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Overview

Weeks 6-10: Analysis

In weeks 6-10, we will learn some of the basic concepts from the subject of ‘Math-
ematical Analysis’ or briefly ‘Analysis’. Roughly speaking, Analysis is Calculus
made rigorous.

We are familiar with Calculus as a branch of mathematics in which the focus
is on two main things: Given a real-valued function of a real variable,

‚ (Differentiation) What is the rate of change of the function at a point?

‚ (Integration) What is the area under the graph of the function over an interval?

f

f

Differentiation and

a bc

Integration

What is the slope of f
at the point c?

What is the area under the graph of f
over an interval from a to b?

In Calculus, while there are these two quite different topics of study, the Funda-
mental Theorem of Calculus is a bridge between these different worlds, saying that
the processes of differentiation and integration are inverses of each other:

ż b

a
f 1pxqdx “ fpbq ´ fpaq and

d

dx

ż x

a
fpξqdξ “ fpxq.

This interaction between differentiation and integration provides a powerful body
of understanding and calculational technique, called ‘Calculus’.
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2 Overview

A thorough treatment of Calculus, i.e., of the subject of Analysis, must start with
a careful study of the number system in which the action takes place, namely the
set R of real numbers. To see why, let’s consider an example. Suppose we want to
find the area under the graph of the function fpxq “ 1{x from x “ 1 to x “ 2.

We are trying to obtain the area by approximating it via the sum of rectangular
areas, each time doubling the number of rectangles, hence ‘exhausting’ more and
more of the required area. The area at the nth stage is

an “
1

2n´1

´ 1

1 ` 1
2n´1

`
1

1 ` 2
2n´1

` ¨ ¨ ¨ `
1

1 ` 2n´1´1
2n´1

`
1

1 ` 2n´1

2n´1

¯
.

The idea is then that if A is the area we seek, and an is the area at the nth step,
then for large n, an approximates A. Clearly a1 ď a2 ď a3 ď ¨ ¨ ¨ , and they are all
less than some big number1. Since an misses A by smaller and smaller amounts as
n increases, we expect that A should the ‘smallest’ number exceeding the numbers
a1, a2, a3, ¨ ¨ ¨ . Does such a number always exist? We seem to need the fact that

(F)

$
&

%

For an increasing sequence a1, a2, a3, ¨ ¨ ¨ , of numbers
all of which are less than a certain number,
there is a smallest number which is bigger than each of a1, a2, a3, ¨ ¨ ¨ .

Note that each an P Q (set of rationals). Does (F) hold for rational numbers?

This question might seem frivolous to a scientist who is just interested in ‘real
world applications’. But such a sloppy attitude can lead to trouble. Indeed, results
in Calculus during the 16th to the 18th century relying on a mixture of deductive
reasoning and intuition, involving vaguely defined terms, were later shown to be
incorrect. To give a quick example of how things might easily go wrong, one might
naively, but incorrectly2, guess that the answer to the question above is ‘yes’. This
prompts the question of whether there is a bigger set of numbers than the rational
numbers for which the property happens to be true? The answer is ‘yes’, and this
is the real number system R.

1Take a square of height and width 1. Then each an is less than (the area of this square, which is) 1.
2In fact, for our sequence a1, a2, a3, ¨ ¨ ¨ above, there is no smallest rational number which is bigger

than each of the ans. If we consider the sequence in R, then A“ loge 2, which can be shown to be irrational!



Weeks 11-15: Number systems 3

So the subject of Analysis must start with a careful study of the real number system
R, and this is where our journey begins. After learning about the key properties
of the real numbers, we will discuss two useful notions in Analysis:

‚ the concept of convergence of a sequence of real numbers, and

‚ the concept of continuity.

These are the first fundamental notions with which one can embark on a more
detailed study of Analysis (to be continued in later courses such as MA203).

Weeks 11-15: Number systems

In the weeks 6-10, we begin our study of the subject of Analysis by stipulating
carefully the properties of the real number system, and proceed from there. But
we do not address the issue of what exactly the set of real numbers is, i.e., how
one constructs it as a mathematical object. Thus, in some sense, in the first part
we hit the ground running, accepting on faith the properties we need and making
quick progress from that starting point.

In the second part, i.e., in the weeks 11-15, we will spend some time learning
about the foundations of the number systems, starting with the natural number
system N of the ‘counting numbers’, and progressively enlarging the number system
set whenever we meet an arithmetic hurdle, until we meet an ‘analytical’ hurdle
with the rationals, which is finally remedied by the real number system:

N Ă Z Ă Q Ă R.

We will first learn about the manner in which these number systems are con-
structed. Subsequently, we shall also delve deeper into the ‘algebraic structure’ of
the integers obtained from its arithmetic, since it plays a fundamental role in all
of Mathematics. In particular, we will learn about

‚ the Division Algorithm,

‚ divisibility, the greatest common divisor, and Euclid’s Algorithm,

‚ prime numbers, and the Fundamental Theorem of Arithmetic, and

‚ modular arithmetic.

Challenging exercises within these notes are indicated with an asterisk symbol (˚).
Nonexaminable sections or remarks are labelled by (˚).

Before beginning, we fix some notation and terminology. If X,Y are sets, and
f a function from X to Y , then we write f : X Ñ Y. We refer to the set X as the
domain of f , the set Y as the codomain of f , and the set fpXq :“ tfpxq : x P Xu
as the image/range of f . Sometimes we write X Q x ÞÑ fpxq P Y, which is read as
‘element x belonging to X is mapped to the element fpxq belonging to Y ’.

Amol Sasane
2021.





Chapter 1

The real numbers

From the considerations in the overview, it is clear that one needs to begin the
subject of Analysis by studying the real numbers carefully. The plan is as follows:

(1) An intuitive, visual picture of R: the number line. We will begin our
understanding of R intuitively as points on the ‘number line’. So we will have
a mental picture of R, in order to begin stating the precise properties of the
real numbers that we will need later. It is a legitimate issue to worry about
the construction of the set of real numbers, and we will say something about
this in Section 1.7 (and do it more carefully in Chapter 4).

(2) Properties of R. Having a rough feeling for the real numbers as being points
of the real line, we will proceed to state the precise properties of the real
numbers we will need. So we will think of R as a given (undefined) set for
now, and just state rigorously what properties we need this set R to have.
These desirable properties1 fall under three categories:

(a) the field axioms, which tell us about what laws the arithmetic of the real
numbers should follow,

(b) the order axiom, telling us that comparison of real numbers is possible with
an order ą and what properties this order relation has, and

(c) the Least Upper Bound Property of R, which tells us roughly that unlike
the set of rational numbers, the real number line has ‘no holes’. This
property is the most important in Analysis. Had the set Q of rationals
possessed this property, then we wouldn’t have bothered studying R, and
instead we would have just used Q for Calculus.

(3) The construction of R. Although we will think of real numbers intuitively
as ‘numbers which can be depicted on the number line’, this is not acceptable
as a rigorous mathematical definition. So we ask:

Is there a set R that can be constructed with the properties (2)(a),(b),(c) above?

Answer: Yes. This will be outlined in Section 1.7 and detailed in Chapter 4.

1These will be given in detail in Sections 1.2, 1.3, 1.4.
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6 1. The real numbers

R

0 1

Intuitive visual picture of R
as points on the number line

Properties of R
(1) Field axioms (laws of arithmetic)
(2) Order axioms ( ą,ă,“ )
(3) The Least Upper Bound Property

Construction of R

1.1. Intuitive picture of R as points on the number line

In elementary school, we learn about

the natural numbers N :“ t1, 2, 3, ¨ ¨ ¨ u

the integers Z :“ t¨ ¨ ¨ ,´3,´2,´1, 0, 1, 2, 3, ¨ ¨ ¨ u, and

the rational numbers Q :“
!n

d
: n, d P Z, d ‰ 0

)
,

and we are accustomed to visualizing these numbers on the ‘number line’. The
number line is any line in the plane, on which we have chosen a point O as the
‘origin’, representing the number 0, and chosen a unit length by marking off a
point on the right of O, where the number 1 is placed. In this way, we get all
the positive integers, 1, 2, 3, 4, ¨ ¨ ¨ by repeatedly marking off successively the unit
length towards the right, and all the negative integers ´1,´2,´3, ¨ ¨ ¨ by repeatedly
marking off successively the unit length towards the left.

´2 ´1 0 1 2

chosen unit length

Just like the integers can be depicted on the number line, we can also depict all
rational numbers on it as follows. Firstly, here is a procedure for dividing a unit
length on the number line into d (P N) equal parts, allowing us to construct the
rational number 1{d on the number line. See Figure 1. The steps are as follows.
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0

O A B

A1

B1

1

Figure 1. Construction of rationals: Given the length 1 (“ !pOBq), we can
construct the length 1{5, and so A corresponds to the rational number 1{5.

(1) Take an arbitrary length "pOA1q along a ray starting at O in any direction other
than that of the number line itself.

(2) Let B1 be a point on the ray such that "pOB1q “ d ¨ "pOA1q.
(3) Draw AA1 parallel to BB1 to meet the number line at A.

Conclusion: ∆OAA1 is similar to ∆OBB1, and so "pOAq “ 1{d.
Having obtained 1{d, we can now construct n{d on the number line for any

n P Z, by repeating the length 1{d n times towards the right of 0 if n ą 0, and
towards the left ´n times from 0 if n is negative.

Hence we can depict all the rational numbers on the number line. Does this
exhaust the number line? That is, suppose that we start with all the points on
the number line being coloured black, and suppose that at a later time, we colour
all the rational ones by red: are there any black points left over? The answer is
‘yes’, and we demonstrate this below. We will show that there does ‘exist’, based
on geometric reasoning, a point on the number line, whose square is 2, but we will
also argue that this number, denoted by

?
2, is not a rational number.

Firstly, the following picture shows that
?
2 exists as a point on the number

line. Indeed, in the right angled triangle ∆OBA, by the Pythagoras Theorem, we
have p"pOAqq2 “ p"pOBqq2 ` p"pABqq2 “ 12 ` 12 “ 2, and so "pOAq is a number,
denoted say by

?
2, whose square is 2. Taking O as the center and radius "pOAq,

we draw a circle intersecting the number line at a point C, corresponding to the
number

?
2. Is

?
2 a rational number? We will now show that it isn’t!

O

A

B
?
2

1



8 1. The real numbers

Exercise 1.1. Depict ´11{6 and
?
3 on the number line.

Theorem 1.1 (An ‘origami’ proof of the irrationality of
?
2).

There is no rational number q P Q such that q2 “ 2.

Proof. Suppose that
?
2 is a rational number. Then some scaling of the triangle

?
2

1

1

by an integer will produce a similar triangle, all of whose sides are integers. Choose
the smallest such triangle, say ∆ABC, with integer lengths "pBCq “ "pABq “ n,
and "pACq “ N , n,N P N. Now do the following origami: fold along a line passing
through A so that B lies on AC, giving rise to the point B1 on AC. The ‘crease’
in the paper is actually the angle bisector AD of the angle =BAC.

N

n

n

AA

BBC C D

B1

Fold along a line

passing through A
so that B
lies on AC.

In ∆CB1D, =CB1D “ 90˝, =B1CD “ 45˝. So ∆CB1D is an isosceles right
triangle. We have "pCB1q “ "pB1Dq “ "pACq ´ "pAB1q “ N ´ n P N, while

"pCDq “ "pCBq ´ "pDBq “ n ´ "pB1Cq “ n ´ pN ´ nq “ 2n ´ N P N.

So ∆CB1D is similar to the triangle

?
2 1

1

has integer side lengths, and is smaller than ∆ABC, contradicting the choice of
∆ABC. So there is no rational number q such that q2 “ 2. !
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You had met a different proof earlier, and we will meet a different proof yet again
in §4.6, based on the ‘Rational Zeroes Theorem’.

Exercise 1.2. (˚) The number τ :“ 1`
?
5

2
« 1.618 ¨ ¨ ¨ is called the golden ratio. This ratio

is believed to create geometrical figures of particularly pleasing proportions, for example,
the golden rectangle, with sides in the ratio 1 : τ . Using the smaller side, if a square is
separated from the golden rectangle, we obtain yet another golden rectangle, thanks to the
relation τ2 ´ τ ´ 1 “ 0, that is, τ ´ 1 “ 1{τ .

1 1

τ

τ´1

Give a geometric proof that τ can’t be rational. Conclude that
?
5 is not rational either.

Thus we have seen that the elements of Q can be depicted on the number line, and
that not all the points on the number line belong to Q. We think of R as all the
points on the number line. As mentioned before, if we take out everything on the
number line (the black points) except for the rational numbers Q (the red points),
then there will be holes amongst the rational numbers (for example there will be
a missing black point where

?
2 lies on the number line). We can think of the real

numbers as ‘filling in’ these holes between the rational numbers. We will say more
about this when we make remarks about the construction of R. Right now, we
just have an intuitive picture of the set of real numbers as a bigger set than the
rational numbers, and we think of the real numbers as points on the number line.
Admittedly, this is certainly not a mathematical definition, and is extremely vague.
In order to be precise, in Analysis we just can’t rely on this vague intuitive picture
of the real numbers. So we now turn to the precise properties of the real numbers
which we are allowed to use. While stating these properties, we will think of the
set R as an (as yet) undefined set containing Q which will satisfy the properties of

(1) the field axioms (laws of arithmetic in R),

(2) the order axioms (allowing us to compare real numbers with ą,ă,“), and

(3) the Least Upper Bound Property (making Calculus possible in R),

stipulated below.

It is a pertinent question if one can construct (if there really exists) such a set
R satisfying the above properties (1), (2), (3). The answer to this question is ‘yes’,
but it is tedious. So in this first part of the course, we will not worry ourselves
too much with it2. We will actually give some idea about the construction of the

2It is a bit like the process of learning a new language: If one starts painfully memorising systematically
all the rules of grammar first then not much progress will be made. Instead, a more fruitful method is
to start practicing simple phrases, listening to news, reading comics, and so on. Along the way grammar
rules can be picked up, and a formal study can be done at leisure later, resulting in better comprehension.
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real numbers in § 1.7, and return to it in §4.5. Right now, we just accept on faith
that the construction of R possessing the desired properties above can be done. To
have a concrete object in mind, we rely on our familiarity with the number line to
think of the real numbers when we study the properties (1), (2), (3) listed above.

We also remark that property (3) (the Least Upper Bound Property) of R will
turn out to be crucial in Analysis. The properties (1), (2) are also possessed by
the rational number system Q, but we will see that (3) fails for Q.

1.2. The field axioms

This section’s content3 can be summarised in one sentence: pR,`, ¨q forms a field.
What does this mean? It is a compact way of saying the following: R is a set,
equipped with two maps, namely

addition ` : RˆR Ñ R, sending a pair px, yq of reals to their sum x`y, and

multiplication ¨ : R ˆ R Ñ R, sending a pair of reals px, yq to their product x ¨ y,
and these two operations ` and ¨ satisfy certain laws, called the ‘field axioms’4.
The field axioms for R are listed below:

`

$
’’’’&

’’’’%

(F1) (Associativity) For all x, y, z P R, x ` py ` zq “ px ` yq ` z.
(F2) (Additive identity) For all x P R, x ` 0 “ x “ 0 ` x.
(F3) (Inverses) For all x P R, there exists ´ x P R

such that x ` p´xq “ 0 “ ´x ` x.
(F4) (Commutativity) For all x, y P R, x ` y “ y ` x.

¨

$
’’’’&

’’’’%

(F5) (Associativity) For all x, y, z P R, x ¨ py ¨ zq “ px ¨ yq ¨ z.
(F6) (Multiplicative identity) 1 ‰ 0 and for all x P R, x ¨ 1 “ x “ 1 ¨ x.
(F7) (Inverses) For all x P Rzt0u, there exists x´1 P R

such that x ¨ x´1 “ 1 “ x´1 ¨ x.
(F8) (Commutativity) For all x, y P R, x ¨ y “ y ¨ x.

`, ¨
"
(F9) (Distributivity) For all x, y, z P R, x ¨ py ` zq “ x ¨ y ` x ¨ z.

With these axioms, it is possible to prove the usual arithmetic manipulations we
are accustomed to. Here are a couple of examples.

Example 1.1. For every a P R, a ¨ 0 “ 0.

Let a P R. Then we have a ¨ 0 pF2q“ a ¨ p0 ` 0q pF9q“ a ¨ 0 ` a ¨ 0. So with x :“ a ¨ 0, we
have x ` x “ x. Adding ´x on both sides (F3), and using (F1) we obtain:

3This section has more detail that we need. The student may skip it, and begin reading from Sec-
tion 1.4 onwards. For MA103 students, after learning about the construction of the real numbers in
Chapter 4 (covered in the Lent Term), we will define real number addition and multiplication carefully
and prove the properties (F1)-(F9).

4There are other number systems, for example the rational numbers Q which also obey similar laws
of arithmetic, and so pQ,`, ¨q is also deemed to be a field. So the word ‘field’ is invented to describe the
situation that one has a number system F with corresponding operations ` : F ˆ F Ñ F and ¨ : F ˆ F Ñ F
which obey the usual laws of arithmetic, rather than listing all of these laws.



1.3. Order axioms 11

0 “ x ` p´xq “ px ` xq ` p´xq pF1q“ x ` px ` p´xqq pF3q“ x ` 0
pF2q“ x “ a ¨ 0. !

Example 1.2. If a, b P R, and a ¨ b “ 0, then a “ 0 or b “ 0.

If a “ 0, then we are done. Let a ‰ 0. By (F7), there exists a real number a´1

such that a ¨ a´1 “a´1 ¨ a“1. So b“1¨b“ pa´1 ¨ aq¨b“a´1 ¨ pa¨bq “a´1 ¨0“0. So if
a ‰ 0, then b “ 0. Thus pppa, b P R such that a ¨ b “ 0qqq ñ pppa “ 0 or b “ 0qqq. !

In this part of the course, we won’t do such careful justifications every time we
need to manipulate real numbers. We have listed the above laws to once and
for all stipulate the laws of arithmetic for real numbers which justify the usual
calculational rules we are familiar with, so that we know the source of it all. As
examples, we consider the following exercises of giving a rigorous justification based
on (F1) to (F9) of facts that are well-known to us.

Exercise 1.3. (˚) Using the field axioms of R, prove the following:

(1) Additive inverses are unique.

(2) For all a P R, p´1q ¨ a “ ´a.

(3) Show that p´1q ¨ p´1q “ 1.

1.3. Order axioms

We now turn to order axioms5 for the real numbers. This is the source of the
inequality ‘ą’ that we are used to, enabling one to compare two real numbers. The
relation ą between real numbers arises from a special subset P of the real numbers.

Order axiom. There exists a subset P of R such that

(O1) If x, y P P, then x ` y P P and x ¨ y P P.

(O2) For every x P R, one and only one of the following statements is true:

1˝ x “ 0. 2˝ x P P. 3˝ ´ x P P.

Definition 1.1 (Positive numbers).
The elements of P are called positive numbers. For real numbers x, y, we say that

x ą y if x ´ y P P,

x ă y if y ´ x P P,

x ě y if x “ y or x ą y,

x ď y if x “ y or x ă y.

It is clear from (O2) that 0 is not a positive number. Also, from (O2) it follows
that for real numbers x, y, one and only one of the following statements is true
(‘Trichotomy Law’):

1˝ x “ y. 2˝ x ą y. 3˝ x ă y.

5This section has more detail that we need. The student may skip this section, and begin reading
from Section 1.4 onwards. For MA103 students, we will define the order relation for the real numbers
carefully in Chapter 4 (covered in the Lent Term), and also prove the Trichotomy Law.
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Indeed, if x ‰ y, then x ´ y ‰ 0, and so by (O2), we have the mutually exclusive
possibilities x ´ y P P or y ´ x “ ´px ´ yq P P, that is, either x ą y or x ă y.

Example 1.3. 1 ą 0.
We have three possible, mutually exclusive cases:

1˝ 1 “ 0. 2˝ 1 P P. 3˝ ´ 1 P P.

As 1 ‰ 0, we know that 1˝ is not possible.

Suppose that 3˝ holds, that is, ´1 P P. We had seen in Exercise 1.3.(3) that
p´1q ¨ p´1q “ 1. From (O1), and the fact that ´1 P P, it then follows that
1 “ p´1q ¨ p´1q P P. So if we assume that 3˝ holds, then both 2˝ and 3˝ are true,
which is impossible as it violates (O2).

Thus by (O2), the only remaining case, namely 2˝ must hold, that is, 1 P P. !

Exercise 1.4. (˚) Using the order axioms for R, show the following:

(1) For all a P R, a2 ě 0.

(2) There is no real number x such that x2 ` 1 “ 0.

Again, just like we the field axioms, it is enough to know that if challenged, one can
derive all the usual laws of manipulating inequalities among real numbers based on
these order axioms, but we will not do this at every instance we meet an inequality.

From our intuitive picture of R as points on the number line, what is the set
P? P is simply the set of all points/real numbers to the right of the origin O.

0 1

P

Also, geometrically on the number line, the inequality a ă b between real numbers
a, b means that b lies to the right of a on the number line.

a b

1.4. The Least Upper Bound Property of R

This property is crucial in Analysis, and when we prove the key results (Bolzano-
Weierstrass Theorem, Intermediate Value Theorem, Extreme Value Theorem, etc.),
we will gradually learn to appreciate the key role played by it.

Definition 1.2 (Upper bound of a set).
Let S be a subset of R. A real number u is said to be an upper bound of S if for
all x P S, x ď u.

If we think of the set S as some blob on the number line, then u should be any
point on the number line which lies to the right of the points of the blob.

S u
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Example 1.4.

(1) If S “ t0, 1, 9, 7, 6, 1976u, then 1976 is an upper bound of S. In fact, any real
number u ě 1976 is an upper bound of S. So S has lots of upper bounds.

(2) Let S :“ tx P R : x ă 1u. Then 1 is an upper bound of S. In fact, any real
number u ě 1 is an upper bound of S.

(3) If S “ R, then S has no upper bound. Why? Suppose that u P R is an upper
bound of R. Consider u ` 1 P S “ R. Then S Q u ` 1 ď u (upper bound of S).
So 1 ď 0, a contradiction!

(4) Let S “ H (the empty set, containing no elements). Every u P R is an upper
bound. For if u P R is not an upper bound of S, then there must exist an
element x P S which prevents u from being an upper bound of S, that is,

It is not the case that x ď u.

But S has no elements at all, much less an element such that ¨ ¨ ¨ holds.

(This is an example of a ‘vacuous truth’. Consider the statement

Every man with 9 legs is intelligent.

This is considered a true statement in Mathematics. The argument is:
Can you show me a man with 9 legs for which the claimed property (namely
of being intelligent) is not true? No! Because there are no men with 9 legs!
By the same argumentation, also the following statement is true:

Every man with 9 legs is not intelligent. !

Definition 1.3 (Set bounded above).
If S Ă R and S has an upper bound (that is, the set of upper bounds of S is not
empty), then S is said to be bounded above.

Example 1.5. The set R is not bounded above.
Each of the sets t0, 1, 9, 7, 6, 1976u, H, tx P R : x ă 1u is bounded above. !

The notions of ‘lower bound’, and ‘bounded below’ are defined analogously.

Definition 1.4 (Lower bound of a set; set bounded below).
Let S be a subset of R. A real number " is said to be an lower bound of S if for all
x P S, " ď x.

If S Ă R and S has an lower bound (that is, the set of lower bounds of S is not
empty), then S is said to be bounded below.

If we think of the set S as some blob on the number line, then " should be any
point on the number line which lies to the left of the points of the blob.

S"
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Example 1.6.

(1) If S “ t0, 1, 9, 7, 6, 1976u, then 0 is an lower bound of S. In fact any real number
" ď 0 serves as a upper bound of S. So S is bounded below.

(2) Let S :“ tx P R : x ă 1u. Then S is not bounded below. Let us show this.
Suppose that, on the contrary, S does have a lower bound, say " P R. Let x P S.
Then " ď x ă 1. We have

" ´ 1 ă " ď x ă 1,

and so " ´ 1 ă 1. Thus " ´ 1 P S, and as " is a lower bound of S, we must
have " ď " ´ 1, that is, 1 ă 0, a contradiction! So our original assumption that
S is bounded below must be false. So S is not bounded below. (This claim was
intuitively obvious too, since the set of points in S on the number line is the
entire ray of points on the left of 1, leaving no room for points on R to be on
the ‘left of S’.)

(3) If S “ R, then S has no lower bound: If " P R is a lower bound of R, then

"loomoon
lower bound of S

ď " ´ 1loomoon
PS

,

and so 1 ď 0, a contradiction. Thus R is not bounded below.

(4) Let S “ H (the empty set, containing no elements). Every " P R is a lower
bound. If " P R is not an lower bound of S, then there must exist an element
x P S which prevents " from being an lower bound of S, that is, it is not the
case that " ď x. As S is empty, this is impossible. So S is bounded below. !

Definition 1.5 (Bounded set).
Let S Ă R. S is called bounded if S is bounded below and bounded above.

Example 1.7.

S
An upper
bound

Bounded
above?

A lower
bound

Bounded
below?

Bounded?

t0, 1, 9, 7, 6, 1976u 1976
Any u ě 1976

Yes
0

Any " ď 0
Yes Yes

tx P R : x ă 1u 1
Any u ě 1

Yes
Doesn’t
exist

No No

R
Doesn’t
exist

No
Doesn’t
exist

No No

H Every
u P R

Yes
Every
" P R

Yes Yes

!

We now introduce the notions of a least upper bound (also called supremum) and
a greatest lower bound (also called infimum) of a subset S of R.
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Definition 1.6 (Supremum and infimum).
Let S be a subset of R.

‚ u˚ P R is called a least upper bound of S (or a supremum of S) if

(1) u˚ is an upper bound of S, and

(2) if u is an upper bound of S, then u˚ ď u.

‚ "˚ P R is called a greatest lower bound of S (or an infimum of S) if

(1) "˚ is a lower bound of S, and

(2) if " is a lower bound of S, then " ď "˚.

Pictorially, the supremum is the leftmost point amongst the upper bounds, and
the infimum is the rightmost point amongst the lower bound of a set.

S

"˚ u˚

all these are
upper bounds

all these are
lower bounds

Example 1.8.

(1) If S “ t0, 1, 9, 7, 6, 1976u, then u˚ “ 1976 is a least upper bound of S because

(a) 1976 is an upper bound of S, and

(b) if u is an upper bound of S, then pS Qq 1976 ď u, that is u˚ ď u.

Similarly, 0 is a greatest lower bound of S.

(2) Let S “ tx P R : x ă 1u. Then u˚ “ 1 is a least upper bound of S. Indeed:

(a) 1 is an upper bound of S: If x P S, then x ă 1 “ u˚.

(b) Let u be an upper bound of S. We want to show that u˚ “ 1 ď u. Suppose
the contrary, that is, 1 ą u. Then there is a gap between u and 1.

1u

(But then this gap between u and 1 contains elements of S which are to
right of the supposed upper bound u, and this should give the contradic-
tion we seek.) To this end, consider the number p1 ` uq{2. We have

1 ` u

2
ă

1 ` 1

2
“ 1

and so p1`uq{2 belongs to S. As u is an upper bound of S, we must have

1 ` u

2
ď u,

which upon rearranging gives 1 ď u, a contradiction.

S does not have a lower bound, and so certainly no greatest lower bound either
(a greatest lower bound has to be first of all a lower bound!).
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(3) R does not have a supremum, and no infimum either.

(4) H has no supremum. (We intuitively expect this: indeed every real number
serves as an upper bound, but there is no smallest one among these!) Indeed,
suppose on the contrary that u˚ P R is a supremum. Then u˚ ´ 1 P R is an
upper bound of H (since it is some real number, and we had seen that all real
numbers are upper bounds of H). As u˚ is the least upper bound, we must
have u˚ ď u˚ ´ 1, that is, 1 ď 0, a contradiction.

Similarly, H has no infimum either. !

A set may have many upper bounds and many lower bounds, but it is intuitively
clear, based on our visual number line picture, that the supremum and infimum of
a set, assuming they exist, must be unique. Here is a formal proof.

Theorem 1.2. If a subset S of R has a supremum, then it is unique.

Proof. Let u˚, u
1
˚ be two supremums of S. Then as u1

˚ is, in particular, an upper
bound, and since u˚ is the least upper bound, we must have

u˚ ď u1
˚. (1.1)

Similarly, since u˚ is, in particular, an upper bound, and since u1
˚ is the least upper

bound, we must also have

u1
˚ ď u˚. (1.2)

From (1.1) and (1.2), it now follows that u˚ “ u1
˚. !

So when S has a supremum, then it is the supremum. So we can give it special
notation (since we know what it means unambiguously):

supS.

Similarly, if a set S has an infimum, it is unique and is denoted by

inf S.

Example 1.9. We have

supt0, 1, 9, 7, 6, 1976u “ 1976,

suptx P R : x ă 1u “ 1,

inftx P R : x ě 1u “ 1.

To see the last equality, we note that 1 is certainly a lower bound of the set
S :“ tx P R : x ě 1u, and if " is any lower bound, then as 1 is an element of the
set S, we have " ď 1. !

Comparing the first two examples above, when S :“ t0, 1, 9, 7, 6, 1976u, we have

supS P S,
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while in the case of S :“ tx P R : x ă 1u, we have

supS R S.

It will be convenient to keep track of when the supremum (or for that matter
infimum) of a set belongs to the set. So we introduce the following definitions and
corresponding notation.

Definition 1.7 (Maximum, minumum of a set).

‚ If supS P S, then supS is called a maximum of S, denoted by maxS.

‚ If inf S P S, then inf S is called a minimum of S, denoted by minS.

Example 1.10.

S Supremum Maximum Infimum Minimum

t0, 1, 9, 7, 6, 1976u 1976 1976 0 0
tx P R : x ă 1u 1 Doesn’t exist Doesn’t exist Doesn’t exist

R Doesn’t exist Doesn’t exist Doesn’t exist Doesn’t exist
H Doesn’t exist Doesn’t exist Doesn’t exist Doesn’t exist

tx P R : x ě 1u Doesn’t exist Doesn’t exist 1 1 !

Exercise 1.5. Provide the following information about the set S

An upper
bound

A lower
bound

Is S
bounded?

supS inf S maxS minS

where S is given by:

(1) p0, 1s :“ tx P R : 0 ă x ď 1u
(2) r0, 1s :“ tx P R : 0 ď x ď 1u
(3) p0, 1q :“ tx P R : 0 ă x ă 1u.

In the above Example 1.10, we note that if S is nonempty and bounded above, then
its supremum exists. In fact this is a fundamental property of the real numbers,
called the least upper bound property of the real numbers, which we state below:

If S Ă R is such that S ‰ H and S has an upper bound, then supS exists.

Example 1.11.

(1) S “ t0, 1, 9, 7, 6, 1976u is a subset of R, it is nonempty, and it has an upper
bound. So the Least Upper Bound Property of R tells us that this set should
have a least upper bound. This is indeed true, as we had seen earlier that S
has 1976 as the supremum.

(2) S “ tx P R : x ă 1u is a subset of R, it is nonempty (0 P S), and it has an
upper bound (for example 2). So the Least Upper Bound Property of R tells
us that this set should have a least upper bound. This is indeed true, as we
had seen earlier that 1 is the supremum of S.
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(3) S“R is a subset of R, it is nonempty, and it has no supremum. So what went
wrong? Well, S isn’t bounded above.

(4) S “ H is a subset of R and it is bounded above. But S has no supremum.
There is no contradiction to the Least Upper Bound Property, because S is
empty! !

Example 1.12. Let S :“ tx P R : x2 ď 2u. Clearly S is a subset of R and it is
nonempty since 1 P S: 12 “ 1 ď 2. Let us show that S is bounded above. In fact,
2 serves as an upper bound of S. Since if x ą 2, then x2 ą 4 ą 2. Thus if x P S,
then x2 ď 2, and so x ď 2.

By the Least Upper Bound Property of R, u˚ :“ supS exists in R. Moreover,
one can show that this u˚ satisfies u2˚ “ 2 by showing that the cases u2˚ ă 2 and
u2˚ ą 2 are both impossible.

First of all, u˚ ě 1 (as u˚ is in particular an upper bound of S and 1 P S). Define

r :“ u˚ ´
u2˚ ´ 2

u˚ ` 2
“

2pu˚ ` 1q
u˚ ` 2

ą 0. (1.3)

Then we have

r2 ´ 2 “
2pu2˚ ´ 2q
pu˚ ` 2q2

. (1.4)

1˝ Suppose u2˚ ă 2. Then (1.4) implies that r2 ´ 2 ă 0, and so r P S. But from
(1.3), r ą u˚, contradicting the fact that u˚ is an upper bound of S.

2˝ Suppose that u2˚ ą 2. If r1 ą r pą 0q, then r12 “ r1 ¨ r1 ą r ¨ r1 ą r ¨ r “ r2.
From (1.4), r2 ą 2, and so from the above, we know that r12 ą 2 as well. Hence
r1 R S. So we have shown that if r1 P S, then r1 ď r. This means that r is an
upper bound of S. But this is impossible, since (1.3) shows that r ă u˚, and u˚
is the least upper bound of S.

So it must be the case that u2˚ “ 2. Note also that u˚ is nonnegative (as u˚ ě 1 P S).
(We will denote this nonnegative u˚ P R satisfying u2˚ “ 2 by

?
2.) !

Example 1.13 (Q does not possess the Least Upper Bound Property).

Consider the set S :“ tx P Q : x2 ď 2u. Clearly S is a subset of Q and it is
nonempty since 1 P S: 12 “ 1 ď 2. Let us show that S is bounded above. In fact,
2 serves as an upper bound of S. Since if x ą 2, then x2 ą 4 ą 2. Thus if x P S,
then x2 ď 2, and so x ď 2.

If Q has the Least Upper Bound Property, then the above nonempty subset
of Q which is bounded above must possess a least upper bound u˚ :“ supS P Q.
Once again, just as in the previous example, we can show that this u˚ P Q must
satisfy that u2˚ “ 2 (and we have given the details below). But we know that this
is impossible as we had shown that there is no rational number whose square is 2.
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Firstly, u˚ ě 1 (as u˚ is in particular an upper bound of S and 1 P S). Now define

r :“ u˚ ´ u2˚ ´ 2

u˚ ` 2
“ 2pu˚ ` 1q

u˚ ` 2
ą 0. (1.5)

As u˚ P Q, the rightmost expression for r shows that r P Q as well. Then

r2 ´ 2 “
2pu2˚ ´ 2q
pu˚ ` 2q2

. (1.6)

1˝ Suppose u2˚ ă 2. Then (1.6) implies that r2 ´ 2 ă 0, and so r P S. But from
(1.5), r ą u˚, contradicting the fact that u˚ is an upper bound of S.

2˝ Suppose that u2˚ ą 2. If r1 ą r pą 0q, then r12 “ r1 ¨ r1 ą r ¨ r1 ą r ¨ r “ r2.
From (1.6), r2 ą 2, and so from the above, we know that r12 ą 2 as well. Hence
r1 R S. So we have shown that if r1 P S, then r1 ď r. This means that r is an
upper bound of S. But this is impossible, since (1.5) shows that r ă u˚, and u˚
is the least upper bound of S.

So it must be the case that u2˚ “ 2. But as we mentioned earlier, this is impossible
by Theorem 1.1. Hence Q does not possess the Least Upper Bound Property. !

In order to get the useful results in Analysis (for example the fact that for an
increasing sequence of numbers bounded above, there must be a smallest number
bigger than each of the terms of the sequence ´ a fact needed to calculate the area
as described at the outset), it turns out to be the case that the Least Upper Bound
Property is indispensable. So it makes sense that when we set up the definitions
and results in Analysis, we don’t work with the rational number system Q (which
regrettably does not possess the Least Upper Bound Property), but rather with the
larger real number system R, which does possess the Least Upper Bound Property.

Exercise 1.6. Let a1, a2, a3, ¨ ¨ ¨ be an infinite list (or sequence) of real numbers such that
an ď an`1 for all n P N, that is, the sequence is increasing. Also suppose that

S :“ tan : n P Nu

is bounded above. Show that there is a smallest real number L which is bigger than each
of the an, n P N.

Exercise 1.7.

(1) Let S be a nonempty subset of real numbers which is bounded below. Let ´S denote
the set of all real numbers ´x, where x belongs to S. Prove that inf S exists and
inf S “ ´ supp´Sq.

(2) Conclude from here that R also has the ‘Greatest Lower Bound Property’:

If S is a nonempty subset of R having a lower bound, then inf S exists.

Exercise 1.8. Let S be a nonempty subset of R which is bounded above, and let α ą 0.
Show that α ¨S :“ tαx : x P Xu is also bounded above and that suppα ¨Sq “ α ¨ supS.
Similarly, if S is a nonempty subset of R which is bounded below and α ą 0, then show
that α ¨ S is bounded below, and that infpα ¨ Sq “ α ¨ inf S.
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Exercise 1.9. Let A and B be nonempty subsets of R that are bounded above and such
that A Ă B. Prove that supA ď supB.

Exercise 1.10. For any nonempty bounded set S, prove that inf S ď supS, and that the
equality holds if and only if S is a singleton set (that is a set with cardinality 1).

Exercise 1.11. Let A and B be nonempty subsets of R that are bounded above. Prove
that suppA Y Bq exists and that suppA Y Bq “ maxtsupA, supBu.

Exercise 1.12. Determine whether the following statements are true or false.

(1) If u is an upper bound of S (Ă R), and u1 ă u, then u1 is not an upper bound of S.

(2) If u˚ is the supremum of S (Ă R), and ε ą 0, then u˚ ´ ε is not an upper bound of S.

(3) Every subset of R has a maximum.

(4) Every subset of R has a supremum.

(5) Every bounded subset of R has a maximum.

(6) Every bounded subset of R has a supremum.

(7) Every bounded nonempty subset of R has a supremum.

(8) Every subset of R that has a supremum is bounded above.

(9) For every subset of R that has a maximum, the maximum belongs to the set.

(10) For every subset of R that has a supremum, the supremum belongs to the set.

(11) For every subset S of R that is bounded above, |S| defined by t|x| : x P Su is bounded.

(12) For every subset S of R that is bounded, |S| defined by t|x| : x P Su is bounded.

(13) For every bounded subset S of R, if inf S ă x ă supS, then x P S.

Exercise 1.13. Let A and B be nonempty subsets of R that are bounded above and define

A ` B “ tx ` y : x P A and y P Bu.
Prove that suppA ` Bq exists and that suppA ` Bq “ supA ` supB.

Exercise 1.14. Let S be a nonempty set of positive real numbers. Define the set

S´1 :“ tx´1 : x P Su.
(1) Show that S´1 is bounded above if and only if inf S ą 0.
(2) Furthermore, if inf S ą 0, then show that supS´1 “ pinf Sq´1.

We now prove the following, called the Archimedean property of the real numbers.

Theorem 1.3 (Archimedean Property).
If x, y P R and x ą 0, then there exists an n P N such that y ă nx.

If y ď 0 to begin with, then the above is just the trivial statement that n¨x ą 0 ě y,
which works with every n P N. So the interesting content of the theorem is when
y ą 0. Then the above is telling us, that no matter how small x is, if we keep
‘tiling’ the real line with multiples of the length x, then eventually we will surpass
y. Here is a picture to bear in mind.
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0

x

x y

nx

Proof. Suppose that it is not the case that

‘there exists an n P N such that nx ą y’.

Then for every n P N, we must have nx ď y. Let S :“ tnx : n P Nu. Then S
is a subset of R, S ‰ H (indeed, x “ 1 ¨ x P S), and y is an upper bound of S.
Thus by the the Least Upper Bound Property of R, u˚ :“ supS exists. As x ą 0,
the number u˚ ´ x is smaller than the least upper bound u˚ of S. Hence u˚ ´ x
can’t be an upper bound of S, which means that there is an element mx P S, for
some m P N, which prevents u˚ ´ x from being an upper bound: mx ą u˚ ´ x.
Rearranging, we obtain u˚ ă mx ` x “ pm ` 1qx P S, contradicting the fact that
u˚ is an upper bound of S. Thus our original claim is false. In other words, there
does exist an n P N such that nx ą y. !

Example 1.14. Let S “
!
1

n
: n P N

)
“

!
1,

1

2
,
1

3
, ¨ ¨ ¨

)
. We claim that inf S “ 0.

Clearly 0 is a lower bound of S since all the elements of S are positive.

Suppose that " is a lower bound of S. We want to show that " ď 0. Suppose on the
contrary that " ą 0. Then by the Archimedean property (with the real numbers x
and y taken as x “ 1 (ą 0) and y “ 1{"), there exists a n P N such that

1

"
“ y ă nx “ n ¨ 1 “ n,

and so
1

n
ă ",

contradicting the fact that " is a lower bound of S. Thus any lower bound of S
must be less than or equal to 0. Hence 0 is the infimum of S. !

Exercise 1.15. Provide the following information about the set S

An upper
bound

A lower
bound

Is S
bounded?

supS inf S maxS minS

where S is given by:

(1)
!
1

n
: n P Zzt0u

)

(2)
!

n

n ` 1
: n P N

)

(3)
!

p´1qn
´
1 ` 1

n

¯
: n P N

)
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Exercise 1.16. Let S :“ tpxy ´ 1q2 ` x2 : px, yq P R2u.
(a) Show that S is bounded below.

(b) What is inf S? Hint: To justify your answer, consider px, yq “ p1{n, nq, n P N.

(c) Does minS exist?

Example 1.15 (The greatest integer part t¨u of x P R).

If we think of the real numbers as points of the line, then we see that along it,
there are ‘milestones’ at each of the integers. So if we take any real number it is
between two milestones. We take txu to be the milestone immediately to the left
of x—in other words, it is the ‘greatest integer less than or equal to x’. So for
example t3.1u “ 3, t0u “ 0, tnu “ n for all integers n, t´3.1u “ ´4, etc.

0 1 2 3´1

Using the Archimedean Property, one can give a rigorous justification of the fact
that every real number has to belong to an interval rn, n ` 1q for some n P Z (so
that this n “ txu). By the Archimedean Property, there exists an m1 P N such
that m1 ¨ 1 ą x. By the Archimedean Property, there exists an m2 P N such that
m2 ¨ 1 ą ´x. So there are integers m1,m2 such that ´m2 ă x ă m1. Among the
finitely many integers k P Z such that ´m2 ď k ď m1, we take as txu the largest
one such that it is also ď x. !

Theorem 1.4 (Density of Q in R).
If a, b P R, and a ă b, then there exists a r P Q such that a ă r ă b.

a br

This results says that ‘Q is dense in R’. In everyday language, we may say for
example that ‘These woods have a dense growth of birch trees’, and the picture we
then have in mind is that in any small area of the woods, we find a birch tree. A
similar thing is conveyed by the above: no matter what ‘patch’ (described by the
two numbers a and b) we take on the real line (thought of as the woods), we can
find a rational number (analogous to birch trees) in that patch.

Proof. As b ´ a ą 0 and since 1 P R, by the Archimedean Property, there exists
an n P N such that npb ´ aq ą 1, that is, na ` 1 ă nb. Let m :“ tnau ` 1. Then
tnau ď na ă tnau ` 1, that is, m ´ 1 ď na ă m. So

a ă m

n
ď na ` 1

n
ă nb

n
“ b.

With r :“
m

n
P Q, the proof of the theorem is complete. !

Exercise 1.17 (Density of irrationals in R).
Show that if a, b P R and a ă b, then there exists an irrational number between a and b.
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1.5. Intervals

In Analysis, we will consider real-valued functions of a real variable, and develop
results about these. It will turn out that while doing so, we will keep meeting
certain types of subsets of R (for example subsets of this type will often be the
‘domains’ of our real-valued functions for which the results of Analysis hold). These
special subsets of R are called ‘intervals’, and we give the definition below. Roughly
speaking, these are6 the ‘connected subsets’ of the real line, namely subsets of R
not having any ‘holes/gaps’.

Definition 1.8 (Interval).
An interval is a set consisting of all the real numbers between two given real num-
bers, or of all the real numbers on one side or the other of a given number. So an
interval is a set of any of the following forms, where a, b P R and a ă b :

a

a

a

a

a

a b

b

b

b

b

b

pa, bq “ tx P R : a ă x ă bu

ra, bs “ tx P R : a ď x ď bu

pa, bs “ tx P R : a ă x ď bu

ra, bq “ tx P R : a ď x ă bu

pa,8q “ tx P R : a ă xu

ra,8q “ tx P R : a ď xu

p´8, bq “ tx P R : x ă bu

p´8, bs “ tx P R : x ď bu

p´8,8q “ R

In the above notation for intervals, a parenthesis ‘p’ or ‘q’ means that the respective
endpoint is not included, and a square bracket ‘r’ or ‘s’ means that the endpoint
is included. Thus r0, 1q means the set of all real numbers x such that 0 ď x ă 1.
(Note that the use of the symbol 8 in the notation for intervals is simply a matter
of convenience and is not be taken as suggesting that there is a number 8.)

Also, it will be convenient to give certain types of interval a special name.

Definition 1.9 (Open interval).
An interval of the form pa, bq, pa,8q, p´8, bq or R is called an open interval.

6That are nonempty and contain not just one point.
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We note that if I is an open interval, then for every member x P I, there exists a
δ ą 0 such that px ´ δ, x ` δq Ă I, that is, there is always some ‘room’ around x
consisting only of elements of I.

Exercise 1.18. Show that if a, b P R, then the interval pa, bq has the following property:

For every x P pa, bq, there exists a δ ą 0 such that px ´ δ, x ` δq Ă pa, bq.
Show also that ra, bs does not possess the above property.

Definition 1.10 (Compact interval).
If a, b P R and a ă b, then we call ra, bs a compact interval.

Note that Rzra, bs is the union of two open intervals, namely p´8, aq and pb,8q
and that ra, bs is a bounded set.

Exercise 1.19. If An, n P N, is a collection of sets, then
Ş

nPN
An denotes their intersection:

Ş

nPN
An “ tx : @n P N, x P Anu,

and
Ť

nPN
An denotes their union:

Ť

nPN
An “ tx : Dn P N such that x P Anu. Prove that

(1) H “
Ş

nPN

´
0,

1

n

¯
.

(2) t0u “
Ş

nPN

”
0,

1

n

ı
.

(3) p0, 1q “
Ť

nPN

”
1

n`2
, 1 ´ 1

n`2

ı
.

(4) r0, 1s “
Ş

nPN

´
´ 1

n
, 1` 1

n

¯
.

1.6. Absolute value | ¨ | and distance in R

In Analysis, in order to talk about notions such as continuity, convergence, etc., we
will need a notion of ‘closeness/distance’ between real numbers. This is provided
by the absolute value | ¨ |, and the distance between real numbers x and y is |x´y|.
We give the definitions below.

Definition 1.11 (Absolute value and distance).

‚ The absolute value or modulus of a real number x is denoted by |x|, and it is
defined as follows:

|x| “
"

x if x ě 0,
´x if x ă 0.

‚ The distance dpx, yq between two real numbers x and y is the absolute value
|x ´ y| of their difference.

Thus |1| “ 1, |0| “ 0, | ´ 1| “ 1, and the distance between the real numbers ´1
and 1 is equal to dp´1, 1q “ | ´ 1 ´ 1| “ | ´ 2| “ 2. The distance gives a notion
of closeness of two points, which is crucial in the formalization of the notions of
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Analysis. We can now specify regions comprising points close to a certain point
c P R in terms of inequalities in absolute values, that is, by demanding that the
distance of the points of the region, to the point c, is less than a certain positive
number δ, say δ “ 0.01 or δ “ 0.0000001, and so on.

Theorem 1.5. Let c P R and δ ą 0. Then:

dpx, cq :“ |x ´ c| ă δ ô c ´ δ ă x ă c ` δ.

Though the proof is trivial, it is worthwhile remembering Theorem 1.5, as such a
manipulation will keep arising over and over again in our subsequent development
of Analysis. See Figure 2.

c´δ c`δc x

Figure 2. The interval I “ pc ´ δ, c ` δq “ tx P R : |x ´ c| ă δu is the set of all
points in R whose distance to the point c is strictly less than δ (ą 0).

Proof.

(ñ) Suppose that |x´ c| ă δ. Then x´ c ď |x´ c| ă δ, and ´px´ cq ď |x´ c| ă δ.
So ´δ ă x ´ c ă δ, that is c ´ δ ă x ă c ` δ.

(ð) If c´ δ ă x ă c` δ, then x´ c ă δ and ´px´ cq “ c´x ă δ. Thus |x´ c| ă δ,
because |x ´ c| is either x ´ c or ´px ´ cq, and in both cases the numbers are
less than δ. !

If we think of the real numbers as points on the number line, and we think about
the integers as milestones, then it is clear that the distance between, say ´1 and
3 should be 4 miles, and we observe that 4 “ | ´ 1 ´ 3|. So taking |x ´ y| as the
distance between x, y P R is a sensible thing to do, based on our visual picture of
R as points on the number line.

x y

|x ´ y|

Figure 3. Distance between real numbers.

Exercise 1.20. Show that a subset S of R is bounded if and only if there exists an M P R
such that for all x P S, |x| ďM .

The following properties of the absolute value will be useful in the sequel.

Theorem 1.6. If x, y are real numbers, then

|x ¨ y| “ |x| ¨ |y|, (1.7)

|x ` y| ď |x| ` |y|. (1.8)

(1.8) is called the triangle inequality.
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Proof. We prove (1.7) by exhausting all possible cases:

1˝ x “ 0 or y “ 0. Then |x| “ 0 or |y| “ 0, and so |x| |y| “ 0. On the other hand,
as x “ 0 or y “ 0, it follows that xy “ 0 and so |xy| “ 0.

2˝ x ą 0 and y ą 0. Then |x| “ x and |y| “ y, and so |x| |y| “ xy. On the other
hand, as x ą 0 and y ą 0, it follows that xy ą 0 and so |xy| “ xy.

3˝ x ą 0 and y ă 0. Then |x| “ x and |y| “ ´y, and so |x| |y| “ xp´yq “ ´xy.
On the other hand, as x ą 0 and y ă 0, it follows that xy ă 0 and so |xy| “ ´xy.

4˝ x ă 0 and y ą 0. This follows from 3˝ above by interchanging x and y.

5˝ x ă 0 and y ă 0. Then |x| “ ´x and |y| “ ´y, and so |x| |y| “ p´xqp´yq “ xy.
On the other hand, as x ă 0 and y ă 0, it follows that xy ą 0 and so |xy| “ xy.

This proves (1.7).

Next we prove (1.8). First observe that from the definition of | ¨ |, it follows
that for any real x P R, |x| ě x: indeed if x ě 0, then |x| “ x, while if x ă 0, then
´x ą 0, and so |x| “ ´x ą 0 ą x.

From (1.7), we also have | ´ x| “ | ´ 1 ¨ x| “ | ´ 1||x| “ 1|x| “ |x|, for all x P R,
and so it follows that |x| “ | ´ x| ě ´x for all x P R.

We have the following cases:

1˝ x`y ě 0. Then |x`y| “ x`y. As |x| ě x and |y| ě y, |x|`|y| ě x`y “ |x`y|.
2˝ x ` y ă 0. Then |x ` y| “ ´px ` yq. Since |x| ě ´x and |y| ě ´y, it follows

that |x| ` |y| ě ´x ` p´yq “ ´px ` yq “ |x ` y|.
This proves (1.8). !

Using these, one can check that the ‘metric/distance function’ dR ˆ R Ñ r0,8q
defined by dpx, yq “ |x ´ y| for all x, y P R, satisfies the following properties:

(D1) (Positive definiteness) For all x, y P R, dpx, yq ě 0. If dpx, yq “ 0 then x “ y.

(D2) (Symmetry) For all x, y P R, dpx, yq “ dpy, xq.
(D3) (Triangle inequality) For all x, y, z P R, dpx, zq ď dpx, yq ` dpy, zq.

X
Y

Z

Figure 4. How the triangle inequality gets its name.

The reason (D3) is called the triangle inequality is that, for triangles in Euclidean
geometry of the plane, we know that the sum of the lengths of two sides of a triangle
is at least as much as the length of the third side: so for the pointsX,Y,Z in a plane
forming the three vertices of a triangle: we know that "pXZq ď "pXY q ` "pY Zq;
see Figure 4. (D3) reminds us of this triangle inequality, and hence the name.
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Exercise 1.21. Prove that if x, y are real numbers, then ||x| ´ |y|| ď |x ´ y|.

Exercise 1.22 (When does equality hold in the triangle inequality?).

(1) Show the generalized triangle inequality: if n P N and a1, ¨ ¨ ¨ , an are real numbers,
then |a1 ` ¨ ¨ ¨ ` an| ď |a1| ` ¨ ¨ ¨ ` |an|.

(2) (˚) We say that a1, ¨ ¨ ¨ , an have the same sign if either of the following cases is true:

1˝ a1 ě 0, ¨ ¨ ¨ , an ě 0. 2˝ a1 ď 0, ¨ ¨ ¨ , an ď 0.

Thus the numbers have the same sign if on the number line either they all lie on the
right of 0 including 0, or they all lie on the left of 0 including 0. Show that equality
holds in the generalized triangle inequality if and only if the numbers have the same
sign. Hint: Consider the n “ 2 case first.

Exercise 1.23. For a, b P R, show that maxta, bu “ a`b`|a´b|
2

and minta, bu “ a`b´|a´b|
2

.

Exercise 1.24. (˚) Let α ą 0 be an irrational number.

(1) Show that tnαu :“ nα ´ tnαu, n P N, are all distinct, and belong to p0, 1q.
(2) Let ε ą 0. Show that there exists an N P N such that

p0, 1q Ă r0, εq Y rε, 2εq Y ¨ ¨ ¨ Y rpN ´ 1qε, Nεq.
Using the Pigeonhole Principle, show that |tnαu ´ tmαu| ă ε for some m,n P N.

(3) Prove that inft|n ´ mα| : m P N, n P N Y t0uu “ 0.

1.7. (˚) Remark on the construction of R

We have treated the real number system R as a given. But one might wonder if we
can take the existence of real numbers on faith alone. A mathematical construction
of R can be given, and we will see this in the second part of the course.

There are several ways of doing this. One is via the ‘completion of Q’, where
one considers ‘Cauchy sequences’ in Q, and defines R to be ‘equivalence classes of
Cauchy sequences under a certain equivalence relation’. We will do this in §4.5 .

A

B

Another way, which is more intuitive, is via ‘(Dedekind) cuts’, where we identify
each real number by means of two sets A and B associated with it: A is the set of
rationals less than the real number we are defining, and B is set of rational numbers
at least as big as the real number we are trying to identify. In other words, if we
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view the rational numbers lying on the number line, and think of the sets A and
B (described above) corresponding to a real number, then this real number is the
place along this rational number line where it can be cut, with A lying on the left
side of this cut, and B lying on the right side of this cut. More precisely, a cut
pA,Bq in Q is a pair of subsets A,B of Q such that A

Ť
B “ Q, A ‰ H, B ‰ H,

A
Ş

B “ H, if a P A and b P B then a ă b, and A contains no largest element. R
is then taken as the set of all cuts pA,Bq. Here are two examples of cuts:

pA,Bq “ ppptr P Q : r ă 0u, tr P Q : r ě 0uqqq (giving the real number ‘0’)

pA,Bq “ ppptr P Q : r ď 0 or r2 ă 2u, tr P Q : r ą 0 and r2 ě 2uqqq (‘
?
2’).

It can then be shown that R is a field containing Q, and that it possesses the Least
Upper Bound Property. The reader interested in this approach is referred to the
Appendix to Chapter 1 in the classic textbook by Walter Rudin [R].

Appendix: Binomial theorem

Theorem 1.7. For any x P R and any n P N, p1 ` xqn “
nÿ

k“0

ˆ
n

k

˙
xk.

The factorial is defined by 0!“1 and for n P N, n!“1¨2 ¨ ¨ ¨ pn´1q¨n. Also,
ˆ
n

k

˙
:“ n!

k!pn´kq!
.

Clearly, for all n P N,

ˆ
n

0

˙
“1“

ˆ
n

n

˙
. We will need:

Lemma 1.8. For all n P N and all 0 ď k ă n,

ˆ
n

k

˙
`

ˆ
n

k`1

˙
“

ˆ
n`1

k`1

˙
.

Proof. We have
ˆ
n

k

˙
`

ˆ
n

k`1

˙
“

n!

k!pn´kq!
`

n!

pk`1q!pn´pk`1qq!

“ n!

k!pn´pk`1qq!

´ 1

n´k
` 1

k`1

¯

“ n!

k!pn ´ pk ` 1qq!
pn ` 1q

pn ´ kqpk ` 1q

“ pn ` 1q!
pk ` 1q!pn ´ kq!

“ pn ` 1q!
pk ` 1q!ppn ` 1q ´ pk ` 1qq!

“
ˆ
n ` 1

k ` 1

˙
. !
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Proof. (Of Theorem 1.7). We use induction on n. For n “ 1, of course

p1`xq1 “ 1`x “
ˆ
1

0

˙
`

ˆ
1

1

˙
x.

If the result holds for some n P N, then

p1`xqn`1 “p1`xqnp1`xq“
´ nÿ

k“0

ˆ
n

k

˙
xk

¯
p1`xq“

nÿ

k“0

ˆ
n

k

˙
xk`

nÿ

k“0

ˆ
n

k

˙
xk`1

“
ˆ
n

0

˙
`

ˆ
n

1

˙
x `

ˆ
n

2

˙
x2 ` ¨ ¨ ¨ `

ˆ
n

n ´ 1

˙
xn´1 `

ˆ
n

n

˙
xn

`
ˆ
n

0

˙
x `

ˆ
n

1

˙
x2 ` ¨ ¨ ¨ `

ˆ
n

n ´ 2

˙
xn´1 `

ˆ
n

n ´ 1

˙
xn `

ˆ
n

n

˙
xn

“
ˆ
n`1

0

˙
`

ˆ
n`1

1

˙
x`

ˆ
n`1

2

˙
x2`¨ ¨ ¨`

ˆ
n`1

n´1

˙
xn´1`

ˆ
n`1

n

˙
xn`

ˆ
n`1

n`1

˙
xn`1.

Here we used

ˆ
n

0

˙
“ 1 “

ˆ
n`1

0

˙
,

ˆ
n

n

˙
“ 1 “

ˆ
n`1

n`1

˙
, and Lemma 1.8. !

Corollary 1.9. If a, b P R, and n P N, then pa ` bqn “
nÿ

k“0

ˆ
n

k

˙
an´kbk.

Proof. If a “ 0, this is immediate. If a ‰ 0, by the binomial theorem for x :“ b{a:

pa ` bqn “ an
´
1 `

b

a

¯n
“ an

nÿ

k“0

ˆ
n

k

˙´ b

a

¯k
“

nÿ

k“0

ˆ
n

k

˙
an´kbk. !

Remark 1.1 (The binomial coefficients are natural numbers).

Using Lemma 1.8, one can see that for all n P N and 0 ď k ď n,

ˆ
n

k

˙
P N.

One can use induction on n. First note thatˆ
1

1

˙
“ 1 “

ˆ
1

0

˙
.

Let us suppose the claim has been shown for some n P N. We have
ˆ
n ` 1

0

˙
“

pn ` 1q!
0!pn ` 1q!

“ 1 “
pn ` 1q!

pn ` 1q!0!
“

ˆ
n ` 1

n ` 1

˙
.

For all 1 ď k ď n, we have by Lemma 1.8 and the induction hypothesis that
ˆ
n`1

k

˙
“

ˆ
n

k´1

˙
`

ˆ
n

k

˙
P N.

(Alternatively,
`
n
k

˘
is a natural number because it is the number of ways of choosing

k objects from n distinct objects.) ˚





Chapter 2

Sequences and their convergence

The notion of a sequence occurs in ordinary conversation. For example when one
says ‘an unfortunate sequence of events’, we imagine a first event, followed by a
second event, followed by a third one, and so on.

Similarly, a sequence of real numbers is an infinite list

a1, a2, a3, ¨ ¨ ¨

of real numbers, where

a1 is the first number/member/term of the sequence,

a2 is the second term of the sequence,

a3 is the third term of the sequence, and so on.

For example

1,
1

2
,
1

3
, ¨ ¨ ¨

is a sequence of real numbers, where 1 is the first term, 1{2 is the second term, and
in general, the nth term is 1{n, n P N.

If in the sequence a1, a2, a3, ¨ ¨ ¨ , we think of a1 as fp1q, a2 as fp2q, a3 as fp3q,
and so on, then it becomes clear that a sequence is a special type of function,
namely one with domain N and co-domain R.

Definition 2.1 (Sequence). A sequence is a function f : N Ñ R.

Only the notation is somewhat unusual. Instead of writing fpnq for the value of f
at a natural number n, we write an. The entire sequence is then referred to with
the notation

panqnPN.

31
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The nth term an of a sequence may be defined explicitly by a formula involving n,
as in the example given above:

an “
1

n
, n P N.

It might also sometimes be defined recursively. For example,

a1 “ 1, an`1 “
n

n ` 1
an for n P N.

(Write down the first few terms of this sequence.)

Example 2.1. Here are a couple of examples of sequences. We have also listed
and displayed the first few terms.

1

1

1

1

1

´1

2

2

2 3

4

4 5 6

6

7

p1qnPN 1, 1, 1, ¨ ¨ ¨

´
1

n

¯

nPN
1,

1

2
,
1

3
, ¨ ¨ ¨

pp´1qnqnPN ´ 1, 1,´1, 1, ¨ ¨ ¨

pnqnPN 1, 2, 3, ¨ ¨ ¨

´
1` 1

2
`¨ ¨ ¨` 1

n

¯

nPN
1, 1` 1

2
, 1` 1

2
` 1

3
, ¨ ¨ ¨

!
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What do we want to know about sequences? In Analysis, we want to know
‘the limiting behaviour’ of the sequence, that is, what an behaves like for large n,
and in particular, whether an gets closer and closer to some number L (called the
limit of the sequence at hand).

What is the motivation for studying the limiting behaviour of sequences?
For example, the terms of the sequence might be the sum of the areas of the rect-
angles in the picture on the left below, or it might be the slopes of the chords in the
picture on the right, and we might be interested in the limiting behaviour because
we want to calculate the area under the graph (left picture) or the instantaneous
rate of change of function at the point c (right picture). Thus we want to know
what happens when n increases to the sequence panqnPN where

(Left picture) an “
n´1ÿ

k“1

mk ¨
k

n
, here mk :“ height of kth shaded rectangle,

(Right picture) an “
fpc ` 1

nq ´ fpcq
1
n

.

0 1
n

2
n

¨ ¨ ¨ n´1
n

1 c c`1c` 1
2

2.1. Limit of a convergent sequence

We want to give a precise definition for

‘The sequence panqnPN is convergent with limit L’ or ‘ lim
nÑ8

an “ L’.

Intuitively, by the above, we mean that there is a number L such that the terms
of the sequence are getting ‘closer and closer’ or are ‘settling down’ to L for larger
and larger values of n. If there is no such finite number L to which the terms of
the sequence get arbitrarily close, then the sequence is said to diverge.

For example, the sequence
´
1

n

¯

nPN
seems to be convergent with limit 0, that is,

lim
nÑ8

1

n
“ 0.

This is consistent with the idea of convergence that we have in mind: a sequence
panqnPN converges to some real number L, if the terms an get ‘closer and closer’ to
L as n ‘increases without bound’.
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1

The problem with such a characterization is its imprecision. Exactly what does it
mean when we say that the terms of a sequence get ‘closer and closer’ or ‘as close as
we like’ or ‘arbitrarily close’ to some number L? Even if we accept this ambiguity,
how would we use the definition to prove theorems that involve sequences?

The terms of the sequence
´
1` 1

n

¯

nPN
are

2,
3

2
,
4

3
,
5

4
, ¨ ¨ ¨ ,

and the first few are plotted below.

1

2

2 3 4

1

The terms of this sequence get ‘closer and closer’ to 0 (indeed the distance to 0
keeps decreasing), but

lim
nÑ8

´
1` 1

n

¯
‰ 0,

rather

lim
nÑ8

´
1` 1

n

¯
“ 1.

One might say ‘but clearly the terms don’t get arbitrarily close to 0, but they do
get arbitrarily close to 1!’

Also, we would also like to say that a sequence is convergent with limit L even
if the adjacent terms of the sequence do not always reduce their distance to L, but
it is nevertheless true that the distance to the limit can be made arbitrarily small
provided we go far enough in the sequence: An example is the sequence

´n mod 5

n

¯

nPN
.

Here nmod5 denotes the remainder obtained when n is divided by 5. The graph
of the sequence is shown below.
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We notice that the limit of this sequence turns out to be 0, despite the fact that
any two successive terms may not always reduce the distance to 0. However, given
any small distance ε ą 0, there is some index N beyond which all the terms of
the sequence do lie within a distance of ε from 0. In other words, the sequence is
settling down to the value 0.

Based on the above examples, we would like to say that a sequence is deemed
to be convergent with limit L if

‘No matter what distance ε is specified, there is an index N beyond
which all the terms aN`1, aN`2, aN`3, ¨ ¨ ¨ all have a distance smaller
than ε to L.’

In other words

@ε ą 0 DN P N such that @n ą N , |an ´ L| ă ε

for every there is such that all terms have distance to L
specified distance ε an index beyond that index less than ε

(Here the symbol @ means ‘for every’, and D means ‘there exists a/an’.)

With these introductory remarks, we now have the following concrete, precise
mathematical definition for the convergence/divergence of a sequence.

Definition 2.2 (Convergent/Divergent sequence; limit).

A sequence panqnPN is said to be convergent with limit L (P R) if for every ε ą 0,
there exists1 an N P N such that for all n P N with n ą N , we have |an ´ L| ă ε.
Then we write

lim
nÑ8

an “ L.

If there is no L P R such that lim
nÑ8

an “ L, then panqnPN is called divergent.

1depending on ε
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The picture below gives the geometric meaning of the definition of a sequence being
convergent with limit L.

There exists an L

such that no matter
what ε ą 0 we pick
and consider a shaded strip
of width ε around
the horizontal line passing
through L,

there exists an index N
such that all terms with indices
n ą N lie in that strip.

Had we chosen a smaller ε,
then perhaps a larger N 1

would work.

L ´ ε

L ´ ε

N N`1 N`2 N`3

L ` ε

L ` ε

L

L

L

L

L ` ε1

L ´ ε1

N 1 N 1`1 N 1`2

Let us consider some simple examples in order to illustrate the definition.

Example 2.2. p1qnPN is convergent with limit 1. We want to check if:

@ε ą 0, DN P N such that @n ą N, |an ´ L| ă ε. (2.1)

Well, given ε ą 0, we have that |an ´ L| “ |1 ´ 1| “ |0| “ 0 ă ε always, that
is for all n P N! So any N P N works. Pictorially, no matter what the width of
the shaded region is, all the terms of the sequence lie in that shaded strip. So for
example, N “ 1 works.



2.1. Limit of a convergent sequence 37

1

N“1

Here is a rigorous proof of ‘ lim
nÑ8

an “ 1’:

Let ε ą 0.

Let N be any natural number, say N “ 1.

Then for all n ą N “ 1, we have |an ´ L| “ |1 ´ 1| “ |0| “ 0 ă ε.

So we have checked that the statement in (2.1) holds. !

Example 2.3.
´
1

n

¯

nPN
is a convergent sequence with limit 0.

Before one proceeds to give rigorous proof, we often need to do some rough work.
Recall that in order to check the claim, we need to verify

@ε ą 0, DN P N such that @n ą N, |an ´ L| ă ε. (2.2)

Thus given ε ą 0, the task is to find a special index N such that the inequality
|an ´ L| ă ε is satisfied for all n ą N . So in order to find this N , we will work
backwards, by first starting with the inequality |an ´ L| ă ε, and making an
educated guess about what N is likely to work. Then we will give a formal proof.

(Rough work: Let ε ą 0. We want an N such that for all n ą N , |an ´ L| ă ε, i.e.,
ˇ̌
ˇ
1

n
´ 0

ˇ̌
ˇ “ 1

n
ă ε,

that is, n ą 1{ε. So we guess that we can take any N P N such that N ą 1{ε,
because then for n ą N , n ą N ą 1{ε, and we may retrace the steps above.)

Rigorous argument:

Let ε ą 0.

Let N P N be such that N ą 1{ε.
(We use the Archimedean Property here with y “ 1{ε, x “ 1: by Theorem 1.3,
there exists an N P N such that Nx ą y, that is, N ą 1{ε.)

Then for all n P N with n ą N , we have |an ´ L| “
ˇ̌
ˇ
1

n
´ 0

ˇ̌
ˇ “ 1

n
ă

1

N
ă ε.

So lim
nÑ8

1

n
“ 0. !
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Example 2.4.
´
1` 1

n

¯

nPN
is a convergent sequence with limit 1.

1

2

2 3 4

1

(Rough work: |an ´ L| “
ˇ̌
ˇ1` 1

n
´ 1

ˇ̌
ˇ “

ˇ̌
ˇ
1

n

ˇ̌
ˇ “ 1

n
ă ε for n ą N ą

1

ε
.)

Rigorous argument:

Let ε ą 0.

Let N P N be such that N ą 1{ε.

Then for all n P N with n ą N , we have |an´L| “
ˇ̌
ˇ1̀

1

n
´1

ˇ̌
ˇ “

ˇ̌
ˇ
1

n

ˇ̌
ˇ “ 1

n
ă 1

N
ă ε.

So lim
nÑ8

´
1` 1

n

¯
“ 1.

We note that it is not the case that lim
nÑ8

´
1` 1

n

¯
“ 0. For, if on the contrary,

lim
nÑ8

´
1` 1

n

¯
“ 0,

then the following statement holds:

@ε ą 0, DN P N such that @n ą N, |an ´ 0| “
ˇ̌
ˇ1` 1

n
´ 0

ˇ̌
ˇ “ 1` 1

n
ă ε.

But if we take ε “ 1 ą 0, then the above gives the existence of an N P N such that

@n ą N, 1` 1

n
ă ε “ 1.

If we take n “ N`1, then this last inequality gives the contradiction that

1

N`1
ă 0.

(We will soon learn (in Theorem 2.1) that in fact if a sequence is convergent with
a certain limit L, then it cannot converge to any other limit L1. So in light of this
result, the last paragraph above is superfluous: indeed, since we proved that

lim
nÑ8

´
1` 1

n

¯
“ 1,

we immediately know that for any L1 ‰ 1, it cannot be the case that

lim
nÑ8

´
1` 1

n

¯
“ L1,

and in particular, with L1 :“ 0 ‰ 1, we surely know that lim
nÑ8

´
1` 1

n

¯
‰ 0. !

Here is an example of a divergent sequence.
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Example 2.5. pp´1qnqnPN is divergent.

We will prove this by contradiction. Let pp´1qnqnPN be convergent with limit L.
Then

@ε ą 0, DN P N such that @n ą N, |an ´ L| “ |p´1qn ´ L| ă ε.

Take ε “ 1{2. (This choice is motivated by hindsight ´ we want to arrive at a
contradiction, and it will turn out that this choice of ε delivers the contradiction.
In order to make this transparent, let us keep working with a general ε in our
argument below, and at a crucial last step, we will see the rationale behind our
choice of ε “ 1{2!)

Then there exists an N P N such that for all n ą N , |p´1qn ´ L| ă ε. But if
we take any even n ą N (for example 2N, 4N, 6N, 8N, ¨ ¨ ¨ ), then we obtain

|p´1qn ´ L| “ |1 ´ L| ă ε. (2.3)

(This inequality says that the distance of L to 1 is less than ε.) On the other hand,
if we take any odd n ą N (for example 2N ` 1, 4N ` 1, 6N ` 1, 8N ` 1, ¨ ¨ ¨ ), then

|p´1qn ´ L| “ | ´ 1 ´ L| ă ε. (2.4)

(This inequality says that the distance of L to ´1 is less than ε.)

So pictorially our L is supposed to lie in an interval about 1 with width 2ε, and
in an interval about ´1 with width 2ε. But such intervals won’t overlap if ε “ 1{2
(in fact any postive ε ď 1 will do the job!), and this will give us the contradiction.

0 1´1

2ε2ε

L lies here L lies here

Indeed, we have, using (2.3) and (2.4) that

2 “ | ´ 1 ´ L ` L ´ 1| ď | ´ 1 ´ L| ` |L ´ 1| ă ε ` ε “ 2ε “ 2 ¨ 1
2

“ 1,

a contradiction. Consequently, the sequence pp´1qnqnPN is divergent. !

The notation

lim
nÑ8

an

suggests that the limit of a convergent sequence is unique. Indeed this is the case,
and we prove this now.
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Theorem 2.1. A convergent sequence has a unique limit.

Proof. Let panqnPN be a convergent sequence with limits L1 and L2, with L1 ‰ L2.

L1

L2

all terms beyond N1

should lie in

this strip

all terms beyond N2

should lie in

this strip

Let

ε :“
|L1 ´ L2|

3
ą 0,

where the positivity of the ε defined above follows from the fact that L1 ‰ L2.
Since L1 is a limit of the sequence panqnPN, DN1 P N such that

for all n ą N1, |an ´ L1| ă ε.

Since L2 is a limit of the sequence panqnPN, DN2 P N such that

for all n ą N2, |an ´ L2| ă ε.

Consequently for n ą N1 ` N2, we have n ą N1 and n ą N2, and so

|L1 ´ L2| “ |L1 ´ an ` an ´ L2| ď |L1 ´ an| ` |an ´ L2| ă ε ` ε “ 2ε “ 2

3
|L1 ´ L2|.

So we arrive at the contradiction that 1 ă 2
3 . Hence our original assumption was

incorrect, and so a convergent sequence must have a unique limit. !

Checking whether a sequence is convergent or not by using the definition is cum-
bersome. In the rest of the chapter, we will learn ways of deducing the convergence
without having to do this hard work. Instead, we will establish results which allow
us to deduce the convergence based on certain properties possessed by the sequence.
One example of such a result is:

Bounded and monotone sequences are convergent.

So in the next section, among other things, we will study what is meant by a
bounded sequence, a monotone sequence, and also see a proof of the result stated
above.

Exercise 2.1. (˚)
(1) Can the limit of a convergent sequence be one of the terms of the sequence?

(2) If none of the terms of a convergent sequence equal its limit, then prove that the terms
of the sequence cannot consist of a finite number of distinct values.

(3) Prove that the sequence pp´1qnqnPN is divergent using the above.
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Exercise 2.2. In each of the cases listed below, give an example of a divergent sequence
panqnPN that satisfies the given conditions. Suppose that L “ 1.

(1) For all ε ą 0, there exists an N such that for infinitely many n ą N , |an ´ L| ă ε.

(2) There exists an ε ą 0 and a N P N such that for all n ą N , |an ´ L| ă ε.

Exercise 2.3. Suppose that S is a nonempty subset of R such that S is bounded above.
Show that there exists a sequence panqnPN contained in S (that is, an P S for all n P N)
and which is convergent with limit equal to supS.

Exercise 2.4. Suppose that panqnPN is a sequence such that for all n P N, we have an ě 0.
Prove that if panqnPN is convergent with limit L, then L ě 0.

Exercise 2.5. Which of the following listed statements have the same meaning as
‘It is not the case that the sequence panqnPN is convergent to L’?

(A) @ε ą 0, DN P N such that @n P N such that n ą N , |an ´ L| ě ε.

(B) @ε ą 0, DN P N such that @n P N such that n ď N , |an ´ L| ě ε.

(C) Dε ą 0, @N P N, Dn P N such that n ą N but |an ´ L| ě ε.

(D) Dε ą 0, DN P N, @n P N such that n ą N but |an ´ L| ě ε.

2.2. Bounded and monotone sequences

Bounded sequences.

Definition 2.3 (Bounded sequence).
A sequence panqnPN is said to be bounded if there exists a M ą 0 such that for all
n P N, |an| ďM .

M

´M

all terms
lie here

Note that a sequence is bounded if and only if the set S “ tan : n P Nu is bounded.
(See Exercise 1.20 on page 25).

Example 2.6.

(1) p1qnPN is bounded, since |1| “ 1 ď 1 for all n P N.

(2)
´
1

n

¯

nPN
is bounded, since

ˇ̌
ˇ
1

n

ˇ̌
ˇ “ 1

n
ď 1 for all n P N.

(3) pp´1qnqnPN is bounded, since |p´1qn| “ 1 ď 1 for all n P N.
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(4) pnqnPN is not bounded.

(If there exists an M ą 0 such that for all n P N, |an| “ |n| “ n ďM , then this
contradicts the Archimedean Property: we know there exists an N P N such
that with x“1, N “N ¨ x ąM “y.)

(5) The sequence panqnPN is bounded, where

an “ 1

11
`

1

22
`

1

33
` ¨ ¨ ¨ `

1

nn
, n P N.

Indeed this can be seen as follows:

|an| “
ˇ̌
ˇ
1

11
` 1

22
` 1

33
` ¨ ¨ ¨ ` 1

nn

ˇ̌
ˇ “ 1

11
` 1

22
` 1

33
` ¨ ¨ ¨ ` 1

nn

ď 1

11
` 1

22
` 1

23
` ¨ ¨ ¨ ` 1

2n

“ 1

11
` 1

2

´
1 ´ 1

2

¯
` 1

22

´
1 ´ 1

2

¯
` ¨ ¨ ¨ ` 1

2n´1

´
1 ´ 1

2

¯

“ 1 ` 1

2
´ 1

22
` 1

22
´ 1

23
` ´ ¨ ¨ ¨ ` 1

2n´1
´ 1

2n

“ 1 ` 1

2
´ 1

2n
ă 3

2
.

Thus the sequence is bounded. !

The sequences p1qnPN, p1{nqnPN are convergent, and we have shown above that they
are also bounded. This is not a coincidence, and in the next theorem we show that
the set of all convergent sequences is contained in the set of all bounded sequences.

Theorem 2.2. If a sequence is convergent, then it is bounded.

Proof. Let panqnPN be a convergent sequence with limit L. Let ε :“ 1 ą 0. Then
there exists an N P N such that for all n ą N , |an ´ L| ă ε “ 1. Hence for n ą N ,
|an| “ |an ´ L ` L| ď |an ´ L| ` |L| ă 1 ` |L|. So all the terms with index beyond
N lie in the shaded strip below.

L

Nonly finitely
many left out!

all terms beyond N
lie in the shaded strip
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But only finitely many are left out, and surely for n “ 1, ¨ ¨ ¨ , N ,

|an| ď maxt|a1|, ¨ ¨ ¨ , |aN |u.

So if we set M :“ maxt|a1|, . . . , |aN |, 1 ` |L|u, then for all n P N |an| ďM, and so
panqnPN is bounded. !

Thus:

convergent ñ bounded.

But the reverse implication is not true, since for example pp´1qnqnPN is bounded,
but not convergent. So:

convergent ö bounded.

But we will see soon enough that if we add the property of being ‘monotone’ to
boundedness, then we do get convergence:

bounded and ‘monotone’ ñ convergent.

We will now study what we mean by a monotone sequence before proving this last
implication.

Exercise 2.6.

(1) Let pbnqnPN be a bounded sequence. Prove that pbn{nqnPN is convergent with limit 0.

(2) Is the sequence ppsinnq{nqnPN convergent?

Exercise 2.7. (˚)
(1) If panqnPN is a convergent sequence with limit L, then prove that the sequence psnqnPN,

where sn “ a1 ` ¨ ¨ ¨ ` an
n

for all n P N, is also convergent with limit L.

(2) Give an example such that psnqnPN is convergent but panqnPN is divergent.

Exercise 2.8. Let "8 denote2 the set of all bounded sequences. Define the set "2 of all
‘square summable’ sequences "2 “tpanqnPN : pa21 ` ¨ ¨ ¨ ` a2nqnPN is convergentu. Also, let c00
be the set of all sequences that are ‘eventually zero’, that is,

c00 “tpanqnPN : DN P N such that @n ą N, an “ 0u.
Prove that c00 Ă "2 Ă "8 Hint: For the last inclusion, use a2n ď a21 ` ¨ ¨ ¨ ` a2n.

Monotone sequences.

Definition 2.4 (Increasing, decreasing and monotone sequences).

‚ A sequence panqnPN is said to be increasing if for all n P N, an ď an`1, that is,
if a1 ď a2 ď a3 ď ¨ ¨ ¨ .

‚ A sequence panqnPN is said to be decreasing if for all n P N, an ě an`1, that is,
if a1 ě a2 ě a3 ě . . . .

‚ A sequence is said to be monotone if it is increasing or decreasing.

2There is some rationale behind this notation, but we will not elaborate on this will now; in later
courses in Analysis the motivation for this notation will become clearer.
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Example 2.7.

Sequence
Is it

increasing?
Is it

decreasing?
Is it

monotone?

pnqnPN Yes No Yes

´
1

11
` 1

22
` 1

33
` ¨ ¨ ¨ ` 1

nn

¯

nPN
Yes No Yes

p1qnPN Yes Yes Yes

pp´1qnqnPN No No No

´
1

n

¯

nPN
No Yes Yes

!

The following theorem can be useful in showing that sequences converge when one
does not know the limit beforehand. This is the central result of this section on
bounded and monotone sequences.

Theorem 2.3. If a sequence is monotone and bounded, then it is convergent.

Proof.

1˝ We will first consider the case of increasing sequences which are bounded. Let
panqnPN be an increasing and bounded sequence. We want to show that panqnPN
is convergent. But with what limit?

?

The picture above suggests that the limit should be the smallest number bigger
than each of the terms of this sequence, and if we recall Exercise 1.6, we know
that this is the supremum of the set S :“tan :n P Nu. Since panqnPN is bounded,
it follows that the set S has an upper bound and so supS exists. We show
that in fact panqnPN converges to supS. Let ε ą 0. Since supS ´ ε ă supS,
we conclude that supS ´ ε is not an upper bound for S, and so there exists
an aN P S such that supS ´ εă aN , that is supS ´ aN ă ε. As panqnPN is an
increasing sequence, for n ą N , we have aN ď an. Because supS is an upper
bound for S, an ď supS, and so |an ´ supS| “ supS ´ an, Thus for n ą N we
obtain |an ´ supS| “ supS ´ an ď supS ´ aN ă ε.
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2˝ Let panqnPN be a decreasing and bounded sequence. Then the sequence p´anqnPN
is increasing. Furthermore if panqnPN is bounded, then p´anqnPN is bounded as
well (| ´ an| “ |an| ď M). Hence by the case considered above, it follows that
p´anqnPN is a convergent sequence with limit

supt´an : n P Nu “ ´ inftan : n P Nu “ ´ inf S,

where S“tan : n P Nu (see Exercise 1.7 on page 19). So given ε ą 0, there exists
an N P N such that for all n ą N , |´an ´p´ inf Sq| ă ε, that is, |an ´ inf S| ă ε.
Thus panqnPN is convergent with limit inf S. !

Exercise 2.9. Fill in the blanks in the following proof of the fact that every bounded
decreasing sequence of real numbers converges.

Let panqnPN be a bounded decreasing sequence of real numbers. Let "˚ be the lower
bound of tan : n P Nu. The existence of "˚ is guaranteed by the of the set of real
numbers. We show that "˚ is the of panqnPN. Taking ε ą 0, we must show that
there exists a positive integer N such that for all n ą N . Since "˚ ` ε ą "˚, "˚ ` ε
is not of tan : n P Nu. Therefore there exists N with ď aN ă . Since
panqnPN is , we have for all n ě N that "˚ ´ ε ă "˚ ď ď aN ă "˚ ` ε, and so
|an ´ "˚| ă ε. "

The result in Theorem 2.3 gives a sufficient condition for convergence: namely by
knowing the properties of monotonicity and boundedness (which can be checked by
just looking at the terms an of the sequence), we can deduce convergence. We do
not need to make a guess about what the limit of the sequence is, and we do not
need to check the cumbersome Definition 2.2. Here is an example.

Example 2.8. We had seen earlier that the sequence panqnPN given by

an “ 1

11
` 1

22
` 1

33
` ¨ ¨ ¨ ` 1

nn
, n P N

is monotone (indeed, it is increasing since

an`1 ´ an “ 1

pn ` 1qn`1
ą 0

for all n P N) and bounded (see Example 2.6.(5) on page 42). Thus it follows from
Theorem 2.3 that this sequence is convergent. (Although it is known that this
sequence is convergent to some limit L P R, which is the supremum of the terms of
the sequence,

L “ sup
nPN

´ 1

11
` 1

22
` 1

33
` ¨ ¨ ¨ ` 1

nn

¯
,

it is so far not even known if the limit3 L is rational or irrational, and this is still
an open problem in mathematics!) !

3Also associated with this sequence is the interesting identity
8ÿ

n“1

1

nn
“

ż
1

0

1

xx
dx.
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We remark that although [boundedness and monotonicity] is a sufficient condition
for convergence, it is not necessary, as illustrated in the following example.

Example 2.9 (Convergence œ [Monotone and bounded]).

The sequence panqnPN, where an “ p´1qn
n for n P N, is convergent with limit 0:

Suppose ε ą 0. Let N P N be such that N ą 1{ε. Then for all n ą N , we have

that |an ´ 0| “ | p´1qn
n ´ 0| “ 1

n ă
1
N ă ε.

We note that although the sequence is bounded (all convergent sequences are!), it
is not monotone: a1“´1 ă a2 “ 1

2 ą a3 “´1
3 . So the sequence is neither increasing

(second inequality above), nor decreasing (first inequality above). !

The table below gives a summary of the valid implications, and counterexamples
to implications which are not true. See also the Venn diagram after the table.

Question Answer Reason/Counterexample

Is every convergent Yes Theorem 2.2
sequence bounded?
Is every bounded No pp´1qnqnPN is bounded,

sequence convergent? but not convergent.

Is every convergent No p p´1qn
n qnPN is convergent,

sequence monotone? but not monotone.
Is every monotone No pnqnPN is not convergent.

sequence convergent?
Is every bounded and monotone Yes Theorem 2.3

sequence convergent?

p p´1qn
n qnPN

pnqnPN

pp´1qnqnPN

Monotone sequences

Convergent
sequences

Bounded
sequences
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Exercise 2.10. Let panqnPN be defined by a1 “ 1, and an “
2n ` 1

3n
an´1 for n ě 2.

(1) Show that panqnPN is bounded.

(2) Show that panqnPN is decreasing.

(3) Conclude that panqnPN is convergent.

Exercise 2.11. Given a bounded sequence panqnPN, define

"k “ inftan : n ě ku and uk “ suptan : n ě ku, k P N.

Show that the sequences p"nqnPN, punqnPN are bounded and monotone, and conclude that
they are convergent. Their respective limits are called the limit superior and limit inferior,
respectively, and are denoted by lim inf

nÑ8
an and lim sup

nÑ8
an.

Exercise 2.12 (Precursor to Euler’s number, e).

Consider the sequence panqnPN, where an :“ 1 `
1

1!
`

1

2!
`

1

3!
` ¨ ¨ ¨ `

1

n!
, n P N.

(1) Show that panqnPN is increasing.

(2) Show that panqnPN is bounded.

Hint: an “ 1` 1` 1
2 ` 1

2¨3 ` ¨ ¨ ¨ ` 1
2¨3¨¨¨n ď 1 ` 1` 1

2 ` 1
22 ` ¨ ¨ ¨ ` 1

2n´1 “ 1` 1´ 1

2n

1´ 1

2

ă 3.

(3) Conclude that panqnPN is convergent. We set a :“ lim
nÑ8

an.

Consider the sequence pbnqnPN, where bn :“
´
1`

1

n

¯n

, n P N. Using the binomial theorem,

bn “ 1 ` n
1

n
`

npn ´ 1q
2!

1

n2
` ¨ ¨ ¨ `

npn ´ 1q ¨ ¨ ¨ 2 ¨ 1
n!

1

nn

“ 1 ` 1 `
1

2!

´
1 ´

1

n

¯
` ¨ ¨ ¨ `

1

n!

´
1 ´

1

n

¯
¨ ¨ ¨

´
1 ´

n ´ 1

n

¯
.

(4) Show by replacing n by n ` 1 in factors of the type p1 ´ k
n

q that bn ď bn`1, n P N.

(5) Show that bn ď an ă 3.

(6) Conclude that pbnqnPN is convergent. We set b :“ lim
nÑ8

bn.

In Exercise 2.20, we will show that in fact a “ b, and this common value is denoted by e.

Exercise 2.13. In continuation to Exercise 2.8, we also define the set "1 of ‘summable
sequences’ as "1 “ tpanqnPN : p|a1| ` ¨ ¨ ¨ ` |an|qnPN is a convergent sequenceu.
(1) Show that "1 Ă "8. Hint: |an| ď |a1| ` ¨ ¨ ¨ ` |an|.
(2) Show that "1 Ă "2. Hint: If |a1|`¨ ¨ ¨`|an| ďM , then a21`¨ ¨ ¨`a2n ďMp|a1|`¨ ¨ ¨`|an|q.
(3) It will be show in Example 2.17 that p1` 1

2
` ¨ ¨ ¨ ` 1

n
qnPN diverges. On the other hand,

show that p1` 1
2

` ¨ ¨ ¨ ` 1
n2 qnPN converges. Hint: 1

n2 ď 1
npn´1q “ 1

2
p 1
n´1

´ 1
n

q for n ě 2.

Remark: Thus p 1
n

qnPN P "2z"1.

2.3. Algebra of limits

In this section we will learn that if we ‘algebraically’ combine the terms of conver-
gent sequences, then the new sequence which is obtained, is again convergent, and
moreover the limit of this sequence is the same algebraic combination of the limits.
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In this manner we can sometimes prove the convergence of complicated sequences
by breaking them down and writing them as an algebraic combination of simple
sequences. Thus, we conveniently apply arithmetic rules to compute the limits of
sequences if the terms are the sum, product, quotient of terms of simpler sequences
with a known limit. For instance, using the formal definition of a limit, one can
show that the sequence panqnPN defined by

an “ 4n2 ` 9

3n2 ` 7n ` 11

converges to
4

3
. However, it is simpler to observe that

an “
n2

´
4 ` 9

n2

¯

n2
´
3 ` 7

n
` 11

n2

¯ “
4 ` 9

n2

3 ` 7

n
` 11

n2

,

and by a repeated application of Theorem 2.4 given below, we obtain

lim
nÑ8

an “
lim
nÑ8

´
4 `

9

n2

¯

lim
nÑ8

´
3 `

7

n
`

11

n2

¯ “
lim
nÑ8

4 ` lim
nÑ8

9

n2

lim
nÑ8

3 ` lim
nÑ8

7

n
` lim

nÑ8

11

n2

“
4 ` 0

3 ` 0 ` 0
“

4

3
.

Theorem 2.4. If panqnPN and pbnqnPN are convergent sequences, then:

(1) For all α P R, pαanqnPN is a convergent sequence and lim
nÑ8

αan “ α lim
nÑ8

an.

(2) p|an|qnPN is a convergent sequence and lim
nÑ8

|an| “
ˇ̌
ˇ lim
nÑ8

an

ˇ̌
ˇ.

(3) pan ` bnqnPN is convergent and lim
nÑ8

pan ` bnq “ lim
nÑ8

an ` lim
nÑ8

bn.

(4) panbnqnPN is a convergent sequence and lim
nÑ8

anbn “
´

lim
nÑ8

an

¯´
lim
nÑ8

bn

¯
.

(5) For all k P N, paknqnPN is a convergent sequence and lim
nÑ8

akn “
´

lim
nÑ8

an

¯k
.

(6) If for all n P N, bn ‰ 0 and lim
nÑ8

bn ‰ 0, then
´ 1

bn

¯

nPN
is convergent, and

lim
nÑ8

1

bn
“ 1

lim
nÑ8

bn
.

Proof. Let panqnPN and pbnqnPN converge to La and Lb, respectively.

(1) If α “ 0, then αan “ 0 for all n P N and clearly p0qnPN is a convergent sequence
with limit 0. Thus

lim
nÑ8

αan “ 0 “ 0La “ α lim
nÑ8

an.
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If α ‰ 0, then given ε ą 0, let N P N be such that for all n ą N ,

|an ´ La| ă
ε

|α|
,

that is,

|αan ´ αLa| “ |α| |an ´ La| ă |α| ε

|α|
“ ε.

So pαanqnPN is convergent with limit αLa, i.e., lim
nÑ8

αan “ αLa “ α lim
nÑ8

an.

(2) Given ε ą 0, let N P N be such that for all n ą N , |an ´ La| ă ε. Then we
have for all n ą N : ||an| ´ |La|| ď |an ´ La| ă ε. Hence p|an|qnPN is convergent
with limit |La|, that is,

lim
nÑ8

|an| “ |La| “
ˇ̌
ˇ lim
nÑ8

an

ˇ̌
ˇ.

(3) Given ε ą 0, let Na P N be such that for all n ą Na,

|an ´ La| ă ε

2
.

Let Nb P N be such that for all n ą Nb,

|bn ´ Lb| ă
ε

2
.

Then for all n ą N :“ maxtNa, Nbu, we have

|an`bn ´ pLa`Lbq|“|an´ La ` bn´ Lb| ď |an´ La|`|bn´ Lb| ă
ε

2
` ε

2
“ε.

Hence pan ` bnqnPN is convergent with limit La ` Lb, that is,

lim
nÑ8

pan ` bnq “ La ` Lb “ lim
nÑ8

an ` lim
nÑ8

bn.

(4) Note that

|anbn´LaLb| “ |anbn´Labn`Labn´LaLb| ď |anbn´Labn|`|Labn´LaLb|
“ |an´La| |bn|`|La| |bn´Lb|. (2.5)

Given ε ą 0, we need to find a N such that for all n ą N ,

|anbn ´ LaLb| ă ε.

This can be achieved by finding a N such that each of the summands in (2.5)
is less than ε{2 for n ą N . This can be done as follows.

Step 1. Since pbnqnPN is convergent, by Theorem 2.2 it follows that it is bounded:
DM ą 0 such that for all n P N, |bn| ďM . Let Na P N be such that for n ą Na,

|an ´ La| ă ε

2M
.

Step 2. Let Nb P N be such that for all n ą Nb,

|bn ´ Lb| ă
ε

2p|La| ` 1q
.
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(We add `1 in the denominator to take care of the case when La “ 0.) Thus
for n ą N :“ maxtNa, Nbu, we have

|anbn´LaLb|ď |an´La| |bn|`|La| |bn´Lb| ă
ε

2M
M ` |La| ε

2p|La|`1q
ă ε

2
` ε

2
“ε.

So panbnqnPN is a convergent sequence with limit LaLb, that is,

lim
nÑ8

anbn “ LaLb “
´

lim
nÑ8

an

¯´
lim
nÑ8

bn

¯
.

(5) This can be shown by using induction on k and part 2.4 above. It is trivially
true with k “ 1. Suppose it holds for some k: then paknqnPN is convergent and

lim
nÑ8

akn “
´

lim
nÑ8

an

¯k
.

Hence by part 2.4 above applied to the sequences panqnPN and paknqnPN, we
obtain that the sequence pan ¨ aknqnPN is convergent and

lim
nÑ8

ana
k
n “

´
lim
nÑ8

an

¯´
lim
nÑ8

akn

¯
“

´
lim
nÑ8

an

¯´
lim
nÑ8

an

¯k
“

´
lim
nÑ8

an

¯k`1
.

Thus pak`1
n qnPN is convergent and lim

nÑ8
ak`1
n “

´
lim
nÑ8

an

¯k`1
.

(6) Let N1 P N be such that for all n ą N1, |bn ´ Lb| ă
|Lb|
2

. Thus for all n ą N1,

|Lb| ´ |bn| ď ||Lb| ´ |bn|| ď |bn ´ Lb| ă
|Lb|
2

,

and so |bn| ě
|Lb|
2

. Let ε ą 0, and let N2 P N be such that for all n ą N2,

|bn ´ Lb| ă
ε|Lb|2

2
.

Hence for n ą N :“ maxtN1, N2u, we have
ˇ̌
ˇ
1

bn
´

1

Lb

ˇ̌
ˇ “

|bn ´ Lb|
|bn| |Lb|

ă
ε|Lb|2

2

2

|Lb|
1

|Lb|
“ ε.

So
´ 1

bn

¯

nPN
is convergent and lim

nÑ8

1

bn
“ 1

Lb
“ 1

lim
nÑ8

bn
. !

Example 2.10. Consider the sequence panqnPN, where

an :“
1

n3
`

22

n3
`

32

n3
` ¨ ¨ ¨ `

n2

n3
, n P N.

A novice observes that

lim
nÑ8

1

n3
“ 0, lim

nÑ8

22

n3
“ 0, lim

nÑ8

32

n3
“ 0, ¨ ¨ ¨ , lim

nÑ8

n2

n3
“ 0,

and hastily concludes that

‘by the Algebra of Limits, lim
nÑ8

an “ 0 ` 0 ` 0 ` ¨ ¨ ¨ ` 0 “ 0.’
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Where does the error in this argument lie?

Note that by Theorem 2.4.(3), we do have that the termwise sum of a finite
fixed number of sequences is convergent with the limit of the sum being the sum of
the limits. In other words, if

an,1
nÑ8ÝÑ L1,

an,2
nÑ8ÝÑ L2,

an,3
nÑ8ÝÑ L3,

¨ ¨ ¨
an,k

nÑ8ÝÑ Lk,

then we do have that an,1 ` an,2 ` an,3 ` ¨ ¨ ¨ ` an,k
nÑ8ÝÑ L1 ` L2 ` L3 ` ¨ ¨ ¨ ` Lk.

However, in the application above, the number of sequences wasn’t fixed. In
fact, knowing the following formula for the sum of squares (which can easily be
shown by induction)

12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2 “
npn ` 1qp2n ` 1q

6
, n P N,

we have

an “
1

n3
`

22

n3
`

32

n3
` ¨ ¨ ¨ `

n2

n3
“

12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2

n3

“ npn ` 1qp2n ` 1q{6
n3

“ 1

6

´
1 ` 1

n

¯´
2 ` 1

n

¯
,

and so by the Algebra of Limits,

lim
nÑ8

an “ lim
nÑ8

1

6

´
1 `

1

n

¯´
2 `

1

n

¯
“

1

6
¨ p1 ` 0q ¨ p2 ` 0q “

1

3
. !

Exercise 2.14. Is the following manipulation justified based on Theorem 2.4?

lim
nÑ8

´
1 `

1

n

¯n

“
´

lim
nÑ8

´
1 `

1

n

¯¯n

“
´
1 ` lim

nÑ8

1

n

¯n

“
´
1 ` 0

¯n

“ 1n “ 1.

Exercise 2.15. Suppose that the sequence panqnPN is convergent, and assume that the
sequence pbnqnPN is bounded. Prove that the sequence pcnqnPN defined by

cn “
anbn ` 5n

a2n ` n
, n P N,

is convergent, and find its limit.

Exercise 2.16. Let panqnPN be a convergent sequence with limit L and suppose that
an ě 0 for all n P N. Prove that the sequence p?

anqnPN is also convergent, with limit
?
L.

Hint: First show that L ě 0. Let ε ą 0. If L “ 0, then choose N P N large enough so
that for n ą N , |an ´ L| “ an ă ε2. If L ą 0, then choose N P N large enough so that for
n ą N , |?an ´

?
L||?an `

?
L| “ |an ´ L| ă ε

?
L.

Exercise 2.17. Show that p
a

n2 ` n ´ nqnPN is a convergent sequence and find its limit.

Hint: ‘Rationalize the numerator’ by using
?
n2 ` n ` n.
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Exercise 2.18.

(1) Let panqnPN and pbnqnPN be convergent sequences such that for all n P N, an ď bn.
Show that lim

nÑ8
an ď lim

nÑ8
bn. Hint: Use Exercise 2.4 on page 41.

(2) With the same notation as in Exercise 2.11, show that for a bounded sequence panqnPN,
lim inf
nÑ8

an ď lim sup
nÑ8

an. Given an example to show that there can be a strict inequality.

Exercise 2.19. The Fibonacci sequence pFnqnPN is defined recursively by F1 “ F2 “ 1
and for n ě 2, Fn`1 “ Fn ` Fn´1. Thus the sequence has the terms 1, 1, 2, 3, 5, 8, 13, ¨ ¨ ¨ .
Define the new sequence pxnqnPN by xn “ F2n´1

F2n
, n ě 1.

(1) Show that xn`1 “ 1`xn

2`xn
, n ě 1.

(2) Prove that xn`1 ´ xn “ xn´xn´1

p2`xnqp2`xn´1q , n ě 2.

(3) Show that pxnqnPN is convergent.

(4) Determine the limit of pxnqnPN.
Hint: If pxnqnPN converges with limit L, then pxn`1qnPN converges to L too.

(5) A French mathematician travelling by car in the UK notices the following curiosity:
In order to approximately convert a Fibonacci number of miles into kilometers, all one
needs to do is to take the next Fibonacci number! Can you explain why?

Exercise 2.20 (Euler’s constant, e).
Let us revisit Exercise 2.12.

(1) Fix m P N. Show that for n ě m, we have

bn ě 1 ` 1 `
1

2!

´
1 ´

1

n

¯
` ¨ ¨ ¨ `

1

m!

´
1 ´

1

n

¯
¨ ¨ ¨

´
1 ´

m ´ 1

n

¯
.

Use Exercise 2.18(1) to conclude first that b ě am, and next that b ě a.

(2) Use the inequality from Exercise 2.12(5) to conclude that also b ď a.

(3) Conclude that b “ a.

We call this number Euler’s number, denoted by e P R:

lim
nÑ8

´
1 `

1

n

¯n

“ e “ lim
nÑ8

´
1 `

1

1!
`

1

2!
`

1

3!
` ¨ ¨ ¨ `

1

n!

¯
.

We will see later in Theorem 4.27 that e R Q.

Exercise 2.21. Let the sequence pxnqnPN be defined by x1 “ 0 and for n ě 1,

xn`1 “ xn `
´ 1

2019
` x2

n

¯2020

.

Prove that pxnqnPN diverges. Hint: If pxnqnPN converges with limit L, then pxn`1qnPN
converges to L too.

2.4. Sandwich theorem

Another useful theorem for proving that sequences are convergent and in deter-
mining their limits is the so-called Sandwich Theorem. Roughly speaking, it says
that if a sequence is ‘sandwiched’ between two convergent sequences with the same
limit, then the sandwiched sequence is also convergent with the same limit.
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L

an ď cn ď bn @n
and

Ó Ó
L L

then
Ó
L

Theorem 2.5 (Sandwich theorem).
Let panqnPN, pbnqnPN be convergent sequences with the same limit, that is,

lim
nÑ8

an “ lim
nÑ8

bn.

If pcnqnPN is a third sequence such that

for all n P N, an ď cn ď bn,

then pcnqnPN is also convergent with the same limit, that is,

lim
nÑ8

an “ lim
nÑ8

cn “ lim
nÑ8

bn.

Proof. Let L denote the common limit of panqnPN and pbnqnPN:

lim
nÑ8

an “ L “ lim
nÑ8

bn.

Given ε ą 0, let Na P N be such that for all n ą Na, |an ´ L| ă ε. For n ą Na,

L ´ an ď |L ´ an| “ |an ´ L| ă ε,

and so L ´ an ă ε, that is,

L ´ ε ă an.

Let Nb P N be such that for all n ą Nb, |bn ´ L| ă ε. For n ą Nb, bn ´ L ă ε, i.e.,

bn ă L ` ε.

Thus for n ą N :“ maxtNa, Nbu, we have

L ´ ε ă an ď cn ď bn ă L ` ε,

and so L ´ ε ă cn ă L ` ε. Consequently, cn ´ L ă ε and ´pcn ´ Lq ă ε, and so

|cn ´ L| ă ε.

This proves that pcnqnPN is convergent with limit L. !
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Example 2.11 (The geometric progression).

The aim of this example is to show that if |r| ă 1, then lim
nÑ8

rn “ 0.

First let us consider the case when r P p0, 1q. Then h :“ 1

r
´ 1 ą 0. For n P N,

1

rn
“ p1 ` hqn ě 1 ` nhloooooooooomoooooooooon

p˚q

ě nh. (2.6)

One can show the inequality (˚) using induction as follows. Clearly when n “ 1,

p1 ` hq1 “ 1 ` h “ 1 ` 1 ¨ h.

If p1 ` hqn ě 1 ` nh for some n, then

p1`hqn`1 “ p1`hqnp1`hq ě p1`nhqp1`hq “ 1` pn` 1qh`nh2 ě 1` pn` 1qh,

and so the inequality is true for all n.

Hence we obtain 0 ď rn ď
1

nh
for all n P N. Since

lim
nÑ8

0 “ 0 “ lim
nÑ8

1

nh
,

it follows by the Sandwich Theorem that lim
nÑ8

rn “ 0 too.

When r “ 0, rn “ 0 for all n P N, and so clearly lim
nÑ8

rn “ 0.

Now suppose that |r| ă 1. Then |r| P r0, 1q, and so by the above,

lim
nÑ8

|r|n “ 0.

By the Algebra of Limits, lim
nÑ8

´|r|n “ 0 as well. Since

´|r|n ď rn ď |r|n for all n P N,

it follows again by the Sandwich Theorem that lim
nÑ8

rn “ 0.

As a consequence of the above, we can show that if r P p´1, 1q, then the
‘sequence of partial sums’ p1 ` r ` r2 ` ¨ ¨ ¨ ` rnqnPN converges because

1 ` r ` r2 ` ¨ ¨ ¨ ` rn “ p1 ´ rqp1 ` r ` r2 ` ¨ ¨ ¨ ` rnq
1 ´ r

“
1 ` r ` ¨ ¨ ¨ ` rn ´ pr ` r2 ` ¨ ¨ ¨ ` rn`1q

1 ´ r

“ 1 ´ rn`1

1 ´ r
“ 1 ´ r ¨ rn

1 ´ r
,

and so lim
nÑ8

p1 ` r ` r2 ` ¨ ¨ ¨ ` rnq “ lim
nÑ8

1 ´ r ¨ rn

1 ´ r
“ 1 ´ r ¨ 0

1 ´ r
“ 1

1 ´ r
. !
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Exercise 2.22 (Decimal expansions). By a decimal expansion

N.d1d2d3 ¨ ¨ ¨
where N P N, and dn P t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u, we mean the real number

L :“ N ` lim
nÑ

´d1
10

`
d2
102

`
d3
103

` ¨ ¨ ¨ `
dn
10n

¯
.

(1) Show that pd1

10 ` d2

102 ` d3

103 ` ¨ ¨ ¨ ` dn

10n qnPN is convergent for any sequence pdnqnPN.

(2) Prove that 0.999 ¨ ¨ ¨ “ 1.000 ¨ ¨ ¨ .
(3) Suppose the decimal expansion is nonterminating and repeating, that is, of the form

r “ N.d1 ¨ ¨ ¨ dn dn`1 ¨ ¨ ¨dn`m dn`1 ¨ ¨ ¨ dn`m dn`1 ¨ ¨ ¨ dn`m ¨ ¨ ¨

where a block of digits dn`1 ¨ ¨ ¨dn`m keeps repeating. Show that r P Q.

(Conversely, every nonnegative rational number has either a terminating or a repeating
decimal expansion; see the Appendix to this chapter.)

(4) Is 0.123456878910111213 ¨ ¨ ¨ a rational number?

Example 2.12. lim
nÑ8

a1{n “ 1 for a ą 1.

For concreteness, let us take a “ 2, but the proof is the same, mutatis mutandis4,
for any a ą 1. As 2 ą 1, we have 21{n ą 1 for all n P N. So we can write
21{n “ 1 ` h, where h :“ 21{n ´ 1 ą 0. Thus

2 “ p1 ` hqn “ 1 ` nh `
ˆ
n

2

˙
h2 ` ¨ ¨ ¨ ` hn

loooooooooomoooooooooon
ě0

ě 1 ` nh,

(where the inequality above can also be shown as the justification of (˚) in (2.6)),
and so 1 ě nh. This gives

1

n
ě h “ 21{n ´ 1 ą 0 for all n P N.

By the Sandwich Theorem, lim
nÑ8

p21{n ´ 1q “ 0, that is, lim
nÑ8

21{n “ 1. !

Exercise 2.23. Show that for all a ą 0, lim
nÑ8

a1{n “ 1.

Example 2.13. For any a, b P R, lim
nÑ8

p|a|n ` |b|nq
1

n “ maxt|a|, |b|u.

Let M :“ maxt|a|, |b|u. Then |a| ď M gives |a|n ď Mn, and similarly |b|n ď Mn.
Thus |a|n ` |b|n ď 2Mn, and so p|a|n ` |b|nq1{n ď 21{nM. Also, |a|n ` |b|n ě Mn

gives p|a|n ` |b|nq1{n ěM . So we have

M ď p|a|n ` |b|nq1{n ď 21{nM for all n P N.

Since lim
nÑ8

21{n “ 1, we have

lim
nÑ8

M “ M “ lim
nÑ8

p21{nMq.

4Latin phrase meaning “changing only those things which need to be changed”
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It follows from the Sandwich Theorem that lim
nÑ8

p|a|n`|b|nq1{n “ M “ maxt|a|, |b|u.
In particular, with a “ 27 and b “ 2014, we have that

lim
nÑ8

p27n ` 2014nq
1

n “ 2014.

The first few terms of the sequence are given (upon rounding to three decimal
places) by 2041, 2014.181, 2014.002, 2014.000, ¨ ¨ ¨ . !

Exercise 2.24. Prove that the sequence
´ n!

nn

¯

nPN
is convergent and that lim

nÑ8

n!

nn
“ 0.

Hint: Observe that 0 ď
n!

nn
“

1

n
¨
2

n
¨ ¨ ¨ ¨ ¨

n

n
ď

1

n
¨ 1 ¨ ¨ ¨ ¨ ¨ 1 ď

1

n
.

Exercise 2.25. Prove that for all k P N, lim
nÑ8

1k ` 2k ` 3k ` ¨ ¨ ¨ ` nk

nk`2
“ 0.

Exercise 2.26 ( lim
nÑ8

n
1

n “ 1).

(1) Using induction, prove that if x ě ´1 and n P N, then p1 ` xqn ě 1 ` nx.

(2) Show that for all n P N, 1 ď n
1

n ă p1`
?
nq 2

n ď p1` 1?
n

q2.
Hint: Take x “ 1?

n
in the inequality above.

(3) Prove that pn 1

n qnPN is convergent and find its limit.

Exercise 2.27. Suppose panqnPN is contained in the interval pa, bq (i.e., @n P N, aăanăb).
If panqnPN is convergent with limit L, then show that L P ra, bs. Hint: Exercise 2.4.
Give an example to show that L need not belong to pa, bq.

Exercise 2.28. Let panqnPN be a convergent sequence, and let pbnqnPN satisfy |bn´an| ă 1
n

for all n P N. Show that pbnqnPN is also convergent. What is its limit?
Hint: Observe that ´ 1

n
` an ă bn ă an ` 1

n
for all n P N.

Exercise 2.29. (˚) See Exercises 2.11 and 2.18. Prove that a bounded sequence panqnPN
is convergent if and only if

lim inf
nÑ8

an “ lim sup
nÑ8

an.

Moreover, then lim
nÑ8

an “ lim inf
nÑ8

an “ lim sup
nÑ8

an.

2.5. Subsequences

In this section we prove an important result in Analysis, called the Bolzano-
Weierstrass Theorem, which says that

Every bounded sequence has a convergent subsequence.

We begin this section by defining what we mean by a ‘subsequence’ of a sequence.

Definition 2.5 (Subsequence of a sequence).

Let panqnPN be a sequence and let n1 ă n2 ă n3 ă ¨ ¨ ¨ be a strictly increasing
sequence of natural numbers. Then pank

qkPN is called a subsequence of panqnPN.
Thus the terms of the subsequence are an1

, an2
, an3

, ¨ ¨ ¨ .
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Example 2.14. For example, the sequence pan2qnPN “ p 1
n2 qnPN

1,
1

4
,
1

9
,
1

16
,
1

25
, ¨ ¨ ¨

is a subsequence of the sequence panqnPN “ p 1
nqnPN. However, the sequence

1

9
,
1

4
,
1

16
,
1

25
, ¨ ¨ ¨

is not a subsequence of p 1
n2 qnPN, since terms of subsequence are not in the same

order as the original sequence:

a3 “
1

9
, a2 “

1

4
,

and 3 ą 2. But
1

9
,
1

4
,
1

16
,
1

25
, ¨ ¨ ¨

is a subsequence of

1,
1

4
,
1

9
,
1

4
,
1

25
, ¨ ¨ ¨ .

The sequences

pp´1q2nqnPN (that is, the constant sequence 1, 1, 1, ¨ ¨ ¨ ) and
pp´1q2n´1qnPN (that is the constant sequence ´ 1,´1,´1, ¨ ¨ ¨ )

are both subsequences of pp´1qnqnPN. Here are some more examples:

n1 ă n2 ă n3 ă ¨ ¨ ¨ Subsequence of panqnPN Subsequence of p 1
n

qnPN

1 ă 2 ă 3 ă ¨ ¨ ¨ panqnPN a1, a2, a3, ¨ ¨ ¨ 1, 1
2
, 1
3
, ¨ ¨ ¨

2 ă 3 ă 4 ă ¨ ¨ ¨ pan`1qnPN a2, a3, a4, ¨ ¨ ¨ 1
2
, 1
3
, 1
4
, ¨ ¨ ¨

2 ă 4 ă 6 ă 8 ă ¨ ¨ ¨ pa2nqnPN a2, a4, a6, a8, ¨ ¨ ¨ 1
2 ,

1
4 ,

1
6 ,

1
8 , ¨ ¨ ¨

2 ă 4 ă 8 ă 16 ă ¨ ¨ ¨ pa2nqnPN a2, a4, a8, a16, ¨ ¨ ¨ 1
2 ,

1
4 ,

1
8 ,

1
16 , ¨ ¨ ¨

1 ă 4 ă 27 ă 64 ă ¨ ¨ ¨ pannqnPN a1, a4, a27, a64, ¨ ¨ ¨ 1, 1
4
, 1
27
, 1
64
, ¨ ¨ ¨

2 ă 3 ă 5 ă 7 ă ¨ ¨ ¨ papn
qnPN a2, a3, a5, a7, ¨ ¨ ¨ 1

2
, 1
3
, 1
5
, 1
7
, ¨ ¨ ¨

(pn denotes the nth prime)

1 ă 2 ă 6 ă 24 ă ¨ ¨ ¨ pan!qnPN a1, a2, a6, a24, ¨ ¨ ¨ 1, 12 ,
1
6 ,

1
24 , ¨ ¨ ¨

!

Exercise 2.30. Is
´ 1

n4

¯
a subsequence of

´ 1

n2

¯

nPN
? Is

´ 1

n3

¯
a subsequence of

´ 1

n2

¯

nPN
?
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Exercise 2.31. (˚) Beginning with 2 and 7, the sequence 2, 7, 1, 4, 7, 4, 2, 8, 2, 8, . . . is
constructed by multiplying successive pairs of its terms and adjoining the result as the
next one or two members of the sequence depending on whether the product is a one- or
two-digit number. Thus we start with 2 and 7, giving the product 14, and so the next two
terms are 1, 4. Proceeding in this manner, we get subsequent terms as follows:

2, 7
2, 7, 1, 4
2, 7, 1, 4
2, 7, 1, 4, 7
2, 7, 1, 4, 7
2, 7, 1, 4, 7, 4
2, 7, 1, 4, 7, 4
2, 7, 1, 4, 7, 4, 2, 8
2, 7, 1, 4, 7, 4, 2, 8
2, 7, 1, 4, 7, 4, 2, 8, 2, 8
¨ ¨ ¨

Prove that this sequence has the constant subsequence 6, 6, 6, . . . .

Hint: Show that 6 appears an infinite number of times as follows. Since the terms 2, 8, 2, 8
are adjacent, they give rise to the adjacent terms 1, 6, 1, 6 at some point, which in turn
give rise to the adjacent terms 6, 6, 6 eventually, and so on. Proceeding in this way, find
out if you get a loop containing the term 6.

If pnkqkPN is a strictly increasing sequence in N, then nk ě k. (This follows by
induction on k: n1 ě 1, and if nk ě k, then nk`1 ą nk ě k gives nk`1 ě k ` 1.)

Theorem 2.6.

Any subsequence of a convergent sequence is convergent with the same limit.

Proof. Let pank
qkPN be a subsequence of a convergent sequence panqnPN with limit

L. Given ε ą 0, let N P N be such that for all n ą N , |an ´ L| ă ε. Since the
sequence n1 ă n2 ă n3 ă . . . of natural numbers is increasing, it follows that
nN ě N . Then for all k ą N , nk ą nN ě N . Hence for k ą N , |ank

´ L| ă ε, and
so pank

qkPN is convergent with limit L. !

Example 2.15. From Example 2.14 and the fact that lim
nÑ8

1

n
“ 0, it follows that

lim
nÑ8

1

n ` 1
“ lim

nÑ8

1

2n
“ lim

nÑ8

1

n2
“ lim

nÑ8

1

2n
“ lim

nÑ8

1

nn
“ lim

nÑ8

1

pn
“ lim

nÑ8

1

n!
“ 0.

In the above pn denotes the nth prime number. !

Example 2.16. Let us give a proof of the fact that pp´1qnqnPN is divergent based
on Theorem 2.6. Suppose on the contrary, that pp´1qnqnPN is convergent with limit
L. Then the terms with odd indices give the subsequence ´1,´1,´1, ¨ ¨ ¨ , which
is convergent with limit ´1, and so (by uniqueness of limits!) L “ ´1. On the
other hand, the terms with even indices give the subsequence 1, 1, 1, ¨ ¨ ¨ , which is
convergent with limit 1, and so L “ 1. So we have arrived at the contradiction
that ´1 “ L “ 1. Hence pp´1qnqnPN is divergent. !
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Example 2.17 (‘The harmonic series diverges.’). Consider psnqnPN, where

sn :“ 1 `
1

2
`

1

3
` ¨ ¨ ¨ `

1

n
, n P N.

Suppose that psnqnPN is convergent with limit L. Then its subsequence ps2nqnPN
would also be convergent with limit L, and so by the Algebra of Limits, the sequence
ps2n ´ snqnPN must converge to L ´ L “ 0. But

s2n ´ sn “
!!!!!!!!!!
1 ` 1

2
` 1

3
` ¨ ¨ ¨ ` 1

n
` 1

n ` 1
` ¨ ¨ ¨ ` 1

2n
´

´

!!!!!!!!!!
1 ` 1

2
` 1

3
` ¨ ¨ ¨ ` 1

n

¯

“ 1

n ` 1
` ¨ ¨ ¨ ` 1

2n
ą 1

2n
` ¨ ¨ ¨ ` 1

2nlooooooomooooooon
n times

“ n ¨ 1

2n
“ 1

2
.

Hence |ps2n ´ snq ´ 0| “ s2n ´ sn ą
1

2
, showing that it is not the case that

lim
nÑ8

ps2n ´ snq “ 0,

a contradiction. So
´
1` 1

2
` 1

3
`¨ ¨ ¨` 1

n

¯

nPN
diverges. !

Exercise 2.32. Recall the convergent sequence panqnPN from Exercise 2.10 on page 47:

a1 “ 1 and an “
2n ` 1

3n
an´1 for n ě 2.

What is its limit?

Exercise 2.33. Determine if the following statements are true or false.

(1) Every subsequence of a convergent real sequence is convergent.

(2) Every subsequence of a divergent real sequence is divergent.

(3) Every subsequence of a bounded real sequence is bounded.

(4) Every subsequence of an unbounded real sequence is unbounded.

(5) Every subsequence of a monotone real sequence is monotone.

(6) Every subsequence of a nonmonotone real sequence is nonmonotone.

(7) If every subsequence of a real sequence converges, the sequence itself converges.

(8) If pa2nqnPN and pa2n`1qnPN both converge, then panqnPN converges.

(9) If pa2nqnPN and pa2n`1qnPN both converge to the same limit, then panqnPN converges.

Exercise 2.34. (˚) Show that if panqnPN is a sequence that does not converge to L, then
there exists an ε ą 0 and there exists a subsequence pank

qkPN of panqnPN such that for all
k P N, |ank

´ L| ě ε.

Exercise 2.35. Let panqnPN be given by a1 “
?
2 and an`1 “

?
2`an for all n P N.

(The first few terms are
?
2,

a
2`

?
2,

a
2`

a
2`

?
2, ¨ ¨ ¨ .)

(a) Show that for all n P N, an ď 2. Hint: Use induction on n.

(b) Show that panqnPN is increasing. Hint: Consider a2n`1 ´ a2n.

(c) Is panqnPN convergent? If so, find its limit.
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Theorem 2.7. Every sequence has a monotone subsequence.

Before giving the formal proof, we give an illustration of the idea behind this proof5.
If panqnPN is the given sequence, then imagine that there is an infinite chain of hotels
along a line, where the nth hotel has height an, and at the horizon, there is a sea.
A hotel is said to have the seaview property if it is higher than all hotels following
it (so that from the roof of the hotel, one can view the sea). Now there are only
two possibilities, as illustrated below.

1˝ Infinitely many hotels
have the seaview property

2˝ Finitely many hotels
have the seaview property

Last hotel
with the
seaview
property
is here ¨ ¨ ¨¨ ¨ ¨

1˝ There are infinitely many hotels 2˝ There are finitely many hotels
with the seaview property. with the seaview property.
Then by taking successively Then after the last hotel
the heights of the hotels with the seaview property,
the seaview property one can start with any hotel
we get a decreasing subsequence. and then always find one

that is at least as high,
which is taken as the next hotel,
and then finding yet another
that is at least as high as
that one, and so on.
The heights of these hotels
form an increasing subsequence.

Proof. Let panqnPN be a sequence, and let

S “ tm P N : for all n ą m, an ă amu.

(This is the collection of indices of hotels with the seaview property.)

Then we have the following two cases.

1˝ S is infinite.
Arrange the elements of S in increasing order: n1ă n2ă n3ă ¨ ¨ ¨ .
Then pank

qkPN is a decreasing subsequence of panqnPN.

5This illustrative analogy stems from [B]. The proof seems to go back to [?]. See also [?].
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2˝ S is finite.
We will define inductively an increasing subsequence pank

qkPN of panqnPN.
If S empty, then define n1 “ 1, and otherwise let n1 “ maxS ` 1.
Suppose that for some k P N, n1 ă ¨ ¨ ¨ ă nk have been constructed such that
an1

ď ¨ ¨ ¨ ď ank
. Define nk`1 “ mintm P N :m ą nk and am ě ank

u.
(Thus nk`1 is the first hotel blocking the view from the top of the nth

k hotel.)
The minimum exists as S1 :“ tm P N : m ą nk and am ě ank

u is a nonempty
subset of N. (Indeed, otherwise if S1 “H, then for all m ą nk, we have an ă ank

,
so that nk P S. But this is impossible if S was empty, and also impossible if S
was not empty, since we know nk ě n1 ą maxS.) By the definition of S1, we
have ank`1

ě ank
. Then pank

qkPN is an increasing subsequence of panqnPN.

Thus every sequence panqnPN has a monotone subsequence. !

An important consequence of the above theorem is the following result.

Theorem 2.8 (Bolzano-Weierstrass Theorem).
Every bounded sequence has a convergent subsequence.

Proof. Let panqnPN be a bounded sequence. Then there exists an M ą 0 such
that for all n P N, |an| ď M . From Theorem 2.7 above, it follows that the se-
quence panqnPN has a monotone subsequence, say pank

qkPN. Then clearly for all
k P N, |ank

| ď M and so the sequence pank
qkPN is also bounded. Since pank

qkPN is
monotone and bounded, it follows from Theorem 2.3 that it is convergent. !

Example 2.18 (‘Compactness’ of [a, b]).
Consider any sequence panqnPN in ra, bs, i.e., for all n P N, an P ra, bs, or equivalently,
a ď an ď b. Then panqnPN is bounded, and so it has a convergent subsequence, say
pank

qkPN. Then for all k P N, a ď ank
ď b. By Exercise 2.18, a ď lim

kÑ8
ank

ď b. So:

Every sequence in ra, bs has a convergent subsequence,
and the limit of this subsequence belongs to ra, bs. !

Example 2.19. Let panqnPN be the sequence of fractional parts of integral multiples
of

?
2, i.e., an :“ tn

?
2u :“ n

?
2 ´ tn

?
2u, for n P N. The first few terms are:

?
2 “ 1.414213 ¨ ¨ ¨ a1 “ 0.414213 ¨ ¨ ¨

2
?
2 “ 2.828427 ¨ ¨ ¨ a2 “ 0.828427 ¨ ¨ ¨

3
?
2 “ 4.242640 ¨ ¨ ¨ a3 “ 0.242640 ¨ ¨ ¨

4
?
2 “ 5.656854 ¨ ¨ ¨ a4 “ 0.656854 ¨ ¨ ¨

5
?
2 “ 7.071067 ¨ ¨ ¨ a5 “ 0.071067 ¨ ¨ ¨ .

The sequence panqnPN is bounded: Indeed, 0ďană1. By the Bolzano-Weierstrass
Theorem it has a convergent subsequence6. !

6In fact, it can be shown that these fractional parts an are dense in p0, 1q. Thus given any number
L P p0, 1q, there exists a subsequence of the sequence panqnPN above that converges to L. See [N].
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Example 2.20 (‘Nested interval property of R’). We will show the following:

Let Im :“ tx P R : am ď x ď bmu, m P N, be such that

I1 Ą I2 Ą I3 Ą ¨ ¨ ¨ .

Then
Ş

mPN
Im ‰ H.

For n P N, an P In Ă I1, and so a1 ď an ď b1. Thus panqnPN is bounded, and by the
Bolzano-Weierstrass Theorem, possesses a convergent subsequence, say pank

qkPN.
Let a denote the limit of pank

qkPN.

Claim A. For all m P N, am ď a.

Suppose there exists an m P N such that am ą a, that is, ε :“ am ´ a ą 0. As
pank

qkPN is convergent with limit a, there exists a K P N such that for all k ą K,
|ank

´ a| ă ε “ am ´ a. Then for k ą K,

ank
´ a ď |ank

´ a| ă am ´ a,

and so

ank
ă am. p‹q

Fot k ą m, nk ě k ą m, and so Ink
Ă Im. Thus for k ą m,

ank
ě am. p‹‹q

Now if k ą maxtm,Ku, then both (‹) and (‹‹) hold, which is impossible. This
proves Claim A.

Claim B. For all m P N, a ď bm.

For k ě m, nk ě k ě m, and so ank
P Ink

Ă Im. Thus for all k ě m, ank
ď bm.

Passing to the limit as k Ñ 8, we obtain a ď bm, proving Claim B.

From Claims A and B, for all m P N, am ď a ď bm, that is, a P Im. Consequently,

a P
Ş

mPN
Im,

and so
Ş

mPN
Im ‰ H. !

Exercise 2.36. Does the sequence psinnqnPN have a convergent subsequence? What about
the sequence pnqnPN?

Exercise 2.37. (˚) Consider the bounded divergent sequence pp´1qnqnPN. Note that
there exist two subsequences (´1,´1,´1, . . . and 1, 1, 1, . . . ) which have distinct limits
(´1 ‰ 1). In this exercise we show that this is a general phenomenon. Show that if panqnPN
is bounded and divergent, then it has two subsequences which converge to distinct limits.
Hint: Use the Bolzano-Weierstrass theorem twice, and also Exercise 2.34.
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Appendix (˚)

Let us show that every nonnegative rational number has either a terminating or
a repeating decimal expansion, as was mentioned in Exercise 2.22. This section is
not examinable, and may be skipped.

Let

x “
p

q

where p is a nonnegative integer and q P N. We can factorize q “ 2i5jq1, where i, j
are nonnegative integers, and 2, 5 do not divide q1 P N. Choose a natural number
n ą i, j. Then 10n{p2i5jq is a natural number, and so

10nx “ 10n
p

q
“

p1

q1 ,

where p1 “ 2n´i5n´ip is a nonnegative integer, and q1 is coprime to 10. But if we
look at the remainders we get when we divide 10, 102, 103, ¨ ¨ ¨ by q1, then for some
integers K ą k ě 1, 10K , 10k leave the same remainder when divided by q1. So

10K ´ 10k “ 10kp10K´k ´ 1q

is divisible by q1. But q1 is coprime to 10, and hence also to 10k. Thus q1 must
divide 10K´k ´ 1. So we have with m :“ K ´ k that

10np10m ´ 1qx “ p10K´k ´ 1q
p1

q1

is an integer. Now let x “ N.d1d2d3 ¨ ¨ ¨ . Then7

10n`mx´10nx “ Nd1 ¨ ¨ ¨ dn`m ´ Nd1 ¨ ¨ ¨ dn

`
´dn`m`1

10
`
dn`m`2

102
`
dn`m`3

103
`¨ ¨ ΅

dn`1

10
´
dn`2

102
´
dn`3

103
´¨ ¨ ¨

¯
,

is an integer. This implies that the part in the brackets above, henceforth denoted
by ∆, is also an integer:

∆ “
dn`m`1 ´ dn`1

10
`

dn`m`2 ´ dn`2

102
`

dn`m`3 ´ dn`3

103
` ¨ ¨ ¨ P Z.

We claim that this gives dn`m`k “ dn`k for all k P N, giving the desired conclusion.

7Here by Nd1 ¨ ¨ ¨ dn we mean the number which in decimal notation has the digits of N followed by
the digits d1, ¨ ¨ ¨ , dn. The number Nd1 ¨ ¨ ¨ dn`m has a similar connotation.
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1˝ It cannot be the case that the sequence pdn`m`k ´ dkqnPN is eventually the
constant sequence 9, 9, 9, ¨ ¨ ¨ . Indeed, then there exists some K such that
dn`m`k ´ dn`k “ 9 for all k ą K. This means that dn`m`k “ 9 and dn`k “ 0
for all k ą K, which is impossible.

2˝ Similar to 1˝, it can’t be the case that the sequence pdn`m`k´dkqnPN is eventually
the constant sequence ´9,´9,´9, ¨ ¨ ¨ either.

3˝ Suppose that k˚ P N is the smallest number such that dn`m`k˚ ‰ dn`k˚ .

If dn`m`k˚ ą dn`k˚ , then by 2˝, there exists a number K P N such that
dn`m`k˚`K ´ dn`k˚`K ‰ ´9, and so

∆ ě 1

10k˚
´ 9

10k˚`1
´ ¨ ¨ ¨ ´ 9

10k˚`K´1
´ 8

10k˚`K
´ 9

10k˚`K`1
¨ ¨ ¨“ 1

10k˚`K
.

We also have in light of case 1˝ that

1 ě 1

10k˚´1
“ 9

10k˚
` 9

10k˚`1
` 9

10k˚`2
` ¨ ¨ ¨ ą ∆,

a contradiction to the fact that ∆ is an integer.

Now we consider the other possibility, namely, dn`m`k˚ ă dn`k˚ , then by 1˝,
there exists a K such that dn`m`k˚`K ´ dn`k˚`K ‰ 9, and so

∆ď ´1

10k˚
` 9

10k˚`1
`¨ ¨ ¨` 9

10k˚`K´1
` 8

10k˚`K
` 9

10k˚`K`1
¨ ¨ ¨“´ 1

10k˚`K
.

We also have in light of case 2˝ that

´1 ď ´ 1

10k˚´1
“ ´ 9

10k˚
´ 9

10k˚`1
´ 9

10k˚`2
` ¨ ¨ ¨ ă ∆.

Hence, again, we have a contradiction to the fact that ∆ is an integer.

Consequently dn`m`k “ dn`k for all k P N, which means that the block of digits
dn`1 ¨ ¨ ¨ dn`m keeps repeating.



Chapter 3

Continuity

Let I be an interval in R. So I is a set of the form pa, bq or ra, bs or p´8, bq, etc.
Among all possible functions f : I Ñ R, there is a ‘nice’ class of functions, namely
ones which are continuous on I.

What’s so nice about continuous functions? Continuous functions have prop-
erties that make them easy to work with in Analysis. For example, we will see that
continuous functions possess two important properties, given by

‚ the Intermediate Value Theorem, and

‚ the Extreme Value Theorem.

We will learn the statements and proofs of these in the course of this chapter.
Functions which aren’t continuous may fail to possess these properties.

Many bizarre functions make appearances in Analysis, and in order to avoid
falling into pitfalls with simplistic thinking, we need definitions and assumptions
of theorems to be stated carefully and clearly.

3.1. Definition of continuity

In everyday speech, a ‘continuous’ process is one that proceeds without gaps of
interruptions or sudden changes.

What does it mean for a function f : R Ñ R to be continuous? Roughly, f
is said to be continuous on I if f has ‘no breaks’ at any point of I. If a break
does occur in f , then this break will occur at some point of I. So we realize that
in order to define continuity, we need to define what is meant by the notion of ‘f
being continuous at a point c P I’.

So (based on this visual view of continuity), we first give the formal definition
of the continuity of a function at a point. Next, if a function is continuous at each
point, then it is called continuous. If a function has a break at a point c, then even
if points x are close to c, the points fpxq do not get close to fpcq. See Figure 1.

65
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c

fpcq

Figure 1. A function with a break at c. If x lies to the left of c, then fpxq is
not close to fpcq, no matter how close x comes to c.

So ‘no break in f at c’ should mean that fpxq stays close to fpcq whenever x is
close to c. This motivates the following definition of continuity, which guarantees
that if a function is continuous at a point c, then we can make fpxq as close as we
like to fpcq, by choosing x sufficiently close to c. See Figure 2.

fpcq`ε

fpcq

fpcq`ε

fpxq

c´δ c c`δx

Figure 2. The definition of continuity of a function at point c. If the function
is continuous at c, then given any ε ą 0 (which determines a strip around the
line y “ fpcq of width 2ε), there exists a δ ą 0 (which determines an interval
pc ´ δ, c ` δq of width 2δ around the point c) such that whenever x lies in this
interval (so that x satisfies c ´ δ ă x ă c ` δ, that is, |x ´ c| ă δ), then fpxq
satisfies fpcq ´ ε ă fpxq ă fpcq ` ε, that is, |fpxq ´ fpcq| ă ε.

Definition 3.1 (Continuity at a point; Continuous function).
Let I be an interval in R, c P I and f : I Ñ R.

The function f is continuous at c if for every ε ą 0, there exists a δ ą 0 such that
for all x P I satisfying |x ´ c| ă δ, |fpxq ´ fpcq| ă ε.

The function f is continuous (on I) if for every x P I, f is continuous at x.
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Remark 3.1.

(1) Continuity is a ‘local’ concept. That is, we can decide the continuity of
f on an interval by looking at each point of the domain f and checking if f
is continuous at that point, and moreover, what matters for continuity of f at
a point, roughly speaking, is what the function is doing ‘locally’ in arbitrarily
small neighbourhoods of the point, that is, ‘near the point’, and what happens
away from the point is irrelevant.

(2) History of the notion of continuity. In the early development of Analysis,
there was no rigorous definition of continuity offered. Only in the 18th century
mathematicians started examining this notion, in connection with Fourier’s
work on the theory of heat, where discontinuous functions arose naturally in
various kinds of physical problems. A satisfactory mathematical definition of
continuity was first formulated by Cauchy in 1821. ˚

Example 3.1 (The constant function).
Let f : R Ñ R be given by fpxq “ 1 for all x P R. Then f is continuous.

Let c P R “ p´8,8q. Let ε ą 0. For x P R, |fpxq ´ fpcq| “ |1´ 1| “ 0 ă ε. So any
δ ą 0 will do! For example, set δ“1. Then if x P R and |x ´ c| ă δ “ 1, we have:

|fpxq ´ fpcq| “ |1 ´ 1| “ |0| “ 0 ă ε.

So f is continuous at c. Since the choice of c P R was arbitrary, it follows that f is
continuous on R. See the picture on the left below. !

1

0

0

f “x

Example 3.2 (The identity function).
f : R Ñ R given by fpxq “ x for all x P R is continuous.

Let c P R. Let ε ą 0.

(Rough work: |fpxq ´ fpcq| “ |x ´ c| ă δ ď ε, if for example δ :“ ε.)

Let δ “ ε. Then if x P R and |x ´ c| ă δ, we have:

|fpxq ´ fpcq| “ |x ´ c| ă δ “ ε.

So f is continuous at c. Since the choice of c P R was arbitrary, it follows that f is
continuous on R. See the picture on the right above. !
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Example 3.3 (The Heaviside1 function).
Let Y : R Ñ R be given by

Y pxq “
"
1 if x ą 0,
0 if x ď 0.

From the graph of Y displayed below, we see clearly that there is a ‘break’ or
‘jump’ at x “ 0, and so we guess that Y is not continuous at 0. Let us show this
using the definition of continuity at a point.

1

0

Y

Suppose that Y is continuous at 0. Let ε “ 1
2 ą 0. Suppose that there exists a

δ ą 0 such that whenever |x ´ 0| ă δ, we have |Y pxq ´ Y p0q| “ |Y pxq ´ 0| ă ε “ 1
2 .

Take x “ δ
2 . Then |x ´ 0| “ | δ2 ´ 0| “ δ

2 ă δ, and so we must have

|Y pxq ´ Y p0q| “
ˇ̌
ˇY

´
δ

2

¯
´ 0

ˇ̌
ˇ “ |1 ´ 0| “ 1 ă ε “ 1

2
,

a contradiction. So Y is not continuous at 0. !

Example 3.4 (The reciprocal function).
Let h : p0,8q Ñ R be the function given by hpxq “ 1

x for all x P p0,8q. Then h is
continuous (on p0,8q). See Figure 3.

Figure 3. x ÞÑ 1

x
: p0,8q Ñ R is continuous on p0,8q.

1Named after the mathematical physicist Oliver Heaviside (1850-1925).
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Let c P p0,8q. Let ε ą 0.

(Rough work: We want δą0 such that for |x ´ c|ăδ, |hpxq´hpcq|ăε. We have

|hpxq ´ hpcq| “
ˇ̌
ˇ
1

x
´ 1

c

ˇ̌
ˇ “ |x ´ c|

|x||c|
.

We know that if x is close to c, then the numerator |x´ c| can be made small. But
what about the denominator |x||c|. Well, |c| ą 0 is just a constant, and so it is
harmless really. What about |x|? If it gets small, then it has the effect of making
|hpxq ´ hpcq| big, something which we want to avoid. But we note that when x is
close to c, |x| will be close to |c|, and so |x| can be bounded below by some positive
constant. Indeed, by the triangle inequality,

|c| ´ |x| ď ||c| ´ |x|| ď |c ´ x| “ |x ´ c|,

and so if we choose the δ ď |c|{2, then for x satisfying |x ´ c| ă δ we will obtain
from the above that |x| ě |c| ´ |c ´ x| ě |c| ´ δ ě |c| ´ |c|{2 “ |c|{2. So for such x,

|hpxq ´ hpcq| “ |x ´ c|
|x||c|

ă δ

p|c|{2q ¨ |c|
,

and the last quantity can be made smaller than ε by further ensuring that the δ

also satisfies that δ ă ε |c|2
2 . Hence δ :“ mint |c|

2 , ε
|c|2
2 u should do the job! We remark

that this is just one choice among many other equally good δs which will also work.
End of Rough Work.)

Set δ “ min
! c

2
,
εc2

2

)
(ą 0). Then if x P p0,8q and |x ´ c| ă δ, we have

|c| ´ |x| ď |x ´ c| ă δ ď
|c|
2

and so
|c|
2
ă |x|, that is, 1

|x|
ă 2

|c|
. Thus if x P p0,8q and |x ´ c| ă δ, then

ˇ̌
ˇ
1

x
´ 1

c

ˇ̌
ˇ “ |c ´ x|

|x| |c|
“ |x ´ c|

|x| |c|
ă δ ¨ 2

|c|
¨ 1

|c|
“ 2δ

c2
ď ε.

So f is continuous at c. As c P p0,8q was arbitrary, f is continuous on p0,8q. !

Exercise 3.1. Let the function f : R Ñ R be given by fpxq “ x2.

(1) Prove that f is continuous at 0.

(2)(˚) Suppose that c is a nonzero real number. Prove that f is continuous at c.

In Exercise 3.7, we will give a slick proof of the fact that f is continuous on R.

Exercise 3.2. Let f : R Ñ R satisfy fpx ` yq “ fpxq ` fpyq for all x, y P R.

(1) Suppose that f is continuous at some real number c. Prove that f is continuous on R.
Hint: Since f is continuous at c, given ε ą 0, Dδ ą 0 such that for all x P R satisfying
|x ´ c| ă δ, |fpxq ´ fpcq| ă ε. Show that given any other point c1 P R, the function f
is continuous at c1 by showing that the same δ works (for this ε).

(2) Give an example of such a continuous, additive function.
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Exercise 3.3. Suppose that f : R Ñ R and there exists an M ą 0 such that for all x P R,
|fpxq| ďM |x|. Prove that f is continuous at 0. Hint: Find fp0q.

Exercise 3.4. Let f : R Ñ R be defined by

fpxq “
"
0 if x is rational,
1 if x is irrational.

Prove that for every c P R, f is not continuous at c.
Hint: Use the fact that there are irrational numbers arbitrarily close to any rational number
and rational numbers arbitrarily close to any irrational number.

Exercise 3.5. Let f : pa, bq Ñ R be a continuous function. Prove that if for some c P pa, bq,
fpcq ą 0, then there exists a δ ą 0 such that for all x P pc ´ δ, c ` δq, fpxq ą 0.

Exercise 3.6. Show that in the definition of continuity of a function at a point, we may
replace the symbol ă with ď, that is, the following statements are equivalent for f : I Ñ R,
and c belonging to the interval I:

(1) @ε ą 0, Dδ ą 0 such that whenever x P I satisfies |x ´ c| ă δ, |fpxq ´ fpcq| ă ε.

(2) @ε ą 0, Dδ ą 0 such that whenever x P I satisfies |x ´ c| ă δ, |fpxq ´ fpcq| ď ε.

(3) @ε ą 0, Dδ ą 0 such that whenever x P I satisfies |x ´ c| ď δ, |fpxq ´ fpcq| ď ε.

(4) @ε ą 0, Dδ ą 0 such that whenever x P I satisfies |x ´ c| ď δ, |fpxq ´ fpcq| ă ε.

3.2. Continuous functions preserve convergence

In Example 3.4, we had to work hard in order to prove the continuity of the recip-
rocal function. We will now learn about a result which will make life considerably
simpler. Roughly speaking, this results says that a function is continuous at a
point if and only if it preserves convergence of sequences with limit c.

Theorem 3.1. Let I be an interval in R, c P I and f : I Ñ R. Then

f is continuous at c

if and only if

for every convergent sequence pxnqnPN contained in I with limit c,
pfpxnqqnPN is convergent with limit fpcq. (3.1)

Proof.

Only if: Suppose that f is continuous at c P I.

Let pxnqnPN be a convergent sequence contained in I with limit c.

Since f is continuous at c P I, given ε ą 0, there exists a δ ą 0 such that for all
x P I satisfying |x ´ c| ă δ, |fpxq ´ fpcq| ă ε.

As pxnqnPN is convergent with limit c, there exists an N P N such that for all n ą N ,
|xn ´ c| ă δ.

Consequently, for n ą N , |fpxnq ´ fpcq| ă ε. So pfpxnqqnPN is convergent with
limit fpcq. This completes the proof of the ‘Only if’ part.
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If: Now suppose that (3.1) holds. Then we need to show that f is continuous at c
and we prove this by contradiction. Assume that f is not continuous at c, that is,

* r@ε ą 0 Dδ ą 0 such that @x P I such that |x ´ c| ă δ, |fpxq ´ fpcq| ă εs
that is, Dε ą 0 such that @δ ą 0 Dx P I such that |x ´ c| ă δ but |fpxq ´ fpcq| ě ε.
Hence if δ “ 1

n , then we can find an xn P I such that we have |xn ´ c| ă δ “ 1
n ,

but |fpxnq ´ fpcq| ě ε.

Claim 1: The sequence pxnqnPN is contained in I and is convergent with limit c.

We have for all n P N that |xn ´ c| ă 1{n, that is, c ´
1

n
ă xn ă c `

1

n
.

As lim
nÑ8

c ´ 1

n
“ c “ lim

nÑ8
c ` 1

n
, the Sandwich Theorem gives lim

nÑ8
xn “ c too.

Claim 2: The sequence pfpxnqqnPN does not converge to fpcq.
Indeed for all n P N, we have |fpxnq ´ fpcq| ě ε. Thus for instance ε

2 ą 0, but
it is not possible to find a large enough N P N such that for all n ą N , we
have |fpxnq ´ fpcq| ă ε

2 (for if this were possible, then we would arrive at the
contradiction ε ď |fpxnq ´ fpcq| ă ε

2).

Claims 1 and 2 show that (3.1) does not hold, a contradiction. Hence f is con-
tinuous at c. !

Let us revisit some of our examples from the previous section in light of this result.

Example 3.5 (The reciprocal function). Let us revisit the function h considered
in Example 3.4. Let c P p0,8q and pxnqnPN be any convergent sequence in p0,8q
with limit c. Then by the Algebra of Limits, phpxnqqnPN “ p1{xnqnPN is convergent
with limit 1{c “ hpcq. By Theorem 3.1, it follows that h is continuous at c. As the
choice of c P p0,8q was arbitrary, h is continuous on p0,8q. Done! !

Example 3.6 (The Heaviside function). Let us revisit the function Y considered
in Example 3.3. Consider the convergent sequence p1{nqnPN with limit 0. Then
pY p1{nqqnPN “ p1qnPN is convergent with limit 1 ‰ 0 “ Y p0q.
But if Y was continuous at 0, then by Theorem 3.1, pY p1{nqqnPN should have been
convergent with limit Y p0q “ 0. Thus Y is not continuous at 0. !

Exercise 3.7. Recall Exercise 3.1: f : R Ñ R is given by fpxq “ x2 for x P R. Using the
characterization of continuity provided in Theorem 3.1, prove that f is continuous on R.

Exercise 3.8. Let c P R, δ ą 0 and f : pc´ δ, cs Ñ R be continuous and strictly increasing
on pc ´ δ, cq. Show that f is strictly increasing on pc ´ δ, cs.
Exercise 3.9. Prove that if f : R Ñ R is continuous and fpxq “ 0 if x is rational, then
fpxq “ 0 for all x P R. Revisit Exercise 3.4.
Hint: Given c P R, there exists a sequence prnqnPN of rationals that converges to c.

Exercise 3.10. Let f : R Ñ R ‘preserve divergent sequences’, that is, for every divergent
sequence pxnqnPN, pfpxnqqnPN is divergent as well. Prove that f is one-to-one.
Hint: Let x1, x2 be distinct real numbers, and consider the sequence x1, x2, x1, x2, ¨ ¨ ¨ .
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Exercise 3.11. Let I be an interval, c P I, f : I Ñ R. Show the following are equivalent:

(1) f is continuous at c.

(2) For every pxnqnPN contained in I such that pxnqnPN converges to c, pfpxnqqnPN converges.

Exercise 3.12. Consider the function f : R Ñ R defined by

fpxq “
"

x if x is rational,
´x if x is irrational.

Prove that f is continuous only at 0.
Hint: For every rational, there is a sequence of irrational numbers that converges to it, and
for every irrational number, there is a sequence of rational numbers that converges to it.

Exercise 3.13. (˚) Let f : R Ñ R be a continuous function such that for all x, y P R,

fpx ` yq “ fpxq ` fpyq.
Show that there exists a real number a such that for all x P R, fpxq “ ax.
Hint: Show first that for natural numbers n, fpnq “ nfp1q. Extend this to integers n, and
then to rational numbers n{d. Finally use the density of Q in R to prove the claim.

Exercise 3.14. Determine if the following are always true for two continuous f, g : R Ñ R.

(1) If f
´ 1

2n ` 7

¯
“ g

´ n

n2 ` 1

¯
for all n P N, then fp0q “ gp0q.

(2) If fpnq “ gpn2q for all n, and lim
nÑ8

gpnq “ L, then lim
nÑ8

fpnq also exists, and equals L.

Using Theorem 3.1, we obtain the following useful result which says that the point-
wise sum, product, etc. of continuous functions is continuous. But before we state
this result, we introduce some convenient notation.

Let I be an interval in R. Given functions f : I Ñ R and g : I Ñ R, we define:

(1) If α P R, then we define the function αf : I Ñ R by

pαfqpxq “ αfpxq, x P I.

(2) We define the absolute value of f , |f | : I Ñ R by

|f |pxq “ |fpxq|, x P I.

(3) The sum of f and g, f ` g : I Ñ R is defined by

pf ` gqpxq “ fpxq ` gpxq, x P I.

(4) The product of f and g, fg : I Ñ R is defined by

pfgqpxq “ fpxqgpxq, x P I.

(5) If k P N, then we define the kth power of f , fk : I Ñ R by

fkpxq “ pfpxqqk, x P I.

(6) If for all x P I, gpxq ‰ 0, then we define
1

g
: I Ñ R by

´1

g

¯
pxq “

1

gpxq
, x P I.
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Theorem 3.2. Let I be an interval in R and let c P I. Suppose that f : I Ñ R
and g : I Ñ R are continuous at c. Then :

(1) For all α P R, αf is continuous at c.

(2) |f | is continuous at c.

(3) f ` g is continuous at c.

(4) fg is continuous at c.

(5) For all k P N, fk is continuous at c.

(6) If for all x P I, gpxq ‰ 0, then 1
g is continuous at c.

Proof. Suppose pxnqnPN is a convergent sequence contained in I, with limit c.
Since f and g are continuous at c, from Theorem 3.1, it follows that pfpxnqqnPN
and pgpxnqqnPN are convergent with limits fpcq and gpcq, respectively. Hence from
Theorem 2.4, it follows that:

(1) pα¨fpxnqqnPN is convergent with limit α ¨ fpcq, i.e., ppαfqpxnqqnPN is convergent
with limit pαfqpcq. So from Theorem 3.1, it follows that αf is continuous at c.

(2) p|fpxnq|qnPN is convergent with limit |fpcq|, that is, p|f |pxnqqnPN is convergent
with limit |f |pcq. So from Theorem 3.1, it follows that |f | is continuous at c.

(3) pfpxnq ` gpxnqqnPN is convergent with limit fpcq ` gpcq, i.e., ppf ` gqpxnqqnPN
is convergent with limit pf ` gqpcq. By Theorem 3.1, f ` g is continuous at c.

(4) pfpxnqgpxnqqnPN is convergent with limit fpcqgpcq, i.e., the sequence ppfgqpxnqqnPN
is convergent with limit pfgqpcq. By Theorem 3.1, fg is continuous at c.

(5) ppfpxnqqkqnPN is convergent with limit pfpcqqk, that is, pfkpxnqqnPN is convergent
with limit fkpcq. So from Theorem 3.1, it follows that fk is continuous at c.

(6) p 1
gpxnqqnPN is convergent with limit 1

gpcq (since for all x P I, gpxq ‰ 0, in particular

gpxnq ‰ 0 and gpcq ‰ 0), that is, pp1g qpxnqqnPN is convergent with limit p1g qpcq.
So from Theorem 3.1, it follows that 1

g is continuous at c. !

Example 3.7 (Polynomials are continuous). Since f : R Ñ R given by fpxq “ x
for x P R is continuous (see Example 3.2 on page 67), it follows that for all k P N,
xk is continuous. Thus given arbitrary scalars c0, c1, ¨ ¨ ¨ , cd in R, it follows that
the functions c0 ¨ 1, c1 ¨ x, ¨ ¨ ¨ , cd ¨ xd are continuous. Consequently the polynomial
function p : R Ñ R defined by ppxq “ c0 ` c1x` ¨ ¨ ¨ ` cdx

d, x P R, is continuous. !

Example 3.8 (The reciprocal function). Let us revisit the function h considered

in Example 3.4. As x
gÞÑ x : p0,8q Ñ R is continuous, and since gpxq “ x ‰ 0 for

all x P p0,8q, it follows that h “ 1
g : p0,8q Ñ R, given by hpxq “ 1

x for x ą 0, is
continuous too. !

Exercise 3.15. Show that the rational function f : R Ñ R, given by fpxq “ x2

1`x2 for
x P R, is continuous on R.
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The composition of continuous functions is continuous.

Let I, J be intervals in R, and f : I Ñ R, g : J Ñ R be functions such that

fpIq :“ tfpxq : x P Iu Ă J,

that is, the range of f is contained in the domain of g. Then the composition of g
with f , denoted by g ˝ f is the function g ˝ f : I Ñ R defined by

pg ˝ fqpxq “ gpfpxqq, x P I.

x

I

f
g

g ˝ f

J

fpxq

gpfpxqq

R R R

Theorem 3.3. Let I, J be intervals in R, and f : I Ñ R, g : J Ñ R be two
functions such that

‚ fpIq :“ tfpxq : x P Iu Ă J,

‚ f is continuous at c, and

‚ g is continuous at fpcq pP fpIq Ă Jq.
Then their composition g ˝ f : I Ñ R is continuous at c.

Proof. Let pxnqnPN be any sequence in I with limit c. As f is continuous at c,
pfpxnqqnPN converges to fpcq. But for all n P N, fpxnq P fpIq Ă J , and fpcq P
fpIq Ă J . As g is continuous at fpcq, pgpfpxnqqnPN converges to gpfpcqq, that is,
ppg ˝ fqpxnqqnPN converges to pg ˝ fqpcq. Hence g ˝ f is continuous at c. !

Example 3.9. We know the polynomial function x pÞÑ1`x2 : R Ñ R is continuous,
and the reciprocal function x hÞÑ1{x : p0,8q Ñ R is continuous. Also, the range of
p, ppRq “ t1 ` x2 : x P Ru Ă p0,8q “ domain of h. So their composition, namely

x
h˝pÞÑ

1

1 ` x2
: R Ñ R

is continuous too.

More generally, suppose q is a polynomial such that qpxq ą 0 for all x in an interval

I. Then for any polynomial p, the rational function r : I Ñ R given by rpxq “ ppxq
qpxq

for x P I, is continuous. !

Exercise 3.16. Define f : R Ñ R by fpxq“|x`1| ´ |x|, x P R. Find lim
nÑ8

pf ˝ fq
´ p´1qn

n

¯
.
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Exercise 3.17. Determine if the following are always true for f, g : R Ñ R and a P R.

(1) If g ˝f is continuous at a, then f is continuous at a and g is continuous at fpaq.
(2) If g ˝f is continuous at a, then f is continuous at a or g is continuous at fpaq.
(3) If g ˝f isn’t continuous at a, then f isn’t continuous at a and g isn’t continuous at fpaq.
(4) If g ˝f isn’t continuous at a, then f isn’t continuous at a or g isn’t continuous at fpaq.

Exercise 3.18. Show that f : R Ñ R given by fpxq “
"

x sin 1
x

if x ‰ 0
0 if x “ 0

*
is continuous.

Use Maple to plot the graph of f .

Exercise 3.19. Suppose I is an interval, and f, g : I Ñ R are continuous functions on I.
Define the function maxtf, gu : I Ñ R by pmaxtf, guqpxq “ maxtfpxq, gpxqu for all x P I.
Is maxtf, gu continuous on I? Hint: Exercise 1.23.

In the next two sections, we will learn two fundamental results concerning contin-
uous functions f : ra, bs Ñ R on a compact interval ra, bs, namely:

(1) The Intermediate Value Theorem, saying that f assumes all the values between
fpaq and fpbq. Geometrically, this means the following. Consider the graph
of f in the Cartesian plane. If we choose any number y lying between fpaq
and fpbq and draw a horizontal line through the point y on the y-axis, then
this horizontal line must meet the graph of f at some point. This is ‘clear’
since f , being continuous, should have a graph having ‘no breaks’.

fpaqfpaq

fpbqfpbq

a a bb

y y

Figure 4. The right picture shows that the continuity condition can’t be dropped.

(2) The Extreme Value Theorem, saying that f has a maximiser and a minimiser
on ra, bs (i.e., the function f assumes the extreme values of the range fpra, bsq).
Geometrically, this means that if we consider the graph of f , then there must
be a point in c P ra, bs, where the graph y coordinate is highest, and a point
d P ra, bs where the graph y coordinate is lowest.

c da b

Although these two properties might seem ‘obvious’ when interpreted geometrically,
they require proofs. We will see that the Least Upper Bound Property of R will be
used crucially in the proofs. We will begin with the Intermediate Value Property.
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3.3. Intermediate Value Theorem

Roughly speaking, the Intermediate Value Theorem says that a continuous function
on a compact interval cannot ‘hop over’ intermediate values. For instance, if the
height of a mountain is 1976 meters above sea level, then given any number between
0 and 1976, say 399, there must exist a point on the mountain that is exactly 399
meters above sea level. The picture shown in Figure 4 shows that the continuity
of the function is an essential requirement.

Theorem 3.4 (Intermediate Value Theorem). If f : ra, bs Ñ R is continuous and
y P R lies between fpaq and fpbq, pthat is, fpaq ď y ď fpbq or fpbq ď y ď fpaqq,
then there exists a c P ra, bs such that fpcq “ y.

Proof. Consider first the case fpaq ď y ď fpbq. Define Sy “ tx P ra, bs : fpxq ď yu.
(Pictorially, this set can be visualized like this: imagine again the horizontal line
through y, and look at the portion of the graph of f that lies below y. Sy is the
shadow on the x axis of this portion with a light source very high up above.)

a bSy

y

Sy is a subset of R, it is nonempty (as a P Sy) and Sy is bounded above (by b). By
the Least Upper Bound Property of R, c :“ supSy exists. As b is an upper bound
of Sy, and c is the least upper bound of Sy, clearly c ď b. As a P Sy, we also have
a ď c. Summarizing, c P ra, bs. We now claim that this c does the job.

Claim: fpcq “ y.

We will show that fpcq ď y as well as fpcq ě y, and this will prove the claim.

fpcq ď y: For every n P N, c ´ 1
n is not an upper bound of Sy. So there must be

an xn P Sy such that xn ą c´ 1
n . Hence for all n, c´ 1

n ă xn ď c. By the Sandwich
Theorem, lim

nÑ8
xn “ c. As f is continuous, lim

nÑ8
fpxnq “ fpcq. As fpxnq ď y, n P N,

(since xn P Sy), fpcq “ lim
nÑ8

fpxnq ď y.

fpcq ě y: If c “ b, then we are done, since y ď fpbq “ fpcq. So we suppose that
c ă b. Define for n P N, xn :“ c` b´c

n (ď c` b´c
1 “bq. Then xn P ra, bs, and pxnqnPN

is convergent with limit c. Because f is continuous, pfpxnqqnPN converges to fpcq.
But xn ą c for each n P N, and so xn R Sy for each n. Hence for all n, fpxnq ą y.
Thus fpcq ě y.

Consequently, fpcq “ y, proving the claim.

Thus the proof of the theorem is complete when fpaq ď y ď fpbq.
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Now suppose that fpbq ď y ď fpaq. Then p´fqpaq ď ´y ď p´fqpbq. By the
continuity of f , ´f is continuous too. So applying the previous result (with ´f
instead of f , and ´y instead of y), it follows that there is a c P ra, bs such that
p´fqpcq “ ´y, that is, ´fpcq “ ´y or fpcq “ y. This completes the proof. !

Example 3.10. Consider the polynomial p : R Ñ R given by

ppxq “ x2014 ` x1976 ´ 1

399
, x P R.

Then p is continuous, and pp0q “ 0 ` 0 ´ 1
399 “ ´ 1

399 ă 0, pp1q “ 1 ` 1 ´ 1
399 ą 0.

As pp0q ď y :“ 0 ď pp1q, and since p : r0, 1s Ñ R is continuous, it follows by the
Intermediate Value Theorem, that there exists a c P r0, 1s such that ppcq “ 0. In
other words p has a real root in r0, 1s.
More generally, one can show that any odd degree polynomial p with real coeffi-
cients must have at least one real root. The reason is that for large positive values
of x, ppxq will have the same sign as the leading coefficient cd, while for large2

negative values of x, ppxq will have the opposite sign as that of cd (since d is odd).
Consequently, p must vanish somewhere in between these two extremes of large
positive and negative xs.

a 0
b

`

´
We give a proof below. Suppose for some m P N, ppxq “ c2m´1x

2m´1`¨ ¨ ¨`c1x`c0
(x P R), where c0, ¨ ¨ ¨ , c2m´1 are real numbers and c2m´1 ‰ 0. Then ppxq “
c2m´1x

2m´1rpxq, where

rpxq “ 1 ` c2m´2

c2m´1x
` ¨ ¨ ¨ ` c1

c2m´1x2m´2
` c0

c2m´1x2m´1
.

By the Algebra of Limits, lim
nÑ8

rpnq “ 1 “ lim
nÑ8

rp´nq. So there exists an N P N

such that for all n ą N , |rpnq ´ 1| ă 1
2 and |rp´nq ´ 1| ă 1

2 . Thus 1 ´ rpnq ď
|rpnq ´ 1| ă 1

2 , so that rpnq ą 1
2 ą 0 for n ą N . Similarly, rp´nq ą 1

2 ą 0
for n ą N . Using ppnq “ c2m´1n

2m´1rpnq and pp´nq “ ´c2m´1n
2m´1rp´nq, we

obtain the following table of signs for all n ą N :

c2m´1 ą 0 c2m´1 ă 0

ppnq ą 0 ă 0
pp´nq ă 0 ą 0

By the Intermediate Value Theorem for p|r´pN`1q,N`1s : r´pN ` 1q, N ` 1s Ñ R,
we conclude that since the values at the end points have opposite signs, p must
vanish somewhere on r´pN ` 1q, N ` 1s. !

2that is, x ă 0 and |x| large
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Example 3.11. At any given instant of time, there exists a pair of diametrically
opposite points on the equator of the earth which have the same temperature.

θθ ` π

T pθq

equator

Let T pΘq denote the surface temperature at the point on the equator with longitude
θ. Then θ ÞÑ T pθq is continuous on the interval r0, 2πs (with longitude measured
in radians3). Note that T p0q “ T p2πq. Let S : r0,πs Ñ R be given by

Spθq “ T pθq ´ T pθ ` πq, θ P r0,πs.
Then S is continuous, and

Spπq “ T pπq ´ T p2πq “ T pπq ´ T p0q “ ´pT p0q ´ T pπqq “ ´Sp0q.
So 0 lies between Spπq and Sp0q “ ´Spπq. By the Intermediate Value Theorem,
there exists a θ˚ P r0,πs such that Spθ˚q “ 0, that is, T pθ˚q “ T pθ˚ ` πq. !

Exercise 3.20. Suppose that f : r0, 1s Ñ R is a continuous function such that for all
x P r0, 1s, 0 ď fpxq ď 1. Prove that there exists at least one c P r0, 1s such that fpcq “ c.
Hint: Consider the function gpxq “ fpxq ´ x, and use the Intermediate Value Theorem.

Exercise 3.21. Let f : r0, 1s Ñ R be continuous. Show that there exists a c P r0, 1s such
that fpcq ´ fp1q “ pfp0q ´ fp1qqc. Hint: Consider fpxq ´ fp1q ´ pfp0q ´ fp1qqx.

Exercise 3.22. Consider a flat pancake of arbitrary shape. Show that there is a straight
line cut that divides the pancake into two parts having equal areas. Can the direction of
the straight line cut be chosen arbitrarily?

Exercise 3.23. True or false? There is real number x such that x399`
1976

1 ` x2pcosxq2
“ 28.

3If the reader is not familiar with the radian angle measure, one may just think of T as a function on
the interval r0, 360s, with the angle θ measured in degrees.
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Exercise 3.24. At 8:00 a.m. on Saturday, a hiker begins walking up the side of a moun-
tain to his weekend campsite. On Sunday morning at 8:00 a.m., he walks back down the
mountain along the same trail. It takes him one hour to walk up, but only half an hour to
walk down. At some point on his way down, he realizes that he was at the same spot at ex-
actly the same time on Saturday. Prove that he is right.
Hint: Let uptq and dptq be the position functions for the walks up and down, and apply
the Intermediate Value Theorem to fptq “ uptq ´ dptq.

Exercise 3.25. Show that p, where ppxq :“ 2x3 ´5x2 ´10x`5, has a real root in r´1, 2s.

Exercise 3.26. Let f : ra, bs Ñ R be continuous and such that for all x P ra, bs, fpxq ‰ 0.
Show that f assumes only positive values or f assumes only negative values.

Exercise 3.27. Let f : R Ñ R be continuous. If S :“ tfpxq : x P Ru is neither bounded
above nor bounded below, prove that S “ R.
Hint: If y P R, then since S is neither bounded above nor bounded below, there exist
x0, x1 P R such that fpx0q ă y ă fpx1q.

Exercise 3.28. (˚) Show that given any continuous function f : R Ñ R, there exists
an x0 P r0, 1s and an m P Zzt0u such that fpx0q “ mx0. In other words, the graph of
f intersects some nonhorizontal line y “ mx at some point x0 in r0, 1s.
Hint: If fp0q “ 0, take x0 “ 0 and any m P Zzt0u. If fp0q ą 0, then choose N P N
satisfying N ą fp1q, and apply the intermediate value theorem to the continuous function
gpxq “ fpxq ´ Nx on the interval r0, 1s. If fp0q ă 0, then first choose a N P N such that
N ą ´fp1q, and consider the function gpxq “ fpxq `Nx, and proceed in a similar manner.

Exercise 3.29. (˚) Prove that there does not exist a continuous function f : R Ñ R which
assumes rational values at irrational numbers, and irrational values at rational numbers,
that is, fpQq Ă RzQ and fpRzQq Ă Q.
Hint: Note that for each m P Zzt0u, there is no x0 P R such that fpx0q “ mx0.

Exercise 3.30. In each of the following cases, give an example of a continuous function
f : S Ñ R such that fpSq “ T , or explain why such an f can’t exist.

(1) S “ p0, 1q, T “ p0, 1s.
(2) S “ p0, 1q, T “ t0, 1u.

3.4. Extreme value theorem

Theorem 3.5 (Extreme Value Theorem).

If f : ra, bs Ñ R is continuous, then

(1) S :“ tfpxq : x P ra, bsu “: fpra, bsq “ range of f is bounded.

(2) supS and inf S exist.

(3) supS and inf S are attained, that is, there exist c, d P ra, bs such that
fpcq “ supS “ maxS and fpdq “ inf S “ minS.

Thus, in the above conclusion, we have fpcq ě fpxq for all x P ra, bs (so that c is a
maximiser of f), and fpdq ď fpxq for all x P ra, bs (so that d is a minimiser of f).
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The continuity of f says something locally about f at each point of its domain.
However, the conclusion says something globally about f . This miracle happens
because ra, bs is ‘compact’. We will later see examples that show that maximis-
ers/minimisers may fail to exist if either the domain of f is not compact or if f is
not continuous. First, let us prove the Extreme Value Theorem. We will use the
following observation:

Claim: A subset S Ă R is bounded if and only if |S| :“ t|x| : x P Ru is bounded.

Indeed, if |S| is bounded, then in particular, |S| is bounded above, and so there
exists a u P R such that for all x P S, |x| ď u, giving ´u ď x ď u. Thus S is
bounded. Vice versa, if S is bounded, then there exist u, " P R such that for all x P
S, " ď x ď u, giving x ď u ď maxtu,´"u “: M and ´x ď ´" ď maxtu,´"u “ M .
Hence for all x P S, 0 ď |x| ďM , showing that |S| is bounded.

Proof. (Of the Extreme Value Theorem).

(1) We first show that f is bounded, that is, S :“ tfpxq : x P ra, bsu is bounded.
Suppose S is not bounded. Then |S| is not bounded. But |S| is bounded
below (by 0). So |S| is not bounded above. Let n P N. Then n is not an
upper bound of |S|. So there exists some xn P ra, bs such that |fpxnq| ą n.
In this way, we get a sequence pxnqnPN. Since aďxnď b for all n P N, pxnqnPN
is bounded. By the Bolzano-Weierstrass Theorem (Theorem 2.8), pxnqnPN has
a convergent subsequence, say pxnk

qkPN, that converges to some limit L. For
all k P N, we have a ď xnk

ď b. It follows that a ď L ď b, i.e., L P ra, bs. As
f is continuous in particular at L, pfpxnk

qqkPN is convergent, and in particular
bounded. So there exists an M ą 0 such that for all k P N, |fpxnk

q| ď M .
So for all k P N, we have k ď nk ă |fpxnk

q| ď M , a contradiction. Thus S is
bounded.

(2) S ‰ H (as fpaq P S!). S is bounded. So by the Least Upper Bound Property of
R, supS exists, and by the Greatest Lower Bound Property of R, inf S exists.

(3) We claim that there exists a c P ra, bs such that fpcq “ M :“ supS. Let
n P N. Then M ´ 1

n is not an upper bound of S. So there exists a yn P S such
that M ´ 1

n ă yn ď M . As this yn belongs to the range S of f , yn “ fpxnq
for some xn P ra, bs. By Bolzano-Weierstrass Theorem, there is a subsequence,
say pxnk

qkPN, of pxnqnPN which converges with limit, say c. As a ď xnk
ď b

for all k, it follows that c P ra, bs. We have M ´ 1
nk
ă fpxnk

q ď M for all
k P N. By the Sandwich Theorem, we conclude that pfpxnk

qqkPN is convergent
with limit M . But since f is continuous at c, and since pxnk

qkPN converges to
c, we must have pfpxnk

qqkPN is convergent with limit fpcq. By the uniqueness
of limits, fpcq “ M “ supS. But fpcq P S. So maxS exists.

Finally, consider ´f : ra, bs Ñ R. As f is continuous, ´f is continuous too. By
the above, there exists a d P ra, bs such that

p´fqpdq “ suptp´fqpxq : x P ra, bsu “ supt´fpxq : x P ra, bsu“ supp´Sq “´ inf S,
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and so fpdq “ inf S. Since fpdq P S, it follows that minS exists. !

Example 3.12. There is no continuous function f : r0, 1s Ñ R onto R. Indeed,
by the Extreme Value Theorem, there exist m,M such that for all x P r0, 1s,
m ď fpxq ď M , that is the range fpr0, 1sq of f is a bounded set, and so it can’t
equal the unbounded set R. !

Example 3.13.

(1) Let f1 : p0, 1q Ñ R be defined by f1pxq :“ 1

x
for x P p0, 1q.

Then f1 is continuous, but p0, 1q is not a compact interval. We have

f1pp0, 1qq “ t1{x : x P p0, 1qu “ ty : y ą 1u “ p1,8q,

and so sup f1pp0, 1qq “ supp1,8q does not exist. Also,

inf f1pp0, 1qq “ infp1,8q “ 1,

but it is not attained: There does not exist a d P p0, 1q such that fpdq “ 1.
(Indeed, for all d P p0, 1q, fpdq “ 1{d ą 1.)

Graphs of x ÞÑ
1

x
,

1

x ´ 1
,

x ´ 1
2

xpx ´ 1q
: p0, 1q Ñ R.

(2) Let f2 : p0, 1q Ñ R given by f2pxq “ 1

x ´ 1
, x P p0, 1q.

Then it can be shown that f2pp0, 1qq “ p´8,´1q, and so sup f2pp0, 1qq “ ´1,
but it is not attained, and inf f2pp0, 1qq does not exist.

(3) Similarly, consider f3 : p0, 1q Ñ R given by

f3pxq “
x ´ 1

2

xpx ´ 1q
, x P p0, 1q.

It can be shown thatf3pp0, 1qq“R. So neither sup f3pp0, 1qq nor inf f3pp0, 1qq exist.

(4) Let f4 : p0, 1q Ñ R be given by f4pxq “ x, x P p0, 1q. Then f4 is continuous,
but p0, 1q is not compact, and

f4pp0, 1qq “ tfpxq : 0 ă x ă 1u “ tx : 0 ă x ă 1u “ p0, 1q.
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f4pp0, 1qq is bounded, supp0, 1q “ 1, but there is no c P p0, 1q such that f4pcq “ 1,
and infp0, 1q “ 0, but there is no d P p0, 1q such that f4pdq “ 0.

(5) Let f5 : r0, 1s Ñ R be given by

f5pxq “

$
&

%

2x if 0 ď x ă 1
2 ,

0 if x “ 1
2 ,

2 ´ 2x if 1
2 ă x ď 1.

Then r0, 1s is compact, but f5 is not continuous. We have f5pr0, 1sq “ r0, 1q,
and there is no c P r0, 1s such that f5pcq “ sup f5pr0, 1sq “ 1.

f4
f5

f6

0 0 01

1

1

1

1

1

(6) (Continuity or compactness is not necessary for existence of maximisers and
minimisers.) Let f6 : p0, 1q Ñ R be given by

f6pxq “

$
&

%

1 if 0 ă x ă 1
2 ,

0 if x “ 1
2 ,

1 if 1
2 ă x ă 1.

Then p0, 1q is not compact, and f is not continuous. But f6pr0, 1sq “ t0, 1u,
and there do exist maximizers and a minimizer:

fp1{2q “ 0 “ inf fpp0, 1qq, and fp3{4q “ 1 “ sup fpp0, 1qq.
We summarize the above examples in the following table. !

Function I compact? f continuous? sup fpIq inf fpIq sup fpIq inf fpIq
f : I Ñ R exists? exists? attained? attained?

f1 No Yes No Yes - No
f2 No Yes Yes No No -
f3 No Yes No No - -
f4 No Yes Yes Yes No No
f5 Yes No Yes Yes No Yes
f6 No No Yes Yes Yes Yes

The utility of the Extreme Value Theorem in Optimisation.

The Extreme Value Theorem (and its multivariable generalisation saying that a
real-valued continuous function on a ‘compact set’ K Ă Rn has a maximiser and
a minimiser) is useful in Optimisation Theory. In Optimisation Theory, one often
meets necessary conditions for maximisers, that is, results of the following form:

If x˚ is a maximiser of f : S Ñ R, then x˚ satisfies ˚ ˚ ˚ .
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(Where ˚ ˚ ˚ are certain mathematical conditions, such as the Lagrange multiplier
equations.) Now such a result has limited use, since even if we find all x˚(s) which
satisfy ˚ ˚ ˚ , we cannot conclude that there is one among these is actually a
maximiser. But if we had an existence result (like the Extreme Value Theorem),
then we know that a maximiser exists, and so we know that it must be among the
(few) x˚(s) in S that satisfy ˚ ˚ ˚ . For example, we will later on learn that:

If x˚ is a maximiser of f : pa, bq Ñ R, then f 1px˚q “ 0.

As an example, consider f : r0,π{2s Ñ R, where fpxq“cos x`px{2q for x P r0,π{2s.
Then fp0q“1, fpπ{2q“π{4ă1, and fpπ{3q“p1{2q`pπ{6qąp1{2q`p3{6q“1“fp0q.
By the Extreme Value Theorem, f has a maximiser x˚ P r0,π{2s. But the above
calculation shows that x˚ ‰ 0 and x˚ ‰ π{2. Thus x˚ P p0,π{2q. Hence f 1px˚q “ 0,
that is, ´ sinx˚ ` 1

2 “ 0, and so x˚ “ π{6.

Exercise 3.31. A function f : R Ñ R is called periodic if there exists a T ą 0 such that
for all x P R, fpx ` T q “ fpxq. If f : R Ñ R is continuous and periodic, then prove that f
is bounded, that is, the set S “ tfpxq : x P Ru is bounded.

Exercise 3.32. True or false? If f : ra, bs Ñ R is continuous and fpxq ą 0 for all x P ra, bs,
then f is in fact ‘bounded away from 0’, that is, there exists a δ ą 0 such that fpxq ě δ
for all x P ra, bs.
Exercise 3.33. Let f : r0, 3s Ñ r3, 9s be a continuous function such that fp0q “ 3 and
fp3q “ 6. Which of the following statements is/are always true?

(A) There exists a unique c P r0, 3s such that fpcq “ 4.

(B) The range of f contains the interval r3, 6s.
(C) fpr0, 3sq “ r3, 6s.
(D) There cannot exist a c P r0, 3s such that fpcq “ 9.

Exercise 3.34. Let f : ra, bs Ñ R be continuous on ra, bs, and define f˚ as follows:

f˚pxq “
"
fpaq if x “ a,
maxtfpyq : y P ra, xsu if x P pa, bs.

(1) Show that f˚ is a well-defined function.

(2) If f : r0, 1s Ñ R is given by fpxq “ x ´ x2, then find f˚.

Exercise 3.35. Let the function f : ra, bs Ñ R be continuous.

Show that for any c1, ¨ ¨ ¨ , cn P ra, bs, there is a c P ra, bs such that fpcq“ fpc1q ` ¨ ¨ ¨ ` fpcnq
n

.
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Exercise 3.36. Let f : ra, bs Ñ R be a continuous function, having the property that for
every x P ra, bs, there exists a yx P ra, bs such that |fpyxq| ď |fpxq|{2. Show that there
exists a c P ra, bs such that fpcq “ 0. Hint: Consider a minimiser of |f |.



Chapter 4

Number systems

In this chapter, beginning with an axiomatic framework, we will construct the
natural numbers, the integers, the rational numbers, and the real numbers. We
begin by recalling the important notion of equivalence relations again, because it
will play an important role in the rest of the course. For example, to construct the
integers from natural numbers, we will need to identify pairs of natural numbers
using an equivalence relation.

4.1. Equivalence relations

Definition 4.1 (Relation).
A relation R on a set S is a subset of the S ˆ S :“ tpa, bq : a, b P Su. If pa, bq P R,
then we write aRb.

For example, if we take S to be the set of all human beings, then

Rsibling :“ tpa, bq P S ˆ S : a, b have the same biological parentsu

is a relation. As another example, we can take the set S “ Z, the set of all integers,
and Rmod 2 “ tpm,nq P Z ˆ Z : m ´ n is divisible by 2u. Sometimes we use the
symbol „ to denote a relation, and then instead of aRb, we will write a „ b.

Definition 4.2 (Equivalence relation).
A relation R on a set S is called an equivalence relation if it satisfies the following:

(ER1) R is reflexive, that is, for all a P S, aRa.

(ER2) R is symmetric, that is, if aRb, then bRa.

(ER3) R is transitive, that is, if aRb and bRc, then aRc.

In our example above, where S “ tall human beingsu, Rsibling can easily be checked
to be an equivalence relation1. Similarly Rmod 2 is an equivalence relation on Z.

Why are equivalence relations useful? They help ‘partition’ the set into ‘equiv-
alence classes’, and help to break down the big set into smaller subsets, such that

1Here we accept that a person is one’s own sibling.

85
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all the elements in each subset are related to each other, and hence ‘equivalent’ in
some way. For example, Rsibling enables one to partition the set of human beings
into equivalence classes consisting of groups of brothers/sisters. On the other hand,
Rmod 2 partitions Z into the sets teven integersu and todd integersu.

Definition 4.3 (Equivalence class).
If R is an equivalence relation of a set S, then the equivalence class of a, denoted
by ras, is defined to be the set ras “ tb P S : aRbu.

Given any a, b P S, either ras “ rbs or ras X rbs “ H. Indeed, let ras X rbs ‰ H.
Suppose c P ras X rbs, that is, aRc and bRc. By symmetry, cRb. As aRc and cRb,
by transitivity, we obtain aRb, and again by symmetry, bRa. If d P ras, then aRd.
As bRa and aRd, by transitivity, bRd. So d P rbs too. So we have shown that
ras Ă rbs. In the same way, one can show rbs Ă ras as well. So ras “ rbs.

Clearly,
Ť

aPS
ras ĂS. For aPS, aRa (reflexivity), and so aPras. Thus SĂ

Ť

aPS
ras. So

S “
ď

aPS
ras.

As any two distinct equivalence classes do not overlap at all, it follows that S is
partitioned into equivalence classes by R, as shown in the schematic picture below.

S

rcs

rbs
ras “ ra1s
aRa1

So the idea is that an equivalence relation is really an ‘attention focusing device’,
where we have chosen to ignore other distinguishing features of objects which are
related, and have put them together in an equivalence class. So an equivalence
relation gives one a ‘pair of glasses’ through which we ‘clump together’ things
which are ‘essentially the same’ (equivalent under the relation) and see them as
one object! For example, if our set is the collection of children in a school bus
and we consider the equivalence relation R1 of ‘having the same sex’, then through
these glasses, we see only two equivalence classes: boys and girls. On the other
hand, if we consider the equivalence relation R2 of ‘having the same age’, then
through these glasses, we see groups of children sorted by age.
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Exercise 4.1. Find out which of the properties of reflexivity, symmetry or transitivity are
valid for each of the following relations R on the given set S, and hence determine which
amongst them are equivalence relations.

(1) S “ R, xRy if x ă y ` 1.

(2) S “ Z, mRn if m |n, that is, if n is divisible by m.

(3) S “ Rzt0u, xRy if x{y P Q.

(4) S “ N, mRn if there exists an k P Z such that m{n “ 2k.

Exercise 4.2. Let R be a relation on the set R of real numbers. Viewing R as a subset of
the px, yq-plane, explain the geometric meaning of the reflexive and symmetric properties.

Exercise 4.3. Which of the following R Ă R ˆ R defines an equivalence relation on R?

(1) R “ tpx, xq P R2 : x P Ru.
(2) R “ H.

(3) R “ tpx, yq P R2 : y “ 0u.
(4) R “ tpx, yq P R2 : xy ` 1 “ 0u.
(5) R “ tpx, yq P R2 : x2y ´ xy2 ´ x ` y “ 0u.
Exercise 4.4 (Equivalence relation induced by a map f : X Ñ Y ).
Let f : X Ñ Y be a map. Define the relation „ on X by x „ x1 if fpxq “ fpx1q.
(1) Show that „ is an equivalence relation.

(2) For y P ranf “ tfpxq :x P Xu, consider the inverse image f´1tyu “ tx P X : fpxq “ yu.
Show that for all x P X , rxs “ f´1tfpxqu.

(3) Denote the set of all equivalence classes of X by X. Define f : X Ñ ranf as follows.
For any equivalence class S P X, take any x P S, and set fpSq “ fpxq.
Show that f is well-defined, i.e., it does not depend on the choice of the representative
selected from the equivalence class S.

(4) Prove that f : X Ñ ranf is bijective.

(5) For the following maps, consider the corresponding induced equivalence relation on their
respective domains. Determine the equivalence classes. Sketch these in the domain.

(a) The complex absolute value | ¨ | : C Ñ R.

(b) f : R2 Ñ R given by fpx, yq “ xy.

Exercise 4.5. (˚) A Cauchy sequence in Q is a sequence panqnPN of rational numbers such
that for every rational ε ą 0, there exists an N P N such that whenever m,n ą N , we have
|an ´ am| ă ε.

(1) Show that p1{nqnPN is a Cauchy sequence in Q.

(2) Show that every sequence panqnPN of rational numbers that is convergent2 is a Cauchy
sequence in Q.

(3) Show that a sequence that is a Cauchy sequence in Q need not be convergent with its
limit belonging to Q, by considering the sequence

0.1, 0.101, 0.101001, 0.1010010001, 0.101001000100001, ¨ ¨ ¨ .

2Right now we just use the notion of convergence in R of a sequence of real numbers. We will later
revisit this exercise to construct the real numbers using rational numbers ´ then we will be more careful,
and explain what we mean by convergence in Q of a sequence of rational numbers.
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(4) Let C denote the set of all Cauchy sequences in Q. Define the relation „ on C by
panqnPN „ pbnqnPN if the sequence pan ´ bnqnPN converges to 0. Show that „ is an
equivalence relation. The set of all equivalence classes of C under „ is denoted by C{„.

(5) Given a q P Q, the constant sequence pqqnPN is clearly a Cauchy sequence in Q.
Show that the map Q Q q ÞÑ rpqqnPNs P C{„ is injective.

(We will return to this equivalence relation when we construct R from Q: The set of real
numbers will be C{„. The last part of this exercise shows that Q can be considered to be
contained in R. We will clarify later how the arithmetic operations are defined in C{„.)

4.2. Natural numbers

We are familiar with natural numbers from an early age when we learn to count.
The basic idea is that for each natural number, there is ‘next one’ or a ‘successor’
(which is used to label the next object in the set we are counting). Thus the natural
numbers are built, intuitively speaking, as a sequence of objects, starting with 1
and then taking ‘successive successors’. The Italian mathematician Giuseppe Peano
(1858-1932) formulated axioms for the natural numbers in 1889 which reflect the
above intuition. The familiar properties of the natural numbers can then be proved
as theorems.

The Peano axioms for a set N and a (successor) function σ : N Ñ N state that

(N1) The set N contains an element 1 such that for every n P N, σpnq ‰ 1.

(N2) The map σ is injective.

(N3) (Induction axiom) Suppose that a subset S Ă N has the properties that
‚ 1 P S, and
‚ if n P S, then σpnq P S.

Then S “ N.

The element σpnq is called the successor of n P N. The property (N3) is the
induction property, and forms the basis for why induction works.

Remark 4.1. (˚) The existence/construction of such a set N and a successor
function σ that satisfies the Peano axioms relies on the axioms of set theory. For
example, a possible definition is

1 :“ tHu,
2 :“ tH, tHuu,
3 :“ tH, tHu, tH, tHuuu,

and so on. The successor of n P N is σpnq “ n Y tnu. To talk about the set of
all natural numbers, one requires the so-called ‘axiom of infinity’ from set theory.
We will not get into these matters here. Instead, we simply take for granted the
existence of a set N and a successor function σ that satisfies the Peano axioms.
From this starting point, in the rest of the section, we will prove the familiar
arithmetic properties of the natural numbers, which will in turn be used in order
to construct the integers, and also to derive similar properties for the integers. ˚
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Let us show that every natural number not equal to 1 has a ‘predecessor’.

Theorem 4.1. If n P Nzt1u, then there exists an m P N such that σpmq “ n.

Proof. Consider the set S “ t1u Y tk P N : Dm P N such that σpmq “ku. Since 1
is not a successor of any natural number, 1 R tk P N : Dm P N such that σpmq“ku.
Clearly 1 P S. If nPS Ă N, then σpnq P tk P N : Dm P N such that σpmq“ku Ă S.
By the induction axiom (N3), S“N. Hence if n P Nzt1u “ Szt1u, then there exists
an m P N such that σpmq“k. !

Exercise 4.6. Consider the set S “ tn P N :σpnq ‰nu. Using Peano’s axioms, show that
S“N. Conclude that for all n P N, σpnq‰n.

Remark 4.2 (Recursive definitions).
The Peano axioms allow us to make ‘recursive/inductive definitions’. This means
that we can define a sequence of objects Cn indexed by the natural numbers, via

p˚q

$
&

%

‚ specifying the initial value C1,
‚ giving a rule for determining Cσpnq from Cn

(so that each object is defined using the preceding one).

It is intuitively clear that (˚) defines the sequence C1, C2, C3, ¨ ¨ ¨ uniquely, though
proving this using the Peano axioms is cumbersome. A natural approach to show
this would be to define S to be the set of n such that such that (˚) determines Ck

for k ď n. Then 1 P S. Also whenever n P S, also σpnq P S. So (N3) would yield
S “ N. The problem is the usage of ď, which has not been defined yet, and so
is inadmissible in the above argument. As mentioned earlier, we will not see the
proof of the recursive definition theorem here, but can be found e.g. in [C]. ˚

Addition and multiplication. Using Peano’s axioms, we can define addition
and multiplication in N. For each n P N, we define

n ` 1 “ σpnq.
Instead of the notation σpnq, we often simply use n` 1 instead. If we assume that
n ` m has been defined, we define n ` pm ` 1q by setting

n ` pm ` 1q “ pn ` mq ` 1.

By the induction axiom (N3), this defines n ` m for all m P N.

Example 4.1 (What is 2 ` 2?).
We have 2 ` 2 “ 2 ` p1 ` 1q “ p2 ` 1q ` 1 “ 3 ` 1 “ 4. Thus, 2 ` 2 is by definition

the successor of 2 ` 1,
that is, the successor of the successor of 2,
that is, the successor of 3, which we call 4. !

Remark 4.3 (Principle of Induction). Let P p1q, P p2q, P p3q, ¨ ¨ ¨ be a sequence of
statements, one for each n P N. Suppose P p1q is true, and whenever P pnq is true,
also P pn ` 1q is true. Let S :“ tn P N : P pnq is trueu. Thus 1 P S, and whenever
n P S, also σpnq P S. By (N3), S “ N. So P pnq is true for all n P N. ˚
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Similarly, if n P N, then we define n ˆ 1 by

n ˆ 1 “ n.

If we assume that n ˆ m has been defined, then we define n ˆ pm ` 1q by

n ˆ pm ` 1q “ pn ˆ mq ` n.

By the induction axiom, this defines n ˆ m for all m P N.

Exercise 4.7. Determine 2 ˆ 2 using the above definition.

We often skip writing ˆ, and so we use the notation m n instead of m ˆ n for
natural numbers m,n P N.

Peano playing. Using the Peano axioms and the above definitions of addition
and multiplication, the usual rules of arithmetic, namely the commutativity and
associativity of addition and of multiplication, and the distributive law can be
proved. As examples, we give two verifications.

Theorem 4.2 (Associativity of `). For all n,m, " P N, pn`mq`"“n`pm`"q.

Proof. Let S “ t" P N : pn`mq`" “ n`pm`"q for all n,m P Nu. Then 1 P S
because pn ` mq ` 1 “ n ` pm ` 1q by the definition of n ` pm ` 1q. If " P S, then

pn ` mq ` p" ` 1q “ ppn ` mq ` "q ` 1 (definition of addition)
“ pn ` pm ` "qq ` 1 (" P S)
“ n ` ppm ` "q ` 1q (definition of addition)
“ n ` pm ` p" ` 1qq (definition of addition)

for all m,n P N. Thus σp"q P S. By the induction axiom (N3), S “ N, that is, for
all " P N, pn ` mq ` " “ n ` pm ` "q for all n,m P N. !

Exercise 4.8. (˚) (Commutativity of `).

(1) By considering the set S “ tn P N : n ` 1 “ 1 ` nu and using (N3), show that S “ N.

(2) Consider S1 “ tm P N : for all n P N, n ` m “ m ` nu. Show that S1 “ N.

Exercise 4.9. Show that for all n P N, 1 ˆ n “ n.

Theorem 4.3 (Commutativity of ˆ). For all n,m P N, n ˆ m “ m ˆ n.

Proof.

1˝ We first show pm ` 1q ˆ n “ pm ˆ nq ` n for all m,n P N. To this end, we
define S “ tn P N : pm ` 1q ˆ n “ pm ˆ nq ` n for all m P Nu. Then 1 P S
because pm ` 1q ˆ 1 “ m ` 1 “ pm ˆ 1q ` 1. If n P S, then for m P N

pm ` 1q ˆ pn ` 1q “ ppm ` 1q ˆ nq ` pm ` 1q (definition of multiplication)
“ ppm ˆ nq ` nq ` pm ` 1q (n P S)
“ ppm ˆ nq ` mq ` pn ` 1q (various laws for addition)
“ pm ˆ pn ` 1qq ` pn ` 1q (definition of multiplication)

By (N3), S “ N, i.e., for all n P N, pm ` 1q ˆ n “ pm ˆ nq ` n for all m P N.
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2˝ By Exercise 4.9, 1 ˆ n “ n for all n P N. So 1 ˆ n “ n “ n ˆ 1 for all n P N.

3˝ Let S1 “ tm P N : m ˆ n “ n ˆ m for all n P Nu. By 2˝, 1 P S1. If m P S1, then

n ˆ pm ` 1q “ pn ˆ mq ` n (definition of multiplication)
“ pm ˆ nq ` n (m P S1)
“ pm ` 1q ˆ n (by 1˝)

for all n P N. By (N3), S1 “N. So for all m,n P N, m ˆ n “ n ˆ m. !

Exercise 4.10. (˚) (Distributive law). Show that mˆ pn ` "q “ pmˆ nq ` pm ˆ "q for all
",m, n P N. Hint: Consider S “ t" P N : mˆ pn` "q “ pmˆnq ` pmˆ "q for all m,n P Nu.
Show that 1 P S, and that if " P S, then also σp"q P S.
(By the commutativity of ˆ, also pn ` "q ˆ m “ pn ˆ mq ` p" ˆ mq for all ",m, n P N.)

Exercise 4.11. (˚) (Associativity of ˆ). Show that pm ˆ nq ˆ " “ m ˆ pn ˆ "q for all
",m, n P N. Hint: Consider S “ t" P N : pm ˆ nq ˆ " “ m ˆ pn ˆ "q for all m,n P Nu.

Example 4.2 (No ‘additive identity’ in N, that is, no ‘zero’ in N).
We show that there does not exist an m P N such that for all n P N, n “ n ` m.
Suppose, on the contrary, that there exists such an m. If we take n “ 1, then
1 “ n ` 1 “ σpnq, a contradiction to (N1). !

Example 4.3 (Order relation ă on NˆN).
For k,K P N, we say that k ă K if there exists an m P N such that K “ k ` m.
The notation K ą k means k ă K.

(a) For instance 1 ă 2, because we can write 2 “ 1`m, with m “ 1 P N.
In fact, for all n P N, n ă σpnq since σpnq “ n ` 1.

(b) The equation 1 “ 2 ` m does not have a solution in the unknown m P N.
Otherwise 1“p1`1q`m“1`pm`1q“σpm`1q, a contradiction to (N1). !

Examples 4.2 and 4.3(b), show arithmetic ‘flaws’ with the natural numbers, and
this will remedied by the integers.

Exercise 4.12 (Transitivity ofă).
Suppose that m,n, k P N are such that măn and năk. Prove that măk.

Exercise 4.13. Let m,n P N be such that m ă n. Show that for all k P N, m` k ă n` k
and m ˆ k ă n ˆ k.

Theorem 4.4 (Trichotomy Law).

For all m,n P N, one and only one of the following three statements holds:

1˝ m “ n.
2˝ m ă n.
3˝ m ą n.

To show this we will use the following generalisation of Exercise 4.6.

Lemma 4.5. For m,n P N, m ` n ‰ n.
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Proof. Fix m P N, and define S “ tn P N : m`n ‰ nu. Then 1 P S, because
m`1“ σpmq ‰ 1 by (N1). Let n P N, i.e., m`n‰n. By (N2), σpm`nq ‰ σpnq.
Then m ` σpnq “ σpm ` nq ‰ σpnq. Hence whenever n P S, we have σpnq P S as
well. By (N3) it follows that S “ N. !

Proof. (of the Trichotomy Law). By Lemma 4.5, the cases 1˝ and 2˝ are mutually
exclusive. Also, 1˝ and 3˝ are mutually exclusive. Finally, 2˝ and 3˝ are also
mutually exclusive, since otherwise we have n “ m ` k (by m ă n) and m “ n ` "
(by m ą n), giving n “ m`k “ pn`"q`k “ n`p"`kq, contradicting Lemma 4.5.

Now fix m P N. Define S“tn P N :one (and only one) of the cases 1 ,̋ 2 ,̋ 3˝ holdsu.
We claim that 1 P S. Indeed, if m “ 1, then this is true since 1˝ holds. If m ‰ 1,
then it has a predecessor " P N by Theorem 4.1: m “ σp"q “ " ` 1 “ 1 ` ", and so
the statement 3˝ holds for n “ 1. Thus 1 P S.

Now suppose n P S, that is, one and only one of the cases 1˝, 2˝, 3˝ holds.
We want to show that σpnq P S. We consider the three cases separately.

1˝ m “ n. Then σpnq “ σpmq “ m ` 1, showing that 2˝ holds for σpnq.
2˝ măn. Then n“m` k for a k P N. So σpnq“σpm`kq“pm`kq`1“m`pk`1q,

showing 2˝ holds for σpnq.
3˝ m ą n. Then m “ n ` k.

If k “ 1, then σpnq “ n ` 1 “ m, and so we have case 1˝ for σpnq.
If k ‰ 1, then it has a predecessor: k “ σp"q for an " P N. Then we have that
m“n ` k“n ` σp"q“n ` p"`1q“n ` p1`"q“pn`1q ` "“σpnq ` ", and so we
have case 3˝ for σpnq.

Hence whenever n P S, σpnq P S too. By (N3), S “ N. As m P N was arbitrary,
we have shown the trichotomy law for all m,n P N. !

The following exercise justifies calling σpnq the successor of n P N.

Exercise 4.14. For any n P N, there does not exist an m P N such that n ă m ă n ` 1.
Hint: Argue by contradiction. Write m“n`k. Consider the cases k“1 and k‰1.

Exercise 4.15 (Additive and multiplicative cancellation rules). Let m,n, k P N.

(1) Show that if m ` k “ n ` k, then m “ n.

(2) Show that if m ˆ k “ n ˆ k, then m “ n.

Hints: If m ‰ n, what does the trichotomy law allow? Use Exercise 4.13.

If m,n P N, and either m “ n or m ă n, then we write m ď n. The symbol ě is
defined similarly: m ě n if m “ n or m ą n.

Exercise 4.16. Show that for all n P N, 1 ď n.

Exercise 4.17. Let m,n P N be such that m ă n. Prove that m ` 1 ď n.
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Definition 4.4. Let S be a nonempty subset of N. An element " P S is called a
least element of S if for all n P S, " ď n. An element u P S is called a greatest
element of S if for all n P N, n ď u.

Exercise 4.18. Show that N has no greatest element.
Hint: If u is a greatest element, consider σpuq and use Exercise 4.6.

Theorem 4.6 (Well-Ordering principle).
Any nonempty subset of N has a least element.

Proof. Let S be a nonempty subset of N. Define

Λ “ t" P N : for all n P S, " ď nu.

Then 1 P Λ by Exercise 4.16. Also, Λ ‰ N: Indeed if n P S, then σpnq ą n, and so
by the trichotomy law, *pσpnq ď nq, showing that σpnq R Λ.

It follows that there exists a "˚ P Λ with σp"˚q R Λ (otherwise by (N3), Λ “ N).
We claim that "˚ P S. Suppose "˚ R S. We know that "˚ ď n for all n P S. But
as "˚ can’t equal any n P S, the trichotomy law shows "˚ ă n for all n P S. By
Exercise 4.17, "˚ `1 ď n for all n P S. But then σp"˚q “ "˚ `1 P Λ, a contradiction.

Now "˚ P Λ and Λ P S means that "˚ is a least element of S. !

Exercise 4.19. Let S be a nonempty subset of N. Show that the least element of S
(which exists, by the Well-Ordering Principle) is unique. The least element of S is called
its minimum, denoted by minS. (Similarly a greatest element, if it exists, is unique, and
it is called the maximum of S, and is denoted by maxS.)

4.3. Integers

By the definition of ă, given m,n P N, the equation m ` x “ n is solvable in the
unknown x P N if and only if m ă n. By the Trichotomy Law, it follows that that
if m ě n, then the equation m`x “ n is not solvable for x P N. Now the aim is to
‘extend’ the natural number system to a ‘bigger’ system, the integers Z, with an
extension of the operation `, which allows a unique solution to such an equation
for arbitrary m,n P N. Intuitively, we just think of the symbol n ´ m as being the
integer solution x. As the ordered pair pm,nq determines this x, we could think of
x as a pair pm,nq, wherem,n P N. But then we realise that the equation m`x “ n
is equivalent to pm ` 1q ` x “ n` 1, and so the integer x ought to be also the pair
pm` 1, n` 1q. So we must identify the pairs pm,nq and pm` 1, n` 1q. In fact, we
need to identify all pairs pm,nq, pm ` 1, n ` 1q, pm ` 2, n ` 2q, ¨ ¨ ¨ , and think of it
as being the integer x. To formalise this, we introduce an equivalence relation „
on N ˆ N, the equivalence classes of which will then be integers. We should deem
the pairs pk, "q, pm,nq as equivalent, that is, pk, "q „ pm,nq, if they yield the same
solution x, and so we should have " ´ k “ n ´ m, or rearranging, k ` n “ " ` m.
This prompts defining the relation „ by pk, "q „ pm,nq if k ` n “ " ` m. This is a
relation, and we check that it is an eqivalence relation below.
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Theorem 4.7. Let „ be the relation on NˆN defined as follows : For k, ",m, n P N,
pk, "q „ pm,nq if k ` n “ " ` m. Then „ is an equivalence relation.

Proof. We check that „ is reflexive, symmetric, and transitive.

Reflexivity: Let pm,nq P N ˆ N. Then pm,nq „ pm,nq because m ` n “ n ` m.

Symmetry: Suppose pk, "q, pm,nq P NˆN, and pk, "q „ pm,nq. Then k`n “ "`m.
Thus also m ` " “ n ` k, showing that pm,nq „ pk, "q.
Transitivity: Let pk, "q, pm,nq, pp, qq P N ˆ N, pk, "q „ pm,nq, and pm,nq „ pp, qq.
Then k`n “ "`m and m`q “ n`p. Hence pk`nq`pm`qq “ p"`mq`pn`pq,
and so pk ` qq ` pm ` nq “ p" ` pq ` pm ` nq. By the additive cancellation rule
(Exercise 4.15), we conclude that k ` q “ " ` p, and so pk, "q „ pp, qq. !

The equivalence relation partitions NˆN into equivalence classes. The equivalence
class of pm,nq P N ˆ N is

rpm,nqs “ tpk, "q P N ˆ N : pk, "q „ pm,nqu “ tpk, "q P N ˆ N : k ` n “ " ` mu.

Definition 4.5 (Z, the set of integers).
The set Z of integers is the set of equivalence classes of NˆN under the equivalence
relation described in Theorem 4.7.

The symbol Z comes from ‘Zahlen’, meaning ‘numbers’ in German.

Example 4.4. Intuitively rp1, 1qs represents the integer ‘(1 ´ 1 “) 0’. We have

rp1, 1qs “ tpm,nq P N ˆ N : m ` 1 “ n ` 1u “ tpm,nq P N ˆ N : m “ nu
“ tpm,mq : m P Nu “ tp1, 1q, p2, 2q, p3, 3q, ¨ ¨ ¨ u.

Similarly, we think of rp2, 1qs as representing the integer ‘(1 ´ 2 “) ´1’. We have

rp2, 1qs “ tpm,nq P N ˆ N : m ` 1 “ n ` 2u “ tpm,nq P N ˆ N : m “ n ` 1u
“ tpn ` 1, nq : n P Nu “ tp2, 1q, p3, 2q, p4, 3q, ¨ ¨ ¨ u.

The following picture depicts the equivalence classes visually. !

3

2

´2

1

´1

0

N

N

Z

Exercise 4.20 (N Ă Z). Show that the map N Q n ÞÑ rp1,σpnqqs P Z is injective.
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Addition of integers. We know that we can think of the integer rpm,nqs as n´m
in the notation from elementary school. So to add rpk, "qs and rpm,nqs, we ought
to get p" ´ kq ` pn ´ mq “ p" ` nq ´ pk ` mq, which is the integer rpk ` m, " ` nqs.
This motivates the following definition.

Definition 4.6 (Addition in Z).
The sum a ` b of a “ rpk, "qs and b “ rpm,nqs P Z, is defined to be the integer
a ` b “ rpk, "qs ` rpm,nqs :“ rpk ` m, " ` nqs.

We need to check that the above notion is well-defined. What does this mean?
Firstly, an integer a P Z is an equivalence class, and so it is a set with many
members, and when we write a “ rpk, "qs, we have just picked one member pk, "q
belonging to the equivalence class a. Then we know that the equivalence class
rpk, "qs corresponding to this pk, "q is equal to a. Secondly, after picking such
representatives pk, "q and pm,nq for a and b, we are defining the sum a ` b by
taking the equivalence class of pk ` m, " ` nq. But if we had chosen different
representatives, say pk1, "1q P a, and pm1, n1q P b, do we get the same integer?
Thus we ask: Is rpk1 ` m1, "1 ` n1qs “ rpk ` m, " ` nqs? This is the question of
well-defined-ness. We now check that the answer is ‘yes’.

Theorem 4.8 (Addition is well-defined).
If k, ",m, n, k1, "1,m1, n1 P N are such that pk, "q„pk1, "1q and pm,nq„pm1, n1q, then
pk ` m, " ` nq „ pk1 ` m1, "1 ` n1q. pAnd so rpk ` m, " ` nqs “ rpk1 ` m1, "1 ` n1qs.q

Proof. As pk, "q „ pk1, "1q and pm,nq „ pm1, n1q, we know that

k ` "1 “ " ` k1,
m ` n1 “ n ` m1.

Adding these we get pk`"1q`pm`n1q “ p"`k1q`pn`m1q. Using associativity and
commutativity of natural number addition, pk`mq ` p"1 `n1q “ p"`nq ` pk1 `m1q.
Hence pk ` m, " ` nq „ pk1 ` m1, "1 ` n1q. !

Ideally, we should use a different symbol for addition, since we already used `
for the addition of natural numbers, but the following result shows that the new
addition is in fact an extension of the old addition. Recall that by putting on our
‘integer glasses’, the natural number n P N is the integer rp1,σpnqqs P Z.

Theorem 4.9. If m,n P N, then rp1,σpmqqs ` rp1,σpnqqs “ rp1,σpm ` nqqs.

N ˆ N N

Z ˆ Z Z
`

`
pm,nq m ` n

prp1,σpmqqs, rp1,σpnqqsq ÞÑ rp1 ` 1,σpmq ` σpnqqs
“ rp1,σpm ` nqs

`
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Proof. To show that rp1 ` 1,σpmq ` σpnqqs “ rp1,σpm ` nqqs, we must show
p1 ` 1,σpmq ` σpnqq „ p1,σpm ` nqq. But this is clear using the commutativity
and associativity of natural number addition:

p1 ` 1q ` σpm ` nq “ p1 ` 1q ` ppm ` nq ` 1q “ ppm ` 1q ` pn ` 1qq ` 1

“ pσpmq ` σpnqq ` 1. !

Example 4.5 (0 and additive inverses).

We define zero to be the integer 0 :“ rp1, 1qs P Z. For any integer a “ rpm,nqs P Z,

a ` 0 “ rpm,nqs ` rp1, 1qs “ rpm ` 1, n ` 1qs p˚q“ rpm,nqs “ a.

Justification of p˚q: pm ` 1, n ` 1q „ pm,nq because pm` 1q `n “ pn ` 1q ` m. In
Exercise 4.22, we’ll show that addition in Z is commutative, using which it follows
that 0 ` a “ a ` 0 “ a.

For an integer a “ rpm,nqs P Z, we define its additive inverse to be the3 integer
´a :“ rpn,mqs. Then we have

a ` p´aq “ rpm,nqs ` rpn,mqs “ rpm ` n, n ` mqs “ rp1, 1qs “ 0.

In particular, if n P N, and we view this as the integer rp1,σpnqqs, then its additive
inverse in Z is the integer rpσpnq, 1qs. !

Exercise 4.21. Prove that addition in Z is associative.

Exercise 4.22. Prove that addition in Z is commutative.

We now show that result that prompted the construction of Z.

Theorem 4.10. Let a,b P Z. Then there exists a unique solution x P Z to
a ` x “ b.

Proof. Set x :“ b` p´aq P Z. Then using the commutativity and associativity of
addition in Z, we obtain a ` x “ a ` pb ` p´aqq “ b ` pa ` p´aqq “ b ` 0 “ b.

To show uniqueness, suppose that x,x1 P Z are such that a ` x “ b “ a ` x1.
Adding ´a to both sides yields ´a ` pa ` xq “ ´a ` pa ` x1q, and thanks to
associativity, p´a ` aq ` x “ p´a ` aq ` x1, i.e., 0 ` x “ 0 ` x1. Thus x “ x1. !

Theorem 4.11. For any integer a P Z, one and exactly one of the following hold:

1˝ a “ rp1,σpkqqs for a k P N. pInteger corresponding to the natural number k P N.q
2˝ a “ 0.

3˝ a “ rpσpkq, 1qs “ ´rp1,σpkqqs for a k P N.
pAdditive inverse of the integer corresponding to the natural number k P N.q

3This is well-defined, since if pm, nq „ pm1, n1q, then pn,mq „ pn1, m1q.
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Proof. 1˝ and 2˝ are mutually exclusive, since otherwise p1,σpkqq „ p1, 1q, giving
1 ` 1 “ σpkq ` 1, so that σpkq “ 1, contradicting (N1). Similarly 2˝ and 3˝ are
mutually exclusive. Finally 1˝ and 3˝ are mutually exclusive, because otherwise
pσpk1q, 1q „ p1,σpkqq for some k, k1 P N, i.e., 1 ` k1 ` 1 ` k “ 1 ` 1, so that
σpk ` k1q “ 1, which is again a contradiction to (N1).

Let a “ rpm,nqs P Z. By the Trichotomy Law for N, one of the following hold:

1˝ m ă n. Then n “ m` k for some k P N. If m “ 1, then we have a “ rp1,σpkqqs.
If m ‰ 1, then m has a predecessor, say " P N, that is, m “ σp"q “ " ` 1, and
so a “ rp" ` 1, " ` 1 ` kqs “ rp1,σpkqqs.

2˝ m “ n. Then a “ 0.

3˝ m ą n. Just as in 1˝, if m “ n ` k, then we have a “ rpσpkq, 1qs. !

So the set Z is partitioned into three mutually disjoint subsets:

‚ the ‘positive integers’ (integers corresponding to the natural numbers),

‚ zero, and

‚ the ‘negative integers’ (additive inverses of the natural numbers).

Review the picture on page 94.

Multiplication of integers. To define multiplication formally, again we note
that we expect the product of rpm,nqs and rpk, "qs to be the integer (in elementary
school notation) p"´kqpn´mq “ "n`km´kn´ "m, that is, rpkn` "m,km` "nqs.
This motivates the following:

Definition 4.7 (Multiplication in Z).
The product a ¨ b of a “ rpk, "qs and b “ rpm,nqs P Z is defined to be the integer
a ¨ b “ rpk, "qs ¨ rpm,nqs :“ rpkn ` "m,km ` "nqs.

Again we need to check well-definedness.

Theorem 4.12 (Multiplication is well-defined).
If k, ",m, n, k1, "1,m1, n1 P N are such that pk, "q „ pk1, "1q and pm,nq „ pm1, n1q, then

pkn ` "m,km ` "nq „ pk1n1 ` "1m1, k1m1 ` "1n1q.

pThus rpk1n1 ` "1m1, k1m1 ` "1n1qs “ rpkn ` "m,km ` "nqs.q

Proof. As pk, "q „ pk1, "1q and pm,nq „ pm1, n1q,

k ` "1 “ " ` k1 p‹q
m ` n1 “ n ` m1. p‹‹q

We want to show pkn ` "m,km ` "nq „ pk1n1 ` "1m1, k1m1 ` "1n1q, that is,

kn ` "m ` k1m1 ` "1n1 “ km ` "n ` k1n1 ` "1m1. p˚q
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The terms on the left-hand side suggest considering n¨(‹), m¨(‹), k1¨(‹‹), "1¨(‹‹),
which are, respectively:

kn ` "1n “ "n ` k1n

"m ` k1m “ km ` "1m

k1m1 ` k1n “ k1n1 ` k1m

"1n1 ` "1m “ "1m1 ` "1n.

Adding these, we obtain

kn ` "m ` "1n1 ` k1m1

`pk1n ` "1m ` k1m ` "1nq

*
“

"
"n ` km ` k1n1 ` "1m1

`pk1n ` "1m ` k1m ` "1nq
and so by the additive cancellation rule in N, we obtain (˚). !

Next we show that multiplication in Z is an extension of the multiplication in N.

Theorem 4.13. If m,n P N, then rp1,σpmqqs ¨ rp1,σpnqqs “ rp1,σpmnqqs.

In the proof below, for simplicity, we have denoted multiplication in N also with a
¨ instead of the symbol ˆ used in the previous section.

Proof. We must show rp1¨ σpnq`σpmq¨1, 1¨1`σpmqσpnqqs “ rp1,σpmnqqs, that is,
pσpmq`σpnq, 1`σpmqσpnqq „ p1,σpmnqq, that is,

pσpmq`σpnqq`σpmnq “ p1`σpmqσpnqq`1.

But this is readily verified using the arithmetic rules in N:

pσpmq`σpnqq`σpmnq “ ppm`1q`pn`1qq`pmn`1q
“ mn`m¨1`1¨n`1¨1`1`1

“ mpn`1q`1pn`1q`1`1“pm`1qpn`1q`1`1

“ σpmqσpnq`1`1“p1`σpmqσpnqq`1. !

In accordance with what we are used to, we often skip writing ¨ to denote integer
multiplication.

Exercise 4.23. For all a,b, c P Z, show that

‚ (Associativity) apbcq “ pabqc.
‚ (Commutativity) ab “ ba.

‚ (Distributivity) apb ` cq “ ab ` ac.

Example 4.6 (Multiplicative identity).
We know that for any natural number n P N, 1ˆn “ n “ nˆ1. We now show that
if we view 1 P N as an integer, that is, 1 :“ rp1,σp1qqs “ rp1, 2qs, then it continues
to serve as a multiplicative identity, but now in the bigger set Z. Thus we want to
check that for all a “ rpm,nqs P Z, we have

a ¨ 1 “ a “ 1 ¨ a.
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We have m ¨ 2 “ m ¨ p1 ` 1q “ m ¨ 1 ` m ¨ 1 “ m ` m and n ¨ 2 “ n ` n. Thus

a ¨ 1 “ rpm,nqsrp1, 2qs “ rpm ¨ 2 ` n ¨ 1,m ¨ 1 ` n ¨ 2qs
“ rpm ` m ` n,m ` n ` nqs “ rpm,nqs,

where the last equality follows thanks to pm ` m ` n,m ` n ` nq „ pm,nq. !

Exercise 4.24. Let a,b P Z, and suppose that a “ 0 or b “ 0. Prove that a ¨ b “ 0.

The converse of the result from Exercise 4.24 holds.

Theorem 4.14. Let a,b P Z and a ¨ b “ 0. Then a “ 0 or b “ 0.

Proof. Let a “ rpk, "qs and b “ rpm,nqs. Then

rp1, 1qs “ 0 “ ab “ rpk, "qsrpm,nqs “ rpkn ` "m,km ` "nqs,

and so 1 ` km ` "n “ 1` kn ` "m, giving km ` "n “ kn ` "m. By the trichotomy
law, we have the following three mutually exclusive cases:

1˝ k “ ". Then a “ rpk, kqs “ rp1, 1qs “ 0. (Here we used pk, kq „ p1, 1q.)
2˝ k ą ". Then k “ " ` p for some p P N. Hence km ` "n “ kn ` "m gives

"m` pm` "n “ "n` pn` "m, i.e., pm “ pn by the additive cancellation rule.
The multiplicative cancellation rule gives m“n. So b“rpm,mqs“rp1, 1qs“0.

3˝ k ă ". Then " “ k ` q for some q P N. Hence km ` "n “ kn ` "m gives
km ` kn ` qn “ kn ` km ` qm, i.e., qn “ qm by the additive cancellation rule.
The multiplicative cancellation rule givesm“n. So b“rpm,mqs“rp1, 1qs “0. !

Exercise 4.25. Consider the set Cr0, 1s of all continuous functions on r0, 1s. For f, g P
Cr0, 1s, define f ¨g P Cr0, 1s by pf ¨gqpxq“fpxqgpxq for all x P r0, 1s. Let 0 P Cr0, 1s be the
function that is identically 0. Give an example to show that f ¨ g “ 0, but neither f nor g
equals 0.

Exercise 4.26 (Multiplicative cancellation rule).
Let a P Zzt0u, b, c P Z be such that ab “ ac. Show that b “ c. Hint: Bring to one side.

Order. We can extend the order relation from N to Z as follows. Given a,b P Z,
we say a ă b if for some n P N, b “ a ` rp1,σpnqqs. We write equivalently b ą a.

Exercise 4.27. Let m,n P N. Show that m ă n if and only if rp1,σpmqqs ă rp1,σpnqqs.
Hint: E.g. use Theorem 4.9.

Exercise 4.28 (Transitivity of ă).
Let a,b, c P Z be such that a ă b and b ă c. Show that a ă c. Hint: Use Theorem 4.9.

Exercise 4.29. Let a,b, c P Z be such that a ă b and c ą 0. Show that a ¨ c ă b ¨ c.

Exercise 4.30.
Let a P Z and 1 “ rp1, 2qs. Show that there is no b P Z such that a ă b ă a ` 1.
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Theorem 4.15 (Trichotomy Law).
Let a,b P Z. Then one and exactly one of the following holds:

1˝ a ă b.

2˝ a “ b.

3˝ a ą b.

Proof. By Theorem 4.10, there exists a unique x P Z such that b “ a ` x. By
Theorem 4.11, for the integer x, there holds one and exactly one of the following
three mutually exclusive options:

1˝˝ x “ rp1,σpkqqs for some k P N. Then a ă b, that is, 1˝ holds.

2˝˝ x “ 0. Then b “ a, that is, 2˝ holds.

3˝˝ a “ rpσpkq, 1qs for some k P N. Then case 3˝ holds, namely a ą b, because

b ` rp1,σpkqqs “ pa ` xq ` rp1,σpkqqs “ a ` px ` rp1,σpkqqsq
“ a ` rpσpkq`1, 1`σpkqqs “ a ` rp1, 1qs “ a ` 0 “ a. !

Exercise 4.31. Let a,b P Z. Show that the following are equivalent:
(1) a ¨b ą 0.
(2) ra ą 0 and b ą 0s or ra ă 0 and b ă 0s.

Exercise 4.32. Show that p´1qp´1q “ 1.

Exercise 4.33. Let a P Z. Prove that p´1qa “ ´a.

Exercise 4.34 (Failure of theWell-Ordering Principle for Z).
If S is a nonempty subset of Z, then an element ! P S is called a least element of S if for
all n P S, ! ď n. Show that S :“ Z does not have a least element.

Exercise 4.35.(˚)(Validity of the Well-Ordering Principle for subsets of Z bounded below).
Let S be a nonempty subset of Z, which has a lower bound, namely an element ! P Z such
that ! ďm for allm P S. Show that S has a least element. Hint: Consider tm´! : m P Su.

Example 4.7. There is no integer x P Z such that 2 ¨x “ 1, where 2 “ rp1,σp2qqs
and 1 “ rp1,σp1qqs. Indeed, as 1 ą 0 and 2 ą 0, it follows from Exercise 4.31 that
x ą 0. So x “ rp1,σpnqqs for some n P N. Clearly n ‰ 1 (otherwise 2 ¨ x “ 2 ‰ 1).
So n has a predecessor, say " P N. Then x “ rp1, 2qs ` rp1,σp"qs, showing x ą 1.
By Exercise 4.29, 2 ¨ x ą 2 ¨ 1 “ 2 ą 1. By the Trichotomy Law, 2 ¨ x ‰ 1. !

The previous example shows that given a,b P Z, with a ‰ 0, the equation a ¨x “ b
in the unknown x P Z is not always solvable. The set Q of rational number remedies
this ‘flaw’ with integers. In the next section, we will learn about the construction
of Q and its arithmetic. From now on, for n P N, we will often denote the integer

rp1,σpnqqs by n,
rp1, 1qs by 0,

rpσpnq, 1qs by ´n.

By Theorem 4.11, Z“t¨ ¨ ¨ ,´3,´2,´1, 0, 1, 2, 3, ¨ ¨ ¨ u. The elements of t1, 2, 3, ¨ ¨ ¨ u
are called the positive integers, and those of t´1,´2,´3, ¨ ¨ ¨ u the negative integers.
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4.4. Rational numbers

From elementary school, we think of a fraction as an expression n
d , where n P Z,

d P Zzt0u. Two fractions n
d ,

n1

d1 are deemed to be equivalent/same if nd1 “ n1d.
We now formalise this by starting with the ‘equivalence relation’ that produces
equivalence classes of fractions that are equivalent, and then formally define Q
as the set of these equivalence classes. Then we formally define addition and
multiplication in Q.

Definition 4.8 (Equivalence relation „ on ZˆpZzt0uq).
The relation „ on ZˆpZzt0uq is defined as follows: pn, dq „ pn1, d1q if nd1 “ n1d.

Proposition 4.16. „ is an equivalence relation on Z ˆ pZzt0uq.

Proof.
Reflexivity: For pn, dq P Z ˆ pZzt0uq, clearly pn, dq „ pn, dq (as nd “ nd).

Symmetry: Let pn, dq, pn1, d1q P Z ˆ pZzt0uq be such that pn, dq „ pn1, d1q, so that
nd1 “ n1d. Then n1d “ nd1, and so pn1, d1q „ pn, dq.
Transitivity: Let pn, dq, pn1, d1q, pn2, d2q P Z ˆ pZzt0uq be such that pn, dq „ pn1, d1q
and pn1, d1q „ pn2, d2q. Then nd1 “ n1d and n1d2 “ n2d1.

1˝ n1 “ 0. From nd1 “ n1d “ 0d “ 0, we conclude that n “ 0 (because d1 ‰ 0).
Similarly, n2d1 “ n1d2 “ 0d2 “ 0 implies that n2 “ 0 (because d1 ‰ 0). But then
nd2 “ 0d2 “ 0 “ 0d “ n2d, so that pn, dq „ pn2, d2q.

2˝ n1 ‰ 0. We have pnd1qpn1d2q “ pn1dqpn2d1q, that is, pnd2qpn1d1q “ pn2dqpn1d1q. As
n1 ‰ 0 and d1 ‰ 0, by the cancellation rule nd2 “ n2d, i.e., pn, dq „ pn2, d2q. !

Exercise 4.36. Let pn, dq P Z ˆ pZzt0uq and m P Zzt0u. Show that pn, dq „ pmn,mdq.

Definition 4.9 (The setQ of rational numbers).
Each equivalence class of Z ˆ pZzt0uq under the equivalence relation „ is called a
rational number. The set of all rational numbers is denoted by Q. The equivalence
class rpn, dqs of pn, dq P Z ˆ pZzt0uq is denoted by n

d .

Remark 4.4.

(a) The choice of the letter Q is motivated by thinking of rnd s as a ‘quotient’.

(b) If pn, dq P Z ˆ pZzt0uq, then p´ nq d “ pp´1q nq d “ npp´1q dq “ np´ dq, and
so pn, dq „ p´ n,´ dq. Thus r “ n

d “ ´n
´d . Consequently, for r P Q, we can

always write r “ n
d , where n P Z and d P t1, 2, 3, ¨ ¨ ¨ u. ˚

Addition and multiplication of rationals. In elementary school, we learn that
the sum of fractions is defined by

n

d
` p

q
“ nq ` pd

dq
.

We formalise this below.
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Definition 4.10 (Addition in Q). For r :“ n
d P Q and s :“ p

q P Q, we define

r ` s “
n

d
`

p

q
:“

nq ` pd

dq
.

Note that if d ‰ 0 and q ‰ 0, then dq ‰ 0.

Exercise 4.37 (Addition is well-defined).
Show that if pn, dq, pn1, d1q, pp, qq, pp1, q1q in Z ˆ pZzt0uq are such that pn, dq „ pn1, d1q and
pp, qq „ pp1, q1q, then pnq ` pd, dqq „ pn1q1 ` p1d1, d1q1q.

It can be shown that addition in Q is commutative and associative. Define the zero
element 0 “ 0

1 P Q. Let r “ n
d P Q. Then r ` 0 “ r “ 0 ` r. Indeed,

r ` 0 “
n

d
`

0

1
“

n ¨ 1 ` 0 ¨ d
d ¨ 1

“
n ` 0

d
“

n

d
“ r.

Exercise 4.38. For r “ n
d P Q, define ´ r “ ´n

d P Q. Show that this is well-defined.
Prove that r ` p´rq “ 0.

Definition 4.11 (Multiplication in Q). For r :“ n
d and s :“ p

q in Q, we define

r ¨ s “
n

d
¨
p

q
:“

np

dq
.

Exercise 4.39 (Multiplication is well-defined).
Show that if pn, dq, pn1, d1q, pp, qq, pp1, q1q in Z ˆ pZzt0uq are such that pn, dq „ pn1, d1q and
pp, qq „ pp1, q1q, then pnp, dqq „ pn1p1, d1q1q.

It can be checked that multiplication is commutative and associative.

Exercise 4.40 (Distributive law in Q). Let r, r1, s P Q. Show that pr` r1q ¨ s “ r ¨ s` r1 ¨ s.

The rational number 1 :“ 1
1 P Q serves as the multiplicative identity in Q. Indeed,

for all r “ n
d P Q, we have r ¨ 1 “ r “ 1 ¨ r:

n

d
¨ 1
1

“ n¨1
d¨1

“ n

d
.

Every nonzero rational number has a ‘reciprocal/multiplicative inverse’.

Theorem 4.17. Let r P Qzt0u. Then there exists a unique rational number,
denoted by r´1 P Q, such that r ¨ r´1 “ 1 “ r´1 ¨ r.

Proof.

Existence: Let r“ n
d . As r‰0, n‰0. (Otherwise r“ n

d “ 0
d “ 0

1 “0, as 0¨1“0“d¨0.)
Set r´1 “ d

n P Q. Then

r ¨ r´1 “ n

d
¨ d
n

“ nd

dn

p˚q“ 1

1
“ 1,

where (˚) holds since pnd, dnq „ p1, 1q. By commutativity, also r´1 ¨ r “ 1.

Uniqueness: Suppose s P Q is such that r ¨ s “ 1 “ s ¨ r. Then
r´1 “ 1 ¨ r´1 “ ps ¨ rq ¨ r´1 “ s ¨ pr ¨ r´1q “ s ¨ 1 “ s. !
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Next we show that Q does the job that prompted its construction.

Theorem 4.18. Let a P Qzt0u and b P Q. Then there exists a unique solution
x P Q to the equation a ¨ x “ b.

Proof. Set x :“ a´1 ¨ b P Q. Then a ¨ x “ a ¨ pa´1 ¨ bq “ pa ¨ a´1q ¨ b “ 1 ¨ b “ b.

Also, if x1 is a solution, then x1 “ 1 ¨ x1 “ pa´1 ¨ aq ¨ x1 “ a´1 ¨ pa ¨ xq “ a´1 ¨b. !

Finally, we show that Z can be thought of as a subset of Q.

Theorem 4.19. The map Z Q n ÞÑ
n

1
P Q is injective. Moreover, for m,n P Z,

m

1
` n

1
“ m ` n

1
, and

m

1
¨ n
1

“ mn

1
.

Proof. Suppose for n, n1 P Z, n
1 “ n1

1 . Then pn, 1q „ pn1, 1q. So n“n¨1“n1 ¨1“n.
Hence the map Z Q n ÞÑ n

1 P Q is injective. Moreover,

m

1
` n

1
“ m ¨ 1 ` n ¨ 1

1 ¨ 1
“ m ` n

1
, and

m

1
¨ n
1

“ m ¨ n
1 ¨ 1

“ mn

1
. !

Order. We now extend the order relation from Z to Q. Given rational numbers

r “ m

n
and s “ p

q
,

where m,n, p, q are integers and n, q are positive integers, then r ă s if mq ă pn.
If r ă s, we write equivalently s ą r. Let us check the notion is well-defined. Let

‚ m1

n1 “ m

n
, where n1 is a positive integer, and

‚ p1

q1 “ p

q
, where q1 is a positive integer.

We want to show m1q1 ă p1n1. As mq ă np, and as n1, q1 are postive integers, it
follows from Exercise 4.29 that mqn1q1ănpn1q1, that is, pmn1qqq1ăppq1qnn1. Using
m1n “ mn1 and pq1 “ p1q, we obtain pm1nqqq1 ă pp1qqnn1, i.e., pm1q1qnq ă pp1n1qnq.
Hence m1q1 ă p1n1. (Otherwise, by the Trichotomy Law m1q1 ě p1n1. As n, q are
positive integers, Exercise 4.29 implies pm1q1qnq ě pp1n1qnq, a contradiction.)

It is clear that for m,n P Z, m ă n in Z if and only if m
1 ă

n
1 in Q.

Exercise 4.41 (Transitivity ofă inQ).
Let r, s, t P Q be such that r ă s and s ă t. Show that r ă t.

Exercise 4.42 (Trichotomy law).
Show that for any rational numbers r, s P Q, one and exactly one of the following holds:

1˝ r ă s 2˝ r “ s 3˝ r ą s.

Exercise 4.43. Let r, s, t P Q. Prove that if r ă s, then r ` t ă s ` t.

Exercise 4.44. Let r, s P Q and răs. Show that if t P Q is such that tą0, then rtăst.

Exercise 4.45. Let r, s P Q and r ă s. Show that there exists a t P Q such that r ă t ă s.
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In the light of Exercise 4.36, we know that given any rational number r P Q, we
have a unique pair n, d P Z such that d is a positive integer, n, d have no common
divisor other than 1, and

r “ n

d
.

We have also seen that

‚ Q does not have the least upper bound property (Example 1.13), and

‚ not all Cauchy sequences in Q are convergent with a limit in Q (Exercise 4.5).

But in order to do Analysis, it is convenient to work with a number system which
has these two properties listed above. This ‘(analytical) flaw’ of Q is remedied
by the set of real numbers. From now onwards, we will denote rational numbers
simply using ordinary font letters such as r, s, t, ¨ ¨ ¨ (instead of boldface r, s, t, ¨ ¨ ¨ ).

4.5. Real numbers

Finally we have reached the point where we can learn about the construction of the
most important number system from the point of view of Mathematical Analysis,
namely the real number system R. Roughly speaking, the set of real numbers
are the numbers to which Cauchy sequences in Q ‘want to converge to’. As these
limits may not be rational, we just name/label these numbers by the whole Cauchy
sequence in Q itself! But then two Cauchy sequences in Q might want to converge
to the same thing (e.g. think of panqnPN and pan ` 1

nqnPN), and so we ought not to
distinguish between such two Cauchy sequences. So we must build an equivalence
relation „ on Cauchy sequences (so that

panqnPN „ pbnqnPN if lim
nÑ8

pan ´ bnq “ 0,

and consider the real numbers as equivalence classes of Cauchy sequences under
this equivalence relation. We had met this equivalence relation „ in Exercise 4.5,
where we checked that this is indeed an equivalence relation. However, over there
we viewed the convergence using the notion of convergence of a sequence of real
numbers (so that the ε ą 0 was a real number). But since we are trying to
construct the reals, we are only allowed to use rational numbers. So we need to
restrict ourselves to ε that are rational in the definition of convergence. We do this
carefully below.

Definition 4.12.
‚ A Cauchy sequence in Q is a sequence panqnPN of rational numbers such that for
every rational εą0, there exists an N P N such that whenever m,nąN , we have
|an ´ am| ă ε. The set of all Cauchy sequences in Q is denoted by C.

‚ Let r P Q. A sequence panqnPN in Q converges to r in Q if for every rational
ε ą 0, there exists an N P N such that for all n ą N , |an ´ r| ă ε.

‚ The relation „ on C is defined as follows: panqnPN „ pbnqnPN if the sequence
pan ´ bnqnPN converges to 0 in Q.
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Exercise 4.46. Let panqnPN, pbnqnPN be Cauchy sequences in Q. Show that pan ` bnqnPN
is Cauchy sequence in Q too.

Proposition 4.20. Every Cauchy sequence in Q is bounded.

Proof. Let panqnPN be a Cauchy sequence in Q. Choose a rational εą0, say ε“1.
Then there exists an N P N such that for all n,m ą N , we have |an ´ am| ă ε “ 1.
In particular, with m “ N `1 ą N , and n ą N , |an ´ aN`1| ă 1. Hence by the
Triangle Inequality4 in Q, for all n ą N ,

|an| “ |an ´ aN`1 ` aN`1| ď |an ´ aN`1| ` |aN`1| ă 1 ` |aN`1|.

On the other hand, for n ď N , |an| ď maxt|a1|, . . . , |aN |, |aN`1| ` 1u “: M ą 0.
Consequently, |an| ďM (n P N), that is, the sequence panqnPN is bounded. !

Exercise 4.47. Let panqnPN and pbnqnPN be Cauchy sequences in Q. Show that panbnqnPN
is Cauchy sequence in Q too.

Exercise 4.48. Suppose that panqnPN and pbnqnPN are sequences in Q such that panqnPN
(respectively pbnqnPN) converges in Q to ra P Q (respectively rb P Q).

(1) Show that the limit is unique: If panqnPN converges in Q to r1
a P Q, then ra “ r1

a.

(2) Show that p´anqnPN converges to ´ra.

(3) Show that pan ` bnqnPN converges to ra ` rb.

Exercise 4.49. Show that „ is an equivalence relation on C.

Definition 4.13 (The set of real numbers).
A real number is an equivalence class of C under the relation „. If panqnPN P C,
rpanqnPNs denotes the real number which is the equivalence class of C containing
the sequence panqnPN. The set of all real numbers is denoted by R.

The set of real numbers is supposed to be an extension of the rational numbers Q,
that is, we want to see that Q ‘Ă ’ R. Given a rational number r P Q, the constant
sequence r, r, r, ¨ ¨ ¨ , that is, prqnPN, is a Cauchy sequence in Q. Thus rprqnPNs is a
real number. We have the following.

Proposition 4.21. The map Q Q r ÞÑ rprqnPNs P R is injective.

Proof. Let r, s P Q be such that rprqnPNs “ rpsqnPNs. Then prqnPN „ psqnPN. So

lim
nÑ8

pr ´ sq “ 0.

But the constant sequence r ´ s, r ´ s, r ´ s, ¨ ¨ ¨ converges in Q to r ´ s. By the
uniqueness of limits, r ´ s “ 0, that is, r “ s. !

4The proof of the Triangle Inequality is exactly the same, replacing ‘real/R’ everywhere by
‘rational/Q’. Note that we are not allowed to use reals yet, and so we can’t just specialise the Trian-
gle Inequality for R to the rationals.
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Addition and multiplication. Clearly, if addition in R is to respect the addition
in Q, we must have that for r, s P Q, rprqnPNs ` rpsqnPNs should equal rpr ` sqnPNs.
Similarly, rprqnPNs ¨ rpsqnPNs should equal rprsqnPNs. This motivates the following.

Definition 4.14. The sum of the real numbers rpanqnPNs and rpbnqnPNs is given by

rpanqnPNs ` rpbnqnPNs “ rpan ` bnqnPNs.

The product of the real numbers rpanqnPNs and rpbnqnPNs is defined by

rpanqnPNs ¨ rpbnqnPNs “ rpanbnqnPNs.

As usual, we have to check well-definedness. We leave this as an exercise for addi-
tion, but give an argument below for multiplication. Let rpanqnPNs “ rpa1

nqnPNs P R
and rpbnqnPNs “ rpb1

nqnPNs P R. The idea is to use the inequality

|a1
nb

1
n ´ anbn| “ |a1

nb
1
n ´ a1

nbn ` a1
nbn ´ anbn| ď |a1

n||b1
n ´ bn| ` |a1

n ´ an||bn|

and the boundedness of the terms a1
n, bn to show panbnqnPN „ pa1

nb
1
nqnPN. We carry

out the details below.

As pa1
nqnPN is Cauchy, it is bounded, and let A1 ą 0 be a rational number such

that |a1
n| ă A1 for all n P N. Similarly, pbnqnPN is bounded, and let B ą 0 be a

rational number such that |bn| ă B for all n P N. Let ε ą 0 be a rational number.
As panqnPN „ pa1

nqnPN, we have that pan ´ a1
nqnPN converges in Q to 0. So for the

rational ε
2B ą 0, there exists an Na P N such that |a1

n ´ an| ă ε
2B . Similarly, as

pbnqnPN „ pb1
nqnPN, we have that for the rational ε

2A1 ą 0, there exists an Nb P N
such that |b1

n ´ bn| ă ε
2A1 . Set N “ Na ` Nb. For all n ą N , we have

|a1
nb

1
n ´ anbn| “ |a1

nb
1
n ´ a1

nbn ` a1
nbn ´ anbn| ď |a1

n||b1
n ´ bn| ` |a1

n ´ an||bn|

ď A1|b1
n ´ bn| ` |a1

n ´ an|B ă A1 ε

2A1 ` ε

2B
B “ ε.

Thus panbnqnPN „ pa1
nb

1
nqnPN.

Exercise 4.50 (Addition is well-defined).
Let panqnPN „ pa1

nqnPN and pbnqnPN „ pb1
nqnPN. Show that pan ` bnqnPN „ pa1

n ` b1
nqnPN.

Example 4.8 (The real numbers 0 and 1). We define the real numbers 0 “ rp0qnPNs
and 1 “ rp1qnPNs. Then for every real number x P R, we have

0 ` x “ r “ x ` 0, and

1 ¨ x “ r “ x ¨ 1.

Thus 0 serves as the additive identity and 1 serves as the multiplicative identity.
Clearly 1 ‰ 0 because the sequence p1 ´ 0qnPN converges in Q to 1 ‰ 0. !
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The set R, together with the operations `, ¨ : R ˆ R Ñ R forms a ‘field’, i.e., the
following hold.

`

$
’’’’&

’’’’%

(F1) (Associativity) For all x,y, z P R, x ` py ` zq “ px ` yq ` z.
(F2) (Additive identity) For all x P R, x ` 0 “ x “ 0 ` x.
(F3) (Inverses) For all x P R, there exists ´ x P R

such that x ` p´xq “ 0 “ ´x ` x.
(F4) (Commutativity) For all x,y P R, x ` y “ y ` x.

¨

$
’’’’&

’’’’%

(F5) (Associativity) For all x,y, z P R, x ¨ py ¨ zq “ px ¨ yq ¨ z.
(F6) (Multiplicative identity) 1 ‰ 0 and for all x P R, x ¨ 1 “ x “ 1 ¨ x.
(F7) (Inverses) For all x P Rzt0u, there exists x´1 P R

such that x ¨ x´1 “ 1 “ x´1 ¨ x.
(F8) (Commutativity) For all x,y P R, x ¨ y “ y ¨ x.

`, ¨
"
(F9) (Distributivity) For all x,y, z P R, x ¨ py ` zq “ x ¨ y ` x ¨ z.

In fact, if we replace everywhere R by Q (and 1,0 by the rational numbers 1, 0,
respectively), then the set Q of rational numbers with their addition and multi-
plication, also satisfy the same properties. We say that pQ,`, ¨q is also a field.
(However, pZ,`, ¨q is not a field, because multiplicative inverses don’t always exist:
we had seen that the equation 2x “ 1 has no solution x P Z.)

We will not check each the above, as they essentially follow by ‘termwise ver-
ifications’, and by using the corresponding properties from the field of rationals.
We remark that the additive inverse of x “ rpanqnPNs is ´x :“ rp´anqnPNs. Let us
show the existence of multiplicative inverses for nonzero reals. First we prove the
following lemma.

Lemma 4.22. Let x P R be such that x ‰ 0. If panqnPN P x, then there exists a
rational d ą 0 and an N P N such that for all n ą N, |an| ą d.

Proof. As rpanqnPNs “ x ‰ 0 “ rp0qnPNs, we have *ppppanqnPN „ p0qnPN qqq, i.e.,

*ppppan ´ 0qnPN converges in Q to 0qqq, i.e.,
*ppp@ rational ε ą 0, DN P N such that @n ą N, |an ´ 0| ă εqqq, i.e.,

Thus

D rational ε ą 0 such that @N P N, Dn ą N such that |an ´ 0| ě ε. p‹q

Since panqnPN P C, for the rational ε{2 ą 0, there exists an N˚ P N such that for all
n,m ą N˚, |an ´ am| ă ε

2 . From (‹), taking N “ N˚, there exists n˚ ą N˚ such
that |an˚ ´ 0| ě ε. Hence for n ą N˚, we have

|an| “ |an ´ an˚ ` an˚ | ě |an˚ | ´ |an ´ an˚ | ě ε ´ ε

2
“ ε

2
“: d. !

Proposition 4.23. Let the real number x ‰ 0. Then there exists an x´1 P R such
that x ¨ x´1 “ 1 “ x´1 ¨ x.
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Proof. Let x “ rpanqnPNs. By Lemma 4.22 there exists a rational d ą 0 and an
N P N such that |an| ą d for all n ą N . In particular, an ‰ 0 for all n ą N . Set5

bn :“
"

0 if 1 ď n ď N,
a´1
n if n ą N.

Then pbnqnPN is a Cauchy sequence in Q. Firstly, for n,m ą N ,

|bn ´ bm| “
ˇ̌
ˇ
1

an
´ 1

am

ˇ̌
ˇ “ |an ´ am|

|an||am|
ď |an ´ am|

d2
.

Secondly, as panqnPN is a Cauchy sequence in Q, given a rational ε ą 0, there exists
an M P N such that for all n,m ąM , |an´am| ă εd2. Hence for all n,m ą N `M ,

|bn ´ bm| ď
|an ´ am|

d2
ă

εd2

d2
“ ε.

Consequently, pbnqnPN is a Cauchy sequence in Q. We have6

anbn :“
"

0 if 1 ď n ď N,
1 if n ą N.

Hence panbnqnPN converges in Q to 1. So rpanbnqnPNs “ 1. Set x´1 :“ rpbnqnPNs.
Then we have x ¨ x´1 “ 1 “ x´1 ¨ x. !

Exercise 4.51 (Distributive law). Let a,b, c P R. Prove that a ¨ pb ` cq “ a ¨ b ` a ¨ c.

Order. To compare real numbers x “ rpanqnPNs and y “ rpbnqnPNs, we would like
to use the order relation ă on Q. If we try to define x ă y by saying that for all
n P N, an ă bn, then this will not be a well-defined notion. Indeed, changing the
first few terms of panqnPN we could easily violate this, without changing rpanqnPNs.
Intuitively, x is the real number that panqnPN converges to. So thinking formally

‘x “ lim an’, ‘y “ lim bn’,

we would say x ă y if ‘ lim an ă lim bn’, that is,

‘ limpbn ´ anq ą 0’.

But from our former intuition with limits, we know that this means that for all
large enough n P N, bn ´ an stays away from 0 by some positive distance d, say.
This motivates the following.

Definition 4.15. Let x “ rpanqnPNs and y “ rpbnqnPNs be real numbers. Then
x ă y if there exists a rational number d ą 0 and an N P N such that for all
n ą N , bn ´ an ą d. If x ă y, we write equivalently y ą x.

Let us show that this is a well-defined notion.

5Although we set bn “ 0 for 1 ď n ď N here, any arbitrary N rational numbers can be specified here.
6Had we specified b1, ¨ ¨ ¨ , bN arbitrarily, we would get a bunch of initial terms anbn for 1 ď n ď N ,

but this won’t affect the rest of the proof.
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Proposition 4.24. Let rpanqnPNs “ rpa1
nqnPNs P R and rpbnqnPNs “ rpb1

nqnPNs P R.
Suppose that there exists a rational number d ą 0 and an N P N such that for all
n ą N , bn ´ an ą d. Then there exists a rational number d1 ą 0 and an N 1 P N
such that for all n ą N 1, b1

n ´ a1
n ą d1.

Proof. As panqnPN „ pa1
nqnPN, we know that pan ´ a1

nqnPN converges in Q to 0.
So for the rational d{4 ą 0, there exists an Na P N such that for all n ą Na,
|an ´ a1

n| ă d{4, i.e., ´d{4 ă an ´ a1
n ă d{4. In particular

an ´ a1
n ą ´

d

4
for all n ą Na. p˚q

Similarly, pbnqnPN „ pb1
nqnPN yields the existence of an Nb P N such that

b1
n ´ bn ą ´

d

4
for all n ą Nb. p˚˚q

Set N 1 “ Na ` Nb ` N . Then for all n ą N 1, using (˚) and (˚˚), we have

b1
n ´ a1

n “ bn ´ an ` b1
n ´ bn ` an ´ a1

n ą d ´ d

4
´ d

4
“ d

2
ą 0.

So with the rational d1 :“ d
2 ą 0, for all n ą N 1, we have b1

n ´ a1
n ą d1. !

Exercise 4.52. Show that if r, s P Q and r ă s, then rprqnPNs ă rpsqnPNs.
(In particular, for the real numbers 0,1, we have 0 ă 1.)

Exercise 4.53 (Transitivity of ă).
Let x,y, z P R be such that x ă y and y ă z. Prove that x ă z.

Theorem 4.25 (Trichotomy Law).
Let x,y P R. Then one and exactly one of the following hold:

1˝ x ă y. 2˝ x “ y. 3˝ x ą y.

Proof. Let x “ rpanqnPNs and y “ rpbnqnPNs. If x “ y, then pan ´bnqnPN converges
in Q to 0. Let us show that *px ą yq. Indeed, otherwise there exists a rational
d ą 0 and an N P N such that an ´ bn ą d for all n ą N . But then taking the
rational ε :“ d{2 ą 0, we get, thanks to the convergence of pan ´ bnqnPN, that there
is an N 1 P N such that for all n ą N 1, |an ´ bn| ă d{2. So with n “ N ` N 1,
we arrive at the contradiction that d ă an ´ bn ď |an ´ bn| ă d{2. So if x “ y,
then *px ą yq. Interchanging the roles of x,y, we also have that if x “ y, then
*px ă yq. Let us also note that if x ă y, then *py ă xq: Otherwise there exist
rational d, d1 ą 0 and N,N 1 P N such that for all n ą N we have bn ´ an ą d,
and for all n ą N 1, we have an ´ bn ą d1, so that with n :“ N ` N 1, we get
d1 ă an ´ bn ă ´d, giving 0 ą d ` d1 ą d ` 0 “ d, a contradiction.

Let rpanqnPNs :“ x ‰ y “: rpbnqnPNs. Then it is not the case that the sequence
pan ´ bnqnPN converges in Q to 0. Thus there exists a rational ε˚ ą 0 such that

for all N P N, there exists an n ą N such that |an ´ bn| ě ε˚. p‹q
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As panqnPN is Cauchy, there exists an Na P N such that for all m,n ą Na, we have
|an ´ am| ă ε˚{4, i.e., ´ε˚{4 ă an ´ am ă ε˚{4. In particular, an ´ am ą ´ε˚{4 for
all n,m ą N . Similarly, as pbnqnPN is Cauchy, there exists an Nb P N such that for
all m,n ą Nb, |bn ´ bm| ă ε˚{4, giving in particular bn ´ bm ą ´ε˚{4. Now take
N “ Na ` Nb in (‹). Then there exists an n˚ ą N such that |an˚ ´ bn˚ | ě ε˚ ą 0.
In particular, an˚ ´ bn˚ ‰ 0. So by the trichotomy law for ă in Q, we have the
following two mutually exclusive possible cases:

1˝ an˚ ´ bn˚ą0. Then an˚ ´ bn˚ “|an˚ ´ bn˚ |ěε˚. For all mą n˚ (ąN “Na`Nb),

am ´ bm “ an˚ ´ bn˚ ` am ´ an˚ ` bn˚ ´ bm ą ε˚ ´ ε˚
4 ´ ε˚

4 “ ε˚
2 “: d.

So for all m ą n˚, we have that am ´ bm ą d, showing x ą y.

2˝ an˚ ´ bn˚ă0. Then bn˚ ´ an˚ “|an˚ ´ bn˚ |ěε˚. For all mą n˚ (ąN “Na`Nb),

bm ´ am “ bn˚ ´ an˚ ` bm ´ bn˚ ` an˚ ´ am ą ε˚ ´ ε˚
4 ´ ε˚

4 “ ε˚
2 “: d.

So for all m ą n˚, we have that bm ´ am ą d, showing y ą x. !

Definition 4.16 (The set P of positive reals). We define P :“ tx P R : x ą 0u.
Exercise 4.54. Let x,y P P. Show that x ` y P P and x ¨ y P P.

Exercise 4.55. Let x P R be such that x ą 0. Prove that there exists an r P Q such that
0 ă rprqnPNs ă x. We write this succinctly as 0 ă r ă x.

Exercise 4.56. Let panqnPN be a Cauchy sequence in Q. Suppose there exists an N P N
such that for all n ą N , we have an ě 0. Show that the real number x “ rpanqnPNs ě 0.

Exercise 4.57. Find all positive real x, y such that

log3 x ` log2 y “ 2,

3x ´ 2y “ 23.

Hint: One solution is px, yq “ p3, 2q. Use the second equation to show that x ą 3 forces
y ą 2, violating the first equation. The case x ă 3 is handled similarly.

Exercise 4.58 (No order for C). A field F is called ordered if there is a subset P Ă F,
called the set of positive elements of F, satisfying the following:

(P1) For all x, y P P , x ` y P P .

(P2) For all x, y P P , x ¨ y P P .

(P3) For each x P P , one and only one of the following three cases is true:

1˝ x “ 0. 2˝ x P P. 3˝ ´ x P P.

(Once one has an ordered set of elements in a field, one can compare the elements of F by
defining a relationąP in F by setting y ąP x for x, y P F if y´x P P .)
Show that C is not an ordered field. Hint: Consider x :“ i, and first look at x ¨ x.

(˚) The least upper bound property of R. Finally we are ready to prove
the ultimate goal, namely the least upper bound property of R. This is a bit
technical, and so we relegate the proof to an appendix to this chapter. This part
can be skipped (as it is non-examinable), but we give the proof here for the sake
of ‘completeness’. Thus in the appendix on pages 123-126, the interested student
will find the proof of the following important result.
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Theorem 4.26 (Least upper bound property of R).
Every nonempty subset of R which is bounded above has a supremum.

We reiterate that in Example 1.13 we had seen that Q does not possess the Least
Upper Bound Property. So this ‘analytical flaw’ of the rational number system is
remedied by the set of real numbers. Moreover, we had seen that not all Cauchy
sequences in Q converge in Q. In contrast, we have the following happy situation
in R.

Exercise 4.59. (˚) (tCauchy sequences in Ru “ tconvergent sequences inRu).
A sequence panqnPN of real numbers is said to be a Cauchy sequence in R if for every real
ε ą 0, there exists an N P N such that for all m,n ą N , we have |am ´ an| ă ε.

(1) Every convergent sequence in R is a Cauchy sequence in R.

Suppose the real sequence panqnPN is a Cauchy sequence in R.

(2) Show that panqnPN is bounded. Proceed as in Proposition 4.20.

(3) Show that panqnPN has a convergent subsequence (say pank
qkPN, converging to L P R).

Hint: Use Theorems 2.7 and 2.3.

We claim that by virtue of the fact that panqnPN is Cauchy, panqnPN is itself convergent,
with the same limit L (of its convergent subsequence pank

qkPN from part (3)). Let ε ą 0.
Then there exists an N P N such that for all n,m ą N ,

|an ´ am| ă
ε

2
. p‹q

As pank
qkPN converges to L, there exists an nKąN so that |anK

´L|ă ε
2 . Takingm “ nK in

(‹), for all n ą N we have |an´L|“|an´anK
`anK

´L| ď |an´anK
|`|anK

´L|ă ε
2

` ε
2

“ε.
Thus panqnPN is also convergent with limit L.

From now on, we will revert back to the notations we are used to for numbers
from the various number systems. Otherwise, to speak even about the rational
number ´1{3 as a real number, we would think of it as ‘the equivalence class of
the constant sequence of the rational numbers ´1

3 , and each term here, namely the
rational number ´1

3 , is the equivalence class of the ordered pair of integers p´1, 3q,
where the integer ´1 is the equivalence class of the pair of natural numbers p2, 1q
and the integer 3 is ¨ ¨ ¨ ’. Moreover, all these equivalence relations are on different
sets, and we have indicated this below using various colours:

pR Qq ´ 1

3
is rrprp2, 1qs, rp1, 4qsqs, rprp2, 1qs, rp1, 4qsqs, rprp2, 1qs, rp1, 4qsqs, ¨ ¨ ¨ s.

We cannot sensibly proceed by insisting on using the more accurate right-hand
side notation. The main point of this chapter so far was to learn precisely about
the various number systems, their operations and properties. So everything we
are allowed to use has been justified, and if challenged, we know how the number
systems are defined, and how their properties are proved. Having established the
properties possessed by the number systems, we now carry on by relying on the
succinct notation, and sticking to the properties we have justified.
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4.6. Irrational numbers and the Rational Zeroes Theorem

While Q Ă R and is a smaller field inside the bigger field R, its complement RzQ of
irrational numbers does not form a field7, because the sum/product of two irrational
numbers is not necessarily irrational:

?
2` p´

?
2q “ 0 P Q,

?
2 ¨

?
2 “ 2 P Q. Thus

the restriction to irrationals of the real number addition/multiplication are not
maps ` : pRzQq ˆ pRzQq Ñ pRzQq and ¨ : pRzQq ˆ pRzQq Ñ pRzQq. We will soon
see that there are ‘many more irrational numbers than rational numbers’ in the
following section. In the present section, we will learn a simple tool, called the
Rational Zeroes Theorem, which can be useful for proving irrationality. But we
begin by showing the irrationality of the Euler’s number e, which is an important
constant in mathematics. In Exercise 2.20, we had defined e P R as the limit of
the convergent sequence p1 ` 1

1! ` 1
2! ` 1

3! ` ¨ ¨ ¨ ` 1
n!qnPN.

Theorem 4.27. e R Q.

Proof. Set an :“ 1 ` 1
1! ` 1

2! ` 1
3! ` ¨ ¨ ¨ ` 1

n! for all n P N. Fix an m P N. Then
pam`kqkPN is a subsequence of panqnPN, and so is convergent with the same limit e.
So pam`k ´ amqkPN is convergent with limit e ´ am. But

1

pm`1q!
ď am`k ´ am “ 1

pm`1q!
` 1

pm`2q!
` ¨ ¨ ¨ ` 1

pm`kq!

“
1

pm`1q!

´
1 `

1

m`2
` ¨ ¨ ¨ `

1

pm`2q ¨ ¨ ¨ pm`kq

¯

ď 1

pm`1q!

´
1 ` 1

2
` ¨ ¨ ¨ ` 1

2k´1

¯

“
1

pm`1q!
1 ´ 1

2k

1 ´ 1
2

“
1

pm`1q!

´
2 ´

1

2k´1

¯
ă

2

pm`1q!
.

Passing to the limit as k Ñ 8, we obtain

1

pm`1q!
ď e ´

´
1 `

1

1!
`

1

2!
`

1

3!
` ¨ ¨ ¨ `

1

m!

¯
ď

2

pm`1q!
p˚q

The choice of m P N was arbitrary, and so (˚) holds for all m P N. Suppose
that e P Q, and write p0 ăq e “ p

q , where p, q P N. Take any natural number

m ą maxtq, 2u, and multiply (˚) throughout by m!. Since m! contains q as a factor
(because m ą q), we obtain

0 ă
1

m`1
ď an integer ď

2

m`1
ă

2

2`1
ă 1,

a contradiction. So e R Q. !

7Recall from page 10 that a field is a set F together with two maps, addition, ` : F ˆ F Ñ F, and
multiplication ¨ : F ˆ F Ñ F, such that: (F1) addition is associative, (F2) there exists an additive identity
0 P F, (F3) every element has an additive inverse, (F4) addition is commutative, (F5) multiplication is
associative, (F6) there exists a multiplicative identity 1 P Fzt0u, (F7) every element ‰ 0 has a multiplicative
inverse, (F8) multiplication is commutative, and (F9) multiplication distributes over addition.
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Exercise 4.60. Show that log2 3 is irrational.

Exercise 4.61. Show that there exist irrational a, b P R such that ab is rational.

Hint: Consider
?
2

?
2
: The two possibilities are

?
2

?
2 P Q or

?
2

?
2 R Q.

Alternatively, use Exercise 4.60.

Exercise 4.62. Show that tan 1˝ is irrational.

Hint: Use tanpα`βq “
tanα ` tanβ

1 ´ ptanαqptan βq
for α,β P r0,π{4q.

In Theorem 1.1, we had given a ‘geometric’ proof of the irrationality of
?
2. We

now learn about a useful result, called the Rational Zeroes Theorem, which gives
a tool for showing irrationality, in particular for surds8. The proof of the Rational
Zeroes Theorem relies on the fact that if the integers m,n have no common factor,
and m divides nk, where k P Z, then m must divide k. This is Proposition 5.6,
which will be proved in the next chapter.

A polynomial (function) is a map p : R Ñ R that is a ‘linear combination’ of the
power functions, that is, there exists an integer d ě 0, and real numbers c0, ¨ ¨ ¨ , cd
such that for all x P R, ppxq “ c0 ` c1x ` ¨ ¨ ¨ ` cdx

d. Some terminology:

‚ The numbers c0, ¨ ¨ ¨ , cd are called the coefficients of the polynomial.

‚ If cd ‰ 0, then d is called the degree of the polynomial.

‚ If cd “ 1, then p is called a monic polynomial.

‚ A real number ζ a real zero of the polynomial if ppζq “ 0.

‚ If c0, ¨ ¨ ¨ , cd P Z, then we say the polynomial has integer coefficients.

‚ The set of all polynomials with integer coefficients is denoted by Zrxs.

Theorem 4.28 (Rational Zeroes Theorem).
Let d P N, and let c0, c1, ¨ ¨ ¨ , cd be integers such that c0 and cd are not zero.
Let r “ m

n , where m,n are integers having no common factor, and n ą 0.
Suppose r is a real zero of the polynomial p “ c0`c1x`¨ ¨ ¨`cdx

d P Zrxs.
Then n divides cd and m divides c0.

Proof. We have c0 ` c1
m
n ` ¨ ¨ ¨ ` cd

md

nd “ 0. Multiplying throughout by nd,

cdm
d “ ´pc0nd ` c1mnd´1 ` ¨ ¨ ¨ ` cd´1m

d´1nq. (4.1)

As n divides the right-hand side, n divides cdm
d. But n has no common factors

with m, and this implies that n divides cd. Also by rearranging (4.1), we obtain

c0n
d “ ´pc1mnd´1 ` ¨ ¨ ¨ ` cd´1m

d´1n ` cdm
dq,

and since m divides the right hand side, m must divide c0n
d. But m and n have

no common factor. So m must divide c0. !

8‘Surds’ refer to irrational numbers which arise as the nth root of a natural number. The mathemati-
cian al-Khwarizmi (around 820 AD) called irrational numbers ‘inaudible’, which was later translated to
the Latin surdus for ‘mute’.
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Example 4.9 (
?
2 R Q). We show that

?
2 is irrational using the Rational Zeroes

Theorem. Suppose that
?
2 is rational, and let

?
2 “ m

n
,

where m,n P Z, n ą 0, and m,n have no common factor. Then m
n is a rational

zero of the polynomial x2 ´ 2 P Zrxs. By the Rational Zeroes Theorem, m divides
´2 and n (ą 0) divides 1. So m P t2,´2, 1,´1u and n “ 1. Hence

m

n
P t2,´2, 1,´1u.

But
?
2 “ m

n is not equal to any of the values 2,´2, 1,´1 (as p˘2q2 “ 4 ‰ 2 and

p˘1q2 “ 1 ‰ 2). This contradiction shows that
?
2 R Q. !

Exercise 4.63. Show that 3
?
6 is irrational using the Rational Zeroes Theorem.

Exercise 4.64. Show that
?
2 `

?
3 is irrational using the Rational Zeroes Theorem.

Exercise 4.65. (˚) Show that p2 `
?
5q1{3 ´ p´2 `

?
5q1{3 is rational. What is its value?

Hint: Calling the number α, and cubing, show that α3 ` 3α ´ 4 “ 0.
Factorise the polynomial x3 ` 3x ´ 4 assuming it has a rational root.

Exercise 4.66.

(1) Show that sin π
5 is a real zero of 16x4´20x2`5.

Hint: de Moivre’s Formula and the Binomial Theorem.
Conclude that 2 sin π

5
is a real zero of the polynomial p :“ x4 ´ 5x2 ` 5.

(2) Prove that 2 sin π
5
is irrational using the Rational Zeroes Theorem.

(3) Show that if a regular pentagon is inscribed in a circle with radius 1, then its side has
an irrational length.

Remark 4.5. (˚) (Algebraic and transcendental numbers).
Zeroes of nonzero polynomials in Zrxs are called algebraic numbers. It can be
shown9 that the set of algebraic numbers forms a field. Nonalgebraic numbers
are called transcendental. It can be proved that e is transcendental10 [N, The-
orem 2.12]. In 1900, Hilbert listed 23 open problems, which proved to be quite
influential11 in Mathematics. The 7th one is:

Is ab transcendental, for algebraic a ‰ 0, 1 and irrational algebraic b?

This was settled in the mid-1930s by Gelfond, and independently by Schneider.
They showed the following.

Theorem 4.29 (Gelfond-Schneider theorem).
If a, b are algebraic numbers with a R t0, 1u, and b R Q, then ab is transcendental.

The proof (e.g. in [N, Chap. X]) is beyond the scope of the course. ˚

9[N, Theorem 7.2].
10Accepting this allows us to show that loge 2 R Q, which was mentioned in the Overview on page 2:

If p0 ăq loge 2 “ p{q for positive integers p, q, then 2q “ ep, so that ep is an algebraic number, and so e is
an algebraic number (why?), but e is transcendental, a contradiction.

11For example, the 8th problem is the Riemann Hypothesis, a famous unsolved problem at present.
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4.7. Cardinality

Recall that a set S is finite if it is empty or there exists an n P N and a bijection
f : t1, ¨ ¨ ¨ , nu Ñ S. For finite sets, we can compare sizes by just counting the
number of elements, and this is referred to as the cardinality of the set: for example,
the set tA,B,C, ¨ ¨ ¨ , Zu of alphabet letters in the English language has cardinality
26, while the cardinality of t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u is 10. Note that finite sets of
the same cardinality can be put in a one-to-one correspondence, that is, we can
define a bijection between the two sets. Sets which do not have finite cardinality
are called infinite sets. For example, the set N is infinite12. One can then ask
the natural question: Can any two infinite sets always also be put in a one-to-one
correspondence? For example, we know that the set N is infinite, and now suppose
we have another infinite set S. Then can we always establish a bijection between
the elements of N and those of S? In other words can we ‘list’ the elements of S,
as the first element of S, the second element of S, and so on? The answer, perhaps
surprisingly, is: No! For example, such a bijection fails to exist if we take S “ R,
and this is the content of Theorem 4.34 below. This motivates the following.

Definition 4.17 (Un/Countable set).
Let S be an infinite set. Then S is said to be countable if there is a bijective map
from N onto S. If S is not countable, it is called uncountable.

Example 4.10 (N is countable).
Considering the identity map n ÞÑ n : N Ñ N, then we see that N is countable. !

Example 4.11 (Z is countable).
A nontrivial example is that the set Z of integers is also countable. This is best
seen by means of a picture, as shown in Figure 4.11.

0

1 2 3 4´1´2´3´4

Clearly the resulting map from N to Z is injective (since each integer is crossed by
the spiral path only once ever – having crossed an integer, the subsequent distance
of the path to the origin increases) and surjective (since every integer will be crossed
by the spiral path sometime). This argument can be made rigorous 13, but the idea
is clear. We give a different (rigorous) argument in Exercise 4.68 below, which relies
on the Fundamental Theorem of Arithmetic (to be proved in the next chapter). !

12Firstly, N ‰ H, since 1 P N. Also, if there exists an n P N and a bijection f : t1, ¨ ¨ ¨ , nu Ñ N, then
m :“ fp1q ` ¨ ¨ ¨ ` fpnq ` 1 ą fpiq for all 1 ď i ď n. In particular, by the Trichotomy Law, m ‰ fpiq for
all 1 ď i ď n, showing that m P N does not belong to the range of f , contradicting the surjectivity of f .

13The picture describes the bijective map f : N Ñ Z given by fpnq “

#
n
2

if n is even,
1´n
2

if n is odd.
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Exercise 4.67. Let S Ă N be the set S “ tm P N : Dn P N such that m “ n2u of squares.
Prove that S is countable.

Next, we will show that the set Q of rational numbers is countable. To this end,
we show the following two auxiliary results, interesting in their own right.

Proposition 4.30. Every infinite subset of a countable set is countable.

Proof. Let us first show that any infinite subset S of N is countable. The idea
is quite simple. Imagine the elements of S as coloured red amongst the natural
numbers. See the picture below. We start scanning the natural numbers starting
from 1 moving rightwards, and the moment we hit a red element, which we label
in blue as 1, and we continue scanning till we hit the next red element, which we
label in blue as 2, and so on. The map f : N Ñ S is just obtained by sending the
blue points to the corresponding read points. We now make this rigorous.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5

Let a1 :“ minS. If a1 ă ¨ ¨ ¨ ă ak have been constructed, then define

ak`1 :“ minpSzta1, ¨ ¨ ¨ , akuq.
(Since S is not finite, the set Szta1, ¨ ¨ ¨ , aku must be a nonempty subset of N, and
by the Well-ordering Principle, possesses a least element.)

As Szta1, ¨ ¨ ¨ , aku Ă Szta1, ¨ ¨ ¨ , ak´1u for all k ą 1, we have ak`1 ě ak. Also, since
ak`1 P Szta1, ¨ ¨ ¨ , aku, in particular ak`1 ‰ ak. So ak`1 ą ak (ą ak´1 ą ¨ ¨ ¨ ą a1).
Define f : N Ñ S by fpnq “ an, n P N. Then f is injective because if n ă m, then
fpnq ă fpmq.

Also, we claim that f is surjective. Let m P S. As N is infinite, fpNq cannot
be a subset of t1, ¨ ¨ ¨ ,mu (otherwise, by the Pigeonhole Principle fpnq “ fpn1q
for some n, n1 P N, contradicting injectivity). So there exists an n such that
fpnq ą m. Take the smallest n such that fpnq ě m, and call it n˚. Thus we
know fpn˚q ě m and fp1q, ¨ ¨ ¨ , fpn˚ ´ 1q ă m. Now we show that fpn˚q ď m,
which together with fpn˚q ě m will yield fpn˚q “ m, establishing surjectivity. As
fp1q, ¨ ¨ ¨ , fpn˚ ´ 1q ă m, we have m R tfp1q, ¨ ¨ ¨ , fpn˚ ´ 1qu. Thus
fpn˚q “ an˚ “ minpSzta1, ¨ ¨ ¨ , an˚´1uq “ minpSztfp1q, ¨ ¨ ¨ , fpn˚ ´ 1quq ď m.

Justification of the last inequality:

‚ m P Sztfp1q, ¨ ¨ ¨ , fpn˚ ´ 1qu (as m P S and m R tfp1q, ¨ ¨ ¨ , fpn˚ ´ 1qu),
‚ the minimum minpSztfp1q, ¨ ¨ ¨ , fpn˚ ´ 1quq is less than or equal to each of the
members of Sztfp1q, ¨ ¨ ¨ , fpn˚ ´ 1qu, and so in particular the member m.

As fpn˚q ě m and fpn˚q ď m together give fpn˚q “ m. Hence f is surjective.
Thus f is bijective. Consequently, any infinite subset S of N is countable.
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Now let S be countable and let T be an infinite subset of S. Let ϕ : S Ñ N be a
bijection. There is a bijection from T to the range of 14 ϕ|T . But the range of ϕ|T
is an infinite subset of N, and so it is countable. Hence T is countable too. !

Exercise 4.68. Consider f : Z Ñ N given by

fpnq “
"
2n if n ě 0,
3´n if n ă 0.

Prove that f is injective. Conclude that Z is countable.

Exercise 4.69. An integer n is even if there exists a m P Z such that n “ 2m. Show that
the set of all even integers is countable.

Exercise 4.70. The aim of this exercise is to show that a finite union of countable sets is
countable. It suffices to prove this for just two countable sets, say A and B (Why?). The
proof is essentially the same as in Exercise 4.68, where we think of elements of A as the
nonnegative integers, and those of B as the negative integers. Here are the details. Let
α : A Ñ N and β : B Ñ N be bijections. Then consider the map f : A Y B Ñ N given by

fpxq “
"
2αpxq if x P A,

3βpxq if x P BzpA X Bq.

Prove that f is injective, and fpAYBq is an infinite set. Conclude that AYB is countable.

Proposition 4.31. If A,B are countable, then A ˆ B is also countable.

Proof. Since A and B are countable, we can list their elements:

A “ ta1, a2, a3, ¨ ¨ ¨ u,
B “ tb1, b2, b3, ¨ ¨ ¨ u.

Arrange the elements of AˆB in an array, and list them following the path shown:

pa1, b1q pa1, b2q pa1, b3q

pa2, b1q pa2, b2q pa2, b3q

pa3, b1q pa3, b2q pa3, b3q

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

...
...

...
. . .

The resulting map from N to AˆB is clearly surjective, since every element pan, bmq
is hit by the zig-zag path sometime. The map is also injective, since the zig-zag
path never hits a point after having crossed it because it moves on to a parallel
antidiagonal below. (We will give a different proof in Exercise 4.71 below.) !

14Here ϕ|T denotes the restriction of ϕ to T . In general, if f : X Ñ Y is a function and S is a subset
of X, then the restriction of f to S is the function f |S : S Ñ Y given by f |Spxq “ fpxq for all x P S.
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Exercise 4.71. The aim of this exercise is to give an alternative proof of Proposition 4.31.
Let A and B be countable sets, and let m : A Ñ N, n : B Ñ N be bijections. Consider the
function f : AˆB Ñ N defined by fpa, bq “ 2mpaq3npbq, for all pa, bq P AˆB. Show that f
is injective. Conclude that A ˆ B is countable. Hint: To show that f is injective, use the
Fundamental Theorem of Arithmetic, which will be proved in the following chapter.

Exercise 4.72. (˚) The aim of this exercise is to show that a countable union of countable
sets is countable: If An, n P N, is a collection of sets such that each An is countable, then

A :“
ď

nPN
An

is countable. Analogous to the proof of Proposition 4.31, it is visually clear that there

exists an enumeration of elements using a zig-zag path (where An “ tapnq
1 , a

pnq
2 , a

pnq
3 , ¨ ¨ ¨ u):

a
p1q
1 a

p1q
2

a
p2q
1

a
p3q
1

a
p1q
3

a
p2q
2

We give a different proof which is more explicit. We proceed as follows. For n P N, let
fn : An Ñ N be a bijection. Now we define a map f : A Ñ N as follows: If x P A, then it
belongs to some An, and let npxq be the least/first n P N such that x P An, and define

fpxq “ 2npxq3fnpxqpxq.

Prove that f is injective. Conclude that A is countable.

Exercise 4.73. (˚) Let An, n P N, be finite sets (some of which may be empty), such that

A “
ď

nPN
An

is an infinite set. Prove that A is countable. Proceed as follows. For a nonempty An, we
denote by mn its number of elements, and write An “ tapnq

1 , ¨ ¨ ¨ , apnq
mn

u. For x P A, let npxq
be the least n P N such that x P An. As x P A belongs to Anpxq, there exists a unique
kpxq P t1, ¨ ¨ ¨ ,mnpxqu such that x “ apnpxqq

kpxq . We define f : A Ñ N by

fpxq “ 2npxq3kpxq for all x P A.

Prove that f is injective. Conclude that A is countable.

Exercise 4.74. (˚) Show that Zrxs is a countable set.
(Since each polynomial of degree d has at most d zeroes, it follows from here that the set of
all zeroes of all polynomials in Zrxs is countable too. Hence the set of algebraic numbers
is countable. In particular, the infinite set of all real algebraic numbers is also countable.
Since the set of real numbers is uncountable (Theorem 4.34), we conclude that the set of
all real transcendental numbers is uncountable.)

We are now ready to show the countability of the rationals.
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Theorem 4.32. Q is countable.

Proof. Each q P Q can be written as q “ n
d , where n, d P Z, d ą 0. Among such

representations of q, take the smallest possible positive denominator d “: d˚pqq,
with corresponding numerator n˚pqq, that is, q “ n˚pqq

d˚pqq . So we obtain the map

Q Q q ÞÑ pn˚pqq, d˚pqqq P Z ˆ Z, which is injective. But Z is countable, and so by
Proposition 4.31, Z ˆ Z is countable. Consequently, Q is countable. !

Exercise 4.75. (˚) Show that in the plane R2, the set of all circles whose center lies on
Q2 (that is, the center is at a point x “ pr, sq, whose x- and y-coordinates are rational
numbers), and whose radii are rational is a countable set.

Theorem 4.33.

The set tf |f is a function from N to t0, 1uu, consisting of all t0, 1u-valued sequences,
is uncountable.

Proof. Suppose there exists an enumeration f1, f2, f3, ¨ ¨ ¨ of these sequences.

(The idea is to arrive at a contradiction by showing that this list misses out on
a sequence f , by constructing an f which differs from each of these sequences. A
way to construct such an f is to ‘flip/toggle’ the value of the red terms occurring
along the diagonal along the diagonal:

f1 ” f1p1q, f1p2q, f1p3q, ¨ ¨ ¨
f2 ” f2p1q, f2p2q, f2p3q, ¨ ¨ ¨
f3 ” f3p1q, f3p2q, f3p3q, ¨ ¨ ¨

...
. . .

We make this idea precise below.)

We construct an f : N Ñ t0, 1u which does not appear in this list. For n P N, set

fpnq “
"
0 if fnpnq “ 1,
1 if fnpnq “ 0.

Then
f ‰ f1 since fp1q ‰ f1p1q,
f ‰ f2 since fp2q ‰ f2p2q,
f ‰ f3 since fp3q ‰ f3p3q,

...

showing that f differs from each of f1, f2, f3, ¨ ¨ ¨ , a contradiction. !

Exercise 4.76. (˚) Show that the set of all t0, 1u-valued sequences with infinitely many
ones is uncountable. Hint: Let A (respectively B) be the set of all t0, 1u-valued sequences
with infinitely many ones (respectively zeroes). What is A Y B?

Exercise 4.77. (˚) (Howmany subsequences for a sequence?)
Let panqnPN be a given sequence. Show that panqnPN has uncountably many subsequences.
Hint: Given a subsequence, construct a t0, 1u-valued sequence but putting a 1 where the
subsequence term appears and 0 whenever it doesn’t. Use Exercise 4.76.
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Theorem 4.34. R is uncountable.

Proof. Let S “ tf | f is a function from N to t0, 1uu be the set of all t0, 1u-valued
sequences. We will construct an injective map ϕ : S Ñ R. Then ϕ is a bijec-
tion from S onto the image ϕpSq. So ϕpSq is uncountable, since we know from
Theorem 4.33 that S is uncountable. But this means that R is uncountable (for
otherwise, its infinite subset ϕpSq would be countable).

So it remains to construct the promised injective map ϕ : S Ñ R. We send an
f P S to the limit of the convergent sequence

´fp1q
3

` ¨ ¨ ¨ `
fpnq
3n

¯

nPN
.

To see that this sequence is convergent, we note that it is increasing and bounded.
It is increasing because the difference of the pn`1qst term and the nth term is
fpn`1q
3n`1 ě 0. Moreover, boundedness follows from the fact that

fp1q
3

` ¨ ¨ ¨ ` fpnq
3n

ď 1

3
` ¨ ¨ ¨ ` 1

3n
“ 1

3

p1 ´ 1
3n q

1 ´ 1
3

ď 1

3

1
2
3

“ 1

2
.

Next we show injectivity. Suppose that f, g P S are distinct sequences. Then there
is a smallest n˚ P N such that fpn˚q ‰ gpn˚q. Suppose without loss generality that
fpn˚q ą gpn˚q (otherwise just relabel f, g). Then fpn˚q “ 1 and gpn˚q “ 0. If
n˚ “ 1, then set σ :“ 0, and if n˚ ą 1, set

σ :“ fp1q
3

` ¨ ¨ ¨ ` fpn˚´1q
3n˚´1

“ gp1q
3

` ¨ ¨ ¨ ` gpn˚ ´1q
3n˚´1

.

For n ą n˚, we have
fp1q
3

` ¨ ¨ ¨ `
fpn˚q
3n˚

`
fpn˚`1q
3n˚`1

` ¨ ¨ ¨ `
fpnq
3n

ě σ `
1

3n˚
` 0.

Passing to the limit as n Ñ 8, we obtain

ϕpfq ě σ ` 1

3n˚
. p‹q

For n ą n˚, we have

gp1q
3

` ¨ ¨ ¨ `
gpn˚q
3n˚

`
gpn˚ ` 1q
3n˚`1

` ¨ ¨ ¨ `
gpnq
3n

ď σ `
0

3n˚
`

1

3n˚`1
` ¨ ¨ ¨ `

1

3n
ď σ ` 0 `

1

3n˚`1

p1 ´ 1
3n´n˚

q
1 ´ 1

3

ď σ `
1

3n˚`1

1
2
3

“ σ `
1

2 ¨ 3n˚
. p‹‹q

Passing to the limit as n Ñ 8, we obtain

ϕpgq ď σ `
1

2 ¨ 3n˚
. p‹ ‹ ‹q

The inequalities (‹) and (‹ ‹ ‹) imply that

ϕpfq ě σ ` 1

3n˚
ą σ ` 1

2 ¨ 3n˚
ě ϕpgq,

so that ϕpfq ‰ ϕpgq. This shows that ϕ is injective, completing the proof. !
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Example 4.12 (Uncountability of intervals).
Here is a geometric proof of the uncountability of p´π

2 ,
π
2 q based on the uncount-

ability of R, using the picture below, showing a one-to-one correspondence between
points of the semicircular arc of radius 1 and the real line:

0

1
θ

tan θ

A bijection f : p´π
2 ,

π
2 q Ñ R is given explicitly by fpθq “ tan θ for all θ P p´π

2 ,
π
2 q

Based on the continuity of tan on p´π
2 ,

π
2 q, and the fact that tan θ Ñ ˘8 as

θ Ñ ˘π
2 , it follows from the Intermediate Value Theorem that f is surjective. It is

also injective, because it can be shown that

f 1pθq “
1

pcos θq2
ą 0,

showing that f is strictly increasing on p´π
2 ,

π
2 q. Hence f is a bijection. Since R is

uncountable, so is p´π
2 ,

π
2 q.

It follows from here than for any real numbers a, b with a ă b, the open interval
pa, bq is uncountable. This is because there is a bijection g : p´π

2 ,
π
2 q Ñ pa, bq, e.g.

using the following picture:

0

a

b

´π
2

π
2

θ

gpθq

This bijection g is given explicitly by gpθq “ pθ ` π
2 q pb´aq

π ` a, θ P p´π
2 ,

π
2 q. !

Exercise 4.78. Show that the set of all irrational numbers is uncountable.

Exercise 4.79. Show that for all d P N, there is no bijection15 ϕ : R Ñ Qd.

Exercise 4.80. One can use the result from Example 4.12 to show that r0, 1s is uncount-
able. Here we give a different proof. Use

R “
Ť

mPZ
rm,m ` 1q

and Exercise 4.72 to show that r0, 1s is uncountable.
15This allows one to conclude that R is not a ‘finite-dimensional vector space over Q’.
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Definition 4.18 (Power set of a set).
Let S be a set. The collection of all of the subsets of S is called the power set of
S. The power set of a set S is denoted by PpSq.

Example 4.13. Let S “ ta, b, cu. Then
PpSq “ tH, tau, tbu, tcu, ta, bu, tb, cu, tc, au, ta, b, cuu

is the power set of S. If S “ H, then PpSq “ tHu. !

Theorem 4.35 (Cantor).

There does not exist a surjection from a set S onto its power set PpSq.

Proof. Let S be a set and let f : S Ñ PpSq be a surjection. Define the set

X “ tx P S : x R fpxqu.
(This makes sense as a set. Indeed, for each x P S, fpxq P PpSq is a subset of S,
and so we can ask whether or not the element x of S belongs to this subset. X is
simply the collection of those elements of S for which x R fpxq.)
Note that X P PpSq as X consists of elements from S (having a certain property).

Now we claim that for all x P S, fpxq ‰ X. This means that X P PpSq fails to be
in the range of the map f , showing f is not surjective. We have two possible cases:

1˝ x P X. Then by the definition of X, x R fpxq. So this element x belongs to X
but not in fpxq, showing that the two sets fpxq and X can’t be the same.

2˝ x R X. Then * pxRfpxqq, i.e., xPfpxq. So this element x doesn’t belong to X
but belongs to fpxq, showing that the two sets fpxq and X can’t be the same.

So we have shown that for all x P S, fpxq ‰ X, completing the proof. !

Corollary 4.36. There is no bijection between a set and its power set.

Exercise 4.81. Let S be a set with n ě 1 elements.

(1) Show that the number of subsets of S with k (ď n) elements is
`
n
k

˘
.

(2) Show that PpSq has 2n elements. Hint: Use the Binomial Theorem to expand p1`1qn.
(3) Deduce that n ă 2n for all n P N.

Exercise 4.82.

(1) Show that the set of all two element subsets of N is countable.

(2) Show that the set of all nonempty finite subsets of N is countable.

(3) Show that the set of all subsets of N is uncountable.

Remark 4.6. (˚) (Continuum hypothesis). For sets A and B, we say that A has
smaller cardinality than B if there is an injection from A to B, but there is no
bijection from A to B. Thus N has smaller cardinality than R. It can be shown
that there is a bijection between PpNq and R. A famous conjecture of set theory16,
advanced by Cantor, was:

16First problem in Hilbert’s list of 23 problems!
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There does not exist a set S such that N has cardinality smaller than S,
and S has cardinality smaller than R.

This is called the continuum hypothesis (because R was called the ‘continuum’).
Results by Gödel and Cohen showed that the continuum hypothesis is independent
of the ZFC axioms of set theory: It can neither be proved nor disproved within the
(best-known and most studied) axiomatic set theory system called the ‘Zermelo-
Fraenkel set theory with the axiom of choice’ (ZFC); see e.g. [F]. ˚

Appendix: Proof of the Least Upper Bound Property p˚q

In this appendix, we will show that every nonempty subset of R which is bounded
above has a supremum. This is not examinable material, and may be skipped.

Lemma 4.37 (‘Baby’ Archimedean Principle).
If x P R, then there exists a natural number n P N such that n ą x.

We cannot use the Archimedean Principle to prove the above, since that earlier
result was proved using the Least Upper Bound Property of R, which we haven’t
established yet!

Proof. If x ď 0, then take n “ 1, since 0 ă 1 gives by transitivity that x ă 1.

Let x “ rpanqnPNs ą 0. We have seen that every Cauchy sequence in Q is bounded.
So there exists a rational A ą 0 such that for all n P N, an ď A. This implies
x ă rpA ` 1qnPNs (since A ` 1 ´ an ě A ` 1 ´ A “ 1 ą 0 for all n P N). Write
A ` 1 “ rppq qs, where p, q P N. Set n “ p ` 1. Then A ` 1 “ rppq qs ă rpn1 qs (since

p ă p ` 1 ď pp ` 1qq “ nq). So x ă rpA ` 1qnPNs ă rpn1 qs. Succinctly, x ă n. !

Lemma 4.38 (Density of Q in R redone).
Let x,y P R be such that x ă y. Then there exists an r P Q such that y ă r ă x.

Proof. As y ´ x ą 0, we have in particular y ´ x ‰ 0, and so py ´ xq´1 exists
in R. By Lemma 4.37, there exists an n P N such that n ą py ´ xq´1, and so
npy ´ xq ą 1, i.e., nx ` 1 ă ny.

By Lemma 4.37, there exists an m1 P N such that m1 ą nx, and there exists an
m2 P N such that m2 ą ´ nx. So ´ m2 ă nx ă m1 for some integers m1,m2.
Among the finitely many integers k P Z such that ´m2 ď k ď m1, we take as tnxu
the largest one such that it is also ď nx.

Let m :“ tnxu ` 1. Then tnxu ď nx ă tnxu ` 1, that is, m ´ 1 ď nx ă m. So

x ă m

n
ď nx ` 1

n
ă ny

n
“ y.

With r :“
m

n
P Q, the proof is complete. !
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Lemma 4.39. Let x “ rpanqnPNs P R. Given any rational ε ą 0, there exists an
N P N such that for all n ą N , an ` ε ě x ě an ´ ε.

Proof. Let a rational ε ą 0 be given. As panqnPN is a Cauchy sequence in Q, there
exists an N P N such that for all n,m ą N , |an´am| ă ε{2, i.e., ´ ε

2 ă an´am ă ε
2 .

Fix an n ą N . For all m ą N , an ` ε “ an ´ am ` am ` ε ą ´ ε
2 ` am ` ε “ am ` ε

2 ,
i.e., pan `εq´am ą ε

2 “: d ą 0. Thus rpan `ε, an `ε, an`ε, ¨ ¨ ¨ qs ą rpamqmPNs “ x.
For all m ą N , we also have an ´ ε “ an ´ am ` am ´ ε ă ε

2 ` am ´ ε “ am ´ ε
2 ,

i.e., am´ pan´ εqą ε
2ą0. So x“rpamqmPNs ą rpan ´ ε, an ´ ε, an ´ ε, ¨ ¨ ¨ qs. !

Lemma 4.40. Let x “ rpanqnPNs. Suppose that there exist α,β P R and N P N
such that for all n ą N , α ď an ď β. Then α ď x ď β.

Proof. By the density of Q in R, for each n P N, there exist αn,βn P Q such that

α ´
1

n
ă αn ă α, and β ă βn ă β `

1

n
.

We claim that pαnqnPN is a Cauchy sequence in Q. Indeed, for any n,m P N

α ´
1

n
ă αn ă α, and ´ α ă ´αm ă ´α `

1

m
,

which together give ´ 1
n ă αn ´ αm ă 1

m . Given any rational ε ą 0, let N 1 P N be
such that N 1 ą ε´1. Then for n,m ą N 1,

´
1

N 1 ă ´
1

n
ă αn ´ αm ă

1

m
ă

1

N 1 ,

so that |αn ´ αm| ă 1{N 1 ă ε. So pαnqnPN is a Cauchy sequence in Q. A similar
proof shows that also pβnqnPN is a Cauchy sequence in Q.

We now show that α “ rpαnqnPNs. To do this we eliminate the other possibilities
that α ă rpαnqnPNs or α ą rpαnqnPNs. Let α “ rprαnqnPNs.
1˝ Suppose α ă rpαnqnPNs. Then there exists a rational d ą 0 and an M P N such

that for all n ąM , αn ´ rαn ą d. By Lemma 4.39 with ε “ d{2, there exists an
M 1 P N such that for all n ąM 1, rαn ` ε “ rαn `d{2 ě α. Thus for n ąM `M 1,
we obtain d ă αn ´ rαn ď αn ´ α ` d

2 ă 0 ` d
2 “ d

2 , a contradiction.

2˝ Suppose α ą rpαnqnPNs. Then there exists a rational d ą 0 and an M P N
such that for all n ą M , rαn ´ αn ą d. By Lemma 4.39 with ε “ d{4, there
exists an M 1 P N such that for all n ą M 1, rαn ´ ε “ rαn ´ d{4 ď α. Finally,
there exists an M2 P N such that M2 ą 4{d. Then for all n ą M ` M 1 ` M2,
we have d ă rαn ´ αn ď d

4 ` α ´ αn ă d
4 ` 1

n ă
d
4 ` d

4 “ d
2 , a contradiction.

Thus α “ rpαnqnPNs. In a similar manner, we also have β “ rpβnqnPNs.
Since for all n ą N we have an ´ αn ě α ´ αn ą 0, and βn ´ an ě βn ´ β ą 0, it
follows from Exercise 4.56 that rpan ´αnqnPNs ě 0 and rpβn ´ anqnPNs ě 0, that is,
x ´ α ě 0 and β ´ x ě 0. Rearranging, we obtain α ď x ď β. !

Theorem 4.41. Every nonempty subset of R, bounded above, has a supremum.
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Proof. Let S Ă R be a nonempty subset, which is bounded above. Since S is
nonempty, there exists an element a0 P S, and as S is bounded above, there exists
an upper bound b0 P R, that is, a ď b0 for all a P S.

S

a0 b0

We define a1, b1 as follows:

1˝ If a0`b0
2 is an upper bound of S, then define a1 :“ a0 and b1 :“ a0`b0

2 .

S

a0
“: a1

b1 b0

Then a0ďa1, b0ěb1, a1 P S, b1 is an upper bound of S, 0 ď b1 ´ a1ď b0´a0
2 .

2˝ If a0`b0
2 is not an upper bound of S, then there exists a b P S such that a0`b0

2 ă b,
and taking any such b, we define a1 :“ b and b1 “ b0.

S

a0 b0
“: b1

b
“: a1

Then a0 ď a1, b0 ě b1, a1 P S, b1 is an upper bound of S, 0 ď b1 ´ a1 ď b0´a0
2 .

Suppose for some n P N,

‚ a0, a1, ¨ ¨ ¨ , an´1 P S and

‚ b0, b1, ¨ ¨ ¨ , bn´1, upper bounds for S,

have been constructed such that

‚ a0 ď a1 ď ¨ ¨ ¨ ď an´1

‚ b0 ě b1 ě ¨ ¨ ¨ ě bn´1, and

‚ 0 ď bk ´ ak ď b0´a0
2k

, k P t1, ¨ ¨ ¨ , n ´ 1u.
Now we construct a new an P S and a new upper bound bn of S.

1˝ If an´1`bn´1

2 is an upper bound of S, then an :“ an´1 and bn :“ an´1`bn´1

2 .
Then an´1 ď an, bn´1 ě bn, an P S, bn is an upper bound of S, and we have
0 ď bn ´ an “ bn´1´an´1

2 ď b0´a0
2¨2n´1 “ b0´a0

2n .

2˝ If an´1`bn´1

2 is not an upper bound of S, then there exists a b P S such that
an´1`bn´1

2 ă b, and taking any such b, we define an :“ b and bn “ bn´1. Then

an´1 “ an´1`an´1

2 ď an´1`bn´1

2 ă b “ an, bn´1 ě bn, an P S, bn is an upper

bound of S, and 0 ď bn´ an “bn´1´ b ă bn´1´ bn´1`an´1

2 “ bn´1´an´1

2 ď b0´a0
2n .

So we get sequences a0, a1, ¨ ¨ ¨ in S, and b0, b1, ¨ ¨ ¨ of upper bounds of S, such that

‚ a0 ď a1 ď ¨ ¨ ¨ ,
‚ b0 ě b1 ě ¨ ¨ ¨ , and
‚ 0 ď bn ´ an ď b0´a0

2n , n P N.
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If for some n ě 0, an “ bn, then we claim that u˚ :“ bn is the supremum of S.
Indeed, firstly, u˚ “ bn is an upper bound of S by construction. Moreover, for any
u ă u˚ “ bn, u cannot be an upper bound of S (because u ă u˚ “ bn “ an P S).

So we now have to consider the case that for all n ě 0, ană bn. By the density of Q
in R (Lemma 4.38), for each n P N, there exists an rn P Q such that ană rnă bn.
We claim that prnqnPN is a Cauchy sequence in Q. To see this, let ε ą 0 be a given
rational number. By the ‘baby’ Archimedean principle (Lemma 4.37), there exists
an N P N such that N ą b0´a0

ε , and so

b0 ´ a0
2N

ď
b0 ´ a0

N
ă ε

(thanks to the inequality n ă 2n for n P N: Indeed, we have 1 ă 21, and if n ă 2n,
then n`1 ă 2n `1 ă 2n `2n “ 2 ¨2n “ 2n`1. See also Exercise 4.81.). Now if
n ą m ą N , then am ă rm ă bm, an ă rn ă bn, an ě am, which together give

rm ´ rn ă bm ´ rn ă bm ´ an ď bm ´ am.

As bn ď bm, we have

rm ´ rn ą am ´ rn ą am ´ bn ě am ´ bm.

Hence

|rm ´ rn| ă bm ´ am ď
b0 ´ a0
2m

ă
b0 ´ a0
2N

ď
b0 ´ a0

N
ă ε.

So prnqnPN is a Cauchy sequence in Q, and u˚ :“ rprnqnPNs P R.

We will now show that u˚ is the supremum of S. First, for every fixed m, we
have for all n ě m that am ď an ă rn ă bn ď bm, and so by Lemma 4.40,

am ď u˚ ď bm. p‹q
Now suppose that u˚ is not an upper bound of S. Then there exists an a P S such
that a ą u˚. By the density of Q in R, there exists an r P Q such that

0 ă r ă a ´ u˚. p‹‹q

By the ‘baby’ Archimedean Principle, there exists an m P N such that m ą b0´a0
r .

So

0 ď bm ´ am ď
b0 ´ a0
2m

ď b0 ´ a0
m

ă r.

Hence using (‹) and (‹‹),
bm ă am ` r ď u˚ ` r ă a,

a contradiction to the fact that bm is an upper bound of S.

Next, suppose that u ă u˚. Let r P Q be such that 0 ă r ă u˚ ´ u. In the
same manner as above, there exists an m P N such that 0 ď bm ´ am ă r. Then

am ą bm ´ r
p‹q
ě u˚ ´ r ą u,

showing u is not an upper bound of S. So u˚ is the least upper bound of S. !



Chapter 5

The ring of integers

In Chapter 4, we saw that the set of integers Z with its operations of integer addition
and integer multiplication does not form a field (unlike the rationals and the reals).
It fails narrowly from making the cut: Nonzero integers do not necessarily have
an integer multiplicative inverse. In general, such a structure is called a ‘ring’ in
Mathematics. We will not study rings in general in this course, but focus on the
integers and its ring structure. The main topics to be studied in this chapter are:

‚ The Division Algorithm.

‚ Euclid’s Algorithm.

‚ Prime numbers and the Fundamental Theorem of Arithmetic.

‚ The ring Zn and modular arithmetic.

We begin with something we are very familiar with right from elementary school,
namely the Division Algorithm.

5.1. The Division Algorithm

Theorem 5.1 (Division Algorithm).
Given integers m,d with d ą 0, there exist unique integers q and r such that

‚ m “ q d ` r, and

‚ 0 ď r ă d.

Proof. Consider the set S “ tm ´ nd : n P Z and m ´ nd ě 0u. Then S ‰ H:
Indeed, if m ě 0, then m ´ 0d PS, and if mă 0, then m ´ md“p´mqpd ´1qě 0.

1˝ If 0 P S, then m ´ q d “ 0 “: r for some q P Z. So m “ q d`0, and we are done.

2˝ If 0 R S, then S Ă N. Thus, by the Well-Ordering Principle, S possesses a least
element, say r. Hence r “ m´ q d for some q P Z, that is, m “ q d` r. As r P S,
r ě 0. It remains to show that r ă d. Suppose that r ě d. Then r1 :“ r´d ě 0,
and r1 “ r´ d“m´ q d ´ d“m ´ pq `1qd P S. As r is a lower bound of S, we
have r ď r1 “ r ´ d, which yields d ď 0, a contradiction.

127
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Uniqueness: Suppose that q, q1 P Z and integers r, r1 are such that 0ď r, r1ă d and
n “ q d ` r “ q1d ` r1. Let r ‰ r1. Without loss of generality, let r1 ą r. Then
pq ´ q1qd “ r1 ´ r ą 0. As d ą 0, we must have q ´ q1 ą 0 (Exercise 4.31). Thus
r1 ´ r “ pq ´ q1qd ě 1d “ d, so that d ą r1 ě r ` d ě 0 ` d “ d, a contradiction.
So we must have r1 “ r. But then pq ´ q1qd “ r1 ´ r “ 0, and as d ‰ 0, by
Theorem 4.14, q ´ q1 “ 0, that is, q “ q1. !

In the above, we had assumed that the integer d was positive. This wasn’t essential:

Corollary 5.2. Given integers m,d with d ‰ 0, there exist unique integers q and
r such that m “ q d ` r, 0 ď r ă |d|.

Proof. We only need to show this when d ă 0. But then ´ d ą 0, and so by
Theorem 5.1, there exist q1, r P Z such that m “ q1p´dq`r, where 0 ď ră´d“|d|.
Setting q “ ´ q1 P Z, we get m“ q d ` r, as wanted. To show uniqueness, suppose
that m “ q d ` r “ p d ` s, for some p, q P Z and 0 ď r, s ă |d| “ ´ d. Then we
have m “ p´qqp´dq ` r “ p´pqp´dq ` s. By the uniqueness part of Theorem 5.1,
´q “ ´p (implying p “ q) and r “ s. !

Exercise 5.1.

(1) Show that all perfect squares (i.e., squares of integers) have the form 4k or 4k ` 1 for
some k P Z.

(2) Show that none of the numbers in the sequence 11, 111, 1111, ¨ ¨ ¨ is a perfect square.

5.2. Divisibility, gcd, and the Euclid Algorithm

Definition 5.1 (Divisor/multiple).

Let m,n P Z. Then we say

‚ n is a divisor/factor of m, or

‚ n divides m, or

‚ m is a multiple of n, or

‚ m is divisible by n

if there exists an integer d P Z such that m “ n ¨ d. We write

‚ n |m if n is a divisor of m

‚ n !m if n is not a divisor of m.

Example 5.1. 3 |12, as 12 “ 3¨4. Similarly 4 |12. Also ´3 |12 since 12 “ p´3qp´4q.
But 0 ! 1. For all n P Z, n |0 because 0 “ n ¨ 0, and 1 |n as n “ 1 ¨ n. !

Exercise 5.2. Let d, a, b are integers, d |a and d |b. Show that for all x, y P Z, d |ax ` by.

Exercise 5.3. Let a, b, c P Z be such that a |b and b |c. Show that a |c.

Exercise 5.4. Let a, b P Z, a |b and b ‰ 0. Show that |a| ď |b|.

Exercise 5.5. Let a, b P Z, a |b and b |a. Show that a “ b or a “ ´b.
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Exercise 5.6. (˚) Find all integers n P Z such that n2 ` 1 is divisible by n ` 1.
Hint: Consider n2 ´ 1.

Exercise 5.7. Suppose a P Z is such that 4 |a ´ 1. Prove that 4 |a2 ` 3, but 8 ! a2 ` 3.

Exercise 5.8. Show that if n P Z is odd, then 16 |n4 ` 4n2 ` 11.

Exercise 5.9. Let a, b P Z, k P N. Prove that a ` b |a2k´1` b2k´1. Hint: Induction on k.

Exercise 5.10. Show that 12021 ` 22021 ` 32021 ` ¨ ¨ ¨ ` 20202021 is divisible by 2021.

Exercise 5.11. (˚) (Infinite descent).
In this exercise we will show that there are no integer solutions to x3`3y3`9z3 “ 0 besides
the trivial solution x “ y “ z “ 0 as an illustration of the ‘method of infinite descent’
(where the idea is that if a statement holds for a bunch of integers, then the same statement
is valid for smaller integers, leading to an infinite descent, and ultimately somehow a
contradiction to the Well-Ordering Principle). To use the Well-Ordering Principle, we
should have a set of integers bounded below, and so we define (with hindsight) the set

S :“ tx2 ` y2 ` z2 : p0, 0, 0q ‰ px, y, zq P Z3 and x3 ` 3y3 ` 9z3 “ 0u Ă N.

Suppose S is not empty. By the Well-Ordering Principle, it has a smallest element, say
m P N. Thus m “ x2

0 ` y20 ` z20 for some integers x0, y0, z0, not all zeros, such that
x3
0`3y30`9z30 “ 0. Prove that then x0, y0, z0 are each divisible by 3, allowing a new solution

x1, y1, z1 which is also nontrivial and for which S Q x3
1 ` y31 ` z31 ă m, a contradiction.

Conclude that there are no integer solutions to x3 ` 3y3 ` 9z3 “ 0 besides the trivial
solution x “ y “ z “ 0. Hint: To show the claimed divisibility by 3, start with x0.

Exercise 5.12. (˚) (Pythagorean triples). A Pythagorean triple is a triple pa, b, cq of natu-
ral numbers a, b, c such that c2 “ a2 `b2. For example, p3, 4, 5q, p5, 12, 13q are Pythagorean
triples. Pythagorean triples have many interesting number theoretic properties, and the
aim of this exercise is to consider two simple ones below.

(1) Show that if pa, b, cq is a Pythagorean triple, then pc ´ bqpc ´ aq{2 is a perfect square
by considering the following picture.

a

b

c

(2) Show that in any Pythagorean triple, 3 divides one of the numbers.

(3) Show that for all n,m P N with n ą m, p2nm, n2 ´ m2, n2 ` m2q is a Pythagorean
triples. Thus we see that there are infinitely many Pythagorean triples.
(This is in striking contrast with Fermat’s Last Theorem, saying that there are no
integer solutions to the equation xn ` yn “ zn for integer n ą 2. This statement was
mentioned by Fermat in 1637 in the margin of a copy of Arithmetica where he claimed
he had a proof, but that it was too large to fit in the margin. After over 300 years,
a first proof was given by Andrew Wiles in 1995.)
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Definition 5.2 (Greatest common divisor).
Let a, b P Z. A positive integer d is called the greatest common divisor of a, b if

‚ (common divisor) d |a, d |b, and
‚ whenever d1 P Z is such that d1 |a and d1 |b, then d1 |d.

We will denote the greatest common divisor of a, b by gcdpa, bq.

Let us show uniqueness, justifying use of the unambiguous notation gcdpa, bq. Sup-
pose that d1, d2 both satisfy the conditions demanded. Then as d2 is a common
divisor of a and b, and since d1 is a greatest common divisor, there holds d2 | d1.
Also, since d1 is a common divisor of a and b, and since d2 is a greatest common
divisor, there holds d1 |d2. It follows from Exercise 5.5 that d1 “ d2 (since both are
positive). We now show that the gcdpa, bq exists whenever not both a, b are zero.

Theorem 5.3. Suppose that a and b are integers, not both 0. Then gcdpa, bq exists.
Moreover, there exist x, y P Z such that1 gcdpa, bq “ ax0 ` by0.

Proof. Let S “ tax` by : x, y P Zu. Since at least one of a, b is nonzero, there are
nonzero integers on S. Also, if ax ` by P S, then ´pax ` byq “ ap´xq ` bp´yq P S.
So S contains some positive integers. So the set S` :“ tn P S : n ą 0u is nonempty,
and by the Well-Ordering Principle, S` has a least element d. As d P S`, we have
d “ ax0 ` by0 for some x0, y0 P Z, and d ą 0. We claim that d “ gcdpa, bq. (Thus
the Bezout equation is then satisfied too: gcdpa, bq “ d “ ax0 ` by0.)

For any element n “ ax` by P S, by the Division Algorithm, there exist q P Z and
r P Z such that n “ qd ` r and 0 ď r ă d. Thus ax ` by “ n “ qd ` r, that is,

0 ď r “ ax ` by ´ qpax0 ` by0q “ apx ´ qx0q ` bpy ´ qy0q P S.

If r ‰ 0, then 0 ă r, so that r P S`. As r ă d, we have a contradiction with the
definition of d being the least element in S`. So r “ 0. Hence d | n. So we have
shown that d divides each element of S. But as a“a1`b0 and b“a0`b1, we have
that a, b P S. Hence d divides a and b.

Suppose d1 divides a and b. So d1 divides ax ` by for all x, y P Z (Exercise 5.2). In
particular, d1 divides ax0 ` by0 “ d. !

Suppose x0, y0 P Z satisfy gcdpa, bq “ax0`by0. Then for any n P Z, we have that
x :“ x0 ` bn, y :“ y0 ´ an also satisfy the Bezout equation:

ax ` by“apx0 ` bnq ` bpy0 ´ anq“ax0 ` abn ` by0 ´ ban“ax0 ` by0“gcdpa, bq.
So the coefficients x0, y0 of a, b solving the Bezout equation are not unique.

Exercise 5.13. (˚) Let a, b P Z, not both zero, and let d :“ gcdpa, bq “ ax0 ` by0 for some
x0, y0 P Z. Let x, y P Z. Show that the following are equivalent:

(1) The integers x, y satisfy ax ` by “ d.

(2) There exists an n P Z such that x “ x0 ` p b
d

qn, y “ y0 ´ pa
d

qn.
1This equation is called the Bezout equation.
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Exercise 5.14. Recall the Fibonacci sequence from Exercise 2.19. Show that any two
successive Fibonacci numbers are relatively prime. Hint: Induction.

Exercise 5.15. Let a, b be integers, not both zero. From the definition of the greatest
common divisor, it is clear that gcdpa, bq “ gcdpb, aq (because the order of a, b doesn’t
matter). Show also that gcdpa, bq “ gcdp´a, bq “ gcdpa,´bq “ gcdp´a,´bq.

Euclid’s Algorithm. To compute the greatest common divisor of integers a, b,
not both zero, there is no loss of generality (by Exercise 5.15), in assuming that
one of them, say a ą 0. Moreover, it is clear that for a ą 0, we have gcdpa, 0q “ a,
and gcdpa, aq “ a. We now learn an algorithm for finding the greatest common
divisor supposing b ą a ą 0. The key result is the following, allowing us to use the
Division Algorithm successively to keep reducing the numbers.

Lemma 5.4. Let a, b P Z, with a ‰ 0. For any x P Z, gcdpa, bq “ gcdpa, b ` axq.

Proof. As a ‰ 0, d :“ gcdpa, bq and d1 :“ gcdpa, b ` axq exist. As d “ gcdpa, bq,
we have d |a and d |b. So d |a and d |b ` ax. Since d1 “ gcdpa, b ` axq, we have

d |d1. p˚q
As d1 “ gcdpa, b ` axq, we have d1 |a and d1 | b ` ax. So d1 | pb ` axq ` ap´xq, that
is, d1 |b. Since d “ gcdpa, bq, and as d1 divides a and b, we have

d1 |d. p˚˚q
As d, d1 ą 0, and they divide each other, it follows from Exercise 5.5 that d “ d1. !

We now describe Euclid’s Algorithm for determining the greatest common divisor.
Let a, b be integers, where b ą a ą 0. We divide b by a obtaining integers q1, r1,
such that b “ q1a ` r1, and 0 ď r1 ă a.

1˝ If r1 “ 0, then gcdpa, bq “ gcdpa, b ´ q1aq “ gcdpa, r1q “ gcdpa, 0q “ a.

2˝ If r1 ą 0, we repeat the process with a1 :“ r1 ą 0 and b1 :“ a ą r1 “ a1 ą 0
replacing a, b, respectively.

We note that if a ` b “: N P N, then in the case 2˝ eventuality, we have

a1 ` b1 “ r1 ` a ď a ´ 1 ` b ´ 1 “ a ` b ´ 2 “ N ´ 2.

So, by the Well-Ordering Principle, we cannot keep obtaining case 2˝ forever. Hence
we must end up in case 1˝ at some point, and then the previous remainder (that
is, the current a) is the wanted gcd. To see this more explicitly, let us suppose that
we keep getting case 2˝ n ´ 1 times for an n P N and then in the nth step, we get
remainder 0, that is:

b “ q1a ` r1, 0 ă r1 ă a,
a “ q2r1 ` r2, 0 ă r2 ă r1,

...
...

rn´3 “ qn´1rn´2 ` rn´1, 0 ă rn´1 ă rn´2,
rn´2 “ qnrn´1.
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We have by a repeated application of Lemma 5.4 that

gcdpa, bq “ gcdpa, b ´ q1aq “ gcdpa, r1q “ gcdpr1, aq
“ gcdpr1, a ´ q2r1q “ gcdpr1, r2q “ gcdpr2, r1q

¨ ¨ ¨
“ gcdprn´2, rn´3 ´ qn´1rn´2q “ gcdprn´2, rn´1q “ gcdprn´1, rn´2q
“ gcdprn´1, rn´2 ´ qnrn´1q “ gcdprn´1, 0q “ rn´1.

What about expressing gcdpa, bq as a ‘linear combination’ of a, b as guaranteed to
be possible (the Bezout equation)? By writing each remainder in a later step using
the ones from the previous step, and working backwards, this can be done. Rather
than explain this abstractly, we consider an example.

Example 5.2. Let us find gcdp1976, 2375q. We have

2375 “ 1 ¨ 1976 ` 399,

1976 “ 4 ¨ 399 ` 380,

399 “ 1 ¨ 380 ` 19,

380 “ 20 ¨ 19.

Thus gcdp1976, 2375q “ 19. To find a solution to the Bezout equation, we start
with the penultimate remainder (i.e., 19 “ gcdp1976, 2375q), and work backwards,
each time writing the remainder in terms of the other data, until we reach a ‘linear
combination’ with integer coefficients of the given numbers a “ 1976 and b “ 2375:

19 “ 399 ´ 1 ¨ 380
“ 399 ´ 1 ¨ p1976 ´ 4 ¨ 399q
“ ´1976 ` 5 ¨ 399
“ ´1976 ` 5 ¨ p2375 ´ 1 ¨ 1976q
“ 5 ¨ 2375 ´ 6 ¨ 1976.

Thus 1976 ¨ p´ 6q ` 2375 ¨ 5 “ gcdp1976, 2375q. In light of Exercise 5.13, we then
know all the (infinitely many) solutions to the Bezout equation. !

Exercise 5.16. Show that for every n P N, 21n`4
14n`3

is irreducible (i.e., the numerator and
denominator have no common factor besides 1 or ´1). Hint: Show gcdp21n`4, 14n`3q “ 1.

Definition 5.3 (Relatively prime/coprime integers).

Integers a, b are called relatively prime or coprime if gcdpa, bq “ 1.

Proposition 5.5. Let a, b P Z. The following are equivalent:

(1) a, b are relatively prime.

(2) There exist integers x0, y0 such that ax0 ` by0 “ 1.

Proof. (1)ñ(2) follows immdediately from Theorem 5.3.
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(2)ñ(1): Suppose that there exist x0, y0 P Z such that ax0 ` by0 “ 1. Then not
both a and b are zero (otherwise 1 “ ax0 ` by0 “ a0` b0 “ 0, a contradiction). So
gcdpa, bq exists. Since gcdpa, bq |a and gcdpa, bq |b, also gcdpa, bq |ax0 ` by0 “ 1. By
Exercise 5.4, (0 ă) gcdpa, bq ď 1. So gcdpa, bq “ 1, i.e., a, b are relatively prime. !

Proposition 5.6. Let a, b, n P Z be such that gcdpa, nq “ 1 and n |ab. Then n |b.

Proof. Since gcdpa, nq “ 1, Proposition 5.5 implies that there exist x, y P Z such
that ax`ny “ 1. Multiplying by b, abx`nyb “ b. As n |ab, we can write ab “ nm
for some m P Z. Hence b “ abx`nyb “ nmx`nyb “ npmx` ybq, and so n |b. !

Exercise 5.17. Let m P Z, n, c0 P Zzt0u, d P N. If gcdpm,nq “ 1 and m |c0nd, then m |c0.
Exercise 5.18. Let a, b, n P Z, and a | n, b |n and gcdpa, bq “ 1. Show that ab |n.
Hint: n “ ad for a d P Z, b |n “ ad. Use Proposition 5.6.

Exercise 5.19. Show that if a, b P Z are relatively prime, then every n P Z can be written
as a ‘linear combination of a, b with integer coefficients’, i.e., n “ ax` by for some x, y P Z.

Exercise 5.20. Let a, b, n P Z satisfy gcdpa, nq“1“gcdpb, nq. Prove that gcdpab, nq“1.

Exercise 5.21. Let a, b P Z, not both zero. Set d :“ gcdpa, bq. Show that gcdpa
d ,

b
dq “ 1.

Exercise 5.22. Let a, b be relatively prime. Show that a2, b2 are relatively prime too.
Hint: First show that gcdpa2, bq “ 1 by squaring the Bezout equation.

Exercise 5.23. Show that gcdpn! ` 1, pn`1q! ` 1q “ 1 for all n P N.

Exercise 5.24.

(1) Show that if a, b, a1, b1 P Z and a ` b
?
2 “ a1 ` b1

?
2, then a “ a1 and b “ b1.

(2) Define an, bn via the relation an ` bn
?
2 “ p1 `

?
2qn for all n P N. Show that an, bn

are well-defined, they belong to N, and that gcdpan, bnq “ 1 for all n P N.
Hint: Use induction.

Exercise 5.25. (˚)(Catalan numbers).

(1) Show that for all n P N, gcdp2n`1, n`1q “ 1. Hint: 2pn`1q ´ p2n`1q “ 1.

(2) The numbers Cn :“ 1
n`1

`
2n
n

˘
, n P N, are called the Catalan numbers. Prove that for

all n P N, Cn P N. Hint: Start by showing that 2ǹ 1
n`1Cn is an integer.

Exercise 5.26. (˚) Given an angle of 11˝, show that one can divide it into 11 equal parts
using a straight edge and a compass. Hint: It is enough to construct 1˝. Let a˝ be a
known constructible (with straightedge and ruler) angle where a P N is relatively prime to
11. There exist x, y P Z such that ax ` 11y “ 1, allowing the construction of 1˝.

Exercise 5.27. (˚) Let n,N P N and n ă N . Prove that gcdp22n `1, 22
N `1q “ 1.

Exercise 5.28. (˚) (Bezout equation in Cra, bs). Let Cra, bs denote the set of all contin-
uous functions on the interval ra, bs. For an f P Cra, bs, let the zero set of f be defined
by Zf “ tx P ra, bs : fpxq “ 0u. Let 1 P Cra, bs be the constant function taking value 1
everywhere. Let f1, f2 P Cra, bs. Show that the following are equivalent:

(1) There exist g1, g2 P Cra, bs such that f1g1 ` f2g2 “ 1.

(2) Zf1 X Zf2 “ H. (That is, f1, f2 have no common zero.)

Hint: For (2)ñ(1), f2
1 ` f2

2 ą 0 everywhere, and so gi :“ fi
f2
1

`f2
2

P Cra, bs, i “ 1, 2.
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5.3. Prime numbers and the Fundamental Theorem of Arithmetic

Definition 5.4 (Prime numbers).
An integer p is called a prime if p ą 1 and if the only positive divisors of p are 1
and p. Natural numbers that are not prime are called composite numbers.

Thus 2 is a prime number2. This is the only even prime number. The first few terms
of the subsequent list of primes are 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ¨ ¨ ¨ .
(We will see below that there are infinitely many primes.)

Proposition 5.7.
If p is a prime number, and n P Z is such that p ! n, then gcdpp, nq “ 1.

Proof. Let d :“ gcdpp, nq. Then d | p and d | n. But p is prime, and so d “ 1 or
d “ p. But we know that p ! n, so that d cannot be p. Consequently, d “ 1. !

In particular, distinct primes are coprime. Also, for any n P Z, and any prime p,
we have the dichotomy that either p |n or otherwise gcdpp, nq “ 1.

Exercise 5.29. (˚) If p and 8p ´ 1 are prime, then show that 8p ` 1 is composite.
Hint: Consider the remainder left by p when divided by 3.

Exercise 5.30.
(1) Let a, b P Z. Let p be a prime such that p | ab. Show that p | a or p | b.

Hint: Proposition 5.6

(2) Let a1, ¨ ¨ ¨ , an P Z for some n ě 2. Let p be a prime such that p | a1 ¨ ¨ ¨ an.
Prove that p divides at least one of the factors a1, ¨ ¨ ¨ , an. Hint: Induction on n.

Theorem 5.8 (Fundamental Theorem of Arithmetic).
Every integer n ‰ 0 can be written as a product n “ cp1 ¨ ¨ ¨ pk, where c P t1,´1u,
each pi is a prime number, and k ě 0. pIf k “ 0, the ‘empty product’ p1 ¨ ¨ ¨ pk is
defined to be 1.q This expression is unique except for the ordering of the primes.

Proof.
Existence: It is enough to consider n P N. We use induction on n. If n “ 1, then
take c “ 1 and k “ 0. The claim is true for n “ 2, since n “ 2 “ 1 ¨ 2, and 2 is
a prime number. Suppose each natural number ď n for some n P N possesses the
claimed factorisation. If n ` 1 is a prime number, then we are done. Otherwise,
it has a divisor d P N which is not 1 or n ` 1. So n ` 1 “ md for some m P N.
Then m is not 1 or n ` 1 either. But then 1 ă m “ m ¨ 1 ă m ¨ d “ n ` 1. Also,
1 ă d “ d ¨ 1 ă d ¨ m “ n ` 1. Hence 1 ă m,d ď n. By the induction hypothesis3,
(0 ă) m “ p1 ¨ ¨ ¨ pk and (0 ă) d “ q1 ¨ ¨ ¨ q', where p1, ¨ ¨ ¨ , pk, q1, ¨ ¨ ¨ , q' are primes.
So n`1 “ md “ p1 ¨ ¨ ¨ pkq1 ¨ ¨ ¨ q' is the desired factorisation of n`1. By induction,
the proof is complete.

2If 2 “ m ¨ n for positive integers m and n, then they can’t both be equal to 1. Let n ą 1. Then
1 ď m “ m ¨ 1 ă m ¨ n “ 2, giving 1 ď m ă 2. So m “ 1 and n “ 2.

3As m ą 0, and all primes are ą 0, if m “ cp1 ¨ ¨ ¨ pk, where c P t´1, 1u, then c “ `1.
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Uniqueness: Let S be the set of all integers that fail to have a unique factorisation.
Suppose S ‰ H. We claim that S contains natural numbers. Indeed, if 0 ą m P S
has two different factorisations cp1 ¨ ¨ ¨ pk “ m “ c1q1 ¨ ¨ ¨ q', then (as the primes are
all positive) c “ c1 “ ´1, and so n :“ ´m P N has two different factorisations
p1 ¨ ¨ ¨ pk “ q1 ¨ ¨ ¨ q'. Thus the set S` of all natural numbers that fail to have a
unique factorisation is not empty as well. By the Well-Ordering principle, S` has
a least element, say n˚. Let cp1 ¨ ¨ ¨ pk “ n˚ “ c1q1 ¨ ¨ ¨ q' where c, c1 P t´1, 1u
and p1, ¨ ¨ ¨ , pk, q1, ¨ ¨ ¨ , q' are primes, be distinct factorisations of n˚. As n˚ ą 0,
c “ c1 “ 1. Applying Exercise 5.30 with p “ p1, we conclude that p1 divides some
qi. But as qi is prime, p1 “ qi. Cancelling p1 and qi, we obtain that

N Q n1 :“
n˚
p1

“
n˚
qi
ă n˚,

showing that n1 has the distinct factorisations p2 ¨ ¨ ¨ pk “ n1 “ q1 ¨ ¨ ¨ qi´1qi`1 ¨ ¨ ¨ q',
contradicting the minimality of n˚. Consequently S “ H. !

Thus every nonzero integer n can be expressed as a product

n “ cpα1

1 ¨ ¨ ¨ pαk

k

where c P t´1, 1u, k ě 0, p1 ă p2 ă ¨ ¨ ¨ ă pk are primes, and α1, ¨ ¨ ¨ ,αk ě 0. By
using the exponent zero to raise a prime, we can expand any two numbers using
the same list of primes, for example, 20 “ 223051 and 18 “ 213250. We now give a
different way of computing the greatest common divisor of two nonzero integers.

Lemma 5.9. Let d, a P N, and suppose that d “ pα1

1 ¨ ¨ ¨ pαk

k , n “ pβ1

1 ¨ ¨ ¨ pβk

k , where
p1 ă p2 ă ¨ ¨ ¨ ă pk are primes, and α1, ¨ ¨ ¨ ,αk and β1, ¨ ¨ ¨ ,βk are nonnegative
integers. If d |a, then αi ď βi for all 1 ď i ď k.

Proof. As pα1

1 ¨ ¨ ¨ pαk

k “ d | a “ pβ1

1 ¨ ¨ ¨ pβk

k , in particular, pα1

1 | pβ1

1 ¨ ¨ ¨ pβk

k . Suppose

α1 ą β1. Then pα1´β1

1 |pβ2

2 ¨ ¨ ¨ pβk

k , and so in particular, p1 |pβ2

2 ¨ ¨ ¨ pβk

k , a contradic-
tion to Exercise 5.30. Hence α1 ď β1. Similarly, αi ď βi for all 2 ď i ď k. !

Proposition 5.10. Let a, b P Zzt0u be given by a “ cpα1

1 ¨ ¨ ¨ pαk

k and b “ c1pβ1

1 ¨ ¨ ¨ pβk

k ,
where c, c1 P t´1, 1u, k ě 0, p1 ă p2 ă ¨ ¨ ¨ ă pk are primes, and α1, ¨ ¨ ¨ ,αk and

β1, ¨ ¨ ¨ ,βk are nonnegative integers. Then gcdpa, bq “ p
mintα1,β1u
1 ¨ ¨ ¨ pmintαk ,βku

k .

Proof. Let d “ gcdpa, bq. If p is a prime that divides d, then p also divides a
and b. Hence p can only be one of p1, ¨ ¨ ¨ , pk by Exercise 5.30. So we can write
d “ pγ11 ¨ ¨ ¨ pγkk for some nonnegative γ1, ¨ ¨ ¨ , γk. Lemma 5.9, γi ď αi, and γi ď βi
for 1 ď i ď k. Hence γi ď mintαi,βiu for 1 ď i ď k.

Next, let d1 “ p
mintα1,β1u
1 ¨ ¨ ¨ pmintαk ,βku

k . Then d1 | a (as mintαi,βiu ď αi for all i)
and d1 | b (as mintαi,βiu ď βi for all i). As d “ gcdpa, bq, we have d1 |d. It follows
from Lemma 5.9, that mintαi,βiu ď γi for 1 ď i ď k.

Thus γi “ mintαi,βiu for 1 ď i ď k. So gcdpa, bq “ p
mintα1,β1u
1 ¨ ¨ ¨ pmintαk,βku

k . !
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The above is mostly of theoretical value, and the method is good to use when
we have small numbers, so that we can check if the number has a certain prime
factor easily. For example, since 20 “ 223051 and 18 “ 213250, it is immediate that
gcdp20, 18q “ 213050 “ 2.

Example 5.3. Let us recalculate gcdp1976, 2375q using the above. We have

2375 “ 5 ¨ 475 “ 52 ¨ 95 “ 53 ¨ 19,
1976 “ 2 ¨ 988 “ 22 ¨ 494 “ 23 ¨ 247 “ 23 ¨ 13 ¨ 19,

and so gcdp1976, 2375q “ 191 “ 19. !

Theorem 5.11. There are infinitely many primes.

Proof. Suppose that p1, ¨ ¨ ¨ , pn are the only prime numbers. Consider the integer
N “ p1 ¨ ¨ ¨ pn ` 1. Then N is not divisible by any of p1, ¨ ¨ ¨ , pn. But N cannot
be a prime itself, since it is strictly bigger than each of p1, ¨ ¨ ¨ , pn. Thus N is not
a prime number. By the Fundamental Theorem of Arithmetic, N a factorisation
into primes, and in particular N (ą 1) must be divisible by some prime p1. This p1

cannot be any of p1, ¨ ¨ ¨ , pn, because none of them divide N . This contradicts our
assumption that p1, ¨ ¨ ¨ , pn were the only primes. !

Exercise 5.31. (˚) Use Exercise 5.27 to show that there are infinitely many primes.

Hint: If not, then for some distinct n,N P N, 22
n `1, 22

N `1 would share a prime factor.

Exercise 5.32 (Twin primes: Maybe. Prime triples: No!).
(A twin prime is an ordered pair pn, n`2q, where n and n`2 are both primes. For example,
p3, 5q, p5, 7q, p11, 13q are twin primes. A famous open problem is the Twin Prime Conjecture
stating that there are infinitely many twin primes.) Motivated by this, we define a prime
triple as a triple pn, n ` 2, n ` 4q, where n, n ` 2 and n ` 4 are all primes. For example
p3, 5, 7q is a prime triple. Show that there are no others! Hint: Divide n by 3.

Exercise 5.33. Can a right angled triangle with integer sides have the nonhypotenuse
sides equal to twin primes?

Exercise 5.34 (There exist arbitrarily large gaps between primes). Let n P N. Show that
the list of n consecutive numbers given by pn`1q! ` 2, ¨ ¨ ¨ , pn`1q! ` n`1 has no primes.

Exercise 5.35 (Fermat primes).
If 2n `1 is prime for an n P N, show that n is a power of 2, that is, n “ 2m for some
nonnegative integer m. Hint: Use Exercise 5.9. (A prime number of the form 22

m `1 is
called a Fermat prime. Not all numbers of the form fm :“ 22

m

` 1, m P Z, are primes. We
have f0 “ 3, f1 “ 5, f2 “ 17, f3 “ 257, f4 “ 65537 are all primes. But Euler showed that
f5 “ 232`1 “ 4924967297 “ 641 ˆ 6700417. It is conjectured that f0, f1, f2, f3, f4 are the
only Fermat primes.)

Exercise 5.36. (˚) To show that n P N is a prime number, prove that it is sufficient to
check that n is not divisible by all prime numbers p satisfying p ď

?
n.

Exercise 5.37. Show that if a, b are relatively prime, then ab, a`b are relatively prime.
Hint: Let p be a prime which is a common divisor of ab and a ` b.
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Exercise 5.38. (˚) (Least common multiple).

Let a, b P N. A least common multiple of a, b is a positive integer m such that

‚ a |m, b |m, and

‚ whenever m1 P N is such that a |m1 and b |m1, we have m |m1.

(1) Show that the least common multiple always exists and is unique (denoted by lcmpa, bq).
Hint: Consider the set S “ tm P N : a |m and b |mu.

(2) Show that gcdpa, bq¨lcmpa, bq “ ab.
Hint: First show that ab

gcdpa,bq “: m˚ is an integer, and that both a, b divide m˚. Next

if a, b divide an m P N, then use the Bezout equation (for a, b) to show that m˚ |m.

(3) Show that if a “ pα1

1 ¨ ¨ ¨ pαk

k and b “ pβ1

1 ¨ ¨ ¨ pβk

k , where p1 ă ¨ ¨ ¨ ă pk are primes and

α1, ¨ ¨ ¨ ,αk, β1, ¨ ¨ ¨ ,βk P Z are nonnegative, then lcmpa, bq “ p
maxtα1,β1u
1 ¨ ¨ ¨ pmaxtαk,βku

k .

Exercise 5.39. (˚)
(1) Show that if a, b P Z and 2a2 “ 3b2, then a “ b “ 0.

Hint: Write a “ 2α3βA and b “ 2α
1
3β

1
B for nonnegative integers α,β,α1,β1 and A,B

integers with prime factorisations not containing the primes 2, 3.

(2) Let a, b, c P Z be such that a
?
2`b

?
3`c “ 0. Prove that a “ b “ c “ 0.

Hint: Square both sides of a
?
2 ` c “ ´b

?
3.
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Definition 5.5 (mod n).

Let n P N be fixed. Integers a, b are said to be congruent modulo n, if n |a ´ b.
We then write a ” b mod n.

Exercise 5.40. Let n P N. Let a, b, c, d P Z be such that a ” b mod n and c ” d mod n.
Prove that pa ` cq ” pb ` dq mod n and ac ” bd mod n.

Exercise 5.41. Let n P N. Let a, b, c, d P Z be such that ab ” ac mod n and gcdpa, nq “ 1.
Show that b ” c mod n. Give an example to show that the hypothesis gcdpa, nq “ 1 is not
surperfluous.

Proposition 5.12. Let n P N.

(1) Congruent modulo n is an equivalence relation on Z.

(2) For this equivalence relation the number of distinct equivalence classes is n.

Proof.
(1) Congruence modulo n is reflexive, symmetric, and transitive:

Reflexivity: For all a P Z, a ” a mod n because n |0 “ a ´ a.

Symmetry: Let a, b P Z be such that a ” b mod n. Then n |a´b.
Thus n |´pa ´ bq“b ´ a. Hence b ” a mod n.

Transitivity: Let a, b, c P Z be such that a ” b mod n and b ” c mod n.
Thus n |a´b and n |b´c. So n | pa´bq`pb´cq“a´c. Hence a ” c mod n.
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(2) We claim that r0s, r1s, ¨ ¨ ¨ , rn ´ 1s are the only equivalence classes, and that
these are distinct. If a P Z, then dividing a by n, by the Division Algorithm,
there exist integers q and r such that a “ qn ` r, where 0 ď r ă n. Because
n |qn “ a ´ r, we have a ” r mod n, i.e., ras “ rrs P tr0s, r1s, ¨ ¨ ¨ , rn ´ 1su.
Now we will show that the equivalence classes r0s, ¨ ¨ ¨ , rn ´ 1s are distinct.
Suppose on the contrary that 0 ď r ă r1 ď n ´ 1 and rrs “ rr1s. Then we have
r1 ” r mod n, and so n |r1´ r. So there exists a q P Z such that 0ăr1´ r“qn.
Thus q ą0, i.e., q ě1. So r1´ r“qněn. Hence nď r1´ r ď pn´1q ´ 0“n ´ 1,
which gives 1 ď 0, a contradiction. !

Exercise 5.42. Let n P N and a P Z. Show that ras “ ta ` qn : q P Zu.

Let Zn denote the set of equivalence classes under the relation of congruency mod-
ulo n on Z, that is,

Zn “ tr0s, r1s, ¨ ¨ ¨ , rn ´ 1su.

Note that each of the members is actually a set:

ras “ tb P Z : b ” a mod nu
“ ta ` qn : q P Zu
“ t¨ ¨ ¨ , a´3n, a´2n, a´n, a, a`n, a`2n, a`3n, ¨ ¨ ¨ u.

For example, if n “ 1, then Z1 “ tr0su and

r0s “ t¨ ¨ ¨ ,´3,´2,´1, 0, 1, 2, 3, ¨ ¨ ¨ u “ Z.

If n “ 2, then Z2 “ tr0s, r1su, where

r0s “ t2q : q P Zu “ teven integersu “ t¨ ¨ ¨ ,´6,´4,´2, 0, 2, 4, 6, ¨ ¨ ¨ u,
r1s “ t2q ` 1 : q P Zu “ todd integersu “ t¨ ¨ ¨ ,´5,´3,´1, 0, 1, 3, 5, ¨ ¨ ¨ u.

We now define addition and multiplication in Zn making it a ‘ring’.

Definition 5.6 (Addition and multiplication modulo n).

Let n P N. We define ` : Zn ˆ Zn Ñ Zn and ¨ : Zn ˆ Zn Ñ Zn by

ras ` rbs “ ra ` bs and
ras ¨ rbs “ rabs

for all ras, rbs P Zn.

We need to check the well-definition, that is, if ras “ ra1s and rbs “ rb1s, then
ra ` bs “ ra1 ` b1s and rabs “ ra1b1s. We have a1 ” a mod n and b1 ” b mod n, and
so by Exercise 5.40, we have pa1 ` b1q ” pa ` bq mod n and a1b1 ” ab mod n. Thus
ra ` bs “ ra1 ` b1s and rabs “ ra1b1s.
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Using the arithmetic properties of addition and multiplication in Z, it is easy to
see that the following properties hold for all ras, rbs, rcs P Zn:

‚ ras ` prbs ` rcsq “ pras ` rbsq ` rcs.
‚ ras ` r0s “ ras “ r0s ` ras.
‚ ras ` r´as “ r0s “ r´as ` ras.
‚ ras ` rbs “ rbs ` ras.
‚ ras ¨ prbs ¨ rcsq “ pras ¨ rbsq ¨ rcs.
‚ ras ¨ r1s “ ras “ r1s ¨ ras.
‚ ras ¨ rbs “ rbs ¨ ras.
‚ ras ¨ prbs ` rcsq “ ras ¨ rbs ` ras ¨ rcs.

As an example, let us show the last one, namely the distributive property:

ras ¨ prbs ` rcsq “ ras ¨ rb ` cs “ rapb ` cqs “ rab ` acs
“ rabs ` racs “ ras ¨ rbs ` ras ¨ rcs.

In the above list, while we have stated that additive inverses always exist, we have
not said anything about the existence of multiplicative inverses. Not every element
in Zn may have a multiplicative inverse. But if a is relatively prime to n, then
ras P Zn does possess a multiplicative inverse. In particular, if n “ p, a prime, then
every nonzero element of Zp has a multiplicative inverse in Zp; see Corollary 5.14.

Proposition 5.13. Suppose that n P N, and that a P Z is relatively prime to n.
Then there exists an x P Z such that such that ras ¨ rxs “ r1s “ rxs ¨ ras in Zn.

Proof. As a is relatively prime to n, i.e., gcdpa, nq “ 1, by Proposition 5.5, there
exist x, y P Z such that ax ` ny “ 1. As n ” 0 mod n, r0s “ rns in Zn. Hence

r1s “ rax ` nys “ raxs ` rnys
“ ras ¨ rxs ` rns ¨ rys
“ ras ¨ rxs ` r0s ¨ rys
“ ras ¨ rxs ` r0ys
“ ras ¨ rxs ` r0s
“ ras ¨ rxs.

As multiplication in Zn is commutative, also rxs ¨ ras “ r1s. !

If a multiplicative inverse of ras P Zn exists, then it must be unique: Indeed, if
rxs, rys P Zn are such that ras ¨ rxs “ rxs ¨ ras “ r1s and ras ¨ rys “ rys ¨ ras “ r1s,
then

rxs “ r1s ¨ rxs “ prys ¨ rasq ¨ rxs “ rys ¨ pras ¨ rxsq “ rys ¨ r1s “ rys.
Thus rxs “ rys in Zn. We denote the unique multiplicative inverse of ras in Zn, if
it exists, by the symbol ras´1.
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Corollary 5.14. If p is a prime, then Zp is a field.

Proof. We only have to show that every nonzero element in Zp has a multiplicative
inverse. Suppose a P Z is such that ras ‰ r0s in Zp. Then p ! a´ 0 “ a. By Propo-
sition 5.7, gcdpa, pq “ 1, that is, a, p are relatively prime. From Proposition 5.13,
it follows that there exists an x P Z such ras ¨ rxs “ r1s “ rxs ¨ ras in Zp. !

Lemma 5.15. Let p be a prime, and a P Z. Then ras2 “ r1s in Zp if and only if
ras “ r1s or ras “ r´1s in Zp.

Proof. ‘If’ part: We have r1s2 “ r1s ¨ r1s “ r1s, and r´1s2 “ r´1p´1qs “ r1s.
‘Only if’ part: Suppose that ras2 “ r1s, that is, ra2s “ r1s. So a2 ” 1 mod p, that
is p |a2 ´ 1 “ pa ´ 1qpa ` 1q. By Exercise 5.30, p |a ´ 1 or p |a ` 1. Consequently,
a ” 1 mod p or a ” ´1 mod p, that is, ras “ r1s or ras “ r´1s. !

Lemma 5.16. Let p ą 3 be a prime. Then r2s ¨ r3s ¨ ¨ ¨ rp ´ 3s ¨ rp ´ 2s “ r1s in Zp.

Proof. As p is odd, there are an even number of terms in the product on the
left-hand side. For each of the elements ras in tr2s, ¨ ¨ ¨ , rp ´ 2su, we have that
ras ‰ r1s and ras ‰ r´1s, and so, by Lemma 5.15, ras2 ‰ r1s. So each term ras in
r2s, ¨ ¨ ¨ , rp ´ 2s pairs up together with another term (its inverse ras´1) in the same
list r2s, ¨ ¨ ¨ , rp ´ 2s , such that their product gives r1s. This proves the claim. !

Theorem 5.17. Let p be a prime. Then r1s ¨ r2s ¨ ¨ ¨ rp ´ 2s ¨ rp ´ 1s “ r´1s in Zp.

Proof. If p “ 2, then r1s “ r´1s in Z2:

1 ” ´1 mod 2(as 2 |1 ´ p´1q “ 2).

If p “ 3, then r1sr2s “ r2s “ r´1s in Z3:

2 ” ´1 mod 3(as 3 |2 ´ p´1q “ 3).

If p ą 3, then by Lemma 5.16, r2s ¨ ¨ ¨ rp ´ 2s “ r1s. Hence

r1s ¨ r2s ¨ ¨ ¨ rp ´ 2s ¨ rp ´ 1s “ r1s ¨ r1s ¨ rp ´ 1s “ rp ´ 1s “ r´1s.

This completes the proof. !

Corollary 5.18 (Wilson’s Theorem).
Let p be a prime. Then pp ´ 1q! ” ´1 mod p, that is, p | pp ´ 1q! ` 1.

Proof. From Theorem 5.17,

rpp ´ 1q!s “ r1 ¨ 2 ¨ 3 ¨ ¨ ¨ pp ´ 2q ¨ pp ´ 1qs
“ r1s ¨ r2s ¨ ¨ ¨ rp ´ 2s ¨ rp ´ 1s “ r´1s.

So pp ´ 1q! ” ´1 mod p, that is, p | pp ´ 1q! ` 1. !
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Exercise 5.43. In Remark 1.1 (p.29), we had seen that if n ě k ě 0, then
ˆ
n

k

˙
“

npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q
k!

P Z.

The aim of this exercise is to show that the product of any k consecutive integers is divisible
by k!. In other words, for any n P Z and all k P N, the product npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q is
divisble by k!. Proceed as follows. Choose a large enough m P N such that n`m ¨ pk!q ě k.
Set N “ n`m ¨ pk!q P N. From Remark 1.1, we have NpN ´1q ¨ ¨ ¨ pN ´k`1q ” 0 mod pk!q.
Conclude that npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q ” 0 mod pk!q. Hint: pN ´ "q ” pn ´ "q mod pk!q.

Exercise 5.44 (ISBN numbers). An International Standard Book Number (ISBN) is a
number used for the purpose of uniquely identifying books. For instance, the ISBN number
of the book I want to be a Mathematician by Paul Halmos is 0-387-96078-3. The initial digit
0 indicates that the book is published in an English-speaking region. The next block 387
identifies the publisher. The third block 96078 is assigned by the publisher and identifies
this book. The last digit, 3, is called the check digit. Sometimes the check digit happens
to be ‘X’, in which case, it has the numerical value 10. A valid ISBN number d1d2 ¨ ¨ ¨ d9d10
has a check digit which satisfies d10 ” pd1 `2d2 `3d3 ` ¨ ¨ ¨ `9d9q mod 11. The check digit
is used for ‘error detection’, to find out if one of the two most common errors, namely

‚ typing a digit wrong, or

‚ transposing adjacent digits,

has occurred. For example, 0-387-96078-3 is a valid ISBN number, since we have that
1¨0 ` 2¨3 ` 3¨8 ` 4¨7 ` 5¨9 ` 6¨6 ` 7¨0 ` 8¨7 ` 9¨8 “ 267 “ 264 ` 3 “ 11¨24` 3.

(1) Show that if any two adjacent digits among d1 ¨ ¨ ¨ d9 are swapped, then the check digit
flags that an error has been committed.

(2) Prove that if any one digit d1 ¨ ¨ ¨ d9 is incorrect, then the check digit flags that an error
has been committed.

Exercise 5.45. (˚) What are the last two digits of 31234? Hint: Show 320 ” 1 mod 100.

Exercise 5.46.
(1) Show that for any m P Z, m3 ” n mod 9 for some n P t´1, 0, 1u.
(2) Show that there is no solution in integers to x3 ` y3 ` z3 “ 2020.

Exercise 5.47. Solve the equation r2s ¨ x “ r3s in Z5.

Exercise 5.48. (˚) (Chinese Remainder Theorem).

(1) Show that there is no integer x such that

x ” 4 mod 6,
x ” 5 mod 10.

Hint: Consider the ‘parity of x’ (that is, the cases x is even/odd).

(2) Let m,n be relatively prime, and a, b P Z. Show that there exists an x P Z such that

x ” a mod m,
x ” b mod n.

Moreover show that for any two solutions x, x1, we have x1 ” xmod pmnq.
Hint: Let x0, y0 P Z satisfy mx0 ` ny0 “ 1. Multiply by b ´ a to get mk ` n" “ b ´ a,
and set x “ a ` mk “ b ´ n".
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