Matteo!

Recap:
Real-time Detection of Changepoints in FMs:

I Introduced detection statistic based on eigenvalue ratio;

I Provided theoretical justification for changepoint estimator;

I Developed a sequential changepoint detection procedure;

I Tested procedure using simulations and real-world data.

...and a special thanks to Matteo for all his help with my research!
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