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This Technical Appendix accompanies the paper “Dynamic Selection: An Idea Flows Theory of Entry,

Trade and Growth”. The Technical Appendix: (i) provides further details on the derivation of selected

equations from the paper; (ii) analyzes the growth rate when all firms are exporters and under free trade,

and; (iii) shows that the symmetric balanced growth path studied in the paper is locally stable to asymmetric

perturbations of the initial conditions.

1 Derivation of equations (14) and (15)

Start by observing that since the exit cut-off in terms of relative productivity is φ = 1, we have Ht(1) = 0

and equation (13) can be written as:

1

Mt

Mt+∆ −Mt

∆
= −

Ht

(
θ∗t+∆

θ∗t

)
−Ht

(
θ∗t
θ∗t

)
∆

+

[
1− F

(
θ∗t+∆

xt

)]
Rt
Mt

. (TA1)

Now define Kt(s) = Ht

(
θ∗s
θ∗t

)
. Then we have:

Ht

(
θ∗t+∆

θ∗t

)
−Ht

(
θ∗t
θ∗t

)
∆

=
Kt(t+ ∆)−Kt(t)

∆
,

Taking the limit of this expression as ∆→ 0 gives:

lim
∆→0

Ht

(
θ∗t+∆

θ∗t

)
−Ht

(
θ∗t
θ∗t

)
∆

= K ′t(t) = H ′t(1)
θ̇∗t
θ∗t
,

where the second equality follows from the chain rule and the definition of Kt. Now using this result and

taking the limit of equation (TA1) as ∆→ 0 gives equation (14) in the paper.
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Using equation (13) to substitute for Mt+∆ in equation (12) and rearranging gives:

Ht+∆(φ)−Ht(φ)

∆
=

Ht

(
θ∗t+∆

θ∗t
φ
)
−Ht

(
θ∗t
θ∗t
φ
)

∆
−
Ht

(
θ∗t+∆

θ∗t

)
−Ht

(
θ∗t
θ∗t

)
∆

[1−Ht+∆(φ)]

+

{
F

(
φθ∗t+∆

xt

)
− F

(
θ∗t+∆

xt

)
−Ht+∆(φ)

[
1− F

(
θ∗t+∆

xt

)]}
Rt
Mt

.

Taking the limit as ∆→ 0 and applying the chain rule as needed then gives equation (15) in the paper.

2 Derivation of equations (22) and (23)

Substituting (9) into (7) implies:

Wt(φt) =

∫ t+
log φt
g

t
fwte

(q−r)(v−t)
[(
φte
−g(v−t)

)σ−1
− 1

]
dv

+JI
[
φt ≥ φ̃

] ∫ t+
log(φt/φ̃)

g

t
fτ1−σwte

(q−r)(v−t)
[(
φte
−g(v−t)

)σ−1
− φ̃σ−1

]
dv.

Computing the integrals on the right hand side of this expression and using φ̃σ−1 = fx
f τ

σ−1 gives equation

(22) in the paper.

The free entry condition (11) can be written as:

fewt =

∫ ∞
1

Wt(φ)dH

(
φ

λ

)
.

Noting that on the balanced growth path dH
(
φ
λ

)
= kλkφ−k−1dφ it is straightforward to obtain equation

(23) in the paper by solving the integral above and simplifying the resulting expression.

3 Growth when all firms export

Proposition 1 in the paper is derived assuming trade costs satisfy τσ−1fx > f which is a necessary and

sufficient condition to ensure some, but not all, firms select into exporting. When 0 < τσ−1fx ≤ f all firms

export and on the balanced growth path consumption per capita grows at rate:

q =
γ

1 + γ(k − 1)

[
σ − 1

k + 1− σ

(
k

k − 1
ψmin

)k 1

fe
(f + Jfx) +

kn

σ − 1
− ρ

]
.

In this case, growth is independent of τ and strictly increasing in fx. By contrast, when not all firms export,

Proposition 1 shows growth is strictly decreasing in both τ and fx. Thus, the effects of changes in trade costs

on growth are qualitatively different when all firms export than when there is selection into exporting. This
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demonstrates how allowing for selection into exporting is central to understanding the relationship between

trade and growth in the dynamic selection model.

When there are no trade costs (i.e. τ = 1, fx = 0) all firms export and the growth rate on the balanced

growth path is:

q =
γ

1 + γ(k − 1)

[
σ − 1

k + 1− σ

(
k

k − 1
ψmin

)k f
fe

+
kn

σ − 1
− ρ

]
.

Comparing this expression with Proposition 1 when J = 0 shows that the free trade growth rate is the same

as the autarky growth rate. The reason free trade does not affect growth is that, in the absence of fixed costs

of exporting, the competition effect from imports exactly offsets the size effect of access to foreign markets.

An increase in population size leaves the growth rate unchanged for the same reason; the size effect from

access to a larger market is exactly offset by increased competition. Thus, it is the absence of a scale effect

that means free trade does not affect the growth rate.

4 Stability

Suppose countries differ in their initial conditions. In equilibrium, does the global economy converge to

the symmetric balanced growth path described in Proposition 1? To address this question, I assume that at

time zero the productivity distribution of potential producers Ĝ0(θ) is Pareto with shape parameter k in all

countries,1 but the mass of potential producers and the scale parameter of the productivity distribution vary

across countries. I assume at time zero country j has M̂ j
0 potential producers with productivity distribution

Ĝj0 = 1 −
(

θ

θ̂∗j0

)−k
for j = 0, 1, . . . , J . To be specific, I consider the case where countries j = 1, . . . , J

are symmetric, but there is an asymmetry between country 0 and the rest of the world. For example, country

0 may have more potential producers or higher initial average productivity.

The local stability of the symmetric balanced growth path to asymmetric shocks to the initial conditions

can be analyzed by solving for the equilibrium of the global economy allowing for asymmetric outcomes

across countries and then differentiating these equilibrium conditions about the symmetric balanced growth

path equilibrium. I will use j superscripts to denote countries and qy to denote the growth rate of any variable

y.

Let P j be the price of the consumption good in country j. The household budget constraint implies:

qjat =
wjt

ajt
+ rjt −

cjtP
j
t

ajt
− n, (TA2)

and intertemporal optimization gives the Euler equation:

qjct = γ(rjt − q
j
P t − ρ). (TA3)

1The reasoning used in Proposition 2 implies that in any country where Assumptions 1 and 3 hold and the exit cut-off grows
without bound over time, the productivity distribution converges to a Pareto distribution with shape parameter k as t→∞.
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Firms select into markets where variable profits exceed fixed production costs. Maintaining the assump-

tion that in all countries the export threshold for entering any foreign market is greater than the exit cut-off

for serving the domestic market2 the productivity threshold θ̃jit above which firms in country j sell in market

i is:

θ̃jit =
σ

σ
σ−1

σ − 1
τ ji

[
f ji

citLt

(
wjt
P it

)σ] 1
σ−1

, (TA4)

where τ ji equals 1 if j = i and equals τ otherwise, while f ji equals f if j = i and equals fx otherwise.

Differentiating the above equation with respect to time gives:

gjit =
σ

σ − 1
(qjwt − qiP t)−

1

σ − 1
(qit + n), (TA5)

where gjit is the growth rate of θ̃jit . Using (TA4) we can write the profits from selling to country i as:

πjit (φ) = f jiwjt

( θ̃jit
θ̃jjt

)1−σ

φσ−1 − 1

 . (TA6)

Allowing for asymmetric initial conditions does not affect the knowledge spillover process or the equa-

tions that determine the evolution of the productivity distribution. Therefore, λ is unchanged from the

symmetric countries model and is constant across countries and since each country starts from a Pareto pro-

ductivity distribution, the relative productivity distribution in every country is Pareto with scale parameter 1

and shape parameter k in all periods. In addition, the growth rate of the mass of firms in country j is:

qjMt = −kgjjt + λk
Rjt

M j
t

. (TA7)

Knowing that the productivity distribution is Pareto, it is straightforward to calculate the consumption

price index:

P jt =
σ

σ − 1

 k

k + 1− σ

J∑
i=0

M i
t

(
τ ijwit

θ̃ijt

)1−σ (
θ̃ijt
θ̃iit

)−k 1
1−σ

, (TA8)

and by differentiating this expression we obtain the growth rate of the price index:

(1− σ)qjP t =

(
σ − 1

σ

)σ−1 k

k + 1− σ

J∑
i=0

M i
t

(
τ ijwit
θ̃ijt

)1−σ ( θ̃ijt
θ̃iit

)−k
(
P jt

)1−σ

∗
[
qiMt − (σ − 1)qiwt − (k + 1− σ)gijt + kgiit

]
. (TA9)

2Since I am interested in local perturbations of the symmetric equilibrium the restriction τσ−1fx > f guarantees this assumption
holds.
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Using the functional form of the productivity distribution also implies that the labor market clearing condi-

tion is:

Lt = Rjtfe +
kσ + 1− σ
k + 1− σ

M j
t

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k
. (TA10)

Since asset markets are assumed to operate at the national level, trade is balanced every period implying:

J∑
i=0,i 6=j

M j
t w

j
t

(
θ̃jit

θ̃jjt

)−k
=

J∑
i=0,i 6=j

M i
tw

i
t

(
θ̃ijt
θ̃iit

)−k
, (TA11)

with time derivative:

J∑
i=0,i 6=j

[
qjMt + qjwt − k

(
gjit − g

jj
t

)]
M j
t w

j
t

(
θ̃jit

θ̃jjt

)−k

=
J∑

i=0,i 6=j

[
qiMt + qiwt − k

(
gijt − giit

)]
M i
tw

i
t

(
θ̃ijt
θ̃iit

)−k
. (TA12)

Free entry requires the R&D cost equals the expected value of starting a new firm. Note that entrants at

time t draw productivity from a Pareto distribution G̃t(θ) with shape parameter k and scale parameter λθ̃jjt .

Therefore, using the profit function (TA6) we can write the free entry condition as:

fe =

J∑
i=0

f ji
∫ ∞
t

e−
∫ v
t (rjs−qjws)ds

∫ ∞
θ̃jiv

[(
θ

θ̃jiv

)σ−1

− 1

]
dG̃t(θ)dv,

=
σ − 1

k + 1− σ
λk

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k ∫ ∞
t

e−
∫ v
t (kgjis +rjs−qjws)dsdv, (TA13)

and differentiating the free entry condition with respect to time we obtain:

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k
=
(
kgjjt + rjt − q

j
wt

) J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k ∫ ∞
t

e−
∫ v
t (kgjis +rjs−qjws)dsdv. (TA14)

Given that the free entry condition holds, the asset market clearing condition is:

ajtLt =
fe
λk
M j
t w

j
t , (TA15)

and taking the time derivative of the asset market clearing condition gives:

qjat + n = qjMt + qjwt, (TA16)
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Finally, the initial conditions imply that the mass of firms that produce at time zero satisfies:

M j
0 =

(
θ̃jj0
θ̂∗j0

)−k
M̂ j

0 . (TA17)

All the equilibrium conditions above hold for all i, j = 0, 1, . . . , J and for all t ≥ 0.

The next step is to totally differentiate the equilibrium conditions about the symmetric balanced growth

path allowing for asymmetric shocks to the initial conditions. Taking the total derivative of equations (TA2)-

(TA5) and (TA7)-(TA16) gives:

dqjat =

(
dwjt
wt
− dajt

at

)
wt
at

+ drjt −

(
dcjt
ct

+
dP jt
Pt
− dajt

at

)
ct
at
, (TA18)

dqjct = γ(drjt − dq
j
P t), (TA19)

(σ − 1)
dθ̃jit

θ̃jit
= σ

(
dwjt
wt
− dP it

Pt

)
− dcit

ct
, (TA20)

(σ − 1)dgjit = σ
(
dqjwt − dqiP t

)
− dqict, (TA21)

dqjMt + kdgjjt = λk
Rt
Mt

(
dRjt
Rt
− dM j

t

Mt

)
, (TA22)

(1− σ)
dP jt
Pt

=

∑J
i=0

[
dM i

t
Mt
− (σ − 1)

dwit
wt

+ k
dθ̃iit
θ̃iit
− (k + 1− σ)

dθ̃ijt
θ̃ijt

] (
τ ij
)1−σ (

θ̃ijt

)σ−k−1

∑J
i=0 (τ ij)1−σ

(
θ̃ijt

)σ−k−1
, (TA23)

(1− σ)dqjP t =

∑J
i=0

[
dqiMt − (σ − 1)dqiwt + kdgiit − (k + 1− σ)dgijt

] (
τ ij
)1−σ (

θ̃ijt

)σ−k−1

∑J
i=0 (τ ij)1−σ

(
θ̃ijt

)σ−k−1
, (TA24)

fe
Rt
Mt

dRjt
Rt

+
kσ + 1− σ
k + 1− σ

dM j
t

Mt

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k
− k

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k(
dθ̃jit

θ̃jit
− dθ̃jjt

θ̃jjt

) = 0,

(TA25)

J
dM j

t

Mt
+ J

dwjt
wt
− k

J∑
i=0,i 6=j

(
dθ̃jit

θ̃jit
− dθ̃jjt

θ̃jjt

)
=

J∑
i=0,i 6=j

[
dM i

t

Mt
+
dwit
wt
− k

(
dθ̃ijt

θ̃ijt
− dθ̃iit

θ̃iit

)]
, (TA26)
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JdqjMt + Jdqjwt − k
J∑

i=0,i 6=j

(
dgjit − dg

jj
t

)
=

J∑
i=0,i 6=j

[
dqiMt + dqiwt − k

(
dgijt − dgiit

)]
, (TA27)

k

kg + r − q

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k(
dθ̃jit

θ̃jit
− dθ̃jjt

θ̃jjt

)

+

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k ∫ ∞
t

e−(kg+r−q)(v−t)
∫ v

t

(
kdgjis + drjs − dqjws

)
dsdv = 0, (TA28)

kdgjjt + drjt − dq
j
wt

kg + r − q

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k
+ k

J∑
i=0

f ji

(
θ̃jit

θ̃jjt

)−k(
dθ̃jit

θ̃jit
− dθ̃jjt

θ̃jjt

)
= 0, (TA29)

dajt
at

=
dM j

t

Mt
+
dwjt
wt

, (TA30)

dqjat = dqjMt + dqjwt. (TA31)

All variables in these equations except for the differentials take their symmetric balanced growth path values

and are constant across countries. In particular, note that θ̃jit equals θ∗t if j = i and equals φ̃θ∗t otherwise.

Finally, if we define ηjt ≡M
j
t

(
θ̃jjt

)k
then:

dηjt
ηt

=
dM j

t

Mt
+ k

dθ̃jjt

θ̃jjt
, (TA32)

and from (TA17) we have:

dηj0
η0

=
dM̂ j

0

M̂0

+ k
dθ̂∗j0

θ̂∗0
. (TA33)

From this expression we see that variation in the initial conditions affect the equilibrium only through dηj0 for

j = 0, 1, . . . , J . Moreover, it follows from equations (TA18)-(TA32) that if dηjt is constant across countries

then the equilibrium is a symmetric balanced growth path from time t onwards. Therefore, to prove the

symmetric balanced growth path is stable we need to show that cross-country variation in dηjt dissipates

over time, which requires limt→∞

(
dηjt − dηit

)
= 0 for all i, j = 0, 1, . . . , J .

Now remember that countries j = 1, . . . , J are symmetric. Symmetry implies if y is any country specific

variable then dyit = dyjt for all i, j = 1, . . . , J . In addition, (TA20) and (TA21) imply dθ̃ijt
θ̃ijt

and dgijt are

constant for all pairs i, j with i 6= 0 and j 6= 0. Consequently, we can simplify equations (TA18)-(TA32) by

taking differences between pairs of equations for country 0 and country j 6= 0.

Start by observing that (TA20) implies:
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dθ̃00
t

θ̃00
t

− dθ̃j0t

θ̃j0t
=
dθ̃0j
t

θ̃0j
t

− dθ̃jjt

θ̃jjt
, (TA34)

and (TA21) implies:

dg00
t − dg

j0
t = dg0j

t − dg
jj
t . (TA35)

Now, substituting (TA22), (TA32) and (TA34) into (TA25) gives:

0 =
[(
dq0
Mt + kdg00

t

)
−
(
dqjMt + kdgjjt

)]
+
λk

fe

Lt
Mt

[(
dη0

t

ηt
− dηjt

ηt

)
− k

(
dθ̃00
t

θ̃00
t

− dθ̃jjt

θ̃jjt

)]

− λk

fe

kσ + 1− σ
k + 1− σ

(J + 1)fxφ̃
−kk

(
dθ̃0j
t

θ̃0j
t

− dθ̃00
t

θ̃00
t

)
. (TA36)

Substituting (TA20), (TA32) and (TA34) into (TA26) gives:

0 =

(
dη0

t

ηt
− dηjt

ηt

)
− kσ + 1− σ

σ

(
dθ̃00
t

θ̃00
t

− dθ̃jjt

θ̃jjt

)
− 2kσ + 1− σ

σ

(
dθ̃0j
t

θ̃0j
t

− dθ̃00
t

θ̃00
t

)
. (TA37)

Substituting (TA19), (TA24) and (TA35) into (TA21) gives:

0 = −γ(σ − 1)

σ − γ

(
1 + J

fx
f
φ̃−k

)[(
kdg00

t + dr0
t − dq0

wt

)
−
(
kdgjjt + drjt − dq

j
wt

)]
+

(
1− fx

f
φ̃−k

)[(
dq0
Mt + kdg00

t

)
−
(
dqjMt + kdgjjt

)]
+
kσ + 1− σ

σ
(1 + J)

fx
f
φ̃−k

(
dg0j
t − dg00

t

)
+
kσ + 1− σ
σ − γ

1

f

[
(γ − 1)

(
f − fxφ̃−k

)
+
γ(σ − 1)

σ
(1 + J)fxφ̃

−k
](
dg00
t − dg

jj
t

)
. (TA38)

Substituting (TA34) into (TA29) gives:

0 =
f + Jfxφ̃

−k

kg + r − q

[(
kdg00

t + dr0
t − dq0

wt

)
−
(
kdgjjt + drjt − dq

j
wt

)]
+ (1 + J)fxφ̃

−kk

(
dθ̃0j
t

θ̃0j
t

− dθ̃00
t

θ̃00
t

)
, (TA39)

and substituting (TA21) and (TA35) into (TA27) gives:
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0 =
[(
dq0
Mt + kdg00

t

)
−
(
dqjMt + kdgjjt

)]
− kσ + 1− σ

σ

(
dg00
t − dg

jj
t

)
− 2kσ + 1− σ

σ

(
dg0j
t − dg00

t

)
. (TA40)

To simplify notation define:

Q0t ≡
dη0

t

ηt
− dηjt

ηt
,

Q1t ≡
(
dq0
Mt + kdg00

t

)
−
(
dqjMt + kdgjjt

)
,

Q2t ≡
(
kdg00

t + dr0
t − dq0

wt

)
−
(
kdgjjt + drjt − dq

j
wt

)
,

Q3t ≡
dθ̃00
t

θ̃00
t

− dθ̃jjt

θ̃jjt
,

Q4t ≡
dθ̃0j
t

θ̃0j
t

− dθ̃00
t

θ̃00
t

,

Q5t ≡ dg00
t − dg

jj
t ,

Q6t ≡ dg0j
t − dg00

t .

Given Q0t, (TA36)–(TA40) are five linear equations in six unknowns Q1t–Q6t. Observe also that:

Q0t = Q00 +

∫ t

0
Q1vdv.

or, equivalently:

Q̇0t = Q1t. (TA41)

A sixth equation comes from substituting (TA34) and (TA35) into (TA28) to obtain:

0 =
k(1 + J)fxφ̃

−k

kg + r − q
Q4t +

∫ ∞
t

∫ v

t

[(
f + Jfxφ̃

−k
)
Q2s + k(1 + J)fxφ̃

−kQ6s

]
ds e−(kg+r−q)(v−t)dv,

and integrating by parts this implies:

0 = k(1 + J)fxφ̃
−kQ4t +

∫ ∞
t

[(
f + Jfxφ̃

−k
)
Q2v + k(1 + J)fxφ̃

−kQ6v

]
e−(kg+r−q)(v−t)dv. (TA42)

Using (TA36)–(TA40) we can rewrite (TA42) as an equation in Q0t and Q1t. This gives:

0 = Q1t + β2Q0t +

∫ ∞
t

[β3Q1v + β4Q0v] e
−(kg+r−q)(v−t)dv, (TA43)
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where:

β2 ≡ − σ − 1

kσ + 1− σ
Lt
Mt

λk

fe
,

β3 ≡ −(kg + r − q) +
1

β̃

kγ

σ − γ
σ − 1

σ
(kσ + 1− σ)

λk

fe

(
1 + J

fx
f
φ̃−k

)
×
[

2kσ + 1− σ
kσ + 1− σ

Lt
Mt
− kσ

k + 1− σ
(1 + J)fxφ̃

−k
]
,

β4 ≡ σ − 1

σ

Lt
Mt

λk

fe
(kg + r − q)

[
σ

kσ + 1− σ
+

1

β̃

kγ(σ − 1)

σ − γ
(1 + J)

fx
f
φ̃−k

]
,

β̃ ≡ kσ + 1− σ
σ(σ − γ)f

[
(2kσ + 1− σ)(1− γ)

(
f + Jfxφ̃

−k
)
− k(σ − γ)(1 + J)fxφ̃

−k
]
.

Now differentiating (TA43) and using (TA41) to substitute for Q̇0t gives:

Q̇1t = β0Q0t + β1Q1t, (TA44)

where:

β0 ≡ (kg + r − q)β2 + β4,

β1 ≡ (kg + r − q)− β2 + β3.

Equations (TA41) and (TA44) are a system of two, linear, first order differential equations.

Asymmetries in the initial conditions affect the equilibrium only through Q0t and a necessary and suffi-

cient condition for stability is: limt→∞Q0t = 0. Since Q0t = Q1t = 0 is the unique steady state of (TA41)

and (TA44), the symmetric balanced growth path is locally stable if and only if the system of differential

equations (TA41) and (TA44) is stable. Analyzing (TA41) and (TA44), I find that γ ≤ 1 is a sufficient

condition for stability.3 Proposition TA 1 summarizes this result.

Proposition TA 1. The symmetric balanced growth path characterized in Proposition 1 is locally stable

to asymmetries in the initial conditions across countries when the intertemporal elasticity of substitution

γ ≤ 1.

Proof. Equations (TA41) and (TA44) can be written as:(
Q̇0t

Q̇1t

)
= B

(
Q0t

Q1t

)
, where B =

(
0 1

β0 β1

)
.

This system is globally stable if both eigenvalues of B have negative real parts and saddle path stable if one

eigenvalue of B is negative. From the characteristic equation of B it then follows that if both β0 < 0 and

β1 < 0 the system is globally stable, while if β0 > 0 the system is saddle path stable.
3Alternatively, k ≥ 2 is sufficient for stability for any value of γ. See the proof of Proposition TA 1.
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We have:

β0 =
1

β̃

(σ − 1)2

σ

kγ

σ − γ
Lt
Mt

λk

fe
(1 + J)

fx
f
φ̃−k(kg + r − q),

β1 =
σ − 1

kσ + 1− σ
Lt
Mt

λk

fe
+

1

β̃

kγ

σ − γ
σ − 1

σ
(kσ + 1− σ)

λk

fe

(
1 + J

fx
f
φ̃−k

)
×
[

2kσ + 1− σ
kσ + 1− σ

Lt
Mt
− kσ

k + 1− σ
(1 + J)fxφ̃

−k
]
,

where:

β̃ ≡ kσ + 1− σ
σ(σ − γ)f

[
(2kσ + 1− σ)(1− γ)

(
f + Jfxφ̃

−k
)
− k(σ − γ)(1 + J)fxφ̃

−k
]
.

Note that β̃ > 0 if and only if γ < γ0 ≡
(2kσ+1−σ)(f+Jfxφ̃−k)−kσ(1+J)fxφ̃−k

(2kσ+1−σ)(f+Jfxφ̃−k)−k(1+J)fxφ̃−k
< 1 or γ > σ meaning that

β0 > 0 if and only if γ < γ0.

Using equation (27) to substitute for Lt
Mt

gives:

β1 =
1

β̃

σ − 1

σ(σ − γ)f{
(n+ gk)

[
(2kσ + 1− σ)(kγ + 1− γ)(f − fxφ̃−k) + (kσ + 1− σ)(2kγ + 1− γ)(1 + J)fxφ̃

−k
]

+
kσ + 1− σ
k + 1− σ

λk

fe

(
f + Jfxφ̃

−k
) [

(2kσ + 1− σ)(kγ + 1− γ)(f − fxφ̃−k)

+ [(k + 1− σ)(kγ + 1− γ) + k(σ − 1) [(k − 2)γ + 1]] (1 + J)fxφ̃
−k
]}

.

Now note that fxf φ̃
−k = τ1−σ

(
τσ−1fx

f

)− k+1−σ
σ−1

< 1 since by assumption τ ≥ 1, τσ−1fx > f and k > σ−1.

Careful inspection of the above expression then shows that if either γ ≤ 1 or k ≥ 2 then β1 < 0 if and only

if γ > γ0. It follows that either γ ≤ 1 or k ≥ 2 is sufficient to ensure the system of differential equations

(TA41) and (TA44) is stable.

To understand why the symmetric balanced growth path is stable consider a shock to the symmetric

equilibrium that either increases the initial mass of producers in country zero or shifts the initial productivity

distribution in country zero upwards. This shock raises aggregate productivity and real wages in country

zero relative to the rest of the world. Following the shock aggregate demand in country zero is higher than

in the other countries, making country zero the most attractive export market. Consequently, the ratio of

the export threshold to the exit cut-off in country zero is higher than in the rest of the world, implying that

a smaller fraction of country zero firms choose to export. Effectively, country zero is less open to trade

than the rest of the world, where openness is measured by the ratio of exports to domestic sales.4 Since
4For a related result in a static economy see Demidova and Rodrı́guez-Clare (2013) who introduce asymmetries in country size
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the free entry condition mandates that openness increases growth, the dynamic selection effect is weaker in

country zero than elsewhere. Therefore, country zero grows more slowly than the rest of the world and the

world economy converges to the symmetric balanced growth path. Intuitively, since trade raises growth and

trade is relatively less important in larger markets, market size differences resulting from variation in initial

conditions dissipate over time.
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