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Preface

What is Real Analysis?

First of all, ‘Analysis’ refers to the subdomain of Mathematics, which is roughly speaking an
abstraction of the familiar subject of Calculus. Calculus arose as a box of tools enabling one to
handle diverse problems in the applied sciences such as physics and engineering where quantities
change (for example with time), and calculations based on ‘rates of change’ were needed. It soon
became evident that the foundations of Calculus needed to be made mathematically precise. This
is roughly the subject of Mathematical Analysis, where Calculus is made rigorous. But another
byproduct of this rigorisation process is that mathematicians discovered that many of the things
done in the set-up of usual calculus can be done in a much more general set up, enabling one to
expand the domain of applications. We will study such things in this course.

Secondly, why do we use the adjective ‘Real’? We will start with the basic setting of making
rigorous Calculus with real numbers, but we will also develop Calculus in more abstract settings,
for example in Rn. Using this adjective ‘Real’ also highlights that the subject is different from
‘Complex Analysis’ which is all about doing analysis in C. (It turns out that Complex Analysis is
a very specialised branch of analysis which acquires a somewhat peculiar character owing to the
special geometric meaning associated with the multiplication of complex numbers in the complex
plane.)

These notes were written by me in 2011. Thanks are due to Konrad Swanepoel for his help
in correcting typos and updating the solutions. I would be grateful to hear about any remaining
mistakes or other comments.

Amol Sasane
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Chapter 1

Metric and normed spaces

We are familiar with concepts from calculus such as

(1) convergence of sequences of real numbers,

(2) continuity of a function f : R Ñ R,

(3) differentiability of a function f : R Ñ R.

Once these notions are available, one can prove useful results involving such notions. For example,
we have seen the following:

Theorem 1.1. If f : ra, bs Ñ R is continuous, then f has a minimiser on ra, bs.

Theorem 1.2. If f : R Ñ R is such that f2pxq ě 0 for all x P R and f 1px0q “ 0, then x0 is a
minimiser of f .

We will revisit these concepts in this course, and see that the same concepts can be defined in
a much more general context, enabling one to prove results similar to the above in the more
general set up. This means that we will be able to solve problems that arise in applications
(such as optimisation and differential equations) that we wouldn’t be able to solve earlier with
our limited tools. Besides these immediate applications, concepts and results from real analysis
are fundamental in mathematics itself, and are needed in order to study almost any topic in
mathematics.

In this chapter, we wish to emphasise that the key idea behind defining the above concepts is
that of a distance between points. In the case when one works with real numbers, this distance
is provided by the absolute value of the difference between the two numbers: thus the distance
between x, y P R is taken as |x ´ y|. This coincides with our geometric understanding of distance
when the real numbers are represented on the ‘number line’. For instance, the distance between
´1 and 3 is 4, and indeed 4 “ | ´ 1 ´ 3|.

x y

|x ´ y|

Figure 1. Distance between real numbers.

Recall for example, that a sequence panqnPN is said to converge with limit L P R if for every ε ą 0,
there exists a N P N such that whenever n ą N , |an ´ L| ă ε. In other words, the sequence
converges to L if no matter what distance ε ą 0 is given, one can guarantee that all the terms of
the sequence beyond a certain index N are at a distance of at most ε away from L (this is the
inequality |an ´L| ă ε). So we notice that in this notion of ‘convergence of a sequence’ indeed the
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2 1. Metric and normed spaces

notion of distance played a crucial role. After all, we want to say that the terms of the sequence
get ‘close’ to the limit, and to measure closeness, we use the distance between points of R.

A similar thing happens with all the other notions listed at the outset. For example, recall
that a function f : R Ñ R is said to be continuous at c P R if for every ε ą 0, there exists a δ ą 0
such that whenever |x ´ c| ă δ, |fpxq ´ fpcq| ă ε. Roughly, given any distance ε, I can find a
distance δ such that whenever I choose an x not farther than a distance δ from c, I am guaranteed
that fpxq is not farther than a distance of ε from fpcq. Again notice the key role played by the
distance in this definition.

1.1. Distance in R

The distance between points x, y P R is taken as |x ´ y|. Thus we have a map that associates to a
pair px, yq P R ˆ R of real numbers, the number |x ´ y| P R which is the distance between x and
y. We think of this map px, yq ÞÑ |x ´ y| : R ˆ R Ñ R as the ‘distance function’ in R.

Define d : R ˆ R Ñ R by dpx, yq “ |x ´ y| (x, y P R). Then it can be seen that this distance
function d satisfies the following properties:

(D1) For all x, y P R, dpx, yq ě 0. If x P R, then dpx, xq “ 0. If x, y P R are such that
dpx, yq “ 0, then x “ y.

(D2) For all x, y P R, dpx, yq “ dpy, xq.
(D3) For all x, y, z P R, dpx, yq ` dpy, zq ě dpx, zq.

It turns out that these are the key properties of the distance which are needed in developing
analysis in R. So it makes sense that when we want to generalise the situation with the set R

being replaced by an arbitrary set X , we must define a distance function

d : X ˆ X Ñ R

that associates a number (the distance!) to each pair of points x, y P X , and which has the same
properties (D1)-(D3) (with the obvious changes: x, y, z P X). We do this in the next section.

1.2. Metric space

Definition 1.3. A metric space is a set X together with a function d : X ˆX Ñ R satisfying the
following properties:

(D1) (Positive definiteness) For all x, y P X , dpx, yq ě 0. For all x P X , dpx, xq “ 0. If x, y P X

are such that dpx, yq “ 0, then x “ y.

(D2) (Symmetry) For all x, y P X , dpx, yq “ dpy, xq.
(D3) (Triangle inequality) For all x, y, z P X , dpx, yq ` dpy, zq ě dpx, zq.

Such a d is referred to as a distance function or metric.

Let us consider some examples.

Example 1.4. X :“ R, with dpx, yq :“ |x ´ y| (x, y P R), is a metric space. !

Example 1.5. For any nonempty set X , define

dpx, yq “
"

1 if x ‰ y

0 if x “ y.

This d is called the discrete metric. Then d satisfies (D1)-(D3), and so X with the discrete metric
is a metric space. !



1.2. Metric space 3

Note that in particular R with the discrete metric is a metric space as well. So the above two
examples show that the distance function in a metric space is not unique, and what metric is to
be used depends on the application one has in mind. Hence whenever we speak of a metric space,
we always need to specify not just the set X but also the distance function d being considered. So
often we say ‘consider the metric space pX, dq’, where X is the set in question, and d : X ˆX Ñ R

is the metric considered.

However, for some sets, there are some natural candidates for distance functions. One such
example is the following one.

Example 1.6 (Euclidean space Rn). In R2 and R3, where we can think of vectors as points in the
plane or points in the space, we can use the distance distance between two points as the length of
the line segment joining these points. Thus (by Pythagoras’s Theorem) in R2, we may use

dpx, yq “
a

px1 ´ y1q2 ` px2 ´ y2q2

as the distance between the points x “ px1, x2q and y “ py1, y2q in R2. Similarly, in R3, one may
use

dpx, yq “
a

px1 ´ y1q2 ` px2 ´ y2q2 ` px3 ´ y3q2

as the distance between the points x “ px1, x2, x3q and y “ py1, y2, y3q in R3. See Figure 2.

x

y

|x1´y1|

|x2´y2|
dpx,yq

x

y

|x1´y1|

|x2´y2|

|x3´y3|

dpx,yq

Figure 2. Distance in R2 and R3.

In an analogous manner to R2 and R3, more generally, for x, y P Rn “: X , we define the
Euclidean distance by

dpx, yq “

d
nÿ

k“1

pxk ´ ykq2 “
a

px1 ´ y1q2 ` ¨ ¨ ¨ ` pxn ´ ynq2

for

x “

»

—–
x1

...

xn

fi

ffifl P Rn, y “

»

—–
y1
...

yn

fi

ffifl P Rn.

Then Rn is a metric space with the Euclidean distance, and is referred to as the Euclidean space.
The verification of (D3) can be done by using the Cauchy-Schwarz inequality: For real numbers
x1, . . . , xn and y1, . . . , yn, there holds that

ˆ nÿ

k“1

x2
k

˙ˆ nÿ

k“1

y2k

˙
ě

ˆ nÿ

k“1

xkyk

˙2

.



4 1. Metric and normed spaces

This last property (D3) is sometimes referred to as the triangle inequality. The reason behind this
is that, for triangles in Euclidean geometry of the plane, we know that the sum of the lengths of
two sides of a triangle is at least as much as the length of the third side. If we now imagine the
points x, y, z P R2 as the three vertices of a triangle, then this is what (D3) says; see Figure 3.

x
y

z

Figure 3. How the triangle inequality gets its name.

Throughout this course, whenever we refer to Rn as a metric space, unless specified otherwise, we
mean that it is equipped with this Euclidean metric. Example 1.4 corresponds to the case when
n “ 1. !

Exercise 1.7. Verify that the d given in Example 1.5 does satisfy (D1)-(D3).

Exercise 1.8. One can show the Cauchy-Schwarz inequality as follows: Let x, y be vectors in Rn with the
components x1, . . . , xn and y1, . . . , yn, respectively. For a column vector x P Rn, xJ denotes its transpose.
For t P R, consider the function

fptq “ px ` tyqJpx ` tyq “ xJx ` 2txJy ` t2 yJy.

From the rightmost expression, we see that f is a quadratic function of the variable t. It is clear from the
middle expression that fptq, being the sum of squares

nÿ

k“1

pxk ` tykq2,

is nonnegative for all t P R. This means that the discriminant of f must be ď 0, since otherwise, f
would have two distinct real roots, and would then have negative values between these roots! Calculate
the discriminant of the quadratic function and show that its nonpositivity yields the Cauchy-Schwarz
inequality.

Normed space. Frequently in applications, one needs a metric not just in any old set X , but in
a vector space X .

Recall that a (real) vector space X , is just a set X with the two operations of vector addition
` : X ˆ X Ñ X and scalar multiplication ¨ : R ˆ X Ñ X which together satisfy the vector space
axioms.

But now if one wants to also do analysis in a vector space X , there is so far no ready-made
available notion of distance between vectors. One way of creating a distance in a vector space is
to equip it with a ‘norm’ } ¨ }, which is the analogue of absolute value | ¨ | in the vector space R.
The distance function is then created by taking the norm }x ´ y} of the difference between pairs
of vectors x, y P X , just like in R the Euclidean distance between x, y P R was taken as |x ´ y|.

Definition 1.9. Let pX,`, ¨q be a vector space. A function } ¨ } : X Ñ R is called a norm on X

if it satisfies the following properties:

(N1) (Positive definiteness) For all x P X , }x} ě 0. If x P X is such that }x} “ 0, then x “ 0
(the zero vector in X).

(N2) (Positive homogeneity) For all α P R and all x P X , }α ¨ x} “ |α| }x}.
(N3) (Triangle inequality) For all x, y P X , }x ` y} ď }x} ` }y}.

A normed space is a vector space pX,`, ¨q together with a norm.
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If X is a normed space then

dpx, yq :“ }x ´ y} px, y P Xq
satisfies (D1)-(D3) and makes X a metric space (Exercise 1.11). This distance is referred to as
the induced distance in the normed space pX, } ¨ }q. Clearly then

}x} “ }x ´ 0} “ dpx,0q,

and so the norm of a vector is the induced distance to the zero vector in a normed space pX, } ¨ }q.

Example 1.10. R is a vector space with the usual operations of addition and multiplication. It
is easy to see that the absolute value function

x ÞÑ |x| px P Rq

satisfies (N1)-(N3), and so R is a normed space, and the induced distance is the usual Euclidean
metric in R.

More generally, in the vector space Rn, with addition and scalar multiplication defined com-
ponentwise, we can introduce the 2-norm as

}x}2 :“
b
x2
1 ` ¨ ¨ ¨ ` x2

n

for vectors x P Rn having components x1, . . . , xn. Then } ¨ }2 satisfies (N1)-(N3) and makes Rn a
normed space. The induced metric is then the usual Euclidean metric in Rn. !

Exercise 1.11. Verify that if X is a normed space with norm } ¨ }, then d : X ˆ X Ñ R defined by
dpx, yq “ }x ´ y} satisfies (D1)-(D3). Hint: Use each of the properties (N1), (N2) and (N3).

Exercise 1.12 (Reverse Triangle Inequality). Let pX, } ¨}q be a normed space. Prove that for all x, y P X,
| }x} ´ }y} | ď }x ´ y}.

Exercise 1.13. Verify that the norm } ¨ }2 given on Rn in Example 1.10 does satisfy (N1)-(N3).

Exercise 1.14. Let X be a metric space with a metric d. Define d1 : X ˆ X Ñ R by

d1px, yq “ dpx, yq
1 ` dpx, yq

px, y P Xq.

Note that d1px, yq ď 1 for all x, y P X. Show that d1 is a metric on X. Hint: For the triangle inequality,
write d1 in a way in which d appears in just one place, e.g., d1 “ 1´ 1

1`d
or d1 “ 1

1
d

`1
, and use the triangle

inequality for d.

Exercise 1.15. Consider the vector space Rmˆn of matrices with m rows and n columns of real numbers,
with the usual entrywise addition and scalar multiplication. For 1 ď i ď m, 1 ď j ď n, let mij denote the
entry in the ith row and jth column of M . Define for M P Rmˆn, the number

}M}8 :“ max
1ďiďm, 1ďjďn

|mij |.

Show that } ¨ }8 defines a norm on Rmˆn.

Exercise 1.16. Let Cra, bs denote the set of all continuous functions f : ra, bs Ñ R. Then Cra, bs is a
vector space with addition and scalar multiplication defined pointwise. If f P Cra, bs, define

}f}8 “ max
xPra,bs

|fpxq|.

As x ÞÑ |fpxq| : ra, bs Ñ R is continuous, by the Extreme Value Theorem, the above maximum exists.

(1) Show that } ¨ }8 is a norm on Cra, bs.
(2) Let f P Cra, bs and let ε ą 0. Consider the set Bpf, εq :“ tg P Cra, bs : }f ´ g}8 ă εu.

Draw a picture to explain the geometric significance of the statement g P Bpf, εq.

Exercise 1.17. Cra, bs can also be equipped with other norms. For example, prove that

}f}1 :“
ż b

a

|fpxq|dx pf P Cra, bsq

also defines a norm on Cra, bs.
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Exercise 1.18. If pX, dq is a metric space, and if Y Ă X, then show that pY, d|Y ˆY q is a metric space.
(Here d|Y ˆY denotes the restriction of d to the set Y ˆY , that is, d|Y ˆY py1, y2q “ dpy1, y2q for y1, y2 P Y .)
Hence every subset of a metric space is itself a metric space with the restriction of the original metric.
The metric d|Y ˆY is referred to as the induced metric on Y by d or the subspace metric on Y obtained

from d, and the metric space pY, d|Y ˆY q is called a metric subspace of pX, dq.

Exercise 1.19. The set of integers Z (Ă R) inherits the Euclidean metric from R, but it also carries a
very different metric, called the p-adic metric, where p is a prime number. For n P Z, the p-adic ‘norm’1

of n is |n|p :“ 1{pk, where k is the largest integer power of p that divides n. The norm of 0 is by definition
0. The more factors of p, the smaller the p-norm. The p-adic metric on Z is dppx, yq :“ |x´ y|p (x, y P Z).

(1) Prove that if x, y P Z, then |x ` y|p ď maxt|x|p, |y|pu.
(2) Show that dp is a metric on Z.

Exercise 1.20. Let "2 denote the set of all ‘square summable’ sequences of real numbers:

"2 “
!

panqnPN :
8ÿ

n“1

|an|2 ă 8
)
.

(1) Show that "2 is a vector space with addition and scalar multiplication defined termwise.

(2) Let }panqnPN}2 :“

d
8ÿ

n“1

|an|2 for panqnPN P "2. Prove that } ¨ }2 defines a norm on "2.

So "2 is an infinite-dimensional analogue of the Euclidean space pRn, } ¨ }2q.

Exercise 1.21. Let "8 denote the set of all bounded sequences of real numbers:

"8 “
!

panqnPN : sup
nPN

|an| ă 8
)
.

(1) Show that "8 is a vector space with addition and scalar multiplication defined termwise.

(2) Let }panqnPN}8 :“ sup
nPN

|an| for panqnPN P "8. Prove that } ¨ }8 defines a norm on "8.

Exercise 1.22 (Hamming Distance). Let Fn
2 be the set of all ordered n-tuples of zeros and ones. For

example, F3
2 “ t000, 001, 010, 011, 100, 101, 110, 111u. For x, y P Fn

2 , let

dpx, yq “ the number of places where x and y have different entries.

For example, in F3
2, we have dp110, 110q “ 0, dp010, 110q “ 1 and dp101, 010q “ 3. Show that pFn

2 , dq is a
metric space. (This metric is used in the digital world, in coding and information theory.) Hint: For the
triangle inequality, consider the function δk : Fn

2 ˆ Fn
2 Ñ R defined by

δkpx, yq “
"

1 if the kth digit of x and y differ
0 otherwise,

and note that dpx, yq “
nÿ

k“1

δkpx, yq.

1.3. Neighbourhoods and open sets

Let pX, dq be a metric space. With the metric d we can describe ‘neighbourhoods’ of points by
considering sets which include all points whose distance to the given point is not too large.

Definition 1.23 (Open ball). Let pX, dq be a metric space. If x P X and r ą 0, we call the set

Bpx, rq “ ty P X : dpx, yq ă ru

the open ball centred at x with radius r.

The picture we have in mind is shown in Figure 4.

1Note that Z is not a real vector space and so this is not really a norm in the sense we have learnt.
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xy

r

Figure 4. The open ball Bpx, rq.

In the sequel, for example in our study of continuous functions, open sets will play an important
role. Here is the definition.

Definition 1.24 (Open set). Let pX, dq be a metric space. A set2 U Ă X is said to be open if for
every x P U , there exists an r ą 0 such that Bpx, rq Ă U .

Note that the radius r can depend on the choice of the point x. See the picture below. Roughly
speaking, in a open set, no matter which point you take in it, there is always some ‘room’ around
it consisting only of points of the open set.

x r
U

Example 1.25. Let us show that the set pa, bq is open in R. Given any x P pa, bq, we have
a ă x ă b. Motivated by Figure 5, let us take r “ mintx ´ a, b ´ xu. Then we see that r ą 0 and
whenever |y ´ x| ă r, we have ´r ă y ´ x ă r. So

a “ x ´ px ´ aq ď x ´ r ă y ă x ` r ď x ` pb ´ xq “ b,

that is, y P pa, bq. Hence Bpx, rq Ă pa, bq. Consequently, pa, bq is open.

a

a

b

b

x

x

Figure 5. pa, bq is open in R.

On the other hand, the interval ra, bs is not open, because x :“ a P ra, bs, but no matter how small
an r ą 0 we take, the set Bpa, rq “ ty P R : |y ´ a| ă ru “ pa ´ r, a ` rq contains points that do
not belong to ra, bs: For example, a ´ r

2 P Bpa, rq, but a ´ r
2 R ra, bs. Figure 6 illustrates this. !

a b

Figure 6. ra, bs is not open in R.

2Open sets are often denoted with the letter U since the word umgebung in German means ‘neighbourhood’.
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Example 1.26. The set X is open, since given an x P X , we can take any r ą 0, and notice that
Bpx, rq Ă X trivially.

The empty set H is also open (‘vacuously’). Indeed, the reasoning is as follows: Can one show
an x for which there is no r ą 0 such that Bpx, rq Ă H? And the answer is no, because there is
no x in the empty set (let alone an x which has the extra property that there is no r ą 0 such
that Bpx, rq Ă H!). !

Exercise 1.27. Let pX, dq be a metric space, x P X and r ą 0. Show that the open ball Bpx, rq is an
open set.

Lemma 1.28. Any finite intersection of open sets is open.

Proof. It is enough to consider two open sets, as the general case follows immediately by induction
on the number of sets. Let U1, U2 be two open sets. Let x P U1 X U2. Then there exist r1 ą 0,
r2 ą 0 such that Bpx, r1q Ă U1 and Bpx, r2q Ă U2. Take r “ mintr1, r2u. Then r ą 0, and
we claim that Bpx, rq Ă U1 X U2. To see this, let y P Bpx, rq. Then dpx, yq ă r ď r1 and
dpx, yq ă r ď r2. So y P Bpx, r1q X Bpx, r1q Ă U1 X U2. !

Example 1.29. The finiteness condition in the above lemma cannot be dropped. Here is an
example. Consider the open sets in R given by

Un :“ p´ 1
n
, 1
n

q pn P Nq.

Then we have
Ş
nPN

Un “ t0u, which is not open in R. !

Lemma 1.30. Any union of open sets is open.

Proof. Let Ui (i P I) be a family of open sets indexed3 by the set I. If

x P
ď

iPI
Ui,

then x P Ui˚ for some i˚ P I. But as Ui˚ is open, there exists a r ą 0 such that Bpx, rq Ă Ui˚ .
Thus

Bpx, rq Ă Ui˚ Ă
ď

iPI
Ui.

Hence the union
Ť
iPI

Ui is open. !

Definition 1.31 (Closed set). Let pX, dq be a metric space. A set4 F is closed if its complement
XzF is open.

Example 1.32. Let a, b P R and a ă b. Then ra, bs is closed in R: Indeed, its complement Rzra, bs
is the union of the two open sets p´8, aq and pb,8q. Hence Rzra, bs is open, and ra, bs is closed.

The set p´8, bs is closed in R. (Why?)

The sets pa, bs, ra, bq are neither open nor closed in R. (Why?) !

Example 1.33. X , H are closed. !

Exercise 1.34. Show that arbitrary intersections of closed sets are closed. Prove that a finite union of
closed sets is closed. Can the finiteness condition be dropped in the previous claim?

Exercise 1.35. We know that the segment p0, 1q is open in R. Show that the segment p0, 1q considered
as a subset of the plane, i.e., the set I :“ p0, 1q ˆ t0u “ tpx, yq P R2 : 0 ă x ă 1, y “ 0u is not open in R2.

3This means that we have a set I, and for each i P I, there is a set Ui.
4Closed sets are often denoted with the letter F since the word fermé in French means ‘closed’.
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Exercise 1.36. Consider the following three metrics on R2: for x “ px1, x2q, y “ py1, y2q P R2,

d1px, yq :“ |x1 ´ y1| ` |x2 ´ y2|,
d2px, yq :“

a
px1 ´ y1q2 ` px2 ´ y2q2,

d8px, yq :“ maxt|x1 ´ y1|, |x2 ´ y2|u.

We already know that d2 defines a metric on R2: It is just the Euclidean metric induced by the norm } ¨}2.

(1) Verify that d1 and d8 are also metrics on R2.

(2) Sketch the ‘unit balls’ Bp0, 1q in each of the metrics.

(3) Give a pictorial ‘proof without words’ to show that a set U is open in R2 in the Euclidean metric
if and only if it is open when R2 is equipped with the metric d1 or the metric d8. Hint: Inside
every square you can draw a circle, and inside every circle, you can draw a square!

Remark: Note that pR2, d1q, pR2, d2q and pR2, d8q are all different metric spaces. This illustrates the
important fact that for a given set, we can obtain various metric spaces by choosing different metrics.
What metric is considered depends on the particular application at hand. For example, imagine a city
(like New York) in which there are streets and avenues with blocks in between, forming a square grid as
shown in the picture below.

A

B

Then if we take a taxi/cab to go from point A to point B in the city, it is clear that it isn’t the Euclidean
norm in R2 which is relevant, but rather the } ¨ }1-norm in R2. (It is for this reason that the } ¨ }1-norm
is sometimes called the taxicab norm.) So what norm one uses depends on the situation at hand, and is
something that the modeller decides. It is not something that falls out of the sky!

Exercise 1.37. Determine if the following statements are true or false. Give reasons for your answers.

(1) If a set is not open, then it is closed.

(2) If a set is open, then it is not closed.

(3) There are sets which are both open and closed.

(4) There are sets which are neither open nor closed.

(5) Q is open in R.

(6) Q is closed in R.

(7) Z is closed in R.

Exercise 1.38. Show that the unit sphere with centre 0 in R3, namely the set

S
2 :“ tx P R

3 : x2
1 ` x2

2 ` x2
3 “ 1u

is closed in R3.

Exercise 1.39. Let pX, dq be a metric space. Show that a singleton (a subset of X containing precisely
one element) is always closed. Conclude that every finite subset of X is closed.

Exercise 1.40. Let X be any nonempty set equipped with the discrete metric. Prove that every subset
Y of X is both open and closed.

Exercise 1.41. A subset Y of a metric space pX, dq is said to be dense in X if for all x P X and all ε ą 0,
there exists a y P Y such that dpx, yq ă ε. (That is, if we take any x P X and consider any ball Bpx, εq
centred at x, it contains a point from Y . In everyday language, we may say for example that ‘These woods
have a dense growth of birch trees’, and the picture we then have in mind is that in any small area of the
woods, we find a birch tree. A similar thing is conveyed by the above: no matter what ‘patch’ (described
by Bpx, εq) we take in X (thought of as the woods), we can find an element of Y (analogous to birch trees)
in that patch.) Show that Q is dense in R by proceeding as follows.
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If x, y P R and x ă y, then show that there is a q P Q such that x ă q ă y. Hint: By the Archimedean
property5 of R, there is a positive integer n such that npy ´ xq ą 1. Next there are positive integers m1,
m2 such that m1 ą nx and m2 ą ´nx so that ´m2 ă nx ă m1. Hence there is an integer m such that
m ´ 1 ď nx ă m. Consequently nx ă m ď 1 ` nx ă ny, which gives the desired result.

Conclude that Q is dense in R.

Exercise 1.42. Is the set RzQ of irrational numbers dense in R? Hint: Take any x P R. If x is irrational

itself, then we may just take y to be x and we are done; whereas if x is rational, then take y “ x `
?

2
n

with a sufficiently large n P N.

Exercise 1.43 (Weierstrass’s Approximation Theorem). The aim of this exercise is to show that polyno-
mials are dense in pCra, bs, } ¨ }8q. By considering the map x ÞÑ x

`
a ` ¨pb ´ aq

˘
: Cra, bs Ñ Cr0, 1s, we see

that there is no loss of generality in assuming that a “ 0 and b “ 1. For x P Cr0, 1s and n P N, let Bnx

be the polynomial given by

pBnxqptq :“
nř

k“0
xp k

n
q
`
n
k

˘
tkp1 ´ tqn´k, t P r0, 1s.

Introduce the auxiliary polynomials pn,kptq :“
`
n
k

˘
tkp1 ´ tqn´k, t P r0, 1s, 0 ď k ď n, n P N. Show that

nř
k“0

pk,nptq “ 1,
nř

k“0
kpk,nptq “ nt,

nř
k“0

pk ´ ntq2pk,nptq “ ntp1 ´ tq.

The proof of Weierstrass’s Approximation Theorem can now be completed as follows. For δ ą 0, we have

ř

k:| k
n

´t|ěδ

pn,kptq ď
ř

k:| k
n

´t|ěδ

pn,kptq ¨ pk ´ ntq2

δ2n2loomoon
ě1

ď 1
n2δ2

nř
k“0

pk ´ ntq2pk,nptq “ tp1´tq
nδ2

ď 1
4nδ2

,

where we used the observation 0 ď p
?
t ´

?
1 ´ tq2 “ 1 ´ 2

a
tp1 ´ tq for all t P r0, 1s, in order to obtain

the last inequality. Now for δ ą 0, set ωδpxq :“ sup
|t´s|ďδ

|xptq ´ xpsq|. Then we have

|pBnxqptq ´ xptq| “ |pBnxqptq ´ xptq
nř

k“0
pn,kptq| “ |

nř
k“0

xp k
n

qpn,kptq ´ xptq
nř

k“0
pn,kptq|

ď
nř

k“0
|xp k

n
q ´ xptq|pn,kptq “

ř

k:| k
n

´t|ăδ

|xp k
n

q ´ xptq|pn,kptq `
ř

k:| k
n

´t|ěδ

|xp k
n

q ´ xptq|pn,kptq

ď ωδpxq
ř

k:| k
n

´t|ăδ

pn,kptq ` 2}x}8
1

4nδ2
ď ωδpxq ¨ 1 ` }x}8

2nδ2
.

Let ε ą 0. Since x is ‘uniformly continuous’6, we can choose δ ą 0 such that ωδpxq ă ε{2. Next choose
n ą }x}8{pεδ2q. Then it follows from the above that }Bnx ´ x}8 ă ε, completing the proof of the
Weierstrass Approximation Theorem.

Exercise 1.44 (Separable spaces). Recall that if S is an infinite set, then S is said to be countable if there
is a bijective map from N onto S. If S is not countable, it is called uncountable. The set Q is countable; see
the MA103 notes. On the other hand, the set A consisting of all t0, 1u-valued sequences, is uncountable.
(Indeed, if there exists an enumeration f1, f2, f3, ¨ ¨ ¨ of these sequences, we arrive at a contradiction by
constructing an f P A which differs from each of these sequences: For n P N, set

fpnq “
"
0 if fnpnq “ 1,
1 if fnpnq “ 0.

Then f ‰ f1 since fp1q ‰ f1p1q, f ‰ f2 since fp2q ‰ f2p2q, f ‰ f3 since fp3q ‰ f3p3q, and so on, showing
that f differs from each of f1, f2, f3, ¨ ¨ ¨ , a contradiction.)

A metric space pX, dq is separable if it has a countable dense set, i.e., there exists D :“ tx1, x2, x3, ¨ ¨ ¨ u Ă X
such that for every r ą 0 and every x P X, there exists an xn P D such that dpxn, xq ă r. For example R

is separable, since we can simply take D “ Q. Show that "8 from Exercise 1.21 is not separable.

Hint: Consider the set A Ă "8 of all sequences with each term equal to 0 or 1. Then the distance
between any two distinct elements of A is at least 1. If D “ tg1, g2, g3, ¨ ¨ ¨ u is a dense subset of "8, then
obtain an injective map from A to N by considering the ball Bpf, 1

3 q for each f P A. This contradicts the
uncountability of A.

5The Archimedean property of R says that if x, y P R and x ą 0, then there exists an n P N such that y ă nx. See the
notes for MA103.
6We will learn about uniform continuity in Chapter 4. Here x : r0, 1s Ñ R is uniformly continuous if for every ε ą 0,
there exists a δ ą 0 such that for all t, s P r0, 1s satisfying |t ´ s| ă δ, there holds that |xptq ´ xpsq| ă ε. We will learn
Proposition 4.69, which implies that every continuous function on r0, 1s is uniformly continuous.
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Exercise 1.45. A subset C of a normed space X is called convex if for all x, y P C, and all t P p0, 1q,
p1 ´ tqx ` ty P C. (Geometrically, this means that for any pair of points in C, the ‘line segment’ joining
them also lies in C.)

(1) Show that the open ball Bp0, rq with centre 0 P X and radius r ą 0 is convex.

(2) Is the unit circle S1 “ tx P R2 : }x}2 “ 1u a convex set in R2?

(3) Let A P Rmˆn and b P Rm. Prove that the ‘Linear Programming Simplex’7

Σ :“ tx P R
n : Ax “ b, x1 ě 0, . . . , xn ě 0u

is a convex set in Rn.

Exercise 1.46. Define d : R2 ˆ R2 Ñ R by

dpx, yq “
"

}x}2 ` }y}2 if x ‰ y,
0 if x “ y,

px, y P R
2q.

We call this metric the ‘express railway metric’. (For example in the British context, to get from A to B,
travel via London, the origin.)

Show that the express railway metric is a metric on R2.

Exercise 1.47. Let pX, dq be a metric space, x P X, R ą 0. Show that Bpx,Rq :“ ty P X : dpy, xq ď Ru
is a closed set.

1.4. Notes (not part of the course)

Topology. If we look at the collection O of open sets in a metric space pX, dq, we notice that it has the
following three properties:

(T1) H, X P O.

(T2) If Ui (i P I) is family of sets from O indexed by I , then
Ť
iPI

Ui P O.

(T3) If U1, . . . , Un is a finite collection of sets from O, then
nŞ

i“1
Ui P O.

More generally, if X is any set (not necessarily one equipped with a metric), then any collection O of
subsets of X that satisfy the properties (T1), (T2), (T3) is called a topology on X and pX,Oq is called a
topological space. So for a metric space X, if we take O to be family of open sets in X, then we obtain a
topological space. More generally, if one has a topological space pX,Oq given by the topology O, we call
each element of O open.

Topological spaces

Vector

spaces

Metric spaces

Normed

spaces

It turns out that one can in fact extend some of the notions from Real Analysis (such as convergence of
sequences and continuity of maps) in the even more general set up of topological spaces, devoid of any
metric, where the notion of closeness is specified by considering arbitrary open neighbourhoods provided
by elements of O. In some applications this is exactly the right thing needed, but we will not go into such
abstractions in this course. In fact, this is a very broad subdiscipline of mathematics called Topology.

7This set arises as the ‘feasible set’ in a certain optimisation problem in Rn, where the constraints are described by a
bunch of linear inequalities.
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Construction of the set of real numbers. In these notes, we treat the real number system R as a
given. But one might wonder if we can take the existence of real numbers on faith alone. It turns out
that a mathematical proof of its existence can be given. Roughly, we are already familiar with the natural
numbers, the integers, and the rational numbers, and their rigorous mathematical construction is also
relatively straightforward. However, the set Q of rational numbers has ‘holes’ (for example in MA103 we
have seen that this manifests itself in the fact that Q does not possess the least upper bound property).
The set of real numbers R is obtained by ‘filling these holes’. There are several ways of doing this. One
is by a general method called ‘completion of metric spaces’. Another way, which is more intuitive, is via
‘(Dedekind) cuts’, where we view real numbers as places where a line may be cut with scissors. More
precisely, a cut A|B in Q is a pair of subsets A,B of Q such that A

Ť
B “ Q, A ‰ H, B ‰ H, A

Ş
B “ H,

if a P A and b P B then a ă b, and A contains no largest element. R is then taken as the set of all cuts
A|B. Here are two examples of cuts:

A|B “ tr P Q : r ă 1u|tr P Q : r ě 1u
A|B “ tr P Q : r ď 0 or r2 ă 2u|tr P Q : r ą 0 and r2 ě 2u.

It turns out that R is a field containing Q, and it possesses the least upper bound property. The interested
reader is referred to the Appendix to Chapter 1 in the classic textbook by Walter Rudin [R].

A

B

Although it is not a part of the course, we give the construction of R via the completion of Q in an
Appendix (pp.101–111) to these notes.



Chapter 2

Sequences

In this chapter we study sequences in metric spaces. The notion of a convergent sequence is an
important concept in Analysis. Besides its theoretical importance, it is also a natural concept
arising in applications when one talks about better and better approximations to the solution of a
problem using a numerical scheme. For example the method of Archimedes for finding the area of
a circle by sandwiching it between the areas of a circumscribed and an inscribed regular polygon
of ever increasing number of sides. There are also numerical schemes for finding a minimiser of a
convex function (Newton’s method), or for finding a solution to an ordinary differential equation
(Euler’s method), where convergence in more general metric spaces (such as Rn or Cra, bs) will
play a role.

Before proceeding onto sequences in general metric spaces, let us first begin with (numerical)
sequences in R.

2.1. Sequences in R

Let us recall the definition of a convergent sequence of real numbers.

Definition 2.1. A sequence panqnPN of real numbers is said to be convergent with limit L P R if
for every ε ą 0, there exists an N P N such that whenever n ą N , |an ´ L| ă ε.

We have learnt that the limit of a convergent sequence panqnPN is unique, and we denote it by

lim
nÑ8

an.

We have also learnt the following important result1:

Theorem 2.2 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a
convergent subsequence.

An important consequence of this result is the fact that in R, the set of convergent sequences
coincides with the set of Cauchy sequences. Let us first recall the definition of a Cauchy sequence.

Definition 2.3. A sequence panqnPN of real numbers is said to be a Cauchy sequence if for every
ε ą 0, there exists an N P N such that whenever m,n ą N , |an ´ am| ă ε.

Roughly speaking, we can make the terms of the sequence arbitrarily close to each other provided
we go far enough in the sequence.

1See the MA103 lecture notes.

13
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Example 2.4. The sequence p 1
n qnPN is Cauchy. Indeed, we have

ˇ̌
1
n ´ 1

m

ˇ̌
ď 1

n ` 1
m ă 1

N ` 1
N “ 2

N

whenever n,m ą N . Thus given ε ą 0, we can choose N P N larger than 2
ε
so that we then have

| 1
n

´ 1
m

| ă 2
N
ă ε for all n,m ą N . Consequently, p 1

n
qnPN is Cauchy. !

Exercise 2.5. Show that if panqnPN is a Cauchy sequence, then pan`1 ´ anqnPN converges to 0.

Example 2.6. This example shows that for a sequence panqnPN to be Cauchy, it is not enough
that pan`1 ´ anqnPN converges to 0. Take an :“

?
n (n P N). Then

an`1 ´ an “
?
n ` 1 ´

?
n “ 1?

n`1`
?
n

nÑ8ÝÑ 0,

but panqnPN is not Cauchy, since for any n P N, |a4n ´ an| “
?
4n ´

?
n “

?
n ě 1. !

The next result says that Cauchyness is a necessary condition for a sequence to be convergent.

Lemma 2.7. Every convergent sequence is Cauchy.

Proof. Let panqnPN be a sequence of real numbers that converges to L. Let ε ą 0. Then there
exists an N P N such that |an ´ L| ă ε

2 . Thus for n,m ą N , we have

|an ´ am| “ |an ´ L ` L ´ am| ď |an ´ L| ` |am ´ L| ă ε
2 ` ε

2 “ ε.

So the sequence panqnPN is a Cauchy sequence. !

Now we will prove the remarkable fact in R, Cauchyness turns out to be also a sufficient condition
for the sequence to be convergent. In other words, in R, every Cauchy sequence is convergent. This
is a very useful fact since, in order to prove that a sequence is convergent using the definition,
we would need to guess what the limit is. In contrast, checking whether or not a sequence is
Cauchy needs only knowledge of the terms of the sequence, and no guesswork regarding the limit
is needed. So this is a powerful technique for proving existence results.

Theorem 2.8. Every Cauchy sequence in R is convergent.

Proof. There are three main steps. First we show that every Cauchy sequence is bounded. Then
we use the Bolzano-Weierstrass theorem to conclude that it must have a convergent subsequence.
Finally we show that a Cauchy sequence having a convergent subsequence must itself be convergent.

Step 1. Suppose that panqnPN is a Cauchy sequence. Choose any positive ε, say ε “ 1. Then there
exists an N P N such that for all n,m ą N , |an ´ am| ă ε. In particular, with m “ N ` 1 ą N ,
and n ą N , |an ´ aN`1| ă ε. Hence by the triangle inequality, for all n ą N ,

|an| “ |an ´ aN`1 ` aN`1| ď |an ´ aN`1| ` |aN`1| ă 1 ` |aN`1|.

On the other hand, for n ď N , |an| ď maxt|a1|, . . . , |aN |, |aN`1| ` 1u “: M . Consequently,
|an| ďM for all n P N, that is, the sequence panqnPN is bounded.

Step 2. By the Bolzano-Weierstrass Theorem, the bounded sequence panqnPN has a convergent
subsequence pank

qkPN that is convergent, to L, say.

Step 3. Finally we show that panqnPN is also convergent with limit L. Let ε ą 0. Then there exists
an N P N such that for all n,m ą N ,

|an ´ am| ă ε
2 . (2.1)

Also, since pank
qkPN converges to L, we can find2 an nK ą N such that |anK ´ L| ă ε

2 . Taking
m “ nK in (2.1), for all n ą N , |an´L| “ |an´anK `anK ´L| ď |an´anK |`|anK ´L| ă ε

2 ` ε
2 “ ε.

Thus panqnPN is also convergent with limit L, and this completes the proof. !

2If n1 ă n2 ă n3 ă ¨ ¨ ¨ is a strictly increasing sequence of natural numbers, then nk ě k. (Indeed, n1 ě 1, and if nk ě k
for some k P N, then nk`1 ą nk ě k gives nk`1 ě k ` 1, and the claim follows by induction.) So here, we if K1 is such
that for k ą K1, |ank

´ L| ă ε
2 , we may take K “ maxtK1, Nu ` 1 (since nK ě K ě N ` 1 ą N and nK ą K1).
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Exercise 2.9. Determine if the following statements are true or false. Give reasons for your answers.

(1) Every subsequence of a convergent real sequence is convergent.

(2) Every subsequence of a divergent real sequence is divergent.

(3) Every subsequence of a bounded real sequence is bounded.

(4) Every subsequence of an unbounded real sequence is unbounded.

(5) Every subsequence of a monotone real sequence is monotone.

(6) Every subsequence of a nonmonotone real sequence is nonmonotone.

(7) If every subsequence of a real sequence converges, the sequence itself converges.

(8) If for a real sequence panqnPN, the sequences pa2nqnPN and pa2n`1qnPN both converge, then panqnPN
converges.

(9) If for a real sequence panqnPN, the sequences pa2nqnPN and pa2n`1qnPN both converge to the same
limit, then panqnPN converges.

Exercise 2.10. Fill in the blanks in the following proof of the fact that every bounded increasing sequence

of real numbers converges.

Let panqnPN be a bounded increasing sequence of real numbers. Let M be the upper bound of the
set tan : n P Nu. The existence of M is guaranteed by the of the set of real numbers. We show
that M is the of panqnPN. Taking ε ą 0, we must show that there exists a positive integer N such
that for all n ą N . Since M ´ ε ăM , M ´ ε is not of tan : n P Nu. Therefore there exists
N with ě aN ą . Since panqnPN is , |an ´ M | ă ε for all n ě N . !

Exercise 2.11 (Euler’s constant, e). Consider the sequence panqnPN, where an :“ 1` 1
1! ` 1

2! ` 1
3! `¨ ¨ ¨` 1

n! ,
n P N. Then panqnPN is increasing, as an`1 ´ an “ 1

pn`1q! ą 0 for all n P N.

(1) Show that panqnPN is bounded.

Hint: an “ 1 ` 1 ` 1
2 ` 1

2¨3 ` ¨ ¨ ¨ ` 1
2¨3¨¨¨n ď 1 ` 1 ` 1

2 ` 1
22

` ¨ ¨ ¨ ` 1
2n´1 “ 1 ` 1´ 1

2n

1´ 1
2

ă 3.

As panqnPN is monotone and bounded, it is convergent, and we set a :“ lim
nÑ8

an.

Next, consider the sequence pbnqnPN, where bn :“ p1 ` 1
n

qn, n P N. Using the Binomial Theorem,

bn “ 1 ` n 1
n

` npn´1q
2!

1
n2 ` ¨ ¨ ¨ ` npn´1q¨¨¨2¨1

n!
1
nn

“ 1 ` 1 ` 1
2! p1 ´ 1

n
q ` ¨ ¨ ¨ ` 1

n! p1 ´ 1
n

q ¨ ¨ ¨ p1 ´ n´1
n

q.

(2) Show by replacing n by n ` 1 in factors of the type p1 ´ k
n

q that bn ď bn`1, n P N.

(3) Show that bn ď an ă 3.

As pbnqnPN is monotone and bounded, it is convergent, and we set b :“ lim
nÑ8

bn.

(4) Fix m P N. Show that for n ě m, bn ě 1 ` 1 ` 1
2! p1 ´ 1

n
q ` ¨ ¨ ¨ ` 1

m! p1 ´ 1
n

q ¨ ¨ ¨ p1 ´ m´1
n

q.
(5) Conclude, by passing to the limit as n Ñ 8 in the result from (4), that b ě am. Show that b ě a.

(6) Use part (3) to conclude that b ď a. From parts (5) and (6), we get b “ a.

We call this number Euler’s number, denoted by e P R: lim
nÑ8

p1` 1
n

qn “ e “ lim
nÑ8

p1` 1
1! ` 1

2! ` 1
3! `¨ ¨ ¨` 1

n! q.

Exercise 2.12. For each of the following sequences, determine whether it converges or not, and find the
limit in case of convergence. Give reasons for your answers.

(1) pcospπnqqnPN (2) p1 ` n2qnPN (3) p sinn
n

qnPN (4) p1 ´ 3n2

n`1 qnPN (5) pn
1
n qnPN (6) 0.9, 0.99, 0.999, ¨ ¨ ¨ .

Exercise 2.13. Let panqnPN be bounded. Define "k “ inftan : n ě ku and uk “ suptan : n ě ku (k P N).

(1) Show that p"nqnPN, punqnPN are bounded and monotone, and hence convergent. Their respective limits
are called the limit superior and limit inferior, respectively, and denoted by lim inf

nÑ8
an and lim sup

nÑ8
an.

(2) Show that lim inf
nÑ8

an ď lim sup
nÑ8

an. Given an example to show that there can be a strict inequality.

(3) Prove that panqnPN is convergent if and only if lim inf
nÑ8

an “ lim sup
nÑ8

an.

Moreover, then lim
nÑ8

an “ lim inf
nÑ8

an “ lim sup
nÑ8

an.
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2.2. Sequences in metric spaces

We now give the notion of convergence of a sequence in a general metric space. We will see that
essentially the definition is the same as in R, except that instead of having the distance between
the nth term and the limit L given by |an ´ L|, now we will replace it by dpan, Lq in a general
metric space with metric d.

Definition 2.14. A sequence panqnPN of points in a metric space pX, dq is said to be convergent
with limit L P X if for every ε ą 0, there exists an N P N such that whenever n ą N , dpan, Lq ă ε.

Let us understand this definition pictorially. We have been given a sequence panqnPN of points and
a candidate L for its limit. We are allowed to say that this sequence converges to L if given any
ε ą 0, that is, no matter how small a ball we consider around L,

L

ε

there is an index N such that all the terms of the sequence beyond this index lie inside the ball.

L

Lemma 2.15. The limit of a convergent sequence in a metric space is unique.

Proof. Suppose that panqnPN is a convergent sequence, and let it have two distinct limits L1 and
L2. Then dpL1, L2q ą 0. Set

ε “
1

2
dpL1, L2q ą 0.

Then there exists an N1 such that for all n ą N1, dpan, L1q ă ε. Also, there exists an N2 such
that for all n ą N2, dpan, L2q ă ε. Hence for any n ą maxtN1, N2u, we have

dpL1, L2q ď dpL1, anq ` dpan, L2q ă ε ` ε “ dpL1, L2q,

a contradiction. Thus the limit of panqnPN is unique. !

If panqnPN is a convergent sequence, then we will denote its (unique) limit by lim
nÑ8

an.

Exercise 2.16. Let panqnPN be a sequence in the Euclidean space Rd. Show that panqnPN is convergent

with limit L if and only if for every k P t1, . . . , du, the sequence papkq
n qnPN in R formed by the kth component

of the terms of panqnPN is convergent with limit Lpkq. (Here we use the notation vpkq for the kth component
of a vector v P Rd.)

Exercise 2.17. Consider the sequence panqnPN in the Euclidean space R2:

an :“

«
n

4n`2

n2

n2`1

ff

pn P Nq.

Show that panqnPN is convergent. What is its limit?
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Exercise 2.18. Let X be a nonempty set equipped with the discrete metric. Show that a sequence
panqnPN is convergent if and only if it is eventually a constant sequence (that is, there is a c P X and an
N P N such that for all n ą N , an “ c).

Exercise 2.19. Let pX, dq be a metric space and let panqnPN and pbnqnPN be convergent sequences in X
with limits a and b, respectively. Prove that pdpan, bnqqnPN is a convergent sequence in R with limit dpa, bq.
Hint: dpan, bnq ď dpan, aq ` dpa, bq ` dpb, bnq.

Exercise 2.20. Let v1 “ px1, y1q P R2 be such that 0 ă x1 ă y1. Define

vn`1 “ pxn`1, yn`1q “ p?
xnyn,

xn`yn
2 q for all n P N.

(1) Show that 0 ă xn ă xn`1 ă yn`1 ă yn and that yn`1 ´ xn`1 ă yn`1 ´ xn “ yn´xn
2 .

(2) Conclude that lim
nÑ8

vn exists and equals pc, cq for some number c P R.

This value c is called the arithmetic-geometric mean3, of x1 and y1, and is denoted by agmpx1, y1q.

We can also define Cauchy sequences in a metric space analogous to the situation in R.

Definition 2.21. A sequence panqnPN of points in a metric space pX, dq is said to be a Cauchy
sequence if for every ε ą 0, there exists an N P N such that whenever m,n ą N , dpam, anq ă ε.

Lemma 2.22. Every convergent sequence is Cauchy.

Proof. The proof is the same, mutatis mutandis4, as the proof of Lemma 2.7. Let panqnPN be a
sequence of points in X that converges to L P X . Let ε ą 0. Then there exists an N P N such
that dpan, Lq ă ε

2 . Thus for n,m ą N , we have dpan, amq ď dpan, Lq ` dpL, amq ă ε
2 ` ε

2 “ ε. So
the sequence panqnPN is a Cauchy sequence. !

In R, we have seen that t convergent sequences u “ t Cauchy sequences u. This raises the tempting
question of whether this equality is true in general metric spaces too:

t convergent sequences u

?
Ą
Ă
"

t Cauchy sequences u.

Showing membership here
needs knowledge of limit

(Harder!)

Showing membership here
needs no knowledge of limit,
but only an investigation

of the mutual behaviour of the
terms of the sequence

(Easier!)

Convergent
sequences

Cauchy
sequences

If the two sets coincide, then one can conclude that a sequence is convergent by just checking
Cauchyness. This is the basis of many existence results in Analysis. For example, the convergence
tests of series, the existence results for differential equations, etc. Once existence is known, (and
after showing uniqueness, if valid), one can justify and use numerical approximations.

Unfortunately, the two sets do not always coincide. For example, consider the metric space
X “ p0, 1s with the same Euclidean metric as in R. Then the sequence p 1

n
qnPN is easily seen to be

Cauchy, but is not convergent in X , as there is a missing point in X , namely 0. However, in some
other metric spaces, such as R, the set of convergent sequences and the set of Cauchy sequences do
coincide. So it makes sense to give such metric spaces a special name: they are called ‘complete’.

Definition 2.23. A metric space in which every Cauchy sequence converges is called complete.

3Gauss observed that Ipa, bq :“
ş8

´8
1?

px2`a2qpy2`b2q
dx satisfies Ipa, bq “ Ip a`b

2 ,
?
abq with the help of the substitution

t “ 1
2 px ´ ab

x q, and using this, obtained the remarkable result that
ş8

´8
1?

px2`a2qpy2`b2q
dx “ π

agmpa,bq .

4Latin phrase meaning ‘by changing those things which need to be changed’.
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Example 2.24. R with the Euclidean metric is complete. !

Exercise 2.25. Let X “ p0, 1s be equipped with the same Euclidean metric as in R. Show that the
sequence p 1

n
qnPN does not converge in X.

Exercise 2.26. Show that Q with the Euclidean metric is not complete. Hint: Revisit the solution to
part (6) of Exercise 1.37.

Exercise 2.27. Let X be a metric space. If pxnqnPN is a Cauchy sequence in X which has a convergent
subsequence pxnkqkPN with limit L, then show that pxnqnPN is convergent with the same limit L.

Theorem 2.28. Rd is complete.

Proof. (Essentially, this is because R is complete, and one has d copies of R in Rd.) Suppose that
panqnPN is a Cauchy sequence in Rd:

an “

»

——–

x
p1q
n

...

x
pdq
n

fi

ffiffifl .

We have |xpkq
n ´ x

pkq
m | ď }an ´ am}2 (n,m P N, k “ 1, . . . , d), from which it follows that each of the

sequences pxpkq
n qnPN, k “ 1, . . . , d, is Cauchy in R, and hence convergent, with respective limits,

say Lp1q, . . . , Lpdq P R. So given ε ą 0, there exists a large enough N such that whenever n ą N ,

we have |xpkq
n ´ Lpkq| ă ε?

d
, k P t1, . . . , du. Set

L “

»

—–
Lp1q

...

Lpdq

fi

ffifl P Rd.

Thus for n ą N , }an ´ L}2 “

d
dř

k“1
|xpkq

n ´ Lpkq|2 ă

d
dř

k“1

ε2

d
“ ε. So panqnPN converges to L. !

Exercise 2.29. Rmˆn with the metric induced by } ¨ }8 is complete. (See Exercise 1.15 for the definition
of the norm } ¨ }8 on the vector space Rmˆn.)

Exercise 2.30. Recall the normed space "8 from Exercise 1.21. Show that "8 is complete with the metric
induced by } ¨ }8.

The theorem below is important, and lies at the core of a result on the existence of solutions for
Ordinary Differential Equations (ODEs). You can learn more about this in the course Differential
Equations (MA209). (See Exercise 1.16 for the definition of the norm } ¨ }8 on Cra, bs.)

Theorem 2.31. Cra, bs with the metric induced by } ¨ }8 is complete.

Proof. (You may skip this proof.) The idea behind the proof is similar to the proof of the
completeness of Rd. If pfnqnPN is a Cauchy sequence, then we think of the fnpxq as being the
‘components’ of fn indexed by x P ra, bs. We first freeze an x P ra, bs, and show that pfnpxqqnPN is
a Cauchy sequence in R, and hence convergent to a number (which depends on x), and which we
denote by fpxq. Next we show that the function x ÞÑ fpxq is continuous, and finally that pfnqnPN
does converge to f .

a bx

f1
f2

f3

The Cauchy sequence pfnpxqqnPN obtained from the Cauchy sequence pfnqnPN by freezing x.
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Let pfnqnPN be a Cauchy sequence. Let x P ra, bs. We claim that pfnpxqqnPN is a Cauchy sequence
in R. Let ε ą 0. Then there exists an N P N such that for all n,m ą N , }fn ´ fm}8 ă ε. But

|fnpxq ´ fmpxq| ď max
yPra,bs

|fnpyq ´ fmpyq| “ }fn ´ fm}8 ă ε,

for n,m ą N . This shows that indeed pfnpxqqnPN is a Cauchy sequence in R. But R is complete,
and so the Cauchy sequence pfnpxqqnPN is in fact convergent, with a limit which depends on which
x P ra, bs we had frozen at the outset. To highlight this dependence on x, we denote the limit
of pfnpxqqnPN by fpxq. (Thus fpaq is the number which is the limit of the convergent sequence
pfnpaqqnPN, fpbq is the number which is the limit of the convergent sequence pfnpbqqnPN, and so
on.) So we have a function from ra, bs to R, so that

x is sent to the number which is the limit of the convergent sequence pfnpxqqnPN.

We call this function f . This will serve as the limit of the sequence pfnqnPN. But first we have to
see if it belongs to Cra, bs, that is, we need to check that this f is continuous on ra, bs.

Let x P ra, bs. We will show that f is continuous at x. Recall that in order to do this, we
have to show that for each ε ą 0, there exists a δ ą 0 such that whenever |y ´ x| ă δ, we have
|fpyq ´ fpxq| ă ε. Let ε ą 0. Choose N large enough so that for all n,m ą N ,

}fn ´ fm}8 ă ε
3 .

Let y P ra, bs. Then for n ą N , |fnpyq ´ fN`1pyq| ď }fn ´ fN`1}8 ă ε
3 . Now let n Ñ 8:

|fpyq ´ fN`1pyq| “ lim
nÑ8

|fnpyq ´ fN`1pyq| ď ε
3 .

As the choice of y P ra, bs was arbitrary, we have for all y P ra, bs that

|fpyq ´ fN`1pyq| ď ε
3 .

Now fN`1 P Cra, bs. So there exists a δ ą 0 such that whenever |y ´ x| ă δ, we have

|fN`1pyq ´ fN`1pxq| ă ε
3 .

Thus whenever |y ´ x| ă δ, we have

|fpyq ´ fpxq| “ |fpyq ´ fN`1pyq ` fN`1pyq ´ fN`1pxq ` fN`1pxq ´ fpxq|
ď |fpyq ´ fN`1pyq| ` |fN`1pyq ´ fN`1pxq| ` |fN`1pxq ´ fpxq|
ď ε

3 ` ε
3 ` ε

3 “ ε.

So f is continuous at x. As the choice of x P ra, bs was arbitrary, f is continuous on ra, bs.
Finally, we show that pfnqnPN does converge to f . Let ε ą 0. Choose N large enough so

that for all n,m ą N , }fn ´ fm}8 ă ε. Fix n ą N . Let x P ra, bs. Then for all m ą N ,
|fnpxq ´ fmpxq| ď }fn ´ fm}8 ă ε. Thus

|fnpxq ´ fpxq| “ lim
mÑ8

|fnpyq ´ fmpyq| ď ε.

But x P ra, bs was arbitrary. Hence

}fn ´ f}8 “ max
xPra,bs

|fnpxq ´ fpxq| ď ε.

But we could have fixed any n ą N at the outset and obtained the same result. So we have that
for all n ą N , }fn ´ f}8 ď ε. Thus lim

nÑ8
fn “ f, and this completes the proof. !

The norm } ¨ }8 is special in that Cra, bs is complete with the corresponding induced metric. It
turns out that Cra, bs with the other natural norm met earlier, namely the } ¨ }1-norm, is not
complete. The objective in the following exercise is to demonstrate this.
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Exercise 2.32. Let Cr0, 1s be equipped with the } ¨ }1-norm given by }f}1 :“
ş1
0

|fpxq|dx (f P Cr0, 1s).
Show that the corresponding metric space is not complete. For example, you may consider the sequence
pfnqnPN with the fn as shown in Figure 2.2. Show that for n,m ą N ,

}fn ´ fm}1 “
ş 1
2

`maxt 1
n`1

, 1
m`1

u
1
2

|fnpxq ´ fmpxq|dx ď 2
N
,

and so pfnqPN is Cauchy. Prove that if pfnqnPN converges to f P Cr0, 1s, then f must satisfy

fpxq “
"
0 for x P r0, 1

2 s,
1 for x P p 1

2 , 1s,
which does not belong to Cr0, 1s, a contradiction.

0 1

1

1
2

1
2 ` 1

n`1

fn

Exercise 2.33. Show that any nonempty set X equipped with the discrete metric is complete.

Exercise 2.34. Prove that Z equipped with the Euclidean metric induced from R is complete.

2.3. Pointwise and uniform convergence

Convergence in pCra, bs, } ¨ }8q is referred to as uniform convergence. More generally, we have the
following definition.

Definition 2.35. Let X be any set and f, fn : X Ñ R (n P N) be functions.

(1) The sequence pfnqnPN is said to converge uniformly to f if

@ε ą 0, DN P N such that @n ą N, @x P X, |fnpxq ´ fpxq| ă ε.

(2) The sequence pfnqnPN is said to converge pointwise to f if

@ε ą 0, @x P X, DN P N such that @n ą N, |fnpxq ´ fpxq| ă ε.

Pointwise versus uniform convergence. We now highlight the difference between pointwise
and uniform convergence:

Pointwise:

Uniform:

same sameinterchanged!

@ε ą 0

@ε ą 0

@xPX

@xPX

DN such that @nąN

DN such that @nąN

|fnpxq´fpxq| ă ε

|fnpxq´fpxq| ă ε

The difference between the two statements is the order of

@x P X and DN P N such that @n ą N .

Order of the phrases ‘for every’ and ‘ there exists’ (called quantifiers) matters in mathematical
statements. This seemingly small change of interchanging the order of quantifiers makes a world
of difference. Indeed, even in everyday language, the two statements:

@ human being A

@ human being A

D human being B such that

D human being B such that B is the mother of A

B is the mother of A

interchanged! same
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mean totally different things! In the latter, there is a person who is the mother to all human
beings, a statement which is obviously false. The former statement is true, since it asserts for
every person A we take, there exists (depending on which person A we have chosen) another
person B who is the mother of A.

This is the same sort of a difference between the uniform convergence requirement, namely:

@ε ą 0, DN P N such that @n ą N, @x P X, |fnpxq ´ fpxq| ă ε.

and the pointwise convergence requirement, namely

@ε ą 0, @x P X, DN P N such that @n ą N, |fnpxq ´ fpxq| ă ε.

In the former, the same N works for all x P X , while in the latter, the N might depend on the x

in question.

It is clear that if fn converges uniformly to f , then fn converges pointwise to f . (Indeed, if
for every ε ą 0 there exists an N P N such that for all n ą N and for all x P X , |fnpxq ´ fpxq| ă ε,
and we take any particular fixed x˚ P X , then also, we have that for every ε ą 0 there exists an
N P N such that for all n ą N , |fnpx˚q ´ fpx˚q| ă ε: In other words, for this x˚ P X ,

lim
nÑ8

fnpx˚q “ fpx˚q.

But the choice of x˚ P X was arbitrary. So

@x P X, lim
nÑ8

fnpxq “ fpxq.

Hence pfnqnPN converges pointwise to f .) But there are pointwise convergent sequences of functions
which do not converge uniformly. Here is an example to illustrate this.

Example 2.36. Let X “ R, and for x P X “ R, let fpxq “ 0 and fnpxq “ x
n
(n P N). The picture

below shows the graphs of the functions.

x

f1

f2
f3

f
¨ ¨ ¨

It is clear that if we fix any x P R, then

lim
nÑ8

fnpxq “ lim
nÑ8

x
n “ x lim

nÑ8
1
n “ x ¨ 0 “ 0 “ fpxq.

So pfnqnPN converges pointwise to 0. Let us have a closer look at this. Let us fix an x P R. Let

ε ą 0 be given. Take N P N such that N ą |x|`1
ε

. Then for n ą N ,

|fnpxq ´ fpxq| “ | x
n

´ 0| “ |x|
n
ď |x|

N
ă |x|ε

|x|`1 ă ε.

Note that the N we required to guarantee that rn ą N ñ |fnpxq ´ fpxq| ă εs depends on the

x fixed at the outset. (An N ă |x|
ε

won’t do here!) In fact, From the picture below, it is visibly
clear that pfnqnPN does not converge uniformly to f . Indeed, whatever width of strip we look at
around the graph of f , and no matter which n we take, it is not the case that the graph of fn lies
entirely inside the strip— some portion of the graph of fn always ‘sticks out’.
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fn

f

portion that
sticks out

portion that
sticks out

Here is a rigorous proof. Suppose that pfnqnPN converges uniformly to f . Let ε “ 1 ą 0. Then
there exists an N P N such that for all x P R, and all n ą N , |fnpxq ´ fpxq| ă 1. Take x “ 2N `2.
Then the above gives us that for all n ą N , | 2N`2

n ´ 0| ă 1. In particular, for n “ N ` 1,
2N`2
N`1 “ 2 ă 1, that is, 2 ă 1, a contradiction! !

Example 2.37. Let X “ R, and for x P R, let fnpxq “ sinpnxq
n

(n P N). Clearly for each x P R we

have ´ 1
n
ď sinpnxq

n
ď 1

n
(n P N), and so by the Sandwich Theorem,

lim
nÑ8

fnpxq “ 0 “: fpxq,

where f : R Ñ R is the constant function equal to 0 everywhere. So pfnqnPN converges pointwise
to f .

Figure 1. pfnqnPN converges uniformly to f : with ε “ 1
2 , we see that the graphs of f3, f4, ¨ ¨ ¨

all lie in the strip of width ε about the graph of the zero function f .

Is the convergence uniform? We guess the answer is ‘Yes’, based on the Figure 1: Looking at
a strip of an arbitrarily small width around the graph of the zero function f , it is clear that
eventually the graphs of fn lie in this strip. In fact, for all x P R, |fnpxq ´ fpxq| “ | sinpnxq|

n
ď 1

n
.

So given ε ą 0, if we choose N P N such that N ą 1
ε , then for n ą N , we have that for all x P R,

|fnpxq ´ fpxq| ď 1
n ă

1
N ă ε. Hence, pfnqnPN converges uniformly to f . !

We know that if pfnqnPN converges to f uniformly, then it converges pointwise to f . The next
two exercises give a guide to investigate uniform convergence, knowing that pfnqnPN is pointwise
convergent:

(1) First for each x P X , find lim
nÑ8

fnpxq, and call the limit fpxq.

(2) Find a ‘uniform bound’ on |fnpxq ´ fpxq| (if it exists), namely sup
xPX

|fnpxq ´ fpxq| ď an.

Then pfnqnPN converges to f uniformly if lim
nÑ8

an “ 0. See Exercise 2.38.

(3) If there exists a sequence pxnqnPN in X such that p|fnpxnq´fpxnq|qnPN does not converge
to 0, then pfnqnPN does not converge uniformly to f . See Exercise 2.39.

Exercise 2.38. Suppose that X is a nonempty set and fn : X Ñ R (n P N) be a sequence which is
pointwise convergent to f : X Ñ R. Let the numbers an :“ supt|fnpxq ´ fpxq| : x P Xu (n P N) all exist.
Prove that pfnqnPN converges uniformly to f if and only if lim

nÑ8
an “ 0.

Define fn :p0,8qÑR by fnpxq“xe´nx, xP p0,8q, nPN. Show that pfnqnPN converges uniformly on p0,8q.
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Exercise 2.39. Let X be a nonempty set and fn : X Ñ R (n P N) be a sequence which is pointwise
convergent to f : X Ñ R. Let pxnqnPN be a sequence in X such that p|fnpxnq ´ fpxnq|qnPN does not
converge to 0. Prove that pfnqnPN does not converge uniformly to f .

For n P N, define fn : R Ñ R by fnpxq “ 1 if x ą n, and fnpxq “ 0 if x ď n. Show that pfnqnPN converges
pointwise to the function f which is 0 everywhere on R. Prove that the convergence is not uniform.

Exercise 2.40. For n P N, let fn : r0, 1s Ñ R be defined by fnpxq “ x
1`nx

(x P r0, 1s). Does pfnqnPN

converge uniformly on r0, 1s?

Exercise 2.41. For n P N, let fn : p0, 1q Ñ R be defined by fnpxq “ xn, x P p0, 1q.
(1) Does the sequence pfnqnPN converge pointwise to some function?

(2) Is the convergence uniform?

(3) Sketch the graphs of the first few terms of pfnqnPN, and explain visually your answer to part (2) above.

Why bother with uniform convergence? Uniform convergence often implies that the limit
function inherits the ‘nice’ properties possessed by the terms of the sequence. This is not guar-
anteed to happen if one has mere pointwise convergence. For instance, we will see later on that
if a sequence pfnqnPN of continuous functions fn (n P N) converges uniformly to a function f ,
then f is also continuous; see Proposition 4.16. The reason nice things can happen with uniform
convergence is that we can exchange two ‘limiting processes’, which is not always allowed when
one just has pointwise convergence. The following exercises demonstrate the precariousness of
exchanging limiting processes arbitrarily.

Exercise 2.42. Let fn : R Ñ R be defined by fnpxq “ 1 ´ 1
p1`x2qn (x P R, n P N). Show that the

sequence pfnqnPN of continuous functions converges pointwise to the function

fpxq “
"

1 if x ‰ 0,
0 if x “ 0,

which is discontinuous at 0.

Exercise 2.43. Let am,n “ m
m`n

, mn,n P N. Show that for each fixed n, lim
mÑ8

am,n “ 1, while for each

fixed m, lim
nÑ8

am,n “ 0. Is lim
mÑ8

lim
nÑ8

am,n “ lim
nÑ8

lim
mÑ8

am,n?

Exercise 2.44. Let fn : R Ñ R be defined by fnpxq “ sinpnxq?
n

(x P R, n P N).

Show that pfnqnPN converges pointwise to the zero function f .

Show that pf 1
nqnPN does not converge pointwise to (the zero function) f 1.

Exercise 2.45. Let fn : r0, 1s Ñ R (n P N) be defined by fnpxq “ nxp1 ´ x2qn (x P r0, 1s).
Show that pfnqnPN converges pointwise to the zero function f .

Show that lim
nÑ8

ş1
0
fnpxqdx “ 1

2 ‰ 0 “
ş1
0
lim
nÑ8

fpxqdx.

Remark 2.46 (Not part of the course). Besides Proposition 4.16, one also has the following
results associated with uniform convergence, and we will see a proof of Proposition 2.48 later on
when we study differentiation in Chapter 5, and a proof of Proposition 2.47 in Chapter 6.

Proposition 2.47. If fn : ra, bs Ñ R pn P Nq is a sequence of Riemann-integrable functions on
ra, bs which converges uniformly to f : ra, bs Ñ R, then f is also Riemann-integrable on ra, bs, and
moreover

şb
a
fpxqdx “ lim

nÑ8

şb
a
fnpxqdx.

Proposition 2.48. Let fn : pa, bq Ñ R pn P Nq be a sequence of differentiable functions on pa, bq,
such that there exists a point c P pa, bq for which pfnpcqqnPN converges. If the sequence pf 1

nqnPN
converges uniformly to g on pa, bq, then pfnqnPN converges uniformly to a differentiable function f

on pa, bq, and moreover, f 1pxq “ gpxq for all x P pa, bq.
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2.4. Convergent sequences and closed sets

We have learnt that closed sets are ones whose complement is open. Here is another characterisa-
tion of closed sets.

Theorem 2.49. A set F is closed if and only if for every convergent sequence panqnPN such that
an P F pn P Nq, we have that lim

nÑ8
an P F.

Proof. (‘Only if’ part:) Let F be closed. Let panqnPN be a convergent sequence such that an P F

(n P N) and denote its limit by L. Assume that L R F . Then L P AF , the complement of F , which
is open. So there exists an r ą 0 such that the open ball BpL, rq with center L and radius r ą 0 is
contained in AF , that is, BpL, rq contains no points from F . As panqnPN is convergent with limit
L, we can choose a large enough n so that dpan, Lq ă r. This implies that an P BpL, rq. But also
an P F , and so we have arrived at a contradiction. See Figure 2. This shows the ‘only if’ part.

F AF

L
an

r

F

AF

L

Figure 2. The left picture is for the ‘only if’ part, and the right one is for the ‘if’ part.

(‘If’ part:) Suppose that the set F is not closed. Then its complement AF is not open. This means
that there is a point L P AF such that for every r ą 0, the open ball BpL, rq has at least one
point from F . Now take successively r “ 1

n (n P N), and choose a point an P F X BpL, 1
n q. In

this manner we obtain a sequence panqnPN such that an P F for each n, and dpan, Lq ă 1
n . The

property dpan, Lq ă 1
n (n P N) implies that panqnPN is a convergent sequence with limit L. So we

have obtained the existence of a convergent sequence panqnPN such that an P F (n P N), but for
which the limit lim

nÑ8
an “ L R F. See Figure 2. This completes the proof of the ‘if’ part. !

Exercise 2.50. We endow Rn with the Euclidean metric.

(1) Let 0 ‰ a P Rn and β P R. Show that the ‘hyperplane’ H “ tx P Rn : aJx “ βu is closed in Rn.

(2) Let A P Rmˆn, b P Rm. Show that the set of solutions S “ tx P Rn : Ax “ bu is a closed subset of Rn.

(3) Show that the Linear Programming Simplex Σ“txPRn :Ax “ b, x1ě0, . . . , xně0u is closed in Rn.

Exercise 2.51. Let U be an open set and pxnqnPN a sequence in a metric space. Show that if pxnqnPN
converges to x P U , then there exists N P N such that for all n ą N , xn P U . (In words: If the limit of a
convergent sequence lies in an open set, then the sequence eventually stays in the open set.)

Exercise 2.52. Recall the normed space "2 introduced in Exercise 1.20. Consider the subspace c00 of "2

consisting of all sequences with ‘compact support’ (that is sequences which have all terms equal to zero
eventually). Show that c00 is not a closed subset of "2.

Exercise 2.53. Recall the normed space "8 introduced in Exercise 1.21. Let c0 be the subspace of "8

consisting of all sequences convergent with limit 0. Show that c0 is a closed subset of "8.

Exercise 2.54. Let Y be a nonempty closed subset of a complete metric space pX, dq. We endow Y with
the induced metric d|Y ˆY from pX, dq (see Exercise 1.18). Show that pY, d|Y ˆY q is complete too.
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2.5. Compact sets

In this section, we study an important class of subsets of a metric space, called compact sets.
Before we learn the definition, let us give some motivation for this concept.

Of the different types of intervals in R, perhaps the most important are those of the form
ra, bs, where a, b are finite real numbers. Why are such intervals so important? This is not an easy
question to answer, but we already know of one vital result, namely the Extreme Value Theorem,
where such intervals play a vital role. Recall that the Extreme Value Theorem asserts that any
continuous function f : ra, bs Ñ R attains a maximum and a minimum value on ra, bs. This result
does not hold in general for continuous functions f : I Ñ R with I “ pa, bq or I “ ra, bq or
I “ pa,8q, and so on. Besides its theoretical importance in Analysis, the Extreme Value Theorem
is also a fundamental result in Optimisation Theory. It turns out that when we want to generalise
this result, the notion of ‘compact sets’ is pertinent, and we will learn (later on in Chapter 4) the
following analogue of the Extreme Value Theorem: If K is a compact subset of a metric space X

and f : K Ñ R is continuous, then f assumes a maximum and a minimum on K.

Here is the definition of a compact set.

Definition 2.55. Let pX, dq be a metric space. A subset K of X is said to be compact if every
sequence in K has a convergent subsequence with limit in K, that is, if pxnqnPN is a sequence such
that xn P K for each n P N, then there exists a subsequence pxnk

qkPN which converges to some
L P K.

Example 2.56. Let a, b P R and a ă b. The interval ra, bs is a compact subset of R. Indeed,
every sequence panqnPN contained in ra, bs is bounded, and by the Bolzano-Weierstrass Theorem
possesses a convergent subsequence, say pank

qkPN, with limit L. But since

for all k P N, a ď ank
ď b,

by letting k Ñ 8, we obtain a ď L ď b, that is, L P ra, bs. Hence ra, bs is compact.

On the other hand, pa, bq is not compact, since the sequence pa` b´a
2n qnPN is contained in pa, bq,

but it has no convergent subsequence whose limit belongs to pa, bq. This is because the sequence
is convergent, with limit a, and so every subsequence of this sequence is also convergent with limit
a, which doesn’t belong to pa, bq.

R is not compact since the sequence pnqnPN cannot have a convergent subsequence. Indeed,
if such a convergent subsequence existed, it would also be Cauchy, but the distance between any
two terms with distinct indices is at least 1 (since the terms are distinct integers), contradicting
the Cauchyness. !

In the above list of nonexamples, note that R is not bounded, and that pa, bq is not closed. On
the other hand, the example ra, bs is both bounded and closed. It turns out that compact sets
are always closed and bounded. First we define exactly what we mean by a bounded subset of a
metric space.

Definition 2.57. A subset S of a metric space X is said to be bounded if there exists an M ą 0
such that for all x, y P S, dpx, yq ďM .

Exercise 2.58. Let pX, dq be a metric space and S be a nonempty subset of X. Show that the following
are equivalent:

(1) There exists an M ą 0 such that for all x, y P S, dpx, yq ďM .

(2) There exist an R ą 0 and an z0 P X such that for all x P S, dpx, z0q ď R.

(3) For all z P X, there exists an Rz ą 0 such that for all x P S, dpx, zq ď Rz.

Thus S is bounded if and only if any one of the above statements hold. Also, a subset S in a normed
space pX, } ¨ }q is bounded if and only if there exists an M ą 0 such that for all x P X, }x} ďM .



26 2. Sequences

Exercise 2.59. Show that any convergent sequence panqnPN in a metric space pX, dq is bounded, that is,
the set tan : n P Nu is a bounded subset of X.

Theorem 2.60. Any compact subset K of a metric space pX, dq is closed and bounded.

Proof. We first show that K is closed. Let panqnPN be a sequence in K that converges to L P X .
Then there is a convergent subsequence, say pank

qkPN that is convergent to a limit L1 P K. But
as pank

qkPN is a subsequence of a convergent sequence with limit L, it is also convergent to L. By
the uniqueness of limits, L “ L1 P K. Thus, K is closed (by Theorem 2.49).

Next we show that K is bounded by contradiction. Suppose K is not bounded. Let x0 P X .
Taking any n P N, it is not the case that for all x P K, dpx, x0q ď n (otherwise, K can be seen to
be bounded taking R :“ n), and so for this n, there must be an x P K, which we call an, such that
dpan, x0q ą n. But this implies that no subsequence of panqnPN is bounded. So no subsequence of
panqnPN can be convergent either. This contradicts the compactness of K. Thus our assumption
was incorrect, that is, K is bounded. !

The converse of the above theorem is, in general, false. That is, there exist metric spaces with sub-
sets that are closed and bounded, but not compact, as shown by the following example. (However,
as shown by Theorem 2.63 below, the converse is true for subsets of Rn.)

Example 2.61 (The closed unit ball in ($2, } ¨ }2) is not compact). Recall the normed space
introduced in Exercise 1.20. Consider closed the unit ball with centre 0 “ p0qnPN and radius 1 in
the normed space $2:

Bp0, 1q “ tx P $2 : }x}2 ď 1u.
Then Bp0, 1q is bounded, it is closed (since its complement can be seen to be open), but Bp0, 1q
is not compact, and this can be demonstrated as follows. Take the sequence penqnPN, where en is
the sequence with only the nth term equal to 1, and all other terms are equal to 0:

en :“ p 0 , ¨ ¨ ¨ , 0 , 1loomoon
nth place

, 0 , ¨ ¨ ¨ q P Bp0, 1q Ă $2

Then penqnPN in Bp0, 1q Ă $2 can have no convergent subsequence. Indeed, whenever n ‰ m,
}en ´ em}2 “

?
2, and so no subsequence of penqnPN can be Cauchy, much less convergent! !

Example 2.62. (The closed unit ball in (Cr0, 1s, } ¨ }8) is not compact.) Consider the closed unit
ball with centre 0 in (Cr0, 1s, } ¨ }8) and radius 1:

Bp0, 1q “ tx P Cr0, 1s : }x}8 ď 1u.

Then Bp0, 1q is bounded, and also it is closed (since its complement is open). But Bp0, 1q is not
compact, and this can be demonstrated by considering the sequence pxnqnPN, where the graphs
of the terms xn have ‘narrowing’ tents of height 1, with the supports of the tents moving to the
right, on half of each remaining interval, as shown in the following picture:

Then this sequence does not have a convergent subsequence, since if it did, then the convergent
subsequence would be Cauchy, but whenever n ‰ m, }xn ´ xm}8 “ 1, a contradiction to the
Cauchyness. !

We will now show the following important result.

Theorem 2.63. A subset K of Rd is compact if and only if K is closed and bounded.
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Before showing this, we prove a technical result, which besides being interesting on its own, will
also somewhat simplify the proof of the above theorem.

Lemma 2.64. Every bounded sequence in Rd has convergent subsequence.

Proof. We prove this using induction on d. Let us consider the case when d “ 1. Then the
statement is precisely the Bolzano-Weierstrass Theorem!

Now suppose that the result has been proved in Rd for some d ě 1. We will show that it holds
in Rd`1. Let panqnPN be a bounded sequence in Rd`1. We split each an into its first d components
(giving a vector in Rd) and its last component in R:

an “
„
αn

βn


,

where αn P Rd and βn P R. Clearly }αn}2 ď }an}2, and so pαnqnPN is a bounded sequence in
Rd. By the induction hypothesis, pαnqnPN has a convergent subsequence, say pαnk

qkPN which
converges, to say α P Rd. Consider now the sequence pβnk

qkPN in R. Then pβnk
qkPN is bounded,

and so by the Bolzano-Weierstrass Theorem, it has a convergent subsequence pβnk#
q#PN, with limit,

say β P R. Then we have

ank#
“

«
αnk#

βnk#

ff
#Ñ8ÝÑ

„
α

β


“: L P Rd`1.

Thus the bounded sequence panqnPN has pank#
q#PN as a convergent subsequence. !

Now we return to the task of proving of Theorem 2.63.

Proof. (‘If’ part.) Let K be closed and bounded. Let panqnPN be a sequence in K. Then panqnPN
is bounded, and so it has a convergent subsequence, with limit L P Rd. But since K is closed, and
since each term of the sequence belongs to K, it follows that also L P K. So K is compact.

(‘Only if’ part) This follows by Theorem 2.60. !

Example 2.65. The intervals pa, bs, ra, bq are not compact, since although they are bounded,
they are not closed. The intervals p´8, bs, ra,8q are not compact, since although they are closed,
they are not bounded. !

Let us consider an interesting compact subset of the real line, called the Cantor set.

Example 2.66 (Cantor set). The Cantor set is constructed as follows. First, denote the closed
interval r0, 1s by F1. Next, delete from F1 the open interval p1

3 ,
2
3 q which is its middle third, and

denote the remaining closed set by F2. Clearly, F2 “ r0, 13 s Y r 23 , 1s. Next, delete from F2 the open
intervals p1

9 ,
2
9 q and p7

9 ,
8
9 q, which are the middle thirds of its two pieces, and denote the remaining

closed set by F3. It is easy to see that F3 “ r0, 19 s Y r 29 ,
1
3 s Y r 23 ,

7
9 s Y r 89 , 1s. If we continue this

process, at each stage deleting the open middle third of each closed interval remaining from the
previous stage, we obtain a sequence of closed sets Fn, each of which contains all of its successors.
The picture below illustrates this.

The Cantor set is defined by F “
8Ş

n“1
Fn.
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As F is an intersection of closed sets, it is closed. Moreover it is contained in r0, 1s and so it is also
bounded. Consequently it is compact. F consists of those points in the closed interval r0, 1s which
‘ultimately remain’ after the removal of all the open intervals p1

3 ,
2
3 q, p1

9 ,
2
9 q, p7

9 ,
8
9 q, . . . . What

points do remain? F contains the end-points of the closed intervals which make up each set Fn:

0, 1, 13 ,
2
3 ,

1
9 ,

2
9 ,

7
9 ,

8
9 , ¨ ¨ ¨ .

Does F contain any other points? Actually, F contains many more points than the above list
of end points. After all, the above list of endpoints is countable, but it can be shown that F is
uncountable! It turns out that the Cantor set is a very intricate mathematical object, and is often
a source of interesting examples/counterexamples in Analysis: For example, as the sum of the
lengths of the intervals removed is

1
3 ` 2 1

32 ` 4 1
33 ` ¨ ¨ ¨ “ 1,

(factor out 1
3 and sum the resulting geometric series), the ‘(Lebesgue length) measure’ of F is

1 ´ 1 “ 0. So this is an example of an uncountable set with ‘Lebesgue measure’ 0. !

Exercise 2.67. Determine if the following statements are true or false. Give reasons for your answers.

(1) If S Ă R is such that each convergent sequence in S has a convergent subsequence with limit in S,
then S is compact.

(2) All closed and bounded sets are compact.

(3) If pX, dq is a metric space, Y is a nonempty subset of X equipped with the induced metric from pX, dq,
and K is a compact subset of pY, d|Y ˆY q, then K is a compact subset of pX, dq.

Exercise 2.68. Let K be a compact subset of Rd. Let F be a closed subset of Rd. Show that F X K is
compact.

Exercise 2.69. Show that the unit sphere with center 0 in Rd, namely

S
d´1 :“ tx P R

d : }x}2 “ 1u
is compact.

Exercise 2.70. Show that
*
1, 1

2 ,
1
3 , . . .

(
Y t0u is compact.

Exercise 2.71. Consider the metric space pRmˆm, } ¨ }8q.
Is the subset (the ‘General Linear’ group5) GLpm,Rq “ tA P Rmˆm : A is invertibleu compact?

Exercise 2.72. In the metric space pR2ˆ2, } ¨ }8q. is the set of orthogonal matrices Op2q “ tA P R2ˆ2 :
AJA “ I2u compact?

Exercise 2.73. Consider the subset H :“ tpx1, x2q P R2 : x1x2 “ 1u of R2. Show that H is not compact,
but H is closed.

2.6. Notes (not part of the course)

Definition of compactness. The notion of a compact set that we have defined is really sequential

compactness. In the context of the more general topological spaces, one defines the notion of compactness
as follows.

Definition 2.74. Let X be a topological space with the topology given by the family of open sets O.

Let Y Ă X. A collection C “ tUi : i P Iu of open sets is said to be an open cover of Y if Y Ă
Ť
iPI

Ui.

K Ă X is said to be a compact set if every open cover of K has a finite subcover, that is, given any open
cover C “ tUi : i P Iu of K, there exist finitely many indices i1, . . . , in P I such that K Ă Ui1 Y ¨ ¨ ¨ Y Uin .

In the case of metric spaces, it can be shown that the set of compact sets coincides with the set of
sequentially compact sets. But in general topological spaces, these may not be the same.

5The General Linear group is so named because the columns of an invertible matrix are linearly independent, hence the
vectors they define are in ‘general position’ (linearly independent!), and matrices in the general linear group take points
in general position to points in general position.



Chapter 3

Series

In this chapter we study series in normed spaces, but first we will begin with series in R. Just as
we learnt ways of deducing the convergence of sequences, we will learn about tests for checking
convergence of series. Why bother learning about such things about series? It turns out that series
play an important role in solutions to various problems that arise in Mathematics and applications
to Mathematics in other disciplines. For example, in the theory of differential equations, in
functional analysis, Fourier/harmonic analysis, complex analysis and so on.

3.1. Series in R

Given a sequence panqnPN, one can form a new sequence psnqnPN of its partial sums:

s1 :“ a1,

s2 :“ a1 ` a2,

s3 :“ a1 ` a2 ` a3,
...

Definition 3.1. Let panqnPN be a sequence and let psnqnPN be the sequence of its partial sums.

If psnqnPN converges, we say that the series
8ř

n“1
an converges, and we write

8ř
n“1

an “ lim
nÑ8

sn.

If the sequence psnqnPN does not converge we say that the series
8ř

n“1
an diverges.

Example 3.2. (1) The series
8ř

n“1
p´1qn diverges. Indeed the sequence of partial sums is the

sequence ´1, 0,´1, 0, . . . which is a divergent sequence.

(2) Let panqnPN be the geometric sequence p 1
2n qnPN. Then psnqnPN “ p1 ´ 1

2n qnPN is convergent

with limit 1. Thus
8ř

n“1

1
2n “ 1. A pictorial proof is given below.

1

1 1
2

1
22

1
23

1
24

1
25 1

26

(3) The series
8ř

n“1

1
npn`1q converges. Its nth partial sum ‘telescopes’:

sn “
nř

k“1

1
kpk`1q “

nř
k“1

p 1
k ´ 1

k`1 q “ p1 ´ !!
1
2 q ` p!!

1
2 ´ ""

1
3 q ` p""

1
3 ´ !!

1
4 q ` ¨ ¨ ¨ ` p!!

1
n ´ 1

n`1 q “ 1 ´ 1
n`1 .

Since lim
nÑ8

sn “ 1 ´ 0 “ 1, we have
8ř

n“1

1
npn`1q “ 1. !

29
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Exercise 3.3 (Tantalising tan´1). Show that
8ř

n“1
tan´1 1

2n2 “ π
4 . Hint: Write 1

2n2 “
1

2n´1
´ 1

2n`1

1` 1
2n´1

1
2n`1

and

use tanpa ´ bq “ tan a´tan b
1`tan a tan b

.

Exercise 3.4. Show that for every real number x ą 1, the series 1
1`x

` 2
1`x2 ` 4

1`x4 ` ¨ ¨ ¨ ` 2n

1`x2n ` . . .

converges. Hint: Add 1
1´x

.

Exercise 3.5. Consider the Fibonacci sequence pFnqnPN with F0 “ F1 “ 1 and Fn`1 “ Fn ` Fn´1 for

n P N. Show that
8ř

n“1

1
Fn´1Fn`1

“ 1.

In the above example of the divergent series
8ř

n“1
p´1qn, the sequence panqnPN “ pp´1qnqnPN was

not convergent. In fact, we have the following necessary condition for convergence of a series.

Proposition 3.6. If the series
8ř

n“1
an converges, then lim

nÑ8
an “ 0.

Proof. Let sn :“ a1 ` ¨ ¨ ¨ ` an. Since the series converges we have lim
nÑ8

sn “ L for some L P R.

But as psn`1qnPN is a subsequence of psnqnPN, it follows that lim
nÑ8

sn`1 “ L. By the algebra of

limits, lim
nÑ8

an`1 “ lim
nÑ8

psn`1 ´ snq “ lim
nÑ8

sn`1 ´ lim
nÑ8

sn “ L ´ L “ 0. !

Exercise 3.7. Does the series
8ř

n“1
cos 1

n
converge?

Exercise 3.8. Let
8ř

n“1
an converge.

(1) Show that for all n P N, the series1
8ř

k“n`1
ak converges.

(2) Given any ε ą 0, show that there exists an N P N such that for all n ą N , we have |
8ř

k“n`1
ak| ă ε.

In Theorem 3.10, we will see an instance of a series which shows that although this condition is
necessary for the convergence of a series, it is not sufficient. But first, let us see an important
example of a convergent series. In fact, it lies at the core of most of the convergence results in
Real Analysis.

Theorem 3.9. Let r P R. The geometric series
8ř

n“0
rn converges if and only if |r| ă 1.

Moreover, if |r| ă 1, then
8ř

n“0
rn “ 1

1´r
.

Proof. Let |r| ă 1. First we will show that lim
nÑ8

rn “ 0. As |r| ă 1, |r| “ 1
1`h

for h :“ 1
|r| ´1 ą 0.

Then p1` hqn “ 1 `
`
n
1

˘
h ` ¨ ¨ ¨ ` hn ą nh. Thus 0 ď |r|n “ 1

p1`hqn ă
1
nh

, and so by the Sandwich

Theorem, lim
nÑ8

|r|n “ 0. As ´|r|n ď rn ď |r|n, it follows again from the Sandwich Theorem that

lim
nÑ8

rn “ 0.

Let sn :“ 1 ` r ` r2 ` ¨ ¨ ¨ ` rn “ p1´rqp1`r`r2`¨¨¨`rnq
1´r

“ 1´rn`1

1´r
. As lim

nÑ8
rn`1 “ 0, it follows

that lim
nÑ8

p1 ´ rqsn “ 1. Hence
8ř

n“1
rn “ lim

nÑ8
sn “ 1

1´r .

Now suppose that |r| ě 1. If r “ 1, then lim
nÑ8

rn “ 1 ‰ 0, and so by Proposition 3.6, the series

diverges. Similarly if r “ ´1, then prnqnPN “ pp´1qnqnPN diverges, and so the series is divergent.
Also if |r| ą 1, then the sequence prnqnPN has the subsequence pr2nqnPN which is not bounded,
and hence not convergent. Consequently prnqnPN diverges, and hence the series diverges. !

1Sometimes referred to as a ‘tail of the series
8ř

n“1
an’.
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The name comes from the associated similarity in geometry.

11

1

r

rr
r2 r2

r2
r3

r3

1´r

A

B C

B1
C 1

Since the triangles AB1C 1 and ABC are similar, BC
AB

“ 1`r`r2`r3`¨¨¨
1 “ B1C1

AB1 “ 1
1´r

.

Theorem 3.10. The harmonic series2
8ř

n“1

1
n diverges.

Proof. Let sn :“ 1 ` 1
2 ` 1

3 ` ¨ ¨ ¨ ` 1
n
. We have

for all n P N, s2n ´ sn “ 1
n`1 ` 1

n`2 ` ¨ ¨ ¨ ` 1
2n ě n 1

2n “ 1
2 . (3.1)

If the series converges, then lim
nÑ8

sn “ L for some L. But then also lim
nÑ8

s2n “ L, and so

lim
nÑ8

ps2n ´ snq “ L ´ L “ 0, which contradicts (3.1). !

!
The nth term of the above series satisfies lim

nÑ8
an “ lim

nÑ8
1
n

“ 0, showing that the condition

given in Proposition 3.6 is necessary but not sufficient for the convergence of the series.

Theorem 3.11. Let s P R. The series3
8ř

n“1

1
ns converges if and only if s ą 1.

Proof. Let Sn “ 1 ` 1
2s ` 1

3s ` ¨ ¨ ¨ ` 1
ns . Clearly S1 ă S2 ă S3 ă ¨ ¨ ¨ , so that pSnqnPN is an

increasing sequence.

Let s ą 1. We have

S2n`1 “ 1 ` p 1
2s ` 1

4s ` ¨ ¨ ¨ ` 1
p2nqs q ` p 1

3s ` 1
5s ` ¨ ¨ ¨ ` 1

p2n`1qs q

ă 1 ` p 1
2s ` 1

4s ` ¨ ¨ ¨ ` 1
p2nqs q ` p 1

2s ` 1
4s ` ¨ ¨ ¨ ` 1

p2nqs q

“ 1 ` 2
2s p1 ` 1

2s ` ¨ ¨ ¨ ` 1
ns q “ 1 ` 21´sSn

ă 1 ` 21´sS2n`1.

As są 1, we have 21´s ă 1, so that S2n`1 ă 1
1´21´s (n P N). Also, S2n ă S2n`1 ă 1

1´21´s (n P N).
Thus pSnqnPN is bounded. But an increasing sequence which is bounded above is convergent (to

the supremum of its terms). Hence
8ř

n“1

1
ns converges for s ą 1.

If on the other hand s ď 1, then the proof of divergence is similar to that of showing that the
harmonic series diverges. Indeed, if the series converged, then lim

nÑ8
pS2n ´ Snq “ 0, while

for all n P N, S2n ´ Sn “ 1
pn`1qs ` 1

pn`2qs ` ¨ ¨ ¨ ` 1
p2nqs ě n 1

p2nqs ě n 1
2n “ 1

2 ,

where we have used the fact that s ď 1 in order to obtain the last inequality. !

For a sequence panqnPN with nonnegative terms, we sometimes write
8ř

n“1
an ă `8 to mean that

the series converges.

2Its name derives from the concept of overtones, or harmonics in music: The wavelengths of the overtones of a vibrating
string are 1

2 ,
1
3 ,

1
4 , and so on, of the string’s fundamental wavelength.

3The function s ÞÑ
8ř

n“1

1
ns is called the Riemann-zeta function, which is an important function in number theory. The

connection with number theory is brought out by Euler’s identity, which says that ζpsq :“
8ř

n“1

1
ns “

ś
p prime

1

1´p´s .
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Exercise 3.12. Prove that if a1 ě a2 ě a3 ě ¨ ¨ ¨ is a sequence of nonnegative numbers, and
8ř

n“1
ană`8,

then lim
nÑ8

nan “ 0. Hint: s2n ´ sn “ an`1 ` ¨ ¨ ¨ ` a2n ě n ¨ a2n and an`2 ` ¨ ¨ ¨ ` a2n`1 ě n ¨ a2n`1.

Show that the assumption a1 ě a2 ě a3 ě ¨ ¨ ¨ above cannot be dropped by considering the lacunary

series whose n2th term is 1
n2 and all other terms are zero.

Exercise 3.13 (Astronomical patience!). Suppose a computer is programmed to add 1 trillion terms of
the harmonic series each second. Since the Big Bang (about 13.8 billion years ago), has enough time
elapsed for the nth partial sum to exceed 100? Hint: Compare the partial sum with

şn
1

1
x
dx.

Exercise 3.14 (Infinitude of primes via divergence of the harmonic series).

(1) Let n P N. For any prime p, show that 1
1´ 1

p

ě 1 ` 1
p

` ¨ ¨ ¨ ` 1
pn

.

(2) Let N Q n ě 2 have a factorisation into primes given by n “ pα1
1 ¨ ¨ ¨ pαK

K , where α1, ¨ ¨ ¨ ,αK P N and
p1, ¨ ¨ ¨ , pK are primes. Show that αk ď n for all 1 ď k ď K.

(3) If p1, ¨ ¨ ¨ , pK are the only prime numbers, then show that for all n P N,
Kś

k“1

1
1´ 1

pk

ě 1` 1
2 ` 1

3 ` ¨ ¨ ¨ ` 1
n
,

and hence arrive at a contradiction (to the divergence of the harmonic series).

Exercise 3.15 (
ř

p prime

1
p
diverges). Let all the primes be p1 ă p2 ă p3 ă ¨ ¨ ¨ .

(1) For all x P r0, 1
2 s, show that 2x ´ log 1

1´x
ě 0.

(2) Show that if n P N, then
ś

prime pďn

1
1´ 1

p

ě ś
prime pďn

p1 ` 1
p

` ¨ ¨ ¨ ` 1
pn

q ě 1 ` 1
2 ` ¨ ¨ ¨ ` 1

n
.

(3) Conclude that
ř

p prime

1
p
diverges.

Exercise 3.16. For r P R, consider the Arithmetic-Geometric Progression 1, 2r, 3r2, 4r3, ¨ ¨ ¨ . Note
that 1, 2, 3, 4, ¨ ¨ ¨ form an arithmetic progression, while 1, r, r2, r3, ¨ ¨ ¨ form a geometric progression. Show
that if |r| ă 1, then 1 ` 2r ` 3r2 ` ¨ ¨ ¨ “ 1

p1´rq2 . Hint: Consider sn ´ rsn, where sn is the nth partial sum.

Definition 3.17. If the series
8ř

n“1
|an| converges, then we say that

8ř
n“1

an converges absolutely.

The name is justified, thanks to the following result.

Proposition 3.18. If
8ř

n“1
|an| converges, then

8ř
n“1

an converges.

Proof. Let sn :“ a1 ` ¨ ¨ ¨ ` an. We will show that psnqnPN is a Cauchy sequence. For n ą m,

|sn ´ sm| “ |pa1 ` ¨ ¨ ¨ ` anq ´ pa1 ` ¨ ¨ ¨ ` amq| “ |am`1 ` ¨ ¨ ¨ ` an|
ď |am`1| ` ¨ ¨ ¨ ` |an| “ p|a1| ` ¨ ¨ ¨ ` |an|q ´ p|a1| ` ¨ ¨ ¨ ` |am|q “ σn ´ σm,

where σk :“ |a1| ` ¨ ¨ ¨ ` |ak| (k P N). Since
8ř

n“1
|an| ă `8, its sequence of partial sums pσnqnPN is

convergent, and in particular, Cauchy. This shows, from the above inequality |sn ´sm| ď σn ´σm,

that psnqnPN is a Cauchy sequence in R and hence it is convergent. !

Exercise 3.19. Does the series
8ř

n“1

sinn
n2 converge?

Exercise 3.20. If
8ř

n“1
an converges absolutely, then show that |

8ř
n“1

an| ď
8ř

n“1
|an|.

Example 3.21. The series
8ř

n“1

p´1qn
n

does not converge absolutely, since
8ř

n“1
| p´1qn

n
| “

8ř
n“1

1
n
, and we

have seen that the harmonic series diverges.

A series of the form
8ř

n“1
p´1qnan with an ě 0 for all n P N is called an alternating series.

The series above, namely
8ř

n“1

p´1qn
n is an alternating series

8ř
n“1

p´1qnan with an :“ 1
n (n P N).

We’ll now learn a result, called the Leibniz Alternating Series Theorem, allowing us to conclude
that this alternating series is in fact convergent (since the sufficiency conditions for convergence
in the Leibniz Alternating Series Theorem are satisfied: a1 “ 1 ě a2 “ 1

2 ě a3 “ 1
3 ě ¨ ¨ ¨ and

lim
nÑ8

an “ lim
nÑ8

1
n

“ 0). !
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Theorem 3.22 (Leibniz Alternating Series Theorem). Let panqnPN be a sequence such that

(1) it has nonnegative terms pan ě 0 for all nq,
(2) it is decreasing pa1 ě a2 ě a3 ě . . . q, and
(3) lim

nÑ8
an “ 0.

Then the series
8ř

n“1
p´1qnan converges.

A pictorial ‘proof without words’ is shown below. The sum of the lengths of the disjoint dark
intervals is at most the length of p0, a1q.

a1a2a3a4a2n´1a2n. . . . . .0

a1 ´ a2a3 ´ a4a2n´1 ´ a2n

Proof. We may just as well prove the convergence of
8ř

n“1
p´1qn`1an p“ ´

8ř
n“1

p´1qnanq.

Let sn “ a1 ´ a2 ` a3 ´ ` ¨ ¨ ¨ ` p´1qn´1an. Clearly

s2n`1 “ s2n´1 ´ a2n ` a2n`1 ď s2n´1,

s2n`2 “ s2n ` a2n`1 ´ a2n`2 ě s2n,

and so the sequence s2, s4, s6, . . . is increasing, while the sequence s3, s5, s7, . . . is decreasing. Also,

s2n ď s2n ` a2n`1 “ s2n`1 ď s2n´1 ď ¨ ¨ ¨ ď s3.

So ps2nqnPN is a bounded (s2 ď s2n ď s3 for all n), increasing sequence, and hence it is convergent.
But as pa2n`1qnPN is also convergent with limit 0, it follows that ps2n`1qnPN is convergent too, and

lim
nÑ8

s2n`1 “ lim
nÑ8

ps2n ` a2n`1q “ lim
nÑ8

s2n.

Hence psnqnPN is convergent, and so the series converges. !

Exercise 3.23. Let s ą 0. Show that
8ř

n“1

p´1qn
ns converges.

Exercise 3.24. Prove that
8ř

n“1
p´1qn

?
n

n`1 converges.

Exercise 3.25. Prove that
8ř

n“1
p´1qn sin 1

n
converges.

One might tend to think of a series as an ‘infinite sum’, and hence be tempted to attribute to it
the usual properties associated with finite sums such as grouping and changing the order of terms.
The next two exercises show that this is fraught with dangers, and one ought to go back to the
definitions in order to check if the manipulation at hand is allowed.

Exercise 3.26 (Inserting parenthesis).
(1) Show that if a series converges, then the new series one obtains by ‘inserting parentheses’ in the

original one (that is, adding up finite blocks of consecutive terms) converges to the same sum.

(2) Show by means of an example that a divergent series may become convergent by inserting parenthesis.

Exercise 3.27 (Rearrangement). A bijective mapping p : N Ñ N is called a permutation (of N). The

series
8ř

n“1
appnq is called a rearrangement of the series

8ř
n“1

an.

(1) Show that 1 ´ 1 ` 1
2 ´ 1

2 ` 1
3 ´ 1

3 ` ´ ¨ ¨ ¨ is convergent with sum 0, but its rearrangement given by
1 ` 1

2 ´1 ` 1
3 ` 1

4 ´ 1
2 ` 1

5 ` 1
6 ´ 1

3 ` ¨ ¨ ¨ has a postive sum.

(2) Let p be any permutation of N. If the series
8ř

n“1
an is absolutely convergent, then so is

8ř
n“1

appnq, and

moreover, their sums coincide. Hint: First consider all terms being nonnegative, and show that their

respective sums must be bounded by each other. For the general case, begin with
8ř

n“1
p|an| ´ anq.
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3.1.1. Comparison, Ratio, Root. We will now learn three important tests for the convergence
of a series:

(1) the comparison test (where we compare with a series whose convergence status is known)

(2) the ratio test (where we look at the behaviour of the ratio of terms an`1

an
)

(3) the root test (where we look at the behaviour of n
a

|an|)

We summarise them in the table below.

Comparison Ratio Root

Absolute
convergence

ð |an| ď cn for all large n; |an`1

an
| ď r ă 1 n

a
|an| ď r ă 1

8ř
n“1

cn converges. for all large n. for all large n.

Divergence ð an ě dn ě 0 for all large n; |an`1

an
| ě 1 n

a
|an| ě 1

8ř
n“1

dn diverges. for all large n. infinitely often.

Theorem 3.28 (Comparison test).

(1) If panqnPN and pcnqnPN are such that there exists an N P N such that |an| ď cn for all n ě N ,

and
8ř

n“1
cn converges, then

8ř
n“1

an converges absolutely.

(2) If panqnPN, pdnqnPN are such that there exists an N P N such that an ě dn ě 0 for all n ě N ,

and
8ř

n“1
dn diverges, then

8ř
n“1

an diverges.

Proof. Let sn :“ |a1| ` ¨ ¨ ¨ ` |an| and σn :“ c1 ` ¨ ¨ ¨ ` cn. For n ą m, we have

|sn ´ sm| “ |am`1| ` ¨ ¨ ¨ ` |an| ď cm`1 ` ¨ ¨ ¨ ` cn “ |σn ´ σm|.

As pσnqnPN is Cauchy, psnqnPN is Cauchy. So psnqnPN is convergent, i.e.,
8ř

n“1
an converges absolutely.

The second claim follows from the first one. For if
8ř

n“1
an converges, so must

8ř
n“1

dn. !

Example 3.29. Let us revisit Exercise 3.19, where we showed that the series
8ř

n“1

sinn
n2 converges.

Since | sinn
n2 | ď 1

n2 for all n P N, and as
8ř

n“1

1
n2 ă `8, it follows from the Comparison Test that

8ř
n“1

sinn
n2 converges absolutely, and hence it is convergent. !

Example 3.30.
8ř

n“2

1
logn

diverges. For all n P N, logn ď n. (By the Mean Value Theorem4, there

exists a c P p1, nq such that logn´log 1
n´1 “ logn

n´1 “ 1
c ă 1, and by rearranging, logn ă n ´ 1 ă n for

n ą 1.) So for all n ě 2, 1
logn ě

1
n “: dn. As

8ř
n“2

1
n diverges, it follows from the Comparison Test

that
8ř

n“2

1
logn

diverges too. !

Theorem 3.31 (Ratio test). Let panqnPN be a sequence of nonzero terms.

p1q If there exists an r P p0, 1q and there exists an N P N such that for all n ą N, |an`1

an
| ď r,

then
8ř

n“1
an converges absolutely.

p2q If there exists an N P N such that for all n ą N , |an`1

an
| ě 1, then

8ř
n“1

an diverges.

4See Theorem 5.13 in Chapter 5.
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Proof. (1) We have
|aN`1| ď r|aN |,
|aN`2| ď r|aN`1| ď r2|aN |,
|aN`3| ď r|aN`2| ď r3|aN |,

...

Since the geometric series
8ř

n“1
rn converges, we obtain

8ř
n“N`1

|an| ă `8 by the Comparison Test.

By adding the finitely sum |a1| ` ¨ ¨ ¨ ` |aN | to each partial sum of this last series, we see that also
8ř

n“1
|an| converges. This completes the proof of the claim in (1).

(2) The given condition implies that

¨ ¨ ¨ ě |aN`3| ě |aN`2| ě |aN`1|, (3.2)

If the series
8ř

n“1
an was convergent, then 0 “ lim

nÑ8
an “ lim

kÑ8
aN`k. Hence lim

kÑ8
|aN`k| “ 0 as well.

But by the (3.2), we see that lim
kÑ8

|aN`k| ě |aN`1| ą 0, a contradiction. !

!
It does not suffice for convergence of the series that for all sufficiently large n, |an`1

an
| ă 1.

For example, for the harmonic series |an`1

an
| “ |

1
n`1
1
n

| “ n
n`1 ă 1, but

8ř
n“1

1
n
diverges.

So the ratios have to uniformly separated from 1 (by a positive distance 1 ´ r).

0 r 1

|an`1

an
|

In the case of the Harmonic Series, there is no r P p0, 1q such that |an`1

an
| “ n

n`1 ď r ă 1 for all
large n, since if there were such an r, then lim

nÑ8
n

n`1 “ 1 ď r ă 1, a contradiction.

Corollary 3.32. Suppose that the terms of the sequence panqnPN are all nonzero.

If lim
nÑ8

|an`1

an
| ă 1, then

8ř
n“1

an converges absolutely.

Proof. Let L :“ lim
nÑ8

|an`1

an
| P r0, 1q. Then ε :“ 1´L

2 ą 0. Choose N P N such that for n ą N ,

ppp |an`1

an
| ´ L ď qqq

ˇ̌
|an`1

an
| ´ L

ˇ̌
ă ε “ 1´L

2 ,

and so |an`1

an
| ă 1`L

2 “: r ă 1`1
2 “ 1. The claim follows from Theorem 3.31(1). !

Example 3.33 (The exponential series). Let a P R. The series ea :“
8ř

n“0

1
n!a

n converges.

For a “ 0, e0 “ 1. For a ‰ 0, convergence follows from the ratio test: |
an`1

pn`1q!
an

n!

| “ |a|
n`1

nÑ8ÝÑ 0. !

Exercise 3.34. Suppose that the terms of the sequence panqnPN are all nonzero. If lim sup
nÑ8

|an`1

an
| ă 1,

then show that
8ř

n“1
an converges absolutely.

Theorem 3.35 (Root test).

p1q If there exists an r P p0, 1q and there exists an N P N such that for all n ą N, n
a

|an| ď r,

then
8ř

n“1
an converges absolutely.

p2q If for infinitely many n, n
a

|an| ě 1, then
8ř

n“1
an diverges.
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Proof. (1) We have |an| ď rn for all n ą N , so that by the Comparison Test,
8ř

n“N`1
|an| converges.

(2) Suppose that for the subsequence pank
qkPN, we have nk

a
|ank

| ě 1. Then |ank
| ě 1. If the

series was convergent, then lim
nÑ8

an “ 0, and so also lim
nÑ8

|ank
| “ 0, a contradiction. !

!
It does not suffice for convergence of the series that for all sufficiently large n, n

a
|an| ă 1.

For example, for the harmonic series n
a

|an| “ 1
n
?
n
ă 1, but

8ř
n“1

1
n
diverges.

One needs the uniform separation from 1 (by a positive distance 1 ´ r).

0 r 1

n
a

|an|

Example 3.36 (Ratio Test inconclusive; but Root Test decisive).
8ř

n“1

1
2n`p´1qn converges. We have:

n : 1
1Ñ 2

1Ñ 3
1Ñ 4

1Ñ 5
1Ñ 6 ¨ ¨ ¨

p´1qn : ´1
2Ñ 1

´2Ñ ´ 1
2Ñ 1

´2Ñ ´ 1
2Ñ 1 ¨ ¨ ¨

n ` p´1qn : ¨ 3Ñ ¨ ´1Ñ ¨ 3Ñ ¨ ´1Ñ ¨ 3Ñ ¨ ¨ ¨ ¨

So |an`1

an
| alternates between 2´3 “ 1

8 and 21 “ 2, and the Ratio Test is inconclusive. But

n
a

|an| “ 1

2
n`p´1qn

n

“ 1

21` p´1qn
n

nÑ8ÝÑ 1
21`0 “ 1

2 ă 1,

and so, by the Root Test,
8ř

n“1

1
2n`p´1qn converges. !

Corollary 3.37. If lim
nÑ8

n
a

|an| ă 1, then
8ř

n“1
an converges absolutely.

Proof. Let L :“ lim
nÑ8

n
a

|an| P r0, 1q. Then ε :“ 1´L
2 ą 0. Choose N P N such that for n ą N ,

ppp n
a

|an| ´ L ď qqq
ˇ̌

n
a

|an| ´ L
ˇ̌
ă ε “ 1´L

2 ,

and so n
a

|an| ă 1`L
2 “: r ă 1`1

2 “ 1. The claim follows from Theorem 3.35(1). !

Exercise 3.38.

(1) If lim sup
nÑ8

n
a

|an| ă 1, then show that
8ř

n“1
an converges absolutely.

(2) If lim sup
nÑ8

n
a

|an| ą 1, then show that
8ř

n“1
an diverges.

(3) If lim sup
nÑ8

n
a

|an| “ 1, then show by examples
8ř

n“1
an can converge or diverge.

Exercise 3.39. Determine if the following series are convergent or not.

(1)
8ř

n“1

n2

2n .

(2)
8ř

n“1

pn!q2
p2nq! .

(3)
8ř

n“1
p 4
5 qnn5.

Exercise 3.40. Prove that
8ř

n“1

n
n4`n2`1

converges, and find its value. Hint: n4 ` n2 ` 1 “ pn2 ` 1q2 ´ n2.

Exercise 3.41. Let panqnPN be a sequence of real numbers such that the series
8ř

n“1
a4
n converges.

Show that
8ř

n“1
a5
n converges. Hint: First conclude that for large n, |an| ă 1.
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Exercise 3.42. Determine if the following statements are true or false. Give reasons for your answers.

(1) If
8ř

n“1
|an| is convergent, then so is

8ř
n“1

a2
n.

(2) If
8ř

n“1
an is convergent, then so is

8ř
n“1

a2
n.

(3) If lim
nÑ8

an “ 0, then
8ř

n“1
an converges.

(4) If lim
nÑ8

pa1 ` ¨ ¨ ¨ ` anq “ 0, then
8ř

n“1
an converges.

(5)
8ř

n“1
log n`1

n
converges.

(6) If an ą 0 (n P N) and the partial sums of panqnPN are bounded above, then
8ř

n“1
an converges.

(7) If an ą 0 (n P N) and
8ř

n“1
an converges, then

8ř
n“1

1
an

diverges.

Exercise 3.43 (Fourier series). In order to understand a complicated situation, it is natural to try to
break it up into simpler things. For example, from Calculus we learn that an analytic function can be
expanded into a Taylor series, where we break it down into the simplest possible analytic functions, namely

monomials 1, x, x2, . . . as follows: fpxq “ fp0q ` f 1p0qx ` f2p0q
2! x2 ` ¨ ¨ ¨ .

The idea behind the Fourier series is similar. In order to understand a complicated periodic function,
we break it down into the simplest periodic functions, namely sines and cosines. Thus if T ě 0 and
f : R Ñ R is T -periodic, that is, fpxq “ fpx ` T q (x P R), then one tries to find coefficients a0, a1, a2, . . .
and b1, b2, b3, . . . such that

fpxq “ a0 `
8ř

n“1
pppan cosp 2πn

T
xq ` bn sinp 2πn

T
xqqqq. (3.3)

(1) Let the Fourier series (3.3) converge pointwise to f on R.

Show that if
8ř

n“1
p|an| ` |bn|q ă 8, then in fact the series converges uniformly.

(2) The aim of this part of the exercise is to give experimental evidence for two things. Firstly, the
plausibility of the Fourier expansion, and secondly, that the uniform convergence might fail if the
condition in the previous part of this exercise does not hold. Consider the square wave f : R Ñ R,

fpxq “
"

1 if x P rn, n ` 1q for n even,
´1 if x P rn, n ` 1q for n odd.

Then f is 2-periodic. From the theory of Fourier Series, which we will not discuss here, the coefficients
can be calculated, and they happen to be 0 “ a0 “ a1 “ a2 “ a3 “ . . . and

bn “
"

4
nπ

if n is odd,
0 if n is even.

Write a Maple program to plot the graphs of the partial sums of the series in (3.3) with, say, 3, 33,
333 terms. Discuss your observations.

Figure 1. Partial sums of the Fourier series for the square wave considered in Exercise 3.43.

Exercise 3.44. Let panqnPN be a sequence with nonnegative terms.

Show that if
8ř

n“1
an converges, then so does

8ř
n“1

?
anan`1.

Exercise 3.45. Let panqnPN be a sequence with nonnegative terms.

Prove that
8ř

n“1
an converges if and only if

8ř
n“1

an
1`an

converges.
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Exercise 3.46. Let "1 be defined by "1 “
*

panqnPN :
8ř

n“1
|an| ă 8

(
. Show that "1 Ă "2. Is "1 “ "2?

(The normed space "2 was defined in Exercise 1.20 on page 6.)

Exercise 3.47. Since the harmonic series
8ř

n“1

1
n
diverges, we have that the reciprocal 1

sn
of the nth partial

sum sn :“ 1` 1
2 ` 1

3 ` ¨ ¨ ¨ ` 1
n
, approaches 0 as n Ñ 8. So the necessary condition for the convergence of

the series
8ř

n“1

1
sn

is satisfied. But we don’t know yet whether or not it actually converges. It is clear that

the harmonic series diverges very slowly, which means that 1
sn

decreases very slowly, and this prompts

the guess that this series diverges. Show that in fact our guess is correct. Hint: sn ď n.

Exercise 3.48. Show that the series
8ř

n“1

1
nn converges.

Exercise 3.49. Define the Fibonacci sequence pFnqnPN by F0 “ F1 “ 1 and Fn`1 “ Fn `Fn´1 for n P N.

Show that
8ř

n“0

1
Fn
ă `8. Hint: Fn`1 “Fn ` Fn´1ěFn´1`Fn´1 “2Fn´1. So F2ně2n and F2n`1ě2n.

Exercise 3.50. Determine if the series
8ř

n“1
p
?
1 ` n2 ´ nq is convergent or not.

Exercise 3.51. Show that
8ř

n“1
sinpπ

?
n4 ` 1q converges absolutely.

Exercise 3.52 (Dirichlet series). In Analytic Number Theory, one encounters Dirichlet series, which is

a series of the form
8ř

n“1

an
ns , where panqnPN is a real sequence, and s P R. An example is the Riemann zeta

function, where each an “ 1, and we have seen that the series converges for all s ą 1, but diverges if

s “ 1. In this exercise we consider two examples, one of a Dirichlet series that converges for all s P R, and

another which diverges for each s P R.

(1) Show that for all s P R,
8ř

n“1

1
n!ns converges.

(2) Show that for all s P R,
8ř

n“1

n!
ns diverges.

3.1.2. Power series. Let pcnqnPN be a real sequence (thought of as a sequence of ‘coefficients’).
An expression of the type

8ř
n“0

cnx
n

is called a power series in the variable x P R.

This is generalization of the familiar polynomial function c0 ` c1x ` c2x
2 ` c3x

3 ` ¨ ¨ ¨ ` cdx
d.

Indeed, all polynomial expressions are (finite) power series, with the coefficients being eventually
all zeros. For example, 1 ` 399x ´ x3 “ 1

c0
` 399

c1
x ` 0

c2
x2 ` p´1q

c3

x3 ` 0
c4
x4 ` 0

c5
x5 ` 0

c6
x6 ` ¨ ¨ ¨ .

8ř
n“0

xn,
8ř

n“0

1
n!x

n are examples of power series, which are not polynomials.

Power series arise naturally in applications. For example, it can be shown that the following
boundary value problem for the Ordinary Differential Equation (ODE)

f2pxq ` xf 1pxq ` x2fpxq “ 0 with fp0q “ 1, fp1q “ 0

has the following ‘power series solution’:

fpxq “ 1 ´ 1
12x

4 ` 1
90x

6 ` 1
3360x

8 ` ¨ ¨ ¨ , x P r0, 1s.

So questions about the convergence of power series are also natural.

Note that we have not said anything about the set of x P R where the power series converges.

Of course the power series
8ř

n“0
cnx

n always converges for x “ 0.

For which x P R does
8ř

n“0
cnx

n converge?
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We will discover that the answer is: For all x in an interval like this:

0 r´r

convergencedivergence divergence

It turns out that there is a maximal open interval Bp0, rq “ p´r, rq centred at 0 of radius r where
the power series converges absolutely, and we call the radius r as the radius of convergence of the
power series. If the power series converges for all x P R, that is, if the above maximal interval is
p´8,8q, we say that the power series has infinite radius of convergence.

Example 3.53.

The radius of convergence of
8ř

n“0
xn is 1. Indeed, the geometric series converges for x P p´1, 1q and

diverges whenever |x| ě 1.

0 1´1

The radius of convergence of
8ř

n“0

1
n!x

n is infinite, since it converges for every x P R.

0

The radius of convergence of
8ř

n“0
nnxn is zero. Indeed, whenever x ‰ 0, n

a
|nnxn| “ n|x| ą 1 for

all n large enough. By the Root test, the power series diverges for all nonzero real numbers.

0 !

Theorem 3.54. Let pcnqně0 be a real sequence. Then

either
8ř

n“0
cnx

n is absolutely convergent for all x P R

or there exists a unique r ě 0 such that

(1)
8ř

n“0
cnx

n is absolutely convergent for x P p´r, rq and

(2)
8ř

n“0
cnx

n diverges for x R r´r, rs.

That is:

0

0 r´r

convergencedivergence divergence

Either

or

Proof. Let S :“ ty P r0,8q : Dx P R such that y “ |x| and
8ř

n“0
cnx

n convergesu. Clearly 0 P S.

Only two cases are possible:

1˝ S is not bounded above (in which case we’ll show ‘r “ 8’).

2˝ S is bounded above (in which case we’ll show r “ supS).
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1˝ Suppose that S is not bounded above. Let x P R. Then |x| can’t be an upper bound for S.

So there must be an element y P S that prevents |x| from being an upper bound, that is, we

can find a y “ |x0| P S such that
8ř

n“0
cnx

n
0 converges, and |x| ă |x0|. It follows that the nth

term goes to 0 as n Ñ 8, and in particular, the sequence of terms is bounded: |cnxn
0 | ď M.

Then noting that |x0| ą 0 (because |x0| “ y ą |x| ě 0), we have with ρ :“ |x|
|x0| (ă 1),

that |cnxn| “ |cnxn
0 |p |x|

|x0| q
n ď Mρn (n P N). As the geometric series

8ř
n“0

Mρn converges, by the

Comparison Test,
8ř

n“0
cnx

n is absolutely convergent. As x P R was arbitrary, the claim follows.

2˝ Now suppose that S is bounded above.

(1) If x P R and |x| ă supS, then by the definition of supremum, there exists a y P S such that
|x| ă y. Then we repeat the proof in 1˝ above as follows.

Since y P S, there exists an x0 P R such that y “ |x0| and
8ř

n“0
cnx

n converges. Hence

|cnxn
0 | nÑ8ÝÑ 0, and in particular, there exists an M ą 0 such that for all n, |cnxn

0 | ďM .

Then with ρ :“ |x|
|x0| (ă 1), we have |cnxn| “ |cnxn

0 |p |x|
|x0| q

n ď Mρn (n P N). As ρ ă 1,
8ř

n“0
Mρn converges. By the Comparison Test,

8ř
n“0

cnx
n is absolutely convergent.

(2) If x P R and |x| ą supS, then setting y :“ |x|, we see that y R S.

So by the definition of S,
8ř

n“0
cnx

n diverges (for otherwise y P S).

0

0 r´r

r1´r1

convergence

divergence

The uniqueness of the radius of convergence is obvious, since if r, r1 are distinct numbers having
the property described in the theorem and r ă r1, then r ă ρ :“ r`r1

2 ă r1, and as 0 ă ρ ă r1,
8ř

n“1
cnρ

n ought to converge, while as 0 ă ρ ă r, it ought to diverge, a contradiction. !

If r is the radius of convergence of a power series, then p´r, rq is called the interval of convergence
of that power series. We note that the interval of convergence is the empty set if r “ 0, and we
set the interval of convergence to be R when the radius of convergence is infinite.

The calculation of the radius of convergence is facilitated in some cases by the following two results.

Theorem 3.55. Consider the power series
8ř

n“0
cnx

n.

If L :“ lim
nÑ8

| cn`1

cn
| exists, then r “ 1

L
if L ‰ 0, and the radius of convergence is infinite if L “ 0.

Proof. Let L ‰ 0. We have that for all nonzero x such that |x| ă r “ 1
L
, there exists a q ă 1

and a N large enough such that |cn`1x
n`1|

|cnxn| “ | cn`1

cn
||x| ď q ă 1 for all n ą N . (This is because

| cn`1

cn
x| nÑ8ÝÑ L|x| ă 1. So we may take for example q “ L|x|`1

2 ă 1.) Thus by the Ratio Test, the

power series converges absolutely for such x.

If L “ 0, then for any nonzero x P R, we can guarantee that |cn`1x
n`1|

|cnxn| “ | cn`1

cn
||x| ď q ă 1 for all

n ą N . (This is because | cn`1

cn
x| nÑ8ÝÑ 0|x| “ 0 ă 1. So we may take for example q “ 1

2 ă 1.) Thus

by the Ratio Test, the power series converges absolutely for such x.

If L ‰ 0 and |x| ą 1
L
, then there exists a N large enough such that |cn`1x

n`1|
|cnxn| “ | cn`1

cn
||x| ą 1 for

all n ą N . This is because | cn`1

cn
x| nÑ8ÝÑ L|x| ą 1. By the Ratio Test, the power series diverges. !
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Theorem 3.56. Consider the power series
8ř

n“0
cnx

n.

If L :“ lim
nÑ8

n
a

|cn| exists, then r “ 1
L if L ‰ 0, and the radius of convergence is infinite if L “ 0.

Proof. Let L ‰ 0. We have that for all nonzero x such that |x| ă r “ 1
L
, there exists a q ă 1

and a N large enough such that n
a

|cnxn| “ n
a

|cn| |x| ď q ă 1 for all n ą N . (This is because
n
a

|cn| |x| nÑ8ÝÑ L|x| ă 1. So we may take for example q “ L|x|`1
2 ă 1.) Thus by the Root Test, the

power series converges absolutely for such x.

If L “ 0, then for any nonzero x P R, we can guarantee that n
a

|cnxn| “ n
a

|cn| |x| ď q ă 1 for all

n ą N . (This is because n
a

|cn| |x| nÑ8ÝÑ 0|x| “ 0 ă 1. So we may take for example q “ 1
2 ă 1.)

Thus by the Root Test, the power series converges absolutely for such x.

If L ‰ 0 and |x| ą 1
L
, then there exists a N large enough such that n

a
|cnxn| “ n

a
|cn| |x| ą 1 for all

n ą N . This is because n
a

|cn| |x| nÑ8ÝÑ L|x| ą 1. By the Root Test, the power series diverges. !

!
Note that whether or not the power series converges at x “ r and x “ ´r is not answered by

Theorem 3.54. In fact this is a delicate issue, and either convergence or divergence can take place
at these points, as demonstrated by the following examples.

Example 3.57. We have the following:

Power series Radius of convergence Set of x’s for which the power series converges

8ř
n“1

xn 1 p´1, 1q
8ř

n“1

xn

n2 1 r´1, 1s
8ř

n“1

xn

n 1 r´1, 1q
8ř

n“1
p´1qn xn

n
1 p´1, 1s

!

Exercise 3.58. Check all the claims in Example 3.57.

Exercise 3.59. Find the radius of convergence for each of the following power series:
8ř

n“1
p´1qn´1 x2n´1

p2n´1q! “ x ´ x3

3! ` x5

5! ´ ` ¨ ¨ ¨ and
8ř

n“0
p´1qn x2n

p2nq! “ 1 ´ x2

2! ` x4

4! ´ ` ¨ ¨ ¨ .

Exercise 3.60. Let the power series
8ř

n“0
cnx

n have radius of convergence r.

(1) If p n
a

|cn|qnPN is not bounded, then show that r “ 0.

(2) If p n
a

|cn|qnPN is bounded, and we defineMn :“ supt m
a

|cm| : m ě nu (n P N), then we know that

pMnqnPN is convergent since it is decreasing and bounded. Set L :“ lim
nÑ8

Mn “ lim sup
nÑ8

n
a

|cn|.

If L “ 0, then show that r “ 8.
If L ‰ 0, then show that r “ 1

L
.

Power series are infinitely differentiable. We will now show that just like polynomials, power
series are infinitely many times differentiable in their respective intervals of convergence, and
moreover the derivative is again given by a power series, obtained by termwise differentiation of
the original series, and this power series for the derivative has a radius of convergence at least as
big as the original series. One can also relate the coefficients of the power series with the successive
derivatives of the function defined by the power series at 0.
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Let
8ř

n“0
cnx

n have radius of convergence r ą 0 and let

fpxq :“
8ÿ

n“0

cnx
n “ c0 ` c1x ` c2x

2 ` c3x
3 ` ¨ ¨ ¨ for all x P p´r, rq.

If termwise differentiation were allowed, then

f 1pxq “ 0 ` c1 ¨ 1 ` c2 ¨ 2x ` c3 ¨ 3x2 ` ¨ ¨ ¨ “
8ÿ

n“1

ncnx
n´1 for all x P p´r, rq.

We justify this now.

Theorem 3.61. Let r ą 0, and let the power series fpxq :“
8ř

n“0
cnx

n converge for x P p´r, rq.

Then f is differentiable in p´r, rq, and f 1pxq “
8ř

n“1
ncnx

n´1 for x P p´r, rq.

Proof. (You may skip this proof.)

Step 1. First we show that the power series gpxq :“
8ř

n“1
ncnx

n´1 “ c1 ` 2c2x` ¨ ¨ ¨ `ncnx
n´1 ` . . .

is absolutely convergent in p´r, rq. Fix x P p´r, rq and let ρ satisfy |x| ă ρ ă r. By hypothesis,
8ř

n“0
cnρ

n converges, and so lim
nÑ8

cnρ
n “ 0. In particular, pcnρnqnPN is bounded, and there is some

positive number M such that |cnρn| ăM for all n. Now let α :“ |x|
ρ
. Then 0 ď α ă 1, and we have

|ncnxn´1| “ |cnρn| ¨ 1
ρ

¨n|x
ρ

|n´1 ď Mnαn´1

ρ
. But as α P r0, 1q, by Exercise 3.16,

8ř
n“1

nαn´1 “ 1
p1´αq2 .

By the Comparison Test, it follows that
8ř

n“1
ncnx

n´1 converges absolutely.

Step 2. Now we show that f 1px0q “ gpx0q for |x0| ă r, that is, lim
xÑx0

pfpxq´fpx0q
x´x0

´ gpx0qq “ 0.

As before, let ρ be such that |x0| ă ρ ă r. Below we consider x P p´r, rq satisfying |x| ă ρ.

0 r´r

x

ρx0

Let ε ą 0. As
8ř

n“1
ncnρ

n´1 converges absolutely, there is an N such that

8ř
n“N

|ncnρn´1| ă ε
4 . (3.4)

Keep N fixed. We have fpxq ´ fpx0q “
8ř

n“1
cnpxn ´ xn

0 q, and so for x ‰ x0,

fpxq´fpx0q
x´x0

“
8ř

n“1
cn

xn´xn
0

x´x0
“

8ř
n“1

cnpxn´1 ` xn´2x0 ` ¨ ¨ ¨ ` xxn´2
0 ` xn´1

0 q.

Thus fpxq´fpx0q
x´x0

´ gpx0q “
8ř

n“1
cnpxn´1 ` xn´2x0 ` ¨ ¨ ¨ ` xxn´2

0 ` xn´1
0 ´ nxn´1

0 q. We let S1 be the

sum of the first N ´ 1 terms of this series (that is, from n “ 1 to n “ N ´ 1) and S2 be the sum
of the remaining terms (from n “ N to 8). Then since |x|, |x0| ă ρ, it follows that

|S2| ď
8ř

n“N

|cn|ppp ρn´1 ` ρn´1 ` ¨ ¨ ¨ ` ρn´1
loooooooooooooooomoooooooooooooooon

n terms

`nρn´1qqq “
8ř

n“N

2n|cn|ρn´1 ă ε
2 .

The last inequality holds by (3.4). Also, S1 “
Nř

n“1
cnpxn´1 `xn´2x0 ` ¨ ¨ ¨ `xxn´2

0 `xn´1
0 ´nxn´1

0 q
is a polynomial in x and so

lim
xÑx0

S1 “
Nř

n“1
cnpppxn´1

0 ` xn´2
0 x0 ` ¨ ¨ ¨ ` x0x

n´2
0 ` xn´1

0 ´ nxn´1
0 qqq “

Nř
n“1

cn
`
nxn´1

0 ´ nxn´1
0

˘
“ 0.

So there is a δ ą 0 such that whenever |x ´ x0| ă δ, we have |S1| ă ε
2 . Thus for |x| ă ρ and

0 ă |x ´ x0| ă δ, we have | fpxq´fpx0q
x´x0

´ gpx0q| ď |S1| ` |S2| ă ε
2 ` ε

2 “ ε. This means that
f 1px0q “ gpx0q, as wanted. !
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By a repeated application of the previous result, we have the following.

Corollary 3.62. Let r ą 0 and let fpxq :“
8ř

n“0
cnx

n converge for |x| ă r.

Then for k ě 1, f pkqpxq “
8ř

n“k

npn ´ 1qpn ´ 2q ¨ ¨ ¨ pn ´ k ` 1qcnxn´k for |x| ă r. p‹q

In particular, for n ě 0, cn “ 1
n!f

pnqp0q.

Proof. A repeated application of Theorem 3.61 gives this: For n, k P N Y t0u,

dk

dxk x
n “

"
npn ´ 1q ¨ ¨ ¨ pn ´ pk ´ 1qqxn´k for 0 ď k ď n,

0 for k ą n.

For the last claim, we have fp0q “ c0, and for the n P N cases, set x “ 0 in (‹):

f pkqp0q“kpk ´ 1q ¨ ¨ ¨ 1ck ` x
8ř

n“k`1
npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1qcnxn´k´1|x“0 “ k!ck. !

Remark 3.63. There is nothing special about taking power series centered at 0. One can also

consider
8ř

n“0
cnpx ´ aqn, where a is a fixed real number, and get analogous results to the foregoing.

Exercise 3.64. It can be shown that the power series fpxq :“
8ř

n“0

x2n

p2nq! and gpxq :“
8ř

n“0

x2n`1

p2n`1q! both have

an infinite radius of convergence. Show that for all x P R, f 1pxq “ gpxq and g1pxq “ fpxq.
Show that pfpxqq2 ´ pgpxqq2 “ 1, x P R. Hint: Differentiate f2 ´ g2 to show constancy, and evaluate at 0.

Exercise 3.65. Find 1 ` 22

1! ` 32

2! ` 42

3! ` ¨ ¨ ¨ .

Exercise 3.66 (Power series method for solving differential equations). Assuming that the solution to

the differential equation f 1pxq “ 2xfpxq has a power series expansion fpxq “
8ř

n“0
cnx

n, x P R, find f .

Exercise 3.67 (Generalised Binomial Theorem).

Let a P p0, 1q. Show that the radius of convergence of the power series

1 ` ax ` apa´1q
2! x2 ` apa´1qpa´2q

3! x3 ` ¨ ¨ ¨

is 1. Let f : p´1, 1q Ñ R be the sum of the above power series. Prove that p1`xqf 1pxq “ afpxq in p´1, 1q.
Calculate pp1 ` ¨q´afq1 in p´1, 1q, and hence show that fpxq “ p1 ` xqa, x P p´1, 1q.

Exercise 3.68 (Pathological Taylor series).

We have seen that power series define infinitely differentiable functions in the respective regions of conver-

gence. Now suppose that we start with an infinitely differentiable function f in an interval p´r, rq. Then
does it have a ‘power series expansion’? We can certainly form the power series

8ř
n“0

fpnqp0q
n! xn.

Now we may ask: If this series converges for an x ‰ 0, then is its sum equal to fpxq? The answer is,
rather surprisingly, ‘Not always!’. There exist infinitely differentiable functions f for which the power
series converges for x ‰ 0, but the sum of the series is different from fpxq. Consider for example the
function f : R Ñ R given by

fpxq “

#
e

´ 1
x2 if x ‰ 0,

0 if x “ 0.

We will show below that f pnqp0q “ 0 for all n ě 0. Hence the power series
8ř

n“0

fpnqp0q
n! xn ” 0, which does

not equal fpxq for any nonzero x.

(1) Sketch the graph of f .

(2) Prove that for every n P N, lim
xÑ0

fpxq
xn “ 0.

(3) Show that for each n P N, there is a polynomial pn such that for all x ‰ 0, f pnqpxq “ e
´ 1

x2 pnp 1
x

q.

(4) Prove that f pnqp0q “ 0 for all n ě 1.

Exercise 3.69. By termwise differentiating the geometric series in its region of convergence, rederive the
result in Exercise 3.16: If if |r| ă 1, then 1 ` 2r ` 3r2 ` ¨ ¨ ¨ “ 1

p1´rq2 .
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3.2. Series in normed spaces

We can’t define series in a general metric space, since we need to add terms. But in the setting of
a normed space, addition of vectors is available, and so we can define the notion of convergence
of a series in a normed space.

Definition 3.70. Let panqnPN be a sequence in a normed space pX, } ¨ }q.
The sequence psnqnPN of partial sums is defined by sn “ a1 ` ¨ ¨ ¨ ` an P X (n P N).

The series
8ř

n“1
an is called convergent if psnqnPN converges in pX, }¨}q. Then we write

8ř
n“1

an “ lim
nÑ8

sn.

If the sequence psnqnPN does not converge we say that the series
8ř

n“1
an diverges.

It turns out the convergence in a complete normed space is guaranteed by the convergence of
an associated real series (of the norms of its terms). We first introduce the notion of absolute
convergence of a series in a normed space, analogous to the absolute convergence of a real series.

Definition 3.71. Let panqnPN be a sequence in a normed space pX, } ¨ }q.

We say that the series
8ř

n“1
an converges absolutely if the (real) series

8ř
n“1

}an} converges.

Theorem 3.72. Let panqnPN be a sequence in a complete normed space pX, }¨}q and
8ř

n“1
}an} ă `8.

Then
8ř

n“1
an converges in X.

Proof. (The proof is the same, mutatis mutandis, as the proof of the fact that absolutely con-
vergent real series converge. The only change is we use norms instead of absolute values, and use
the completeness of X in order to conclude that when the partial sums form a Cauchy sequence,
they converge to a limit in X .) Let sn :“ a1 ` ¨ ¨ ¨ ` an. We will show that psnqnPN is a Cauchy
sequence. Let σk :“ }a1} ` ¨ ¨ ¨ ` }ak}, k P N. For n ą m, we have

}sn ´ sm} “ }pa1 ` ¨ ¨ ¨ ` anq ´ pa1 ` ¨ ¨ ¨ ` amq} “ }am`1 ` ¨ ¨ ¨ ` an}
ď }am`1} ` ¨ ¨ ¨ ` }an} “ p}a1} ` ¨ ¨ ¨ ` }an}q ´ p}a1} ` ¨ ¨ ¨ ` }am}q “ σn ´ σm.

Since the series
8ř

n“1
}an} converges (given!), its sequence of partial sums is convergent, and in

particular, Cauchy. From the inequality }sn ´ sm} ď σn ´ σm above, it follows that psnqnPN is a

Cauchy sequence in X . As X is complete, psnqnPN is convergent. !

Example 3.73. Let the sequence pfnqnPN in the normed space pCr0, 1s, } ¨ }8q be given by

fnpxq “ px
2 qn px P r0, 1s, n P Nq.

The series
8ř

n“1
fn converges in pCr0, 1s, } ¨ }8q since }fn}8 “ max

xPr0,1s
|px

2 qn| “ 1
2n , and the series

8ř
n“1

}fn}8 “
8ř

n“1

1
2n converges. In fact, one can see directly that, since

snpxq “ f1pxq ` ¨ ¨ ¨ ` fnpxq “
x
2 ´p x

2 qn`1

1´p x
2 q “ x

2´x
p1 ´ xn

2n q,

with f defined by fpxq “ x
2´x

(x P r0, 1s), we have }sn ´ f}8 “ max
xPr0,1s

x
2´x

xn

2n ď
1
2n

nÑ0ÝÑ 0, and so

the series
8ř

n“1
fn converges to f in pCr0, 1s, } ¨ }8q.
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The picture above shows plots of the partial sums and their limit f . !

The following result plays a central role in Differential Equation theory.

Theorem 3.74. Let A P Rdˆd. Then the exponential series eA :“ I ` A ` 1
2!A

2 ` 1
3!A

3 ` ¨ ¨ ¨
converges in pRdˆd, } ¨ }8q.

Proof. It is easy to see that if A,B P Rdˆd, then }AB}8 ď d}A}8}B}8. This follows from:

|pABqij | “ |
dř

k“1
AikBkj | ď

dř
k“1

|Aik||Bkj | ď
dř

k“1
}A}8}B}8 “ d}A}8}B}8.

Hence by induction, we have }An}8 ď dn´1}A}n8 ď pd}A}8qn. Thus } 1
n!A

n}8 ď 1
n! pd}A}8qn. As

ed}A}8 “
8ř

n“0

1
n! pd}A}8qn converges, by the Comparison Test, the real series

8ř
n“0

} 1
n!A

n}8 converges.

Since pRdˆd, } ¨ }8q is complete, eA :“ I ` A ` 1
2!A

2 ` 1
3!A

3 ` ¨ ¨ ¨ converges in pRdˆd, } ¨ }8q. !

Exercise 3.75. Determine:

(1) e0, where 0 denotes the d ˆ d matrix with all entries equal to 0.

(2) eI , where I denotes the d ˆ d identity matrix.

(3) eD, where D is the diagonal matrix D “
«

λ1

. . .
λd

ff

, where λ1, ¨ ¨ ¨ ,λd P R.

Exercise 3.76. Recall Exercise 2.52. We equip c00 with the same } ¨ }2 norm as for "2. Consider the
sequence p 1

n2 enqnPN in c00, where en is the sequence with all terms zeroes, except for the nth one, which

ie equal to 1. Show that the series
8ř

n“1
} 1
n2 en}2 ă 8, but that the series

8ř
n“1

1
n2 en does not converge in "2.

Conclude that pc00, } ¨ }2q is not a complete normed space.

Exercise 3.77. Let X be a normed space in which every series
8ř

n“1
an for which there holds

8ř
n“1

}an} ă `8,

is convergent in X. Prove that X is complete. Hint: Given a Cauchy sequence pxnqnPN, construct a

subsequence pxnkqkPN satisfying }xnk`1 ´xnk} ă 1
2k

. Then take a1 “ xn1 , a2 “ xn2 ´xn1 , a3 “ xn3 ´xn2 ,

and so on, and use the fact that a Cauchy sequence possessing a convergent subsequence must itself be

convergent, which was a result established in Exercise 2.27.

3.3. Notes (not part of the course)

Erdös conjecture on APs. In connection with the divergence of the harmonic series, we mention the

Erdös conjecture on arithmetic progressions (APs) : If the sums of the reciprocals of the numbers of a

set A of natural numbers diverges, then A contains arbitrarily long arithmetic progressions. That is, if
ř

nPA

1
n

diverges, then A contains APs of any given length. We know that
8ř

n“1

1
n

diverges, and in this case

the claim is trivially true. In Exercise 3.15, we have seen that
ř

p prime

1
p
diverges. So one may ask: Does the

claim hold in this special case? The answer is ‘Yes’, and this is the Green-Tao Theorem proved in 2004.

Terence Tao was awarded the Fields Medal in 2006, among other things, for this result.
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Integral Test. It can sometimes be easy to determine whether or not the improper integral
ş8
1
fpxqdx

converges or diverges, and this can be used to deduce the convergence status of the series
8ř

n“1
fpnq. This

result is known as the Integral Test.

Suppose that f : r1,8q Ñ r0,8q is decreasing, and that f is Riemann integrable on r1, ns for all

n P N. Let us first show that the following inequalities hold:
nř

k“2
fpkq ď

şn
1
fpxqdx ď

n´1ř
k“1

fpkq, for all n P N.

Consider the interval r1, ns, and let σn and σn be the step functions defined by σnpxq “ fpk ` 1q and

σnpxq “ fpkq, for x P rk, k ` 1q, k P t1, ¨ ¨ ¨ , nu. Since f is decreasing, for all x P r1, ns, σnpxq ď fpxq ď
σnpxq. Thus

nř
k“2

fpkq “
şn
1
σnpxqdx ď

şn
1
fpxqdx ď

şn
1
σnpxqdx “

nř
k“1

fpkq.

1 12 2 nn¨ ¨ ¨ ¨ ¨ ¨

fp2q
fpnq

fp1q

fpn ´ 1q

nř
k“2

fpkq ď
şn
1
fpxqdx

şn
1
fpxqdx ď

n´1ř
k“1

fpkq

We claim that
8ř

n“1
fpnq converges if and only if

ş8
1
fpxqdx does. We have the following cases:

1˝ ş8
1
fpxqdx converges. The first inequality above shows that the partial sums

nř
k“1

fpkq are bounded

above by fp1q`
ş8
1
fpxqdx. As fpkq ě 0 for all k, the partial sums are increasing. So

8ř
n“1

fpnq converges.

2˝ ş8
1
fpxqdx diverges. Since for all n P N,

şn
1
fpxqdx ď

n´1ř
k“1

fpkq, it follows that the partial sums
n´1ř
k“1

fpkq

can’t form a bounded sequence, and so
8ř

n“1
fpnq diverges.

Example 3.78 (
8ř

n“2

1
n log n

diverges). Let fpxq “ 1
x log x

, x ě 2. Then f : r2,8q Ñ p0,8q is decreasing.

Using the substitution u“ log x (so that du“ 1
x
dx, and when x“2, u“ log 2, while if x“y, then u“ log y),

we have
şy
2

1
x log x

dx “
şlog y

log 2
1
u
du “ log u|log y

log 2 “ logplog yq ´ logplog 2q. As log y
yÑ8ÝÑ 8 it follows that

logplog yq yÑ8ÝÑ 8, and so
ş8
2

1
x log x

dx does not converge. Hence by the Integral Test
8ř

n“2

1
n log n

diverges too.

(Note that we start the sum with n “ 2 to avoid n being 1 when log n “ 0.) "

Example 3.79 (
8ř

n“2

1
nplog nq2 ă `8). Let gpxq “ 1

xplog xq2 , x ě 2. Then g : r2,8q Ñ p0,8q is decreasing.

Using the substitution u“ log x (so that du“ 1
x
dx, and when x“2, u“ log 2, while if x“y, then u“ log y),

we have
şy
2

1
xplog xq2 dx “

şlog y

log 2
1
u2 du “ ´ 1

u
|log y
log 2 “ ´ 1

log y
` 1

log 2 . Thus
ş8
2

1
xplog xq2 dx “ lim

yÑ8

şy
2

1
xplog xq2 dx “ lim

yÑ8
p´ 1

log y
` 1

log 2 q “ 0 ` 1
log 2 “ 1

log 2 .

As the improper integral
ş8
2

1
xplog xq2 dx converges, by the Integral Test,

ř8
n“2

1
nplog nq2 converges too. "

The Riemann Rearrangement Theorem. In light of Exercise 3.27, one might wonder what happens
with series that are convergent, but not absolutely convergent. (Such series are sometimes called condi-

tionally convergent.) The behaviour is radically different, as demonstrated by the following result. It is
suprising enough that the naive expectation of ‘commutativity’ fails, but even more striking is the fact
that the rearrangement can be done so as to get any limit whatsoever!

Theorem 3.80 (Riemann Rerrangement Theorem). Let
8ř

n“1
an be a conditionally convergent series.

(1) If L P R, then there exists a permutation pL : N Ñ N such that
8ř

n“1
apLpnq “ L.

(2) There exist permutations p8 and p´8 such that
8ř

n“1
ap8pnq and ´

8ř
n“1

ap´8pnq diverge to `8.

In (2), ‘diverges to `8’ means that if psnqnPN is the sequence of partial sums, then for all M P R, there
exists an index N P N such that for every n ą N , sn ą M . The interested reader is referred to [R] for a
proof of the above result.



Chapter 4

Continuous functions

Let X and Y be metric spaces. As there is a notion of distance between pairs of elements in either
space, one can talk about continuity of maps. Within the huge collection of all maps, the class of
continuous maps form an important subset. We are interested in continuous maps as they possess
some useful properties. Before discussing maps between metric spaces, let us first of all recall the
notion of continuity of a function f : R Ñ R.

4.1. Continuity of functions from R to R

Recall that continuity is a ‘local’ concept, and we have the following notion of the continuity of a
function at a point.

Definition 4.1. Let I be an interval and let c P I. A function f : I Ñ R is continuous at c

if for every ε ą 0, there exists a δ ą 0 such that whenever x P I satisfies |x ´ c| ă δ, we have
|fpxq ´ fpcq| ă ε.

f is said to be continuous on I if for every c P I, f is continuous at c.

We have seen that if f, g : R Ñ R are continuous on R, then their composition f ˝ g : R Ñ R,
given by pf ˝ gqpxq :“ fpgpxqq (x P R), is also continuous on R.

Recall also the following important properties possessed by continuous functions: They pre-
serve convergent sequences, the Intermediate Value Theorem and the Extreme Value Theorem.

Theorem 4.2. Let I be an interval, c P I, and f : I Ñ R. Then the following are equivalent:

(1) f is continuous at c.

(2) For every sequence pxnqnPN contained in I such that pxnqnPN converges to c,
the sequence pfpxnqqnPN converges to fpcq.

In other words, f is continuous at c if and only if f ‘preserves’ convergent sequences.

Exercise 4.3. Show that the statement (2) in Theorem 4.2 can be weakened to the following:

(21) For every sequence pxnqnPN contained in I such that pxnqnPN converges to c,
the sequence pfpxnqqnPN converges.

Theorem 4.4 (Intermediate Value Theorem). If f : ra, bs Ñ R is continuous on ra, bs, and y P R

is such that fpaq ď y ď fpbq or fpbq ď y ď fpaq pthat is, if y lies between fpaq and fpbqq, then
there exists a c P ra, bs such that fpcq “ y.

In other words, a continuous function attains all real values between the values of the function
attained at the endpoints.

47
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Finally, we recall the Extreme Value Theorem.

Theorem 4.5 (Extreme Value Theorem). Let f : ra, bs Ñ R be continuous on ra, bs. There exists
a c P ra, bs and there exists a d P ra, bs such that

fpcq “ suptfpxq : x P ra, bsu,
fpdq “ inftfpxq : x P ra, bsu.

Since c, d P ra, bs, we have fpcq, fpdq P tfpxq : x P ra, bsu, and so the supremum and infimum are
in fact maximum and minimum, respectively:

fpcq “ suptfpxq : x P ra, bsu“ maxtfpxq : x P ra, bsu,
fpdq “ inftfpxq : x P ra, bsu “ mintfpxq : x P ra, bsu.

We observe that in our definition of continuity of a function at a point, they key idea is that:

‘We are guaranteed that fpxq stays close to fpcq for all x close enough to c.’

But ‘closeness’ is something we know not just in R but in the context of general metric spaces!
We will now learn that indeed continuity can in fact be defined in a quite abstract setting, when
we have maps between metric spaces. We will also gain insights into the above properties of
continuous functions when we study analogues of the above results in our more general setting.

Exercise 4.6. Consider the function f : R Ñ R defined by fpxq “
"

x if x is rational,
´x if x is irrational.

Prove that f is continuous only at 0. Hint: For every real number, there is a sequence of irrational numbers
that converges to it, and a sequence of rational numbers that converges to it (see Exercises 1.41, 1.42).

Exercise 4.7. Every nonzero rational number q can be uniquely written as q “ n
d
, where n, d denote

integers without any common divisors and d ą 0. When r “ 0, we take d “ 1 and n “ 0.

Consider the function f : R Ñ R defined by fpxq “
"
0 if x is irrational,
1
d

if x p“ n
d

q is rational.

Prove that f is discontinuous at every rational number, and continuous at every irrational number.

Hint: For an irrational number x, given any ε ą 0, and any interval pN,N ` 1q containing x, show that
there are just finitely many rational numbers r in pN,N ` 1q for which fprq ě ε. Use this to show the
continuity at irrationals.

Exercise 4.8. Consider a flat pancake of arbitrary shape. Show that there is a straight line cut that
divides the pancake into two parts having equal areas. Can the direction of the straight line cut be chosen
arbitrarily?

Exercise 4.9. A curve (in the plane) is a map r0, 1s Q t ÞÑ pxptq, yptqq P R ˆ R, where x, y : r0, 1s Ñ R

are continuous functions.

(1) Show that any curve γ : r0, 1s Ñ R ˆ R such that γp0q “ p0, 0q and γp1q “ p2, 0q meets the circle
T :“ tpx, yq P R ˆ R : x2 ` y2 “ 1u at some point, that is, there exists a c P p0, 1q such that γpcq P T.
Hint: If γptq “ pxptq, yptqq, t P r0, 1s, then consider t ÞÑ pxptqq2 ` pyptqq2.

(2) Suppose µ : r0, 1s Ñ R ˆ R is a curve which does not meet the origin, that is, for all t P r0, 1s,
µptq ‰ p0, 0q. Prove that there exist positive real numbers r,R such that the image of µ lies in the
‘annulus’ A :“ tpx, yq P R ˆ R : r2 ă x2 ` y2 ă R2u.
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4.2. Continuity of maps between metric spaces

Definition 4.10. Let pX, dXq, pY, dY q be metric spaces, c P X and f : X Ñ Y be a map. Then
f is said to be continuous at c if for every ε ą 0, there exists a δ ą 0 such that whenever x P X

satisfies dXpx, cq ă δ, we have dY pfpxq, fpcqq ă ε.

ε

fpcq

fX
Y

c
δ

f is said to be continuous on X if for every c P X , f is continuous at c.

First of all we notice that if I is an interval in R, and we take X “ I, Y “ R, both equipped
with the Euclidean metric, then the above definition of continuity of a function f : I Ñ R at a
c P R coincides with our earlier Definition 4.1.

We remark that althoughX may be equal to Y (as sets), they might be equipped with different
metrics; see as an extreme example, Exercise 4.12 below.

Exercise 4.11. Show that f : R2 Ñ R given by fpxq“

#
x1x2?
x2
1`x2

2

if x“px1, x2q‰0

0 if x “ 0

+

is continuous at 0.

Exercise 4.12. Let f : R Ñ R be defined by fpxq “
"
0 if x ď 0,
1 if x ą 0.

(1) Suppose both the domain X “ R and the codomain Y “ R are equipped with the Euclidean metric.
Show that f is not continuous at 0.

(2) Equip the domain X“R with the discrete metric, and the codomain Y “R with the Euclidean metric.
Prove that f is continuous at 0.

Exercise 4.13. Let pX, dq be a metric space, and let p P X. Show that the distance to p is a continuous
map, that is, prove that the function f : X Ñ R defined by fpxq :“ dpx, pq (x P X) is continuous.

Exercise 4.14. Show that addition px, yq ÞÑ x ` y and multiplication px, yq ÞÑ xy are continuous maps
from R2 to R with the usual Euclidean metrics.

Exercise 4.15. Consider the normed space pCr0, 1s, } ¨ }8q, and let S : Cr0, 1s Ñ Cr0, 1s be defined by
pSpfqqpxq “ pfpxqq2 (x P r0, 1s, f P Cr0, 1s). Show that S is continuous.

Proposition 4.16. Let pX, dXq be a metric space, and let fn : X Ñ R pn P Nq be a sequence of
continuous functions that converges uniformly to f : X Ñ R. Then f is continuous.

Proof. Let c P X and ε ą 0. Choose an N P N such that that for all x P X , |fN pxq ´ fpxq| ă ε
3 .

As fN is continuous, there exists a δ ą 0 such that for all x P X satisfying dXpx, cq ă δ, we have
|fN pxq ´ fNpcq| ă ε

3 . For all x P X satisfying dXpx, cq ă δ, we have, using the triangle inequality,
that |fpxq ´ fpcq| ď |fpxq ´ fNpxq| ` |fN pxq ´ fNpcq| ` |fN pcq ´ fpcq| ă ε

3 ` ε
3 ` ε

3 “ ε. Hence f is
continuous at c. Since the choice of c P X was arbitrary, it follows that f is continuous on X . !

Exercise 4.17. A subset S of Rn is path connected if for all x, y P Rn, there exists a continuous function
γ : r0, 1s Ñ S such that γp0q “ x and γp1q “ y. (Think of γ as a ‘path’ beginning at x and ending at y.)

(1) Show that every convex set C is path connected. (See Exercise 1.45 for the definition of convex sets.)

(2) Define the relation R on S by setting xR y if there is a path γ : r0, 1s Ñ S such that γp0q “ x and
γp1q “ y. Prove that R is an equivalence relation on S. The equivalence classes of S under R are
called the path components of S. So a path connected S has a unique path component, namely S.

(3) Which of the following subsets of R2 are path connected? For a set that is not path connected,
determine its path components. tpx, yq P R2 :x2 ` y2 “ 1u, tpx, yq P R2 :xy “ 0u, tpx, yq P R2 :xy “ 1u.
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4.3. Continuous maps and open sets

We will now learn an important property of continuous functions, namely that ‘inverse images’
of open sets under a continuous map are open. In fact, we will see that this property is a
characterisation of continuity.

But first we fix some standard notation. Let f : X Ñ Y be a map, and let V Ă Y . Then we
set f´1pV q :“ tx P X : fpxq P V u, and call it the inverse image of V under f . See the picture
below. Clearly f´1pY q “ X and f´1pHq “ H.

fX Y

Vf´1pV q

Exercise 4.18. Let f : R Ñ R be given by fpxq “ cos x (x P R). Find f´1pV q, where V “ t´1, 1u,
V “ t1u, V “ t3u, V “ r´1, 1s, V “ R, V “ p´ 1

2 ,
1
2 q.

If U Ă X , then we set fpUq :“ tfpxq P Y : x P Uu, and call it the image of U under f .

f
X Y

fpUqU

Exercise 4.19. Let f : R Ñ R be given by fpxq “ cos x (x P R). Find fpUq, where U “ R, U “ r0, 2πs,
U “ rδ, δ ` 2πs where δ is any positive number.

Theorem 4.20. Let pX, dXq, pY, dY q be metric spaces and f : X Ñ Y be a map. Then f is
continuous on X if and only if for every V open in Y , f´1pV q is open in X.

Proof. (If) Let c P X , and let ε ą 0. Consider the open ball Bpfpcq, εq with center fpcq and radius
ε in Y . We know that this open ball V :“ Bpfpcq, εq is an open set in Y . Thus we also know
that f´1pV q “ f´1pBpfpcq, εqq is an open set in X . But the point c P f´1pBpfpcq, εqq, because
fpcq P Bpfpcq, εq (indeed, dY pfpcq, fpcqq “ 0 ă ε!). So by the definition of an open set, there is a
δ ą 0 such that Bpc, δq Ă f´1pBpfpcq, εqq. In other words, whenever x P X satisfies dXpx, cq ă δ,
we have that x P f´1pBpfpcq, εqq, that is, fpxq P Bpfpcq, εq, which implies dY pfpxq, fpcqq ă ε.
Hence f is continuous at c. But the choice of c P X was arbitrary. Consequently f is continuous
on X . See the picture on the left-hand side below.

ε ε

fpcqfpcq cc

δ δ

V

V :“Bpfpcq,εq
f´1pV q f´1pV q

(If) (Only if)
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(Only if) Now suppose that f is continuous, and let V be an open subset of Y . We would like
to show that f´1pV q is open. So let c P f´1pV q. Then fpcq P V . As V is open, there is a small
open ball Bpfpcq, εq with center fpcq and radius ε ą 0 that is contained in V . By the continuity
of f at c, there is a δ ą 0 such that whenever dXpx, cq ă δ, we have dY pfpxq, fpcqq ă ε, that is,
fpxq P V . But this means that Bpc, δq Ă f´1pV q. Indeed, if x P Bpc, δq, then dXpx, cq ă δ and so
by the above, fpxq P V , that is, x P f´1pV q. Consequently, f´1pV q is open in X . See the picture
on the right-hand side at the bottom of page 50. !

!
Note that the theorem does not claim that for every U open in X , fpUq is open in Y . Consider

for example X “ Y “ R equipped with the Euclidean metric, and the constant function fpxq “ c

(x P R). Then X “ R is open in X “ R, but fpXq “ tcu is not open in Y “ R.

Corollary 4.21. Let pX, dXq, pY, dY q be metric spaces and f : X Ñ Y be a map. Then f is
continuous on X if and only if for every F closed in Y , f´1pF q is closed in X.

Proof. If F Ă Y , then f´1pY zF q “ Xzpf´1pF qq. !

Exercise 4.22. Fill in the details of the proof of Corollary 4.21.

Theorem 4.23. Let pX, dXq, pY, dY q, pZ, dZq be metric spaces, f : X Ñ Y and g : Y Ñ Z be
continuous maps. Then the composition map g ˝ f : X Ñ Z, defined by pg ˝ fqpxq :“ gpfpxqq
px P Xq, is continuous.

Proof. Let W be open in Z. Then since g is continuous, g´1pW q is open in Y . Also, since f

is continuous, f´1pg´1pW qq is open in X . Finally, we note that pg ˝ fq´1pW q “ f´1pg´1pW qq.
Consequently, g ˝ f is continuous. !

Exercise 4.24. In the proof of Theorem 4.23, we used pg ˝ fq´1pW q “ f´1pg´1pW qq. Check this.

Exercise 4.25. Let X be a metric space and f : X Ñ R be a continuous map. Determine if the following
statements are true or false. Justify your answers.

(1) tx P X : fpxq ă 1u is an open set.

(2) tx P X : fpxq ą 1u is an open set.

(3) tx P X : fpxq “ 1u is an open set.

(4) tx P X : fpxq ď 1u is a closed set.

(5) tx P X : fpxq “ 1u is a closed set.

(6) tx P X : fpxq “ 1 or fpxq “ 2u is a closed set.

(7) tx P X : fpxq “ 1u is a compact set.

Analogous to Theorem 4.2, we have the following characterisation of continuous maps in terms of
convergence of sequences.

Theorem 4.26. Let pX, dXq, pY, dY q be metric spaces, c P X, and let f : X Ñ Y be a map.
Then following two statements are equivalent:

(1) f is continuous at c.

(2) For every sequence pxnqnPN in X that converges to c, pfpxnqqnPN converges to fpcq.

Proof. (1) ñ (2): Suppose that f is continuous at c. Let pxnqnPN be a sequence in X such
that pxnqnPN converges to c. Let ε ą 0. Then there exists a δ ą 0 such that for all x P X

satisfying dXpx, cq ă δ, we have dY pfpxq, fpcqq ă ε. As the sequence pxnqnPN converges to c, for
this δ ą 0, there exists an N P N such that whenever n ą N , dXpxn, cq ă δ. But then by the
above, dY pfpxnq, fpcqq ă ε. So we have shown that for every ε ą 0, there is an N P N such that
for all n ą N , dY pfpxnq, fpcqq ă ε. In other words, the sequence pfpxnqqnPN converges to fpcq.
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(2) ñ (1): Suppose that f is not continuous at c. Then

)ppp@ε ą 0, Dδ ą 0 such that @x P X satisfying dXpx, cq ă δ, we have dY pfpxq, fpcqq ă εqqq.

Thus Dε ą 0 such that @δ ą 0, Dx P X satisfying dXpx, cq ă δ, but for which dY pfpxq, fpcqq ě ε.

We will use this latter statement to construct a sequence pxnqnPN for which the conclusion in (2)
does not hold. For δ “ 1

n
(n P N), denote the corresponding x as xn: Thus, dXpxn, cq ă δ “ 1

n
,

but dY pfpxnq, fpcqq ě ε. Clearly the sequence pxnqnPN is convergent with limit c, but pfpxnqqnPN
does not converge to fpcq since dY pfpxnq, fpcqq ě ε for all n P N. So (2) does not hold. We have
shown that if (1) does not hold, then (2) does not hold. Consequently, (2) ñ (1). !

Exercise 4.27. Let f : R Ñ R be a continuous function such that for all x, y P R, fpx`yq “ fpxq ` fpyq.
Show that there exists a real number a such that for all x P R, fpxq “ ax. Hint: Show first that for
natural numbers n, fpnq “ nfp1q. Extend this to integers n, and then to rational numbers n

d
, n P Z,

d P N. Finally use the density of Q in R to prove the claim.

Exercise 4.28. Find all continuous functions f : R Ñ R such that for all x P R, fpxq`fp2xq “ 0.
Hint: Show that fpxq “ ´fpx

2 q “ fpx
4 q “ ´fpx

8 q “ ¨ ¨ ¨ .

Exercise 4.29. Define the multiplication function f : R2 Ñ R by fpxq “ x1x2 for all x “ px1, x2q P R2.
Show that f is continuous on R2 using the characterisation of continuous functions in terms of preservation
of convergent sequences. Compare this with Exercise 4.14.

Exercise 4.30. Two metric spaces are called homeomorphic if there exists a bijection f : X Ñ Y such
that f : X Ñ Y and f´1 : Y Ñ X are both continuous. The map f is then called a homeomorphism. For
example, f : p´π

2 ,
π
2 q Ñ R given by fpθq “ tan θ for all θ P p´π

2 ,
π
2 q, is a homeomorphism between the

interval p´π
2 ,

π
2 q and R, both equipped with the Euclidean metric. (This bijection is based on the left-

hand side picture below which gives a one-to-one correspondence between points of the semicircular arc
of radius 1 and the real line, but can also be checked directly. Based on the continuity of tan on p´π

2 ,
π
2 q,

and the fact that tan θ Ñ ˘8 as θ Ñ ˘π
2 , it follows from the Intermediate Value Theorem that f is

surjective. It is also injective, because it can be shown that f 1pθq “ 1
pcos θq2 ą 0, showing that f is strictly

increasing on p´π
2 ,

π
2 q. Hence f is a bijection. Moreover, tan : p´π

2 ,
π
2 q Ñ R and tan´1 : R Ñ p´π

2 ,
π
2 q

are continuous.)

1

tan θ
0

θ

0

a

b

´π
2

π
2

θ

gpθq

It follows from here than for any real numbers a, b with a ă b, the open interval pa, bq is homeomorphic to
R. This is because there is a homeomorphism g : p´π

2 ,
π
2 q Ñ pa, bq, e.g. using the right-hand side picture

above (and then the bijection g is given explicitly by gpθq “ pθ ` π
2 q pb´aq

π
` a for ´π

2 ă θ ă π
2 ).

A natural question is whether the continuity of f´1 is actually implied by the continuity of a bijection
f : X Ñ Y . This is not true in general. For example, the map f : r0, 2πq Ñ tpx, yq P R2 : x2 ` y2 “ 1u
given by fpθq “ pcos θ, sin θq for all θ P r0, 2πq can be seen to be a continuous bijection, but its inverse
is not continuous at p1, 0q: In deed, we have that the sequence pppfp2π ´ 1

n
qqqqnPN converges to p1, 0q, but

pppf´1pfp2π ´ 1
n

qqqqqnPN “ p2π ´ 1
n

qnPN does not converge to 0 “ f´1p1, 0q.
The aim of this exercise is to give another example of a continuous bijection whose inverse is not

continuous. Recall Exercise 1.21, and let c00 denote the subspace of "8 consisting of all sequences that
have all terms equal to 0 eventually. Consider c00 Ă "8 as normed space with the norm } ¨ }8, and the
map f : c00 Ñ c00 given by fpx1, x2, x3, ¨ ¨ ¨ q “ px1,

x2
2 , x3

3 , ¨ ¨ ¨ q for all x “ pxnqnPN P c00. Show that f is a
continuous bijection, whose inverse is not continuous. Hint: It can be shown that f´1 is not continuous
at 0 by using the fact that f is linear and fpemq “ 1

m
em, where em is the sequence all of whose terms are

zeroes, except for the mth one which is equal to 1.
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Exercise 4.31. A ‘manifold’ is a topological space that locally resembles the Euclidean space. More
precisely, we will call a subset M of Rn a manifold (of dimension1 k) if for every x P M , there is an open
set Ox containing x such that Ox is homeomorphic to an open subset U of Rk. Locally the surface of the
Earth, which is a sphere, looks flat, and so we expect that the sphere in R3 is a manifold of dimension 2.
Give an argument, based on pictures, that the unit sphere S2 :“ tx P R3 : }x}2 “ 1u is indeed a manifold
of dimension 2. (This explains why one uses the superscript ‘2’ on top of S in the (standard) notation for
the unit sphere in R3. Similarly the circle S1 :“ tx P R2 : }x}2 “ 1u in R2 is a manifold of dimension 1,
and is denoted by S1. More generally, it can be shown that the unit sphere Sd :“ tx P Rd`1 : }x}2 “ 1u
in Rd`1 is a manifold of dimension d.)

Exercise 4.32. Consider the function f : R2 Ñ R given by fpxq “

#
x2
1´x2

2

x2
1

`x2
2

if x “ px1, x2q ‰ p0, 0q,
c if x “ p0, 0q.

Show that no matter what c P R we take in the above, f is not continuous at p0, 0q.
Exercise 4.33. Show that the determinant functionM ÞÑ detM from pR2ˆ2, }¨}8q to pR, |¨|q is continuous.
Prove that the set of invertible matrices is open in pR2ˆ2, } ¨ }8q. Hint: Consider det´1t0u.
Exercise 4.34. Give an example of a continuous function f : X Ñ Y , where X,Y are metric spaces, and
a Cauchy sequence pxnqnPN for which pfpxnqqnPN is not a Cauchy sequence in Y .

Exercise 4.35. Let X,Y be metric spaces. A map f : X Ñ Y is called open if for every open subset U
of X, fpUq is open in Y . Equip X “ R with the usual Euclidean metric, and Y “ R with the discrete
metric. Consider the identity map f : X Ñ Y defined by fpxq “ x for all x P R. Show that f is open, but
for each x P R, f is not continuous at x.

Exercise 4.36. Define f, g :R2 ÑR by fp0q“gp0q“0, and fpx, yq“ xy2

x2`y4 , gpx, yq“ xy2

x2`y6 for px, yq‰0.

(1) Show that f is bounded on R2, that is, DM P R such that for all px, yq P R2, |fpx, yq| ďM .

(2) Prove that g is unbounded in every ball centred at 0 “ p0, 0q.
(3) Show that f is not continuous at p0, 0q.
(4) Prove that g is not continuous at p0, 0q.
(5) If Y Ă X and if Φ is a function defined on X, the restriction of Φ to Y is the function ϕ whose domain

is Y , and such that ϕpyq “ Φpyq (y P Y ). Show that the restrictions of both f and g to every straight
line in R2 are continuous!

For functions from the Euclidean space Rn to the Euclidean space Rm, we have the following
simplification.

Proposition 4.37. A function f : Rn Ñ Rm is continuous if and only if each of its components
f1, . . . , fm : Rn Ñ R are continuous. (Here for k P t1, ¨ ¨ ¨ ,mu, fkpxq :“ eJ

k fpxq, x P Rn, where
e1, ¨ ¨ ¨ , en are the standard basis vectors.)

Proof. For all x, y P Rn, we have that |fkpxq ´ fkpyq| ď
c

nř
i“1

|fipxq ´ fipyq|2 “ }fpxq ´ fpyq}2.

So if f is continuous, then each of its components is continuous too.

Vice versa, if f1, ¨ ¨ ¨ , fm are continuous and pxnqnPN converges to c P Rn, then pfkpxnqqnPN con-
verges to fkpcq for all k P t1, ¨ ¨ ¨ , du, and so it follows that pfpxnqqnPN converges to fpcq in Rn.
Thus f is continuous at c. As c P Rn was arbitrary, f is continuous. !

Another case when checking continuity becomes considerably simpler is in the case of linear trans-
formations between normed spaces.

Proposition 4.38. Let pX, } ¨ }Xq, pY, } ¨ }Y q be normed spaces and let T : X Ñ Y be a linear
transformation. Then the following are equivalent:

(1) T is continuous.

(2) T is continuous at 0.

(3) There exists an M ą 0 such that for all x P X, }Tx}Y ďM}x}X.

1It can be shown that this is a well-defined notion.
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Proof. (1) ñ (2) follows from the definition. Let us show that (2) ñ (3). As T is continuous at
0, we have that given ε :“ 1 ą 0, there is a δ ą 0 such that whenever }x ´ 0}X “ }x}X ă δ, we
have }Tx ´ T 0}Y “ }Tx ´ 0}Y “ }Tx}Y ă 1. Define M :“ 2

δ
. Then:

1˝ If x “ 0, then }Tx}Y “ }T 0}Y “ }0}Y “ 0 “ 2
δ
0 “ M}0}X “ M}x}X .

2˝ If x ‰ 0, then with y :“ δ
2}x}X x, we have }y} “ δ

2 ă δ, and so }Ty}Y ă 1.

Thus 1ą}Ty}Y “}T p δ
2}x}X xq}Y “ δ

2}x}X }Tx}Y . Rearranging, we get }Tx}Y ă 2
δ }x}X “M}x}X .

Consequently (3) holds.

Finally, we show that (3) ñ (1). Let c P X , and ε ą 0. Let δ :“ ε
M
ą 0. Then for all x P X

satisfying }x´ c}X ă δ “ ε
M
, we have }Tx´Tc}Y “ }T px´ cq}Y ďM}x´ c}X ăMδ “ M ε

M
“ ε.

Hence f is continuous at c. But the choice of c P X was arbitrary, and so f is continuous. !

Example 4.39. Consider the map I : Cra, bs Ñ R from the normed space pCra, bs, } ¨ }8q to R

given by Ipfq “
şb
a
fpxqdx for all f P Cra, bs. Then clearly I is a linear transformation. Moreover,

since for every f P Cra, bs we have |Ipfq| “ |
şb
a
fpxqdx| ď

şb
a

|fpxq|dx ď
şb
a

}f}8dx “ }f}8pb ´ aq,
it follows that I is continuous. !

Example 4.40. Let A P Rnˆm. Consider the map TA from the Euclidean space Rn to the
Euclidean space Rm, given by matrix multiplication: TAx “ Ax (x P Rn). Then TA is a linear
transformation, and it is continuous, since

}TAx}2 “ }Ax}2 “
c

mř
i“1

p
nř

j“1
aijxjq2 ď

c
mř
i“1

p
nř

j“1
a2ijqp

nř
k“1

x2
kq ď

c
mř
i“1

n}A}28}x}22 “
?
mn}A}8}x}2.

(The first inequality follows from the Cauchy-Schwarz inequality.) Hence TA is continuous. !

Exercise 4.41. Show that if A P Rnˆm, then kerA “ tx P Rm : Ax “ 0u is a closed subspace of Rm.

Exercise 4.42. Prove that every subspace of Rn is closed. Hint: Construct a linear transformation whose
kernel is the given subspace.

Exercise 4.43. A metric space X is called connected if X is not the union of two disjoint nonempty open
sets. Let X be a connected metric space, Y be a metric space, and f : X Ñ Y be a surjective map. Prove
that Y is connected.

Exercise 4.44. Suppose f P Cra, bs is such that
şb
a
xnfpxqdx “ 0 for all n P N. Prove that f is identically

zero on ra, bs. Hint: Use the density of polynomials in pCra, bs, } ¨ }8q shown in Exercise 1.43.

Exercise 4.45. Let X,Y be normed spaces, T : X Ñ Y be a linear transformation, and c P X.
Show that T is continuous at c if and only if T is continuous at 0.

Exercise 4.46. Let C1r0, 1s :“ tf P Cr0, 1s : @t P r0, 1s, f 1ptq exists, and f 1 P Cr0, 1su. Then C1r0, 1s is
a subspace of the vector space Cr0, 1s. Define D : C1r0, 1s Ñ Cr0, 1s by pDfqptq “ f 1ptq for all t P r0, 1s
and f P C1r0, 1s. Then D is a linear transformation.

(1) Show that if Cr0, 1s and C1r0, 1s are both given the norm } ¨ }8, then D is not continuous at any point.

(2) Let }f}1,8 “ }f}8 ` }f 1}8 for all f P C1r0, 1s. Check that } ¨ }1,8 does define a norm on C1r0, 1s.
(3) Show that D is continuous if C1r0, 1s bears the } ¨ }1,8 norm, and Cr0, 1s has the } ¨ }8 norm.

Limits and continuity.

Definition 4.47. Let U be an open subset of Rn, c P U , L P Rm and f : Uztcu Ñ Rm. We write

fpxq xÑcÝÑ L or lim
xÑc

fpxq “ L

if for every ε ą 0, there exists a δ ą 0 such that whenever x P U satisfies 0 ă }x ´ c}2 ă δ, we

have }fpxq ´ L}2 ă ε. We then say that f has a limit at c, and call L its limit.

We can recast this definition in terms of sequences.
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Theorem 4.48. Let U be an open subset of Rn, c P U , L P Rm and f : Uztcu Ñ Rm.

Then the following are equivalent:

(1) lim
xÑc

fpxq “ L.

(2) For every sequence pxnqnPN contained in U such that for all n P N, xn ‰ c, and lim
nÑ8

xn “ c,

we have lim
nÑ8

fpxnq “ L.

Proof. (1) ñ (2): Let lim
xÑc

fpxq “ L, and that pxnqnPN is a sequence contained in U such that

xn ‰ c pn P Nq, lim
nÑ8

xn “ c. Let ε ą 0. There exists a δ ą 0 such that whenever x P U satisfies

0 ă }x ´ c}2 ă δ, we have }fpxq ´ L}2 ă ε. There exists an N P N such that for all n ą N ,

0 ă }xn ´ c} ă δ. Consequently, for n ą N we have }fpxnq ´ L}2 ă ε. Hence lim
nÑ8

fpxnq “ L.

(2) ñ (1): Suppose that lim
xÑc

fpxq “ L does not hold. Then

)ppp@ε ą 0, Dδ ą 0 such that @x P U satisfying 0 ă }x ´ c}2 ă δ, we have }fpxq ´ L}2 ă ε

i.e., there is an ε ą 0 such that for every δ ą 0, there is a point x P U (depending on δ), for which

0 ă }x ´ c}2 ă δ, but }fpxq ´ L}2 ě ε. Taking δ successively to be 1
n (n P N), we can thus find

a sequence pxnqnPN contained in U such that for all n P N, xn ‰ c, pxnqnPN converges to c, and

}fpxnq ´ L}2 ě ε. This last condition means that lim
nÑ8

fpxnq “ L does not hold. So (2) does not

hold. Hence we have shown that if (1) does not hold, then (2) does not hold, i.e., (2) ñ (1). !

Corollary 4.49. Let U be an open subset of Rn, c P U and f : Uztcu Ñ Rm.
If f has a limit at c, then it is unique.

Proof. We use Theorem 4.48, and the fact that convergent sequences have unique limits. !

Using the algebra of limits for real sequences, it follows that the same result carries over to limits
of real-valued functions.

Corollary 4.50. Let U be an open subset of Rn, and c P U .

Suppose that f, g : Uztcu Ñ R and lim
xÑc

fpxq “ Lf and lim
xÑc

gpxq “ Lg, where Lf , Lg P R.

Define f`g, fg : Uztcu Ñ R by pf`gqpxq“fpxq`gpxq and pfgqpxq“fpxqgpxq px P Uztcuq.
Then:

(1) lim
xÑc

pf ` gqpxq “ Lf ` Lg “ lim
xÑc

fpxq ` lim
xÑc

gpxq.

(2) lim
xÑc

pfgqpxq “ LfLg “
`
lim
xÑc

fpxq
˘`

lim
xÑc

gpxq
˘
.

The following result is clear from the definitions.

Theorem 4.51. Let U be an open subset of Rn, and c P U .
Then f : U Ñ Rm is continuous at c if and only if lim

xÑc
fpxq “ fpcq.

4.4. Compactness and continuity

In this section we will learn about a very useful result in Optimisation Theory, on the existence
of global minimisers of real-valued continuous functions on compact sets.

Theorem 4.52. Let K be a compact subset of a metric space X, Y be a metric space, and
f : K Ñ Y be a continuous function. Then fpKq is a compact subset of Y .
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Proof. Suppose that pynqnPN is a sequence in contained in fpKq. Then for each n P N, there
exists an xn P K such that yn “ fpxnq. Thus we obtain a sequence pxnqnPN in the set K. As
K is compact, there exists a convergent subsequence, say pxnk

qkPN, with limit L P K. As f is
continuous, it preserves convergent sequences. So pfpxnk

qqkPN “ pynk
qkPN is convergent with limit

fpLq P fpKq. Consequently, fpKq is compact. !

Now we prove the aforementioned result which turns out to be very useful in Optimisation Theory,
namely that a real-valued continuous function on a compact set attains its maximum/minimum.
This is a generalisation of the Extreme-Value Theorem we had learnt earlier, where the compact
set in question was just the interval ra, bs.

Theorem 4.53 (Weierstrass’s theorem).
Let K be a nonempty compact subset of a metric space X, and let f : K Ñ R be continuous.
Then there exists a c P K such that fpcq “ suptfpxq : x P Ku.

Since c P K, fpcq P tfpxq : x P Ku, and so the supremum above is actually a maximum:

fpcq “ suptfpxq : x P Ku “ maxtfpxq : x P Ku.

Also, under the same hypothesis of the above result, there exists a minimiser in K, that is, there
exists a d P K such that

fpdq “ inftfpxq : x P Ku “ mintfpxq : x P Ku.

This follows from the above result by just looking at ´f , that is, by applying the above result to
the continuous function g : K Ñ R given by gpxq “ ´fpxq (x P K).

Proof of Theorem 4.53. We know that the image ofK under f , namely the set fpKq is compact
and hence bounded. So tfpxq : x P Ku is bounded. It is also nonempty since K is nonempty.
But by the least upper bound property of R, a nonempty bounded subset of R has a least upper
bound. Thus M :“ suptfpxq : x P Ku P R. Now consider M ´ 1

n (n P N). This number cannot be
an upper bound for tfpxq : x P Ku. So there must be an xn P K such that fpxnq ąM ´ 1

n . In this
manner we get a sequence pxnqnPN in K. As K is compact, pxnqnPN has a convergent subsequence
pxnk

qkPN with limit, say c, belonging to K. As f is continuous, pfpxnk
qqkPN is convergent as well

with limit fpcq. But from the inequalities fpxnq ąM ´ 1
n
(n P N), it follows that fpcq ě M . On

the other hand, from the definition of M , we also have that fpcq ďM . Hence fpcq “ M . !

Example 4.54. Since the set K “ tx P R3 : x2
1 ` x2

2 ` x2
3 “ 1u is compact in R3 and since the

function x ÞÑ x1 ` x2 ` x3 is continuous on R3, it follows that the optimisation problem

minimise x1 ` x2 ` x3

subject to x2
1 ` x2

2 ` x2
3 “ 1

has a minimiser. !

Remark 4.55. In Optimisation Theory, one often meets necessary conditions for an optimal
solution, that is, results of the following form:

If px is an optimal solution to the optimisation problem
!maximise fpxq
subject to x P F pĂ Rnq

)
,

then px satisfies ˚ ˚ ˚ .

(Where ˚ ˚ ˚ are certain mathematical conditions, such as the Lagrange multiplier equations.)
Now such a result has limited use as such since even if we find all px(s) which satisfy ˚ ˚ ˚ , we
can’t conclude that there is one that is optimal. But now suppose that we know that f : F Ñ R

is continuous and that F is compact. Then we know that an optimal solution exists, and so we
know that among the px(s) that satisfy ˚ ˚ ˚ , there is at least one which is an optimal solution.
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Exercise 4.56. Let X be a compact metric space and let f : X Ñ Z be a continuous function. Here Z

has the Euclidean topology induced from R. Prove that f can assume only finitely many values.

Exercise 4.57. Let N : Rd Ñ R be any norm on Rd. The aim of this exercise is to show that N is
‘equivalent to2’ } ¨ }2, i.e., there are constants M,m ą 0 such that for all x P Rd, m}x}2 ď Npxq ďM}x}2.
(1) Let e1 “ p1, 0, . . . , 0q, ¨ ¨ ¨ ,ed “ p0, . . . , 0, 1q be the standard basis vectors in Rd. Thus the vector

x “ px1, . . . , xdq P Rd is the linear combination x1e1 ` ¨ ¨ ¨ ` xded. Show, using the triangle inequality
and the Cauchy-Schwarz inequality, that there is an M ą 0 such that for all x P Rd, Npxq ďM}x}2.

(2) Prove using the triangle inequality for N that for all x,y P Rd, |Npxq ´Npyq| ď Npx´yq.
Conclude that the map N : pRd, } ¨ }2q Ñ R is continuous.

(3) Consider the compact set K :“ tx P Rd : }x}2 “ 1u and use Weierstrass’s theorem to prove the
existence of m ą 0 such that for all x P Rd, m}x}2 ď Npxq.

Exercise 4.58. In each case, give an example of a continuous function f : S Ñ T , such that fpSq “ T
or else explain why there can be no such f . (We use the usual metrics, for example p0, 1q in the first part
has the Euclidean metric of R.)

(1) S “ p0, 1q, T “ p0, 1s.
(2) S “ p0, 1q, T “ p0, 1q Y p1, 2q.
(3) S “ R, T “ Q.

(4) S “ r0, 1s Y r2, 3s, T “ t0, 1u.
(5) S “ r0, 1s ˆ r0, 1s, T “ R2.

(6) S “ r0, 1s ˆ r0, 1s, T “ p0, 1q ˆ p0, 1q.
(7) S “ p0, 1q ˆ p0, 1q, T “ R2.

Exercise 4.59. Let pX, dq be a metric space and let f : X Ñ X be a function that satisfies

for all x, y P X such that x ‰ y, dpfpxq, fpyqq ă dpx, yq. (4.1)

(1) Prove that f has at most one fixed point (that is, a point c P X such that fpcq “ c).

(2) Let X “ p0, 1
2 q with the usual metric, and define f : X Ñ X by fpxq “ x2 for all x P p0, 1

2 q.
Show that f satisfies (4.59), but it has no fixed point.

(3) Show that the function g : X Ñ R given by gpxq “ dpx, fpxqq (x P X) is continuous.

(4) Prove that if X is compact, then f has exactly one fixed point. Hint: g attains a minimum on X.

Exercise 4.60. Recall the notion of homeomorphism from Exercise 4.30.

(1) Show that r0, 1s and p0, 1q are homeomorphic when both spaces are equipped with the discrete metric.

(2) Show that r0, 1s and p0, 1q are not homeomorphic when both spaces are equipped with the Euclidean
metric.

4.5. Uniform continuity

Roughly speaking, we use the adjective ‘uniform’ in Analysis whenever ‘the same thing works
everywhere’. We have already seen one instance of this when we discussed uniform convergence
of a sequence of functions. Now we will learn about uniform continuity.

Recall that if pX, dXq and pY, dY q are metric spaces, then a function f : X Ñ Y is said to
be continuous at a point c P X if for every ε ą 0, there exists a δ ą 0 such that whenever x P X

satisfies dXpx, cq ă δ, we have dY pfpxq, fpcqq ă ε. And f is called continuous if for every c P X ,
f is continuous at c, that is:

@ε ą 0, @c P X , Dδ ą 0 such that if x P X satisfies dXpx, cq ă δ, then dY pfpxq, fpcqq ă ε.

In the above statement, the choice of δ might depend on which c P X we consider. For a ‘uniformly’
continuous function on I, it doesn’t! That is, given an ε ą 0, the same δ (depending only on ε)

2The fuss about equivalent norms on a vector space X is that whenever two norms N1, N2 are equivalent, the open sets
in pX,N1q coincide with the ones in pX,N2q, and so as topological spaces, they are the same!
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works everywhere in X , irrespective of which c P X we have considered. We now give the precise
definition.

Definition 4.61. Let pX, dXq, pY, dY q be metric spaces. A map f : X Ñ Y is said to be uniformly
continuous if for every ε ą 0, there exists a δ ą 0 such that for all x, y P X satisfying dXpx, yq ă δ,
we have dY pfpxq, fpyqq ă ε.

Note that in the definition we are introducing the notion of uniform continuity of a function on a
set, and not at a point.

Proposition 4.62. Let pX, dXq, pY, dY q be metric spaces. If f : X Ñ Y is uniformly continuous,
then f is continuous.

Proof. Let c P X . Suppose ε ą 0. By the uniform continuity of f , there exists a δ ą 0 such that
for all x, y P X satisfying dXpx, yq ă δ, there holds that dY pfpxq, fpyqq ă ε. In particular, if x P X

satisfies dXpx, cq ă δ, we have dY pfpxq, fpcqq ă ε. Thus f is continuous at c. But the choice of c
was arbitrary, and so f is continuous on X . !

The following example shows that uniform continuity is a strictly stronger notion than continuity,
that is, there are continuous functions that are not uniformly continuous.

Example 4.63. The map f : p0, 1q Ñ R given by fpxq “ 1
x
(0 ă x ă 1) is continuous on p0, 1q:

If pxnqnPN is a convergent sequence in p0, 1q with limit L P p0, 1q, then pfpxnqqnPN “ p 1
xn

qnPN is a

convergent sequence with limit 1
L “ fpLq.

However, f is not uniformly continuous. Suppose it is. Then given ε ą 0, there exists a δ ą 0 such
that whenever |x ´ y| ă δ, we have | 1

x
´ 1

y
| ă ε. Consider x “ 1

n
and y “ 1

2n . Then |x ´ y| “ 1
2n ,

and so |x ´ y| ă δ for all n large enough, but | 1x ´ 1
y | “ n ą ε, for n large enough.

The lack of uniform continuity is also clear in an intuitive manner pictorially. !

Exercise 4.64. Show that f : R Ñ R given by fpxq “ x2 (x P R) is continuous, but not uniformly
continuous. Hint: Consider x “ n and y “ n ` 1

n
for large n.

Exercise 4.65. Prove that the function f : R Ñ R defined by fpxq “ |x| (x P R) is uniformly continuous.

Exercise 4.66. Let pX, dq be a metric space and let c P X. Define f : X Ñ R by fpxq “ dpx, cq.
Prove that f is uniformly continuous on X.

Exercise 4.67. Let X,Y be metric spaces, and let f : X Ñ Y be uniformly continuous.
Show that if pxnqnPN is a Cauchy sequence in X, then pfpxnqqnPN is a Cauchy sequence in Y .
Compare this with Exercise 4.34.

Exercise 4.68. Let f, g : I Ñ R be uniformly continuous functions on the interval I .

(1) Show that if f ` g is also uniformly continuous on I .

(2) Is fg also always uniformly continuous on I?

(3) In addition to the assumed uniform continuity of f, g, if f, g are also bounded, then show that fg is
uniformly continuous on I .

In Example 4.63, we have seen that there are continuous functions which aren’t uniformly contin-
uous. But the following result tells us that if we are working with a compact domain, then mere
continuity is enough to conclude (the stronger property) of uniform continuity.
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Proposition 4.69. Let pX, dXq, pY, dY q be metric spaces, and suppose that X is compact.
If f : X Ñ Y is continuous, then f is also uniformly continuous.

Proof. We will prove this by contradiction. So let us suppose that f is not uniformly continuous:

)ppp@ε ą 0, Dδ ą 0 such that @x, y P X satisfying dXpx, yq ă δ, we have dY pfpxq, fpyqq ă εqqq.

Then there exists an ε ą 0 such that for every δ ą 0, there are some x, y P X such that dXpx, yq ă δ,
but dY pfpxq, fpyqq ě ε. In particular, taking δ “ 1

n (n P N), there exist xn, yn P X such that
dXpxn, ynq ă 1

n but dY pfpxnq, fpynqq ě ε. By using the compactness of X , and considering
subsequences if necessary, we may assume that pxnqnPN and pynqnPN are convergent, with limits
say x, y P X , respectively3. Since dXpxn, ynq ă 1

n , we obtain dXpx, yq ď 0, and so x “ y.
Also, by the continuity of f , we have that pfpxnqqnPN and pfpynqqnPN converge to fpxq and fpyq,
respectively. Hence4 pdY pfpxnq, fpynqqqnPN converges to dY pfpxq, fpyqq “ 0 (as x “ y!). But on
the other hand, from dY pfpxnq, fpynqq ě ε, we obtain dY pfpxq, fpyqq ě ε ą 0, a contradiction. !

Exercise 4.70. Show that f : r0,8q Ñ R given by fpxq “
?
x (x ě 0) is uniformly continuous.

Definition 4.71. Let pX, dXq, pY, dY q be metric spaces. A function f : X Ñ Y is called Lipschitz
if there exists a number L ą 0 such that for all x, y P X , dpfpxq, fpyqq ď Ldpx, yq.

Proposition 4.72. Let pX, dXq, pY, dY q be metric spaces.
If f : X Ñ Y is Lipschitz, then f is uniformly continuous.

Exercise 4.73. Prove Proposition 4.72.

Exercise 4.74.

(1) Show that the function f : r´1, 1s Ñ R defined by fpxq “ x2 is Lipschitz.

(2) Explain why the function f : R Ñ R defined by fpxq “ x2 is not Lipschitz.

(3) Show that the function f : r0,8q Ñ R defined by fpxq “
?
x is not Lipschitz continuous.

(Compare with Exercise 4.70. Thus there are uniformly continuous functions that are not Lipschitz.)

4.6. Notes (not part of the course)

Weierstrass’s Theorem can be used to prove:

Theorem 4.75 (Fundamental Theorem of Algebra). Every polynomial p with complex coefficients of

degree at least 1 has a zero in C.

Recall that a polynomial p of degree d P N is a function p : C Ñ C such that there exist c0, ¨ ¨ ¨ , cd P C, with
cd ‰ 0, such that for all z P C, ppzq “ c0`c1z`¨ ¨ ¨`cdz

d. A complex number ζ P C is a zero of p if ppζq “ 0.
We note that for z “ px, yq P C “ R2, the complex absolute value of z is |z| “

a
x2 ` y2 “ }px, yq}2, the

Euclidean norm of px, yq P R2. We will first show the following:

Lemma 4.76. If p is a zero-free polynomial of degree at least 1, then |p| has no minimiser in C.

Proof. Let z0 P C be a minimiser of |p|. Set qpzq “ ppz`z0q
ppz0q . Then qp0q “ 1. Replacing p by q, we may

assume that z0 “ 0 and pp0q “ 1. We will show that there exists a w P C such that |ppwq| ă 1, giving the
desired contradiction. Let d P N and c1, ¨ ¨ ¨ , cd P C be such that cd ‰ 0 and ppzq “ 1 ` c1z ` ¨ ¨ ¨ ` cdz

d

(z P C). Let m P t1, ¨ ¨ ¨ , du be the least index such that cm ‰ 0. Then ppzq “ 1 ` cmzm ` rpzq, where
rpzq “ 0 if m “ d, and rpzq :“ zm`1pcm`1 ` cm`2z ` ¨ ¨ ¨ ` cdz

d´m´1q if m ă d. Let

r1 :“ |cm|
|cm`1|`¨¨¨`|cd| and r2 :“ 1

m
?

|cm|
.

3Since X is compact, the sequence pxnqnPN has a convergent subsequence, say pxnk
qkPN, converging to, say x P X. Also,

the sequence pynk
qkPN has a convergent subsequence, say pynk#

q#PN, converging to, say y P Y .
4See Exercise 2.19.
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If m “ d, we have |rpzq| “ 0 ă 1 for all z P C, and if m ă d, then we have

|rpzq| ď |z|m`1p|cm`1| ` |cm`2||z| ` ¨ ¨ ¨ ` |cd||zd´m´1|q
ă |z|m`1p|cm`1| ` |cm`2| ` ¨ ¨ ¨ ` |cd|q if 0 ă |z| ă 1
ă |z|m|cm| “ |cmzm| if moreover |z| ă r1
ă 1 if moreover |z| ă r2.

So if 0 ă |z| ď 1
2 mint1, r1, r2u “: R, then |rpzq| ă |cmzm| ă 1. Let w “ Rv, where v is an mth root of

´cm
|cm| . Then |v| “ 1, 0 ă |w| “ R, and cmwm “ cmRmp ´cm

|cm| q “ ´|cm|Rm.

Thus |ppwq| ď |1 ` cmwm| ` |rpwq| ă |1 ´ |cm|Rm| ` |cmwm| “ 1 ´ |cm|Rm ` |cm|Rm “ 1 “ pp0q. !

Proof of Theorem 4.75. Let d P N and c0, ¨ ¨ ¨ , cd P C be such that ppzq “ c0 ` c1z ` ¨ ¨ ¨ ` cdz
d (z P C),

and p is zero-free. Replacing p by 1
cd
p, we may assume that cd “ 1. Then ppzq “ zdp1 ` rpzqq, where

rpzq :“ c0
zd

` c1
zd´1 ` ¨ ¨ ¨ ` cd´1

z
. Let R :“ 2dmaxt|c0|, ¨ ¨ ¨ , |cd|u. Then R ě 2d|cd| “ 2d ¨ 1 “ 2d ą 1.

For |z| ě R and 0 ď k ď d ´ 1, we have that | ck
zd´k | “ |ck|

|z|d´k ď |ck|
Rd´k ď |ck|

R
ď |ck|

2d|ck| “ 1
2d , which yields

|rpzq| ď | c0
zd

| ` | c1
zd´1 | ` ¨ ¨ ¨ ` | cd´1

z
| ď 1

2dd “ 1
2 . Hence for |z| ě R, |1` rpzq| ě 1´ |rpzq| ě 1´ 1

2 “ 1
2 , and

so |ppzq| “ |zdp1 ` rpzqq| ě Rd

2 . Since R ě 2d|c0| “ 2d|pp0q|, we have

for all z with |z| ě R, |pp0q| ď R
2d ď

Rd

2 ď |ppzq|. p‹q
By Weierstrass’s Theorem, the real-valued continuous function |p| assumes a minimum value on the (closed
and bounded and hence) compact set K :“ tw P C : |w| ď Ru, say at z0 P K. The inequality (‹) implies
that this z0 must be a minimiser of |p| on all of C. This contradicts Lemma 4.76. !



Chapter 5

Differentiation

For a function f : pa, bq Ñ R, and a point c P pa, bq, the difference quotient for x P pa, bq, x ‰ c, is

fpxq ´ fpcq
x ´ c

.

Geometrically, this number represents the slope of the chord passing through the points pc, fpcqq
and px, fpxqq on the graph of f :

xc

f

x ´ c

fpxq ´ fpcq

Suppose that as x goes to c, the difference quotients approach a number, say L, that is,

lim
xÑc

fpxq ´ fpcq
x ´ c

“ L.

In other words, for every ε ą 0, there exists a δ ą 0 such that whenever x P pa, bq satisfies

0 ă |x´ c| ă δ, we have | fpxq´fpcq
x´c

´L| ă ε. Then we say that f is differentiable at the point c. See
the picture below, where we see the geometric interpretation of L: It is the slope of the tangent to
the graph of f at the point c. Notice also that if we ‘zoom into’ the graph of f around the point
pc, fpcqq, the graph seems to coincide with the tangent line. In other words, the tangent line is a
‘linear approximation’ of f near the point c.

c

f

The number L is unique, and we denote this unique number by f 1pcq. We call f 1pcq the derivative
of f at c. If f is differentiable at every c P pa, bq, then we say that f is differentiable on pa, bq.

Theorem 5.1. Let f : pa, bq Ñ R be differentiable at c P pa, bq. Then f is continuous at c.

61
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Proof. Let ε ą 0. Let δ1 ą 0 be such that for all x P pa, bq such that 0 ă |x ´ c| ă δ1,

| fpxq´fpcq
x´c

´ f 1pcq| ă 1. Then rearrangement (using the triangle inequality) gives

|fpxq ´ fpcq| “ |fpxq ´ fpcq ´ f 1pcqpx ´ cq ` f 1pcqpx ´ cq|
ď |fpxq ´ fpcq ´ f 1pcqpx ´ cq| ` |f 1pcq||x ´ c| ă p1 ` |f 1pcq|q|x ´ c|.

Define δ :“ mintδ1, ε
1`|f 1pcq| u. Then for all x P pa, bq such that 0 ă |x ´ c| ă δ, we have

|fpxq ´ fpcq| ă p1 ` |f 1pcq|q|x ´ c| ď p1 ` |f 1pcq|q ε
1`|f 1pcq| “ ε.

Consequently f is continuous at c. !

The converse of the theorem is not true, and the following example demonstrates this.

Example 5.2. Define f : R Ñ R by fpxq “ |x| (x P R) is (uniformly) continuous since for all
x, y P R, we have |fpxq ´ fpyq| “

ˇ̌
|x| ´ |y|

ˇ̌
ď |x ´ y|.

Let us now show that f is not differentiable at 0. If it were, then given ε “ 1
2 ą 0, there exists

a δ ą 0 such that whenever 0 ă |x| ă δ, we have

| |x|
x ´ f 1p0q| ă ε “ 1

2 .

Taking x “ δ
2 , we obtain |1 ´ f 1p0q| ă 1

2 . Taking x “ ´ δ
2 , we also get | ´ 1 ´ f 1p0q| ă 1

2 . Thus
2 “ | ´ 1´ 1| “ | ´ 1´ f 1p0q ` f 1p0q ´ 1| ď | ´ 1´ f 1p0q| ` |f 1p0q ´ 1| ă 1

2 ` 1
2 “ 1, a contradiction.

(The lack of differentiability of | ¨ | at 0 is visually obvious, since one can’t draw a tangent at the
‘corner’ to the graph at p0, 0q.) !

The following result gives rules for differentiating the sum and product of differentiable functions.

Proposition 5.3. Let f, g : pa, bq Ñ R be differentiable at c P pa, bq. Then:

(1) The sum f `g : pa, bq Ñ R defined by pf `gqpxq “ fpxq`gpxq px P pa, bqq is differentiable
at c, and pf ` gq1pcq “ f 1pcq ` g1pcq.

(2) The product fg : pa, bq Ñ R defined by pfgqpxq “ fpxq ¨ gpxq px P pa, bqq is differentiable
at c, and pfgq1pcq “ f 1pcqgpcq ` fpcqg1pcq.

Proof. These claims follow from the algebra of limits, namely Theorem 4.50. Indeed we have

lim
xÑc

pf ` gqpxq ´ pf ` gqpcq
x ´ c

“ lim
xÑc

fpxq ´ fpcq
x ´ c

` lim
xÑc

gpxq ´ gpcq
x ´ c

“ f 1pcq ` g1pcq,

which proves (1). Also, (2) follows from the following:

lim
xÑc

pfgqpxq ´ pfgqpcq
x ´ c

“ lim
xÑc

fpxqgpxq ´ fpcqgpxq ` fpcqgpxq ´ fpcqgpcq
x ´ c

“ lim
xÑc

fpxq ´ fpcq
x ´ c

¨ gpxq ` lim
xÑc

fpcq ¨
gpxq ´ gpcq

x ´ c

“ lim
xÑc

fpxq ´ fpcq
x ´ c

¨ lim
xÑc

gpxq ` fpcq lim
xÑc

gpxq ´ gpcq
x ´ c

“ f 1pcqgpcq ` fpcqg1pcq.

This completes the proof. !
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Example 5.4. The derivative of a constant function is clearly zero. It is also easy to see that if
f is defined by fpxq “ x (x P R), then f 1pxq “ 1. Repeated application of (2) above shows that
the derivative of xn (n P N) is nxn´1. Thus every polynomial function is differentiable. !

Henceforth, we will take for granted the standard results on differentiating elementary functions
such as sin that the student is familiar from ordinary calculus.

Exercise 5.5. Use the definition to find f 1pxq, where fpxq :“
?
x2 ` 1, x P R.

Exercise 5.6. Let f : p0,8q Ñ R be a function and let c ą 0. Show that f is differentiable at c if and
only if lim

kÑ1

fpkcq´fpcq
k´1 exists. Moreover, then f 1pcq “ 1

c
lim
kÑ1

fpkcq´fpcq
k´1 .

Exercise 5.7. Let f : p´a, aq Ñ R be differentiable, and even (i.e., for all x P p´a, aq, fp´xq “ fpxq).
Show that f 1 is an odd function (i.e., for all x P p´a, aq, f 1p´xq “ ´f 1pxq). What is f 1p0q?

Exercise 5.8. Define f : R Ñ R by fpxq “
!x2 if x P Q,
0 if x P RzQ.

Show that f is differentiable at 0.

What can you say about the differentiability of f at nonzero real numbers?

Exercise 5.9. If f : pa, bq Ñ R is differentiable at c P pa, bq, then show that lim
hÑ0

fpc`hq´fpc´hq
2h exists and

equals f 1pcq. Is the converse true, that is, if lim
hÑ0

fpc`hq´fpc´hq
2h exists, then must f be differentiable at c?

Exercise 5.10. Consider the function f : R Ñ R defined by fp0q “ 0 and for x ‰ 0, fpxq “ x2 sin 1
x
.

Prove that f is differentiable, but f 1 is not continuous at 0.

Exercise 5.11 (Differentiable Inverse Theorem). Let f : pa, bq Ñ R be injective on pa, bq. Then we can
define its inverse f´1 : fppa, bqq Ñ R.

fppa, bqq

fppa, bqq
f

a

a

b

b

f´1
reflect
about
y “ x

By looking at the fate of the little triangle when we reflect in the 45˝ line, we can guess what happens to
the derivatives: pf´1q1pfpcqq “ 1

f 1pcq
. This is the content of the Differentiable Inverse Theorem:

If f : pa, bq Ñ R is such that f is strictly increasing1, f is continuous, f is differentiable at c P pa, bq, and
f 1pcq ‰ 0, then f´1 : fppa, bqq Ñ R is differentiable at fpcq and pf´1q1pfpcqq “ 1

f 1pcq
.

The goal of this exercise is to prove this result.

(1) Show that fppa, bqq is open.

(2) Show that f´1 : fppa, bqq Ñ R is strictly increasing and continuous.

(3) We want to show that lim
yÑfpcq

f´1pyq ´ f´1pfpcqq
y ´ fpcq

“ 1
f 1pcq

. We will use Theorem 4.48 to show this.

Let pynqnPN be any sequence with terms belonging to fppa, bqqztfpcqu, that converges to fpcq.

So yn “fpxnq, nPN, for some pxnqnPN P pa, bqztcu. We want lim
nÑ8

f´1pynq ´ f´1pfpcqq
yn ´ fpcq

“ lim
nÑ8

xn ´ c

fpxnq ´ fpcq
“ 1

f 1pcq
.

Use the continuity of f´1 to show that pxnqnPN converges to c.

Use the differentiability of f at c and Theorem 4.48 again to conclude that lim
nÑ8

xn ´ c

fpxnq ´ fpcq
“ 1

f 1pcq
.

Remark. See the appendix to this chapter (page 77) for an analogue of this result in Rn.

1Or strictly decreasing, but here we just treat the strictly increasing case.
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5.1. Local minimisers and derivatives

Intuitively, we expect that when a function f : pa, bq Ñ R has a local bump or a local trough, then
at the highest or lowest point x˚ of the bump/trough, the tangent line should be horizontal, that
is, the slope f 1px˚q “ 0. We will prove this result below. We say that f : pa, bq Ñ R has a local
minimum at c P pa, bq if there exists a δ ą 0 such that whenever x P pa, bq satisfies |x ´ c| ă δ, we
have fpxq ě fpcq. In other words, ‘locally’ around c, the value assumed by f at c is the smallest.
Local maximisers are defined likewise. See the picture below, in which the points P , Q and all
points in the interior of the line segment AB are all local minimisers.

P QA B

Theorem 5.12. Let f : pa, bq Ñ R be such that f has a local minimum at c P pa, bq, and f is
differentiable at c. Then f 1pcq “ 0.

An analogous result holds for a local maximiser.

Proof. Let δ ą 0 be such that a ă c ´ δ ă c ă c ` δ ă b and fpxq ě fpcq for x satisfying

|x ´ c| ă δ. Given an ε ą 0, we can also ensure (by making δ smaller if required) that for all

x satisfying 0 ă |x ´ c| ă δ, we have | fpxq´fpcq
x´c

´ f 1pcq| ă ε. Hence we have for all x satisfying

c ă x ă c ` δ that 0 ´ f 1pcq ď fpxq´fpcq
x´c

´ f 1pcq ď | fpxq´fpcq
x´c

´ f 1pcq| ă ε. (In order to obtain the

first inequality, we have used the fact that x ´ c ą 0 and fpxq ě fpcq.) Similarly, for x satisfying

c ´ δ ă x ă c,we have 0 ` f 1pcq ď ´ fpxq´fpcq
x´c

` f 1pcq ď | fpxq´fpcq
x´c

´ f 1pcq| ă ε. Consequently, we

have |f 1pcq| ă ε. But the choice of ε ą 0 was arbitrary, and hence f 1pcq “ 0. !

5.2. Mean Value Theorem

Theorem 5.13 (Mean-Value Theorem). Let f : ra, bs Ñ R be continuous on ra, bs and differen-

tiable on pa, bq. Then there is a point c P pa, bq such that fpbq´fpaq
b´a “ f 1pcq.

This result has a simple geometric interpretation. If we look at the chord AB in the plane which
joins the end points A ” pa, fpaqq and B ” pb, fpbqq of the graph of f , then there is a point
c P pa, bq, where the tangent to f at the point C ” pc, fpcqq is parallel to the chord AB.

A

B
C

a bc
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Why ‘Mean Value’? If we think of ra, bs as a time interval and fptq as being the position at time
t of a particle moving along the real line, then

fpbq´fpaq
b´a

“ total displacement
time taken “ average or mean speed over ra, bs.

At some time instances, the instantaneous speed could have been more than this mean speed,
while at other times less than the mean speed. The Mean Value Theorem says that at some time
instance c, the instantaneous speed f 1pcq was exactly equal to the mean speed2!

Proof of Theorem 5.13. Define ϕ : ra, bs Ñ R by ϕpxq “ pfpbq ´ fpaqqx ´ pb ´ aqfpxq for all
x P pa, bq. Then ϕ is continuous on ra, bs, differentiable on pa, bq and

ϕpaq “ pfpbq ´###fpaqqa ´ pb ´ !aqfpaq “ fpbqa ´ bfpaq “ p###fpbq ´ fpaqqb ´ p!b ´ aqfpbq “ ϕpbq.

Moreover, for x P pa, bq, we have ϕ1pxq “ fpbq ´ fpaq ´ pb ´ aqf 1pxq, and so in order to prove the
theorem, it suffices to show that ϕ1pcq “ 0 for some c P pa, bq.
1˝ If ϕ is constant, then this holds for all x P pa, bq.
2˝ Suppose there exists an x P pa, bq such that ϕpxq ă ϕpaq “ ϕpbq. Let c P ra, bs be a minimiser

of ϕ (Extreme Value Theorem!). Then since ϕpbq “ ϕpaq, we conclude that c P pa, bq. By the
necessary condition for a local minimiser, we have ϕ1pcq “ 0.

3˝ Suppose there exists an x P pa, bq such that ϕpxq ą ϕpaq “ ϕpbq. Let c P ra, bs be a maximiser
of ϕ (Extreme Value Theorem!). Then since ϕpbq “ ϕpaq, we conclude that c P pa, bq. By the
necessary condition for a local maximiser, we have ϕ1pcq “ 0. !

Corollary 5.14 (Rolle’s theorem). Let f : ra, bs Ñ R be continuous on ra, bs and differentiable
on pa, bq. If fpaq “ fpbq, then there exists c P pa, bq such that f 1pcq “ 0.

Exercise 5.15 (Cauchy’s theorem). If f, g : ra, bs Ñ R are continuous on ra, bs and differentiable on pa, bq,
then show that there is a point c P pa, bq such that pfpbq ´ fpaqqg1pcq “ pgpbq ´ gpaqqf 1pcq.

Hint: Apply Rolle’s Theorem to ϕ given by ϕpxq “ det

„
fpxq gpxq 1
fpaq gpaq 1
fpbq gpbq 1


(x P ra, bs).

Corollary 5.16. Suppose that f : pa, bq Ñ R is differentiable on pa, bq. Then:

(1) If f 1pxq ą 0 for all x P pa, bq, then f is strictly increasing.

(2) If f is strictly increasing, then f 1pxq ě 0 for all x P pa, bq.
(3) f 1pxq ě 0 for all x P pa, bq if and only if f is increasing.

(4) f 1pxq “ 0 for all x P pa, bq if and only if f is constant.

Proof. (1) For x1, x2 P pa, bq, with x1 ă x2, it follows by the Mean Value Theorem, that

fpx2q ´ fpx1q “ f 1pxqloomoon
ą0

px2 ´ x1loomoon
ą0

q

for some x between x1 and x2, and so fpx2q ą fpx1q. Hence f is strictly increasing.

(2) Let c P pa, bq. The sequence pc ` 1
n qnPN converges to c. For all large enough n, c ` 1

n P pa, bq,
and fpc ` 1

n
q ´ fpcq ą 0. By Theorem 4.48, f 1pcq “ lim

xÑc

fpxq´fpcq
x´c

“ lim
nÑ8

fpc` 1
n q´fpcq

pc` 1
n q´c

ě 0.

As the choice of c P pa, bq was arbitrary, the claim follows.

(3) The proof is analogous to (1) and (2).

(4) If f is constant, then clearly f 1 is pointwise 0.
Vice versa, if f 1 is identically 0, then for any pair of numbers x1, x2 P pa, bq, it follows by
the Mean Value Theorem, that fpx2q ´ fpx1q “ f 1pxqpx2 ´ x1q “ 0px2 ´ x1q “ 0, giving
fpx2q “ fpx1q. Hence f is constant on pa, bq. !

2After learning about the Fundamental Theorem of Calculus, we will also see that fpbq´fpaq
b´a “ 1

b´a

ş
b
a
f 1ptqdt, and we may

view the right hand side as an average/mean of all instantaneous speeds f 1ptq for t in ra, bs.
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In (2), it may happen that f 1 is zero at some points, and it may fail to be positive. For example,
consider the function x3 on R. It is strictly increasing, but d

dx
x3|x“0 “ 3 ¨02 “ 0. A similar version

holds with ‘decreasing’ instead of ‘increasing’:

Corollary 5.17. Suppose that f : pa, bq Ñ R is differentiable on pa, bq. Then:

(1) If f 1pxq ă 0 for all x P pa, bq, then f is strictly decreasing.

(2) If f is strictly decreasing, then f 1pxq ď 0 for all x P pa, bq.
(3) f 1pxq ď 0 for all x P pa, bq if and only if f is decreasing.

The Mean Value Theorem can be used to prove interesting inequalities; here is an example.

Example 5.18. Let us show that for all x ą 0,
?
1 ` x ă 1 ` 1

2x.

Consider the function f : r0,8q Ñ R defined by fpxq “
?
1 ` x. Then f is continuous on r0,8q

and differentiable on p0,8q. If x ą 0, then applying the Mean Value Theorem to f on the interval
r0, xs, we obtain the existence of a c such that 0 ă c ă x and

fpxq´fp0q
x´0 “

?
1`x´1
x “ f 1pcq “ 1

2
?
1`c

ă 1
2 .

Rearranging, we obtain the desired inequality. !

Exercise 5.19. Suppose that f : R Ñ R has the property that for all x, y P R, |fpxq ´ fpyq| ď px ´ yq2.
Prove that f is constant.

Exercise 5.20. Let f : pa, bq Ñ R be differentiable on pa, bq and suppose that there is number M such
that for all x P pa, bq, |f 1pxq| ďM . Show that f is Lipschitz, hence uniformly continuous, on pa, bq.

Exercise 5.21. Show that for every real a, b P R, | cos a ´ cos b| ď |a ´ b|.

Exercise 5.22. Recall that for g : R Ñ R, we write lim
xÑ8

gpxq “ L if for every ε ą 0, there exists an R ą 0

such that for all x ą R, we have |gpxq ´ L| ă ε. If f : R Ñ R is differentiable, and there exist L, L1 P R

such that lim
xÑ8

fpxq “ L and lim
xÑ8

f 1pxq “ L1, then prove that L1 “ 0.

Exercise 5.23. Suppose that f : R Ñ R is differentiable, |f 1pxq| ď 1 for all x P R, and that there exists
an a ą 0 such that fp´aq “ ´a, fpaq “ a. Show that fp0q “ 0.

Exercise 5.24. Let c P pa, bq, and let f : pa, bq Ñ R be such that f is differentiable on pa, bqztcu,
continuous on pa, bq, and lim

xÑc
f 1pxq exists. Show that f is differentiable at c, and f 1pcq “ lim

xÑc
f 1pxq.

Contrast this situation with with the case of the function x ÞÑ |x| with c “ 0.

Exercise 5.25. Prove that if c0, ¨ ¨ ¨ , cd are any real numbers satisfying c0
1 ` c1

2 ` ¨ ¨ ¨ ` cd
d`1 “ 0, then the

polynomial c0 ` c1x ` ¨ ¨ ¨ ` cdx
d has a zero in p0, 1q.

Exercise 5.26. Show that there are exactly two real values of x such that x2 “ x sin x ` cos x and that
they lie in p´π

2 ,
π
2 q.

Higher order derivatives. If f has a derivative f 1pxq at each x P pa, bq, then we can consider
the derivative function, namely the map f 1 given by x ÞÑ f 1pxq on the interval pa, bq. Suppose now
that f 1 is itself differentiable on pa, bq. Then we may consider the derivative function f2 of f 1. One
can continue in this manner (provided of course that each successive function obtained is again
differentiable), and obtain the functions f 1, f2, f p3q, ¨ ¨ ¨ , f pnq, each of which is the derivative of
the previous one. f pnq is called the nth derivative, or the derivative or order n, of f .
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Example 5.27. All polynomials have derivatives of all orders, and eventually all high order
derivatives are the zero function. !

Exercise 5.28. Let f : R Ñ R. We call x P R a fixed point of f if fpxq “ x.

(1) If f is differentiable, and for all x P R, f 1pxq ‰ 1, then prove that f has at most one fixed point.

(2) Let the sequence pxnqnPN be generated by taking an arbitrary x1, and setting xn`1 “ fpxnq for n P N.
Show that if there exists an M ă 1 such that for all x P R, |f 1pxq| ďM , then there is a fixed point x˚
of f , and that x˚ “ lim

nÑ8
xn.

(3) Visualise the process in (2) via the zig-zag path px1, x2qÑpx2, x2qÑpx2, x3qÑpx3, x3qÑpx3, x4qÑ¨ ¨ ¨ .
(3) Prove that the function f : R Ñ R defined by fpxq “ x ` 1

1`ex
(x P R) has no fixed point, although

0 ă f 1pxq ă 1 for all x P R. Is this a contradiction to the result in part (2) above? Explain.

Exercise 5.29. Let I be an open interval, and f, g : I Ñ R.

(1) Show that if f, g are twice differentiable, then pfgq2pxq “ f2pxqgpxq ` 2f 1pxqg1pxq ` fpxqg2pxq, x P I.

(2) Show that if f, g are infinitely differentiable, then pfgqpnqpxq “
nř

k“0

`
n
k

˘
f pkqpxqgpn´kqpxq, x P I .

(3) For x P R and n P N Y t0u, define xrns :“ xpx ´ 1q ¨ ¨ ¨ px ´ n ` 1q. Show that if x, y P R, then

px ` yqrns “
nř

k“0

`
n
k

˘
xrksyrn´ks.

Hint: Differentiate tx`y n times with respect to t P I :“ p0,8q.

Exercise 5.30. Let I Ă R be an open interval. A function f : I Ñ R is said to be convex if for all x, y P I
and all t P p0, 1q, fpp1 ´ tqx ` tyq ď p1 ´ tqfpxq ` tfpyq.
(1) Draw a picture and explain the geometric meaning of the inequality above.

(2) Let f be twice differentiable on I . Show that if f2pxq ě 0 for all x P I , then f is convex.
Hint: If x ă y, then apply the Mean Value Theorem to f on rx, p1´ tqx` tys and on rp1´ tqx` ty, ys.

(3) Prove that if f is differentiable on I and convex, then f 1 is increasing.
Hint: If x ă u ă y, then using the convexity, derive the inequalities fpuq´fpxq

u´x
ď fpyq´fpxq

y´x
ď fpyq´fpuq

y´u

and pass to the limits u Ñ x from above, and u Ñ y from below.

(Combining this with (2), a twice differentiable f is convex if and only if f2pxq ě 0 for all x P I .)

(4) Prove that if f is differentiable on I , convex, and f 1px0q “ 0 for an x0 P I , then x0 is a minimiser of f .

Exercise 5.31 (Arithmetic Mean-Geometric Mean Inequality).

(1) Let f : I Ñ R be a convex function on an interval I Ă R. If n P N, and x1, ¨ ¨ ¨ , xn P I , then show that
fpx1`¨¨¨`xn

n
q ď fpx1q`¨¨¨`fpxnq

n
.

(2) Show that ´ log : p0,8q Ñ R is convex.

(3) Prove the Arithmetic Mean-Geometric Mean Inequality: For a1, ¨ ¨ ¨ , an P p0,8q, a1`¨¨¨`an
n

ě n
?
a1 ¨ ¨ ¨ an.

(The left-hand side is the arithmetic mean of a1, ¨ ¨ ¨ , an, and the right-hand side their geometric mean.)

Exercise 5.32 (Taylor’s formula). For a polynomial p given by ppxq “ c0 ` c1x ` c2x
2 ` ¨ ¨ ¨ ` cdx

d,

we have ppkqp0q “ ckpk!q for k P t0, 1, ¨ ¨ ¨ , du, and ppkqp0q “ 0 for all k ą d. So there is a special
relationship between the coefficients ck and the successive derivatives of p at 0. Now suppose that we
start with a smooth enough function f : R Ñ R and form a related d degree (Taylor) polynomial p given

by ppxq :“ fp0q ` f 1p0q
1! x ` ¨ ¨ ¨ ` fpdqp0q

d! xd, x P R. Then ppkqp0q
k! “ fpkqp0q

k! for all k P t0, 1, ¨ ¨ ¨ , du, and so p
matches very well with f at 0. It is thus natural to ask: How big is the error Epxq :“ fpxq ´ ppxq when
x ‰ 0? Taylor’s Formula answers this question:

If f : R Ñ R is pd`1q times differentiable, p is the degree-d Taylor polynomial of f , and x ‰ 0, then there

exists a ξ in the open interval with endpoints 0 and x, such that Epξq “ fpd`1qpξq
pd`1q! xd`1.

(1) If g : R Ñ R is differentiable, gp0q “ 0, m P N, and x ‰ 0, then there exists a ξ in the open interval

with endpoints 0 and x, such that gpxq
xm “ g1pξq

mξm´1 . Hint: Use Rolle’s theorem on hptq “ tmgpxq´xmgptq.

(2) Show Taylor’s theorem by applying the result from part (1) successively to get the that existence of

ξ1, ¨ ¨ ¨ , ξd, ξ such that Epxq
xd`1 “ E1pξ1q

pd`1qξd
1

“ E2pξ2q
pd`1qdξd´1

2

“ ¨ ¨ ¨ “ Epdqpξdq
pd`1q!ξ1

d

“ Epd`1qpξq
pd`1q! “ fpd`1qpξq

pd`1q! .

(3) Applying Taylor’s formula to the exponential function f “ px ÞÑ exq, and the estimates 0 ă e ă 4,
show that 0 ă e´ p1` 1

1! ` ¨ ¨ ¨ ` 1
n! q ă

4
pn`1q! for all n P N. Use this to conclude that e is not rational.
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5.3. Uniform convergence and differentiation

When we studied uniform convergence, we had mentioned that interchanging limits is facilitated by
uniform convergence. An instance of this is the possibility of differentiating a uniformly convergent
series termwise; as shown in the Corollary 5.34 below. This relies on the following result, which
in turn is an application of the Mean Value Theorem.

Proposition 5.33. Let fn : pa, bq Ñ R pn P Nq be a sequence of differentiable functions on pa, bq,
such that there exists a point c P pa, bq for which pfnpcqqnPN converges. If the sequence pf 1

nqnPN
converges uniformly to g on pa, bq, then pfnqnPN converges uniformly to a differentiable function f

on pa, bq, and moreover, f 1pxq “ gpxq for all x P pa, bq.

Proof. (You may skip reading this proof.) Let ε ą 0. Let N1 P N be such that for all m,n ą N1,
for all x P pa, bq, we have |f 1

mpxq ´ f 1
npxq| ă mint ε

3 ,
ε

3pb´aq u, and also |fmpcq ´ fnpcq| ă ε
3 . Let

x P pa, bq. Applying the Mean Value Theorem to fm ´ fn on the interval with the endpoints x, c,
we get fmpxq ´fnpxq “ fmpcq ´fnpcq ` px´ cqpf 1

mpyq ´f 1
npyqq for some y (depending on m,n, x, c)

between x, c. Hence we obtain |fmpxq ´ fnpxq| ď |fmpcq ´ fnpcq| ` pb´ aq|f 1
mpyq ´ f 1

npyq| ă 2
3ε ă ε

for all x P pa, bq and all m,n ą N1. Consequently, pfnqnPN is uniformly convergent on pa, bq. Let
f : pa, bq Ñ R be its limit. As each fn is continuous, so is f .

To show that f is differentiable at a point x0 P pa, bq, we apply the Mean Value Theorem once
again to the function fm ´ fn on the interval with endpoints x0, x P pa, bq, and x ‰ x0. Then we
obtain that pfmpxq ´ fnpxqq ´ pfmpx0q ´ fnpx0qq “ px´x0qpf 1

mpyq ´ f 1
npyqq for some y (depending

on x, x0,m, n) between x and x0. Dividing by x ´ x0, and taking absolute values, we get

| fmpxq´fmpx0q
x´x0

´ fnpxq´fnpx0q
x´x0

| ď |f 1
mpyq ´ f 1

npyq| ă ε
3

for all m,n ą N1 and x P pa, bqztx0u. Passing to the limit as m Ñ 8 yields for all x P pa, bqztx0u:

| fpxq´fpx0q
x´x0

´ fnpxq´fnpx0q
x´x0

| ď ε
3 p‹q

for all n ą N1. Now let N2 P N be such that |f 1
npx0q ´ gpx0q| ă ε

3 for all n ą N2. Let
N “ maxtN1, N2u ` 1, and let δ ą 0 be such that 0 ă |x ´ x0| ă δ implies

| fN pxq´fN px0q
x´x0

´ f 1
N px0q| ă ε

3 . p‹‹q

Then combining the inequalities (‹) and (‹‹), we get that | fpxq´fpx0q
x´x0

´ gpx0q| ă ε for all x P pa, bq
satisfying 0 ă |x ´ x0| ă δ. As the choice of ε ą 0 was arbitrary, it follows that f is differentiable
at x0 and f 1px0q “ gpx0q. !

The condition that the sequence of functions converges somewhere is needed for the conclusion of
to hold. For example, let fnpxq “ p´1qn for all n P N and x P pa, bq. Clearly, for each x P pa, bq,
pfnpxqqnPN “ pp´1qnqnPN does not converge. But as f 1

npxq “ 0 for all x P pa, bq and all n P N, it
follows that pf 1

nqnPN converges uniformly: It is the constant sequence, each of whose terms is the
constant function taking value 0 everywhere. So the conclusion of this proposition, that pfnqnPN
converges uniformly, doesn’t hold, because it doesn’t even converge pointwise.

Corollary 5.34. Let fn : pa, bq Ñ R, n P N, be a sequence of differentiable functions such that

(1)
8ř

n“1
fnpcq converges for some c P pa, bq, and

(2) g :“
8ř

n“1
f 1
n is uniformly convergent on pa, bq.

Then f :“
8ř

n“1
fn is uniformly convergent on pa, bq, and f 1 “ g on pa, bq, i.e., p

8ř
n“1

fnq1 “
8ř

n“1
f 1
n.
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We had seen that power series can be differentiated termwise in Theorem 3.61. The following
exercise shows that we can also recover that result using Corollary 5.34, by just using Step 1 of
the proof of Theorem 3.61 and using the absolute convergence of the termwise differentiated power
series to get uniform convergence in any closed interval within the interval of convergence.

Exercise 5.35. Suppose that the power series
8ř

n“0
cnx

n has a radius of convergence r ą 0.

From Step 1 of the proof of Theorem 3.61,
8ř

n“1
ncnx

n converges absolutely for all x P p´r, r).

(1) Let a P p0, rq. Show that
8ř

n“1
ncnx

n converges uniformly on p´a, aq.

(2) Use Corollary 5.34 to show that p
8ř

n“0
cnx

nq1 “
8ř

n“1
ncnx

n´1 for all x P p´r, rq.

(3) We know that fpxq :“
8ř

n“0

xn

n! converges for all x P R. Show that f satisfies d
dx

fpxq “ fpxq (x P R).

Exercise 5.36. Define f : R Ñ R by fpxq “
8ř

n“1

1
x2`n2 for all x P R. Prove that f is continuously

differentiable on R.

5.4. Derivative of maps from Rn to Rm

In order to differentiate a function whose domain is Rn (or an open subset of Rn) and takes values
in Rm, we first look at the familiar n “ m “ 1 case, and recast the old definition in a manner that
will naturally lend itself for extension to the case when n or m is ą 1.

We defined f : pa, bq Ñ R to be differentiable at c P pa, bq if f 1pcq :“ lim
xÑc

fpxq´fpcq
x´c

exists.

In other words, for every ε ą 0, there exists a δ ą 0 such that whenever x P pa, bq satisfies

0 ă |x ´ c| ă δ, we have | fpxq´fpcq
x´c ´ f 1pcq| ă ε, i.e., |fpxq´fpcq´f 1pcqpx´cq|

|x´c| ă ε.

If now f is instead a map from an open set U Ă Rn to Rm, then bearing in mind that the
}¨}2-norm is a generalisation of the absolute value in R, we may try mimicking the above definition,
and replace the denominator in the inequality above by }x´c}2. Similarly, the numerator absolute
value can be replaced by the } ¨ }2-norm in Rm (since we see that fpxq ´ fpcq lives in Rm). But
what object should be there in the box below?:

}fpxq ´ fpcq ´ f 1pcq px ´ cq}2
}x ´ c}2

ă ε.

Since fpxq, fpcq live in Rm, we expect the term f 1pcqpx ´ cq to be also in Rm. As x ´ c is in Rn,
f 1pcq should take this into Rm. So we see that it is natural that we should not expect f 1pcq to be a
number (as was the case when n “ m “ 1), but rather it we expect it should be a certain mapping
from Rn to Rm. We will in fact want it to be a linear transformation from Rn to Rm. Why? We
will see this in detail soon, but a short answer is that in the n “ m “ 1 case, the term f 1pcqpx´ cq
can indeed be viewed as the action of the linear transformation L : R Ñ R given by R Q v ÞÑ f 1pcqv
on the vector v :“ x ´ c P R. We will then see that with our generalised definition, we can prove
analogous theorems from ordinary calculus, and we can use these theorems in applications to solve
real-life problems. After this rough motivation, let us now see the precise definition.

Definition 5.37. Let U Ă Rn be open, c P U and f : U Ñ Rm. Then we say that f is differentiable
at c if there exists a linear transformation L : Rn Ñ Rm such that

lim
xÑc

}fpxq ´ fpcq ´ Lpx ´ cq}2
}x ´ c}2

“ 0, (5.1)

that is, for every ε ą 0, there exists a δ ą 0 such that whenever x P U satisfies 0 ă }x ´ c}2 ă δ,
we have

}fpxq ´ fpcq ´ Lpx ´ cq}2
}x ´ c}2

ă ε.

Then L is called the derivative of f at c, and we write f 1pcq “ L.
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The relation (5.1) can be expressed by saying that fpxq ´ fpcq “ f 1pcqpx ´ cq ` rpxq, where the

remainder r satisfies lim
xÑc

}rpxq}2
}x´c}2 “ 0. (See Exercise 5.43.) So we can interpret this as saying that

f 1pcq is that linear transformation which has the property that for x close to c, fpxq ´ fpcq is

approximately equal to its action on x ´ c. Next we show that in fact there can be only one such

linear transformation.

Lemma 5.38. Let U Ă Rn be open, c P U and f : U Ñ Rm be differentiable at c. Then the
derivative of f at c is unique.

Proof. Let L1, L2 be linear transformations such that

lim
xÑc

}fpxq´fpcq´L1px´cq}2
}x´c}2 “ 0 “ lim

xÑc

}fpxq´fpcq´L2px´cq}2
}x´c}2 .

Thus given ε ą 0, we can choose a δ ą 0 such that whenever 0 ă }x ´ c}2 ă δ, we have

}fpxq´fpcq´L1px´cq}2
}x´c}2 ă ε and }fpxq´fpcq´L2px´cq}2

}x´c}2 ă ε.

Using the triangle inequality and the above two inequalities, we obtain

}L2px´cq´L1px´cq}2
}x´c}2 “ }fpxq´fpcq´L1px´cq´pppfpxq´fpcq´L2px´cqqqq}2

}x´c}2 ă 2ε,

that is, }L2px ´ cq ´ L1px ´ cq}2 ď 2ε}x ´ c}2 whenever 0 ă }x ´ c}2 ă δ. Given any nonzero
h P Rn, defining x :“ c` δ

2}h}2h, we have 0 ă }x´c}2 “ δ
2 ă δ, and so }L2h´L1h}2 ď 2ε}h}2. But

the choice of ε ą 0 was arbitrary, and so L2h “ L1h for all nonzero h P Rn. Thus L1 “ L2. !

Before we see simple illustrative examples on the calculation of the derivative, let us check that
we have a genuine extension of the notion of differentiability from ordinary calculus. Over there
the concept of derivative was very simple, and f 1px0q was just a number. But now we will see
that over there too, it was actually a linear transformation, but it just so happens that any linear
transformation from R to R is given by multiplication by a fixed number. We explain this below.

Coincidence of the new definition with the old one when n “ m “ 1, f : R Ñ R, c P R.

(1) Differentiable in the old sense ñ differentiable in the new sense.

Let lim
xÑc

fpxq ´ fpcq
x ´ c

exist and equals the number f 1
old

pcq P R. Define L : R Ñ R by Lpvq “ f 1
old

pcqv
for all v P R. Then L is a linear transformation because

(L1) For every v1, v2 P R, Lpv1 ` v2q “ f 1
oldpcqpv1 ` v2q “ f 1

oldpcqv1 ` f 1
oldpcqv2 “Lpv1q `Lpv2q.

(L2) For every α P R and every v P V , Lpα ¨ vq “ f 1
oldpcqpαvq “ α pf 1

oldpcqvq “ α ¨ Lpvq.
We know lim

xÑc

fpxq ´ fpcq
x ´ c

“f 1
old

pcq, i.e., for all εą0, there exists a δą0 such that if x P R satisfies

0ă |x ´ c|ăδ, then |fpxq ´ fpcq
x ´ c

´ f 1
old

pcq|“ |fpxq ´ fpcq ´ f 1
old

pcqpx ´ cq|
|x ´ c|

ăε, i.e., |fpxq ´ fpcq ´ Lpx ´ cq|
|x ´ c|

ăε.

So f is differentiable in the new sense too, and f 1
new

pcq “ L, i.e., f 1
new

pcqpvq “ f 1
old

pcqv, v P R.

(2) Differentiable in the new sense ñ differentiable in the old sense.

Suppose there is a linear transformation f 1
newpcq : R Ñ R such that for every ε ą 0, there exists

a δ ą 0 such that whenever x P R satisfies 0 ă |x ´ c| ă δ, we have |fpxq ´ fpcq ´ f 1
newpcqpx ´ cq|

|x ´ c|
ă ε,

Define f 1
oldpcq :“ f 1

newpcqp1q P R. Then for x P R we have

f 1
new

pcqpx ´ cq “ f 1
new

pcqppx ´ cq ¨ 1q “ px ´ cq ¨ f 1
new

pcqp1q “ f 1
old

pcqpx ´ cq.

So there exists a number, namely f 1
oldpcq, such that for every ε ą 0, there exists a δ ą 0 such

that whenever x P R satisfies 0 ă |x ´ c| ă δ, we have

|fpxq ´ fpcq
x ´ c

´ f 1
old

pcq| “ |fpxq ´ fpcq ´ f 1
oldpcqpx ´ cq|

|x ´ c|
“ |fpxq ´ fpcq ´ f 1

newpcqpx ´ cq|
|x ´ c|

ă ε.

Consequently, f is differentiable at c in the old sense, and f 1
oldpcq “ f 1

newpcqp1q.
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Example 5.39. Let A P Rmˆn. Consider the map TA : Rn Ñ Rm given by TAx “ Ax (x P Rn).
If c P Rn, then is TA differentiable at c? If so, then what is its derivative? The answers turn out
to be very simple. We note that for x P Rn, we have TApxq ´ TApcq “ TApx ´ cq, and so

lim
xÑc

}TApxq ´ TApcq ´ TApx ´ cq}2
}x ´ c}2

“ lim
xÑc

0

}x ´ c}2
“ lim

xÑc
0 “ 0.

So TA is differentiable at c P Rn, and T 1
Apcq “ TA! (This is analogous to the observation in ordinary

calculus that a linear function x ÞÑ ax has the same slope at all points, namely the number a.) !

Exercise 5.40. Suppose that the function f : Rn Ñ R is differentiable at c P Rn. Define the new function
g : Rn Ñ R by gpxq “ pfpxqq2 (x P Rn). Show that g : Rn Ñ R is differentiable at c too.
Hint: pfpxqq2 ´ pfpcqq2 “ pfpxq ` fpcqqpfpxq ´ fpcqq « 2fpcqf 1pcqpx ´ cq for x near c.

Exercise 5.41. Let Q P Rnˆn be a symmetric matrix, that is, Q “ QJ. Define q : Rn Ñ R by
qpxq “ xJQx (x P Rn). Prove that q is differentiable at each c P Rn and that q1pcq : Rn Ñ R is given by
q1pcqv “ 2cJQv (v P Rn).

Exercise 5.42. Consider the map f : Rn Ñ R given by fpxq “ }x}42 (x P Rn). Calculate f 1pcq for c P Rn.
Hint: Use the results in Exercises 5.40 and 5.41.

Exercise 5.43. Let U be an open set in Rn, f : U Ñ Rm, and L : Rn Ñ Rm be a linear transformation.
Show that f is differentiable at c P U with f 1pcq “ L if and only if there exists r : U Ñ Rm such that
fpxq “ fpcq ` Lpx ´ cq ` rpxq for all x P U and lim

xÑc

}rpxq}2
}x´c}2

“ 0.

Exercise 5.44. Suppose that U is an open set in Rn, and that f : U Ñ Rm is differentiable at c P U .
Prove that f is continuous at c.

Theorem 5.45 (Chain Rule). Let U Ă Rn be open, f : U Ñ Rm, f be differentiable at c P U,

V Ă Rm be an open set such that fpUq Ă V, and g : V Ñ R# be differentiable at fpcq P V .
Then g ˝ f : U Ñ R# is differentiable at c, and pg ˝ fq1pcq “ g1pfpcqq ˝ f 1pcq.

Proof. (You may skip this proof.) In light of Exercise 5.43, by the differentiability of f at c, and
of g at fpcq, there exist functions rf , rg such that

fpxq ´ fpcq “ f 1pcqpx ´ cq ` rf pxq for all x P U

gpyq ´ gpfpcqq “ g1pfpcqqpy ´ fpcqq ` rgpyq for all y P V

*
p‹q

and lim
xÑc

}rf pxq}2
}x ´ c}2

“ 0, lim
yÑfpcq

}rgpyq}2
}y ´ fpcq}2

“ 0. Define rg˝f : U Ñ Rm by

rg˝f pxq :“ pg ˝ fqpxq ´ pg ˝ fqpcq ´ pppg1pfpcqq ˝ f 1pcqqqqpx ´ cq, x P U.

Then we have using (‹) that

rg˝f pxq “ pg ˝ fqpxq ´ pg ˝ fqpcq ´ pppg1pfpcqq ˝ f 1pcqqqqpx ´ cq
“ gpfpxqq ´ gpfpcqq ´ pppg1pfpcqq ˝ f 1pcqqqqpx ´ cq
“ g1pfpcqqpfpxq ´ fpcqq ` rgpfpxqq ´ g1pfpcqqpf 1pcqpx ´ cqq
“ g1pfpcqqp$$$$$$f 1pcqpx ´ cq ` rf pxqq ` rgpfpxqq ´$$$$$$$$$$

g1pfpcqqpf 1pcqpx ´ cqq
“ g1pfpcqqrf pxq ` rgpfpxqq.

Let ε ą 0. Let δ1 ą 0 be such that whenever x P U satisfies 0 ă }x ´ c}2 ă δ1, we have

}rf pxq}2
}x ´ c}2

ă mint ε

2p1 `
?
m$}g1pfpcqq}8q

, 1u.

Let δ2 ą 0 be such that whenever y P V satisfies 0 ă }y ´ fpcq}2 ă δ2, we have

}rgpyq}2
}y ´ fpcq}2

ă ε

2p
?
nm}f 1pcq}8 ` 1q

.
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Let δ3 ą 0 be such that whenever x P U satisfies }x´ c}2 ă δ3, we have }fpxq ´ fpcq}2 ă δ2. With
δ“mintδ1, δ3uą0, for xPU satisfying 0ă}x ´c}2ăδ, we have }fpxq´fpcq}2ăδ2, and

}rg˝f pxq}2
}x ´ c}2

“ }g1pfpcqqrf pxq ` rgpfpxqq}2
}x ´ c}2

ď }g1pfpcqqrf pxq}2
}x ´ c}2

` }rgpfpxqq}2
}x ´ c}2

ď
?
m$}g1pfpcqq}8}rf pxq}2

}x ´ c}2
`

ε

2p
?
nm}f 1pcq}8 ` 1q

}fpxq ´ fpcq}2
}x ´ c}2

ď ?
m#}g1pfpcqq}8

ε

2p1 `
?
m$}g1pfpcqq}8q

` ε

2p
?
nm}f 1pcq}8 ` 1q

}f 1pcqpx ´ cq ` rf pxq}2
}x ´ c}2

ă ε

2
` ε

2p
?
nm}f 1pcq}8 ` 1q

?
nm}f 1pcq}8}x ´ c}2 ` }rf pxq}2

}x ´ c}2

ď ε

2
` ε

2p
?
nm}f 1pcq}8 ` 1q

p
?
nm}f 1pcq}8`1 q “ ε

2
` ε

2
“ ε.

The claim now follows from Exercise 5.43. !

Exercise 5.46. Recover the result in Exercise 5.40 by using the Chain Rule.

Exercise 5.47. Let x1, x2 P Rn be distinct points. Define γ : R Ñ Rn by γptq “ p1 ´ tqx1 ` tx2 for
all t P R. Prove that if f : Rn Ñ R is differentiable at γpt0q for some t0 P R, then f ˝ γ : R Ñ R is
differentiable at t0 and

d
dt

pf ˝ γqpt0q “ f 1pγpt0qqpx2 ´ x1q.

Deduce that if f : Rn Ñ R is differentiable and f 1pxq “ 0 at every x P Rn, then f is constant.
Here 0 : Rn Ñ R is the zero linear transformation which sends each v P Rn to 0 P R.

5.5. Partial derivatives

Suppose that U is an open subset of Rn, and let f : U Ñ Rm be a function. Let the components
of f be denoted by f1, . . . , fm. Thus for i “ 1, . . . ,m,

fipxq :“ eJ
i fpxq px P Uq,

where e1, . . . , em denote the standard basis vectors in Rm, that is,

e1 :“

«
1
0
...
0

ff

, ¨ ¨ ¨ , em :“

«
0
...
0
1

ff

.

Let c P U . If

Bfi
Bxj

pcq :“ lim
xjÑcj

fipc1, ¨ ¨ ¨ , cj´1, xj , cj`1, ¨ ¨ ¨ , cnq ´ fipc1, ¨ ¨ ¨ , cj´1, cj, cj`1, ¨ ¨ ¨ , cnq
xj ´ cj

exists, then we call Bfi
Bxj

pcq the pi, jqth partial derivative f at c. Thus, we look only at the ith

component fi : U Ñ R, keep all the variables x1, ¨ ¨ ¨ , xj´1, xj`1, ¨ ¨ ¨ , xn as fixed, with values
c1, ¨ ¨ ¨ , cj´1, cj`1, ¨ ¨ ¨ , cn, respectively, and differentiate the function

xj ÞÑ fipc1, ¨ ¨ ¨ , cj´1, xj , cj`1, ¨ ¨ ¨ , cnq

with respect to xj at cj.

Example 5.48. Define f : R2 Ñ R2 by fpx1, x2q “
”
x2
1`x2

2

x1x2

ı
, for x “ px1, x2q P R2. Then

Bf1
Bx1

pc1, c2q “ 2c1,
Bf1
Bx2

pc1, c2q “ 2c2,

Bf2
Bx1

pc1, c2q “ c2,
Bf2
Bx2

pc1, c2q “ c1.
!
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Theorem 5.49. Let U be an open subset of Rn, and c P U . If f : U Ñ Rm is differentiable at
c, then all the partial derivatives of f at c, namely, Bfi

Bxj
pcq pi “ 1, ¨ ¨ ¨ ,m, j “ 1, ¨ ¨ ¨ , nq exist, and

the matrix rf 1pcqs of the linear transformation f 1pcq with respect to the standard bases for Rn and
Rm is given by

rf 1pcqs “

»

–
Bf1
Bx1

pcq ¨¨¨ Bf1
Bxn

pcq
...

...
Bfm
Bx1

pcq ¨¨¨ Bfm
Bxn

pcq

fi

fl ,

that is, f 1pcq : Rn Ñ Rm is the linear transformation given by f 1pcqx “ rf 1pcqsx for all x P Rn.

Proof. Let ε ą 0. As f is differentiable at c, there exists a δ ą 0 such that for all x P U such

that 0 ă }x ´ c}2 ă δ, we have }fpxq´fpcq´f 1pcqpx´cq}2
}x´c}2 ă ε. Let xj be such that 0 ă |xj ´ cj | ă δ.

Define x :“ pc1, ¨ ¨ ¨ , cj´1, xj , cj`1, ¨ ¨ ¨ , cnq. Then x´c “ p0, ¨ ¨ ¨ , 0, xj ´ c, 0, ¨ ¨ ¨ , 0q “ pxj ´ cq ¨ej ,
and so }x ´ c}2 “ |xj ´ c|}ej}2 “ |xj ´ cj |1 “ |xj ´ cj |. Thus for such vectors x, we have
}fpxq´fpcq´f 1pcqpx´cq}2

}x´c}2 ă ε. Also, fipxq´fipcq´peJ
i f

1pcqejqpxj ´cjq“eJ
i pfpxq´fpcq´f 1pcqpx´cqq,

and so |fipxq ´ fipcq ´ peJ
i f

1pcqejqpxj ´ cjq| ď }fpxq ´ fpcq ´ f 1pcqpx ´ cq}2. Hence for numbers
xj satisfying 0 ă |xj ´ cj | ă δ, we have

| fipc1,¨¨¨ ,cj´1,xj,cj`1,¨¨¨ ,cnq´fipc1,¨¨¨ ,cj´1,cj ,cj`1,¨¨¨ ,cnq
xj´cj

´ eJ
i f

1pcqej | ă ε.

So Bfi
Bxj

pcq “ eJ
i f

1pcqej . Set A “

»

–
Bf1
Bx1

pcq ¨¨¨ Bf1
Bxn

pcq
...

...
Bfm
Bx1

pcq ¨¨¨ Bfm
Bxn

pcq

fi

fl “

«
eJ
1 f 1pcqe1 ¨¨¨ eJ

1 f 1pcqen

...
...

eJ
mf 1pcqe1 ¨¨¨ eJ

mf 1pcqen

ff

. Then

f 1pcqx “ f 1pcqp
nř

j“1
xjejq “

nř
j“1

xjf
1pcqej “

nř
j“1

xj

«
eJ
1 f 1pcqej

...
eJ
mf 1pcqej

ff

“

«
eJ
1 f 1pcqe1x1`¨¨¨`eJ

1 f 1pcqenxn

...
eJ
mf 1pcqe1x1`¨¨¨`eJ

mf 1pcqenxn

ff

“

«
eJ
1 f 1pcqe1 ¨¨¨ eJ

1 f 1pcqen

...
...

eJ
mf 1pcqe1 ¨¨¨ eJ

mf 1pcqen

ff „ x1

...
xn


“ Ax,

for all x P Rn. !

!
The above result says that for the derivative to exist, it is necessary that the partial derivatives

exist. Surprisingly, this is not a sufficient condition.

Example 5.50. Define f : R2 Ñ R by fp0, 0q “ 0, and for px1, x2q ‰ p0, 0q, fpx1, x2q “ x1x2

x2
1 ` x2

2

.

Claim: Though Bf
Bx1

p0, 0q and Bf
Bx2

p0, 0q exist, f 1p0, 0q doesn’t, i.e., f is not differentiable at p0, 0q.

For x1 ‰ 0, fpx1, 0q ´ fp0, 0q “ 0 ´ 0 “ 0, and so Bf
Bx1

p0, 0q “ lim
x1Ñ0

fpx1, 0q ´ fp0, 0q
x1 ´ 0

“ lim
x1Ñ0

0 “ 0.

Similarly, Bf
Bx2

p0, 0q “ lim
x2Ñ0

fp0, x2q ´ fp0, 0q
x2 ´ 0

“ lim
x1Ñ0

0 ´ 0

x2
“ lim

x1Ñ0
0 “ 0.

Thus all the partial derivatives of f exist at p0, 0q. However, we will now show that f 1p0, 0q does

not exist. Suppose that f 1p0, 0q exists. By Theorem 5.49, rf 1p0, 0qs “ r Bf
Bx1

p0,0q
Bf
Bx2

p0,0q s “ r 0 0 s.

Let ε ą 0. Then there exists a δ ą 0 such that for all x “ px1, x2q P R2 satisfying 0 ă }x´0}2 ă δ,

we have }fpxq ´ fp0q ´ f 1p0qpx ´ 0q}2
}x ´ 0}2

ă ε, that is, |x1x2|
px2

1 ` x2
2q

a
x2
1 ` x2

2

ă ε. For all n P N large enough, with

x1 :“ x2 :“ 1
n , we have that 0 ă }px1, x2q ´ p0, 0q}2 “

?
2

n ă δ, and so

n

2
?
2

“
1

n2

2

n2

?
2

n

“ |x1x2|
px2

1 ` x2
2q

a
x2
1 ` x2

2

ă ε,

for all large n, a contradiction.
!

Remark: (Not part of the course.) A sufficient condition for differentiability in an open set is
that all partials are continuous; see Theorem 5.64.
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Let U be an open subset of Rn. We say that f : U Ñ R has a local minimum at c P U if there
exists a δ ą 0 such that whenever x P U satisfies }x ´ c}2 ă δ, we have fpxq ě fpcq. Local
maximisers are defined analogously.

Corollary 5.51. Let U be an open subset of Rn. Let f : U Ñ R be such that f has a local
minimum at c P U , and f is differentiable at c. Then f 1pcq “ 0.

Proof. If c is a local minimiser for f , then each of the functions xi ÞÑ fpc1, . . . , ci´1, xi, ci`1, . . . , cnq
has a local minimum at ci, and so by the one variable result, we have Bf

Bxi
pcq “ 0 for each

i P t1, ¨ ¨ ¨ ,mu. Consequently, Theorem 5.49 yields f 1pcq “ 0. !

An analogous result holds for a local maximiser.

Theorem 5.52. Let f : Rn Ñ R be differentiable and convex pi.e., for all t P p0, 1q, and x, y P Rn,

fpp1´tqx`tyqďp1´tqfpxq`tfpyqq. If x˚ PRn is such that f 1px˚q“0, then f has a minimum at x˚.

Proof. (May be skipped.) Let x0 P Rn and fpx0q ă fpx˚q. Define the function ϕ : R Ñ R by
ϕptq “ fptx0 ` p1 ´ tqx˚q, t P R. Then ϕ is convex, since for α P p0, 1q and t1, t2 P R, we have

ϕpp1 ´ αqt1 ` αt2q “ fppppp1 ´ αqt1 ` αt2qx0 ` p1 ´ p1 ´ αqt1 ´ αt2qx˚qqq
“ fpppp1 ´ αqpt1x0 ´ t1x˚q ` αpt2x0 ´ t2x˚q ` x˚qqq
“ fpppp1 ´ αqpt1x0 ´ t1x˚q ` αpt2x0 ´ t2x˚q ` p1 ´ αqx˚ ` αx˚qqq
“ fpppp1 ´ αqpt1x0 ´ t1x˚ ` x˚q ` αpt2x0 ´ t2x˚ ` x˚qqqq
“ fpppp1 ´ αqpt1x0 ` p1 ´ t1qx˚q ` αpt2x0 ` p1 ´ t2qx˚qqqq
ď p1 ´ αqfpppt1x0 ` p1 ´ t1qx˚qqq ` αfpppt2x0 ` p1 ´ t2qx˚qqq
“ p1 ´ αqϕpt1q ` αϕpt2q.

From Exercise 5.47, ϕ is differentiable at 0, and ϕ1p0q “ f 1px˚qpx0 ´x˚q “ 0px0 ´x˚q “ 0. We have
ϕp1q “ fpx0q ă fpx˚q “ ϕp0q. By the Mean Value Theorem that there exists a θ P p0, 1q such that

ϕ1pθq “ ϕp1q´ϕp0q
1´0 ă 0 “ ϕ1p0q. This contradicts the convexity of ϕ (indeed, by Exercise 5.30, ϕ1

must be increasing). Thus there cannot exist an x0 P X such that fpx0q ă fpx˚q. !

Exercise 5.53. Let τ, ξ P R satisfy τ ´ ξ2 “ 0. Show that fpx, tq :“ eτt`ξx satisfies the diffusion equation
Bf
Bt

px, tq´ B2f

Bx2
px, tq “ 0 in R2. (Here B2f

Bx2
denotes the partial derivative with respect to x of px, tq ÞÑ Bf

Bx
px, tq.)

Exercise 5.54. Let f : r0, π
2 s Ñ R2 given by fptq “ pcos t, sin tq, t P r0, π

2 s. Show the failure of the Mean
Value Theorem for f , by proving there is no c P p0, π

2 q such that fpπ
2 q ´ fp0q “ pπ

2 ´ 0qrf 1pcqs.

Exercise 5.55. Suppose f : ra, bs Ñ Rd is continuous, and f is differentiable in pa, bq. For t P pa, bq, the
matrix of the linear transformation f 1ptq : R Ñ Rd is identified with a (column) vector rf 1ptqs P Rd.

(1) Put z “ fpbq´fpaq, and define ϕ : ra, bs Ñ R by ϕptq “ zJfptq (t P ra, bs). Show that ϕ is continuous,
and ϕ is differentiable in pa, bq, with ϕ1ptq “ zJrf 1ptqs for all t P pa, bq.

(2) Applying the Mean Value Theorem for ϕ, prove the Mean Value Inequality: There exists a c P pa, bq
such that }fpbq ´ fpaq}2 ď pb ´ aq}rf 1pcqs}2.

Exercise 5.56. Let U Ă Rn be open, c P U , and f : U Ñ Rm have the components f1, ¨ ¨ ¨ , fm : U Ñ R.
Show that f is differentiable at c if and only if for all i P t1, ¨ ¨ ¨ ,mu, fi is differentiable at c.

Exercise 5.57. In the subject of ‘Calculus of Variations’, the following type of optimisation problem
is studied: Minimise fpxq :“

şb
a
F pxptq,x1ptq, tqdt. Here f is the cost function, and the integrand F is a

function R3 Q pα,β, γq ÞÑ F pα,β, γq P R. The domain of f is the set of continuously differentiable functions
x : ra, bs Ñ R such that xpaq “ ya and xpbq “ yb. Hence we observe that this is an optimisation problem
in which the domain of the cost function f is itself a set of functions.

a b

ya

yb
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A central result in Calculus of Variations is that if x˚ is a minimiser, then it must satisfy the following

‘Euler-Lagrange’ equation: BF
Bα px˚ptq,x1

˚ptq, tq ´ d
dt

p BF
Bβ px˚ptq,x1

˚ptq, tqq “ 0 (t P ra, bs). Consider for

example the problem of maximising the profit, given by fpxq :“
şT
0

pP ´ axptq ´ bx1ptqqx1ptqdt, associated
with a possible choice of operation x : r0, T s Ñ R over the time interval r0, T s satisfying xp0q “ 0 and

xpT q “ Q. Here T, P, a, b,Q are given positive constants. Assuming that an optimal operation x˚ exists,

find it using the Euler-Lagrange equation.

Exercise 5.58. Let fpx1, x2q :“ x4
1 ´ 12x1x2 `x4

2, px1, x2q P R2. Find all (global) minimisers of f on R2.

Exercise 5.59. Find the derivative of the multiplication map px, yq ÞÑ xy : R2 Ñ R at px0, y0q in R2.

Exercise 5.60.

(1) Verify that B2f
BxBy px, yq “ B2f

ByBx px, yq for all px, yq P R2, where fpx, yq :“ 3x3 ` 9y2 ´ 9x3y (px, yq P R2).

(2) Show that B2f
BxBy px, yq “ B2f

ByBx px, yq does not hold at p0, 0q if fpx, yq :“
"
xy x2´y2

x2`y2 if px, yq ‰ p0, 0q,
0 if px, yq “ p0, 0q.

In Exercise 5.60, we saw a real function for which the order of taking partial derivatives mattered.
The following result gives a sufficient condition for it to be irrelevant.

Theorem 5.61. Let U Ă R2 be open and f : U Ñ R be such that Bf
Bx ,

Bf
By ,

B2f
BxBy and B2f

ByBx exist at

each point of U . If B2f
BxBy and B2f

ByBx are continuous at a point pa, bq P U , then B2f
BxBy pa, bq “ B2f

ByBx pa, bq.

Proof. (May be skipped.) Let h, ką 0 be such that the rectangle with corners pa, bq, pa ` h, bq,
pa, b` kq, pa`h, b` kq lies in U . Let Dph, kq :“ fpa`h, b` kq ´ fpa`h, bq ´ fpa, b` kq ` fpa, bq.

pa, bq pa`h, bq

pa`h, b`kqpa, b`kq

Define Gpxq “ fpx, b ` kq ´ fpx, bq, x P ra, a` hs. Then Dph, kq “ Gpa ` hq ´Gpaq. By the Mean
Value Theorem forG on ra, a`hs, there exists an x1 P pa, a`hq such thatGpa`hq´Gpaq “ hG1px1q,
and so Dph, kq “ Gpa ` hq ´ Gpaq “ hG1px1q “ hp Bf

Bx px1, b ` kq ´ Bf
Bx px1, bqq. Applying the Mean

Value Theorem to the function Bf
Bx px1, ¨q on rb, b ` ks, there exists a y1 P pb, b ` kq such that

Bf
Bx px1, b ` kq ´ Bf

Bx px1, bq “ k B2f
ByBx px1, y1q. Thus

Dph, kq “ hk B2f
ByBx px1, y1q. p‹q

Define Hpyq “ fpa` h, yq ´ fpa, yq, y P rb, b` ks. Then Dph, kq “ Hpb` kq ´ Hpbq. By the Mean
Value Theorem forH on rb, b`ks, there exists an y2 P pb, b`kq such thatHpb`kq´Hpbq “ kH 1py2q,
and so Dph, kq “ Hpb ` kq ´ Hpbq “ kH 1py2q “ kp Bf

By pa ` h, y2q ´ Bf
By pa, y2qq. Applying the Mean

Value Theorem to the function Bf
By p¨, y2q on ra, a ` hs, there exists a x2 P pa, a ` hq such that

Bf
By pa ` h, y2q ´ Bf

By pa, y2q “ h B2f
BxBy px2, y2q. Thus

Dph, kq “ hk B2f
BxBy px2, y2q. p‹‹q

From (‹) and (‹‹),
B2f
ByBxpx1, y1q “ B2f

BxBy px2, y2q. p˚q

Now we take h “ k “ 1
n

for all n P N large enough, say n ą N , so that the aforementioned

rectangle lies in U . We use the notation pxpnq
1 , y

pnq
1 q and pxpnq

2 , y
pnq
2 q instead of px1, y1q and px2, y2q

to highlight the dependence on the n at hand. We note that the sequences pxpk`Nq
1 , y

pk`Nq
1 qkPN

and pxpk`Nq
2 , y

pk`Nq
2 qkPN both converge to pa, bq, by virtue of the following inequalities: For n ą N ,

a ă x
pnq
1 ă a ` 1

n
, b ă y

pnq
1 ă b ` 1

n
, a ă x

pnq
2 ă a ` 1

n
, b ă y

pnq
2 ă b ` 1

n
.

From (˚) and the continuity at pa, bq of B2f
BxBy and B2f

ByBx , it follows that
B2f
ByBxpa, bq “ B2f

BxBy pa, bq. !
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Exercise 5.62 (A law of conservation of symbols). Let f : R2 Ñ R has continuous partial derivatives up

to order 2, and Bf
Bx

Bf
By ” 0. Show that B2f2

BxBy ” 0.

Exercise 5.63. Let d P N, and f : Rd Ñ R be such that for all t P R and all x P Rd, fpt ¨xq “ tfpxq. Show
that fp0q “ 0. Suppose moreover that f is differentiable at 0. Show that f is a linear transformation.
Hint: For a nonzero h P Rd and δ ą 0, }th ´ 0}2 ă δ for all |t| small enough.

5.6. Notes (not part of the course)

Continuous everywhere, differentiable nowhere functions. In connection with Theorem 5.1, we
might wonder how badly behaved continuous functions can be with respect to the notion of differentiability.
It turns out that there are functions that are continuous everywhere, but differentiable nowhere. One
construction is that of the blancmange function obtained by taking the basic sawtooth function f1,

1
2 f1

and constructing f2, f3, ¨ ¨ ¨ by setting f2pxq “ f1p2xq
2 , f3pxq “ f1p4xq

4 , ¨ ¨ ¨ , fnpxq “ f1p2n´1xq
2n´1 , ¨ ¨ ¨ , and

adding these: bpxq “
8ř

n“1
fnpxq, x P R. Then it can be shown that b is continuous on R, but not differentiable

at any x P R.

Sufficient condition for differentiability. We have seen in Example 5.50 that even though all the
partial derivatives exist at a point, the function may not be differentiable at that point. However, the
following result says that if the partial derivatives are continuous in a neighbourhood of the point, then
the function is differentiable in that neighbourhood. Here is the precise statement of the result.

Theorem 5.64. Let U Ă Rn be open, and f : U Ñ Rm be such that Bfi
Bxj

, i P t1, ¨ ¨ ¨ ,mu, j P t1, ¨ ¨ ¨ , nu,
are continuous on U . Then f is differentiable on U .

Proof. By Exercise 5.56, it suffices to take m “ 1. Let a “ pa1, ¨ ¨ ¨ , anq P U . As U is open, there
exists an r ą 0 such that Bpa, rq Ă U . Given h “ ph1, ¨ ¨ ¨ , hnq with }h}2 ă r, define h0 “ 0, and
hi “ ph1, ¨ ¨ ¨ , hi, 0, ¨ ¨ ¨ , 0q, i P t1, ¨ ¨ ¨ , nu. Then

fpa ` hq ´ fpaq “
nÿ

i“1

pppfpa ` hiq ´ fpa ` hi´1qqqq.

a

a`h1 a`h2

a`h3

By the Mean Value Theorem applied to rai, ai ` his Q x ÞÑ fpa1 ` h1, ¨ ¨ ¨ , ai´1 ` hi´1, x, ai`1, ¨ ¨ ¨ , anq,
there exists a bi P pai, ai ` hiq such that

fpa ` hiq ´ fpa ` hi´1q “ fpa1 ` h1, ¨ ¨ ¨ , ai´1 ` hi´1, ai ` hi, ai`1, ¨ ¨ ¨ , anq
´fpa1 ` h1, ¨ ¨ ¨ , ai´1 ` hi´1, ai, ai`1, ¨ ¨ ¨ , anq

“ hi
Bf

Bxi
pa1 ` h1, ¨ ¨ ¨ , ai´1 ` hi´1, bi, ai`1, ¨ ¨ ¨ , anq

“ hi
Bf

Bxi
pbiq,

where bi :“ pa1 ` h1, ¨ ¨ ¨ , ai´1 ` hi´1, bi, ai`1, ¨ ¨ ¨ , anq. We note that }bi ´ a}2 ď }h}2. So for h ‰ 0,

|fpa ` hq ´ fpaq ´
nř

i“1
hi

Bf
Bxi

paq|

}h}2
“

|
nř

i“1
hippp Bf

Bxi
pbiq ´ Bf

Bxi
paqqqq|

}h}2
ď

nř
i“1

| Bf
Bxi

pbiq ´ Bf
Bxi

paq| |hi|
}h}2

ď
nř

i“1
| Bf

Bxi
pbiq ´ Bf

Bxi
paq|.
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By the continuity of Bf
Bxi

in U and noting that }bi ´ a}2 ď }h}2, i P t1, ¨ ¨ ¨ ,mu, it follows that given any
ε ą 0, we can choose a δ P p0, rq such that whenever x P U satisfies 0 ă }x ´ a}2 ă δ, we have with
h :“ x ´ a that the left-hand side above is ă ε. This completes the proof. So f is differentiable at a. As
a P U was arbitrary, f is differentiable in U . !

Inverse Function Theorem and Implicit Function Theorem. A useful analogue of the Differentiable
Inverse Theorem we met in Exercise 5.11 is the following result.

Theorem 5.65 (Inverse Function Theorem).
Let O Ă Rn be an open set and f : O Ñ Rn be a continuously differentiable function on O. Suppose

that f 1paq is invertible for some a P O. Then there exist open sets U and V in Rn such that a P U ,

fpaq P V , f is injective on U , fpUq “ V , and f´1 : V Ñ Rn is continuously differentiable on V , with

pf´1q1pfpxqq “ pf 1pxqq´1 for all x P U .

The above result can be used to derive further corollaries, for example, the Implicit Function Theorem,
stated below. In order to motivate this result, consider a curve tpx, yq P R2 : F px, yq “ 0u and the question
of whether there exists a local description of the curve around a point pa, bq of the form pgpyq, yq with the
‘parameter’ y belonging to some open interval containing b. The Implicit Function Theorem answers this
question. Before we state this result, we introduce some convenient notation. For a linear transformation
T : Rn`m Ñ Rn, we define Tx : Rn Ñ Rn and Ty : Rm Ñ Rn by

Txh “ T ph,0q ph P Rnq,
Tyk “ T p0,kq pk P Rmq.

Theorem 5.66 (Implicit Function Theorem).
Let O Ă Rn`m be an open set and f : O Ñ Rn be a continuously differentiable function on O. Let

pa, bq P O be such that fpa, bq “ 0 and the linear transformation pf 1pa,bqqx : Rn Ñ Rn is invertible.

Then there exist open sets U Ă Rn`m and V Ă Rm, with pa, bq P U and b P V such that for every y P V ,

there is a unique vector gpyq such that pgpyq,yq P U and fpgpyq,yq “ 0. The map g : V Ñ Rn is

continuously differentiable, gpbq “ a and g1pbq “ ´ppf 1pa,bqqxq´1pf 1pa, bqqy.

For a proof of the Inverse Function Theorem and the Implicit Function Theorem, see for example [R]. The

Implicit Function Theorem in turn is very useful, for example to show the Lagrange Multiplier Theorem

in constrained optimisation, see e.g. [A].





Chapter 6

Integration

One traditional topic in real analysis that we haven’t covered yet in these notes is Integration
Theory. There are two important types of integrals: Riemann integrals and Lebesgue integrals.
Riemann integration has the advantage that it is intuitive and easy to follow, and multivariable
Riemann integration will be covered in the course MA212 Further Mathematical Methods. How-
ever, it turns out that Riemann integration is not amenable to certain natural limiting processes.
For example, it turns out that the functional analogue of the Euclidean space Rn, namely the
space Cra, bs equipped with the norm

}f}2 :“
bşb

a
|fpxq|2dx pf P Cra, bsq

is not complete, which turns out to be awkward when one wants to deal with applications. To
remedy this, a more general integral called the Lebesgue integral can be defined, which rescues
this situation. The interested reader is referred to the book by Rudin [R] for these matters.

In this last chapter, we study the foundations of Riemann integration in the case of a function
f : ra, bs Ñ R. We study the definition, elementary properties and finish with establishing the
Fundamental Theorem of Integral Calculus.

6.1. Motivation and definition of the Riemann integral

Let f : ra, bs Ñ R be a ‘nice’ function, and consider its graph:

f

a b

It is a basic problem in geometry to calculate the area under the graph of such a function f .
Let us (for now) denote this area by Apfq. For example, when f : r´r, rs Ñ R is given by
fpxq “

?
r2 ´ x2 (´r ď x ď r), then we would like to calculate the area Apfq under the graph of

f , which is the area of the semicircular region:

?
r2´x2

´r r0

79
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But what do we mean by ‘area’ and for which f : ra, bs Ñ R does Apfq exist? Consider first
a very simple case, namely when f : ra, bs Ñ R is a constant function fpxq “ c, x P ra, bs.
Clearly, the area Apfq under the graph of f should be the area of the shaded rectangle, given by
Apfq “ c ¨ pb ´ aq (the product of the length with the breadth of the rectangle).

c

a b

But what if f is not constant, and instead looks like this?

f

a b

If there are numbers M , m such that m ď fpxq ď M for all x P ra, bs, then clearly we should
have m ¨ pb ´ aq ď Apfq ď M ¨ pb ´ aq. This is illustrated by the picture below: The area Apfq
under the graph of f is flanked by the areas of the two shaded rectangles, that is, it satisfies
mpb ´ aq ď Apfq ďMpb ´ aq.

f

a b

m

M

This gives us the idea that we can estimate the area Apfq by considering little rectangles, as shown
in Figure 1 below, and we anticipate that if we make the rectangles finer and finer, then we should
be able to approximate Apfq better and better.

a b

Figure 1. The area Apfq under the graph of f satisfies S ď Apfq ď S, where S is the sum of
all the areas of the rectangles shown above which lie below the graph of f , and S is the sum of
all the areas of the rectangles shown in the picture which lie above the graph of f .

In order to make this precise, we introduce the notions of

‚ a partition P of an interval ra, bs, and
‚ an upper/lower sum associated with a partition P of ra, bs and a bounded function f : ra, bs Ñ R.

Definition 6.1 (Partition of an interval). A partition (of an interval ra, bs Ă R) is a finite set
P “ tx0, x1, ¨ ¨ ¨ , xn´1, xnu such that x0 :“ a ă x1 ă x2 ă x3 ă ¨ ¨ ¨ ă xn´1 ă b “: xn. The
collection of all partitions of ra, bs is denoted by Pra,bs.

a

:=

x0

b

:=

xn

x1 x2 x3 xn´1¨ ¨ ¨
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Example 6.2. The sets ta, bu, ta, a`b
2 , bu, ta, a` b´a

3 , bu, ta, a` b´a
n , a`2 b´a

n , ¨ ¨ ¨ , a`pn´1q b´a
n , bu

(n P N), are examples of partitions of ra, bs, and all of these belong to Pra,bs. !

Exercise 6.3. Which of the following statements is true?

(1) t0, 1, 1
2 ,

1
3 , ¨ ¨ ¨ u is a partition of r0, 1s.

(2) Every interval ra, bs has an infinite number of partitions.

(3) t0, 1, 2, 3u is a partition of r0,8q.
(4) t 1

3 ,
1
2 ,

3
4u is a partition of r0, 1s.

Definition 6.4 (Bounded function). A function f : ra, bs Ñ R is said to be bounded if there exist
M,m such that for all x P ra, bs, m ď fpxq ďM .

a b

m

M

f

Pictorially, if we imagine a light source at ‘x “ `8’, sending parallel light rays to the left, then
the ‘shadow of the graph of f on the y-axis’ is a bounded set. The following are equivalent:

(1) f : ra, bs Ñ R is bounded.

(2) There exists an M ě 0 such that for all x P ra, bs, |fpxq| ďM .

(3) The range of f , namely the set tfpxq : x P ra, bsu is a bounded set.

That (2) and (3) are equivalent follows from Exercise 2.58. For (1)ñ(2), if for all x P ra, bs we

have rm ď fpxq ď ĂM , then also ´fpxq ď ´ rm, giving |fpxq| ď maxtĂM,´ rmu “: M , i.e., (2) holds.
Vice versa, if (2) holds, then for all x P ra, bs, m :“ ´M ď fpxq ďM , i.e., (1) holds.

Example 6.5. The function f : r0, 1s Ñ R given by fpxq “ x2, x P R, is bounded. Indeed, for all
x P r0, 1s, we have m :“ 0 ď fpxq “ x2 ď 1 “: M .

On the other hand, the function g : r0, 1s Ñ R given by gpxq “
"

1
x

if 0 ă x ď 1
0 if x “ 0

*
is not bounded:

If there exists an M P R such that gpxq ď M for all x P r0, 1s, then in particular, for all n P N,
with x :“ 1

n
P r0, 1s, we would have gpxq “ 1

1
n

“ n ď M , (n P N), which is impossible by the

Archimedean Property of R. !

Definition 6.6 (Upper sum). Let f : ra, bs Ñ R be bounded, and P be a partition of ra, bs.

The upper sum Spf, P q of f associated with a partition P is Spf, P q :“
n´1ř
k“0

Mk pxk`1 ´ xkq, where
Mk :“ sup

xPrxk,xk`1s
fpxq, and k P t0, 1, ¨ ¨ ¨ , n ´ 1u.

The set tfpxq : x P rxk, xk`1su, namely the range of f restricted to the subinterval rxk, xk`1s of
ra, bs is nonempty and bounded above (by any upper bound for the range of f on ra, bs). So Mk

above makes sense for all indices k. The upper sum is formed by the addition of the various terms
Mk pxk`1 ´xkq for the different indices k. Each one of such terms is the area of the rectangle with
base as the interval rxk, xk`1s and height Mk for the various indices k, i.e., it is the area of the
shortest rectangle lying above the graph of f in the interval rxk, xk`1s.

xk xk`1

f
Mk
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The rationale behind the notation Spf, P q is that S is for ‘sum’ (of areas of rectangles), the ¨
reminds us that the rectangles have their upper edges lying above the graph of f , and the pf, P q
tells us which function f and partition P of ra, bs we are forming the upper sum for.

a b

Example 6.7. For n P N, let Pn be the partition Pn :“ t0, 1
n
, 2
n
, 3
n
, ¨ ¨ ¨ , n´1

n
, 1u of the interval

r0, 1s, and let f : r0, 1s Ñ R be the squaring function fpxq “ x2, x P r0, 1s. As f is increasing, we

have Mk :“ sup
xPr k

n ,k`1
n s

fpxq “ pk`1q2
n2 . Thus the upper sum Spf, Pnq associated with f and Pn is

Spf, Pnq “
n´1ř
k“0

Mk pk`1
n

´ k
n

q “
n´1ř
k“0

Mk
1
n

“
n´1ř
k“0

pk`1q2
n2

1
n

“ 1
n3

n´1ř
k“0

pk ` 1q2

“ 1
n3 p12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2q p˚q“ 1

n3

npn`1qp2n`1q
6 “ 1

6 p1 ` 1
n

qp2 ` 1
n

q.

In (˚), we used the fact that for all n P N, 12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2 “ npn`1qp2n`1q
6 , which can be

proved using induction on n. !

Definition 6.8 (Lower sum). Let f : ra, bs Ñ R be bounded, and P be a partition of ra, bs.

The lower sum Spf, P q of f associated with a partition P is Spf, P q :“
n´1ř
k“0

mk pxk`1 ´ xkq, where
mk :“ inf

xPrxk,xk`1s
fpxq, and k P t0, 1, ¨ ¨ ¨ , n ´ 1u.

The set tfpxq : x P rxk, xk`1su, namely the range of f restricted to the subinterval rxk, xk`1s
of ra, bs is nonempty and bounded below (by any lower bound for the range of f on ra, bs). So
mk above makes sense for all indices k. The lower sum is obtained by adding the various terms
mk pxk`1 ´xkq for the different indices k. Each of such term is the area of the rectangle with base
as the interval rxk, xk`1s and height mk, i.e., it is the area of the tallest rectangle lying below the
graph of f in the interval rxk, xk`1s.

xk xk`1

f

mk

The rationale behind the notation Spf, P q is that S is for ‘sum’ (of areas of rectangles), the ¨
reminds us that the rectangles have their upper edges lying below the graph of f , and the pf, P q
tells us which function f and partition P of ra, bs we are forming the lower sum for.

a b
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Example 6.9. For n P N, let Pn be the partition Pn :“ t0, 1
n ,

2
n ,

3
n , ¨ ¨ ¨ , n´1

n , 1u of the interval
r0, 1s, and let f : r0, 1s Ñ R be the squaring function fpxq “ x2, x P r0, 1s. As f is increasing, we

have mk :“ sup
xPr k

n , k`1
n s

fpxq “ k2

n2 . Thus the lower sum Spf, Pnq associated with f and Pn is

Spf, Pnq “
n´1ř
k“0

mk pk`1
n

´ k
n

q “
n´1ř
k“0

mk
1
n

“
n´1ř
k“0

k2

n2
1
n

“ 1
n3

n´1ř
k“0

k2

“ 1
n3 p02 ` 12 ` 22 ` ¨ ¨ ¨ ` pn ´ 1q2q “ 1

n3

pn´1qnp2n´1q
6 “ 1

6 p1 ´ 1
n qp2 ´ 1

n q. !

In order to arrive at a sensible definition of the integral of f : ra, bs Ñ R, that is, of the area Apfq
under the graph of f , we first make the following observations, which will help us to formulate
this sought after definition:

(1) For any partition P , we expect the area Apfq under the graph of f to satisfy Apfq ď Spf, P q,
and so the number Apfq should be a lower bound for the set of all upper sums Spf, P q where
P belongs to the collection Pra,bs of all partitions of ra, bs. Thus

Apfq ď Spfq :“ inf
PPPra,bs

Spf, P q. (6.1)

(2) For any partition P , we expect the area Apfq under the graph of f to satisfy Spf, P q ď Apfq,
and so the number Apfq should be an upper bound for the set of all lower sums Spf, P q where
P belongs to the collection Pra,bs of all partitions of ra, bs. Thus

sup
PPPra,bs

Spf, P q “: Spfq ď Apfq. (6.2)

(3) Putting (6.1) and (6.2) together, we see that our notion of the integral must satisfy

Spfq ď Apfq ď Spfq.

Spf, P q Spfq

Spfq Spf, P q

Also, as our partitions P get finer, we expect that for nice functions f (for which we can define
the area under its graph), Spf, P q « Spf, P q, and so for such nice functions, we would then expect
that Spfq “ Apfq “ Spfq. And this motivates the following definition.

Definition 6.10 (Riemann integral of a Riemann integrable function).

Let Pra,bs be the collection of all partitions of ra, bs, and let f : ra, bs Ñ R be bounded.

Then f is said to be Riemann integrable (on ra, bs) if Spfq “ Spfq, and the Riemann integral,

denoted by
şb
a
fpxqdx is defined to be this common value:

şb
a
fpxqdx “ Spfq “ Spfq.

The set of all Riemann integrable functions on ra, bs is denoted by RIra, bs.

In the notation
şb
a
fpxqdx, the

ş
symbol is really an elongated S from ‘sum’, and the ‘fpxqdx’

reminds us that we are taking in the upper and lower sums, we have areas of little rectangles,
whose base length is an elemental change dx in x, and height is fpxq. The a and b at the bottom
and top simple indicate what interval ra, bs we are working with. The function f is often referred
to as the integrand.

We will soon show that in general for any bounded function f : ra, bs Ñ R (Riemann integrable
or not), we have Spfq ě Spfq. For non-Riemann integrable functions, one has a strict inequality,
and for Riemann integrable functions, one has an equality. In order to prove the inequality, we will
need to investigate what happens to upper and lower sums when points are added to a partition.
The new partition obtained by the process of adding extra points is called a refinement.
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Definition 6.11 (Refinement of a partition).
If P, P˚ are partitions of ra, bs such that P Ă P˚, then P˚ is called a refinement of P .

When a partition is refined, one can imagine that the approximations to the area under the graph
of f becomes better, and so lower sums ought to increase, and upper sums ought to decrease. This
is exactly what happens, and this is the content of the next result.

Lemma 6.12 (Refinement Lemma).
If P, P˚ are partitions of ra, bs with P Ă P˚, and f : ra, bs Ñ R is bounded, then Spf, P˚q ď Spf, P q,
and Spf, P˚q ě Spf, P q.

Proof. Let P “ tx0, x1, ¨ ¨ ¨ , xn´1, xnu. First suppose that P˚ has just one extra point x˚,
occurring in some subinterval rxk, xk`1s.

xk x˚ xk`1

f

If we compare Spf, P q with Spf, P˚q, we notice that most of the terms in the two sums are
identical, except for the terms involving the interval rxk, xk`1s. (From the picture above, we see
that Spf, P q ´ Spf, P˚q essentially is the nonnegative area of the shaded rectangle.) We have

Spf, P q´Spf, P˚q “ p sup
xPrxk,xk`1s

fpxqqpxk`1´xkq ´ p sup
xPrxk,x˚s

fpxqqpx˚ ´xkq ´ p sup
xPrx˚,xk`1s

fpxqqpxk`1´x˚q

“ p sup
xPrxk,xk`1s

fpxqqpxk`1´x˚`x˚´xkq´p sup
xPrxk,x˚s

fpxqqpx˚ ´xkq´p sup
xPrx˚,xk`1s

fpxqqpxk`1´x˚q

“ p sup
xPrxk,xk`1s

fpxq´ sup
xPrxk,x˚s

fpxqqpx˚ ´xkq ` p sup
xPrxk,xk`1s

fpxq´ sup
xPrx˚,xk`1s

fpxqqpxk`1´x˚q

ě 0 ` 0 “ 0.

If P˚ has several additional points (instead of just one additional point), then we repeat the
argument several times, considering one extra point in each step to obtain

Spf, P˚q ď ¨ ¨ ¨ ď Spf, P2q ď Spf, P1q ď Spf, P q

where

P1 is a refinement of P having one more point than P,

P2 is a refinement of P1 having one more point than P1, and two extra points than P,

¨ ¨ ¨ and so on.

Thus Spf, P˚q ď Spf, P q. The proof of Spf, P˚q ě Spf, P q is analogous. !

Corollary 6.13. If f : ra, bs Ñ R is bounded then Spfq ě Spfq.

Proof. If P, P 1 are any two refinements of ra, bs, then P Y P 1 is a refinement of P as well as P 1,
and so by the Refinement Lemma, we have

Spf, P q ě Spf, P Y P 1q ě Spf, P Y P 1q ě Spf, P 1q.

Thus Spf, P q ě Spf, P 1q, for any two partitions P, P 1. (So any upper sum is always bigger than
any lower sum!) Let P be a fixed partition. For any partition P 1 P Pra,bs, Spf, P q ě Spf, P 1q. So
Spf, P qě sup

P 1PPra,bs

Spf, P 1q “ Spfq. As P P Pra,bs was arbitrary, inf
PPPra,bs

Spf, P q“SpfqěSpfq. !
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Let us now show that the squaring function is Riemann integrable on r0, 1s, and calculate its value.

Example 6.14. Consider the bounded function f : r0, 1s Ñ R given by fpxq “ x2, x P r0, 1s. We

will show that f P RIr0, 1s and that
ş1
0 x

2dx “ 1
3 . Rather than considering all partitions, it turns

out that we can be efficient and consider just the special partitions Pn “ t0, 1
n ,

2
n ,

3
n , ¨ ¨ ¨ , n´1

n , 1u,
n P N. From Examples 6.7 and 6.9, Spf, Pnq “ 1

6 p1 ` 1
n qp1 ` 2

n q and Spf, Pnq “ 1
6 p1 ´ 1

n qp1 ´ 2
n q.

Thus

Spfq “ inf
PPPr0,1s

Spf, P q ď inf
nPN

Spf, Pnq “ inf
nPN

1
6 p1 ` 1

n
qp2 ` 1

n
q p˚q“ 1

3 , and

Spfq “ sup
PPPr0,1s

Spf, P q ě sup
nPN

Spf, Pnq “ sup
nPN

1
6 p1 ´ 1

n
qp2 ´ 1

n
q p˚˚q“ 1

3 .

For the justification of (˚) and (˚˚), note that the sequence with nth term 1
6 p1 ` 1

n
qp2 ` 1

n
q is

decreasing and bounded below by 0, and hence convergent to inf
nPN

1
6 p1 ` 1

n qp2 ` 1
n q. On the other

hand, from the Algebra of Limits, the limit must be 1
6 p1` lim

nÑ0

1
n qp2` lim

nÑ0

1
n q “ 1

6 p1`0qp2`0q “ 1
3 .

The proof of (˚˚) is analogous.

Hence 1
3 ě Spfq ě Spfq ě 1

3 , and so Spfq “ Spfq “ 1
3 . Thus f P RIr0, 1s and

ş1
0 x

2dx “ 1
3 . !

In the above example, we had to work rather hard to find the integral of a simple function. But
we will soon learn about the Fundamental Theorem of Calculus, which will enable us to avoid
such complicated calculations with partitions, lower and upper sums, infimums and supremums
etc. Indeed, the Fundamental Theorem of Calculus says that if the integrand f is the derivative of

a function F , then
şb
a
fpxqdx “ F pbq ´F paq ! In light of this result, we can now easily evaluate our

previous example for the squaring function. Indeed, we simply note that the integrand f :“ x2 is
the derivative of F :“ x3

3 , and so
ş1
0 x

2dx “ 13

3 ´ 03

3 “ 1
3 . But before we establish the Fundamental

Theorem of Calculus, we will first learn about a few basic, but important properties of the Riemann
integral in the next section.

Are all bounded functions f : ra, bs Ñ R Riemann integrable? The answer is no, and here is
an example.

Example 6.15. (1Q R RIr0, 1s.) Consider the indicator function1 1Q of the rationals:

1Qpxq “
"
1 if x P Q,

0 if x R Q.

Clearly 1Q is bounded: for all x, 0 ď 1Qpxq ď 1. We will show that (the restriction of) 1Q

on r0, 1s is not Riemann integrable on r0, 1s by showing that Sp1Qq ě 1 ą 0 ě Sp1Qq. Let
P “ tx0 “ 0, x1, ¨ ¨ ¨ , xn´1, xn “ 1u be any partition of r0, 1s. Then by the density of Q in R, each
rxk, xk`1s contains a rational number, say αk P Q, and an irrational number, say βk R Q. Thus

Mk :“ sup
xPrxk,xk`1s

fpxq ě fpαkq “ 1, and mk :“ inf
xPrxk,xk`1s

fpxq ď fpβkq “ 0.

Hence

Sp1Q, P q “
n´1ř
k“0

Mk pxk`1 ´ xkq ě
n´1ř
k“0

1pxk`1 ´ xkq

“ p##x1 ´ x0q ` p##x2 ´##x1q ` ¨ ¨ ¨ ` pxn ´%%%xn´1q “ xn ´ x0 “ 1 ´ 0 “ 1.

Similarly Sp1Q, P q “
n´1ř
k“0

mk pxk`1 ´ xkq ď
n´1ř
k“0

0pxk`1 ´ xkq “ 0.

So Sp1Qq “ inf
PPPr0,1s

Sp1Q, P q ě 1 ą 0 ě sup
PPPr0,1s

Sp1Q, P q “ Sp1Qq, and 1Q R RIr0, 1s. !

Hence we have RIra, bs Ĺ Bra, bs, where Bra, bs denotes the set of all bounded functions on ra, bs.

1If S is a subset of R, then the indicator function 1S is defined by 1Spxq “ 1 if x P S and 0 if x R S.
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Exercise 6.16. Define f : r0, 1s Ñ R by fpxq “
! 0 if x P r0, 1szQ
x if x P r0, 1s X Q

)
. Is f Riemann integrable on r0, 1s?

Hint: For any partition P “ tx0 “ 0 ă x1 ă ¨ ¨ ¨ ă xn´1 ă xn “ 1u, xk`1 ě
xk`1`xk

2 , k P t0, ¨ ¨ ¨ , n ´ 1u.
Use this to find a positive lower bound on upper sums.

Let us now show that there is an ample supply of Riemann integrable functions: all continuous
functions are Riemann integrable, that is, Cra, bs Ă RIra, bs.

Theorem 6.17. Every continuous function on ra, bs is Riemann integrable on ra, bs.

Proof. As f is continuous on ra, bs and since ra, bs is a compact interval, f is also uniformly

continuous on ra, bs. Let ε ą 0. Then there exists a δ ą 0 such that whenever x, y P ra, bs satisfy

|x ´ y| ă δ, we have |fpxq ´ fpyq| ă ε. Consider any partition P˚ “ tx0, x1, ¨ ¨ ¨ , xn´1, xnu such

that max
kPt0,1,¨¨¨ ,n´1u

|xk`1 ´ xk| ă δ. Let Mk :“ sup
xPrxk,xk`1s

fpxq and mk :“ inf
xPrxk,xk`1s

fpxq. By the

Extreme Value Theorem, Mk “ fpckq and mk “ fpdkq for some ck, dk P rxk, xk`1s. Thus

Spf, P˚q ´ Spf, P˚q “
n´1ř
k“0

pMk ´ mkqpxk`1 ´ xkq “
n´1ř
k“0

pfpckq ´ fpdkqqpxk`1 ´ xkq

ď
n´1ř
k“0

εpxk`1 ´ xkq “ εpb ´ aq.

Thus 0 ď Spfq ´ Spfq ď Spf, P˚q ´ Spf, P˚q ď εpb ´ aq. Since ε ą 0 was arbitrary, it follows that

Spfq “ Spfq, that is, f P RIra, bs. !

Example 6.18. All polynomial functions, being continuous, are Riemann integrable on every
compact interval ra, bs. !

Example 6.19 (Definition of π). Consider the continuous function f : r´1, 1s Ñ R defined by
fpxq “

?
1 ´ x2, x P r´1, 1s. Then f is Riemann integrable. We define the number π P R by

π :“ 2
ş1

´1

?
1 ´ x2dx “ two times the area of the semicircular disc of radius 1.

´1 10

?
1´x2

(It can be shown that for a circle of radius r, the area enclosed by it is πr2; see Exercise 6.48.) !

Exercise 6.20. (The aim of this exercise is twofold: first, to show that Cra, bs Ĺ RIra, bs, and secondly,
to point out that the Riemann integral gives the signed area under the graph of f , so that if the graph
lies below the x-axis, then the area is attributed a negative sign.) Let f : r0, 2s Ñ R be given by

fpxq “
"

1 if x P r0, 1s,
´1 if x P p1, 2s.

Show that f PRIr0, 2szCr0, 2s and
ş2
0
fpxqdx“0. Hint: Consider the partitions Pn “t0, 1, 1` 1

n
, 2u, nPN.

Exercise 6.21. For a partition P “ tx0 “ a, x1, ¨ ¨ ¨ , xn´1, xn “ bu of ra, bs, with xk ă xk`1 for all
k P t0, ¨ ¨ ¨ , n ´ 1u, define ΦpP q :“ maxtxk`1 ´ xk : k “ 0, ¨ ¨ ¨ , n ´ 1u. Which of the following is always
true for any continuous function f : ra, bs Ñ R?

(A) If P2 is a refinement of P1 (that is, P1 Ă P2), then ΦpP2q ď ΦpP1q.
(B) If ΦpP2q ď ΦpP1q, then Spf, P2q ď Spf, P1q.
(C) If ΦpP2q ď ΦpP1q, then Spf, P2q ď Spf, P1q.
(D) If ΦpP2q ď ΦpP1q, then Spf, P2q ď Spf, P1q.
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6.2. Properties of the Riemann integral

Theorem 6.22.2 If f, g P RIra, bs and α P R, then f ` g P RIra, bs, α¨f P RIra, bs.

Moreover,
şb
a
pfpxq ` gpxqqdx “

şb
a
fpxqdx `

şb
a
gpxqdx, and

şb
a
pα¨fqpxqdx “ α

şb
a
fpxqdx.

Proof. (May be skipped.) Let ε ą 0. Then there exist partitions Pf , Pg of ra, bs such that
Spf, Pf q ă Spfq ` ε

2 and Spg, Pgq ă Spgq ` ε
2 . Then P :“ Pf Y Pg “: tx0, x1, ¨ ¨ ¨ , xn´1, xnu is a

refinement of Pf and Pg, and

Spf ` gq ď Spf ` g, P q “
n´1ř
k“0

ppp sup
xPrxk,xk`1s

pfpxq ` gpxqqqqq pxk`1 ´ xkq

ď
n´1ř
k“0

ppp sup
xPrxk,xk`1s

fpxq ` sup
xPrxk,xk`1s

gpxqqqq pxk`1 ´ xkq “ Spf, P q ` Spg, P q

ď Spf, Pf q ` Spg, Pgq ă Spfq ` ε
2 ` Spgq ` ε

2 “ Spfq ` Spgq ` ε.

As ε ą 0 was arbitrary, it follows that Spf ` gq ď Spfq ` Spgq.
In a similar manner we can show that Spf, gq ě Spfq ` Spgq. Here are the details. Let ε ą 0.

There are partitions Pf , Pg of ra, bs so that Spf, Pf q ą Spfq ´ ε
2 and Spg, Pgq ą Spgq ´ ε

2 . Then
P :“ Pf Y Pg “: tx0, x1, ¨ ¨ ¨ , xn´1, xnu is a refinement of Pf , Pg, and

Spf ` gq ě Spf ` g, P q “
n´1ř
k“0

ppp inf
xPrxk,xk`1s

pfpxq ` gpxqqqqq pxk`1 ´ xkq

ě
n´1ř
k“0

ppp inf
xPrxk,xk`1s

fpxq ` inf
xPrxk,xk`1s

gpxqqqq pxk`1 ´ xkq “ Spf, P q ` Spg, P q

ě Spf, Pf q ` Spg, Pgq ą Spfq ´ ε
2 ` Spgq ´ ε

2 “ Spfq ` Spfq ´ ε.

As ε ą 0 was arbitrary, we obtain Spf, gq ě Spfq ` Spgq.
From Spf ` gq ď Spfq ` Spgq and Spf, gq ě Spfq ` Spgq, we have

Spfq ` Spgq ď Spf ` gq ď Spf ` gq ď Spfq ` Spgq. p‹q

Since f, g P RIra, bs, we have Spfq “ Spfq and Spgq “ Spgq. Thus the first and last terms in (‹)
are equal. Consequently, Spf ` gq “ Spf ` gq, that is, f ` g P RIra, bs. Moreover, we have thatşb
a
pfpxq ` gpxqqdx “ Spf ` gq “ Spfq ` Spgq “

şb
a
fpxqdx `

şb
a
gpxqdx.

For the second claim, consider the three possible cases α ą 0, α “ 0 and α ă 0 separately:

1˝ α ą 0. For every partition P of ra, bs, we have

Spα¨f, P q “
n´1ř
k“0

p sup
xPrxk,xk`1s

pαfpxqqqpxk`1´xkq“
n´1ř
k“0

αp sup
xPrxk,xk`1s

fpxqqpxk`1´xkq“αSpf, P q,

Spα¨f, P q “
n´1ř
k“0

p inf
xPrxk,xk`1s

pαfpxqqqpxk`1´xkq“
n´1ř
k“0

αp inf
xPrxk,xk`1s

fpxqqpxk`1´xkq“αSpf, P q.

Thus

Spα¨fq “ inf
PPPra,bs

Spα¨f, P q “ inf
PPPra,bs

αSpf, P q “ α inf
PPPra,bs

Spf, P q “ αSpfq

“ αSpfq “ α sup
PPPra,bs

Spf, P q “ sup
PPPra,bs

αSpf, P q “ sup
PPPra,bs

Spα¨f, P q “ Spα¨fq.

Hence α¨f P RIra, bs and
şb
a
pα¨fqpxqdx “ Spα¨fq “ αSpfq “ α

şb
a
fpxqdx.

2˝ α “ 0. Then αfpxq “ 0 for all x P ra, bs, and so for every partition P of ra, bs, we have
Spα ¨f, P q “ 0 “ Spα ¨f, P q, so that Spα ¨fq “ 0 “ Spα ¨fq. Hence α ¨f P RIra, bs andşb
a
pα¨fqpxqdx “ 0 “ 0

şb
a
fpxqdx “ α

şb
a
fpxqdx.

2The content of this result can be expressed in linear algebraic language by saying that RIra, bs forms a vector space with

operations of addition and scalar multiplication defined pointwise, and that the map f ÞÑ
ş
b
a
fpxqdx : RIra, bs Ñ R is a

linear transformation.
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3˝ α ă 0. Let P “ tx0, x1, ¨ ¨ ¨ , xn´1, xnu be any partition of ra, bs. First let α “ ´1. Then

Sp´f, P q“
n´1ř
k“0

p sup
xPrxk,xk`1s

´fpxqqpxk`1´xkq“
n´1ř
k“0

p´ inf
xPrxk,xk`1s

fpxqqpxk`1´xkq“´Spf, P q.

By replacing f by ´f , we obtain from the above that Sp´f, P q “ ´Spf, P q. Hence we have

Sp´fq “ inf
PPPra,bs

Sp´f, P q “ inf
PPPra,bs

´Spf, P q “ ´ sup
PPPra,bs

Spf, P q “ ´Spfq

Sp´fq “ sup
PPPra,bs

Sp´f, P q “ sup
PPPra,bs

´Spf, P q “ ´ inf
PPPra,bs

Spf, P q “ ´Spfq.

Thus Sp´fq “ ´Spfq “ ´Spfq “ Sp´fq, and so ´f P RIra, bs. Moreover, we have thatşb
a

´fpxqdx “ Sp´fq “ ´Spfq “ ´
şb
a
fpxqdx.

For general α ă 0, we have α “ ´|α|, and as f P RIra, bs, it follows from 1˝ that |α|̈f P RIra, bs.
From the above, we now obtain that ´|α|¨f P RIra, bs, that is, α¨f P RIra, bs. Also,

şb
a
αfpxqdx “

şb
a

´|α|fpxqdx “ ´
şb
a

|α|fpxqdx “ ´|α|
şb
a
fpxqdx “ α

şb
a
fpxqdx. !

Example 6.23. For n P N, the map x ÞÑ xn : R Ñ R is continuous, and so xn P RIra, bs for all
a, b. Thus the polynomial p P RIra, bs, where ppxq :“ c0 ` c1x ` ¨ ¨ ¨ ` cdx

d, and moreover, we

have
şb
a
ppxqdx “ c0

şb
a
1dx` c1

şb
a
xdx ` ¨ ¨ ¨ ` cd

şb
a
xddx. After learning the Fundamental Theorem

of Calculus, we will know that
şb
a
xndx “

şb
a

d
dx

xn`1

n`1 dx “ bn`1´an`1

n`1 , for all n “ 0, 1, 2, 3, ¨ ¨ ¨ . So
şb
a
ppxqdx “ c0pb ´ aq ` c1

b2´a2

2 ` ¨ ¨ ¨ ` cd
bd`1´ad`1

d`1 . !

The following result will play an important role in the sequel.

Theorem 6.24 (Riemann Condition). Let f : ra, bs Ñ R be bounded. Then we have:

f P RIra, bs ô for all ε ą 0, there exists a partition Pε P Pra,bs such that Spf, Pεq ´ Spf, Pεq ă ε.

Proof. (May be skipped.)

(ð) For all ε ą 0, 0 ď Spfq ´ Spfq ď Spf, Pεq ´ Spf, Pεq ă ε. It follows that Spfq “ Spfq.
(ñ) Suppose f P RIra, bs. Let ε ą 0. Then there exists a partition P1 of ra, bs such that

Spf, P1q ă Spfq ` ε
2 . Similarly, there exists a partition P2 such that Spf, P2q ą Spfq ´ ε

2 .

Consider the refinement Pε :“ P1 Y P2 of P1 and P2. Then Spf, Pεq ď Spf, P1q ă Spfq ` ε
2 ,

and Spf, Pεq ě Spf, P2q ą Spfq ´ ε
2 . So 0 ď Spf, Pεq ´ Spf, Pεq ă Spfq ´ Spfqloooooomoooooon

“0

`ε “ ε. !

Let us now show that restrictions of Riemann integrable functions are Riemann integrable.

Theorem 6.25. If rc, ds Ă ra, bs and f P RIra, bs, then f P RIrc, ds.

a bc d

f

Proof. (May be skipped.) Let ε ą 0. As f P RIra, bs, by the Riemann Condition, there exists a
partition Pε of ra, bs such that Spf, Pεq´Spf, Pεq ă ε. Let P 1

ε :“ PεYtc, du “ Pra,cs YPrc,ds YPrd,bs,
where Pra,cs is a partition of ra, cs, Prc,ds is a partition of rc, ds, and Prd,bs is a partition of rd, bs.

a bc d

Pra,cs Prc,ds Prd,bs
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We know that

Spf, Pεq ě Spf, P 1
εq “ Spf, Pra,csq ` Spf, Prc,dsq ` Spf, Prd,bsq,

Spf, Pεq ď Spf, P 1
εq “ Spf, Pra,csq ` Spf, Prc,dsq ` Spf, Prd,bsq.

Thus

ε ąSpf, Pεq´Spf, PεqěSpf, Pra,csq`Spf, Prc,dsq`Spf, Prd,bsq´pppSpf, Pra,csq`Spf, Prc,dsq`Spf, Prd,bsqqqq

ěSpf, Pra,csq ´ Spf, Pra,csq ` Spf, Prc,dsq ´ Spf, Prc,dsq ` Spf, Prd,bsq ´ Spf, Prd,bsq

ě 0 ` Spf, Prc,dsq ´ Spf, Prc,dsq ` 0 “ Spf, Prc,dsq ´ Spf, Prc,dsq.

Hence by the Riemann Condition, f P RIrc, ds. !

Exercise 6.26. Let f : ra, bs Ñ R, a ă c ă b, f P RIra, cs and f P RIrc, bs. Then f P RIra, bs and

moreover
şb
a
fpxqdx “

şc
a
fpxqdx `

şb
c
fpxqdx.

Exercise 6.27. Let f : ra, bs Ñ R be a bounded function, such that f has only one discontinuity at
c P pa, bq. Show that f P RIra, bs. Extend the result to a finite number of discontinuities of f in pa, bq.

Theorem 6.28. If f, g P RIra, bs, then f ¨ g P RIra, bs.

Proof. (May be skipped.) Let ε ą 0. Let Mf ,Mg ą 0 be such that |fpxq| ăMf and |gpxq| ăMg

for all x P ra, bs. Since f P RIra, bs, by the Riemann Condition, there exists a partition Pf of ra, bs
such that Spf, Pf q ´ Spf, Pf q ă ε

2Mg
. As g P RIra, bs, there exists a partition Pg of ra, bs such

that Spf, Pgq ´ Spf, Pgq ă ε
2Mf

. Consider the refinement P :“ Pf Y Pg “: tx0, x1, ¨ ¨ ¨ , xn´1, xnu
of Pf and Pg. For a bounded function ϕ on ra, bs and a k P t0, 1, ¨ ¨ ¨ , n ´ 1u, we use the notation

Mϕ,k :“ sup
xPrxk,xk`1s

ϕpxq, and mϕ,k :“ inf
xPrxk,xk`1s

ϕpxq. Then for x, y P rxk, xk`1s,

pf ¨ gqpxq ´ pf ¨ gqpyq “ fpxqgpxq ´ fpxqgpyq ` fpxqgpyq ´ fpyqgpyq

“ fpxqpgpxq ´ gpyqq ` pfpxq ´ fpyqqgpyq

ď |fpxq||gpxq ´ gpyq| ` |gpyq||fpxq ´ fpyq|

ď MfpMg,k ´ mg,kq ` MgpMf,k ´ mf,kq.

As x, y P rxk, xk`1s were arbitrary, Mf ¨g,k ´mf ¨g,k ďMfpMg,k ´mg,kq `MgpMf,k ´mf,kq. Thus

Spf ¨ gq ´ Spf ¨ gq ď Spf ¨ g, P q ´ Spf ¨ g, P q ďMfpSpg, P q ´ Spg, P qq ` MgpSpf, P q ´ Spf, P qq

ď MfpSpg, Pgq ´ Spg, Pgqq ` MgpSpf, Pf q ´ Spf, Pf qq ďMf
ε

2Mf
` Mg

ε
2Mg

“ ε.

By the Riemann Condition, we conclude that f ¨ g P RIra, bs. !

Some conventions. When defining
şb
a
fpxqdx, we assumed that a ă b.

To simplify matters in what is to follow, we will adopt the following new definitions:

(1) If a “ b, then every f : ra, bs Ñ R is Riemann integrable, and we define
şa
a
fpxqdx :“ 0.

(2) If a ą b and f : rb, as Ñ R is Riemann integrable, then we define
şb
a
fpxqdx :“ ´

şa
b
fpxqdx.

Theorem 6.29 (Domain additivity). Suppose that f P RIra, bs and let c lie between a and b.

Then
şb
a
fpxqdx “

şc
a
fpxqdx `

şb
c
fpxqdx.

a bc

f
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Proof. As restrictions of Riemann integrable functions are Riemann integrable, f P RIra, cs and
f P RIrc, bs. The claim now follows immediately from Exercise 6.26. !

Some useful inequalities associated with Riemann integration.

Theorem 6.30. Let a ă b and f, g P RIra, bs. Then we have:

(1) If for all x P ra, bs, fpxq ě 0, then
şb
a
fpxqdx ě 0.

(2) If for all x P ra, bs, fpxq ě gpxq, then
şb
a
fpxqdx ě

şb
a
gpxqdx.

(3) |f | P RIra, bs and |
şb
a
fpxqdx| ď

şb
a

|fpxq|dx.

(4) Let f P Cra, bs and for all x P ra, bs fpxq ě 0.

If
şb
a
fpxqdx “ 0, then f ” 0 on ra, bs, that is, f is identically zero on ra, bs.

Proof. (May be skipped.)

(1) We have
şb
a
fpxqdx “ Spfq “ sup

PPPra,bs

Spf, P q ě Spf, ta, buq “ p inf
xPra,bs

fpxq
looooomooooon

ě0

qpb ´ aq ě 0.

(2) We apply (1) to h :“ f ´ g. Clearly, hpxq ě 0 for all x P ra, bs, and h “ f ´ g P RIra, bs.
So

şb
a
fpxqdx ´

şb
a
gpxqdx “

şb
a
pfpxq ´ gpxqqdx “

şb
a
hpxqdx ě 0. Thus

şb
a
fpxqdx ě

şb
a
gpxqdx.

(3) Let ε ą 0. By the Riemann Condition, there exists a partition Pε “ tx0, x1, ¨ ¨ ¨ , xn´1, xnu of
ra, bs such that Spf, Pεq ´ Spf, Pεq ă ε.

Claim: Sp|f |, Pεq ´ Sp|f |, Pεq ă ε.

For any fixed k P t0, 1, ¨ ¨ ¨ , n ´ 1u, let x, y P rxk, xk`1s. With Mk :“ sup
xPrxk,xk`1s

fpxq and

mk :“ inf
xPrxk,xk`1s

fpxq, we have that fpxq ´ fpyq ď Mk ´ mk, and fpyq ´ fpxq ď Mk ´ mk.

Hence |fpxq´fpyq|ďMk ´mk. So |f |pxq´|f |pyq “ |fpxq|´|fpyq|ď |fpxq´fpyq| ďMk ´mk.

Thus sup
xPrxk,xk`1s

|f |pxq ´ inf
yPrxk,xk`1s

|f |pyq ď Mk ´ mk “ sup
xPrxk,xk`1s

fpxq ´ inf
yPrxk,xk`1s

fpyq. So

Sp|f |, Pεq ´ Sp|f |, Pεq ď Spf, Pεq ´ Spf, Pεq ă ε. This completes the proof of the claim.

By the Riemann Condition, |f | P RIra, bs.

Moreover, for all x P ra, bs, fpxq ď |fpxq| and ´fpxq ď |fpxq|. So
şb
a
fpxqdx ď

şb
a

|fpxq|dx and

´
şb
a
fpxqdx ď

şb
a

|fpxq|dx. Thus |
şb
a
fpxqdx| ď

şb
a

|fpxq|dx.

(4) Let )pppf ” 0 on ra, bsqqq. Then there exists a c P ra, bs such that fpcq ‰ 0. As f ě 0, fpcq ą 0.

For ε :“ fpcq
2 ą 0, by the continuity of f at c, there exists a δ ą 0 such that whenever

xPra, bs satisfies |x´c|ăδ, we have |fpxq´fpcq|ăε“ fpcq
2 , and so

fpcq´fpxqď |fpcq´fpxq|“|fpxq´fpcq|ă fpcq
2 .

Hence fpxq ą fpcq ´ fpcq
2 “ fpcq

2 ą 0 for x P ra, bs Y pc ´ δ, c ` δq. This also shows that
if c “ a or c “ b, then there are other values of c where f is positive. Thus there is no loss
of generality in assuming that c P pa, bq. Also, by reducing δ if necessary, we may assume that
a ă c ´ δ ă c ` δ ă b. With P˚ :“ ta, c ´ δ, c ` δ, bu, we have

şb
a
fpxqdx“SpfqěSpf, P˚q“p inf

xPra,c´δs
fpxqqpc´δ´aq`p inf

xPrc´δ,c`δs
fpxqq2δ`p inf

xPrc´δ,bs
fpxqqpb´c´δq

ě 0 ` fpcq
2 2δ ` 0 “ δfpcq ą 0,

a contradiction. !
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Exercise 6.31.

(1) Let f, g P RIra, bs. Show that maxtf, gu, mintf, gu P RIra, bs, where maxtf, gu :“ maxtfpxq, gpxqu
and mintf, gu :“ mintfpxq, gpxqu, for all x P ra, bs. Hint: maxta, bu “ a`b`|a´b|

2 for a, b P R.

(2) The aim of this exercise is twofold: Firstly, to show that the pointwise supremum of a sequence of
Riemann integrable functions need not be Riemann integrable, and secondly, to demonstrate that the
pointwise limit of Riemann integrable functions need not be Riemann integrable.
Let r1, r2, r3, ¨ ¨ ¨ be an enumeration of the rationals in r0, 1s.

Define fn : r0, 1s Ñ R by fnpxq “
!1 if x P tr1, ¨ ¨ ¨ , rnu,
0 otherwise.

Is each fn P RIr0, 1s? Let psup
nPN

fnqpxq :“ sup
nPN

fnpxq, x P r0, 1s. Is sup
nPN

fn P RIr0, 1s?

Exercise 6.32. We have seen in Theorems 6.22, 6.28 and 6.30(3) that if f, g P RIra, bs, then so is their
pointwise sum, product and their respective modulus. Give examples of bounded f, g : r0, 1s Ñ R that are
not Riemann integrable, but for which the functions |f |, f ` g, fg are all Riemann integrable on r0, 1s.

Exercise 6.33 (An integral mean value result). Let f P Cra, bs, ϕ P RIra, bs, and let ρ be pointwise
nonnegative. (We may interpret ρ as the ‘mass density’ of a rod, along the interval ra, bs, made of a possibly
inhomogeneous material. If ρ ” c, a constant, then the rod has uniform density along its length.) Show

that there is a c P ra, bs such that
şb
a
fpxqρpxqdx “ fpcq

şb
a
ρpxqdx. (So for ρ ” 1, 1

b´a

şb
a
fpxqdx “ fpcq.)

If fpxq “ x, then we can interpret the position c as the ‘center of mass’ of the horizontal (inhomogeneous)
rod, namely the place about which if the rod is pivoted, it will remain balanced, since the moments
about that point due to the weight of the the constituent particles of the rod add up to 0. If the rod is

homogeneous, then the centre of mass c is given by b2´a2

2 “
şb
a
x ¨ 1 dx “ c

şb
a
1 dx “ cpb ´ aq, that is,

c “ a`b
2 , as expected based on our physical intuition.

Give an example to show that the assumption f P Cra, bs cannot be dropped for the conclusion to hold.
Moreover, provide an example to show that the nonnegativity of ρ is also a necessary condition.

Exercise 6.34 (Cantor set). The aim of this exercise is to show that there exist Riemann integrable
functions which have infinitely many points of discontinuity. Indeed, we will show that the indicator
function 1C of the Cantor set (see Example 2.66) is Riemann integrable on r0, 1s. Proceed as follows.

(1) As C Ă Fn, clearly 1C ď 1Fn . Since 1Fn has only finitely many discontinuities, 1Fn P RIr0, 1s.
Show that

ş1
0
1Fnpxqdx “ length of the intervals in Fn “ p 2

3 qn.
Conclude that if ε ą 0, then there exists a partition P of r0, 1s such that Sp1Fn , P q ă p 2

3 qn ` ε.

Deduce that Sp1Cq ď 0.

(2) As 1C ě 0, it is clear that Sp1C , P q ě 0 for all partitions P of r0, 1s, and so Sp1Cq ě 0.

(3) Conclude from Parts (1) and (2) that 1C P RIr0, 1s, and that
ş1
0
1Cpxqdx “ 0.

Exercise 6.35. Can the assumption that f P Cr0, 1s in Theorem 6.30¨(4) be replaced by the condition
that f P RIr0, 1s?

Exercise 6.36 (Dirac δ). For doing quantum mechanical computations, the physicist Paul Dirac intro-
duced the δ ‘function’ (as eigenstates of the position operator). The aim of this exercise is to show that
such function does not exist3. Show that there is no function δ : R Ñ R such that for all a ą 0,
(1) δ|r´a,as is bounded, and δ P RIr´a, as.
(2) For every ϕ P Cr´a, as,

şa
´a

δpxqϕpxqdx “ ϕp0q.

Exercise 6.37 (Cauchy-Schwarz). If f, g P RIra, bs, then show that

p
şb
a
fpxqgpxqdxq2 ď p

şb
a

pfpxqq2dxqp
şb
a

pgpxqq2dxq

by proceeding as follows. For t P R, define ϕptq “
şb
a

ppf ` t ¨gqpxqq2dx. Then ϕ is a quadratic function
of the variable t, and ϕptq ě 0 for all t P R. This means that the discriminant of ϕ must be ď 0, since
otherwise, f would have two distinct real roots, and would then have negative values between these roots!
Calculate the discriminant of ϕ and show that its nonpositivity yields the desired inequality.

Exercise 6.38. Define } ¨ }2 :“
şb
a

|fpxq|2dx, f P Cra, bs. Show that pCra, bs, } ¨ }2q is a normed space.

3However, the mathematician Laurent Schwartz later gave a mathematical foundation to the Dirac δ by viewing it as a
‘distribution’, in which one thinks of δ as a (linear) map δ : C8

0 pRq Ñ R, which sends ϕ P C8
0 pRq to the number ϕp0q. Here

C8
0 pRq denotes the set of all functions ϕ : R Ñ R, which are infinitely many times differentiable and vanishing outside some

compact interval (depending on ϕ). Distributions play a fundamental role in the study of partial differential equations.
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Exercise 6.39. The aim of this exercise is to prove Proposition 2.47. Let pfnqnPN be a sequence in RIra, bs
and f : ra, bs Ñ R be such that pfnqnPN converges uniformly to f . We want to show that f P RIra, bs andşb
a
fpxqdx “ lim

nÑ8

şb
a
fnpxqdx. Proceed as follows:

(1) Show that f is bounded and so for each n P N, Mn :“ sup
xPra,bs

|fnpxq ´ fpxq| is well-defined.

(2) Prove that for all n P N and all x P ra, bs, fnpxq ´ Mn ď fpxq ď fnpxq ` Mn.

(3) Use (2) to conclude that for all n P N,
şb
a
pfnpxq ´ Mnqdx ď Spfq ď Spfq ď

şb
a

pfnpxq ` Mnqdx.

(4) Use (3) to show for all n P N, 0 ď Spfq ´ Spfq ď 2Mnpb ´ aq, and Exercise 2.38 to show f P RIra, bs.

(5) It follows from (3) that for all n P N, Spfq ´ Mnpb ´ aq ď
şb
a
fnpxqdx ďMnpb ´ aq ` Spfq.

Use the Sandwich Theorem to conclude that
şb
a
fpxqdx “ lim

nÑ8

şb
a
fnpxqdx.

6.3. Fundamental Theorem of Calculus

Calculus has two components:

Differentiation Integration

Local process: Global process:
Derivative at a point depends only on Takes into account values of the function
values of the function near the point. in the entire interval.

But now we will learn about a bridge between these two seemingly different worlds of differentiation
and integration, namely the Fundamental Theorem of Calculus, which says, roughly that the two
processes of differentiation and integration are inverses of each other.

f

f

f

f

F

f 1

differentiate

differentiate

integrate

integrate

şb
a

d
dx
fpxqdx “ fpbq ´ fpaq

d
dx

şx
a
fptqdt “ fpxq

Before stating the Fundamental Theorem of Calculus, we give the following definition.

Definition 6.40 (Primitive of a function). Let f : ra, bs Ñ R. Then a function F : ra, bs Ñ R is
called a primitive of f if

(1) F is differentiable on ra, bs and
(2) for every4 x P ra, bs, F 1pxq “ fpxq.

4The derivative at the boundary point a is the number L “: F 1paq (if it exists) such that for every ε ą 0, there exists a

δ ą 0 such that whenever x P ra, bs satisfies 0 ă x ´ a ă δ, we have | F pxq´F paq
x´a ´ L| ă ε. Similarly, the derivative F 1pbq at

the boundary point b is the number such that for every ε ą 0, there exists a δ ą 0 such that whenever x P ra, bs satisfies

0 ă b ´ x ă δ, we have | F pxq´F pbq
x´b ´ F 1pbq| ă ε. A straightforward adaptation of the proof Theorem 5.1 shows that if

F 1paq exists, then F is continuous at a, and if F 1pbq exists, then F is continuous at b.
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Example 6.41 (Primitives are not unique). Both the functions x2

2 and x2

2 ´ 399 are primitives
of x. In fact, any function x2 ` C, where C is an arbitrary constant, is a primitive of x. !

The previous example shows that primitives are not unique. But we will show later on that they
are unique ‘up to additive constants’, that is, for any two primitives F, rF of f , there is a constant
C (depending on the pair F, rF ) such that rF “ F ` C on ra, bs.

Theorem 6.42 (Fundamental Theorem of Calculus). Let f P RIra, bs. Then:

(1) If f has a primitive F, then
şx
a
fptqdt “ F pxq ´ F paq for all x P ra, bs.

(2) Define F : ra, bs Ñ R by F pxq :“
şx
a
fptqdt for all x P ra, bs.

If f is continuous at c P ra, bs, then F is differentiable at c, and F 1pcq “ fpcq.
In particular, if f P Cra, bs, then F is a primitive of f .

Proof. (of Part (1):)

(If x “ a, the both the left hand side and right hand side are 0, and so the result holds. So let us
assume that x ą a.) Let P “ tx0, x1, ¨ ¨ ¨ , xn´1, xnu be any partition of ra, xs. By the Mean Value

Theorem, F pxk`1q´F pxkq
xk`1´xk

“ fpckq, for some ck P pxk, xk`1q. Thus

Spf, P q “
n´1ř
k“0

p sup
xPrxk,xk`1s

fpxqqpxk`1 ´ xkq

ě
n´1ř
k“0

fpckqpxk`1 ´ xkq “
n´1ř
k“0

pF pxk`1q ´ F pxkqq

“ %%%F px1q ´ F px0q `%%%F px2q ´%%%F px1q ` ¨ ¨ ¨ ` F pxnq ´%%%%F pxn´1q

“ F pxnq ´ F px0q “ F pxq ´ F paq.

Thus, for any partition P of ra, xs, we have Spf, P q ě F pxq ´ F paq, and so

Spfq ě F pxq ´ F paq. (6.3)

Similarly,

Spf, P q“
n´1ř
k“0

p inf
xPrxk,xk`1s

fpxqqpxk`1´xkqď
n´1ř
k“0

fpckqpxk`1´xkq“
n´1ř
k“0

pF pxk`1q´F pxkqq“F pxq´F paq.

Hence, for any partition P , we have Spf, P q ď F pxq ´ F paq, giving

Spfq ď F pxq ´ F paq. (6.4)

From (6.3) and (6.4), we obtain
şx
a
fptqdt “ Spfq ď F pxq´F paq ď Spfq “

şx
a
fptqdt. Consequently,

F pxq ´ F paq “
şx
a
fptqdt. This finishes the proof of Part (1). !

Before moving on to the proof of Part (2), here is an example illustrating Part (1).

Example 6.43. With F :“ x3

3 and f :“ x2, we have F 1 “ f on R. Since f P Cr0, 1s Ă RIr0, 1s, it
follows from the above and the Fundamental Theorem of Calculus that

ş1
0 x

2dx “ 13

3 ´ 03

3 “ 1
3 . Note

the remarkable simplicity obtained (as opposed to the calculation done earlier in Example 6.14),
thanks to the Fundamental Theorem of Calculus. !

Now let us continue with the proof of Part (2) of the Fundamental Theorem of Calculus.

Proof. (of Part (2)): Let ε ą 0. As f is continuous at c, there exists a δ ą 0 such that whenever
t P ra, bs satisfies |t ´ c| ă δ, we have |fptq ´ fpcq| ă ε. Let x P ra, bsztcu. Then by the definition
of F and the result on Domain Additivity, we obtain

F pxq´F pcq
x´c

“ 1
x´c

ppp
şx
a
fptqdt ´

şc
a
fptqdtqqq “ 1

x´c

şx
c
fptqdt. (6.5)
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Also, by Part (1) of the Fundamental Theorem of Calculus,
şx
c
fpcqdt “

şx
c

pfpcq ¨ tq1dt “ fpcq ¨ x ´ fpcq ¨ c “ fpcq ¨ px ´ cq,

and so for x P ra, bsztcu,
fpcq “ 1

x´c

şx
c
fpcqdt. (6.6)

From (6.5) and (6.6), |F pxq´F pcq
x´c

´fpcq| “ | 1
x´c

şx
c
fptqdt´ 1

x´c

şx
c
fpcqdt| “ 1

|x´c| |
şx
c

pppfptq´fpcqqqqdt|
for all x P ra, bsztcu. So for x P ra, bs satisfying 0 ă |x ´ c| ă δ, we have

|F pxq´F pcq
x´c

´ fpcq| “ 1
|x´c| |

şx
c

pppfptq ´ fpcqqqqdt| ď 1
|x´c|

şmaxtc,xu
mintc,xu |fptq ´ fpcq|dt

ď 1
|x´c|Sp|fp¨q ´ fpcq|, tc, xuq ď 1

|x´c|ε|x ´ c| “ ε.

Consequently, F 1pcq “ fpcq. !

Geometric interpretation of the Fundamental Theorem of Calculus. The plausibility of
Part (2) of the Fundamental Theorem of Calculus can be illustrated geometrically. See the figure
above, in which we have depicted the graph of a Riemann integrable function f .

f

a x x`dx

Let F be defined by F pxq “
şx
a
fptqdt for all x ě a. Then F pxq is the area under the graph of f

from a to x. Consider an x ě a, and imagine increasing x by a tiny amount dx. The area of the
little strip created is F px ` dxq ´ F pxq « fpxq ¨ dx, and dividing throughout by dx, we obtain

F 1pxq « F px`dxq´F pxq
dx

« fpxq.

Example 6.44. For n P Zzt´1u, pxn`1

n`1 q1 “ xn, x ‰ 0. If b ą a ą 0, then by the Fundamental

Theorem of Calculus,
şb
a
xndx “ xn`1

n`1 |ba :“ bn`1´an`1

n`1 . (The notation F pxq|ba means F pbq ´ F paq.)
What if n “ ´1? Define ‘logarithm’ function log : p0,8q Ñ R by log x :“

şx
1

1
t
dt, x ą 0.

1
t

tx10

area “: log x

By the Fundamental Theorem of Calculus, plog xq1 “ p
şx
1

1
t
dtq1 “ 1

x
, x ą 0. !

Exercise 6.45. Suppose that f : ra, bs Ñ R is bounded, and that f P RIra, bs. Define F : ra, bs Ñ R by
F pxq “

şx
a
fptqdt for all x P ra, bs. Show that F is uniformly continuous on ra, bs.

Exercise 6.46 (Leibniz’s Rule for Integrals). If f P Cra, bs and u, v are differentiable on rc, ds and

uprc, dsq Ă ra, bs, vprc, dsq Ă ra, bs, then d
dx

şvpxq
upxq fptqdt “ fpvpxqqv1pxq ´ fpupxqqu1pxq, x P rc, ds.
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Exercise 6.47 (Integration by Parts). Let f, g,G : ra, bs Ñ R be such that f,G are continuously differ-

entiable on ra, bs, and G1 “ g. Prove that
şb
a
fpxqgpxqdx “ fpxqGpxq|ba ´

şb
a
f 1pxqGpxqdx.

Use integration by parts to show that
ş3
1
log xdx “ 3 log 3 ´ 2.

Exercise 6.48 (Integration by Substitution/Change of Variables). Let ϕ be continuously differentiable

on rα, βs, ϕprα, βsq “ ra, bs, and f P Cra, bs. Show that
şϕpβq
ϕpαq fpxqdx “

şβ
α
fpϕptqqϕ1ptqdt.

Show that if r ą 0, then
şr

´r

?
r2 ´ x2 dx “ πr2

2 . (Recall that π :“ 2
ş1

´1

?
1 ´ x2 dx.)

Exercise 6.49. Let f : r0,8q Ñ R be continuous. Find f in each of the cases below if the given equation
is known to hold for all x ě 0, or if no such f exists, justify why not.

(1)
şx2

0
fptqdt “ e´x2

. (2)
şfpxq
0

t2dt “ e´x2

. (3)
şe´x2

0
fptqdt “ x2.

Exercise 6.50. Let f be a continuous function on R and λ ‰ 0. Consider ypxq “ 1
λ

şx
0
fptq sinpλpx´ tqqdt

for x P R. Show that y is a solution to the inhomogeneous differential equation y2pxq ` λ2ypxq “ fpxq for
all x P R and with the initial conditions yp0q “ 0 and y1p0q “ 0.

Exercise 6.51. Using the binomial fomula p1`xqn “
nř

k“0

`
n
k

˘
xk, and the Fundamental Theorem of Calculus,

show that
nř

k“0

1
k`1

`
n
k

˘
“ 2n`1´1

n`1 .

Exercise 6.52. Let ey :“
8ř

n“0

1
n!y

n, y P R. From Example 3.33 that this series converges for all y P R.

Note that e0 “ 1, and from Exercise 5.35(3), we also know that d
dy

ey “ ey, y P R.

(1) Show that d
dy

peye´yq ” 0 using the Product Rule and the Chain Rule for differentiation.

Conclude that eye´y “ 1 for all y P R.

(2) Show that log defined in Example 6.44 is strictly increasing, and that its range is R.

So log : p0,8q Ñ R is bijective. Denote its inverse by f : R Ñ p0,8q. As log 1 “
ş1
1

1
t
dt “ 0, fp0q “ 1.

(3) Use the Differentiable Inverse Theorem (Exercise 5.11) to show that f 1pyq “ fpyq for all y P R.

(4) Show that the initial value problem

"
g1pyq “ gpyq py P Rq
gp0q “ C

*
has the unique solution gpyq “ Cey .

Hint: Differentiate d
dy

pe´ygq.
(5) Show that the inverse f of log is the exponential function: fpyq “ ey, y P R.

Hint: Consider the initial value problem above with C “ 1.

(6) By considering the initial value problem above with C “ ea, and the two functions gpyq “ ey`a and
rgpyq “ eaey, show that ea`b “ eaeb for all a, b P R.

(7) Show that logpx1x2q “ log x1 ` log x2 for all x1, x2 P p0,8q.

(8) Let e :“
8ř

n“0

1
n! “ fp1q. Then log e “ 1. Show that 2 ď e ď 4.

(9) Let a ą 0 and b P R. Define ab “ eb log a. Show that if n P N, then an “ a ¨ ¨ ¨ a (n times).
Prove that if c P R, then pabqc “ abc.

6.4. Notes (not part of the course)

In this section, we give a summary of the Lebesgue integral in one dimension. This is of course no
substitute for a thorough exposition to the subject. We will work in one dimension, although one can
more generally work in Rd in an analogous manner.

The extended real number system. For several reasons (e.g. handling limiting processes), it will be
useful to extend the real number system by adding two symbols 8 and ´8. The set R “ R Y t8,´8u
is called the extended real number system. We extend the order ă from R to R by defining ´8 ă x ă 8
for all x P R. Every subset of R has an upper bound 8, and a lower bound ´8. Then every subset of R
has a least upper bound and a greatest lower bound in R. For example, supR “ 8 and supH “ ´8. We
also define the following:

For x P R, x ` 8 “ 8 “ 8 ` x, x ` p´8q “ ´8 “ p´8q ` x.
If x ą 0, then x ¨ 8 “ 8 “ 8 ¨ x and x ¨ p´8q “ ´8 “ p´8q ¨ x.
If x ă 0, then x ¨ 8 “ ´8 “ 8 ¨ x and x ¨ p´8q “ 8 “ p´8q ¨ x.
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Measurable sets. The length of an interval I Ă R is defined to be

λpIq :“
"
b ´ a if I “ ra, bs, pa, bq, pa, bs, ra, bq and ´ 8 ă a ď b ă 8,
8 if I is unbounded.

We shall now associate a ‘measure’ to more general subsets of R following a method originally due to
Henri Lebesgue (1875-1941). The more general sets which possess a measure will be called measurable
sets, and we will denote the measure of a measurable set A Ă R by λpAq. The associated integral, which
we will define in the next section is called the Lebesgue integral.

Step 1: Compact sets. Let K Ă R be a compact set, that is, closed and bounded. Let K be covered

by intervals I1, ¨ ¨ ¨ , In Ă R, n P N. Then we expect λpKq to satisfy λpKq ď
nř

k“1
λpIkq. This should hold

for every such cover of K, and we expect the right-hand side above to be close to the left-hand side when

the ‘overlap’ of the covering intervals becomes smaller. This motivates the following definition. We define

λpKq :“ inftř
k

λpIkq : K Ă Ť
k

Iku, where the infimum is taken over all covers of K by a finite number of

intervals Ik. We note that if K “ ra, bs, then our definition above delivers λpKq “ b ´ a, which is indeed

the length of the interval ra, bs. Also, we note that λpKq ă 8 for compact K.

Step 2: Open sets. The measure of an open set U Ă R is λpUq :“ suptλpKq : K Ă U, K compactu. For
open sets U , 0 ď λpUq ď 8. If U “ pa, bq, then λpUq “ b ´ a for finite a, b, and is 8 if a “ 8 or b “ 8.

Step 3: Bounded measurable sets. Let A Ă R be a bounded set. Consider all compact sets K Ă A

and all open sets U Ą A. Then we have λpKq Ă λpUq. Thus sup
compact KĂA

λpKq ď inf
open UĄA

λpUq. We say

that the bounded set A is measurable if there is equality above, and define its measure λpAq to be the

common value, that is, λpAq :“ sup
compact KĂA

λpKq “ inf
open UĄA

λpUq. If A is compact, then this definition

coincides with the ones from Step 1. Also, if A is open and bounded, then this definition coincides with

the one from Step 2. It can be shown (invoking Zorn’s Lemma) that there exist bounded subsets A Ă R

that are not measurable.

Step 4: Measurable sets. Let A Ă R. We call A measurable if for every compact set K Ă R, the
bounded set A X K is measurable, and we define the measure λpAq of A by λpAq :“ sup

K compact
λpA X Kq.

If A is bounded, then this definition coincides with the one from Step 3.

This is how the (Lebesgue) measure λpAq is defined for (Lebesgue) measurable subsets A of R. We have:

(1) If A is measurable, then RzA is also measurable.

(2) Let A be measurable and x P R. Set x ` A :“ tx ` a : a P Au and xA :“ txa : a P Au.
Then x ` A and xA are measurable, and λpx ` Aq “ λpAq and λpxAq “ |x|λpAq.

(3) If A1, A2 are measurable and A1 Ă A2, then λpA1q ď λpA2q.

Now suppose that pAnqnPN is a sequence of measurable sets.

(4)
Ť
nPN

An is measurable, and λp Ť
nPN

Anq ď
8ř

n“1
λpAnq.

If Ai X Aj “ H whenever i ‰ j, then λp Ť
nPN

Anq “
8ř

n“1
λpAnq.

If A1 Ă A2 Ă A3 Ă ¨ ¨ ¨ , then λp Ť
nPN

Anq “ sup
nPN

λpAnq.

(5)
Ş
nPN

An is measurable.

Sets of measure zero. Sets of measure 0 play an important role in measure theory (for example, they
underlie the notions of ‘almost everywhere’ and ‘for almost all’, as we shall see). For example:

‚ A “ tau, a singleton, because A is then an interval in R, with λpAq “ a ´ a “ 0.

‚ A “ ta1, a2, a3, ¨ ¨ ¨ u “ Ť
nPN

tanu, a countable set. Then λpAq “
8ř

n“1
λptanuq “

8ř
n“1

0 “ 0.

There are uncountable sets with Lebesgue measure 0, for example, the Cantor set, recalled below.

Example 6.53 (Cantor set). Recall the Cantor set C from Example 2.66. Let us show that C is un-
countable. We will prove that there is a one-to-one correspondence between points of C and the points
of r0, 1s. Any point x in C is associated with a sequence of letters ‘L’ or ‘R’ as follows. Let x P C. Then
for any n, x P Fn, and when the middle thirds of each subinterval in Fn is removed, x is present either
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in the left part or the right part of the subinterval, and the nth term in the sequence of letters is L or R
accordingly. For example,

0 ” L,L,L,L,L,L, ¨ ¨ ¨
1 ” R,R,R,R,R,R, ¨ ¨ ¨
1
3 ” L,R,R,R,R,R, ¨ ¨ ¨
2
9 ” L,R,L,L,L,L, ¨ ¨ ¨

20
27 ” R,L,R,L,L,L, ¨ ¨ ¨ .

But points in r0, 1s are also in one to one correspondence with such sequences. Indeed,

r0, 1s “ r0, 1
2 s Y p 1

2 , 1s
“ r0, 1

4 s Y p 1
4 ,

1
2 s Y p 1

2 ,
3
4 s Y p 3

4 , 1s
“ r0, 1

8 s Y p 1
8 ,

1
4 s Y p 1

4 ,
3
8 s Y p 3

8 ,
1
2 s Y p 1

2 ,
5
8 s Y p 5

8 ,
3
4 s Y p 3

4 ,
7
8 s Y p 7

8 , 1s
¨ ¨ ¨ .

If x P r0, 1s, then for each n, we can look at the nth equality, and see if x falls in the left or the right part,
when each subinterval in the right-hand side of the nth equality is divided into two parts, and this gives
the pn ` 1qst term of the sequence of Ls and Rs associated with x: for example,

0 ” L,L,L,L,L,L, ¨ ¨ ¨
1 ” R,R,R,R,R,R, ¨ ¨ ¨
1
2 ” L,R,R,R,R,R, ¨ ¨ ¨ .

As r0, 1s is uncountable, it follows that so is C.

As the sum of the lengths of the intervals removed is 1
3 ` 2 1

32
` 4 1

33
` ¨ ¨ ¨ “ 1, the measure of F is

1 ´ 1 “ 0. So this is an example of an uncountable set with measure 0. "

Any subset of a measurable set of measure 0 is also measurable with measure 0. We say that two functions
x1,x2 : A Ñ R defined on a measurable set A are equal almost everywhere if there exists a measurable set
N with λpNq “ 0 such that x1ptq “ x2ptq for all t P AzN. Sometimes then we also say that x1ptq “ x2ptq
for almost all t P A.

Measurable functions. Let A be a measurable subset of R. A function x : A Ñ R Y t´8,8u is called
measurable if x has any of the following equivalent properties:

(M1) For all y P R, tt P A : xptq ă yu is measurable.

(M2) For all y P R, tt P A : xptq ď yu is measurable.

(M3) For all y P R, tt P A : xptq ą yu is measurable.

(M4) For all y P R, tt P A : xptq ě yu is measurable.

Practically all functions are measurable, and they are abundant:

(1) All continuous functions are measurable.

(2) All functions that are continuous outside a set of measure 0.

For example if xptq :“

#
1 if t “ 1

nπ
, n P Zzt0u, or t “ 0

1
sin 1

t

otherwise

+

, then x is measurable.

Such functions are called continuous almost everywhere.

(3) All monotone functions are measurable.

(4) If A is a measurable set, then its indicator function 1A, given by 1Aptq “
"
1 if t P A
0 if t R A

*
, is a

measurable function, since tt P R : 1Aptq ě yu “

$
&

%

R if y ď 0,
A if 0 ă y ď 1,
H if y ą 1.

(5) The sum, product and (if well-defined) the quotient of measurable functions are all measurable.

(6) If x is measurable, then so is |x|.
Hence5 if x1,x2 are measurable, then maxtx1,x2u and mintx1,x2u are also measurable.

(7) If pxnqnPN is a sequence of measurable functions, such that their pointwise limit, say x, exists,
then x is measurable.

5For real a, b, maxta, bu “ a`b`|a´b|
2 , and minta, bu “ a ` b ´ maxta, bu.
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The integral of measurable functions. While defining the Riemann integral, we consider upper and

lower sums corresponding to a partition P “ ta “ t0, t1, ¨ ¨ ¨ , tn´1, tn “ bu of the domain ra, bs of the

function x, for example the lower sum Spx, P q “
n´1ř
k“0

p inf
tPrtk,tk`1s

xptqqptk`1´ tkq. This is really the Riemann

integral of a step function, which assumes finitely many values, and is constant on intervals.

a b

While defining the Lebesgue integral, we shall consider simple functions. A simple function assumes finitely
many values (just as before, with step functions), but now is constant (more generally than the case of step
functions) on measurable sets (instead of mere intervals). Roughly speaking, such simple functions arise
from a partition of the range (rather than a partition of the domain for the step functions considered when
defining the Riemann integral). Every step function is a simple function (as every interval is measurable),
but not every simple function is a step function (since not every measurable set is an interval).

Now let A be a measurable set, and let s : A Ñ R be a simple function. This means that s assumes
finitely many values, which we arrange in increasing order: ´8 ă y1 ă y2 ă ¨ ¨ ¨ ă yn ă 8, and let
Ak “ tt P A : sptq “ yku, 1 ď k ď n. Thus we may write s “ y1 ¨ 1A1 ` ¨ ¨ ¨ ` yn ¨ 1An . If sptq ě 0 for all
t P A, then y1 ě 0, and in this case, we define

ş
A
sptqdt :“ y1 ¨ λpA1q ` ¨ ¨ ¨ ` yn ¨ λpAnq. The right-hand

side is either a nonnegative real number or 8 (if one of the sets Ak has infinite measure).

The collection of all nonnegative simple functions on A is denoted by S`pAq. For each s P S`pAq, we
have defined

ş
A
sptqdt. If A is a set of measure 0, then for all s P S`pAq,

ş
A
sptqdt “ 0. Indeed, since every

subset of a set of measure 0 is also a measurable set of measure 0, it follows, with the notation from the
previous paragraph, that λpAkq “ 0 for all 1 ď k ď n. The claim follows by the definition of the integral.

Let x : A Ñ R Y t´8,8u be a measurable function, and xptq ě 0 for all t P A. Then we define
ş
A
sptqdt “ sup

xěsPS`pAq

ş
A
sptqdt.

The right-hand side is either a nonnegative real number or 8. In this sense, we can say that for nonnegative
measurable functions, their Lebesgue integral always exists, but this is not the case with Riemann integrals.

Example 6.54. Let A “ r0, 1s, and let x : r0, 1s Ñ R be defined by xptq “
"
1 if t is irrational
0 if t is rational

*
.

The sets A0 “ tt P r0, 1s : xptq “ 0u and A1 “ tt P r0, 1s : xptq “ 1u are measurable. Since A0 is countable,
λpA0q “ 0. On the other hand, λpA1q “ λpAzA0q “ λpAq ´ λpA0q “ 1 ´ 0 “ 1. Since x “ 1A1 is a simple
function,

ş
A
xptqdt “ 1 ¨ λpA1q “ 1. But we had seen earlier that x is not Riemann integrable. "

Let A be a measurable set. Suppose that all the functions appearing in the list below are defined on A,
take values in r0,8q Y t8u, and are measurable. Then we have:

(1)
ş
A

px1ptq ` x2ptqqdt “
ş
A
x1ptqdt `

ş
A
x2ptqdt.

(2) For α ě 0,
ş
A
αxptqdt “ α

ş
A
xptqdt.

(3) If for all t P A, x1ptq ď x2ptq, then
ş
A
x1ptqdt ď

ş
A
x2ptqdt.

(4) (Monotone Convergence Theorem).
If 0 ď x1ptq ď x2ptq ď ¨ ¨ ¨ , and xptq :“ lim

nÑ8
xnptq. Then

ş
A
xptqdt “ lim

nÑ8

ş
A
xnptqdt.

(5) If λpAq “ 0, then
ş
A
xptqdt “ 0.

(6) If
ş
A
xptqdt ă 8, then there exists a set N of measure zero such that xptq ă 8 for all t P AzN .

Let x : A Ñ R Y t´8,8u be a measurable function defined on the measurable set A. Note that x is no
longer assumed to be nonnegative. We can, nevertheless, write x as a difference, x “ x` ´x´, of the two
nonnegative (and measurable) functions x` :“ maxtx,0u and x´ :“ maxt´x,0u “ ´mintx,0u.

x x` x´

´“
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We say that x is (absolutely) integrable on A if
ş
A

|xptq|dt ă 8. Then
ş
A
xptqdt :“

ş
A
x`ptqdt´

ş
A
x´ptqdt.

Since 0 ď x˘ptq ď |xptq|, and thanks to assumption that
ş
A

|xptq|dt ă 8, it follows from (3) on page 98,
that

ş
A
x`ptqdt,

ş
A
x´ptqdt ă 8, and so their difference,

ş
A
xptqdt, is finite too.

The set of all absolutely integrable functions on A is denoted by L1pAq. For x1,x2,x P L1pAq and
α P R, we have the following:

(1) x1 ` x2 P L1pAq and
ş
A

px1 ` x2qptqdt “
ş
A
x1ptqdt `

ş
A
x2ptqdt.

(2) α ¨ x P L1pAq and
ş
A

pα ¨ xqptqdt “ α
ş
A
xptqdt.

(3) |x| P L1pAq and
ş
A

|xptq|dt ď |
ş
A
xptqdt|.

(4) If
ş
A

|xptq|dt “ 0, then there exists a set N Ă A of measure 0 such that xptq “ 0 for all t P AzN .

(5) Let A “ B Y C, where B,C are measurable too and B X C “ H.
Then x P L1pBq, x P L1pCq and

ş
A
xptqdt “

ş
B
xptqdt `

ş
C
xptqdt.

(6) If y : A Ñ R Y t´8,`8u is measurable and |yptq| ď xptq for almost all t P A, then y P L1pAq
and |

ş
A
yptqdt| ď

ş
A

|yptq|dt ď
ş
A
xptqdt.

The parts (1), (2) assert that L1pAq is a real vector space, and the integral x ÞÑ
ş
A
xptqdt : L1pAq Ñ R is

a linear transformation (or a linear functional, since the co-domain is the field of scalars R).

We also remark that in part (4), under the given hypothesis, we cannot in general conclude that x ” 0
on all of A. Indeed,

ş1
0
1QXr0,1sptqdt “ λpQ X r0, 1sq “ 0, as Q is countable, however the integrand is not

identically zero: for example, its value at 1
2 is 1. On the other hand, if in (4), we are also given that x is

continuous, then we can safely conclude that x ” 0 on A.

The Dominated Convergence Theorem says that if there is an L1-majorant for all the terms xn in a
sequence of functions, then assuming that their pointwise limit x exists almost everywhere, this pointwise
limit is also an element of L1pAq.

Dominated Convergence Theorem. Let A be measurable. Let pxnqnPN be a sequence in L1pAq, and
x : A Ñ R, be such that lim

nÑ8
xnptq “ xptq for almost all t P A. Let y P L1pAq be such that for all n P N,

|xnptq| ď yptq for almost all t P r0, 1s. Then x P L1pAq, and lim
nÑ8

ş
A
xnptqdt “

ş
A

lim
nÑ8

xnptqdt “
ş
A
xptqdt.

We remark that the hypothesis of the existence of an L1 majorant is essential, as demonstrated by the
following two examples.

Example 6.55. (Lacking an L1 majorant). Let A “ R.

(1) Let xn “ 1r´n,ns, x “ 1. Then xn P L1pRq, pxnqnPN converges pointwise everywhere on R to x,
but x R L1pRq.

(2) Let xn “ 1rn,n`1s, x “ 0. Then xn P L1pRq, pxnqnPN converges pointwise everywhere on R to x,
but

ş
R
xptqdt “ 0 ‰ 1 “ lim

nÑ8

ş
R
xnptqdt. "

Link with the Riemann integral. Let x P Cra, bs. Then x P L1ra, bs and

(the Lebesgue integral)
şb
a
xptqdt “ (the Riemann integral)

şb
a
xptqdt.

That x P L1ra, bs follows from the fact that x is measurable (since it is continuous), and it is bounded
(Extreme Value Theorem).

The space L1r0, 1s. Consider on L1r0, 1s the candidate norm }x}1 :“
ş1
0

|xptq|dt for all x P L1r0, 1s. This
map } ¨ }1 fails to be a norm because functions that are almost everywhere 0 (e.g. 1QXr0,1s) have zero
norm. Hence we should essentially ‘consider such functions to be also the zero vector in the vector space
L1r0, 1s’. This intuitive remark can be made rigorous by considering the following relation on L1r0, 1s.
We say that x „ y if there exists a set6 N Ă r0, 1s of measure 0, such that xptq “ yptq for all t P r0, 1szN.
It can be seen that „ is an equivalence relation on L1r0, 1s, that is,

(ER1) (Reflexivity). x „ x for all x P L1r0, 1s.
(ER2) (Symmetry). If x,y P L1r0, 1s and x „ y, then y „ x.

(ER3) (Transitivity). If x,y,z P L1r0, 1s, x „ y and y „ z, then x „ z.

6depending in general on x and y
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Let rxs denote the equivalence class of x: rxs “ ty P L1r0, 1s : x „ yu. Thus rxs is the collection of all
elements of L1r0, 1s that are almost everywhere equal to x on r0, 1s. Define L1r0, 1s :“ trxs : x P L1r0, 1su.
Then we can endow a vector space structure on L1r0, 1s by setting rxs ` rys “ rx`ys and α ¨ rxs “ rα ¨xs
for rxs, rys P L1r0, 1s and α P R. It can also be seen that these operations `, ¨ are well-defined, that
is, they do not depend on the chosen representatives x,y P L1r0, 1s for the equivalence classes rxs, rys,
respectively.

We now define the map } ¨ }1 : L1r0, 1s Ñ R by }rxs}1 :“
ş1
0
xptqdt for all rxs P L1r0, 1s. Then it can

be checked that } ¨ }1 defines a norm on L1r0, 1s. In particular, now if }rxs}1 “ 0, then it follows that
xptq “ 0 for almost all t P r0, 1s, and so rxs “ r0s, that is, rxs is the zero vector from the vector space
L1r0, 1s, as desired.

The normed space L1r0, 1s is complete, and in this sense L1r0, 1s is ‘better’ than Cr0, 1s with the
} ¨ }1 norm (see Exercise 2.32). We supply a sketch of the proof. Let prxnsqnPN be a Cauchy sequence in
L1r0, 1s. To prove its convergence, it is enough to show the convergence of a subsequence. So we may
assume (by passing to a subsequence if necessary) that }rxn`1s ´ rxns}1 ă 1

2n (n P N). Let x0 :“ 0. Set

ynptq :“
nř

k“0
|xk`1ptq ´ xkptq| and yptq :“

8ř
k“0

|xk`1ptq ´ xkptq|.

By the Triangle Inequality, we have

}ryns}1 “
ş1
0

|ynptq|dt ď
nř

k“0
}rxk`1s ´ rxks}1 ď }rx1s ´ rx0s}1 `

nř
k“1

1
2k

.

By the Monotone Convergence Theorem,

}rys}1 “
ş1
0

|yptq|dt “ lim
nÑ8

ş1
0

|ynptq|dt ď }rx1s}1 ` 1 ă 8.

Hence the function y is finite almost everywhere on r0, 1s. So the series
8ř

k“0
pxk`1ptq ´ xkptqq is absolutely

convergent for almost all t P r0, 1s. For such t, we set

xptq “
8ř

k“0
pxk`1ptq ´ xkptqq.

But xnptq “
n´1ř
k“0

pxk`1ptq ´ xkptqq for all t P r0, 1s, and so lim
nÑ8

xnptq “ xptq. Furthermore,

|xnptq| ď
n´1ř
k“0

|xk`1ptq ´ xkptq| ď yptq for almost all t P r0, 1s.

By the Dominated Convergence Theorem,
ş1
0

|xptq|dt “ lim
nÑ8

ş1
0

|xnptq|dt ď
ş1
0
yptqdt ă 8.

Hence rxs P L1r0, 1s. Also, note that r|x|s ` rys P L1r0, 1s, and furthermore |x ´ xn| ď |x| ` y for all n.
The Dominated Convergence Theorem again gives

lim
nÑ8

}rxns ´ rxs}1 “ lim
nÑ8

ş1
0 |xnptq ´ xptq|dt “ 0,

showing that prxnsqnPN converges to rxs in pL1r0, 1s, } ¨ }1q. Consequently, pL1r0, 1s, } ¨ }1q is complete.
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Equivalence relations

Definition A.1 (Relation).
A relation R on a set S is a subset of the S ˆ S :“ tpa, bq : a, b P Su. If pa, bq P R, then we write
aRb.

For example, if we take S to be the set of all human beings, then

Rsibling :“ tpa, bq P S ˆ S : a, b have the same biological parentsu

is a relation. As another example, we can take the set S “ Z, the set of all integers, and
Rmod 2 “ tpm,nq P Z ˆ Z : m ´ n is divisible by 2u. Sometimes we use the symbol „ to denote a
relation, and then instead of aRb, we will write a „ b.

Definition A.2 (Equivalence relation).
A relation R on a set S is called an equivalence relation if it satisfies the following:

(ER1) R is reflexive, that is, for all a P S, aRa.

(ER2) R is symmetric, that is, if aRb, then bRa.

(ER3) R is transitive, that is, if aRb and bRc, then aRc.

In our example above, where S “ tall human beingsu, Rsibling can easily be checked to be an
equivalence relation7. Similarly Rmod 2 is an equivalence relation on Z.

Why are equivalence relations useful? They help ‘partition’ the set into ‘equivalence classes’,
and help to break down the big set into smaller subsets, such that all the elements in each subset
are related to each other, and hence ‘equivalent’ in some way. For example, Rsibling enables one to
partition the set of human beings into equivalence classes consisting of groups of brothers/sisters.
On the other hand, Rmod 2 partitions Z into the sets teven integersu and todd integersu.

Definition A.3 (Equivalence class).
If R is an equivalence relation of a set S, then the equivalence class of a, denoted by ras, is defined
to be the set ras “ tb P S : aRbu.

Given any a, b P S, either ras “ rbs or rasXrbs “ H. Indeed, let rasXrbs ‰ H. Suppose c P rasXrbs,
that is, aRc and bRc. By symmetry, cRb. As aRc and cRb, by transitivity, we obtain aRb, and
again by symmetry, bRa. If d P ras, then aRd. As bRa and aRd, by transitivity, bRd. So d P rbs
too. So we have shown that ras Ă rbs. In the same way, one can show rbs Ă ras as well. So
ras “ rbs.

Clearly,
Ť
aPS

ras ĂS. For aPS, aRa (reflexivity), and so aPras. Thus SĂ
Ť
aPS

ras. So S “
Ť
aPS

ras.

7Here we accept that a person is one’s own sibling.
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As any two distinct equivalence classes do not overlap at all, it follows that S is partitioned into
equivalence classes by R, as shown in the schematic picture below.

S

rcs

rbs
ras “ ra1s
aRa1

So the idea is that an equivalence relation is really an ‘attention focusing device’, where we have
chosen to ignore other distinguishing features of objects which are related, and have put them
together in an equivalence class. So an equivalence relation gives one a ‘pair of glasses’ through
which we ‘clump together’ things which are ‘essentially the same’ (equivalent under the relation)
and see them as one object! For example, if our set is the collection of children in a school bus and
we consider the equivalence relation R1 of ‘having the same sex’, then through these glasses, we
see only two equivalence classes: boys and girls. On the other hand, if we consider the equivalence
relation R2 of ‘having the same age’, then through these glasses, we see groups of children sorted
by age.

Real numbers

Finally we have reached the point where we can learn about the construction of the most important
number system from the point of view of Mathematical Analysis, namely the real number system
R. Roughly speaking, the set of real numbers are the numbers to which Cauchy sequences in Q

‘want to converge to’. As these limits may not be rational, we just name/label these numbers
by the whole Cauchy sequence in Q itself! But then two Cauchy sequences in Q might want to
converge to the same thing (e.g. think of panqnPN and pan ` 1

n qnPN), and so we ought not to
distinguish between such two Cauchy sequences. So we must build an equivalence relation „ on
Cauchy sequences, so that

panqnPN „ pbnqnPN if lim
nÑ8

pan ´ bnq “ 0,

and consider the real numbers as equivalence classes of Cauchy sequences under this equivalence
relation. Since we are trying to construct the reals, we are only allowed to use rational numbers.
So we need to restrict ourselves to ε that are rational in the definition of convergence. We do this
carefully below.

Definition A.4.

‚ A Cauchy sequence in Q is a sequence panqnPN of rational numbers such that for every rational
εą0, there exists an N P N such that whenever m,nąN , we have |an ´ am| ă ε.

‚ The set of all Cauchy sequences in Q is denoted by C.

‚ Let r P Q. A sequence panqnPN in Q converges to r in Q if for every rational ε ą 0, there exists
an N P N such that for all n ą N , |an ´ r| ă ε.

‚ The relation „ on C is defined as follows:

panqnPN „ pbnqnPN if the sequence pan ´ bnqnPN converges to 0 in Q.
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Exercise A.5. Let panqnPN, pbnqnPN be Cauchy sequences in Q. Show that pan`bnqnPN is Cauchy sequence
in Q too.

Proposition A.6. Every Cauchy sequence in Q is bounded.

Proof. Let panqnPN be a Cauchy sequence in Q. Choose a rational εą 0, say ε“ 1. Then there
exists an N P N such that for all n,m ą N , we have |an ´ am| ă ε “ 1. In particular, with
m “ N `1 ą N , and n ą N , |an ´ aN`1| ă 1. Hence by the Triangle Inequality8 in Q, for all
n ą N ,

|an| “ |an ´ aN`1 ` aN`1| ď |an ´ aN`1| ` |aN`1| ă 1 ` |aN`1|.

On the other hand, for n ď N , |an| ď maxt|a1|, . . . , |aN |, |aN`1| ` 1u “: M ą 0. Consequently,
|an| ďM (n P N), that is, the sequence panqnPN is bounded. !

Exercise A.7. Let panqnPN and pbnqnPN be Cauchy sequences in Q. Show that panbnqnPN is Cauchy
sequence in Q too.

Exercise A.8. Suppose that panqnPN and pbnqnPN are sequences in Q such that panqnPN (respectively
pbnqnPN) converges in Q to ra P Q (respectively rb P Q).

(1) Show that the limit is unique: If panqnPN converges in Q to r1
a P Q, then ra “ r1

a.

(2) Show that p´anqnPN converges to ´ra.

(3) Show that pan ` bnqnPN converges to ra ` rb.

Exercise A.9. Show that „ is an equivalence relation on C.

Definition A.10 (The set of real numbers).
A real number is an equivalence class of C under the relation „. If panqnPN P C, then rpanqnPNs
denotes the real number which is the equivalence class of C containing the sequence panqnPN. The
set of all real numbers is denoted by R.

The set of real numbers is supposed to be an extension of the rational numbers Q, that is, we
want to see that Q ‘Ă ’ R. Given a rational number r P Q, the constant sequence r, r, r, ¨ ¨ ¨ , that
is, prqnPN, is a Cauchy sequence in Q. Thus rprqnPNs is a real number. We have the following.

Proposition A.11. The map Q Q r ÞÑ rprqnPNs P R is injective.

Proof. Let r, s P Q be such that rprqnPNs “ rpsqnPNs. Then prqnPN „ psqnPN. So

lim
nÑ8

pr ´ sq “ 0.

But the constant sequence r ´ s, r ´ s, r ´ s, ¨ ¨ ¨ converges in Q to r ´ s. By the uniqueness of
limits, r ´ s “ 0, that is, r “ s. !

Addition and multiplication

If addition in R is to respect the addition in Q, we expect that for r, s P Q, rprqnPNs`rpsqnPNs equals
rpr ` sqnPNs. Similarly, rprqnPNs ¨ rpsqnPNs should equal rprsqnPNs. This motivates the following.

Definition A.12. The sum of the real numbers rpanqnPNs and rpbnqnPNs is given by

rpanqnPNs ` rpbnqnPNs “ rpan ` bnqnPNs.

The product of the real numbers rpanqnPNs and rpbnqnPNs is defined by

rpanqnPNs ¨ rpbnqnPNs “ rpanbnqnPNs.

8The proof of the Triangle Inequality is exactly the same, replacing ‘real/R’ everywhere by ‘rational/Q’. Note that we are
not allowed to use reals yet, and so we can’t just specialise the Triangle Inequality for R to the rationals.
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As usual, we have to check well-definedness. We leave this as an exercise for addition, but give an
argument below for multiplication. Let rpanqnPNs “ rpa1

nqnPNs P R and rpbnqnPNs “ rpb1
nqnPNs P R.

The idea is to use the inequality

|a1
nb

1
n ´ anbn| “ |a1

nb
1
n ´ a1

nbn ` a1
nbn ´ anbn| ď |a1

n||b1
n ´ bn| ` |a1

n ´ an||bn|

and the boundedness of the terms a1
n, bn to show panbnqnPN „ pa1

nb
1
nqnPN. We carry out the details

below.

As pa1
nqnPN is Cauchy, it is bounded, and let A1 ą 0 be a rational number such that |a1

n| ă A1

for all n P N. Similarly, pbnqnPN is bounded, and let B ą 0 be a rational number such that |bn| ă B

for all n P N. Let ε ą 0 be a rational number. As panqnPN „ pa1
nqnPN, we have that pan ´ a1

nqnPN
converges in Q to 0. So for the rational ε

2B ą 0, there exists an Na P N such that |a1
n ´ an| ă ε

2B .
Similarly, as pbnqnPN „ pb1

nqnPN, we have that for the rational
ε

2A1 ą 0, there exists an Nb P N such
that |b1

n ´ bn| ă ε
2A1 . Set N “ Na ` Nb. For all n ą N , we have

|a1
nb

1
n ´ anbn| “ |a1

nb
1
n ´ a1

nbn ` a1
nbn ´ anbn| ď |a1

n||b1
n ´ bn| ` |a1

n ´ an||bn|

ď A1|b1
n ´ bn| ` |a1

n ´ an|B ă A1 ε

2A1 `
ε

2B
B “ ε.

Thus panbnqnPN „ pa1
nb

1
nqnPN.

Exercise A.13 (Addition is well-defined). Let panqnPN „ pa1
nqnPN and pbnqnPN „ pb1

nqnPN. Show that
pan ` bnqnPN „ pa1

n ` b1
nqnPN.

Example A.14 (The real numbers 0 and 1). We define the real numbers 0 “ rp0qnPNs and
1 “ rp1qnPNs. Then for every real number x P R, we have

0 ` x “ r “ x ` 0, and

1 ¨ x “ r “ x ¨ 1.

Thus 0 serves as the additive identity and 1 serves as the multiplicative identity. Clearly 1 ‰ 0
because the sequence p1 ´ 0qnPN converges in Q to 1 ‰ 0. !

The set R, together with the operations `, ¨ : R ˆ R Ñ R forms a ‘field’, i.e., the following hold.

`

$
’’’’&

’’’’%

(F1) (Associativity) For all x,y, z P R, x ` py ` zq “ px ` yq ` z.

(F2) (Additive identity) For all x P R, x ` 0 “ x “ 0 ` x.

(F3) (Inverses) For all x P R, there exists ´ x P R

such that x ` p´xq “ 0 “ ´x ` x.

(F4) (Commutativity) For all x,y P R, x ` y “ y ` x.

¨

$
’’’’&

’’’’%

(F5) (Associativity) For all x,y, z P R, x ¨ py ¨ zq “ px ¨ yq ¨ z.
(F6) (Multiplicative identity) 1 ‰ 0 and for all x P R, x ¨ 1 “ x “ 1 ¨ x.
(F7) (Inverses) For all x P Rzt0u, there exists x´1 P R

such that x ¨ x´1 “ 1 “ x´1 ¨ x.
(F8) (Commutativity) For all x,y P R, x ¨ y “ y ¨ x.

`, ¨
*

(F9) (Distributivity) For all x,y, z P R, x ¨ py ` zq “ x ¨ y ` x ¨ z.

In fact, if we replace everywhere R by Q (and 1,0 by the rational numbers 1, 0, respectively), then
the set Q of rational numbers with their addition and multiplication, also satisfy the same proper-
ties. We say that pQ,`, ¨q is also a field. (However, pZ,`, ¨q is not a field, because multiplicative
inverses don’t always exist: The equation 2x “ 1 has no solution x P Z.)

We will not check each the above, as they essentially follow by ‘termwise verifications’, and
by using the corresponding properties from the field of rationals. We remark that the additive
inverse of x “ rpanqnPNs is ´x :“ rp´anqnPNs. Let us show the existence of multiplicative inverses
for nonzero reals. First we prove the following lemma.
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Lemma A.15. Let x P R be such that x ‰ 0. If panqnPN P x, then there exists a rational d ą 0
and an N P N such that for all n ą N, |an| ą d.

Proof. As rpanqnPNs “ x ‰ 0 “ rp0qnPNs, we have )ppppanqnPN „ p0qnPN qqq, i.e.,

)ppppan ´ 0qnPN converges in Q to 0qqq, i.e.,
)ppp@ rational ε ą 0, DN P N such that @n ą N, |an ´ 0| ă εqqq, i.e.,

Thus
D rational ε ą 0 such that @N P N, Dn ą N such that |an ´ 0| ě ε. p‹q

Since panqnPN P C, for the rational ε{2 ą 0, there exists an N˚ P N such that for all n,m ą N˚,
|an ´ am| ă ε

2 . From (‹), taking N “ N˚, there exists n˚ ą N˚ such that |an˚ ´ 0| ě ε. Hence
for n ą N˚, we have

|an| “ |an ´ an˚ ` an˚ | ě |an˚ | ´ |an ´ an˚ | ě ε ´
ε

2
“

ε

2
“: d. !

Proposition A.16. Let the real number x ‰ 0. Then there exists an x´1 P R such that

x ¨ x´1 “ 1 “ x´1 ¨ x.

Proof. Let x “ rpanqnPNs. By Lemma A.15 there exists a rational d ą 0 and an N P N such that
|an| ą d for all n ą N . In particular, an ‰ 0 for all n ą N . Set9

bn :“
"

0 if 1 ď n ď N,

a´1
n if n ą N.

Then pbnqnPN is a Cauchy sequence in Q. Firstly, for n,m ą N ,

|bn ´ bm| “
ˇ̌
ˇ
1

an
´

1

am

ˇ̌
ˇ “

|an ´ am|
|an||am|

ď
|an ´ am|

d2
.

Secondly, as panqnPN is a Cauchy sequence in Q, given a rational ε ą 0, there exists an M P N

such that for all n,m ąM , |an ´ am| ă εd2. Hence for all n,m ą N ` M ,

|bn ´ bm| ď
|an ´ am|

d2
ă

εd2

d2
“ ε.

Consequently, pbnqnPN is a Cauchy sequence in Q. We have10

anbn :“
"

0 if 1 ď n ď N,

1 if n ą N.

Hence panbnqnPN converges in Q to 1. So rpanbnqnPNs “ 1. Set x´1 :“ rpbnqnPNs. Then we have
x ¨ x´1 “ 1 “ x´1 ¨ x. !

Exercise A.17 (Distributive law). Let a, b, c P R. Prove that a ¨ pb ` cq “ a ¨ b ` a ¨ c.

Order

To compare real numbers x “ rpanqnPNs and y “ rpbnqnPNs, we would like to use the order relation
ă on Q. If we try to define x ă y by saying that for all n P N, an ă bn, then this will not
be a well-defined notion. Indeed, changing the first few terms of panqnPN we could easily violate
this, without changing rpanqnPNs. Intuitively, x is the real number that panqnPN converges to. So
thinking formally

‘x “ lim an’, ‘y “ lim bn’,

we would say x ă y if ‘ lim an ă lim bn’, that is,

‘ limpbn ´ anq ą 0’.

9Although we set bn “ 0 for 1 ď n ď N here, any arbitrary N rational numbers can be specified here.
10Had we specified b1, ¨ ¨ ¨ , bN arbitrarily, we would get a bunch of initial terms anbn for 1 ď n ď N , but this won’t affect
the rest of the proof.
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But from our former intuition with limits, we know that this means that for all large enough n P N,
bn ´ an stays away from 0 by some positive distance d, say. This motivates the following.

Definition A.18. Let x “ rpanqnPNs and y “ rpbnqnPNs be real numbers. Then x ă y if there
exists a rational number d ą 0 and an N P N such that for all n ą N , bn ´ an ą d. If x ă y, we
write equivalently y ą x.

Let us show that this is a well-defined notion.

Proposition A.19. Let rpanqnPNs “ rpa1
nqnPNs P R and rpbnqnPNs “ rpb1

nqnPNs P R. Suppose that
there exists a rational number d ą 0 and an N P N such that for all n ą N , bn ´ an ą d. Then
there exists a rational number d1 ą 0 and an N 1 P N such that for all n ą N 1, b1

n ´ a1
n ą d1.

Proof. As panqnPN „ pa1
nqnPN, we know that pan ´a1

nqnPN converges in Q to 0. So for the rational
d{4 ą 0, there exists anNa P N such that for all n ą Na, |an´a1

n| ă d{4, i.e., ´d{4 ă an´a1
n ă d{4.

In particular

an ´ a1
n ą ´

d

4
for all n ą Na. p˚q

Similarly, pbnqnPN „ pb1
nqnPN yields the existence of an Nb P N such that

b1
n ´ bn ą ´

d

4
for all n ą Nb. p˚˚q

Set N 1 “ Na ` Nb ` N . Then for all n ą N 1, using (˚) and (˚˚), we have

b1
n ´ a1

n “ bn ´ an ` b1
n ´ bn ` an ´ a1

n ą d ´
d

4
´

d

4
“

d

2
ą 0.

So with the rational d1 :“ d
2 ą 0, for all n ą N 1, we have b1

n ´ a1
n ą d1. !

Exercise A.20. Show that if r, s P Q and r ă s, then rprqnPNs ă rpsqnPNs. (In particular, for the real
numbers 0,1, we have 0 ă 1.)

Exercise A.21 (Transitivity of ă). Let x,y,z P R be such that x ă y and y ă z. Prove that x ă z.

Theorem A.22 (Trichotomy Law). Let x,y P R. Then one and exactly one of the following hold:

1˝ x ă y. 2˝ x “ y. 3˝ x ą y.

Proof. Let x “ rpanqnPNs and y “ rpbnqnPNs. If x “ y, then pan ´ bnqnPN converges in Q to 0.
Let us show that )px ą yq. Indeed, otherwise there exists a rational d ą 0 and an N P N such
that an ´ bn ą d for all n ą N . But then taking the rational ε :“ d{2 ą 0, we get, thanks to the
convergence of pan ´ bnqnPN, that there is an N 1 P N such that for all n ą N 1, |an ´ bn| ă d{2. So
with n “ N ` N 1, we arrive at the contradiction that d ă an ´ bn ď |an ´ bn| ă d{2. So if x “ y,
then )px ą yq. Interchanging the roles of x,y, we also have that if x “ y, then )px ă yq. Let
us also note that if x ă y, then )py ă xq: Otherwise there exist rational d, d1 ą 0 and N,N 1 P N

such that for all n ą N we have bn ´ an ą d, and for all n ą N 1, we have an ´ bn ą d1, so that
with n :“ N ` N 1, we get d1 ă an ´ bn ă ´d, giving 0 ą d ` d1 ą d ` 0 “ d, a contradiction.

Let rpanqnPNs :“ x ‰ y “: rpbnqnPNs. Then it is not the case that the sequence pan ´ bnqnPN
converges in Q to 0. Thus there exists a rational ε˚ ą 0 such that

for all N P N, there exists an n ą N such that |an ´ bn| ě ε˚. p‹q

As panqnPN is Cauchy, there exists an Na P N such that for all m,n ą Na, we have |an´am| ă ε˚{4,
i.e., ´ε˚{4 ă an ´ am ă ε˚{4. In particular, an ´ am ą ´ε˚{4 for all n,m ą N . Similarly, as
pbnqnPN is Cauchy, there exists an Nb P N such that for all m,n ą Nb, |bn ´ bm| ă ε˚{4, giving in
particular bn ´ bm ą ´ε˚{4. Now take N “ Na ` Nb in (‹). Then there exists an n˚ ą N such
that |an˚ ´ bn˚ | ě ε˚ ą 0. In particular, an˚ ´ bn˚ ‰ 0. So by the trichotomy law for ă in Q, we
have the following two mutually exclusive possible cases:
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1˝ an˚ ´ bn˚ą0. Then an˚ ´ bn˚ “|an˚ ´ bn˚ |ěε˚. For all mą n˚ (ąN “Na`Nb),

am ´ bm “ an˚ ´ bn˚ ` am ´ an˚ ` bn˚ ´ bm ą ε˚ ´ ε˚
4 ´ ε˚

4 “ ε˚
2 “: d.

So for all m ą n˚, we have that am ´ bm ą d, showing x ą y.

2˝ an˚ ´ bn˚ă0. Then bn˚ ´ an˚ “|an˚ ´ bn˚ |ěε˚. For all mą n˚ (ąN “Na`Nb),

bm ´ am “ bn˚ ´ an˚ ` bm ´ bn˚ ` an˚ ´ am ą ε˚ ´ ε˚
4 ´ ε˚

4 “ ε˚
2 “: d.

So for all m ą n˚, we have that bm ´ am ą d, showing y ą x. !

Definition A.23 (The set P of positive reals). We define P :“ tx P R : x ą 0u.
Exercise A.24. Let x,y P P. Show that x ` y P P and x ¨ y P P.

Exercise A.25. Let x P R be such that x ą 0. Prove that there exists an r P Q such that 0 ă rprqnPNs ă
x. We write this succinctly as 0 ă r ă x.

Exercise A.26. Let panqnPN be a Cauchy sequence in Q. Suppose there exists an N P N such that for
all n ą N , we have an ě 0. Show that the real number x “ rpanqnPNs ě 0.

Exercise A.27 (No order for C). A field F is called ordered if there is a subset P Ă F, called the set of

positive elements of F, satisfying the following:

(P1) For all x, y P P , x ` y P P .

(P2) For all x, y P P , x ¨ y P P .

(P3) For each x P P , one and only one of the following three cases is true:

1˝ x “ 0. 2˝ x P P. 3˝ ´ x P P.

(Once one has an ordered set of elements in a field, one can compare the elements of F by defining a
relation ąP in F by setting y ąP x for x, y P F if y ´ x P P .)

Show that C is not an ordered field. Hint: Consider x :“ i, and first look at x ¨ x.

The least upper bound property of R

Finally we are ready to prove the ultimate goal, namely the least upper bound property of R, i.e.,
we show the following:

Theorem A.28 (Least upper bound property of R).
Every nonempty subset of R which is bounded above has a supremum.

We first give an example to show that Q does not possess the Least Upper Bound Property.

Example A.29 (Q does not possess the Least Upper Bound Property).
Consider the set S :“ tx P Q : x2 ď 2u. Clearly S is a subset of Q and it is nonempty since 1 P S:
12 “ 1 ď 2. Let us show that S is bounded above. In fact, 2 serves as an upper bound of S. Since
if x ą 2, then x2 ą 4 ą 2. Thus if x P S, then x2 ď 2, and so x ď 2.

If Q has the Least Upper Bound Property, then the above nonempty subset of Q which is
bounded above must possess a least upper bound u˚ :“ supS P Q. We will show that this u˚ P Q

must satisfy that u2
˚ “ 2. But we know that this is impossible as we know that there is no rational

number whose square is 2.

Firstly, u˚ ě 1 (as u˚ is in particular an upper bound of S and 1 P S). Now define

r :“ u˚ ´
u2

˚ ´ 2

u˚ ` 2
“

2pu˚ ` 1q
u˚ ` 2

ą 0. (A.1)

As u˚ P Q, the rightmost expression for r shows that r P Q as well. Then

r2 ´ 2 “
2pu2

˚ ´ 2q
pu˚ ` 2q2

. (A.2)

1˝ Suppose u2
˚ ă 2. Then (A.2) implies that r2 ´ 2 ă 0, and so r P S. But from (A.1), r ą u˚,

contradicting the fact that u˚ is an upper bound of S.
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2˝ Suppose that u2
˚ ą 2. If r1 ą r pą 0q, then r12 “ r1 ¨ r1 ą r ¨ r1 ą r ¨ r “ r2. From (A.2), r2 ą 2,

and so from the above, we know that r12 ą 2 as well. Hence r1 R S. So we have shown that if
r1 P S, then r1 ď r. This means that r is an upper bound of S. But this is impossible, since
(A.1) shows that r ă u˚, and u˚ is the least upper bound of S.

So it must be the case that u2
˚ “ 2. But this is impossible. Hence Q does not possess the Least

Upper Bound Property. !

This ‘analytical flaw’ of the rational number system is remedied by the set of real numbers.
Moreover, we had seen that not all Cauchy sequences in Q converge in Q. In contrast, we have
shown, using the Least Upper Bound Property of R, that we the following happy situation in R:
tCauchy sequences in Ru “ tconvergent sequences in Ru.

We will show that every nonempty subset of R which is bounded above has a supremum.

Lemma A.30 (‘Baby’ Archimedean Principle). If x P R, then there exists a natural number n P N

such that n ą x.

We cannot use the Archimedean Principle to prove the above, since that earlier result was proved
using the Least Upper Bound Property of R, which we haven’t established yet!

Proof. If x ď 0, then take n “ 1, since 0 ă 1 gives by transitivity that x ă 1.

Let x “ rpanqnPNs ą 0. We have seen that every Cauchy sequence in Q is bounded. So there
exists a rational A ą 0 such that for all n P N, an ď A. This implies x ă rpA ` 1qnPNs (since
A` 1´ an ě A` 1´A “ 1 ą 0 for all n P N). Write A` 1 “ rpp

q qs, where p, q P N. Set n “ p` 1.
Then A ` 1 “ rpp

q
qs ă rpn

1 qs (since p ă p ` 1 ď pp ` 1qq “ nq). So x ă rpA ` 1qnPNs ă rpn
1 qs.

Succinctly, x ă n. !

Lemma A.31 (Density of Q in R redone). Let x,y P R be such that x ă y. Then there exists an
r P Q such that y ă r ă x.

Proof. As y´x ą 0, we have in particular y´x ‰ 0, and so py´xq´1 exists inR. By Lemma A.30,
there exists an n P N such that n ą py ´ xq´1, and so npy ´ xq ą 1, i.e., nx ` 1 ă ny.

By Lemma A.30, there exists an m1 P N such that m1 ą nx, and there exists an m2 P N such that
m2 ą ´ nx. So ´ m2 ă nx ă m1 for some integers m1,m2. Among the finitely many integers
k P Z such that ´m2 ď k ď m1, we take as tnxu the largest one such that it is also ď nx.

Let m :“ tnxu ` 1. Then tnxu ď nx ă tnxu ` 1, that is, m ´ 1 ď nx ă m. So

x ă
m

n
ď

nx ` 1

n
ă

ny

n
“ y.

With r :“
m

n
P Q, the proof is complete. !

Lemma A.32. Let x “ rpanqnPNs P R. Given any rational ε ą 0, there exists an N P N such that
for all n ą N , an ` ε ě x ě an ´ ε.

Proof. Let a rational ε ą 0 be given. As panqnPN is a Cauchy sequence in Q, there exists an
N P N such that for all n,m ą N , |an ´ am| ă ε{2, i.e., ´ ε

2 ă an ´ am ă ε
2 . Fix an n ą N . For

all m ą N , an ` ε “ an ´ am ` am ` ε ą ´ ε
2 ` am ` ε “ am ` ε

2 , i.e.,

pan ` εq ´ am ą ε
2 “: d ą 0.

Thus rpan ` ε, an ` ε, an ` ε, ¨ ¨ ¨ qs ą rpamqmPNs “ x. For all m ą N , we also have

an ´ ε “ an ´ am ` am ´ ε ă ε
2 ` am ´ ε “ am ´ ε

2 ,

i.e., am´ pan´ εqą ε
2 ą0. So x“rpamqmPNs ą rpan ´ ε, an ´ ε, an ´ ε, ¨ ¨ ¨ qs. !
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Lemma A.33. Let x “ rpanqnPNs. Suppose that there exist α,β P R and N P N such that for all
n ą N , α ď an ď β. Then α ď x ď β.

Proof. By the density of Q in R, for each n P N, there exist αn,βn P Q such that

α ´
1

n
ă αn ă α, and β ă βn ă β `

1

n
.

We claim that pαnqnPN is a Cauchy sequence in Q. Indeed, for any n,m P N

α ´
1

n
ă αn ă α, and ´ α ă ´αm ă ´α `

1

m
,

which together give ´ 1
n ă αn ´ αm ă 1

m . Given any rational ε ą 0, let N 1 P N be such that
N 1 ą ε´1. Then for n,m ą N 1,

´
1

N 1 ă ´
1

n
ă αn ´ αm ă

1

m
ă

1

N 1 ,

so that |αn ´ αm| ă 1{N 1 ă ε. So pαnqnPN is a Cauchy sequence in Q. A similar proof shows that
also pβnqnPN is a Cauchy sequence in Q.

We now show that α “ rpαnqnPNs. To do this we eliminate the other possibilities, namely
α ă rpαnqnPNs or α ą rpαnqnPNs. Let α “ rprαnqnPNs.
1˝ Suppose α ă rpαnqnPNs. Then there exists a rational d ą 0 and an M P N such that for all

n ą M , αn ´ rαn ą d. By Lemma A.32 with ε “ d{2, there exists an M 1 P N such that for all
n ąM 1, rαn ` ε “ rαn `d{2 ě α. Thus for n ąM `M 1, d ă αn ´ rαn ď αn ´α` d

2 ă 0` d
2 “ d

2 ,

a contradiction.

2˝ Suppose α ą rpαnqnPNs. Then there exists a rational d ą 0 and an M P N such that for all
n ą M , rαn ´ αn ą d. By Lemma A.32 with ε “ d{4, there exists an M 1 P N such that for all
n ą M 1, rαn ´ ε “ rαn ´ d{4 ď α. Finally, there exists an M2 P N such that M2 ą 4{d. Then
for all n ą M ` M 1 ` M2, we have d ă rαn ´ αn ď d

4 ` α ´ αn ă d
4 ` 1

n
ă d

4 ` d
4 “ d

2 , a
contradiction.

Thus α “ rpαnqnPNs. In a similar manner, we also have β “ rpβnqnPNs.
Since for all n ą N we have an ´ αn ě α ´ αn ą 0, and βn ´ an ě βn ´ β ą 0, it follows from
Exercise A.26 that rpan ´αnqnPNs ě 0 and rpβn ´ anqnPNs ě 0, that is, x´α ě 0 and β ´x ě 0.
Rearranging, we obtain α ď x ď β. !

Theorem A.34. Every nonempty subset of R, bounded above, has a supremum.

Proof. Let S Ă R be a nonempty subset, which is bounded above. Since S is nonempty, there
exists an element a0 P S, and as S is bounded above, there exists an upper bound b0 P R, that is,
a ď b0 for all a P S.

S

a0 b0

We define a1, b1 as follows:

1˝ If a0`b0
2 is an upper bound of S, then define a1 :“ a0 and b1 :“ a0`b0

2 .

S

a0
“: a1

b1 b0

Then a0ďa1, b0ěb1, a1 P S, b1 is an upper bound of S, 0 ď b1 ´ a1ď b0´a0

2 .

2˝ If a0`b0
2 is not an upper bound of S, then there exists a b P S such that a0`b0

2 ă b, and taking
any such b, we define a1 :“ b and b1 “ b0.
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S

a0 b0
“: b1

b

“: a1

Then a0 ď a1, b0 ě b1, a1 P S, b1 is an upper bound of S, 0 ď b1 ´ a1 ď b0´a0

2 .

Suppose for some n P N,

‚ a0, a1, ¨ ¨ ¨ , an´1 P S and

‚ b0, b1, ¨ ¨ ¨ , bn´1, upper bounds for S,

have been constructed such that

‚ a0 ď a1 ď ¨ ¨ ¨ ď an´1

‚ b0 ě b1 ě ¨ ¨ ¨ ě bn´1, and

‚ 0 ď bk ´ ak ď b0´a0

2k , k P t1, ¨ ¨ ¨ , n ´ 1u.
Now we construct a new an P S and a new upper bound bn of S.

1˝ If an´1`bn´1

2 is an upper bound of S, then an :“ an´1 and bn :“ an´1`bn´1

2 . Then an´1 ď an,
bn´1 ě bn, an P S, bn is an upper bound of S, and

0 ď bn ´ an “ bn´1´an´1

2 ď b0´a0

2¨2n´1 “ b0´a0

2n .

2˝ If an´1`bn´1

2 is not an upper bound of S, then there exists a b P S such that an´1`bn´1

2 ă b, and

taking any such b, define an :“ b and bn “ bn´1. Then an´1 “ an´1`an´1

2 ď an´1`bn´1

2 ă b “ an,
bn´1 ě bn, an P S, bn is an upper bound of S, and

0 ď bn´ an “bn´1´ b ă bn´1´ bn´1`an´1

2 “ bn´1´an´1

2 ď b0´a0

2n .

So we get sequences a0, a1, ¨ ¨ ¨ in S, and b0, b1, ¨ ¨ ¨ of upper bounds of S, such that

‚ a0 ď a1 ď ¨ ¨ ¨ ,
‚ b0 ě b1 ě ¨ ¨ ¨ , and
‚ 0 ď bn ´ an ď b0´a0

2n , n P N.

If for some n ě 0, an “ bn, then we claim that u˚ :“ bn is the supremum of S. Indeed, firstly,
u˚ “ bn is an upper bound of S by construction. Moreover, for any u ă u˚ “ bn, u cannot be an
upper bound of S (because u ă u˚ “ bn “ an P S).

So we now have to consider the case that for all n ě 0, an ă bn. By the density of Q in R

(Lemma A.31), for each n P N, there exists an rn P Q such that an ă rn ă bn. We claim that
prnqnPN is a Cauchy sequence in Q. To see this, let ε ą 0 be a given rational number. By the
‘baby’ Archimedean principle (Lemma A.30), there exists an N P N such that N ą b0´a0

ε
, and so

b0 ´ a0
2N

ď
b0 ´ a0

N
ă ε

(thanks to the inequality n ă 2n for n P N: Indeed, we have 1 ă 21, and if n ă 2n, then
n`1 ă 2n`1 ă 2n`2n “ 2¨2n “ 2n`1). Now if n ą m ą N , then am ă rm ă bm, an ă rn ă bn,
an ě am, which together give

rm ´ rn ă bm ´ rn ă bm ´ an ď bm ´ am.

As bn ď bm, we have

rm ´ rn ą am ´ rn ą am ´ bn ě am ´ bm.

Hence

|rm ´ rn| ă bm ´ am ď
b0 ´ a0
2m

ă
b0 ´ a0
2N

ď
b0 ´ a0

N
ă ε.

So prnqnPN is a Cauchy sequence in Q, and u˚ :“ rprnqnPNs P R.
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We will now show that u˚ is the supremum of S. First, for every fixed m, we have for all
n ě m that am ď an ă rn ă bn ď bm, and so by Lemma A.33,

am ď u˚ ď bm. p‹q

Now suppose that u˚ is not an upper bound of S. Then there exists an a P S such that a ą u˚.
By the density of Q in R, there exists an r P Q such that

0 ă r ă a ´ u˚. p‹‹q

By the ‘baby’ Archimedean Principle, there exists an m P N such that m ą b0´a0

r
. So

0 ď bm ´ am ď
b0 ´ a0
2m

ď
b0 ´ a0

m
ă r.

Hence using (‹) and (‹‹),
bm ă am ` r ď u˚ ` r ă a,

a contradiction to the fact that bm is an upper bound of S.

Next, suppose that u ă u˚. Let r P Q be such that 0 ă r ă u˚ ´ u. In the same manner as
above, there exists an m P N such that 0 ď bm ´ am ă r. Then

am ą bm ´ r
p‹q
ě u˚ ´ r ą u,

showing u is not an upper bound of S. So u˚ is the least upper bound of S. !
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