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Preface

What is Real Analysis?

First of all, ‘Analysis’ refers to the subdomain of Mathematics, which is roughly speaking an
abstraction of the familiar subject of Calculus. Calculus arose as a box of tools enabling one to
handle diverse problems in the applied sciences such as physics and engineering where quantities
change (for example with time), and calculations based on ‘rates of change’ were needed. It soon
became evident that the foundations of Calculus needed to be made mathematically precise. This
is roughly the subject of Mathematical Analysis, where Calculus is made rigorous. But another
byproduct of this rigorisation process is that mathematicians discovered that many of the things
done in the set-up of usual calculus can be done in a much more general set up, enabling one to
expand the domain of applications. We will study such things in this course.

Secondly, why do we use the adjective ‘Real’? We will start with the basic setting of making
rigorous Calculus with real numbers, but we will also develop Calculus in more abstract settings,
for example in R™. Using this adjective ‘Real’ also highlights that the subject is different from
‘Complex Analysis’ which is all about doing analysis in C. (It turns out that Complex Analysis is
a very specialised branch of analysis which acquires a somewhat peculiar character owing to the
special geometric meaning associated with the multiplication of complex numbers in the complex
plane.)

These notes were written by me in 2011. Thanks are due to Konrad Swanepoel for his help
in correcting typos and updating the solutions. I would be grateful to hear about any remaining
mistakes or other comments.

Amol Sasane

vii






Chapter 1

Metric and normed spaces

We are familiar with concepts from calculus such as

(1) convergence of sequences of real numbers,
(2) continuity of a function f: R — R,
(3) differentiability of a function f: R — R.

Once these notions are available, one can prove useful results involving such notions. For example,
we have seen the following;:

Theorem 1.1. If f : [a,b] — R is continuous, then f has a minimiser on [a,b].

Theorem 1.2. If f : R — R is such that f"(z) = 0 for all x € R and f'(xo) = 0, then ¢ is a
minimiser of f.

We will revisit these concepts in this course, and see that the same concepts can be defined in
a much more general context, enabling one to prove results similar to the above in the more
general set up. This means that we will be able to solve problems that arise in applications
(such as optimisation and differential equations) that we wouldn’t be able to solve earlier with
our limited tools. Besides these immediate applications, concepts and results from real analysis
are fundamental in mathematics itself, and are needed in order to study almost any topic in
mathematics.

In this chapter, we wish to emphasise that the key idea behind defining the above concepts is
that of a distance between points. In the case when one works with real numbers, this distance
is provided by the absolute value of the difference between the two numbers: thus the distance
between z,y € R is taken as |x — y|. This coincides with our geometric understanding of distance
when the real numbers are represented on the ‘number line’. For instance, the distance between
—1 and 3 is 4, and indeed 4 = | — 1 — 3|.

| |z =yl |

x Yy

Figure 1. Distance between real numbers.

Recall for example, that a sequence (ay)nen is said to converge with limit L € R if for every € > 0,
there exists a N € N such that whenever n > N, |a, — L| < e. In other words, the sequence
converges to L if no matter what distance € > 0 is given, one can guarantee that all the terms of
the sequence beyond a certain index N are at a distance of at most € away from L (this is the
inequality |a, — L| < €). So we notice that in this notion of ‘convergence of a sequence’ indeed the
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2 1. Metric and normed spaces

notion of distance played a crucial role. After all, we want to say that the terms of the sequence
get ‘close’ to the limit, and to measure closeness, we use the distance between points of R.

A similar thing happens with all the other notions listed at the outset. For example, recall
that a function f : R — R is said to be continuous at c € R if for every € > 0, there exists a § > 0
such that whenever |z — ¢| < §, |f(z) — f(c¢)| < e. Roughly, given any distance ¢, I can find a
distance ¢ such that whenever I choose an x not farther than a distance § from ¢, I am guaranteed
that f(x) is not farther than a distance of € from f(c). Again notice the key role played by the
distance in this definition.

1.1. Distance in R

The distance between points z,y € R is taken as | — y|. Thus we have a map that associates to a
pair (z,y) € R x R of real numbers, the number |z — y| € R which is the distance between x and
y. We think of this map (z,y) — |z — y| : R x R > R as the ‘distance function’ in R.

Define d : R x R —» R by d(z,y) = |z — y| (z,y € R). Then it can be seen that this distance
function d satisfies the following properties:

(D1) For all z,y € R, d(x,y) = 0. If x € R, then d(z,z) = 0. If 2,y € R are such that
d(xz,y) =0, then x = y.

(D2) For all 2,y € R, d(z,y) = d(y, x).
(D3) For all z,y,z € R, d(z,y) + d(y, z) = d(z, 2).
It turns out that these are the key properties of the distance which are needed in developing

analysis in R. So it makes sense that when we want to generalise the situation with the set R
being replaced by an arbitrary set X, we must define a distance function

d: X xX—-R

that associates a number (the distance!) to each pair of points =,y € X, and which has the same
properties (D1)-(D3) (with the obvious changes: z,y,z € X). We do this in the next section.

1.2. Metric space

Definition 1.3. A metric space is a set X together with a function d : X x X — R satisfying the
following properties:

(D1) (Positive definiteness) For all z,y € X, d(z,y) =2 0. Forallz € X, d(z,2) =0. Ifz,y e X
are such that d(z,y) = 0, then = y.

(D2) (Symmetry) For all z,y € X, d(z,y) = d(y, x).
(D3) (Triangle inequality) For all z,y,z € X, d(z,y) + d(y, z) = d(=, 2).

Such a d is referred to as a distance function or metric.
Let us consider some examples.
Example 1.4. X := R, with d(z,y) := |z — y| (z,y € R), is a metric space. O

Example 1.5. For any nonempty set X, define

d(z,y) = {

This d is called the discrete metric. Then d satisfies (D1)-(D3), and so X with the discrete metric
is a metric space. <&

life#y
0 if z =y.



1.2. Metric space 3

Note that in particular R with the discrete metric is a metric space as well. So the above two
examples show that the distance function in a metric space is not unique, and what metric is to
be used depends on the application one has in mind. Hence whenever we speak of a metric space,
we always need to specify not just the set X but also the distance function d being considered. So
often we say ‘consider the metric space (X, d)’, where X is the set in question, and d : X x X — R
is the metric considered.

However, for some sets, there are some natural candidates for distance functions. One such

example is the following one.

Example 1.6 (Euclidean space R"). In R? and R?, where we can think of vectors as points in the
plane or points in the space, we can use the distance distance between two points as the length of
the line segment joining these points. Thus (by Pythagoras’s Theorem) in R?, we may use

d(z,y) = V/(x1 —y1)? + (22 — y2)?

as the distance between the points x = (z1,22) and y = (y1,%2) in R2. Similarly, in R3, one may

use

d(z,y) = \/(z1 = 11)% + (22 — 12) + (w3 — y3)?

as the distance between the points = (21,22, 73) and y = (y1,%2,y3) in R3. See Figure 2.

v y
d(z,y)
‘g,‘Q—yQ‘ |902*y2|
x
o3 s —ys|
z |z1—y1]
Figure 2. Distance in R? and R3.
In an analogous manner to R? and R?, more generally, for z,y € R” =: X, we define the

FEuclidean distance by

d(z, y) =4/§(zk — ) =@ =2+ (@n = )2

x1 Y1
z=|:|eR", y=|[1![eR"
Ln Yn
Then R™ is a metric space with the Euclidean distance, and is referred to as the Fuclidean space.

The verification of (D3) can be done by using the Cauchy-Schwarz inequality: For real numbers
T1,...,Tn and y1,...,Yn, there holds that

(E(Z)> (Zon)

for



4 1. Metric and normed spaces

This last property (D3) is sometimes referred to as the triangle inequality. The reason behind this
is that, for triangles in Euclidean geometry of the plane, we know that the sum of the lengths of
two sides of a triangle is at least as much as the length of the third side. If we now imagine the
points x,y, 2 € R? as the three vertices of a triangle, then this is what (D3) says; see Figure 3.

z

Y
Figure 3. How the triangle inequality gets its name.

Throughout this course, whenever we refer to R™ as a metric space, unless specified otherwise, we
mean that it is equipped with this Euclidean metric. Example 1.4 corresponds to the case when
n = 1. <&

Exercise 1.7. Verify that the d given in Example 1.5 does satisfy (D1)-(D3).

Exercise 1.8. One can show the Cauchy-Schwarz inequality as follows: Let x,y be vectors in R™ with the
components 21, ..., &, and y1, ..., yn, respectively. For a column vector € R”, 27 denotes its transpose.
For t € R, consider the function

fO)=(@+ty) (@+ty) =z v +2a y+t7y"y.
From the rightmost expression, we see that f is a quadratic function of the variable ¢. It is clear from the
middle expression that f(t¢), being the sum of squares

n

(ke + ),

k=1
is nonnegative for all ¢ € R. This means that the discriminant of f must be < 0, since otherwise, f
would have two distinct real roots, and would then have negative values between these roots! Calculate
the discriminant of the quadratic function and show that its nonpositivity yields the Cauchy-Schwarz
inequality.

Normed space. Frequently in applications, one needs a metric not just in any old set X, but in
a wvector space X.

Recall that a (real) vector space X, is just a set X with the two operations of vector addition
+ : X x X — X and scalar multiplication - : R x X — X which together satisfy the vector space
axioms.

But now if one wants to also do analysis in a vector space X, there is so far no ready-made
available notion of distance between vectors. One way of creating a distance in a vector space is
to equip it with a ‘norm’ | - ||, which is the analogue of absolute value | - | in the vector space R.
The distance function is then created by taking the norm ||z — y| of the difference between pairs
of vectors z,y € X, just like in R the Euclidean distance between x,y € R was taken as |z — y|.

Definition 1.9. Let (X, +, ") be a vector space. A function | - || : X — R is called a norm on X

if it satisfies the following properties:

(N1) (Positive definiteness) For all z € X, |z| = 0. If € X is such that ||z = 0, then = 0
(the zero vector in X).

(N2) (Positive homogeneity) For all a € R and all x € X, |a - 2| = |a]|z]-
(N3) (Triangle inequality) For all z,y € X, |z + y|| < |z| + |y]|-

A normed space is a vector space (X, +, ) together with a norm.
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If X is a normed space then

d(z,y) = |z —y| (2,y€X)
satisfies (D1)-(D3) and makes X a metric space (Exercise 1.11). This distance is referred to as
the induced distance in the normed space (X, | -||). Clearly then

|z = |z = 0] = d(=,0),
and so the norm of a vector is the induced distance to the zero vector in a normed space (X, | - ).

Example 1.10. R is a vector space with the usual operations of addition and multiplication. It
is easy to see that the absolute value function

x— |z| (xeR)
satisfies (N1)-(N3), and so R is a normed space, and the induced distance is the usual Euclidean
metric in R.
More generally, in the vector space R™, with addition and scalar multiplication defined com-
ponentwise, we can introduce the 2-norm as
|z|2 :=A/22 + -+ 22
for vectors « € R™ having components z1,...,x,. Then || - |2 satisfies (N1)-(N3) and makes R™ a

normed space. The induced metric is then the usual Euclidean metric in R”. &

Exercise 1.11. Verify that if X is a normed space with norm | - |, then d: X x X — R defined by
d(z,y) = ||z — y| satisfies (D1)-(D3). Hint: Use each of the properties (N1), (N2) and (N3).

Exercise 1.12 (Reverse Triangle Inequality). Let (X, ||-||) be a normed space. Prove that for all z,y € X,
Hel =Tyl < llz =yl

Exercise 1.13. Verify that the norm | - |2 given on R™ in Example 1.10 does satisfy (N1)-(N3).
Exercise 1.14. Let X be a metric space with a metric d. Define d; : X x X — R by

d(z,y)
d = —_2 ,y € X).
1(z,y) = 73 A.9) (z,y € X)
Note that di(z,y) < 1 for all z,y € X. Show that d; is a metric on X. Hint: For the triangle inequality,
write d; in a way in which d appears in just one place, e.g., d1 = 1— ﬁ ord; = %4-17 and use the triangle
d

inequality for d.

Exercise 1.15. Consider the vector space R™*™ of matrices with m rows and n columns of real numbers,
with the usual entrywise addition and scalar multiplication. For 1 <¢ <m, 1 < j < n, let m;; denote the

entry in the i'" row and j** column of M. Define for M € R™*", the number
M| :=  max  |mgl|
I<is<m, I<j<n
Show that | - |« defines a norm on R™*".

Exercise 1.16. Let C[a,b] denote the set of all continuous functions f : [a,b] — R. Then C[a,b] is a
vector space with addition and scalar multiplication defined pointwise. If f € C[a, b], define

[flleo = max [f(2)].
As z — |f(z)| : [a,b] — R is continuous, by the Extreme Value Theorem, the above maximum exists.

(1) Show that | - |« is a norm on Cfa, b].

(2) Let f € C[a,b] and let € > 0. Consider the set B(f,¢) := {g € Cla,b] : |f — gl < €}.
Draw a picture to explain the geometric significance of the statement g € B(f,¢).

Exercise 1.17. Cfa,b] can also be equipped with other norms. For example, prove that

b
£l = f f@)]dz (f € Cla,B])

also defines a norm on Cfa, b].
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Exercise 1.18. If (X,d) is a metric space, and if Y < X, then show that (Y,d|yxy) is a metric space.
(Here d|y xy denotes the restriction of d to the set Y x Y, that is, d|v xv (y1,y2) = d(y1,y2) for y1,y2 € Y.)
Hence every subset of a metric space is itself a metric space with the restriction of the original metric.
The metric d|yxy is referred to as the induced metric on' Y by d or the subspace metric on'Y obtained
from d, and the metric space (Y,d|yxy) is called a metric subspace of (X, d).

Exercise 1.19. The set of integers Z (< R) inherits the Euclidean metric from R, but it also carries a
very different metric, called the p-adic metric, where p is a prime number. For n € Z, the p-adic ‘norm’!
of n is |n|p := 1/p®, where k is the largest integer power of p that divides n. The norm of 0 is by definition
0. The more factors of p, the smaller the p-norm. The p-adic metric on Z is dp(z,y) := |z —y|p (z,y € Z).

(1) Prove that if z,y € Z, then |z + y|p, < max{|z|p, |y|p}-
(2) Show that d, is a metric on Z.

Exercise 1.20. Let ¢? denote the set of all ‘square summable’ sequences of real numbers:

¢ = {(an)nen = 3 lanf* < o0},

n=1

(1) Show that £? is a vector space with addition and scalar multiplication defined termwise.

00
(2) Let [[(an)nen|2 := 4 |an|? for (an)nen € £2. Prove that || - |2 defines a norm on £2.
n=1

So £2 is an infinite-dimensional analogue of the Euclidean space (R™, | - |2).

Exercise 1.21. Let £*° denote the set of all bounded sequences of real numbers:

(> = {(an)nEN :sup|an| < OO}A
neN

(1) Show that £* is a vector space with addition and scalar multiplication defined termwise.

(2) Let [|(an)nen|oo := sup |an| for (an)nen € £*. Prove that | - |« defines a norm on ¢~.
neN

Exercise 1.22 (Hamming Distance). Let F3 be the set of all ordered n-tuples of zeros and ones. For
example, F3 = {000, 001,010,011, 100, 101,110, 111}. For z,y € F3, let

d(z,y) = the number of places where = and y have different entries.

For example, in F3, we have d(110,110) = 0, d(010,110) = 1 and d(101,010) = 3. Show that (F%,d) is a
metric space. (This metric is used in the digital world, in coding and information theory.) Hint: For the
triangle inequality, consider the function dy : F5 x F3 — R defined by

1 if the k™" digit of = and y differ
0 otherwise,

Stz = {

and note that d(z,y) = >} 0k(z,y).
k=1

1.3. Neighbourhoods and open sets

Let (X,d) be a metric space. With the metric d we can describe ‘neighbourhoods’ of points by
considering sets which include all points whose distance to the given point is not too large.

Definition 1.23 (Open ball). Let (X, d) be a metric space. If x € X and r > 0, we call the set
B(z,r) ={ye X :d(z,y) <7}

the open ball centred at x with radius r.

The picture we have in mind is shown in Figure 4.

INote that Z is not a real vector space and so this is not really a norm in the sense we have learnt.
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Figure 4. The open ball B(z,r).

In the sequel, for example in our study of continuous functions, open sets will play an important
role. Here is the definition.

Definition 1.24 (Open set). Let (X,d) be a metric space. A set” U < X is said to be open if for
every z € U, there exists an r > 0 such that B(x,r) c U.

Note that the radius r can depend on the choice of the point x. See the picture below. Roughly
speaking, in a open set, no matter which point you take in it, there is always some ‘room’ around
it consisting only of points of the open set.

N

Example 1.25. Let us show that the set (a,b) is open in R. Given any x € (a,b), we have
a <z < b. Motivated by Figure 5, let us take r = min{z — a,b — z}. Then we see that » > 0 and
whenever |y — x| <, we have —r <y —z <r. So

a=z—(x—a)<z—-r<y<z+r<z+(b—x)=>b,

that is, y € (a,b). Hence B(z,r) < (a,b). Consequently, (a,b) is open.

_

a T b
_—

a T b

Figure 5. (a,b) is open in R.

On the other hand, the interval [a, b] is not open, because z := a € [a, b], but no matter how small
an r > 0 we take, the set B(a,r) = {yeR: |y —a| <7} = (a —r,a +r) contains points that do
not belong to [a, b]: For example, a — § € B(a,r), but a — % ¢ [a,b]. Figure 6 illustrates this. <&

A~
<+

Figure 6. [a,b] is not open in R.

2Open sets are often denoted with the letter U since the word umgebung in German means ‘neighbourhood’.
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Example 1.26. The set X is open, since given an z € X, we can take any r > 0, and notice that
B(x,r) ¢ X trivially.

The empty set ¢F is also open (‘vacuously’). Indeed, the reasoning is as follows: Can one show
an x for which there is no > 0 such that B(x,r) ¢ &7 And the answer is no, because there is

no z in the empty set (let alone an 2 which has the extra property that there is no r > 0 such
that B(z,r) < ). &

Exercise 1.27. Let (X,d) be a metric space, x € X and r > 0. Show that the open ball B(z,r) is an
open set.

Lemma 1.28. Any finite intersection of open sets is open.

Proof. It is enough to consider two open sets, as the general case follows immediately by induction
on the number of sets. Let Up,Us be two open sets. Let x € Uy n Us. Then there exist r; > 0,
ro > 0 such that B(xz,r;) ¢ Uy and B(xz,r3) < Us. Take r = min{ry,r2}. Then r > 0, and
we claim that B(z,r) < Uy n U. To see this, let y € B(x,r). Then d(z,y) < r < r; and
d(z,y) <r <re. Soye B(x,r1) n B(z,r1) < Uy n Us. O

Example 1.29. The finiteness condition in the above lemma cannot be dropped. Here is an
example. Consider the open sets in R given by

Un:=( L %) (neN).

_E,

Then we have [ U, = {0}, which is not open in R. &

neN

Lemma 1.30. Any union of open sets is open.

Proof. Let U; (i € I) be a family of open sets indexed® by the set I. If
s U Ui,
iel
then x € U;,, for some iy € I. But as Uy, is open, there exists a r > 0 such that B(z,r) < Ui,
Thus
B(z,r) cU;, © U U;.
i€l
Hence the union | J U; is open. O
i€l

Definition 1.31 (Closed set). Let (X, d) be a metric space. A set* F is closed if its complement
X\F is open.
Example 1.32. Let a,b € R and a < b. Then [a, b] is closed in R: Indeed, its complement R\[a, b]
is the union of the two open sets (—o0,a) and (b, 00). Hence R\[a,b] is open, and [a, b] is closed.

The set (—o0, b] is closed in R. (Why?)

The sets (a,b], [a,b) are neither open nor closed in R. (Why?) &

Example 1.33. X, (J are closed. &

Exercise 1.34. Show that arbitrary intersections of closed sets are closed. Prove that a finite union of
closed sets is closed. Can the finiteness condition be dropped in the previous claim?

Exercise 1.35. We know that the segment (0,1) is open in R. Show that the segment (0, 1) considered
as a subset of the plane, i.e., the set I := (0,1) x {0} = {(z,y) e R?*: 0 <z < 1, y = 0} is not open in R%.

3This means that we have a set I, and for each i € I, there is a set Uj;.
4Closed sets are often denoted with the letter F' since the word fermé in French means ‘closed’.
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Exercise 1.36. Consider the following three metrics on R?: for x = (z1,%2), y = (y1,y2) € R?,

d1($7y) = |$1—y1|+|$2—y2|7
da(z,y) = +/(x1—y1)? + (w2 — 12),
doo(z,y) 1= max{|z1 —y1], [v2 — y2|}.

We already know that d» defines a metric on R?: Tt is just the Euclidean metric induced by the norm |- |2.

(1) Verify that di and do are also metrics on R?.
(2) Sketch the ‘unit balls’ B(0, 1) in each of the metrics.

(3) Give a pictorial ‘proof without words’ to show that a set U is open in R? in the Euclidean metric
if and only if it is open when R? is equipped with the metric d; or the metric do. Hint: Inside
every square you can draw a circle, and inside every circle, you can draw a square!

Remark: Note that (R? d1), (R? d2) and (R? dy) are all different metric spaces. This illustrates the
important fact that for a given set, we can obtain various metric spaces by choosing different metrics.
What metric is considered depends on the particular application at hand. For example, imagine a city
(like New York) in which there are streets and avenues with blocks in between, forming a square grid as
shown in the picture below.

Then if we take a taxi/cab to go from point A to point B in the city, it is clear that it isn’t the Euclidean
norm in R? which is relevant, but rather the || - |;-norm in R2. (It is for this reason that the | - |1-norm
is sometimes called the tazicab norm.) So what norm one uses depends on the situation at hand, and is
something that the modeller decides. It is not something that falls out of the sky!

Exercise 1.37. Determine if the following statements are true or false. Give reasons for your answers.

(1) If a set is not open, then it is closed.

(2) If a set is open, then it is not closed.

(3) There are sets which are both open and closed.
(4) There are sets which are neither open nor closed.
(5) Qis open in R.

(6) Qis closed in R.

(7) Z is closed in R.

Exercise 1.38. Show that the unit sphere with centre 0 in R®, namely the set
S*:={zeR®: 2] + 23+ a3 =1}
is closed in R3.

Exercise 1.39. Let (X,d) be a metric space. Show that a singleton (a subset of X containing precisely
one element) is always closed. Conclude that every finite subset of X is closed.

Exercise 1.40. Let X be any nonempty set equipped with the discrete metric. Prove that every subset
Y of X is both open and closed.

Exercise 1.41. A subset Y of a metric space (X, d) is said to be dense in X if for all z € X and all € > 0,
there exists a y € Y such that d(z,y) < e. (That is, if we take any = € X and consider any ball B(z,¢)
centred at x, it contains a point from Y. In everyday language, we may say for example that ‘These woods
have a dense growth of birch trees’, and the picture we then have in mind is that in any small area of the
woods, we find a birch tree. A similar thing is conveyed by the above: no matter what ‘patch’ (described
by B(z,€)) we take in X (thought of as the woods), we can find an element of Y (analogous to birch trees)
in that patch.) Show that Q is dense in R by proceeding as follows.
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If z,y € R and x < y, then show that there is a ¢ € Q such that x < ¢ < y. Hint: By the Archimedean
property® of R, there is a positive integer n such that n(y — x) > 1. Next there are positive integers m1,
mga such that mi; > nz and ma > —nz so that —mo < nz < mi. Hence there is an integer m such that
m — 1 < nx < m. Consequently nx < m < 1+ nx < ny, which gives the desired result.

Conclude that Q is dense in R.

Exercise 1.42. Is the set R\Q of irrational numbers dense in R? Hint: Take any x € R. If z is irrational

itself, then we may just take y to be x and we are done; whereas if x is rational, then take y = = + */75
with a sufficiently large n € N.

Exercise 1.43 (Weierstrass’s Approximation Theorem). The aim of this exercise is to show that polyno-
mials are dense in (Cl[a,b], | - [«). By considering the map @ +— @ (a +-(b—a)) : C[a,b] — C[0, 1], we see
that there is no loss of generality in assuming that a = 0 and b = 1. For @ € C[0,1] and n € N, let B,z
be the polynomial given by

(Baz)(t) = 3 a(5)()F1 0", te[01].

n
0

Introduce the auxiliary polynomials pn i (t) := (})t"(1 — )", t € [0,1], 0 < k < n, n € N. Show that

IA\NM:

n

éopk,n(t) _1, éokpk,n(t) =t 3 (k- nt)2pen(t) = nt(1 —t).

The proof of Weierstrass’s Approximation Theorem can now be completed as follows. For § > 0, we have

n

k — nt)? -
Y Pk < X pak®) S < S (k- )’ pen(t) = U5 <
ki & —t]>5 ki & —t]=6 —— k=0

=1

where we used the observation 0 < (vt —+/1—#)? = 1 — 24/t(1 — t) for all ¢t € [0,1], in order to obtain
the last inequality. Now for 6 > 0, set ws(x) := sup |x(t) — x(s)|. Then we have

[t—s|<d

(Baz)1) = 2()] = [(Ba2)(®) ~ 2(t) 3 pus(t)] = |  @(5)pus(®) — (1) 3 pos(t)

<é§ l2(5) —z®)lpni) = X |2(E) —a@)par) + X |2() —zt)|par(®)

0 kil £ —t]<s ki £ —t]>6

8

<ws(@) XN paplt) +20T|ogm <ws(@) 1+ S
k| & —t|<s

Let € > 0. Since x is ‘uniformly continuous’®, we can choose § > 0 such that ws(x) < €¢/2. Next choose

n > |&]w/(¢6%). Then it follows from the above that |B,z — x|« < ¢, completing the proof of the
Weierstrass Approximation Theorem.

Exercise 1.44 (Separable spaces). Recall that if S is an infinite set, then S is said to be countable if there
is a bijective map from N onto S. If S is not countable, it is called uncountable. The set Q is countable; see
the MA103 notes. On the other hand, the set A consisting of all {0, 1}-valued sequences, is uncountable.
(Indeed, if there exists an enumeration fi, f2, f3,--- of these sequences, we arrive at a contradiction by
constructing an f € A which differs from each of these sequences: For n € N, set

_f0if fu(n) =1,
f(n) = { 1 if f.(n) =0.
Then f # fi1 since f(1) # fi(1), f # f2 since f(2) # [2(2), f # f3 since f(3) # f3(3), and so on, showing
that f differs from each of f1, f2, fs,- -, a contradiction.)

A metric space (X, d) is separable if it has a countable dense set, i.e., there exists D := {z1,z2,23, -} € X
such that for every r > 0 and every = € X, there exists an =, € D such that d(z»,z) < r. For example R
is separable, since we can simply take D = Q. Show that £* from Exercise 1.21 is not separable.

Hint: Consider the set A — £* of all sequences with each term equal to 0 or 1. Then the distance
between any two distinct elements of A is at least 1. If D = {g1, g2, g3, -} is a dense subset of £*°, then
obtain an injective map from A to N by considering the ball B(f, %) for each f e A. This contradicts the
uncountability of A.

5The Archimedean property of R says that if z,y € R and = > 0, then there exists an n € N such that y < nz. See the
notes for MA103.

6We will learn about uniform continuity in Chapter 4. Here « : [0,1] — R is uniformly continuous if for every € > 0,
there exists a 6 > 0 such that for all ¢, s € [0, 1] satisfying |t — s| < §, there holds that |z(t) — x(s)| < e. We will learn
Proposition 4.69, which implies that every continuous function on [0, 1] is uniformly continuous.
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Exercise 1.45. A subset C of a normed space X is called convez if for all z,y € C, and all ¢t € (0,1),
(1 —t)x + ty € C. (Geometrically, this means that for any pair of points in C, the ‘line segment’ joining
them also lies in C'.)
(1) Show that the open ball B(0,r) with centre 0 € X and radius r > 0 is convex.
(2) Is the unit circle S' = {x € R? : |z||2 = 1} a convex set in R??
(3) Let Ae R™ ™ and b e R™. Prove that the ‘Linear Programming Simplex’”
Yi={zxeR": Az =b, 1 >0, ..., z, =0}

is a convex set in R".

Exercise 1.46. Define d : R? x R? - R by

z|o + if © # vy,
d(z,y) ={ p) 2+ Iyl if:v:g;; (a@yeRQ)

We call this metric the ‘express railway metric’. (For example in the British context, to get from A to B,
travel via London, the origin.)

Show that the express railway metric is a metric on RZ.

Exercise 1.47. Let (X, d) be a metric space, x € X, R > 0. Show that B(z,R) := {y € X : d(y,z) < R}
is a closed set.

1.4. Notes (not part of the course)

Topology. If we look at the collection O of open sets in a metric space (X, d), we notice that it has the
following three properties:

(T1) &, X € 0.

(T2) If U; (i € I) is family of sets from O indexed by I, then | U; € O.
iel
n
(T3) If Ui, ...,U, is a finite collection of sets from O, then (| U; € O.
i=1
More generally, if X is any set (not necessarily one equipped with a metric), then any collection O of
subsets of X that satisfy the properties (T1), (T2), (T3) is called a topology on X and (X, O) is called a
topological space. So for a metric space X, if we take O to be family of open sets in X, then we obtain a
topological space. More generally, if one has a topological space (X, Q) given by the topology O, we call
each element of O open.

Topological spaces

Metric spaces

Normed Vector

spaces spaces

It turns out that one can in fact extend some of the notions from Real Analysis (such as convergence of
sequences and continuity of maps) in the even more general set up of topological spaces, devoid of any
metric, where the notion of closeness is specified by considering arbitrary open neighbourhoods provided
by elements of O. In some applications this is exactly the right thing needed, but we will not go into such
abstractions in this course. In fact, this is a very broad subdiscipline of mathematics called Topology.

TThis set arises as the ‘feasible set’ in a certain optimisation problem in R"™, where the constraints are described by a
bunch of linear inequalities.
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Construction of the set of real numbers. In these notes, we treat the real number system R as a
given. But one might wonder if we can take the existence of real numbers on faith alone. It turns out
that a mathematical proof of its existence can be given. Roughly, we are already familiar with the natural
numbers, the integers, and the rational numbers, and their rigorous mathematical construction is also
relatively straightforward. However, the set Q of rational numbers has ‘holes’ (for example in MA103 we
have seen that this manifests itself in the fact that Q does not possess the least upper bound property).
The set of real numbers R is obtained by ‘filling these holes’. There are several ways of doing this. One
is by a general method called ‘completion of metric spaces’. Another way, which is more intuitive, is via
‘(Dedekind) cuts’, where we view real numbers as places where a line may be cut with scissors. More
precisely, a cut A|B in Q is a pair of subsets A, B of Q such that A| JB=Q, A # &, B+ &, A(\B =,
if a e A and b e B then a < b, and A contains no largest element. R is then taken as the set of all cuts
A|B. Here are two examples of cuts:

AIB = {reQ:r<1}|{reQ:r=1}
AB = {reQ:r<0orr’<2}|{reQ:r>0andr’>2}.

It turns out that R is a field containing Q, and it possesses the least upper bound property. The interested
reader is referred to the Appendix to Chapter 1 in the classic textbook by Walter Rudin [R].

Although it is not a part of the course, we give the construction of R via the completion of Q in an
Appendix (pp.101-111) to these notes.



Chapter 2

Sequences

In this chapter we study sequences in metric spaces. The notion of a convergent sequence is an
important concept in Analysis. Besides its theoretical importance, it is also a natural concept
arising in applications when one talks about better and better approximations to the solution of a
problem using a numerical scheme. For example the method of Archimedes for finding the area of
a circle by sandwiching it between the areas of a circumscribed and an inscribed regular polygon
of ever increasing number of sides. There are also numerical schemes for finding a minimiser of a
convex function (Newton’s method), or for finding a solution to an ordinary differential equation
(Euler’s method), where convergence in more general metric spaces (such as R™ or C[a,b]) will
play a role.

Before proceeding onto sequences in general metric spaces, let us first begin with (numerical)
sequences in R.

2.1. Sequences in R
Let us recall the definition of a convergent sequence of real numbers.

Definition 2.1. A sequence (a,)nen of real numbers is said to be convergent with limit L € R if
for every € > 0, there exists an N € N such that whenever n > N, |a, — L| < e.

We have learnt that the limit of a convergent sequence (ay,)nen is unique, and we denote it by

lim a,.
n—o0

We have also learnt the following important result’:

Theorem 2.2 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a
convergent subsequence.

An important consequence of this result is the fact that in R, the set of convergent sequences
coincides with the set of Cauchy sequences. Let us first recall the definition of a Cauchy sequence.

Definition 2.3. A sequence (a,)nen of real numbers is said to be a Cauchy sequence if for every
€ > 0, there exists an N € N such that whenever m,n > N, |a, — an,| < €.

Roughly speaking, we can make the terms of the sequence arbitrarily close to each other provided
we go far enough in the sequence.

1See the MA103 lecture notes.
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Example 2.4. The sequence (%)neN is Cauchy. Indeed, we have |% — %| < %—i— % < % + % = %

whenever n,m > N. Thus given € > 0, we can choose N € N larger than % so that we then have
L1 % < e for all n,m > N. Consequently, (£),ex is Cauchy. <&

n m ;
Exercise 2.5. Show that if (an)nen is a Cauchy sequence, then (an+4+1 — an)nen converges to 0.

Example 2.6. This example shows that for a sequence (a,)nen to be Cauchy, it is not enough
that (an4+1 — an)nen converges to 0. Take a,, := 4/n (n € N). Then

Uit =t = VN + 1= = o= 250,
but (an)nen is not Cauchy, since for any n € N, |ag, — an| = V4n — \/n = /n > 1. ol

The next result says that Cauchyness is a necessary condition for a sequence to be convergent.

Lemma 2.7. Every convergent sequence is Cauchy.

Proof. Let (ay)neny be a sequence of real numbers that converges to L. Let € > 0. Then there
exists an N € N such that |a, — L| < §. Thus for n,m > N, we have

lan — am| = |an — L+ L — ap| < lan — L] + [am — L| < §+ § = €.

So the sequence (ap)nen is a Cauchy sequence. O

Now we will prove the remarkable fact in R, Cauchyness turns out to be also a sufficient condition
for the sequence to be convergent. In other words, in R, every Cauchy sequence is convergent. This
is a very useful fact since, in order to prove that a sequence is convergent using the definition,
we would need to guess what the limit is. In contrast, checking whether or not a sequence is
Cauchy needs only knowledge of the terms of the sequence, and no guesswork regarding the limit
is needed. So this is a powerful technique for proving existence results.

Theorem 2.8. FEvery Cauchy sequence in R is convergent.

Proof. There are three main steps. First we show that every Cauchy sequence is bounded. Then
we use the Bolzano-Weierstrass theorem to conclude that it must have a convergent subsequence.
Finally we show that a Cauchy sequence having a convergent subsequence must itself be convergent.

Step 1. Suppose that (ay)nen is a Cauchy sequence. Choose any positive €, say € = 1. Then there
exists an N € N such that for all n,m > N, |a, — amm| < €. In particular, with m = N +1 > N,
and n > N, |a, — any+1| < €. Hence by the triangle inequality, for all n > N,

|an| = lan — an+1 + ania| < fan — ania| + lans1]| < 1+ an4al-

On the other hand, for n < N, |a,| < max{|ai|,...,|an]|,|lans+1| + 1} =: M. Consequently,
lan| < M for all n € N, that is, the sequence (an)nen is bounded.

Step 2. By the Bolzano-Weierstrass Theorem, the bounded sequence (a,)neny has a convergent
subsequence (an, )ken that is convergent, to L, say.

Step 3. Finally we show that (a,)nen is also convergent with limit L. Let € > 0. Then there exists
an N € N such that for all n,m > N,

|an — am| < 5. (2.1)

Also, since (an, )ren converges to L, we can find® an ng > N such that |a,, — L| < §. Taking

m = ng in (2.1), foralln > N, |an—L| = [an —any +an, —L| < [0 —an |+ |an, —L| < §+5 =€
Thus (an)nen is also convergent with limit L, and this completes the proof. O

21¢ ni1 <mng < ng < --- is a strictly increasing sequence of natural numbers, then ngx > k. (Indeed, n1 > 1, and if ny, > k
for some k € N, then ny41 > ny = k gives nx+1 > k + 1, and the claim follows by induction.) So here, we if K’ is such

that for k > K', |an, — L| < §, we may take K = max{K’, N} + 1 (since nk 2 K> N +1> N and ng > K').
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Exercise 2.9. Determine if the following statements are true or false. Give reasons for your answers.

(1) Every subsequence of a convergent real sequence is convergent.

(2) Every subsequence of a divergent real sequence is divergent.

(3) Every subsequence of a bounded real sequence is bounded.

(4) Every subsequence of an unbounded real sequence is unbounded.

(5) Every subsequence of a monotone real sequence is monotone.

(6) Every subsequence of a nonmonotone real sequence is nonmonotone.

(7) If every subsequence of a real sequence converges, the sequence itself converges.

(8) If for areal sequence (an )nen, the sequences (azn )nen and (az2n+1)nen both converge, then (an)nen

converges.

(9) If for a real sequence (an)nen, the sequences (azn )nen and (azn+1)nen both converge to the same
limit, then (an)nen converges.

Exercise 2.10. Fill in the blanks in the following proof of the fact that every bounded increasing sequence
of real numbers converges.

Let (an)nen be a bounded increasing sequence of real numbers. Let M be the upper bound of the
set {an : n € N}. The existence of M is guaranteed by the of the set of real numbers. We show
that M is the of (an)nen. Taking € > 0, we must show that there exists a positive integer N such
that for all n > N. Since M —e < M, M — € is not of {an : n € N}. Therefore there exists
N with >an > . Since (an)nen is , lan — M| < efor all n > N. m]

Exercise 2.11 (Euler’s constant, e). Consider the sequence (ay)nen, where ay, := 1+ % + % + % +-- -+ %7
n € N. Then (an)nen is increasing, as ant+1 — a > 0 for all n € N.

(1) Show that (an)nen is bounded.

_ 1
n T (n+1)!

1—

ES

Hint: an =1+ 14+ 3+ 55+ 433 <I+1+5+5+ - +7m5=1+ <3
As (an)nen is monotone and bounded, it is convergent, and we set a := lim an.
n—o0

Next, consider the sequence (by)nen, where by, := (1 + %)", n € N. Using the Binomial Theorem,
b, = 1+n%+ﬂ’;!;1)n_12+...+ﬂ%n%
=1+1+50-H+--+50-21)-(1-21).

n

(2) Show by replacing n by n + 1 in factors of the type (1 — £) that b, < bni1, n € N.
(3) Show that b, < an < 3.

As (bn)nen is monotone and bounded, it is convergent, and we set b := lim by,.
n—00

4) Fix m € N. Showthatforn}m,bn21+1+%(1—%)—&----4—#(1—%)---(1—’”—_1)4

n

(4)
(5) Conclude, by passing to the limit as n — o0 in the result from (4), that b = anm. Show that b = a.
(6) Use part (3) to conclude that b < a. From parts (5) and (6), we get b = a.

We call this number Euler’s number, denoted by e € R: lim (1+2)" =e = lim (1+ 4+ g+ 3+ + 7).

n!
Exercise 2.12. For each of the following sequences, determine whether it converges or not, and find the

limit in case of convergence. Give reasons for your answers.

(1) (cos(mn))nery (2) (14 n2)nen (3) (F22),en (4) (1 — 222),0n (5) (07 )nen (6) 0.9, 0.99, 0.999, - - -

n

Exercise 2.13. Let (an)nen be bounded. Define ¢, = inf{a, : n > k} and ur = sup{an : n = k} (k€ N).

(1) Show that (£n)nen, (Un)nen are bounded and monotone, and hence convergent. Their respective limits

are called the limit superior and limit inferior, respectively, and denoted by liminf a,, and lim sup a,.
n—0 n— o0

(2) Show that liminf a, < limsupa,. Given an example to show that there can be a strict inequality.
n—o n—oo

(3) Prove that (an)nen is convergent if and only if lim inf a,, = lim sup ay,.
n—00 n— o0

Moreover, then lim a, = liminf a,, = lim sup a,.
n—00 n—00 n—oo
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2.2. Sequences in metric spaces

We now give the notion of convergence of a sequence in a general metric space. We will see that
essentially the definition is the same as in R, except that instead of having the distance between
the n'" term and the limit L given by |a, — L|, now we will replace it by d(a,, L) in a general
metric space with metric d.

Definition 2.14. A sequence (an)nen of points in a metric space (X, d) is said to be convergent
with limit L € X if for every e > 0, there exists an NV € N such that whenever n > N, d(a,, L) <e.

Let us understand this definition pictorially. We have been given a sequence (a, )nen of points and
a candidate L for its limit. We are allowed to say that this sequence converges to L if given any
€ > 0, that is, no matter how small a ball we consider around L,

there is an index N such that all the terms of the sequence beyond this index lie inside the ball.

Lemma 2.15. The limit of a convergent sequence in a metric space is unique.

Proof. Suppose that (ay)nen is a convergent sequence, and let it have two distinct limits Ly and
L2. Then d(Ll, LQ) > 0. Set

1
€ = §d(L1,L2) > 0.

Then there exists an N7 such that for all n > Ny, d(an,L1) < e. Also, there exists an Ny such
that for all n > Na, d(a,, L) < €. Hence for any n > max{Ny, Na}, we have

d(Ll,Lg) < d(Ll,an) + d(an,Lg) <e+e= d(Ll,Lg),

a contradiction. Thus the limit of (ay)nen is unique. O
If (an)nen is a convergent sequence, then we will denote its (unique) limit by lim a,.
n—00

Exercise 2.16. Let (an)nen be a sequence in the Euclidean space R?. Show that (an)nen is convergent
with limit L if and only if for every k € {1,...,d}, the sequence (a%k))nEN in R formed by the k" component
of the terms of (an)nen is convergent with limit L®), (Here we use the notation v™® for the k'™ component
of a vector v € Rd.)

Exercise 2.17. Consider the sequence (an)nen in the Euclidean space R?:
_n_
G 1= {47:2'2] (n eN).
nZ+1

Show that (an)nen is convergent. What is its limit?
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Exercise 2.18. Let X be a nonempty set equipped with the discrete metric. Show that a sequence
(an)nen is convergent if and only if it is eventually a constant sequence (that is, there is a ¢ € X and an
N e N such that for all n > N, an = ¢).

Exercise 2.19. Let (X, d) be a metric space and let (an)nen and (bn)nen be convergent sequences in X

with limits a and b, respectively. Prove that (d(an,bn))nen is a convergent sequence in R with limit d(a, b).
Hint: d(an,bn) < d(an,a) + d(a,b) + d(b,bn).

Exercise 2.20. Let vi = (x1,y1) € R? be such that 0 < z1 < y1. Define
Unt+1 = (Tnt1,Yn+1) = (\/TnYn, W) for all n € N.

(1) Show that 0 < Zn, < Zn+1 < Ynt+1 < Yn and that yn41 — Tnt1 < Yng1 — Tn = y";”

(2) Conclude that lim v, exists and equals (¢, c) for some number c € R.

n—0o0

This value c is called the arithmetic-geometric mean®, of 1 and 31, and is denoted by agm (z1, y1).

We can also define Cauchy sequences in a metric space analogous to the situation in R.

Definition 2.21. A sequence (a,)nen of points in a metric space (X,d) is said to be a Cauchy
sequence if for every e > 0, there exists an N € N such that whenever m,n > N, d(am,an) < €.

Lemma 2.22. FEvery convergent sequence is Cauchy.

Proof. The proof is the same, mutatis mutandis®, as the proof of Lemma 2.7. Let (an)nen be a
sequence of points in X that converges to L € X. Let € > 0. Then there exists an N € N such
that d(a,, L) < §. Thus for n,m > N, we have d(an,am) < d(an, L) +d(L,an) < §+ 5 = €. So
the sequence (an)nen is a Cauchy sequence. O

In R, we have seen that { convergent sequences } = { Cauchy sequences }. This raises the tempting
question of whether this equality is true in general metric spaces too:

?

D
{ convergent sequences } { Cauchy sequences }.
C
v
Convergent Cauchy
sequences sequences
Showing membership here Showing membership here
needs knowledge of limit needs no knowledge of limit,
(Harder!) but only an investigation

of the mutual behaviour of the
terms of the sequence
(Easier!)
If the two sets coincide, then one can conclude that a sequence is convergent by just checking
Cauchyness. This is the basis of many ezistence results in Analysis. For example, the convergence
tests of series, the existence results for differential equations, etc. Once existence is known, (and

after showing uniqueness, if valid), one can justify and use numerical approximations.

Unfortunately, the two sets do not always coincide. For example, consider the metric space
X = (0,1] with the same Euclidean metric as in R. Then the sequence (%)neN is easily seen to be
Cauchy, but is not convergent in X, as there is a missing point in X, namely 0. However, in some
other metric spaces, such as R, the set of convergent sequences and the set of Cauchy sequences do

coincide. So it makes sense to give such metric spaces a special name: they are called ‘complete’.
Definition 2.23. A metric space in which every Cauchy sequence converges is called complete.

3G auss P . (> 1 i — +b i ubstituti
Gauss observed that I(a,b) := {*_ EE R dx satisfies I(a,b) = I(%3=,Vab) with the help of the substitution

t = %(m - ’l?b), and using this, obtained the remarkable result that Sof

1 _ w
® JaTrat e T mEma
41,atin phrase meaning ‘by changing those things which need to be changed’.
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Example 2.24. R with the Euclidean metric is complete. <

Exercise 2.25. Let X = (0,1] be equipped with the same Euclidean metric as in R. Show that the
sequence (£ )nen does not converge in X.

Exercise 2.26. Show that Q with the Euclidean metric is not complete. Hint: Revisit the solution to
part (6) of Exercise 1.37.

Exercise 2.27. Let X be a metric space. If (2,)nen is a Cauchy sequence in X which has a convergent
subsequence (Zn, )ken with limit L, then show that (zn)nen is convergent with the same limit L.

Theorem 2.28. R? is complete.

Proof. (Essentially, this is because R is complete, and one has d copies of R in R%.) Suppose that

(@n)nen is a Cauchy sequence in R%:
€]

Tn
an = |
o0
We have |z,(,k) - ng)| < |lan —amll2 (n,me N, k =1,...,d), from which it follows that each of the
sequences (z%k))neN, k =1,...,d, is Cauchy in R, and hence convergent, with respective limits,
say LW ... L@ e R. So given € > 0, there exists a large enough N such that whenever n > N,
we have |ac,(,k) — LW < ﬁ, ke{l,...,d}. Set
L)
L=| : |[eR%
L)

d d
Thus for n > N, |a, — L|2 = \/Z 2 — LW < \/Z % = €. S0 (an)nen converges to L. O
k=1 k=1

Exercise 2.29. R™*" with the metric induced by | - || is complete. (See Exercise 1.15 for the definition
of the norm | - | on the vector space R™*".)

Exercise 2.30. Recall the normed space £ from Exercise 1.21. Show that £ is complete with the metric
induced by || - |-

The theorem below is important, and lies at the core of a result on the existence of solutions for
Ordinary Differential Equations (ODEs). You can learn more about this in the course Differential
Equations (MA209). (See Exercise 1.16 for the definition of the norm | - ||, on C[a, b].)

Theorem 2.31. C[a,b] with the metric induced by || - | is complete.

Proof. (You may skip this proof.) The idea behind the proof is similar to the proof of the
completeness of RY. If (f,)nen is a Cauchy sequence, then we think of the f,(z) as being the
‘components’ of f,, indexed by x € [a, b]. We first freeze an x € [a, b], and show that (fy,(z))nen is
a Cauchy sequence in R, and hence convergent to a number (which depends on ), and which we
denote by f(z). Next we show that the function 2 — f(z) is continuous, and finally that (fy,)nen
does converge to f.

/_\Y\_//"\ fl
s
1 f2

/FT\—/\fg

|
|
|
|
T

T T
a T b

The Cauchy sequence (fp(z))nen obtained from the Cauchy sequence (fn)pnen by freezing .
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Let (fn)nen be a Cauchy sequence. Let x € [a,b]. We claim that (f,,(z))nrey is a Cauchy sequence
in R. Let € > 0. Then there exists an N € N such that for all n,m > N, | f, — fm|x < €. But

|fn(z) = fm(2)] < ygl[%] [fn(y) = (@) = [fr = fmloo <

for n,m > N. This shows that indeed (f,(z))nen is a Cauchy sequence in R. But R is complete,
and so the Cauchy sequence (f,,(2))nen is in fact convergent, with a limit which depends on which
x € [a,b] we had frozen at the outset. To highlight this dependence on z, we denote the limit
of (fn(x))nen by f(z). (Thus f(a) is the number which is the limit of the convergent sequence
(frn(a))nen, f(b) is the number which is the limit of the convergent sequence (f,(b))nen, and so
on.) So we have a function from [a,b] to R, so that

x is sent to the number which is the limit of the convergent sequence (f,,(z))nen.

We call this function f. This will serve as the limit of the sequence (f,)nen. But first we have to
see if it belongs to C[a,b], that is, we need to check that this f is continuous on [a, b].

Let « € [a,b]. We will show that f is continuous at x. Recall that in order to do this, we
have to show that for each € > 0, there exists a 6 > 0 such that whenever |y — x| < §, we have
|f(y) — f(z)| <e. Let e > 0. Choose N large enough so that for all n,m > N,

Ifrn = frnloo < §-
Let y € [a,8]. Then for n.> N, [fu(y) — fxs1(0)] < [ — Fivsrlo < 5. Now let n — o0:
[f(y) = Fvar)l = lm | fu(y) = Fva(y)l < 5
As the choice of y € [a,b] was arbitrary, we have for all y € [a, b] that
1f(y) = Inaa(m)l < 5
Now fn+1 € C[a,b]. So there exists a 6 > 0 such that whenever |y — z| < §, we have
|fN+1(y) — fvsa(z)| < 5.
Thus whenever |y — x| < §, we have

l[f(y) = f@)| = |f(y) = fve1(w) + fve1(y) — fvea(@) + frga(x) — fo)]
< |fy) = v+ [fve1(y) — fve(@)] + [y (z) — f(o)]
SSst+stg=c

So f is continuous at x. As the choice of x € [a, b] was arbitrary, f is continuous on [a, b].

Finally, we show that (f,)neny does converge to f. Let € > 0. Choose N large enough so
that for all n,m > N, ||fn — fmlew < €. Fix n > N. Let z € [a,b]. Then for all m > N,

(@) = fan@)| < [ fo ~ fonlio < . Thus
(@) = F@)] = T |fu(y) — fm(w)] <
But € [a, b] was arbitrary. Hence
I = Fllo = masc |fu(e) = F(a)| < e

But we could have fixed any n > N at the outset and obtained the same result. So we have that

foralln > N, || fn — flowo < €. Thus lim f,, = f, and this completes the proof. O
n—o0

The norm | - | is special in that C|a,b] is complete with the corresponding induced metric. It

turns out that C[a,b] with the other natural norm met earlier, namely the | - [;-norm, is not

complete. The objective in the following exercise is to demonstrate this.



20 2. Sequences

Exercise 2.32. Let C|[0, 1] be equipped with the || - |[;-norm given by | f|1 := S; |f(z)|dz (f € C[O0,1]).
Show that the corresponding metric space is not complete. For example, you may consider the sequence
(fn)nen with the f,, as shown in Figure 2.2. Show that for n,m > N,

3 tmax{ iy, ) 2
[ frn = fmlr = 1§31 |fu(z) = fin(2)|dz < 2,

and so (fn)en is Cauchy. Prove that if (fn)nen converges to f € C[0, 1], then f must satisfy
0 for z € [0, 1],
f@) = {1 for z € (3,1],

which does not belong to C[0, 1], a contradiction.

fn

T
0

L T
+ n+1 1

vl

o=

Exercise 2.33. Show that any nonempty set X equipped with the discrete metric is complete.

Exercise 2.34. Prove that Z equipped with the Euclidean metric induced from R is complete.

2.3. Pointwise and uniform convergence
Convergence in (Ca,b], | - |l«) is referred to as uniform convergence. More generally, we have the
following definition.
Definition 2.35. Let X be any set and f, f, : X — R (n € N) be functions.
(1) The sequence (fy)nen is said to converge uniformly to f if
Ve > 0, 3N € N such that Yn > N, Ve e X, |fn(x) — f(z)| <e.
(2) The sequence (fy,)nen is said to converge pointwise to f if

Ve >0, Vo € X, AN € N such that ¥n > N, |f.(x) — f(z)| <e.

Pointwise versus uniform convergence. We now highlight the difference between pointwise
and uniform convergence:

Pointwise: |Ve >0 | |V:ceX| 3N such that Vn>N| ||fn(z)—f(z)| <€

‘same interchanged! ' same

Uniform: |Ve >0 | IN such that Vn>N | |Vze X | ||fa(z)—f(z)| <€

The difference between the two statements is the order of

|Vz e X| and [3N € N such that ¥n > N |.

Order of the phrases ‘for every’ and ¢ there exists’ (called quantifiers) matters in mathematical
statements. This seemingly small change of interchanging the order of quantifiers makes a world
of difference. Indeed, even in everyday language, the two statements:

| vV human being A| |3 human being B such that | | B is the mother of A |

interchanged! . same

| 3 human being B such that | | vV human being A | | B is the mlother of A |
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mean totally different things! In the latter, there is a person who is the mother to all human
beings, a statement which is obviously false. The former statement is true, since it asserts for
every person A we take, there exists (depending on which person A we have chosen) another
person B who is the mother of A.

This is the same sort of a difference between the uniform convergence requirement, namely:
Ve > 0, 3N € N such that Vn > N, Vz € X, |fn(x) — f(2)| <e.
and the pointwise convergence requirement, namely
Ve > 0, Yz € X, 3N € N such that V¥n > N, |f,(z) — f(z)| <e.

In the former, the same NV works for all z € X, while in the latter, the N might depend on the x
in question.

It is clear that if f,, converges uniformly to f, then f,, converges pointwise to f. (Indeed, if
for every € > 0 there exists an N € N such that for all n > N and for all z € X, |f,(z) — f(x)| <,
and we take any particular fized x, € X, then also, we have that for every ¢ > 0 there exists an
N € N such that for all n > N, |fn(zx) — f(z4)| < e In other words, for this z, € X,

lim fp(24) = f(24).
n—o0
But the choice of x4 € X was arbitrary. So
Vo e X, limw fn(x) = f(2).

Hence (fy)nen converges pointwise to f.) But there are pointwise convergent sequences of functions
which do not converge uniformly. Here is an example to illustrate this.

Example 2.36. Let X =R, and for z € X = R, let f(x) = 0 and f,(z) = £ (n € N). The picture
below shows the graphs of the functions.

fi

fo
J3

7 f

It is clear that if we fix any x € R, then

lim fo(z) = lim 2 =2 lim L =2.0=0= f(a).

n—o0 n—o0 n—o0

So (fn)nen converges pointwise to 0. Let us have a closer look at this. Let us fix an « € R. Let
€ > 0 be given. Take N € N such that N > MTH Then for n > N,

i) = )] = £ 0] = & < Bl < s <

Note that the N we required to guarantee that [n > N = |f,(z) — f(x)| < €] depends on the
x fixed at the outset. (An N < % won’t do here!) In fact, From the picture below, it is visibly
clear that (fy)neny does not converge uniformly to f. Indeed, whatever width of strip we look at
around the graph of f, and no matter which n we take, it is not the case that the graph of f, lies
entirely inside the strip— some portion of the graph of f,, always ‘sticks out’.
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portion that
sticks out
In

portion that
sticks out

Here is a rigorous proof. Suppose that (f,)nen converges uniformly to f. Let € = 1 > 0. Then
there exists an N € N such that for all z € R, and all n > N, |f,(z) — f(z)] < 1. Take x = 2N + 2.
Then the above gives us that for all n > N, |2]\;—+2 — 0] < 1. In particular, for n = N + 1,

2]<,V:12 = 2 < 1, that is, 2 < 1, a contradiction! &

Example 2.37. Let X =R, and for z € R, let f,(z) = Sm;—m) (n € N). Clearly for each x € R we
have — L < Smgl—m) < L (neN), and so by the Sandwich Theorem,

,}I_I,%of"(z) =0=: f(x),

where f: R — R is the constant function equal to 0 everywhere. So (f,)nen converges pointwise

to f.

Figure 1. (fn)nen converges uniformly to f: with € = %, we see that the graphs of f3, fa4,---

all lie in the strip of width e about the graph of the zero function f.
Is the convergence uniform? We guess the answer is ‘Yes’, based on the Figure 1: Looking at
a strip of an arbitrarily small width around the graph of the zero function f, it is clear that
eventually the graphs of f, lie in this strip. In fact, for all x € R, |f,(z) — f(z)| = M < %

So given € > 0, if we choose NV € N such that N > %, then for n > N, we have that for all x € R,
|fa(z) — f(z)] < L < % <e. Hence, (fn)nen converges uniformly to f. &

We know that if (f,)nen converges to f uniformly, then it converges pointwise to f. The next
two exercises give a guide to investigate uniform convergence, knowing that (f,)nen is pointwise
convergent:

(1) First for each z € X, find nlgxolo fn(x), and call the limit f(z).

(2) Find a ‘uniform bound’ on |f,(x) — f(z)| (if it exists), namely sup |f,(x) — f(z)| < an.
Then (fy)nen converges to f uniformly if nlgrgo an = 0. See EXGI‘Z?S)E 2.38.

(3) If there exists a sequence (2, )nen in X such that (| f, () — f(2n)])neny does not converge

to 0, then (f,)nen does not converge uniformly to f. See Exercise 2.39.

Exercise 2.38. Suppose that X is a nonempty set and f, : X — R (n € N) be a sequence which is
pointwise convergent to f : X — R. Let the numbers a, := sup{|fn(z) — f(z)| : z € X} (n € N) all exist.
Prove that (fn)nen converges uniformly to f if and only if lim a, = 0.

n—0o0

Define fr:(0,00) >R by fn(z)=ze™"* € (0,00), neN. Show that (f,)nen converges uniformly on (0, 00).
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Exercise 2.39. Let X be a nonempty set and f, : X — R (n € N) be a sequence which is pointwise
convergent to f : X — R. Let (n)nen be a sequence in X such that (|fn(zn) — f(2n)|)nen does not
converge to 0. Prove that (f»)nen does not converge uniformly to f.

For n € N, define f,, : R > R by fn(z) =1if 2 > n, and fn(z) = 0 if © < n. Show that (f»)nen converges
pointwise to the function f which is 0 everywhere on R. Prove that the convergence is not uniform.

Exercise 2.40. For n € N, let f, : [0,1] — R be defined by fu(z) = 5% (= € [0,1]). Does (fn)nen
converge uniformly on [0, 1]?

Exercise 2.41. For n€ N, let f, : (0,1) —> R be defined by f.(z) = z", z € (0, 1).
(1) Does the sequence (fr)nen converge pointwise to some function?
(2) Is the convergence uniform?

(3) Sketch the graphs of the first few terms of (f»)nen, and explain visually your answer to part (2) above.

Why bother with uniform convergence? Uniform convergence often implies that the limit
function inherits the ‘nice’ properties possessed by the terms of the sequence. This is not guar-
anteed to happen if one has mere pointwise convergence. For instance, we will see later on that
if a sequence (fy)nen of continuous functions f,, (n € N) converges uniformly to a function f,
then f is also continuous; see Proposition 4.16. The reason nice things can happen with uniform
convergence is that we can exchange two ‘limiting processes’, which is not always allowed when
one just has pointwise convergence. The following exercises demonstrate the precariousness of
exchanging limiting processes arbitrarily.

Exercise 2.42. Let f, : R —> R be defined by fn(z) = 1— m (r € R, n € N). Show that the
sequence (frn)nen of continuous functions converges pointwise to the function

! if x # 0,
f(x)_{o if x =0,

which is discontinuous at 0.

Exercise 2.43. Let am,n = , mn,n € N. Show that for each fixed n, lim am,» = 1, while for each

m+n m—00

fixed m, lim am,n =0. Is lim lim am,, = lim lim amn?
n—o0 m—00 Nn—00 n—00 Mm—00

Exercise 2.44. Let f, : R — R be defined by fn(x) = % (reR, neN).
Show that (fn)nen converges pointwise to the zero function f.

Show that (f,)nen does not converge pointwise to (the zero function) f’.

Exercise 2.45. Let f, : [0,1] — R (n € N) be defined by fn.(z) = nz(1 — 2*)™ (x € [0, 1]).
Show that (fn)nen converges pointwise to the zero function f.

Show that hrn So fa(z)de =1 #£0 = So hrn f(z)dz

Remark 2.46 (Not part of the course). Besides Proposition 4.16, one also has the following
results associated with uniform convergence, and we will see a proof of Proposition 2.48 later on
when we study differentiation in Chapter 5, and a proof of Proposition 2.47 in Chapter 6.

Proposition 2.47. If f, : [a,b] = R (n € N) is a sequence of Riemann-integrable functions on

[a,b] which converges uniformly to f : [a,b] — R, then [ is also Riemann-integrable on [a,b], and
b b

moreover § f(x)dx = lim §, fn(z)dx

Proposition 2.48. Let f,, : (a,b) > R (n € N) be a sequence of differentiable functions on (a,b),
such that there exists a point ¢ € (a,b) for which (fn(c))nen converges. If the sequence (f})nen

converges uniformly to g on (a,b), then (fn)nen converges uniformly to a differentiable function f
n (a,b), and moreover, f'(x) = g(zx) for all x € (a,b).
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2.4. Convergent sequences and closed sets

We have learnt that closed sets are ones whose complement is open. Here is another characterisa-
tion of closed sets.

Theorem 2.49. A set F is closed if and only if for every convergent sequence (an)nen such that
an € F' (n € N), we have that lim a, € F.
n—0o0

Proof. (‘Only if’ part:) Let F be closed. Let (ay)nen be a convergent sequence such that a,, € F'
(n € N) and denote its limit by L. Assume that L ¢ F. Then L € CF, the complement of F', which
is open. So there exists an r > 0 such that the open ball B(L,r) with center L and radius r > 0 is
contained in CF, that is, B(L,r) contains no points from F. As (a,)nen is convergent with limit
L, we can choose a large enough n so that d(a,, L) < r. This implies that a,, € B(L,r). But also
a, € F, and so we have arrived at a contradiction. See Figure 2. This shows the ‘only if’ part.

CF

(%

Figure 2. The left picture is for the ‘only if’ part, and the right one is for the ‘if’ part.

(‘If” part:) Suppose that the set F' is not closed. Then its complement CF' is not open. This means
that there is a point L € CF such that for every r > 0, the open ball B(L,r) has at least one
point from F. Now take successively r = % (n € N), and choose a point a, € F n B(L, %) In
this manner we obtain a sequence (ay)nen such that a, € F for each n, and d(a,, L) < % The
property d(an,L) < + (n € N) implies that (a, )nen is a convergent sequence with limit L. So we
have obtained the existence of a convergent sequence (an)nen such that a, € F (n € N), but for
which the limit nlglgo an, = L ¢ F. See Figure 2. This completes the proof of the ‘if’ part. (]

Exercise 2.50. We endow R" with the Euclidean metric.

(1) Let 0 # a € R™ and § € R. Show that the ‘hyperplane’ H = {x e R™ : a'x = 8} is closed in R™.

(2) Let Ae R™*™ be R™. Show that the set of solutions S = {z € R" : Az = b} is a closed subset of R".
(3) Show that the Linear Programming Simplex ¥ ={zeR": Az = b, 1 >0, ..., z, >0} is closed in R".
Exercise 2.51. Let U be an open set and (zn)nen & sequence in a metric space. Show that if (5 )nen

converges to x € U, then there exists N € N such that for all n > N, z, € U. (In words: If the limit of a
convergent sequence lies in an open set, then the sequence eventually stays in the open set.)

Exercise 2.52. Recall the normed space £? introduced in Exercise 1.20. Consider the subspace coo of £?
consisting of all sequences with ‘compact support’ (that is sequences which have all terms equal to zero
eventually). Show that coo is not a closed subset of 2.

Exercise 2.53. Recall the normed space £* introduced in Exercise 1.21. Let co be the subspace of £*
consisting of all sequences convergent with limit 0. Show that ¢ is a closed subset of £~.

Exercise 2.54. Let Y be a nonempty closed subset of a complete metric space (X, d). We endow Y with
the induced metric d|y xy from (X,d) (see Exercise 1.18). Show that (Y, d|y xy) is complete too.
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2.5. Compact sets

In this section, we study an important class of subsets of a metric space, called compact sets.
Before we learn the definition, let us give some motivation for this concept.

Of the different types of intervals in R, perhaps the most important are those of the form
[a, b], where a, b are finite real numbers. Why are such intervals so important? This is not an easy
question to answer, but we already know of one vital result, namely the Extreme Value Theorem,
where such intervals play a vital role. Recall that the Extreme Value Theorem asserts that any
continuous function f : [a,b] — R attains a maximum and a minimum value on [a, b]. This result
does not hold in general for continuous functions f : I — R with I = (a,b) or I = [a,b) or
I = (a,0), and so on. Besides its theoretical importance in Analysis, the Extreme Value Theorem
is also a fundamental result in Optimisation Theory. It turns out that when we want to generalise
this result, the notion of ‘compact sets’ is pertinent, and we will learn (later on in Chapter 4) the
following analogue of the Extreme Value Theorem: If K is a compact subset of a metric space X
and f: K — R is continuous, then f assumes a maximum and a minimum on K.

Here is the definition of a compact set.

Definition 2.55. Let (X, d) be a metric space. A subset K of X is said to be compact if every
sequence in K has a convergent subsequence with limit in K, that is, if (2, )nen is a sequence such

that x,, € K for each n € N, then there exists a subsequence (Z,, )xeny Which converges to some
LeK.

Example 2.56. Let a,b € R and a < b. The interval [a,b] is a compact subset of R. Indeed,
every sequence (an)nen contained in [a, b] is bounded, and by the Bolzano-Weierstrass Theorem
possesses a convergent subsequence, say (an, )ken, With limit L. But since

forall ke N, a <ap, <b,
by letting k — 00, we obtain a < L < b, that is, L € [a,b]. Hence [a, b] is compact.

On the other hand, (a, b) is not compact, since the sequence (a+ l’;—n")neN is contained in (a, b),
but it has no convergent subsequence whose limit belongs to (a,b). This is because the sequence
is convergent, with limit a, and so every subsequence of this sequence is also convergent with limit
a, which doesn’t belong to (a, b).

R is not compact since the sequence (n),en cannot have a convergent subsequence. Indeed,
if such a convergent subsequence existed, it would also be Cauchy, but the distance between any
two terms with distinct indices is at least 1 (since the terms are distinct integers), contradicting
the Cauchyness. &

In the above list of nonexamples, note that R is not bounded, and that (a,b) is not closed. On
the other hand, the example [a,b] is both bounded and closed. It turns out that compact sets
are always closed and bounded. First we define exactly what we mean by a bounded subset of a
metric space.

Definition 2.57. A subset S of a metric space X is said to be bounded if there exists an M > 0
such that for all z,y € S, d(z,y) < M.
Exercise 2.58. Let (X, d) be a metric space and S be a nonempty subset of X. Show that the following
are equivalent:

(1) There exists an M > 0 such that for all z,y € S, d(z,y) < M.

(2) There exist an R > 0 and an zo € X such that for all z € S, d(x, 20) < R.

(3) For all z € X, there exists an R, > 0 such that for all z € S, d(z,2) < R:.
Thus S is bounded if and only if any one of the above statements hold. Also, a subset S in a normed
space (X, - |) is bounded if and only if there exists an M > 0 such that for all z € X, |z| < M.
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Exercise 2.59. Show that any convergent sequence (an)nen in a metric space (X, d) is bounded, that is,
the set {an : n € N} is a bounded subset of X.

Theorem 2.60. Any compact subset K of a metric space (X,d) is closed and bounded.

Proof. We first show that K is closed. Let (a,)nen be a sequence in K that converges to L € X.
Then there is a convergent subsequence, say (an, )ren that is convergent to a limit L' € K. But
as (an, )ren is a subsequence of a convergent sequence with limit L, it is also convergent to L. By
the uniqueness of limits, L = L’ € K. Thus, K is closed (by Theorem 2.49).

Next we show that K is bounded by contradiction. Suppose K is not bounded. Let g € X.
Taking any n € N, it is not the case that for all x € K, d(x, x¢) < n (otherwise, K can be seen to
be bounded taking R := n), and so for this n, there must be an = € K, which we call a,,, such that
d(an,x0) > n. But this implies that no subsequence of (ay)nen is bounded. So no subsequence of
(an)nen can be convergent either. This contradicts the compactness of K. Thus our assumption
was incorrect, that is, K is bounded. [l

The converse of the above theorem is, in general, false. That is, there exist metric spaces with sub-
sets that are closed and bounded, but not compact, as shown by the following example. (However,
as shown by Theorem 2.63 below, the converse is true for subsets of R™.)

Example 2.61 (The closed unit ball in (¢2,| - |2) is not compact). Recall the normed space
introduced in Exercise 1.20. Consider closed the unit ball with centre 0 = (0),en and radius 1 in
the normed space £2:

B(0,1) = {z e ?:|zfs < 1}.
Then B(0,1) is bounded, it is closed (since its complement can be seen to be open), but B(0, 1)
is not compact, and this can be demonstrated as follows. Take the sequence (e, )nen, where e, is
the sequence with only the n*® term equal to 1, and all other terms are equal to 0:

en:=(0, - ,0, 1 .0, --)eB(0,1)c

nth place

Then (€,)nen in B(0,1) © £2 can have no convergent subsequence. Indeed, whenever n # m,
|en — em|2 = /2, and so no subsequence of (e, )nen can be Cauchy, much less convergent! O

Example 2.62. (The closed unit ball in (C[0, 1], - |«) is not compact.) Consider the closed unit
ball with centre 0 in (C[0,1],| - |«) and radius 1:

B(0,1) = {x e C[0,1] : || < 1}.

Then B(0,1) is bounded, and also it is closed (since its complement is open). But B(0,1) is not
compact, and this can be demonstrated by considering the sequence (@,)nen, where the graphs
of the terms «,, have ‘narrowing’ tents of height 1, with the supports of the tents moving to the
right, on half of each remaining interval, as shown in the following picture:

Then this sequence does not have a convergent subsequence, since if it did, then the convergent
subsequence would be Cauchy, but whenever n # m, |, — Tmlo = 1, a contradiction to the
Cauchyness. &

We will now show the following important result.

Theorem 2.63. A subset K of R% is compact if and only if K is closed and bounded.
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Before showing this, we prove a technical result, which besides being interesting on its own, will
also somewhat simplify the proof of the above theorem.

Lemma 2.64. Every bounded sequence in R has convergent subsequence.

Proof. We prove this using induction on d. Let us consider the case when d = 1. Then the
statement is precisely the Bolzano-Weierstrass Theorem!

Now suppose that the result has been proved in R? for some d > 1. We will show that it holds
in R4, Let (@, )nen be a bounded sequence in R*T1. We split each a,, into its first d components
(giving a vector in R?) and its last component in R:

=[]
n — ﬂn ?

where o, € R? and 8, € R. Clearly |, |2 < |an]2, and so (@, )nen is a bounded sequence in
RY. By the induction hypothesis, (a,)ney has a convergent subsequence, say (au, )reny Which
converges, to say o € R<. Consider now the sequence (Bn, Jken in R. Then (B, )ren is bounded,
and so by the Bolzano-Weierstrass Theorem, it has a convergent subsequence (3, . )een, with limit,

say B € R. Then we have
Oy, {—o | d+1
a,, = Ll — =: LeR"".
L=l

Thus the bounded sequence (ay,)nen has (an,w )een as a convergent subsequence. O
Now we return to the task of proving of Theorem 2.63.

Proof. (‘If’ part.) Let K be closed and bounded. Let (ay)nen be a sequence in K. Then (a,)nen
is bounded, and so it has a convergent subsequence, with limit L € R?. But since K is closed, and
since each term of the sequence belongs to K, it follows that also L € K. So K is compact.

(‘Only if” part) This follows by Theorem 2.60. O

Example 2.65. The intervals (a,b], [a,b) are not compact, since although they are bounded,
they are not closed. The intervals (—o0, b], [a, o0) are not compact, since although they are closed,
they are not bounded. &

Let us consider an interesting compact subset of the real line, called the Cantor set.

Example 2.66 (Cantor set). The Cantor set is constructed as follows. First, denote the closed

interval [0,1] by Fy. Next, delete from Fy the open interval (3, 2) which is its middle third, and

denote the remaining closed set by Fy. Clearly, F5 = [0, %] V) [%, 1]. Next, delete from F» the open

intervals (%, %) and (g, %), which are the middle thirds of its two pieces, and denote the remaining
closed set by Fs. It is easy to see that F3 = [0,3] U [2,2] U [2,Z] U [2,1]. If we continue this
process, at each stage deleting the open middle third of each closed interval remaining from the
previous stage, we obtain a sequence of closed sets F,,, each of which contains all of its successors.

The picture below illustrates this.

0
The Cantor set is defined by F = [ F,.

n=1
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As F is an intersection of closed sets, it is closed. Moreover it is contained in [0, 1] and so it is also
bounded. Consequently it is compact. F consists of those points in the closed interval [0, 1] which
. ) . 7
‘ultimately remain’ after the removal of all the open intervals (%, %), (é, %), (§ %), .... What
points do remain? F' contains the end-points of the closed intervals which make up each set F,:
121278
Oala§a§a§a§a§a§a"'
Does F' contain any other points? Actually, F' contains many more points than the above list
of end points. After all, the above list of endpoints is countable, but it can be shown that F' is
uncountable! It turns out that the Cantor set is a very intricate mathematical object, and is often
a source of interesting examples/counterexamples in Analysis: For example, as the sum of the

lengths of the intervals removed is
1 1 1
_+j3_2+4_3+... ,

(factor out 3 and sum the resulting geometric series), the ‘(Lebesgue length) measure’ of F is
1 —1 = 0. So this is an example of an uncountable set with ‘Lebesgue measure’ 0. <&

Exercise 2.67. Determine if the following statements are true or false. Give reasons for your answers.

(1) If S < R is such that each convergent sequence in S has a convergent subsequence with limit in S,
then S is compact.

(2) All closed and bounded sets are compact.
(3) If (X, d) is a metric space, Y is a nonempty subset of X equipped with the induced metric from (X, d),
and K is a compact subset of (Y,d|yxy), then K is a compact subset of (X, d).

Exercise 2.68. Let K be a compact subset of R%. Let F be a closed subset of R?. Show that F' n K is
compact.

Exercise 2.69. Show that the unit sphere with center 0 in R¢, namely
st = {x e R : |z]2 = 1}
is compact.

Exercise 2.70. Show that {1, %, %, e } v {0} is compact.

Exercise 2.71. Consider the metric space (R™*™,| - [«).
Is the subset (the ‘General Linear’ group®) GL(m,R) = {A € R™*™ : A is invertible} compact?

Exercise 2.72. In the metric space (R**2,| - ||»). is the set of orthogonal matrices O(2) = {A € R**? :
AT A = I} compact?

Exercise 2.73. Consider the subset H := {(z1,22) € R?: 120 = 1} of R2. Show that H is not compact,
but H is closed.

2.6. Notes (not part of the course)

Definition of compactness. The notion of a compact set that we have defined is really sequential
compactness. In the context of the more general topological spaces, one defines the notion of compactness
as follows.

Definition 2.74. Let X be a topological space with the topology given by the family of open sets O.
Let Y < X. A collection C = {U; : i € I} of open sets is said to be an open cover of Y if Y < J U;.

iel
K < X is said to be a compact set if every open cover of K has a finite subcover, that is, given any open
cover C = {U; : i € I} of K, there exist finitely many indices i1,...,%, € [ such that K c U;; v --- v U,, .

In the case of metric spaces, it can be shown that the set of compact sets coincides with the set of
sequentially compact sets. But in general topological spaces, these may not be the same.

5The General Linear group is so named because the columns of an invertible matrix are linearly independent, hence the
vectors they define are in ‘general position’ (linearly independent!), and matrices in the general linear group take points
in general position to points in general position.



Chapter 3

Series

In this chapter we study series in normed spaces, but first we will begin with series in R. Just as
we learnt ways of deducing the convergence of sequences, we will learn about tests for checking
convergence of series. Why bother learning about such things about series? It turns out that series
play an important role in solutions to various problems that arise in Mathematics and applications
to Mathematics in other disciplines. For example, in the theory of differential equations, in
functional analysis, Fourier/harmonic analysis, complex analysis and so on.

3.1. Series in R

Given a sequence (ay,)nen, one can form a new sequence (sp)nen of its partial sums:

S1 = a,
So = aj + ag,

Ss3 = ai + a2 + asg,

Definition 3.1. Let (ay)nen be a sequence and let (s, )neny be the sequence of its partial sums.

0 e}
If (sn)nen converges, we say that the series Y. a, converges, and we write > a, = lim s,.
n=1 n=1 n—00
o0
If the sequence (s, )nen does not converge we say that the series ) a, diverges.
n=1

0

Example 3.2. (1) The series Y, (—1)" diverges. Indeed the sequence of partial sums is the
n=1

sequence —1,0,—1,0,... which is a divergent sequence.

(2) Let (an)nen be the geometric sequence (%)neN. Then (sp)neny = (1 — %)neN is convergent

Q0
with limit 1. Thus >} 5= = 1. A pictorial proof is given below.
1

n=

1
25

E

=
e

—
—

e

1

0
(3) The series Y n(++1) converges. Its nth partial sum ‘telescopes’:
n=1
G 1 el 1 11 11 V1 1
sn=nrmEm - LG oE) =0 G oG G o) =
0
Since nh_rgosn =1—-0=1, we have Z_:l n(n1+1) =1. O
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0 1 1
Exercise 3.3 (Tantalising tan™"). Show that Y tan™' 51 = Z. Hint: Write 515 = = and
ne1 " m tom—T a1
_ b) _ _tana—tanbd

use ta'n(a l+tanatanb’

Exercise 3.4. Show that for every real number x > 1, the series IJ%Z + H% + ﬁ +ot 14-2% +...

Exercise 3.5. Consider the Fibonacci sequence (Fy)nen with Fo = F1 = 1 and Fhy1 = Fy, + F,—1 for
n € N. Show that Z — =1
-1

n—1Fn41

0
In the above example of the divergent series > (—1)", the sequence (an)neny = ((—1)")nen was
n=1
not convergent. In fact, we have the following necessary condition for convergence of a series.

Proposition 3.6. If the series Z an converges, then hm an = 0.
—00

n=1

Proof. Let s, := a1 + -+ + a,. Since the series converges we have lim s, = L for some L € R.

n—o0

But as (8p+1)nen is a subsequence of (s,)nen, it follows that lim s,.1 = L. By the algebra of
n—o0
limits, lim ap4q1 = lm ($p41 — $p) = lim $p41 — lim s, = L — L =0. O

Exercise 3.7. Does the series Z cos — Converge7

n=1

Exercise 3.8. Let Z an converge.

(1) Show that for all n € N, the series’ i Gj converges.
k=n+1

(2) Given any € > 0, show that there exists an N € N such that for all n > N, we have | i ag| < e.
k=n+1

In Theorem 3.10, we will see an instance of a series which shows that although this condition is
necessary for the convergence of a series, it is not sufficient. But first, let us see an important
example of a convergent series. In fact, it lies at the core of most of the convergence results in
Real Analysis.

0
Theorem 3.9. Let r € R. The geometric series Y, r™ converges if and only if |r| < 1.
=0
. n
Moreover, if [r| <1, then Y " = .
n=0

—-Tr

Proof. Let |r| < 1. First we will show that lim ™ =0. As |r| <1, |r| = 1> 0.
n—o0
Then (1+h)" =1+ (})h+---+h" > nh. Thus 0 < |r|" = 5w

Theorem, hm |r|™ = 0. As —|r|™ < ™ < |r|™, it follows again from the Sandwich Theorem that

for h := W
< n—lh, and so by the Sandwich

1+h

lim ™ 0
n—00

2 n n+
Let sy = 147+ 72 oo g = Uil gt 1200 Ag Jim %1 = 0, it follows
r T n—0o0

that lim (1 —r)s, = 1. Hence Z = lim s, = .

n—o0 ne=1 n—o0 I-r
Now suppose that |[r| = 1. If r = 1, then lim ™ = 1 # 0, and so by Proposition 3.6, the series
n—o0

diverges. Similarly if r = —1, then (7")nen = ((—1)™)nen diverges, and so the series is divergent.

Also if |r| > 1, then the sequence (r™),en has the subsequence (r2"),en which is not bounded,

and hence not convergent. Consequently (r")nen diverges, and hence the series diverges. O

ISometimes referred to as a ‘tail of the series Z an’.

n=1
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The name comes from the associated similarity in geometry.

A
1—r ol
1 B
Tl r 7‘2 ""QDTS
1 B 1 T r2 p8 C
Since the triangles AB'C’ and ABC are similar, 55 = % = i/g,/ =

Q0
Theorem 3.10. The harmonic series® ) % diverges.

Proof. Let s, := 1+%+%+~--+%.Wehave
for all n € N, 52n*5n:n+1+n+2+ +—/n21n=%. (3.1)
If the series converges, then lim s, = L for some L. But then also lim s9, = L, and so
n—00 n—0o0
lim (s2n, — $n) = L — L = 0, which contradicts (3.1). O
n—0o0

@ The n'" term of the above series satisfies hm a, = lim ; = 0, showing that the condition

n—ao0
given in Proposition 3.6 is necessary but not sufﬁment for the convergence of the series.

o0
Theorem 3.11. Let s € R. The series® 21 # converges if and only if s > 1.
e
Proof. Let S, = 1 + 2% + 3% + e+ nl Clearly S1 < S < S3 < -+, so that (S,)nen is an

increasing sequence.
Let s > 1. We have
1 1 1 1
S2n+1 = 1+(2—5+4—5+"'+ (2n)5)+(3—5+5—5+"'+m)

SUtGrrd gl Gt o)
1

1+ 21+ %+ +L)=1+2"55,

N

<1+ 21_SSQH+1.

As s>1, we have 2175 <1, so that Son41 < =2 (n€N). Also, Sap, < Son41 < == (neN).
Thus (Sn)neN is bounded. But an increasing sequence which is bounded above is convergent (to
[oe]

the supremum of its terms). Hence Z # converges for s > 1.

If on the other hand s < 1, then the proof of divergence is similar to that of showing that the
harmonic series diverges. Indeed, if the series converged, then lim (Ss, — S,) = 0, while
n—0o0

_ 1 1 1 1 1 _ 1
forallneN, SQn*Sn—m+m+"'+w>nw>n%—§,
where we have used the fact that s < 1 in order to obtain the last inequality. Il
0
For a sequence (an)nen With nonnegative terms, we sometimes write >, a, < +00 to mean that
n=1

the series converges.

2Tts name derives from the concept of overtones, or harmonics in music: The wavelengths of the overtones of a vibrating
string are 3, %, 1, and so on, of the string’s fundamental wavelength.

3The function s > % is called the Riemann-zeta function, which is an important function in number theory. The
1

o0
connection with number theory is brought out by Euler’s identity, which says that ((s) := 3 L& = T[] 1

n —p—Ss "
—1 i 1-p
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0
Exercise 3.12. Prove that if a1 > a2 > a3 = - - is a sequence of nonnegative numbers, and Y a, <+00,
n=1
then lim na, = 0. Hint: San — Sn = Gn41 + +++ + a2n =N - a2n and any2 + -+ + A2n4+1 = N - A2nt1-
n—00
Show that the assumption a1 > a2 > a3 > --- above cannot be dropped by considering the lacunary

series whose n2th term is n—12 and all other terms are zero.

Exercise 3.13 (Astronomical patience!). Suppose a computer is programmed to add 1 trillion terms of
the harmonic series each second. Since the Big Bang (about 13.8 billion years ago), has enough time
elapsed for the n'® partial sum to exceed 100? Hint: Compare the partial sum with S;L %d:p.

Exercise 3.14 (Infinitude of primes via divergence of the harmonic series).

(1) Let n € N. For any prime p, show that - L >1 +5 Lpt i.

(2) Let N 3 n > 2 have a factorisation into prlmes given by n = p{t - p%X, where a1, -+ ,ax € N and
pi1,- -+ ,pK are primes. Show that oy <n forall 1 <k < K.

(3) If p1,- -+ ,pK are the only prime numbers, then show that for all n € N, H 1+ + + 711,

i1l pk
and hence arrive at a contradiction (to the divergence of the harmonic series).

Exercise 3.15 ( ¥ % diverges). Let all the primes be p1 < ps < ps < ---

p prime

(1) For all z € [0, %], show that 2z — log ﬁ = 0.
(2) Show that if n € N, then  [] 1% > 1 (1+

prime p<n © p prime p<n

(3) Conclude that % diverges.

p prime

1 1 1 1
st )=l

Exercise 3.16. For r € R, consider the Arithmetic-Geometric Progression 1, 2r, 3r2, 473, .... Note
that 1,2,3,4,--- form an arithmetic progression, while 1, r,7%,73, .- form a geometric progression. Show

that if |r| < 1, then 1+ 2r + 24 = ﬁ Hint: Consider s, — rsn, where s, is the nt partial sum.

Definition 3.17. If the series Z |ar| converges, then we say that Z a, converges absolutely.

n=1

The name is justified, thanks to the following result.

Proposition 3.18. If Z lan| converges, then Z ap converges.

n=1

Proof. Let s, :=aj + - + a,. We will show that (s,)nen is a Cauchy sequence. For n > m,
[$n,— 8$m| = [(a1 + -+ an) — (a1 + -+ am)| = |ams1 + -+ + an]
et + -+ laal = (aa] 4 -+ la]) = (aa] + - + la]) = 0 — oo,

where o, :=|ai| + - -+ + |ax| (k € N). Since Z |an| < +00, its sequence of partial sums (on)neN is
convergent, and in particular, Cauchy. This shows from the above inequality |s,, — s | < 0 — O,
that (s, )nen is a Cauchy sequence in R and hence it is convergent. 0

Exercise 3.19. Does the series Z 51“2" converge?

n=1

Exercise 3.20. If f] arn converges absolutely, then show that | i an| < i |an].
n=1 n=1 n=1

Example 3.21. The series

since Z|( 1)n| = i% and we
have seen that the harmonic s serles dlverges. B

A series of the form i (—=1)"™a,, with a,, = 0 for all n € N is called an alternating series.

n=1

The series above, namely Z )n is an alternating series i (-1)"a, with a, := 1 (neN).

n=1 n=1
We'll now learn a result, called the Leibniz Alternating Series Theorem, allowing us to conclude
that this alternating series is in fact convergent (since the sufficiency conditions for convergence

in the Leibniz Alternating Series Theorem are satisfied: a1 =1 = as = % > a3 = % > ... and

lim a, = lim 1 =0). &
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Theorem 3.22 (Leibniz Alternating Series Theorem). Let (an)nen be a sequence such that

(1) it has nonnegative terms (a, =0 for all n),
(2) it is decreasing (a1 = a2 = as > ...), and

(3) nlglgo an = 0.
o0
Then the series > (—1)"a, converges.
n=1

A pictorial ‘proof without words’ is shown below. The sum of the lengths of the disjoint dark
intervals is at most the length of (0,aq).

G2p—1 — A2n az — a4 ap — az

(=N )

© o Q2n  A2p—1 "7 ag as as ai

Proof. We may just as well prove the convergence of i (-1)"*a, (= — i (=D)"ay,).

n=1
Let s, =a; —as +az — +---+ (=1)""1a,. Clearly
S2n+1 = S2p—1 — G2n + A2n+1 < S2p—1,
S2n4+2 = S2p + A2p4+1 — A2n42 = S2n,
and so the sequence s, 84, Sg, . . . 18 increasing, while the sequence ss, s5, 7, . . . is decreasing. Also,
Son < S2n + A2n+1 = S2p+1 < S2p—1 S - < S3.

S0 (821 )nen is a bounded (s2 < s2, < s3 for all n), increasing sequence, and hence it is convergent.
But as (a2p+1)nen is also convergent with limit 0, it follows that (s2p,+1)nen is convergent too, and
lm $op,41 = lim (825, + @2p41) = lim sgy,.

n—0o0 n—00 n—0o0
Hence (sp)nen is convergent, and so the series converges. O

Exercise 3.23. Let s > 0. Show that i g%s)n converges.

n=1

—1)" 2% converges.
g

Exercise 3.24. Prove that 1

Exercise 3.25. Prove that 3 (—1)"sin < converges.

itds ipas

1

One might tend to think of a series as an ‘infinite sum’, and hence be tempted to attribute to it
the usual properties associated with finite sums such as grouping and changing the order of terms.
The next two exercises show that this is fraught with dangers, and one ought to go back to the
definitions in order to check if the manipulation at hand is allowed.

Exercise 3.26 (Inserting parenthesis).

(1) Show that if a series converges, then the new series one obtains by ‘inserting parentheses’ in the
original one (that is, adding up finite blocks of consecutive terms) converges to the same sum.

(2) Show by means of an example that a divergent series may become convergent by inserting parenthesis.
Exercise 3.27 (Rearrangement). A bijective mapping p : N — N is called a permutation (of N). The
0

@© .
series Y, Gp(n) is called a rearrangement of the series 3, an.
n=1 1

n=

1) Show that 1 — 1+ 2 —1 + 1 14 ... is convergent with sum 0, but its rearrangement given b
2 27373 & g g y
1+%71+%+%7§+%+%7%+~- has a postive sum.

2) Let p be any permutation of N. If the series OXC] an is absolutely convergent, then so is io] Qp(n), and
= p(n)

n=1

moreover, their sums coincide. Hint: First consider all terms being nonnegative, and show that their

respective sums must be bounded by each other. For the general case, begin with i (lan] — an).
n=1
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3.1.1. Comparison, Ratio, Root. We will now learn three important tests for the convergence
of a series:

(1) the comparison test (where we compare with a series whose convergence status is known)

(2) the ratio test (where we look at the behaviour of the ratio of terms

(3) the root test (where we look at the behaviour of {/|ay])

an+1)
an

We summarise them in the table below.

| || Comparison | Ratio | Root
Absolute ang1
n n <

convergence < || |an| <€ ¢n for all large n; == <r<1]| {flan| <r<1
Z Cn converges. for all large n. | for all large n.
n=1

Divergence < || an = dn = 0 for all large n; |aZ—:1| >1 lan| =1
020] dyn diverges. for all large n. | infinitely often.
n=1

Theorem 3.28 (Comparison test).
(1) If (an)neN and (¢n)nen are such that there exists an N € N such that |ay| < ¢, for alln = N,

and Z cn converges, then Z an converges absolutely.

n=1

(2) If (an)neN, (dn)nen are such that there exists an N € N such that a,, = d, = 0 for alln > N
and Zd diverges, then Zan diverges.

n=1
Proof. Let s, :=|a1| + -+ + |an| and o, :==¢1 + -+ + ¢,. For n > m, we have
[$n — Sm| = |ams1] + -+ |an| < g1 + -+ cn = |on — ol
As (04)nen is Cauchy, (sp)nen is Cauchy. So (sp,)nen is convergent, i.e., ilan converges absolutely.
e

The second claim follows from the first one. For if i a, converges, so must i dp. (I

n=1 n=1

Example 3.29. Let us revisit Exercise 3.19, where we showed that the series 2 ““2" converges.
n=1
Since |“n%| =5 for all n € N, and as Z 2 < 40, it follows from the Comparison Test that
n= 1
i Si;;" converges absolutely, and hence it is convergent. &

n=1

Example 3.30. i @ diverges. For all n € N, logn < n. (By the Mean Value Theorem?, there
n=2

exists a ¢ € (1,n) such that logz& = lsirf = % < 1, and by rearranging, logn < n —1 < n for
n > 1.) So for all n > 2, @ > % tdy,. As Z diverges, it follows from the Comparison Test
n= 2
that i loén diverges too. <&
n=2

Theorem 3.31 (Ratio test). Let (an)nen be a sequence of nonzero terms.
(1) If there exists an r € (0,1) and there exists an N € N such that for all n > N, |42+

then i an converges absolutely.

n=1

(2) If there exists an N € N such that for all n > N, |21 > 1, then i ap, diverges.
" n=1

4See Theorem 5.13 in Chapter 5.
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Proof. (1) We have

lan+1] < rlan|,
lant2| < rlanii| < r?lan],
lan 3] < 7‘|GN+2| < rdlayl,

0 0
Since the geometric series Y r™ converges, we obtain Y |a,| < +00 by the Comparison Test.
n=1 n=N+1

By adding the finitely sum |a1| + - - - + |an| to each partial sum of this last series, we see that also
Zw] |an| converges. This completes the proof of the claim in (1).
n=1

(2) The given condition implies that
> lan+s| = lan42| = lan4al, (32)

If the series Z an, was convergent, then 0 = lim a, = hm an+k- Hence hm lan k| = 0 as well.
n—0o0

But by the (3 2) we see that khm lan+k| = lans1| > 0, a contrad1ct1on. O
—00

@ It does not suffice for convergence of the series that for all sufficiently large n, |a"+1 | < 1.

For example, for the harmonic series |a"“| = |=2f Exa i1 <1, but Z diverges.

So the ratios have to uniformly separated from 1 (by a positive distance 1 — 7).

=]
An
0 LA
In the case of the Harmonic Series, there is no r € (0,1) such that [=2%| = 2z <7 < 1 for all
large n, since if there were such an r, then hm % =1<r <1, a contradiction.

Corollary 3.32. Suppose that the terms of the sequence (an)nen are all nonzero.

If hm |a"“| <1, then Zan converges absolutely.

n— n=1

Proof. Let L := lim |“2*L| € [0,1). Then € := 5% > 0. Choose N € N such that for n > N,
n—o0 n

(152 -L<) |92 -Ll<e=15"

An 2 0
and so |*t| < L —:p < LE — 1. The claim follows from Theorem 3.31(1). O
Example 3.33 (The exponential series). Let a € R. The series e® := i La" converges.
n=0"""
an+1
For a = 0, €® = 1. For a # 0, convergence follows from the ratio test: || = nli‘l =20, ©

Exercise 3.34. Suppose that the terms of the sequence (an)nen are all nonzero. If lim sup |aZ—:1| <1,
n—oo

then show that OXC] an converges absolutely.

n=1

Theorem 3.35 (Root test).
(1) If there exists an r € (0,1) and there exists an N € N such that for alln > N, {/|a,| <r

then i an converges absolutely.

n=1

(2) If for infinitely many n, {/|a,| =1, then i ay diverges.
n=1
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Proof. (1) We have |a,| < " for all n > N, so that by the Comparison Test, i |an| converges.

n=N+1
(2) Suppose that for the subsequence (an, )ren, we have \/|an,| = 1. Then |a,,| = 1. If the
series was convergent, then lim a, =0, and so also lim |a,,| = 0, a contradiction. O

n—0o0 n—0o0

@ It does not suffice for convergence of the series that for all sufficiently large n, ¥/|a,| < 1.

0
For example, for the harmonic series {/|ay| = % <1,but 31 diverges.
n=1

One needs the uniform separation from 1 (by a positive distance 1 — r).

n ‘an‘ < N

0 T o1

Example 3.36 (Ratio Test inconclusive; but Root Test decisive). i W%l)n converges. We have:
1

n: 1525 35 45 5 L6
(- -1 21 21 21 2-1 31
n+ (—1)": 3, - 3, - 3,

1

So |aZ—:1| alternates between 273 = 5 and 2! = 2 and the Ratio Test is inconclusive. But

1 1 n—o0 1 1
Vlan| = i = SCOT T 30 3 < L,
2 n 2 n

and so, by the Root Test, i W%l)n converges. &
n=1

Corollary 3.37. If lim {/|a,| <1, then i a, converges absolutely.
n—0oo0 n=1

Proof. Let L := nlgxgo /lan| € [0,1). Then € := 5L > 0. Choose N € N such that for n > N,

(Wanl =L <) | &/lan] = L] < €= 25,
and so {/]a,| < 4E =7 < 3 = 1. The claim follows from Theorem 3.35(1). 0

Exercise 3.38.
(1) If limsup %/|an| < 1, then show that i an converges absolutely.
n—0o0 n=1

(2) If limsup %/|an| > 1, then show that i arn diverges.
n—0o0 n=1

(3) If limsup {/|an| = 1, then show by examples f] an can converge or diverge.
n—00 n=1

Exercise 3.39. Determine if the following series are convergent or not.

mEE

B
<

—~
[\
~—

,_
—~
N
3
<

—~
w
=

—_
il
—
3
3
(o1

irgs s

-

2

Exercise 3.40. Prove that i converges, and find its value. Hint: n* +n? +1 = (n*> +1)® —n?.

__n__
4 2
anttn +1

Exercise 3.41. Let (an)nen be a sequence of real numbers such that the series OXC] as converges.

n=1

Show that io] a’ converges. Hint: First conclude that for large n, |an| < 1.
1

n=
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Exercise 3.42. Determine if the following statements are true or false. Give reasons for your answers.

(1) If 3 |an| is convergent, then so is Sal.
n=1 n=1

(2) If f] an, is convergent, then so is i a?.
n=1 1

n=

(3) If lim a, = 0, then i Gy, CONVErges.

n—00 n=1

(4) If lim (a1 + -+ an) = 0, then f] an converges.
n—00

n=1

(5) i log 2L converges.
n=1

(6) If an, > 0 (n € N) and the partial sums of (an)nen are bounded above, then i an converges.

n=1

(7) If an > 0 (n e N) and i an converges, then f] L diverges.
n=1 n=1""
Exercise 3.43 (Fourier series). In order to understand a complicated situation, it is natural to try to
break it up into simpler things. For example, from Calculus we learn that an analytic function can be
expanded into a Taylor series, where we break it down into the simplest possible analytic functions, namely
monomials 1,z, 27, ... as follows: f(z) = f(0) + f(0)x + f2—(!0)x2 +---

The idea behind the Fourier series is similar. In order to understand a complicated periodic function,
we break it down into the simplest periodic functions, namely sines and cosines. Thus if 7" > 0 and
f: R — R is T-periodic, that is, f(z) = f(z + T') (z € R), then one tries to find coefficients ag, a1, as, ...
and b1, be, b3, ... such that

f(x)=ao+ i (an cos(3Z2z) + by sin( 22 x)). (3.3)
n=1

(1) Let the Fourier series (3.3) converge pointwise to f on R.

Show that if 3 (Jan| + |bn]) < oo, then in fact the series converges uniformly.
n=1

(2) The aim of this part of the exercise is to give experimental evidence for two things. Firstly, the
plausibility of the Fourier expansion, and secondly, that the uniform convergence might fail if the
condition in the previous part of this exercise does not hold. Consider the square wave f : R — R,

Fz) = 1 if z € [n,n + 1) for n even,
| -1 ifxe[n,n+1) for n odd.

Then f is 2-periodic. From the theory of Fourier Series, which we will not discuss here, the coefficients
can be calculated, and they happen to be 0 = a9 = a1 = a2 = a3 = ... and

i . .
b, — { if n is odd,

nm . .
0 if nis even.

Write a Maple program to plot the graphs of the partial sums of the series in (3.3) with, say, 3, 33,
333 terms. Discuss your observations.

E
1
[
T

Figure 1. Partial sums of the Fourier series for the square wave considered in Exercise 3.43.

Exercise 3.44. Let (an)neN be a sequence with nonnegative terms.

Show that if f an converges, then so does i A/t 1-
n=1 n=1

Exercise 3.45. Let (an)nen be a sequence with nonnegative terms.

an

1+an

Prove that f an converges if and only if i
1 n=1

n=

converges.
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Exercise 3.46. Let (' be defined by £' = {(an)nen : S lan| < o}. Show that £' < ¢2. Is ' = £*?
n=1

(The normed space £2 was defined in Exercise 1.20 on page 6.)

Exercise 3.47. Since the harmonic series i % diverges, we have that the reciprocal Si of the n*® partial
n=1 n

sum s, := 1+ 5 1 +3 Ty l , approaches 0 as n — 00. So the necessary condition for the convergence of

the series Z — is satlsﬁed But we don’t know yet whether or not it actually converges. It is clear that

n=1®

the harmonlc series diverges very slowly, which means that -~ decreases very slowly, and this prompts

the guess that this series diverges. Show that in fact our guess is correct. Hint: s, < n.

Exercise 3.48. Show that the series Z —n converges.

Exercise 3.49. Define the Fibonacci sequence (Fy)nen by Fo = F1 = 1 and Fp4q1 = F, + F—1 forne N.
Show that i FL < +0o0. Hint: Foy1=Fn+ Fno1=2Fa_1+Fh_1=2F,_1. So Fy, =>2" and Fonit1 >2".
neoim

Exercise 3.50. Determine if the series f] (V1 +n? —n) is convergent or not.
n=1

Exercise 3.51. Show that i sin(m/n* + 1) converges absolutely.

n=1
Exercise 3.52 (Dirichlet series). In Analytic Number Theory, one encounters Dirichlet series, which is

a series of the form Z where (an)nen is a real sequence, and s € R. An example is the Riemann zeta

nS )
function, where each an = 1, and we have seen that the series converges for all s > 1, but diverges if
s = 1. In this exercise we consider two examples, one of a Dirichlet series that converges for all s € R, and

another which diverges for each s € R.

(1) Show that for all s € R, é s converges.
n=1

(2) Show that for all s € R, Z L diverges.
n= 1

3.1.2. Power series. Let (¢;,)nen be a real sequence (thought of as a sequence of ‘coefficients’).
An expression of the type

is called a power series in the variable x € R.

This is generalization of the familiar polynomial function co 4 ¢z + cox? + ez + - - - + cgx?.

Indeed, all polynomial expressions are (finite) power series, with the coefficients being eventually
all zeros. For example, 1 + 399z — 2% = 1 + 399z + Ox + (=12 + Ox + Ox + 02 +-

co c1 cs C6

o0 0
S 2™, 3 L™ are examples of power series, which are not polynomials.
= n=0""

Power series arise naturally in applications. For example, it can be shown that the following
boundary value problem for the Ordinary Differential Equation (ODE)
f'(@) + xf'(z) + 2 f(2) = 0 with f(0) =1, f(1) =
has the following ‘power series solution’:
fl@)=1-Fat + 552 + ma® + -, 2 €[0,1].
So questions about the convergence of power series are also natural.

Note that we have not said anything about the set of x € R where the power series converges.

o0
Of course the power series 3 c,z™ always converges for x = 0.

n=0

0
For which x € R does Y ¢,z" converge?
n=0
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We will discover that the answer is: For all z in an interval like this:

({i\'&‘]'g(—?ll(’(—‘ convergence (h\'("l’g(‘ll('(‘

|

|

|

S ;
t

—r 0

|
|
I

&

r

It turns out that there is a maximal open interval B(0,r) = (—r,r) centred at 0 of radius r where

the power series converges absolutely, and we call the radius r as the radius of convergence of the

power series. If the power series converges for all x € R, that is, if the above maximal interval is

(—o0, ), we say that the power series has infinite radius of convergence.

Example 3.53.

The radius of convergence of i 2™ is 1. Indeed, the geometric series converges for € (—1,1) and
n=0

diverges whenever |z| > 1.

©
The radius of convergence of 3. #x”

n=0

is infinite, since it converges for every x € R.

o+

0
The radius of convergence of Y. n™z™ is zero. Indeed, whenever z # 0, {/|n"a"| = n|z| > 1 for

n=0
all n large enough. By the Root test, the power series diverges for all nonzero real numbers.

0 <&
Theorem 3.54. Let (¢y)n=0 be a real sequence. Then

either i cnx™ is absolutely convergent for all x € R
n=0

or there exists a unique v = 0 such that

(1) i cnx™ is absolutely convergent for x € (—r,r) and
n=0
(2) S cpa” diverges for x ¢ [—r,r].
0

n=

That is:

Either ---- :

divergence | convergence | divergence
I I

or -——- 4 } b R
-r 0 r

Proof. Let S := {y € [0,00) : 3z € R such that y = |z| and i cnx" converges}. Clearly 0 € S.
n=0

Only two cases are possible:

1° S is not bounded above (in which case we’ll show ‘r = o0’).

2° S is bounded above (in which case we’ll show r = sup .S).
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1° Suppose that S is not bounded above. Let 2 € R. Then |z| can’t be an upper bound for S.
So there must be an element y € S that prevents |z| from being an upper bound, that is, we
can find a y = |xg| € S such that f cazl converges, and |x| < |zo|. It follows that the n'h

n=0

term goes to 0 as n — oo, and in particular, the sequence of terms is bounded: |c,z{| < M.

Then noting that |zg| > 0 (because |xg| = y > |z| > 0), we have with p := % (< 1),
that |c,z™| = |cn$8|(%)” < Mp™ (n € N). As the geometric series i Mp"™ converges, by the
n=0

n

Comparison Test, i cpx™ is absolutely convergent. As x € R was arbitrary, the claim follows.

n=0
2° Now suppose that S is bounded above.
(1) If z € R and |z| < sup S, then by the definition of supremum, there exists a y € S such that
|z| < y. Then we repeat the proof in 1° above as follows.

n

0
Since y € S, there exists an xzy € R such that y = |zg| and Y ¢,2™ converges. Hence
n=0

lenzl| "=5 0, and in particular, there exists an M > 0 such that for all n, |c, 2| < M.
Then with p := % (< 1), we have [cpa™| = |cnz8|(%)” < Mp" (neN). As p < 1,

i Mp™ converges. By the Comparison Test, i cpx™ is absolutely convergent.
n=0 n=0

(2) If z € R and |x| > sup S, then setting y := |x|, we see that y ¢ S.
So by the definition of S, i cnx™ diverges (for otherwise y € S).

n=0

convergence

divergence

The uniqueness of the radius of convergence is obvious, since if 7,7’ are distinct numbers having

the property described in the theorem and r < 7/, then r < p := %T/ <7r,andas 0 < p <7/,

% cpp™ ought to converge, while as 0 < p < r, it ought to diverge, a contradiction. (]

n=1

If r is the radius of convergence of a power series, then (—r, ) is called the interval of convergence
of that power series. We note that the interval of convergence is the empty set if r = 0, and we
set the interval of convergence to be R when the radius of convergence is infinite.

The calculation of the radius of convergence is facilitated in some cases by the following two results.

Theorem 3.55. Consider the power series i cpx™.

n=0

If L := lim |Cz—“| exists, then r = % if L # 0, and the radius of convergence is infinite if L = 0.
n—0oo m

Proof. Let L # 0. We have that for all nonzero x such that |z| < r = 4, there exists a ¢ < 1

n+1
and a N large enough such that % = [=jz] < ¢ < 1for all n > N. (This is because
|Setly| 23 Llz| < 1. So we may take for example g = % < 1.) Thus by the Ratio Test, the

power series converges absolutely for such x.

n+11n+1|

[enz™|

If L = 0, then for any nonzero z € R, we can guarantee that = |22 |z] < ¢ < 1 for all

n > N. (This is because | <+ x| 2% 0|z| = 0 < 1. So we may take for example q = 1 <1.) Thus

by the Ratio Test, the power series converges absolutely for such z.

gt :
If L # 0 and |z| > £, then there exists a N large enough such that % = | |z] > 1 for

len®

alln > N. This is because | | "Z% L|z| > 1. By the Ratio Test, the power series diverges. [J
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Theorem 3.56. Consider the power series i cpx™.

n=0

If L= lim R/|c,| exists, then r = % if L # 0, and the radius of convergence is infinite if L = 0.
n—0o0

Proof. Let L # 0. We have that for all nonzero z such that |z| < r = 1, there exists a ¢ < 1
and a N large enough such that {/|c,z™| = {/|cn||z] < ¢ < 1 for all n > N. (This is because
enl 2] =5 Liz| < 1. So we may take for example ¢ = % < 1.) Thus by the Root Test, the

power series converges absolutely for such x.

If L = 0, then for any nonzero z € R, we can guarantee that W = Wm < g<1forall
n > N. (This is because {/]c,||z| =% 0]z| = 0 < 1. So we may take for example ¢ = £ < 1.)
Thus by the Root Test, the power series converges absolutely for such z.

If L # 0 and |z| > 1, then there exists a N large enough such that {/|c, 2| = /], ||| > 1 for all

n > N. This is because 3/|c,||z| "=> L|z| > 1. By the Root Test, the power series diverges. [J

@ Note that whether or not the power series converges at x = r and x = —r is not answered by
Theorem 3.54. In fact this is a delicate issue, and either convergence or divergence can take place
at these points, as demonstrated by the following examples.

Example 3.57. We have the following;:

Power series | Radius of convergence | Set of x’s for which the power series converges
ixn 1 (—1,1)
b ! [-1.1]
> e 1 [~1.1)

(=1 1 (~1,1]

Exercise 3.58. Check all the claims in Example 3.57.

Exercise 3.59. Find the radius of convergence for each of the following power series:
0 2n—1

1 23 25 © 227 22 24

=1

o0
Exercise 3.60. Let the power series ) c,z™ have radius of convergence r.
n=0

(1) If (X/|en|)nen is not bounded, then show that r = 0.
(2) If (X/|cn|)nen is bounded, and we define M, := sup{ &/|cm| : m = n} (n € N), then we know that

(Mp)nen is convergent since it is decreasing and bounded. Set L := lim M, = limsup &¥/|cn|.

n—w n—>00
If L = 0, then show that r = c0.
If L # 0, then show that r = %

Power series are infinitely differentiable. We will now show that just like polynomials, power
series are infinitely many times differentiable in their respective intervals of convergence, and
moreover the derivative is again given by a power series, obtained by termwise differentiation of
the original series, and this power series for the derivative has a radius of convergence at least as
big as the original series. One can also relate the coefficients of the power series with the successive
derivatives of the function defined by the power series at 0.
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©
Let Y c,z™ have radius of convergence r > 0 and let
n=0

_ n _ 2 3 ... —
n 5 .
)—Ec:z: =co + 1T + cox” + c3x” + for all x € (—r,7)
n=0

If termwise differentiation were allowed, then

8

fl@)=04+c - 14+cy-2x+c3-322 +--- = chn " for all z € (—r,7).

n=

We justify this now.

Theorem 3.61. Let r > 0, and let the power series f(x) := i cnx™ converge for x € (—r, 7).
n=0
Then f is differentiable in (—r,r), and f'(z) = i ne,x™ 1 for x € (—r,7).
n=1

Proof. (You may skip this proof.)
Step 1. First we show that the power series g(z) := Z nepx =c1+2c2+ - +nc "4

1s absolutely convergent in (—r,r). Fix z € (—r,7) and let p satisfy |z| < p < r. By hypothesis,

Z cpp™ converges, and so hm enp™ = 0. In particular, (¢, p™)nen is bounded, and there is some
n=0

positive number M such that |cnp | < M for all n. Now let « : ‘zl . Then 0 < a < 1, and we have

Inc,z™ 1 = |cpp™ | 7’L|””|"_1 < M%. But as a € [0, 1), by Exer(:lse 3.16, Z na"l = (171(1)2.

n=1

1

By the Comparison Test, it follows that i nc,x™ ' converges absolutely.

n=1

Step 2. Now we show that f'(zo) = g(zo) for |xg| < r, that is, lim (M —g(z0)) = 0.

T—To r—xo

As before, let p be such that |zo| < p < r. Below we consider x € (—r,r) satisfying |z| < p.

. . L

t t + —
- 0 Zo p T

Let e > 0. As i ne,p™ ! converges absolutely, there is an N such that

n=1

Z [nenp™ 1 < £ (3.4)

n=N

Keep N fixed. We have f(z) — f(zo) = 2 en (2™ — xf), and so for x # o,

n=1

Haftoo) _ § o, 2o

o0
n—1 n—2 n—1
T—To nglcn(z +x o+ -+ 551'0 + Ty )

Thus %ﬁ:ﬁm“) —g(zg) = 2 cn(x" ™ a2 2w+ a2+ — '), We let Sy be the
n=1
sum of the first N — 1 terms of this series (that is, from n =1 to n = N — 1) and S3 be the sum

of the remaining terms (from n = N to o). Then since |z, |zo| < p, it follows that

o0
|5«2| < |Cn|( pn 1+pn 1+...+pn—1 +np"_1)= §N2n|cn|pn—1 <§_

n

n terms

N

The last inequality holds by (3.4). Also, S1 = Y cp(a™ !t + 2" 220+ -+ z2]” 24 xy” ! —nxj” b
n=1

is a polynomial in  and so

N 1 n—1

ol gt = Zlcn (nzf™' —nap™') =0.
=

N
lim S; =Y cn(xg_l + xg_on + -+ xoxy 24 xy
T—To n=1
So there is a § > 0 such that whenever |z — 20| < d, we have |S;] < §. Thus for |z| < p and
0 < |z — | < &, we have |%ﬁ:£xo) — g(wo)| < [S1] + |S2| < § + § = e. This means that

f'(xo) = g(x0), as wanted. O
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By a repeated application of the previous result, we have the following.
Corollary 3.62. Let r > 0 and let f(z) := i cpx™ converge for |x| < r.
n=0
Then for k=1, f¥)(z) = i nn—1)Mn-2)-(n—k+Dec,z" % for |z| <r. (%)

n=k

In particular, forn =0, ¢, = %f(”)(()),

Proof. A repeated application of Theorem 3.61 gives this: For n,k € N u {0},
& o nn—1)--(n—(k—1)z"* for 0<k <n,
R | for k > n.

For the last claim, we have f(0) = ¢g, and for the n € N cases, set x = 0 in (*):

f®O0)=k(k—1)lcg +x s nn—1)(n—k+1)ec,x"*1|z0 = kleg. O
n=k+1

Remark 3.63. There is nothing special about taking power series centered at 0. One can also

consider i cn(x —a)™, where a is a fixed real number, and get analogous results to the foregoing.

n=0

Exercise 3.64. It can be shown that the power series f(z) := i % and g(z) := i % both have
n=0 : n=0 )
an infinite radius of convergence. Show that for all z € R, f'(z) = g(z) and ¢'(z) = f(=).

Show that (f(z))? — (g9(x))? = 1, € R. Hint: Differentiate f? — g* to show constancy, and evaluate at 0.

Exercise 3.65. Find 1 + 21—2, + ?;—2, + % + e

Exercise 3.66 (Power series method for solving differential equations). Assuming that the solution to

the differential equation f'(z) = 2z f(x) has a power series expansion f(z) = io] cnx™, T € R, find f.
n=0

Exercise 3.67 (Generalised Binomial Theorem).
Let a € (0,1). Show that the radius of convergence of the power series

14 az + a(am—l)x2 + a(aflg)!(a%)xii 4

is 1. Let f : (—1,1) — R be the sum of the above power series. Prove that (1+z)f'(z) = af(z) in (—1,1).
Calculate ((14-)7*f)" in (—1,1), and hence show that f(z) = (1 + z)%, z € (—1,1).

Exercise 3.68 (Pathological Taylor series).

We have seen that power series define infinitely differentiable functions in the respective regions of conver-
gence. Now suppose that we start with an infinitely differentiable function f in an interval (—r,r). Then
does it have a ‘power series expansion’? We can certainly form the power series f] f(#)!@x".

Now we may ask: If this series converges for an = # 0, then is its sum equal tno:of(x)? The answer is,

rather surprisingly, ‘Not always!”. There exist infinitely differentiable functions f for which the power
series converges for z # 0, but the sum of the series is different from f(z). Consider for example the

function f: R — R given by
f(m)={€_ lfx#o,

0 if z = 0.

84

(n) .
20 = 0, which does

1
0 ni

We will show below that (™ (0) = 0 for all n > 0. Hence the power series

3
1 M8

not equal f(z) for any nonzero x.
(1) Sketch the graph of f.

(2)
(3) Show that for each n € N, there is a polynomial p, such that for all z # 0, f(")(x) = e_z%pn(%).
(4) Prove that f™(0) = 0 for all n > 1.

Exercise 3.69. By termwise differentiating the geometric series in its region of convergence, rederive the
result in Exercise 3.16: If if |r| < 1, then 1 + 27 4 3r% + - L

= T

Prove that for every n € N, lin%) % =0.
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3.2. Series in normed spaces

We can’t define series in a general metric space, since we need to add terms. But in the setting of
a normed space, addition of vectors is available, and so we can define the notion of convergence
of a series in a normed space.

Definition 3.70. Let (a,)nen be a sequence in a normed space (X, | - |)-
The sequence ($p)nen of partial sums is defined by s, = a1 +---+a, € X (neN).

The series 3, a,, is called convergent if (Sn)nen convergesin (X, |-|). Then we write Sa, = lim s,
n—o0

n=1 n=1

If the sequence (s, )nen does not converge we say that the series i a, diverges.

n=1

It turns out the convergence in a complete normed space is guaranteed by the convergence of
an associated real series (of the norms of its terms). We first introduce the notion of absolute
convergence of a series in a normed space, analogous to the absolute convergence of a real series.

Definition 3.71. Let (a,)nen be a sequence in a normed space (X, || - ).

We say that the series i ap, converges absolutely if the (real) series i [an| converges.
n=1

n=1

Theorem 3.72. Let (a,)nen be a sequence in a complete normed space (X, ||-||) and i [an| < +c0.
n=1

0
Then 3 a, converges in X.

n=1

Proof. (The proof is the same, mutatis mutandis, as the proof of the fact that absolutely con-
vergent real series converge. The only change is we use norms instead of absolute values, and use
the completeness of X in order to conclude that when the partial sums form a Cauchy sequence,
they converge to a limit in X.) Let s, := a1 + -+ + a,. We will show that (s, )nen is a Cauchy
sequence. Let oy := |la1| + - + |lax|, k € N. For n > m, we have

[sn = sml = (a1 + -+ an) = (a1 + -+ + am)| = [am+1 + - + an
< flamia] + -+ flan] = (laa] +-- -+ flanl) = (Jar] + - - + lam]) = o0 = om.

0

Since the series Y [ay| converges (given!), its sequence of partial sums is convergent, and in
n=1

particular, Cauchy. From the inequality |s,, — sm| < 0n — 0m, above, it follows that (s,)nen is a

Cauchy sequence in X. As X is complete, (S, )nen iS convergent. O
Example 3.73. Let the sequence (fy,)nen in the normed space (C[0,1],] - |«) be given by
fn(‘r)= (%)n (ZCE[O,l], nEN)

The series i fn converges in (C[0,1],] - |w) since ||fnlowo = max |(

)"| = 3=, and the series
z€[0,1]

H
I8

n=

o0
Sfnllo = 2 2% converges. In fact, one can see directly that, since
n=1 n=1

=

(gt

su(@) = ful@) + - + fule) = I = 75 01— &),

with f defined by f(z) = 5% (2 € [0,1]), we have ||s, — f|loc = m[ax] S < 2220, and so
ze|0,1

the series i fn converges to f in (C[0,1],] - |leo)-

n=1
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X

The picture above shows plots of the partial sums and their limit f. <

The following result plays a central role in Differential Equation theory.

Theorem 3.74. Let A € R%*?. Then the exponential series e = I + A + %AQ + %Ag + -
converges in (R4 |- | ).

Proof. It is easy to see that if A, B € R4*? then |AB|s < d|Alls|B|e. This follows from:
d d d
(AB)] = 15 AwBis| < $Aul|Bis| < 5141 |Blr = d| Al Bl

Hence by induction, we have |A™|o < d" | A||% < (d|A]w)™. Thus |-LA"| < L (d|Afw)™. As

el Al — é{)%(dﬂAH@)” converges, by the Comparison Test, the real series i |5 A" converges.

n=0

Since (R™?, | - | ) is complete, e := T + A+ 5, A% + £ A3 + - converges in (R |- |,). O
Exercise 3.75. Determine:

(1) €°, where 0 denotes the d x d matrix with all entries equal to 0.
(2) e, where I denotes the d x d identity matrix.

A1
(3) €P, where D is the diagonal matrix D = { ], where A1, -+ ,A\g € R.
Ad

Exercise 3.76. Recall Exercise 2.52. We equip coo with the same | - |2 norm as for £2. Consider the

sequence (#en)neN in coo, where e, is the sequence with all terms zeroes, except for the n'® one, which

ie equal to 1. Show that the series i |-zenl2 < oo, but that the series f} - e, does not converge in 2.
n=1

n=1

Conclude that (coo, || - [2) is not a complete normed space.

Exercise 3.77. Let X be a normed space in which every series OXC] an, for which there holds OXC] [an| < +o0,
is convergent in X. Prove that X is complete. Hint: Given";lCauchy sequence (mn)ngl:l construct a
subsequence (n,, )ken satistying |@n, , —2n, | < 2% Then take a1 = Tn,, a2 = Tny — Tny, 3 = Tng — Tny,
and so on, and use the fact that a Cauchy sequence possessing a convergent subsequence must itself be

convergent, which was a result established in Exercise 2.27.

3.3. Notes (not part of the course)

Erdss conjecture on APs. In connection with the divergence of the harmonic series, we mention the
Erdos conjecture on arithmetic progressions (APs) : If the sums of the reciprocals of the numbers of a
set A of natural numbers diverges, then A contains arbitrarily long arithmetic progressions. That is, if

> % diverges, then A contains APs of any given length. We know that i % diverges, and in this case
neA n=1

the claim is trivially true. In Exercise 3.15, we have seen that 3] % diverges. So one may ask: Does the

p prime

claim hold in this special case? The answer is ‘Yes’, and this is the Green-Tao Theorem proved in 2004.

Terence Tao was awarded the Fields Medal in 2006, among other things, for this result.
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Integral Test. It can sometimes be easy to determine whether or not the improper integral S:O f(z)dz
converges or diverges, and this can be used to deduce the convergence status of the series f] f(n). This
result is known as the Integral Test. "

Suppose that f : [1,00) — [0,00) is decreasing, and that f is Riemann integrable on [1,n] for all
n € N. Let us first show that the following inequalities hold: Z f(k Sl T < :gf(k), for all n e N.

Consider the interval [1,n], and let g,, and &, be the step functions defined by ¢, () = f(k + 1) and
En(x) = f(k), for = € [k, k + 1), ke {1,--- ,n}. Since f is decreasing, for all z € [1,n], g, (z) < f(z) <

n(z). Thus Z f(k) = o, (x)de < §} f(z)de < §7 Tn(2)dx = k;f(k)
/(1)
1(2)
f(n) fln—1)
1 2 n 12 o
n—1
k) <§; f(x)dz §i fl)ydz < 3 f(k)
= =1
We claim that Z f(n) converges if and only if S;n f(z)dx does. We have the following cases:
1° Sl x)dz converges. The first inequality above shows that the partial sums Z f(k) are bounded
above by f(1)+ Sl z)dz. As f(k) = 0 for all k, the partial sums are increasing. So i f(n) converges.
n=1

2° §° f(x)dz diverges. Since for all n € N, {7 f(z)dz < nilf(k), it follows that the partial sums nilf(lc)
k=1 K1

can’t form a bounded sequence, and so Z f(n) diverges.

n=1

diverges). Let f(z) = —2—, > 2. Then f : [2,00) — (0,00) is decreasing.

zlogx?

Example 3.78 (Z

nlogn

Using the substltutlon u=Ilogx (so that du= %d:v, and when z =2, u=1log 2, while if z =y, then u=1logy),

zl;gz r = S:Z:g Lau = logu|:g§g — log(logy) — log(log2). As logy =5 oo it follows that

we have Sg

——— diverges too.
n log n

log(log y) 2% 0, and so SQ mdl’ does not converge. Hence by the Integral Test Z

(Note that we start the sum with n = 2 to avoid n being 1 when logn = 0.) <&

Example 3.79 (Z m < +00). Let g(z) = x> 2. Then g:[2,00) — (0,00) is decreasing.

1
z(log )2

Using the substitutlon u=logx (so that du= %da@ and When =2, u=log2, while if z =y, then u=logy),

Y logy 1 _lylogy _ _ _1
we have S2 T logz Slog2 u? du = u|10g2 - logy + log2 Thus
1 _ 1
SQ z(logz) dﬁf - hm SQ z( logz)2 de = hm( Togy + log2) 0+ log2 ~ log2°

As the improper integral SQ - (log (o )Z dx converges, by the Integral Test, > > converges t00. <&

;
n=2n(log n)
The Riemann Rearrangement Theorem. In light of Exercise 3.27, one might wonder what happens
with series that are convergent, but not absolutely convergent. (Such series are sometimes called condi-
tionally convergent.) The behaviour is radically different, as demonstrated by the following result. It is
suprising enough that the naive expectation of ‘commutativity’ fails, but even more striking is the fact
that the rearrangement can be done so as to get any limit whatsoever!

Theorem 3.80 (Riemann Rerrangement Theorem). Let Z an be a conditionally convergent series.

(1) If L € R, then there exists a permutation pr : N — N such that Z ap, (n) = L.
n=1
(2) There exist permutations peo and p—« such that i Qpoo(n) and — i ap_ . (n) diverge to +00.
n=1 n=1
In (2), ‘diverges to +00’ means that if (sn)nen is the sequence of partial sums, then for all M € R, there

exists an index N € N such that for every n > N, s, > M. The interested reader is referred to [R] for a
proof of the above result.



Chapter 4

Continuous functions

Let X and Y be metric spaces. As there is a notion of distance between pairs of elements in either
space, one can talk about continuity of maps. Within the huge collection of all maps, the class of
continuous maps form an important subset. We are interested in continuous maps as they possess
some useful properties. Before discussing maps between metric spaces, let us first of all recall the
notion of continuity of a function f: R — R.

4.1. Continuity of functions from R to R

Recall that continuity is a ‘local’ concept, and we have the following notion of the continuity of a
function at a point.

Definition 4.1. Let I be an interval and let ¢ € I. A function f : I — R is continuous at c
if for every € > 0, there exists a § > 0 such that whenever x € I satisfies |z — ¢| < 4, we have

[f(z) = flo)] <e

f is said to be continuous on I if for every c € I, f is continuous at c.

We have seen that if f,g : R — R are continuous on R, then their composition fog: R — R,
given by (f o g)(x) := f(g(z)) (x € R), is also continuous on R.

Recall also the following important properties possessed by continuous functions: They pre-
serve convergent sequences, the Intermediate Value Theorem and the Extreme Value Theorem.
Theorem 4.2. Let I be an interval, c€ I, and f : I — R. Then the following are equivalent:

(1) f is continuous at c.

(2) For every sequence (Tn)nen contained in I such that (x,)nen converges to c,
the sequence (f(xn))nen converges to f(c).

In other words, f is continuous at ¢ if and only if f ‘preserves’ convergent sequences.

Exercise 4.3. Show that the statement (2) in Theorem 4.2 can be weakened to the following:

(2") For every sequence (zn)nen contained in I such that (z,)nen converges to c,
the sequence (f(zn))nen converges.

Theorem 4.4 (Intermediate Value Theorem). If f : [a,b] — R is continuous on [a,b], and y € R
is such that f(a) <y < f(b) or f(b) <y < f(a) (that is, if y lies between f(a) and f(b)), then
there exists a c € [a,b] such that f(c) = y.

In other words, a continuous function attains all real values between the values of the function
attained at the endpoints.
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Finally, we recall the Extreme Value Theorem.

Theorem 4.5 (Extreme Value Theorem). Let f : [a,b] — R be continuous on [a,b]. There exists
a c € [a,b] and there exists a d € [a,b] such that

f(C) = sup{f(m) ‘Te [a’b]}a
f(d) = inf{f(z) : x € [a,b]}.

Since ¢, d € [a,b], we have f(c), f(d) € {f(z) : « € [a,b]}, and so the supremum and infimum are
in fact maximum and minimum, respectively:

f(e) = sup{f(2) : x € [a,b]} = max{f(z) : x € [a,b]},
f(d) = nf{f(z) : € [a,b]} = min{f(z) : x € [a,b]}.

We observe that in our definition of continuity of a function at a point, they key idea is that:

‘We are guaranteed that f(z) stays close to f(c) for all z close enough to ¢.’

But ‘closeness’ is something we know not just in R but in the context of general metric spaces!
We will now learn that indeed continuity can in fact be defined in a quite abstract setting, when
we have maps between metric spaces. We will also gain insights into the above properties of
continuous functions when we study analogues of the above results in our more general setting.

z if x is rational,
—x if x is irrational.
Prove that f is continuous only at 0. Hint: For every real number, there is a sequence of irrational numbers
that converges to it, and a sequence of rational numbers that converges to it (see Exercises 1.41, 1.42).

Exercise 4.6. Consider the function f: R — R defined by f(z) = {

Exercise 4.7. Every nonzero rational number ¢ can be uniquely written as ¢ = %, where n,d denote
integers without any common divisors and d > 0. When r = 0, we take d = 1 and n = 0.

. . 0 if x is irrational,
Consider the function f: R — R defined by f(z) = {é if & (= 2) is rational.

d
Prove that f is discontinuous at every rational number, and continuous at every irrational number.

Hint: For an irrational number z, given any € > 0, and any interval (N, N + 1) containing x, show that
there are just finitely many rational numbers r in (N, N + 1) for which f(r) > e. Use this to show the
continuity at irrationals.

Exercise 4.8. Consider a flat pancake of arbitrary shape. Show that there is a straight line cut that
divides the pancake into two parts having equal areas. Can the direction of the straight line cut be chosen
arbitrarily?

Exercise 4.9. A curve (in the plane) is a map [0,1] 3¢ — (z(¢),y(t)) € R x R, where z,y : [0,1] > R

are continuous functions.

(1) Show that any curve 7 : [0,1] — R x R such that v(0) = (0,0) and (1) = (2,0) meets the circle
T:= {(z,y) e R x R: 2% + y* = 1} at some point, that is, there exists a c € (0,1) such that y(c) € T.
Hint: It y(t) = (z(t),y(t)), t € [0,1], then consider t — (z(t))? + (y(t))>.

(2) Suppose p : [0,1] > R x R is a curve which does not meet the origin, that is, for all ¢ € [0, 1],
wu(t) # (0,0). Prove that there exist positive real numbers r, R such that the image of p lies in the
‘annulus’ A = {(z,y) e R x R: 7% < 2® + 3* < R?}.
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4.2. Continuity of maps between metric spaces

Definition 4.10. Let (X,dx), (Y,dy) be metric spaces, ce X and f: X — Y be a map. Then
f is said to be continuous at c if for every € > 0, there exists a § > 0 such that whenever x € X
satisfies dx (z,¢) < 0, we have dy (f(z), f(c)) <e.

X f

f is said to be continuous on X if for every c € X, f is continuous at c.

First of all we notice that if I is an interval in R, and we take X = I, Y = R, both equipped
with the Euclidean metric, then the above definition of continuity of a function f : I — R at a
¢ € R coincides with our earlier Definition 4.1.

We remark that although X may be equal to Y (as sets), they might be equipped with different
metrics; see as an extreme example, Exercise 4.12 below.

22 if x=(x1,22)#0
Exercise 4.11. Show that f : R* — R given by f(x)= { Vaitad ( )

is continuous at 0.
0 ifx=0

0 ifx<0,
1 ifx>0.

(1) Suppose both the domain X =R and the codomain ¥ =R are equipped with the Euclidean metric.
Show that f is not continuous at 0.

Exercise 4.12. Let f: R — R be defined by f(z) = {

(2) Equip the domain X =R with the discrete metric, and the codomain ¥ =R with the Euclidean metric.
Prove that f is continuous at 0.

Exercise 4.13. Let (X, d) be a metric space, and let p € X. Show that the distance to p is a continuous
map, that is, prove that the function f: X — R defined by f(z) := d(z,p) (z € X) is continuous.

Exercise 4.14. Show that addition (z,y) — z + y and multiplication (x,y) — zy are continuous maps
from R? to R with the usual Euclidean metrics.

Exercise 4.15. Consider the normed space (C[0, 1], - =), and let S : C[0,1] — C[0,1] be defined by
(S(H)(x) = (f(2))* (z € [0,1], f € C[0,1]). Show that S is continuous.

Proposition 4.16. Let (X,dx) be a metric space, and let f, : X — R (n € N) be a sequence of
continuous functions that converges uniformly to f : X — R. Then f is continuous.

Proof. Let ce X and € > 0. Choose an N € N such that that for all z € X, |fx(z) — f(2)| < 5.
As fn is continuous, there exists a 6 > 0 such that for all z € X satisfying dx (x,¢) < §, we have
|fn(z) — fn(c)| < §. For all v € X satisfying dx (x,c) < d, we have, using the triangle inequality,
that [f(z) = f(c)| < [f(2) — fn(@)| + [ fn(z) = fn (o) + [fn(e) = fe)| < § + §+ § = e Hence fis

continuous at c. Since the choice of ¢ € X was arbitrary, it follows that f is continuous on X. O

Exercise 4.17. A subset S of R" is path connected if for all z,y € R™, there exists a continuous function
v :[0,1] — S such that v(0) = z and v(1) = y. (Think of v as a ‘path’ beginning at z and ending at y.)
(1) Show that every convex set C' is path connected. (See Exercise 1.45 for the definition of convex sets.)
(2) Define the relation R on S by setting x Ry if there is a path v : [0,1] — S such that v(0) = z and
~v(1) = y. Prove that R is an equivalence relation on S. The equivalence classes of S under R are
called the path components of S. So a path connected S has a unique path component, namely S.

(3) Which of the following subsets of R? are path connected? For a set that is not path connected,
determine its path components. {(z,y) € R?:2? +y* = 1}, {(z,y) e R*:zy = 0}, {(=,y) € R*:2y = 1}.
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4.3. Continuous maps and open sets

We will now learn an important property of continuous functions, namely that ‘inverse images’
of open sets under a continuous map are open. In fact, we will see that this property is a
characterisation of continuity.

But first we fix some standard notation. Let f: X — Y be a map, and let V < Y. Then we
set f7H(V) :={x e X : f(x) € V}, and call it the inverse image of V under f. See the picture
below. Clearly f~1(Y) = X and f~1(%) = &.

X ¥ Y

Exercise 4.18. Let f : R — R be given by f(z) = cosz (r € R). Find f~'(V), where V = {-1,1},
V= {1}7 V= {3}7 V= [_171]7 V=RV= (_%7 %)

If U < X, then we set f(U) :={f(x) €Y : z € U}, and call it the image of U under f.

X Y

Exercise 4.19. Let f: R — R be given by f(z) = cosz (z € R). Find f(U), where U =R, U = [0, 27],
U = [4,0 + 2m] where 0 is any positive number.

Theorem 4.20. Let (X,dx), (Y,dy) be metric spaces and f : X — Y be a map. Then f is
continuous on X if and only if for every V open in'Y, f=1(V) is open in X.

Proof. (If) Let ¢ € X, and let € > 0. Consider the open ball B(f(c), €) with center f(c) and radius
€ in Y. We know that this open ball V := B(f(c),¢) is an open set in Y. Thus we also know
that f~1(V) = f=1(B(f(c),€)) is an open set in X. But the point ¢ € f~1(B(f(c),€)), because
f(e) € B(f(c),€) (indeed, dy (f(c), f(c)) = 0 < €!). So by the definition of an open set, there is a
§ > 0 such that B(c,d) < f~1(B(f(c),€)). In other words, whenever x € X satisfies dx (z,c) < 6,
we have that z € f~1(B(f(c),¢)), that is, f(x) € B(f(c),¢), which implies dy (f(z), f(c)) < e.
Hence f is continuous at c¢. But the choice of ¢ € X was arbitrary. Consequently f is continuous
on X. See the picture on the left-hand side below.

7)) V) v
V:=B(f(c),e)

N A N

€ f(o) & fe)

(If) (Only if)
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(Only if) Now suppose that f is continuous, and let V' be an open subset of Y. We would like
to show that f~1(V) is open. So let c € f~1(V). Then f(c) € V. As V is open, there is a small
open ball B(f(c),e) with center f(c) and radius € > 0 that is contained in V. By the continuity
of f at ¢, there is a § > 0 such that whenever dx (z,c) < §, we have dy (f(z), f(¢)) < ¢, that is,
f(x) € V. But this means that B(c,d)  f~1(V). Indeed, if x € B(c,), then dx(x,c) < & and so
by the above, f(x) € V, that is, x € f~}(V). Consequently, f~*(V) is open in X. See the picture
on the right-hand side at the bottom of page 50. O

@ Note that the theorem does not claim that for every U open in X, f(U) is open in Y. Consider
for example X =Y = R equipped with the Euclidean metric, and the constant function f(x) =
(x € R). Then X =R is open in X =R, but f(X) = {c} is not open in Y = R.

Corollary 4.21. Let (X,dx), (Y,dy) be metric spaces and f : X — Y be a map. Then f is
continuous on X if and only if for every F closed in Y, f=1(F) is closed in X.

Proof. If F c Y, then f~1(Y\F) = X\(f~}(F)). O
Exercise 4.22. Fill in the details of the proof of Corollary 4.21.
Theorem 4.23. Let (X,dx), (Y,dy), (Z,dz) be metric spaces, f : X > Y and g:Y — Z be

continuous maps. Then the composition map go f : X — Z, defined by (g o f)(x) := g(f(x))
(z € X), is continuous.

Proof. Let W be open in Z. Then since g is continuous, g~!(W) is open in Y. Also, since f
is continuous, f~(g~1(W)) is open in X. Finally, we note that (g o f)"Y(W) = f=Y(g=1(W)).
Consequently, g o f is continuous. (I

Exercise 4.24. In the proof of Theorem 4.23, we used (go f)™'(W) = f~'(g”'(W)). Check this.

Exercise 4.25. Let X be a metric space and f : X — R be a continuous map. Determine if the following
statements are true or false. Justify your answers.

1) {z € X : f(x) < 1} is an open set.

(

(2) {x € X : f(x) > 1} is an open set.

(3) {x € X : f(z) = 1} is an open set.

(4) {x e X : f(z) < 1} is a closed set.

(5) {x e X : f(z) = 1} is a closed set.

(6) {xe X: f(z) =1or f(z) =2} is a closed set.
(7) {x € X : f(z) = 1} is a compact set.

Analogous to Theorem 4.2, we have the following characterisation of continuous maps in terms of
convergence of sequences.

Theorem 4.26. Let (X,dx),(Y,dy) be metric spaces, c€ X, and let f : X — 'Y be a map.
Then following two statements are equivalent:

(1) f is continuous at c.

(2) For every sequence (Tn)nen tn X that converges to ¢, (f(xn))nen converges to f(c).

Proof. (1) = (2): Suppose that f is continuous at c¢. Let (z,)nen be a sequence in X such
that (z,)nen converges to c¢. Let € > 0. Then there exists a § > 0 such that for all z € X
satisfying dx (z,¢) < 8, we have dy (f(z), f(c)) < e. As the sequence (z,)nen converges to ¢, for
this 6 > 0, there exists an N € N such that whenever n > N, dx(x,,c¢) < . But then by the
above, dy (f(x,), f(c)) < e. So we have shown that for every e > 0, there is an N € N such that
for all n > N, dy (f(zn), f(c)) < €. In other words, the sequence (f (2, ))nen converges to f(c).
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(2) = (1): Suppose that f is not continuous at c¢. Then
—(Ve > 0, 36 > 0 such that Vz € X satisfying dx (x,c) < d, we have dy (f(z), f(c)) <¢).

Thus Je > 0 such that V§ > 0, Iz € X satisfying dx (x,¢) < d, but for which dy (f(z), f(¢)) = e.

We will use this latter statement to construct a sequence (z,)nen for which the conclusion in (2)

does not hold. For § = 1 (n € N), denote the corresponding z as @,: Thus, dx(z,,c) < § = +

n’

but dy (f(xn), f(c)) = e. Clearly the sequence (z,)nen is convergent with limit ¢, but (f(zy))nen
does not converge to f(c) since dy (f(zn), f(c)) = € for all n € N. So (2) does not hold. We have
shown that if (1) does not hold, then (2) does not hold. Consequently, (2) = (1). O

Exercise 4.27. Let f : R — R be a continuous function such that for all z,y € R, f(z +y) = f(z) + f(y).
Show that there exists a real number a such that for all « € R, f(z) = ax. Hint: Show first that for
natural numbers n, f(n) = nf(1). Extend this to integers n, and then to rational numbers %, n € Z,
d € N. Finally use the density of Q in R to prove the claim.

Exercise 4.28. Find all continuous functions f : R — R such that for all z € R, f(z)+ f(2z) = 0.
Hint: Show that f(z) = —f(%£) = f(2)=—f(%)="---.

Exercise 4.29. Define the multiplication function f : R? >R by f(x) = z1x2 for all @ = (z1,22) € R2.
Show that f is continuous on R? using the characterisation of continuous functions in terms of preservation
of convergent sequences. Compare this with Exercise 4.14.

Exercise 4.30. Two metric spaces are called homeomorphic if there exists a bijection f : X — Y such
that f: X - Y and f~! : Y — X are both continuous. The map f is then called a homeomorphism. For
example, f : (=%, %) — R given by f(f) = tan6 for all § € (—%, %), is a homeomorphism between the
interval (—%, %) and R, both equipped with the Euclidean metric. (This bijection is based on the left-
hand side picture below which gives a one-to-one correspondence between points of the semicircular arc
of radius 1 and the real line, but can also be checked directly. Based on the continuity of tan on (=%, %),
and the fact that tanf — +o0 as § — +7, it follows from the Intermediate Value Theorem that f is
surjective. It is also injective, because it can be shown that f'(6) = m > 0, showing that f is strictly
increasing on (—Z%, Z). Hence f is a bijection. Moreover, tan : (—%,Z) - Rand tan™' : R — (-2, %)
are continuous.)

a

tan -z 0 0 z

It follows from here than for any real numbers a, b with a < b, the open interval (a,b) is homeomorphic to
R. This is because there is a homeomorphism g : (=%, %) — (a,b), e.g. using the right-hand side picture

above (and then the bijection g is given explicitly by g(8) = (6 + %)@ +afor -5 <6< 3%).

A natural question is whether the continuity of f~! is actually implied by the continuity of a bijection
f: X — Y. This is not true in general. For example, the map f : [0,27) — {(z,9) € R? : 2% + y* = 1}
given by f(0) = (cos0, sin@) for all § € [0,27) can be seen to be a continuous bijection, but its inverse
is not continuous at (1,0): In deed, we have that the sequence (f(2r — 2))nen converges to (1,0), but
(f7'(f(2m — 2)))nen = (27 — L) e does not converge to 0 = f~*(1,0).

The aim of this exercise is to give another example of a continuous bijection whose inverse is not
continuous. Recall Exercise 1.21, and let coo denote the subspace of £*° consisting of all sequences that
have all terms equal to 0 eventually. Consider coo = £* as normed space with the norm | - |, and the
map f : coo — coo given by f(x1,x2,x3,---) = (21, 3, %&7 -+-) for all @ = (Tn)nen € coo. Show that f is a
continuous bijection, whose inverse is not continuous. Hint: It can be shown that f~! is not continuous
at 0 by using the fact that f is linear and f(em) = %eym where e, is the sequence all of whose terms are

h

zeroes, except for the m™ one which is equal to 1.
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Exercise 4.31. A ‘manifold’ is a topological space that locally resembles the Euclidean space. More
precisely, we will call a subset M of R™ a manifold (of dimension' k) if for every x € M, there is an open
set O, containing « such that O, is homeomorphic to an open subset U of R¥. Locally the surface of the
Earth, which is a sphere, looks flat, and so we expect that the sphere in R? is a manifold of dimension 2.
Give an argument, based on pictures, that the unit sphere S* := {x € R® : |z|> = 1} is indeed a manifold
of dimension 2. (This explains why one uses the superscript ‘2’ on top of S in the (standard) notation for
the unit sphere in R®. Similarly the circle S* := {z € R* : |x]2 = 1} in R? is a manifold of dimension 1,
and is denoted by S'. More generally, it can be shown that the unit sphere $% := {z € R**! : |z|> = 1}
in R4 is a manifold of dimension d.)

1?712 . _
Exercise 4.32. Consider the function f : R* — R given by f(x) = { ol +a3 li r= Exl’;m) #(0,0),
¢ itz =(0,0).

Show that no matter what ¢ € R we take in the above, f is not continuous at (0, 0).

Exercise 4.33. Show that the determinant function M ~— det M from (R?*2, ||-||») to (R, |-|) is continuous.
Prove that the set of invertible matrices is open in (R**?,| - ||). Hint: Consider det™'{0}.

Exercise 4.34. Give an example of a continuous function f: X — Y, where X,Y are metric spaces, and
a Cauchy sequence (zn)nen for which (f(2n))nen is not a Cauchy sequence in Y.

Exercise 4.35. Let X,Y be metric spaces. A map f: X — Y is called open if for every open subset U
of X, f(U) is open in Y. Equip X = R with the usual Euclidean metric, and Y = R with the discrete
metric. Consider the identity map f: X — Y defined by f(z) = z for all x € R. Show that f is open, but
for each x € R, f is not continuous at x.

Exercise 4.36. Define f,g:R*—R by f(0)=g(0)=0, and f(z,y)= %, g(z,y)= %

for (z,y)#0.

(1) Show that f is bounded on R?, that is, 3M € R such that for all (z,y) € R?, |f(z,y)| < M.

(2) Prove that g is unbounded in every ball centred at 0 = (0, 0).

(3) Show that f is not continuous at (0,0).

(4) Prove that g is not continuous at (0,0).

(5) If Y ¢ X and if ® is a function defined on X, the restriction of ® to Y is the function ¢ whose domain

is Y, and such that ¢(y) = ®(y) (y € Y). Show that the restrictions of both f and g to every straight
line in R? are continuous!

For functions from the Euclidean space R™ to the Euclidean space R™, we have the following
simplification.

Proposition 4.37. A function f : R™ — R™ is continuous if and only if each of its components
fis-ooy fm : R® — R are continuous. (Here for k € {1,---,m}, fx(x) := €] f(z), x € R", where
e1, - ,en are the standard basis vectors.)

Proof. For all z,y € R™, we have that |fi(x) — fi(y)| < \/é]1|fl($) —fi? = |f(x) = f@W)l2-

So if f is continuous, then each of its components is continuous too.

Vice versa, if f1,---, fm are continuous and (x, )nen converges to ¢ € R™, then (fx (2, ))nen con-
verges to fr(c) for all k € {1,--- ,d}, and so it follows that (f(x,))nen converges to f(c) in R™.
Thus f is continuous at ¢. As ¢ € R™ was arbitrary, f is continuous. (I

Another case when checking continuity becomes considerably simpler is in the case of linear trans-
formations between normed spaces.

Proposition 4.38. Let (X,| - |lx), (Y,| - |v) be normed spaces and let T : X — Y be a linear
transformation. Then the following are equivalent:

(1) T is continuous.
(2) T is continuous at 0.

(3) There exists an M > 0 such that for all x € X, |Tz|y < M|z|x.

11t can be shown that this is a well-defined notion.
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Proof. (1) = (2) follows from the definition. Let us show that (2) = (3). As T is continuous at
0, we have that given € := 1 > 0, there is a ¢ > 0 such that whenever ||z — 0|x = |z|x < 0, we
have [Tz — T0|y = [Tz — 0ly = |Tz|y < 1. Define M := 2. Then:
1° If x = 0, then |Tz|y = HTOHY = 0]y =0=20=M|0|x = M|z|x.
2° If ¢ # 0, then with y := QHIH z, we have |y| = £ <4, and so |Tylly < 1.

Thus 1> |Ty|y = HT(QHJEH x|y = WHTQUHY Rearranging, we get | Tx|y < 3|z x = M|z x.
Consequently (3) holds.

Finally, we show that (3) = (1). Let c € X, and € > 0. Let § := 57 > 0. Then for all z € X

+7> we have [Tz —Tc|y = |[T(z—c)|y < M|z —cl|lx < Mé=M7; =e.
Hence f is continuous at c. But the choice of ¢ € X was arbitrary, and so f is continuous. (I

satisfying |z —¢|x < =

Example 4.39. Consider the map I : C[a,b] — R from the normed space (C[a,b],| - ||) to R
given by I(f) = SZ f(z)dx for all f € Cla,b]. Then clearly I is a linear transformation. Moreover,
since for every f € Cl[a,b] we have |I(f)| = |SZf(:L‘)d:L‘| < SZ |f(z)]dx < S | flloodz = | flloo(b — a),
it follows that I is continuous. <

Example 4.40. Let A € R*"*™. Consider the map T4 from the Euclidean space R™ to the
Euclidean space R™, given by matrix multiplication: Taz = Az (z € R™). Then T4 is a linear
transformation, and it is continuous, since

Tarls = 4zl = [ $(Sogn 7 < \[E(Sad)(Ead) < Enlalg 1ot = v | Al ol

(The first inequality follows from the Cauchy-Schwarz inequality.) Hence T4 is continuous. <&

Exercise 4.41. Show that if A € R"*™, then ker A = {x € R™ : Az = 0} is a closed subspace of R™.

Exercise 4.42. Prove that every subspace of R" is closed. Hint: Construct a linear transformation whose
kernel is the given subspace.

Exercise 4.43. A metric space X is called connected if X is not the union of two disjoint nonempty open
sets. Let X be a connected metric space, Y be a metric space, and f : X — Y be a surjective map. Prove
that Y is connected.

Exercise 4.44. Suppose f € C|a, b] is such that SZ 2" f(x)dx = 0 for all n € N. Prove that f is identically
zero on [a,b]. Hint: Use the density of polynomials in (C[a,b], | - ||) shown in Exercise 1.43.

Exercise 4.45. Let X,Y be normed spaces, T : X — Y be a linear transformation, and c € X.
Show that T is continuous at c if and only if T is continuous at 0.

Exercise 4.46. Let C'[0,1] := {f € C[0,1] : Vt € [0,1], f'(t) exists, and f' € C[0,1]}. Then C'[0,1] is
a subspace of the vector space C[0, 1]. Define D : C*[0,1] — C[0,1] by (Df)(t) = f'(t) for all ¢ € [0,1]
and f € C'[0,1]. Then D is a linear transformation.

(1) Show that if C[0, 1] and C*[0, 1] are both given the norm || - |, then D is not continuous at any point.
(2) Let [|fl1,00 = | flloo + [If oo for all f € C*[0,1]. Check that | - 1,5 does define a norm on C*[0, 1].
(3) Show that D is continuous if C'[0, 1] bears the | - |1,50 norm, and C[0, 1] has the | - ||s norm.

Limits and continuity.
Definition 4.47. Let U be an open subset of R®, ce U, L e R™ and f : U\{c} — R™. We write
fx) =5 L or lim f(z) =

if for every € > 0, there exists a ¢ > 0 such that whenever x € U satisfies 0 < |2 — ¢[]2 < ¢, we
have || f(z) — L|2 < e. We then say that f has a limit at ¢, and call L its limit.

We can recast this definition in terms of sequences.
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Theorem 4.48. Let U be an open subset of R", ce U, Le R™ and f : U\{c} > R™.

Then the following are equivalent:
(1) lim f(x) = L.

(2) For every sequence (Ty)nen contained in U such that for all n € N, z,, # ¢, and lim z,, = ¢,
n—o0

we have lim f(z,) = L.
n—o0

Proof. (1) = (2): Let lim f(z) = L, and that (z,)nen is a sequence contained in U such that

Zn # ¢ (neN), lim z, = c. Let € > 0. There exists a 6 > 0 such that whenever x € U satisfies
n—o0

0 < ||z —¢|2 < 0, we have | f(x) — L||2 < e. There exists an N € N such that for all n > N,

0 < |z, — ¢ < é. Consequently, for n > N we have ||f(z,) — L||2 < e. Hence 1ingO f(zn) = L.
(2) = (1): Suppose that lim f(z) = L does not hold. Then
= (Ve > 0, 36 > 0 such that Vx € U satisfying 0 < |z — ¢|2 <, we have |f(z) — L2 <€

i.e., there is an € > 0 such that for every § > 0, there is a point « € U (depending on §), for which
0 < |z —c|2 <4, but |f(z) — L|2 > e. Taking § successively to be L (n € N), we can thus find
a sequence (Z,)neny contained in U such that for all n € N, x,, # ¢, (zn)nen converges to ¢, and
| f(xn) — L|2 > e. This last condition means that nh_r)rgo f(zn) = L does not hold. So (2) does not
hold. Hence we have shown that if (1) does not hold, then (2) does not hold, i.e., (2) = (1). U

Corollary 4.49. Let U be an open subset of R™, ce U and f : U\{c} —» R™.
If f has a limit at c, then it is unique.

Proof. We use Theorem 4.48, and the fact that convergent sequences have unique limits. (I

Using the algebra of limits for real sequences, it follows that the same result carries over to limits
of real-valued functions.

Corollary 4.50. Let U be an open subset of R, and ce U.
Suppose that f,g: U\{c} - R and lim f(x) = Ly and lim g(z) = L,, where Ly, L, € R.

Define f+g, fg: U\{c} = R by (f+9)(z)=f(2)+g(z) and (fg)(z)=f(2)g(z) (x € U\{c}).
Then:

(1) lim (f + g)(2) = Ly + Ly = lim f(z) + lim g().
(2) lim (f9)(x) = LyLy = (lim f(x)) ( lim ().
The following result is clear from the definitions.

Theorem 4.51. Let U be an open subset of R™, and ¢ € U.
Then f:U — R™ is continuous at ¢ if and only if lim f(x) = f(c).

4.4. Compactness and continuity

In this section we will learn about a very useful result in Optimisation Theory, on the existence
of global minimisers of real-valued continuous functions on compact sets.

Theorem 4.52. Let K be a compact subset of a metric space X, Y be a metric space, and
f: K —>Y be a continuous function. Then f(K) is a compact subset of Y.
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Proof. Suppose that (y,)nen is a sequence in contained in f(K). Then for each n € N, there
exists an x,, € K such that y, = f(z,). Thus we obtain a sequence (z,)nen in the set K. As
K is compact, there exists a convergent subsequence, say (Tn, )ren, with limit L € K. As f is
continuous, it preserves convergent sequences. So (f(zn,))ken = (Yn, )ken 1S convergent with limit
f(L) e f(K). Consequently, f(K) is compact. O

Now we prove the aforementioned result which turns out to be very useful in Optimisation Theory,
namely that a real-valued continuous function on a compact set attains its maximum/minimum.
This is a generalisation of the Extreme-Value Theorem we had learnt earlier, where the compact
set in question was just the interval [a, b].

Theorem 4.53 (Weierstrass’s theorem).
Let K be a nonempty compact subset of a metric space X, and let f: K — R be continuous.
Then there exists a c € K such that f(c) = sup{f(z): x € K}.

Since ce K, f(c) € {f(z) : x € K}, and so the supremum above is actually a maximum:
fle) =sup{f(z): x € K} = max{f(z) : x € K}.

Also, under the same hypothesis of the above result, there exists a minimiser in K, that is, there
exists a d € K such that

f(d) =inf{f(z) : x € K} = min{f(z) : z € K}.

This follows from the above result by just looking at — f, that is, by applying the above result to
the continuous function g : K — R given by g(z) = —f(z) (z € K).

Proof of Theorem 4.53. We know that the image of K under f, namely the set f(K) is compact
and hence bounded. So {f(x) : © € K} is bounded. It is also nonempty since K is nonempty.
But by the least upper bound property of R, a nonempty bounded subset of R has a least upper
bound. Thus M := sup{f(z) : # € K} € R. Now consider M — % (n € N). This number cannot be
an upper bound for {f(z) : z € K}. So there must be an z,, € K such that f(z,) > M — L. In this
manner we get a sequence (Z, )neny in K. As K is compact, (z,,)nen has a convergent subsequence
(Zn,, ) ken With limit, say ¢, belonging to K. As f is continuous, (f(zn,))ken is convergent as well
with limit f(c). But from the inequalities f(z,) > M — L (n € N), it follows that f(c) > M. On
the other hand, from the definition of M, we also have that f(¢) < M. Hence f(c) = M. O

Example 4.54. Since the set K = {x € R? : 27 + 23 + 23 = 1} is compact in R? and since the
function = +— x; + x5 + 3 is continuous on R?, it follows that the optimisation problem

minimise 1 + z2 + 3
subject to 2% + 2% +23 =1

has a minimiser. 'S

Remark 4.55. In Optimisation Theory, one often meets necessary conditions for an optimal
solution, that is, results of the following form:
maximise  f(x) }

If Z is an optimal solution to the optimisation problem {subject to zeF(cRY

then Z satisfies [ # |

(Where are certain mathematical conditions, such as the Lagrange multiplier equations.)
Now such a result has limited use as such since even if we find all Z(s) which satisfy [ = * ], we
can’t conclude that there is one that is optimal. But now suppose that we know that f : F - R
is continuous and that F is compact. Then we know that an optimal solution exists, and so we
know that among the Z(s) that satisfy [« * x|, there is at least one which is an optimal solution.
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Exercise 4.56. Let X be a compact metric space and let f : X — Z be a continuous function. Here Z
has the Euclidean topology induced from R. Prove that f can assume only finitely many values.

Exercise 4.57. Let N : R — R be any norm on R%. The aim of this exercise is to show that N is

‘equivalent to®" | - |2, i.e., there are constants M, m > 0 such that for all € R?, m|z|2 < N(x) < M|z|2.
(1) Let e1 = (1,0,...,0),--- ,eq = (0,...,0,1) be the standard basis vectors in R?. Thus the vector
x = (r1,...,%4) € R? is the linear combination x1e1 + - - - + zgeq. Show, using the triangle inequality

and the Cauchy-Schwarz inequality, that there is an M > 0 such that for all € R, N(z) < M|z|>.

(2) Prove using the triangle inequality for N that for all 2,y € R%, [N () — N(y)| < N(z —1vy).
Conclude that the map N : (R%, | - ||2) — R is continuous.
(3) Consider the compact set K := {x € R? : |z = 1} and use Weierstrass’s theorem to prove the

existence of m > 0 such that for all x € RY, m|z|2 < N(z).

Exercise 4.58. In each case, give an example of a continuous function f : S — T, such that f(S) =T
or else explain why there can be no such f. (We use the usual metrics, for example (0, 1) in the first part
has the Euclidean metric of R.)

Exercise 4.59. Let (X, d) be a metric space and let f: X — X be a function that satisfies
for all z,y € X such that z # y, d(f(z), f(y)) < d(x,y). (4.1)

(1) Prove that f has at most one fixed point (that is, a point ¢ € X such that f(c) = ¢).

(2) Let X = (0,2) with the usual metric, and define f : X — X by f(z) = 2” for all z € (0, 3).
Show that f satisfies (4.59), but it has no fixed point.

(3) Show that the function g : X — R given by g(z) = d(z, f(z)) (z € X) is continuous.

(4) Prove that if X is compact, then f has exactly one fixed point. Hint: g attains a minimum on X.

Exercise 4.60. Recall the notion of homeomorphism from Exercise 4.30.
(1) Show that [0, 1] and (0, 1) are homeomorphic when both spaces are equipped with the discrete metric.

(2) Show that [0,1] and (0,1) are not homeomorphic when both spaces are equipped with the Euclidean
metric.

4.5. Uniform continuity

Roughly speaking, we use the adjective ‘uniform’ in Analysis whenever ‘the same thing works
everywhere’. We have already seen one instance of this when we discussed uniform convergence
of a sequence of functions. Now we will learn about uniform continuity.

Recall that if (X,dx) and (Y,dy) are metric spaces, then a function f : X — Y is said to
be continuous at a point ¢ € X if for every € > 0, there exists a § > 0 such that whenever z € X
satisfies dx (z,c) < 8, we have dy (f(x), f(c)) < e. And f is called continuous if for every c € X,
f is continuous at ¢, that is:

Ve > 0, Ve e X, 30 > 0 such that if z € X satisfies dx(z,¢) < ¢, then dy (f(z), f(c)) <e.

In the above statement, the choice of § might depend on which ¢ € X we consider. For a ‘uniformly’
continuous function on I, it doesn’t! That is, given an € > 0, the same § (depending only on €)

2The fuss about equivalent norms on a vector space X is that whenever two norms Ni, N2 are equivalent, the open sets
in (X, N1) coincide with the ones in (X, N2), and so as topological spaces, they are the same!
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works everywhere in X, irrespective of which ¢ € X we have considered. We now give the precise
definition.

Definition 4.61. Let (X,dx), (Y, dy) be metric spaces. A map f : X — Y is said to be uniformly
continuous if for every € > 0, there exists a § > 0 such that for all z, y € X satisfying dx (x,y) < 4,

we have dy (f(z), f(y)) < e.

Note that in the definition we are introducing the notion of uniform continuity of a function on a
set, and not at a point.

Proposition 4.62. Let (X,dx),(Y,dy) be metric spaces. If f : X — Y is uniformly continuous,
then f is continuous.

Proof. Let ce X. Suppose € > 0. By the uniform continuity of f, there exists a § > 0 such that
for all 2,y € X satisfying dx (z,y) < ¢, there holds that dy (f(x), f(y)) < e. In particular, if z € X
satisfies dx (z,¢) < §, we have dy (f(x), f(c)) < e. Thus f is continuous at ¢. But the choice of ¢
was arbitrary, and so f is continuous on X. ([

The following example shows that uniform continuity is a strictly stronger notion than continuity,
that is, there are continuous functions that are not uniformly continuous.

Example 4.63. The map f : (0,1) — R given by f(z) = 1 (0 <z < 1) is continuous on (0, 1):
If (2)nen is a convergent sequence in (0, 1) with limit L € (0,1), then (f(2,))nen = (== )nen is a

T
convergent sequence with limit % = f(L).

However, f is not uniformly continuous. Suppose it is. Then given € > 0, there exists a § > 0 such

that whenever |z — y| < &, we have |2 — 1| <¢. Consider # = L and y = 5. Then |z — y| = &,
Yy n n n
and so |z — y| < § for all n large enough, but |1 — %| =n > ¢, for n large enough.
\
|
The lack of uniform continuity is also clear in an intuitive manner pictorially. &

Exercise 4.64. Show that f : R — R given by f(z) = 2® (x € R) is continuous, but not uniformly
continuous. Hint: Consider z =n and y = n + % for large n.

Exercise 4.65. Prove that the function f : R — R defined by f(z) = |z| (x € R) is uniformly continuous.
Exercise 4.66. Let (X,d) be a metric space and let ¢ € X. Define f: X — R by f(z) = d(z,c¢).
Prove that f is uniformly continuous on X.

Exercise 4.67. Let X,Y be metric spaces, and let f : X — Y be uniformly continuous.
Show that if (zn)nen is a Cauchy sequence in X, then (f(zn))nen is a Cauchy sequence in Y.
Compare this with Exercise 4.34.

Exercise 4.68. Let f,g: I — R be uniformly continuous functions on the interval I.
(1) Show that if f + g is also uniformly continuous on I.
(2) Is fg also always uniformly continuous on I7

(3) In addition to the assumed uniform continuity of f, g, if f,¢ are also bounded, then show that fg is
uniformly continuous on I.

In Example 4.63, we have seen that there are continuous functions which aren’t uniformly contin-
uous. But the following result tells us that if we are working with a compact domain, then mere
continuity is enough to conclude (the stronger property) of uniform continuity.



4.6. Notes (not part of the course) 59

Proposition 4.69. Let (X,dx),(Y,dy) be metric spaces, and suppose that X is compact.
If f: X =Y is continuous, then f is also uniformly continuous.

Proof. We will prove this by contradiction. So let us suppose that f is not uniformly continuous:
— (Ve > 0, 3§ > 0 such that Vz,y € X satisfying dx (z,y) < d, we have dy (f(z), f(y)) <¢€).

Then there exists an € > 0 such that for every § > 0, there are some z,y € X such that dx (z,y) < 9,
but dy (f(x), f(y)) = €. In particular, taking § = % (n € N), there exist x,,y, € X such that
dx (Tn,yn) < % but dy (f(zn), f(yn)) = €. By using the compactness of X, and considering
subsequences if necessary, we may assume that (z,)neny and (yn)nen are convergent, with limits
say x,y € X, respectively’. Since dx(2n,yn) < %, we obtain dx(z,y) < 0, and so z = y.
Also, by the continuity of f, we have that (f(2,))nen and (f(yn))nen converge to f(x) and f(y),

respectively. Hence® (dy (f(xn), f(yn)))nen converges to dy (f(z), f(y)) = 0 (as z = y!). But on
the other hand, from dy (f(z5), f(yn)) = €, we obtain dy (f(x), f(y)) = € > 0, a contradiction. O
0

Exercise 4.70. Show that f : [0,00) — R given by f(z) = +/z (x = 0) is uniformly continuous.

Definition 4.71. Let (X,dx), (Y, dy) be metric spaces. A function f: X — Y is called Lipschitz
if there exists a number L > 0 such that for all z,y € X, d(f(z), f(y)) < Ld(z,y).

Proposition 4.72. Let (X,dx),(Y,dy) be metric spaces.
If f: X =Y is Lipschitz, then f is uniformly continuous.

Exercise 4.73. Prove Proposition 4.72.
Exercise 4.74.
(1) Show that the function f:[—1,1] — R defined by f(x) = x? is Lipschitz.

(2) Explain why the function f : R — R defined by f(z) = x? is not Lipschitz.

(3) Show that the function f : [0,00) — R defined by f(z) = 4/z is not Lipschitz continuous.
(Compare with Exercise 4.70. Thus there are uniformly continuous functions that are not Lipschitz.)

4.6. Notes (not part of the course)

Weierstrass’s Theorem can be used to prove:

Theorem 4.75 (Fundamental Theorem of Algebra). Every polynomial p with complex coefficients of
degree at least 1 has a zero in C.

Recall that a polynomial p of degree d € N is a function p : C — C such that there exist co,- - ,cq € C, with
ca # 0, such that for all z € C, p(z) = co+c12+---+caz?. A complex number ¢ € C is a zero of p if p(¢) = 0.
We note that for 2 = (z,3) € C = R?, the complex absolute value of z is |z| = 1/22 + y2 = |(z,y)]2, the
Euclidean norm of (x,y) € R®. We will first show the following:

Lemma 4.76. If p is a zero-free polynomial of degree at least 1, then |p| has no minimiser in C.

Proof. Let zo € C be a minimiser of |p|. Set ¢(z) = %. Then ¢(0) = 1. Replacing p by g, we may
assume that zo = 0 and p(0) = 1. We will show that there exists a w € C such that |p(w)| < 1, giving the
desired contradiction. Let d € N and ¢1,--- ,cq4 € C be such that ¢ # 0 and p(z) =1+ ciz+ -+ + caz?
(z € C). Let m € {1,---,d} be the least index such that ¢, # 0. Then p(z) = 1 + ¢nz™ + r(2), where
r(z) = 0if m = d, and 7(2) 1= 2" (Cmg1 + Cma22 + - + gz ) if m < d. Let

1 —leml __apd ro 1= 1

T lemgalttedl

W\L/ leml ’

3Since X is compact, the sequence (z,)nen has a convergent subsequence, say (znk)keN, converging to, say z € X. Also,
the sequence (yn, )ken has a convergent subsequence, say (ynkl )een, converging to, say y € Y.

4See Exercise 2.19.
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If m = d, we have |r(z)] =0 < 1 for all z € C, and if m < d, then we have

(@)l < 12" M (lemia] + lemiallz] + -+ [eal 27" 7H)

< 2™ (lem1] + |ema2] + - + |eal) ifo<|z| <1

< |z|™|em| = |emz™] if moreover |z| < r1

<1 if moreover |z| < r2.
So if 0 < |z| < 2min{l,r1,72} =: R, then |r(z)| < [em2™| < 1. Let w = Rv, where v is an m"™ root of
‘_Cﬁ Then |v| =1, 0 < |w| = R, and crw™ = cmRm(‘_cT”T) = —|em|R™.

Thus |p(w)] < |1+ emw™| + |[r(w)| < 1 — [em|R™| + |emw™] = 1 — |em|R™ + |em|R™ =1 = p(0). O

Proof of Theorem 4.75. Let d e N and co, -+ ,cq € C be such that p(z) = co +c1z+ -+ cqaz® (2 € C),
and p is zero-free. Replacing p by ép, we may assume that cq = 1. Then p(z) = z%(1 + r(z)), where
r(z) = % + A5 + -+ 22 Let R := 2dmax{|co|,- -, |cal}. Then R > 2d|ca| = 2d-1 = 2d > 1.
For |z| > R and 0 < k < d — 1, we have that | 75| = ‘Jz‘—cd% < %2%@; < |—CI§—| < QL;‘% = 25, which yields

()] < 1]+ |28 |+ o+ [“22] < hd = 4. Hence for |2 > R, [147(z)| > 1—|r(z)| > 1— 4 = 4, and

so |p(2)] = |z¢(1 + 7(2))| = RTd. Since R = 2d|co| = 2d|p(0)|, we have

for all z with [2| > R, [p(0)| < & < & <[p(z)l. (%)

By Weierstrass’s Theorem, the real-valued continuous function |p| assumes a minimum value on the (closed
and bounded and hence) compact set K := {w € C: |w| < R}, say at zo € K. The inequality (x) implies
that this zo must be a minimiser of |p| on all of C. This contradicts Lemma 4.76. O



Chapter 5

Differentiation

For a function f : (a,b) — R, and a point ¢ € (a,b), the difference quotient for x € (a,b), x # ¢, is
f(@) — (o)
r—c

Geometrically, this number represents the slope of the chord passing through the points (¢, f(c))
and (z, f(x)) on the graph of f:

! F@) - ()
r -
Tr — C
c T

Suppose that as x goes to ¢, the difference quotients approach a number, say L, that is,

LS e,

Tr—cC xr —cC

In other words, for every € > 0, there exists a § > 0 such that whenever z € (a,b) satisfies
0 < |z —¢| <6, we have |% — L| < e. Then we say that f is differentiable at the point c. See
the picture below, where we see the geometric interpretation of L: It is the slope of the tangent to
the graph of f at the point c. Notice also that if we ‘zoom into’ the graph of f around the point
(¢, f(c)), the graph seems to coincide with the tangent line. In other words, the tangent line is a

‘linear approximation’ of f near the point c.

¢ —

The number L is unique, and we denote this unique number by f’(c). We call f’(c) the derivative
of f at c. If f is differentiable at every c € (a, b), then we say that f is differentiable on (a,b).

Theorem 5.1. Let f: (a,b) — R be differentiable at c € (a,b). Then f is continuous at c.
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Proof. Let ¢ > 0. Let &' > 0 be such that for all € (a,b) such that 0 < |z — ¢|] < ¢,

L:f(c) — f'(¢)] < 1. Then rearrangement (using the triangle inequality) gives
z—c g g g

[f (@) = f(o)] = |f(z) = flc) = f'(c)(@ =) + f'(e) (& — o)
< |f(@) = fe) = f'(e)(@ = )| + [ F()lle — ] < (1 +[f(e)D]x — -

Define § := min{d’, m} Then for all € (a,b) such that 0 < |z — ¢| < §, we have
[f(@) = fOl < @+ | ()D]x — e < L+ [f () iy = €
Consequently f is continuous at c. O

The converse of the theorem is not true, and the following example demonstrates this.
Example 5.2. Define f : R — R by f(x) = |z| (x € R) is (uniformly) continuous since for all
,y € R, we have | f(z) — f(y)| = ||z = |y|| < |z —y].

Let us now show that f is not differentiable at 0. If it were, then given € = % > (), there exists
a 0 > 0 such that whenever 0 < |z| < §, we have

- rol<e=3
Taking = = 2, we obtain |1 — f/(0)| < 4. Taking x = —3, we also get |f 1— f'(0)] < 3. Thus
2=[—1-1]=]=1=f(0)+ f(0) =1 < |—=1—= f'(0)| +|f(0) — 1| < 3 + 1 =1, a contradiction.
(The lack of differentiability of | - | at 0 is visually obvious, since one can’t draw a tangent at the
‘corner’ to the graph at (0,0).) &

The following result gives rules for differentiating the sum and product of differentiable functions.
Proposition 5.3. Let f,g: (a,b) — R be differentiable at c € (a,b). Then:
(1) The sum f+g: (a,b) — R defined by (f+g)(x) = f(x)+g(z) (x € (a,b)) is differentiable
at ¢, and (f +9)'(c) = f'(¢c) + ¢'(c).
(2) The product fg: (a,b) = R defined by (fg)(z) = f(z) - g(x) (x € (a,b)) is differentiable
at ¢, and (fg)'(c) = f'(c)g(c) + f(c)g'(c).
Proof. These claims follow from the algebra of limits, namely Theorem 4.50. Indeed we have

jim S 9@ = (F+9)(0) ) f@) = fle) 9@ —g(0) _ £(0) + 6'(0),

Tr—cC xr —cC Tr—C Tr—cC Tr—cC Tr—cC

which proves (1). Also, (2) follows from the following:
i S9@) = (f9)(c) f(@)g(x) — f()g(x) + f()g(x) — fc)g(c)

= lim

= T ) 4 i g 2022
S S IVERVICIIE
= f(0)g(c) + f(0)g'(c).

This completes the proof. ([
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Example 5.4. The derivative of a constant function is clearly zero. It is also easy to see that if
f is defined by f(z) = = (z € R), then f’(x) = 1. Repeated application of (2) above shows that
the derivative of 2™ (n € N) is nz™~!. Thus every polynomial function is differentiable. o

Henceforth, we will take for granted the standard results on differentiating elementary functions
such as sin that the student is familiar from ordinary calculus.

Exercise 5.5. Use the definition to find f'(x), where f(z) := V22 + 1, 7€ R.
Exercise 5.6. Let f : (0,00) — R be a function and let ¢ > 0. Show that f is differentiable at ¢ if and
only if lim ﬁ% exists. Moreover, then f'(c) = £ lim ﬁ%

k—1 k—1
Exercise 5.7. Let f : (—a,a) — R be differentiable, and even (i.e., for all € (—a,a), f(—z) = f(z)).
Show that f’ is an odd function (i.e., for all z € (—a,a), f'(—z) = —f'(x)). What is f'(0)?

z2 ifxeQ,
0 if z e R\Q.
What can you say about the differentiability of f at nonzero real numbers?

Exercise 5.8. Define f : R — R by f(z) = { Show that f is differentiable at 0.

Exercise 5.9. If f: (a,b) — R is differentiable at ¢ € (a,b), then show that }llir% %}M exists and

(c+h)—f(c—h)
2h

equals f'(c). Is the converse true, that is, if }Lirr%) u exists, then must f be differentiable at ¢?

Exercise 5.10. Consider the function f : R — R defined by f(0) = 0 and for = # 0, f(z) = z*sin 1.
Prove that f is differentiable, but f’ is not continuous at 0.

Exercise 5.11 (Differentiable Inverse Theorem). Let f : (a,b) — R be injective on (a,b). Then we can
define its inverse £~ : f((a,b)) — R.

b-
reflect
about —1
y=ua !
a,b
f((a, b)) f N
a b f((a, b))

By looking at the fate of the little triangle when we reflect in the 45° line, we can guess what happens to

the derivatives: (f71)'(f(c)) = % This is the content of the Differentiable Inverse Theorem:

If f : (a,b) — R is such that f is strictly increasing', f is continuous, f is differentiable at c € (a,b), and

f'(c) # 0, then £~ : f((a,b)) — R is differentiable at f(c) and (f~')'(f(c)) = ﬁ
The goal of this exercise is to prove this result.
(1) Show that f((a,b)) is open.
(2) Show that f~': f((a,b)) — R is strictly increasing and continuous.
(3) We want to show that lim W =S U@) - 1 e will use Theorem 4.48 to show this.
y—f(c) y— f(c) f'(e)
Let (yn)nen be any sequence with terms belonging to f((a,b))\{f(c)}, that converges to f(c).
_ i L) = ) oy gn—c 1
S0 yn = f(xn), neN, for some (zn)nen € (a,b)\{c}. We want Jim — ,}E%of(zu) —flo
Use the continuity of f~! to show that (z,)nen converges to c.
T —C 1

Use the differentiability of f at ¢ and Theorem 4.48 again to conclude that lim e IR
n—0o0 In)— C C

Remark. See the appendix to this chapter (page 77) for an analogue of this result in R™.

1or strictly decreasing, but here we just treat the strictly increasing case.
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5.1. Local minimisers and derivatives

Intuitively, we expect that when a function f : (a,b) — R has a local bump or a local trough, then
at the highest or lowest point x, of the bump/trough, the tangent line should be horizontal, that
is, the slope f'(z4) = 0. We will prove this result below. We say that f : (a,b) — R has a local
minimum at ¢ € (a,b) if there exists a § > 0 such that whenever x € (a,b) satisfies |x — ¢| < §, we
have f(x) = f(c). In other words, ‘locally’ around ¢, the value assumed by f at ¢ is the smallest.
Local maximisers are defined likewise. See the picture below, in which the points P, @ and all
points in the interior of the line segment AB are all local minimisers.

! I &
P A B Q
Theorem 5.12. Let f : (a,b) —> R be such that f has a local minimum at ¢ € (a,b), and f is
differentiable at c. Then f'(c) = 0.

An analogous result holds for a local maximiser.

Proof. Let § > 0 be such that a < ¢ —d < c < c+ 6 < band f(z) = f(c) for = satisfying
|z —¢| < 4. Given an € > 0, we can also ensure (by making § smaller if required) that for all
x satisfying 0 < |z — ¢| < §, we have |% — f'(¢)] < e. Hence we have for all x satisfying
c<x<c+dthat 0— f'(c) < w — f'(e) < |w — f'(¢)| < e. (In order to obtain the
first inequality, we have used the fact that x — ¢ > 0 and f(z) > f(c).) Similarly, for a satisfying
c—d <z <cwehave 0+ f'(c) < —% + f'(c) < |% — f'(¢)| < e. Consequently, we

have |f'(c)| < e. But the choice of € > 0 was arbitrary, and hence f’(c) = 0. O

5.2. Mean Value Theorem

Theorem 5.13 (Mean-Value Theorem). Let f : [a,b] — R be continuous on [a,b] and differen-
tiable on (a,b). Then there is a point c € (a,b) such that w = f'(c).

This result has a simple geometric interpretation. If we look at the chord AB in the plane which
joins the end points A = (a, f(a)) and B = (b, f(b)) of the graph of f, then there is a point
c € (a,b), where the tangent to f at the point C' = (¢, f(c¢)) is parallel to the chord AB.
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Why ‘Mean Value’? If we think of [a,b] as a time interval and f(t) as being the position at time
t of a particle moving along the real line, then

f(b)—f(a) _ total displacement
b—a - time taken

= average or mean speed over [a, b].

At some time instances, the instantaneous speed could have been more than this mean speed,
while at other times less than the mean speed. The Mean Value Theorem says that at some time
instance ¢, the instantaneous speed f’(c) was exactly equal to the mean speed?!

Proof of Theorem 5.13. Define ¢ : [a,b] — R by ¢(x) = (f(b) — f(a))z — (b — a)f(x) for all
€ (a,b). Then ¢ is continuous on [a, b], differentiable on (a,b) and

pla) = (f(b) = fla))a — (b—a)f(a) = f(b)a—Dbf(a) = (f(b) — f(a))b— (b—a)f(b) = @(b).
Moreover, for x € (a,b), we have ¢'(z) = f(b) — f(a) — (b — a)f'(x), and so in order to prove the
theorem, it suffices to show that ¢'(¢) = 0 for some c € (a,b).

1° If ¢ is constant, then this holds for all x € (a, b).

of ¢ (Extreme Value Theorem!). Then since ¢(b) = p(a), we conclude that ¢ € (a,b). By the
necessary condition for a local minimiser, we have ¢’(¢) = 0.

3° Suppose there exists an x € (a, b) such that ¢(z) > p(a) = ¢(b). Let c € [a,b] be a maximiser

of ¢ (Extreme Value Theorem!). Then since ¢(b) = ¢(a), we conclude that ¢ € (a,b). By the
necessary condition for a local maximiser, we have ¢’(c) = 0. O

Corollary 5.14 (Rolle’s theorem). Let f : [a,b] — R be continuous on [a,b] and differentiable
n (a,b). If f(a) = f(b), then there exists c € (a,b) such that f'(c) = 0.

Exercise 5.15 (Cauchy’s theorem). If f, g : [a,b] — R are continuous on [a, b] and differentiable on (a, b),
then show that there is a point c € (a,b) such that (f(b) — f(a))g'(c) = (g(b) — g(a))f'(c).
f(z) g(z) 1
Hint: Apply Rolle’s Theorem to ¢ given by ¢(z) = det [f((a)) Z((a)) 1] (z € [a,b]).
F(b) g(b) 1
Corollary 5.16. Suppose that f : (a,b) — R is differentiable on (a,b). Then:
(1) If f'(z) > 0 for all x € (a,b), then f is strictly increasing.
(2) If f is strictly increasing, then f'(x) = 0 for all x € (a,b).
(3) f'(x) = 0 for all x € (a,b) if and only if f is increasing.
4) f

4) f'(x) = 0 for all x € (a,b) if and only if f is constant.

2° Suppose there exists an z € (a,b) such that p(z) < p(a) = ¢(b). Let ¢ € [a, b] be a minimiser
12
(

Proof. (1) For z1, 25 € (a,b), with 21 < x4, it follows by the Mean Value Theorem, that
fla2) = f(z1) = f( ) (z2 — 1)

>0 >0
for some x between x1 and 2, and so f(x2) > f(x1). Hence f is strictly increasing.

(2) Let c € (a,b). The sequence (¢ + <),en converges to c. For all large enough n, ¢ + + € (a,b),

)

and f(c+ 1) — f(c) > 0. By Theorem 4.48, f'(c) = hm)% = lim M = 0.

n—oo (C+E)_C
As the choice of ¢ € (a,b) was arbitrary, the claim follows.

(3) The proof is analogous to (1) and (2).

(4) If f is constant, then clearly f’ is pointwise 0.
Vice versa, if f’ is identically 0, then for any pair of numbers z1,22 € (a,b), it follows by
the Mean Value Theorem, that f(z2) — f(z1) = f'(z)(x2 — 1) = 0(x2 — 1) = 0, giving
f(x2) = f(x1). Hence f is constant on (a,b). O

2After learning about the Fundamental Theorem of Calculus, we will also see that % = ﬁ SZ f/(t)dt, and we may

view the right hand side as an average/mean of all instantaneous speeds f’(t) for ¢ in [a, b].
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In (2), it may happen that f’ is zero at some points, and it may fail to be positive. For example,
consider the function * on R. It is strictly increasing, but &-23|,_¢ = 3-0? = 0. A similar version
holds with ‘decreasing’ instead of ‘increasing’:

Corollary 5.17. Suppose that f : (a,b) — R is differentiable on (a,b). Then:

(1) If f'(x) <0 for all x € (a,b), then f is strictly decreasing.

(2) If f is strictly decreasing, then f'(x) <0 for all x € (a,b).

(3) f'(z) <0 for all x € (a,b) if and only if f is decreasing.

The Mean Value Theorem can be used to prove interesting inequalities; here is an example.

Example 5.18. Let us show that forallz >0, V1 +z <1+ %x

Consider the function f :[0,00) — R defined by f(x) = +/1+ 2. Then f is continuous on [0, c0)
and differentiable on (0, 0). If > 0, then applying the Mean Value Theorem to f on the interval
[0, 2], we obtain the existence of a ¢ such that 0 < ¢ < z and

L0 = = ) = g <

Rearranging, we obtain the desired inequality. <

Exercise 5.19. Suppose that f : R — R has the property that for all z,y € R, |f(z) — f(3)| < (z — y)*.
Prove that f is constant.

Exercise 5.20. Let f : (a,b) — R be differentiable on (a,b) and suppose that there is number M such
that for all x € (a,b), |f'(z)] < M. Show that f is Lipschitz, hence uniformly continuous, on (a,b).

Exercise 5.21. Show that for every real a,b € R, |cosa — cosb| < |a — b|.

Exercise 5.22. Recall that for g : R —> R, we write lim g(z) = L if for every € > 0, there exists an R > 0
xr—00
such that for all z > R, we have |g(z) — L| <e. If f: R — R is differentiable, and there exist L, L' € R
such that lim f(z) = L and lim f'(z) = L', then prove that L' = 0.
x—00

Tr—00
Exercise 5.23. Suppose that f : R — R is differentiable, |f'(z)| < 1 for all z € R, and that there exists
an a > 0 such that f(—a) = —a, f(a) = a. Show that f(0) = 0.
Exercise 5.24. Let ¢ € (a,b), and let f : (a,b) — R be such that f is differentiable on (a,b)\{c},
continuous on (a,b), and lim f'(x) exists. Show that f is differentiable at ¢, and f'(c) = lim f'(z).
Contrast this situation with with the case of the function z — |z| with ¢ = 0.

Exercise 5.25. Prove that if co, - -, cq are any real numbers satisfying < + 2 4 --- + ﬁf = 0, then the

polynomial ¢y + c1x + - - + cax? has a zero in (0, 1).

Exercise 5.26. Show that there are exactly two real values of x such that z? = zsinz + cosz and that

they lie in (=%, %).

Higher order derivatives. If f has a derivative f'(z) at each x € (a,b), then we can consider
the derivative function, namely the map f’ given by x — f/(x) on the interval (a,b). Suppose now
that f’ is itself differentiable on (a,b). Then we may consider the derivative function f” of f’. One
can continue in this manner (provided of course that each successive function obtained is again
differentiable), and obtain the functions f’, f”, f®, ... f(" each of which is the derivative of
the previous one. f(") is called the n'* derivative, or the derivative or order n, of f.
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Example 5.27. All polynomials have derivatives of all orders, and eventually all high order
derivatives are the zero function. <

Exercise 5.28. Let f: R — R. We call z € R a fized point of f if f(x) = z.
(1) If f is differentiable, and for all z € R, f'(z) # 1, then prove that f has at most one fixed point.

(2) Let the sequence (xn)nen be generated by taking an arbitrary x1, and setting zn+1 = f(x,) for n € N.
Show that if there exists an M < 1 such that for all z € R, |f'(z)| < M, then there is a fixed point x4

of f, and that x4« = lim z,.
n—00

(3) Visualise the process in (2) via the zig-zag path (21, z2) — (22, x2) — (z2, 3) — (23, x3) — (T3, 24) > - - .
(3) Prove that the function f : R — R defined by f(z) = z + 13 (z € R) has no fixed point, although
0 < f'(z) <1 for all z € R. Is this a contradiction to the result in part (2) above? Explain.

Exercise 5.29. Let I be an open interval, and f,g: I — R.
(1) Show that if f, g are twice differentiable, then (fg)"(z) = f"(z)g(z) + 2 f'(z) ¢'(z) + f(z) g"(x), z € I.

n

(2) Show that if f, g are infinitely differentiable, then (fg)™ (z) = kgo(:)f(k) (x)g"" " (z), z e I.
(3) For z € R and n € N U {0}, define 2™ := (2 — 1) --- (x — n + 1). Show that if z,y € R, then
(@ + )" = kiﬂ(Z)x[k]y["_k]A
Hint: Differentiate t*T¥ n times with respect to t € I := (0, c0).
Exercise 5.30. Let I < R be an open interval. A function f : I — R is said to be convez if for all z,y € I
and all t € (0,1), f(1—t)z+ty) < (1 —1t)f(z) +tf(y).
(1) Draw a picture and explain the geometric meaning of the inequality above.

(2) Let f be twice differentiable on I. Show that if f”(x) > 0 for all z € I, then f is convex.
Hint: If < y, then apply the Mean Value Theorem to f on [z, (1 —t)z + ty] and on [(1 —t)z + ty, y].
(3) Prove that if f is differentiable on I and convex, then f’ is increasing.

Hint: If x < u < y, then using the convexity, derive the inequalities Z=f@) < fW=f(z) o fW)=/(v)
u—zx y—z y—u

and pass to the limits u — z from above, and u — y from below.

(Combining this with (2), a twice differentiable f is convex if and only if f"(z) >0 for all x € I.)
(4) Prove that if f is differentiable on I, convex, and f’(zo) = 0 for an xo € I, then z is a minimiser of f.
Exercise 5.31 (Arithmetic Mean-Geometric Mean Inequality).

(1) Let f : I — R be a convex function on an interval I c R. If n € N, and z1,- -,z € I, then show that
f(x1+<~+xn) < fley++f(zn)

(2) Show that —log : (0,00) — R is convex.

(3) Prove the Arithmetic Mean-Geometric Mean Inequality: For a1, --- ,an € (0,00), 2490 > p/g, - a,,.
(The left-hand side is the arithmetic mean of a1, - - - , an, and the right-hand side their geometric mean.)

Exercise 5.32 (Taylor’s formula). For a polynomial p given by p(z) = co + ciz + coz® + -+ + cqz?,
we have p™(0) = cx(k!) for k € {0,1,---,d}, and p®(0) = 0 for all k > d. So there is a special
relationship between the coefficients ¢, and the successive derivatives of p at 0. Now suppose that we
start with a smooth enough function f : R — R and form a related d degree (Taylor) polynomial p given
by p(z) := f(0) + @x—l—---—&— %x‘a z € R. Then % = % for all ke {0,1,--- ,d}, and so p
matches very well with f at 0. It is thus natural to ask: How big is the error E(z) := f(z) — p(z) when
x # 07 Taylor’s Formula answers this question:

If f: R —> Ris (d+1) times differentiable, p is the degree-d Taylor polynomial of f, and x # 0, then there

. . . . . (d+1)
exists a £ in the open interval with endpoints 0 and x, such that E(¢) = f(%ll)(f) d+1,

(1) If g : R — R is differentiable, g(0) = 0, m € N, and x # 0, then there exists a £ in the open interval
with endpoints 0 and z, such that % = 2 Hint: Use Rolle’s theorem on h(t) = t™g(x)—z"g(t).

mEWL—l
(2) Show Taylor’s theorem by applying the result from part (1) successively to get the that existence of

B) _ E'(&) _ _E"&) _ . _ EDEy _ BT _ pldtDg)
&1, »€d, & such that 304 = (d+1)1§ii = (d+1)d;§i—1 = (d+1)!gé T @+ @+nr -

(3) Applying Taylor’s formula to the exponential function f = (z — €¥), and the estimates 0 < e < 4,

show that 0 <e—(1+ & +---+ L) < ﬁ for all n € N. Use this to conclude that e is not rational.
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5.3. Uniform convergence and differentiation

When we studied uniform convergence, we had mentioned that interchanging limits is facilitated by
uniform convergence. An instance of this is the possibility of differentiating a uniformly convergent
series termwise; as shown in the Corollary 5.34 below. This relies on the following result, which
in turn is an application of the Mean Value Theorem.

Proposition 5.33. Let f,, : (a,b) > R (n € N) be a sequence of differentiable functions on (a,b),
such that there exists a point ¢ € (a,b) for which (fn(c))nen converges. If the sequence (f})nen
converges uniformly to g on (a,b), then (fn)nen converges uniformly to a differentiable function f
on (a,b), and moreover, f'(x) = g(x) for all x € (a,b).

Proof. (You may skip reading this proof.) Let € > 0. Let Ny € N be such that for all m,n > Ny,
for all x € (a,b), we have |f] (x) — f} ()| < min{g, ﬁ}, and also |fm(c) — fa(c)| < 5. Let

€ (a,b). Applying the Mean Value Theorem to f,, — f, on the interval with the endpoints z, ¢,
we get fun @) — fa(2) = fin(€) — fule) + (@~ ) (f1a(y) — F1(y)) for some y (depending on m, n, z,c)
between z, ¢. Hence we obtain | fyn (@) — fu ()| < | fm(c) — fu(c)|+ (b= a)|f1,(y) — fL(y)] < 2e <€
for all z € (a,b) and all m,n > N;. Consequently, (f,)nen is uniformly convergent on (a,b). Let
f:(a,b) > R be its limit. As each f,, is continuous, so is f.

To show that f is differentiable at a point xg € (a, b), we apply the Mean Value Theorem once
again to the function f,, — f,, on the interval with endpoints zg,« € (a,b), and x # zo. Then we

obtain that (fm(z) = fu(2)) = (fm(x0) = fu(z0)) = (& —20)(f7,(¥) — f7.(y)) for some y (depending
on x,xg, m,n) between z and xy. Dividing by = — ¢, and taking absolute values, we get

Pt - REEREA <1 ) - L) <5

r—xo r—xo

for all m,n > Ny and z € (a,b)\{zo}. Passing to the limit as m — oo yields for all x € (a, b)\{xo}:

|f(z)7f(10) _ fﬂ(z)ffn(xﬂ)| < € (*)

T—x0 T—x0 3

for all n > N;. Now let N2 € N be such that |f/ (z0) — g(x0)| < §
N = max{Ny, Na} + 1, and let 6 > 0 be such that 0 < |x — x¢| < d implies

for all n > N5. Let

| Lel)=fa(o) — £ (20)| < £ (+%)
Then combining the inequalities (x) and (x*), we get that |%§§IU) —g(zo)| < e for all z € (a,b)
satisfying 0 < |z — xg| < . As the choice of € > 0 was arbitrary, it follows that f is differentiable
at xo and f'(xo) = g(xo). O

The condition that the sequence of functions converges somewhere is needed for the conclusion of
to hold. For example, let f,(z) = (—1)" for all n € N and z € (a,b). Clearly, for each z € (a,b),
(fn(@))nen = ((=1)")nen does not converge. But as f/(x) = 0 for all z € (a,b) and all n € N, it
follows that (f})nen converges uniformly: It is the constant sequence, each of whose terms is the
constant function taking value 0 everywhere. So the conclusion of this proposition, that (fy)nen
converges uniformly, doesn’t hold, because it doesn’t even converge pointwise.

Corollary 5.34. Let f, : (a,b) > R, n € N, be a sequence of differentiable functions such that
(1) i fn(c) converges for some c € (a,b), and
n=1

£l is uniformly convergent on (a,b).
1

(2) g:=

iDs

Then f :=

7

18

fn is uniformly convergent on (a,b), and ' = g on (a,b), i.e., (i fn) = éf,’l

1 n=1
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We had seen that power series can be differentiated termwise in Theorem 3.61. The following
exercise shows that we can also recover that result using Corollary 5.34, by just using Step 1 of
the proof of Theorem 3.61 and using the absolute convergence of the termwise differentiated power
series to get uniform convergence in any closed interval within the interval of convergence.

Exercise 5.35. Suppose that the power series i cnx™ has a radius of convergence r > 0.
n=0

From Step 1 of the proof of Theorem 3.61, f] ne,z™ converges absolutely for all z € (—r,r).

n=1

(1) Let a € (0,r). Show that f] nepx™ converges uniformly on (—a,a).

n=1

ne,x™ ! for all x € (—r, 7).
1

(2) Use Corollary 5.34 to show that ( i cnx™) =
n=0

iras

n

(3) We know that f(z) := é}o’” converges for all z € R. Show that f satisfies & f(z) = f(z) (z € R).

n!

Exercise 5.36. Define f : R — R by f(z) = io]

ﬁ for all x € R. Prove that f is continuously
differentiable on R.

1

5.4. Derivative of maps from R" to R™

In order to differentiate a function whose domain is R™ (or an open subset of R™) and takes values
in R™, we first look at the familiar n = m = 1 case, and recast the old definition in a manner that
will naturally lend itself for extension to the case when n or m is > 1.

We defined f : (a,b) — R to be differentiable at ¢ € (a,b) if f/(c) := lim {2 exjsts.

In other words, for every e > 0, there exists a § > 0 such that whenever = € (a,b) satisfies

0 < |z —c| <4, we have |7f(92:z(c) — f'(c)| <e e, ‘f(m)ff(c‘i:g(c)(zfc)‘

< €.

If now f is instead a map from an open set U < R™ to R™, then bearing in mind that the
|- [|2-norm is a generalisation of the absolute value in R, we may try mimicking the above definition,
and replace the denominator in the inequality above by ||z —c|2. Similarly, the numerator absolute
value can be replaced by the || - |2-norm in R™ (since we see that f(z) — f(c) lives in R™). But
what object should be there in the box below?:

1f(x) = f(e) = | F'(c) (= = ©) |
o — ol
Since f(z), f(c) live in R™, we expect the term f’(c)(xz — ¢) to be also in R™. As z — ¢ is in R”,
f'(c) should take this into R™. So we see that it is natural that we should not expect f’(c) to be a
number (as was the case when n = m = 1), but rather it we expect it should be a certain mapping
from R™ to R™. We will in fact want it to be a linear transformation from R™ to R™. Why? We
will see this in detail soon, but a short answer is that in the n = m = 1 case, the term f'(c)(z —¢)
can indeed be viewed as the action of the linear transformation L : R — R given by R 3 v — f’(c)v

< €.

on the vector v := x — c € R. We will then see that with our generalised definition, we can prove
analogous theorems from ordinary calculus, and we can use these theorems in applications to solve
real-life problems. After this rough motivation, let us now see the precise definition.

Definition 5.37. Let U < R" be open, ce U and f : U — R™. Then we say that f is differentiable
at ¢ if there exists a linear transformation L : R™ — R™ such that

o @) = 7€) = Lz = o)l

z—e |z —c|2

=0, (5.1)
that is, for every ¢ > 0, there exists a § > 0 such that whenever x € U satisfies 0 < ||z — ¢|2 < 9,

|f(2) = f(e) = L(z = o[
|z =l
Then L is called the derivative of f at ¢, and we write f'(c) = L.

we have

< E.
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The relation (5.1) can be expressed by saying that f(z) — f(c) = f'(¢)(z — ¢) + r(z), where the

remainder r satisfies lim M
T—C Hm_(/HZ

f'(c) is that linear transformation which has the property that for x close to ¢, f(x) — f(c) is

= 0. (See Exercise 5.43.) So we can interpret this as saying that

approximately equal to its action on z — ¢. Next we show that in fact there can be only one such

linear transformation.

Lemma 5.38. Let U < R" be open, c € U and f : U — R™ be differentiable at c. Then the
derivative of f at c is unique.

Proof. Let Lq, Ly be linear transformations such that
If (@)= f(e)=Li(z=c)|2

[z—cl2

£ (@)= f(e)=La(e=c)]2

[z—cl2

=0= lim

lim
Tr—cC

Thus given € > 0, we can choose a § > 0 such that whenever 0 < |z — ¢|2 < §, we have
If @) =f(e)=Li(z=c)|2 If(@)=f(e)=La(z=c)]2 _

e—cll2 e—cll2

< e and

Using the triangle inequality and the above two inequalities, we obtain

La(@=c)=Li@=c)ly _ [f(@)=f(0)=Lila=c)=(f@)=f(e)=Lae=c)lz _ 9,

lz—cll2 e—cll2

that is, |La(z — ¢) — L1(x — ¢)|2 < 2€|z — |2 whenever 0 < |z — ¢|2 < §. Given any nonzero
h € R™, defining = := c+ ﬁh, we have 0 < [z —c|> = § < 4, and so |Lah—L1h[2 < 2¢|h[2. But
the choice of € > 0 was arbitrary, and so Loh = L1h for all nonzero h € R™. Thus L = L. O

Before we see simple illustrative examples on the calculation of the derivative, let us check that
we have a genuine extension of the notion of differentiability from ordinary calculus. Over there
the concept of derivative was very simple, and f’(zp) was just a number. But now we will see
that over there too, it was actually a linear transformation, but it just so happens that any linear
transformation from R to R is given by multiplication by a fixed number. We explain this below.

Coincidence of the new definition with the old one whenn=m=1, f:R—> R, ce R.
(1) Differentiable in the old sense = differentiable in the new sense.

Let lim M exist and equals the number f/ (c) € R. Define L : R — R by L(v) = f/,(c)v

— old old
for all v € R. Then L is a linear transformation because
(L1) For every vy,vs € R, L(vy +v2) = f/,(c) (v1 + v2) = f/ (c)v1 + [l (c)va=L(v1) + L(va).
(L2) For every aw€ R and every v e V, L(a-v) = f! (c)(av) = a(f!,(c)v) = a- L(v).

We know lim w = f’.(c), i.e., for all e>0, there exists a § >0 such that if z € R satisfies
0<|z — ¢/ <4, then |f(9€)*f(6) — ()= [f(@) = f(©) = fau@ @ =0 . jo W@-Ffl)-La=-l .
’ T—c old |z — ¢ yon |z —¢| ’

So f is differentiable in the new sense too, and f’_ (¢) = L, i.e., f'_ (¢)(v) = f/,(c)v, v ER.

new

(2) Differentiable in the new sense = differentiable in the old sense.

(¢) : R — R such that for every e > 0, there exists
If(z) = £(0) = fin (I — o]

|z — ¢

Suppose there is a linear transformation f’

new

a 0 > 0 such that whenever x € R satisfies 0 < |2 — ¢| < §, we have
Define f/ (c) := f!..(c)(1) € R. Then for x € R we have

fres@(@—c) = fi.()((x =) 1) = (=) - £, (c)(1) = flu(c) (x — o).
So there exists a number, namely f/, (c), such that for every e > 0, there exists a § > 0 such
that whenever z € R satisfies 0 < |2 — ¢| < §, we have

(@ =50 _ g1 ()] = @ =50~ L@@ =0 _ f@) =10~ Fue =0l _
T —c ©

|z —¢| |z — ¢

<,

Consequently, f is differentiable at ¢ in the old sense, and f/ ,(c) = f/_.(c)(1).
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Example 5.39. Let A € R™*". Consider the map T4 : R™ — R™ given by Tyx = Az (z € R").
If ¢ € R™, then is T4 differentiable at ¢? If so, then what is its derivative? The answers turn out
to be very simple. We note that for z € R™, we have T4(z) — Ta(c) = Ta(z — ¢), and so

lim Za@) = Tal@) = Tar =)z _ 150 0 — Jipy 0 = 0.
e lz —cll2 a—clo—cl2  z—ec

So Ty is differentiable at ¢ € R™, and T (¢) = T'a! (This is analogous to the observation in ordinary
calculus that a linear function « — ax has the same slope at all points, namely the number a.) <

Exercise 5.40. Suppose that the function f : R" — R is differentiable at ¢ € R". Define the new function
g:R™ - R by g(z) = (f(z))? (z € R™). Show that g : R — R is differentiable at ¢ too.

Hint: (f(2))” = (£(0))* = (£(x) + F(e)(F(x) = £(0)) ~ 2/()f(¢)(x — ¢) for @ near c.

Exercise 5.41. Let Q € R™" be a symmetric matrix, that is, Q = Q'. Define ¢ : R® — R by
q(z) = 27Qx (x € R™). Prove that ¢ is differentiable at each ¢ € R™ and that ¢’(c) : R — R is given by
¢ (c)v =2¢"Qu (veR™).

Exercise 5.42. Consider the map f : R® — R given by f(x) = ||z|3 (z € R™). Calculate f'(c) for c € R™.
Hint: Use the results in Exercises 5.40 and 5.41.

Exercise 5.43. Let U be an open set in R", f: U —» R™, and L : R®™ — R™ be a linear transformation.
Show that f is differentiable at ¢ € U with f’(c) = L if and only if there exists r : U — R™ such that
f(z) = f(¢) + L(z — ¢) + r(z) for all x € U and hmHﬁ%ﬁQ =0.

Exercise 5.44. Suppose that U is an open set in R", and that f : U — R™ is differentiable at ¢ € U.
Prove that f is continuous at c.

Theorem 5.45 (Chain Rule). Let U < R™ be open, f : U — R™, f be differentiable at ¢ € U,
V < R™ be an open set such that f(U) c V, and g: V — R be differentiable at f(c) eV
Then go f: U — R’ is differentiable at ¢, and (go f)(c) = ¢'(f(c)) o f'(c).

Proof. (You may skip this proof.) In light of Exercise 5.43, by the differentiability of f at ¢, and
of g at f(c), there exist functions r¢, r4 such that

f(x) = f(c) = fl(c)(x—c)+rs(z) forall ze U }
g() —a(f(c)) =g (f(e)(y— flc) +rg(y) forallyeV

lrs(@)l2 _ ; lrg@ll2 _ 77, om
and glgl_)mc ol 0, ygl}rzc) i = 0. Define rgof : U — R™ by

rgof () = (g0 f)(x) = (g0 f)(e) = (¢'(f(e) o f(O)(x —¢), zel.

Then we have using (*) that

rgof(@) = (IJC‘f)(l) (go. *> (c)=(g'(f
) — —(9'(f(c))
g (fle)(f ,) ()) +74(f( g (f()(f'(e)(x =)
= g'(f(e)(f'(c ($—0)+Tf( ) +14(f(@)) — g'(f()(f ()@ —c))
= g'(f(e))rs(z) +re(f(2)).

Let € > 0. Let 6; > 0 be such that whenever x € U satisfies 0 < ||z — ¢|2 < 01, we have

(*)

(€)) o f/(e)(x—c)
o f'(e)(x =)
) —

g(f(x

T

Irs ()2
Iz — el

i ¢ 1}
min @

Let d2 > 0 be such that whenever y € V satisfies 0 < |y — f(¢)|2 < d2, we have

Irs @)l

Wk < TR OR T
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Let 63 > 0 be such that whenever x € U satisfies |z — ¢|2 < d3, we have | f(z) — f(c)|2 < d2. With
d =min{dy,d3} >0, for zeU satisfying 0< |z —c|2 <, we have | f(x)— f(c)|2<d2, and

Irgos @2 _ llg'(f()rs(z) +rg(f(2))]2

|z —cf2 [z —cf2
< WU @@z | [re(f))]2
|z —c2 lz —cl2
< Yl Ulelrs@le | Tamr@n @ = 1)l
|z —c|2 |z —cl2
< Vil (F())lw € € I/ (c)(@ —c) + rs(@)2
Vel e S g ) | AP @l 7D -l
< ‘4t € V| f'(©)wlz = cl2 + ry(@)]2
2 2(vam|f(e)]w + 1) |z —cf2
< 5 + W (\/%Hf/(c)uoo-ﬁ-l) = 5 + 5 = €.
The claim now follows from Exercise 5.43. [l

Exercise 5.46. Recover the result in Exercise 5.40 by using the Chain Rule.

Exercise 5.47. Let x1,22 € R™ be distinct points. Define v : R — R" by v(t) = (1 — ¢)z1 + tas for
all ¢ € R. Prove that if f : R® — R is differentiable at ~(¢o) for some to € R, then fovy: R — R is
differentiable at to and

L(foy)(to) = f'(y(to)) (w2 — x1).

Deduce that if f : R™ — R is differentiable and f’(z) = 0 at every z € R™, then f is constant.
Here 0 : R" — R is the zero linear transformation which sends each v € R"™ to 0 € R.

5.5. Partial derivatives

Suppose that U is an open subset of R™, and let f : U — R™ be a function. Let the components
of f be denoted by fi,..., fm. Thus fori=1,...,m,

fiz) = el f(x) (zel),

where e, ..., e, denote the standard basis vectors in R™, that is,
1 0
ep:=| .|, ,epn:i=|;:
: 0
0 1
Let ce U. If
ofi (€)= lim filer, - cjo1, @5, 6501, ,cn) = filer, -+, ¢j1,¢5,Cjp1, 70+, Cn)
aSCj Tj—Cj zj — Cj
exists, then we call gg? (c) the (i,j)th partial derivative f at c. Thus, we look only at the 7!
J
component f; : U — R, keep all the variables x1,--- ,2j_1,%j41, -+ ,Tn as fixed, with values
Cl, " ,Cj—1,Cj41, " ,Cn, respectively, and differentiate the function

Ty = fi(clv"' 7 Ci—1,Tj5,Cj41," 7Cn)

with respect to z; at c;.

Example 5.48. Define f : R? —» R? by f(z1,22) = [m?’%g] , for & = (71, 72) € R2. Then

0 0

a—.fi(clacQ) = 2017 a—.f_;(claCQ) = 202;

%(Cl Cg) = C2 %(Cl Cg) = C1.

oz, ’ Oxe o
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Theorem 5.49. Let U be an open subset of R™, and c € U. If f : U — R™ is differentiable at

¢, then all the partial derivatives of f at ¢, namely, gf (¢)(i=1,---,m,j=1,--- ,n) exist, and
J

the matriz [f'(c)] of the linear transformation f'(c) with respect to the standard bases for R™ and

R™ is given by

@l =] .

Y (e) - Y (e)

CEZY

that is, f'(¢) : R™ — R™ is the linear transformation given by f'(c)x = [f'(c)]x for all x € R™.

Proof. Let ¢ > 0. As f is differentiable at ¢, there exists a § > 0 such that for all x € U such
that 0 < | — ¢|2 < 8, we have WL@=f=S(e)@=cll> ¢ Tet 2, be such that 0 < |z; — ¢;] < 4.

le—c|l2
Define @ := (¢1,- -+ ,¢j—1,%4,Cj+1, -+ ,¢n). Thenx—c = (0,--- ,0,2; —¢,0,---,0) = (z; —c¢) - e,
and so |z — c|2 = |z; — d|ejl2 = |z; —¢;j|]1 = |z; — ¢j|. Thus for such vectors &, we have
it@=tfo-fleeel: < ¢ Alo, fi(x)-fi(c)—(e] F'()e;)(x;—¢;)=e] (f(x)—F(e)—f'(€)(z—e)),

and so |fi(z) — fi(e) — (e] f'(e)e;)(z; — ¢j)| < | f(x) — f(e) = f'(e)(x — €)]2. Hence for numbers
x; satisfying 0 < |x; — ¢;| < J, we have

filer, o cjo1,m),¢541,,en) = fi(C1,,€5-1,C5,Cj 41, ,Cn) T pr
| R T R R TR ionepepnen) o #(c)e;| < e

Tj—cj
Hhe) = HEh(e) el f'(e)er - e] f'(e)en
So %(c) =e] f'(c)e;. Set A= : : = l : : 1 . Then
y : : : :
m (¢) .. 2272 (e) el f'(c)er - e f'(c)en

oxq

n n n el f'(c)e; el fl(c)erz1+--+e] f'(c)enzn
flle)z = flle)(Lwje)) = Y f'(c)e; = Y, : = :
- ! = e f'(c)e; el f'(c)erzi+-+el f(c)entn
el f'(c)er - el f'(e)en | =1
- : : ] [ : ] = Az,
e, f'(c)er - e f'(c)en Tn
for all x € R™. O

@ The above result says that for the derivative to exist, it is necessary that the partial derivatives
exist. Surprisingly, this is not a sufficient condition.
T1T2

(0,0) exist, f'(0,0) doesn’t, i.e., f is not differentiable at (0,0).

Example 5.50. Define f : R?> — R by f(0,0) = 0, and for (z1,22) # (0,0), f(z1,72) =
Claim: Though 2£(0,0) and £
)

of
~
oxy

For z1 # 0, f(21,0) = f(0,0) = 0~ 0 = 0, and so £2(0,0) = lim D =JO0 _ 4im o — 0.

El x1—0 1 —0 z1—0
Similarly, 2£(0,0) = lim {222 =JO0 _ 5, 00 _ 33 g = 0.
0z 22—0 x2—0 z1—0 T2 1 —0
Thus all the partial derivatives of f exist at (0,0). However, we will now show that f’(0,0) does

not exist. Suppose that f/(0,0) exists. By Theorem 5.49, [f'(0,0)] = [fjl (0,0) %(010)] = [oo0].

Let € > 0. Then there exists a § > 0 such that for all x = (21, 22) € R? satisfying 0 < || — 0|2 < 6,

we have L@ =JO = /O@ =02 - ¢ thatis, — 272l < ¢ For all n € N large enough, with
|z — 0] (2% + a3)\/aT + a3
x1 1= @2 := 1, we have that 0 < [[(21,z2) — (0,0)]2 = % < 4, and so

no_ W _ |z 24|

T L L L. IS
2¢/2 242 (@2 + 23)y/2? + 22 ’

n? n

for all large n, a contradiction. o

Remark: (Not part of the course.) A sufficient condition for differentiability in an open set is
that all partials are continuous; see Theorem 5.64.
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Let U be an open subset of R®. We say that f : U — R has a local minimum at ¢ € U if there
exists a § > 0 such that whenever & € U satisfies || — ¢|2 < J, we have f(x) = f(c). Local
maximisers are defined analogously.

Corollary 5.51. Let U be an open subset of R". Let f : U — R be such that f has a local
minimum at ¢ € U, and f is differentiable at c¢. Then f'(c) = 0.

Proof. If ¢is alocal minimiser for f, then each of the functions x; — f(c1,...,¢i—1,%, Cix1y. -, Cn)
has a local minimum at ¢;, and so by the one variable result, we have %(c) = 0 for each
i€ {l,---,m}. Consequently, Theorem 5.49 yields f'(c) = 0. O

An analogous result holds for a local maximiser.

Theorem 5.52. Let f : R™ — R be differentiable and convez (i.e., for allt € (0,1), and z,y € R™,
F(A=t)z+ty) <(A—t) f(x)+tf(y)). If x,€R™ is such that f'(x,)=0, then f has a minimum at z,.

Proof. (May be skipped.) Let z, € R"™ and f(x,) < f(x,). Define the function ¢ : R — R by
o(t) = f(tz, + (1 —t)x,), t € R. Then ¢ is convex, since for a € (0,1) and t1,t2 € R, we have
(1 —a)tr + ata) = f(((1— o)ty + at2)x, + (1 — (1 — @)ty — at2)z,)

= f((A = a)(tiz, — trz) + altam, — tax,) + 2.)

= f((1 — a)(t1zo — t12,) + a(toz, — t2z,) + (1 — @)z, + ax,)

= f((1 —a)(tizy — iz, + ) + altoz, — tox, + 2,))

= f((1 — a)(tr1ze + (1 — t1)z,) + altaz, + (1 — t2)z,))

< (1-a)f(timy + (1 = t1)z,) + af(tax, + (1 — t2)z,)

= (1= a)p(t1) + ap(ts).
From Exercise 5.47, ¢ is differentiable at 0, and ¢'(0) = f'(z,)(z, — z,) = 0(z, — z,) = 0. We have
o(1) = f(x,) < f(x,) = »(0). By the Mean Value Theorem that there exists a § € (0,1) such that

o) = %ﬁ(o) < 0 = ¢/(0). This contradicts the convexity of ¢ (indeed, by Exercise 5.30, ¢’

must be increasing). Thus there cannot exist an x, € X such that f(z,) < f(z,). O

Exercise 5.53. Let 7, ¢ € R satisfy 7 — &2 = 0. Show that f(x,t) := ¢™"7*” satisfies the diffusion equation
2 2

ﬁ(ac7 t)— %(m, t) = 0in R?. (Here 2] denotes the partial derivative with respect to z of (z,t) — %(m, t).)

ot oz

Exercise 5.54. Let f : [0, 2] — R? given by f(t) = (cost,sint), t € [0, Z]. Show the failure of the Mean

Value Theorem for f, by proving there is no ¢ € (0, 5) such that f(3) — f(0) = (3 —0)[f'(¢)]-

Exercise 5.55. Suppose f : [a,b] — R? is continuous, and f is differentiable in (a,b). For t € (a,b), the

matrix of the linear transformation f'(¢) : R — R? is identified with a (column) vector [f'(t)] € R?.

(1) Put z = f(b) — f(a), and define ¢ : [a,b] — R by ¢(t) = 2" f(t) (¢t € [a, b]). Show that ¢ is continuous,
and ¢ is differentiable in (a,b), with ¢'(t) = 2" [f'(¢)] for all t € (a, b).

(2) Applying the Mean Value Theorem for ¢, prove the Mean Value Inequality: There exists a ¢ € (a,b)
such that | £(b) — f(a)l2 < (b — a)[[f'(0)] 2.

Exercise 5.56. Let U ¢ R" be open, ce U, and f : U — R™ have the components fi,---, fm : U —> R.

Show that f is differentiable at ¢ if and only if for all ¢ € {1,---,m}, f; is differentiable at c.

Exercise 5.57. In the subject of ‘Calculus of Variations’, the following type of optimisation problem
is studied: Minimise f(x) := SZ F(z(t),z'(t),t)dt. Here f is the cost function, and the integrand F is a
function R? 5 (a, B,7) — F(o, 3,7) € R. The domain of f is the set of continuously differentiable functions
x : [a,b] — R such that ®(a) = y. and x(b) = y». Hence we observe that this is an optimisation problem
in which the domain of the cost function f is itself a set of functions.

<
&

Yaf
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A central result in Calculus of Variations is that if @y is a minimiser, then it must satisfy the following
‘Euler-Lagrange’ equation: 25 (x4 (), x4 (t),t) — & (ag (:c*(t) z(t),t)) = 0 ( [a,b]). Consider for
example the problem of maximising the profit, given by f(x) := So —ax(t) — bx'(t))x'(t)dt, associated
with a possible choice of operation x : [0,7] — R over the time interval [0 T1] satisfying «(0) = 0 and
z(T) = Q. Here T, P,a,b,Q are given positive constants. Assuming that an optimal operation @ exists,
find it using the Euler-Lagrange equation.

Exercise 5.58. Let f(z1,z2) := zi — 12z120 + 23, (z1,22) € R2. Find all (global) minimisers of f on R2.

Exercise 5.59. Find the derivative of the multiplication map (x,y) — 2y : R*> — R at (20, yo) in R?.

Exercise 5.60.
(1) Verify that —L( ,Y) = ﬁ(w,y) for all (z,y) € R?, where f(z,y) := 32° + 9y* — 92%y ((z,y) € R?).

oxdy oyox 2_ .2
z —y_
(2) Show that T(%( z,y) = %(%(x y) does not hold at (0,0) if f(z,y) := {gy002+y2 E ; i E ’ ;

In Exercise 5.60, we saw a real function for which the order of taking partial derivatives mattered.
The following result gives a sufficient condition for it to be irrelevant.

Theorem 5.61. Let U c R? be open and f : U — R be such that gi, gf, 0520)‘ and 22£ exist at
Y’ dxdy Yoz

each point of U. If 5 ay and & o a are continuous at a point (a,b) € U, then 2 axay (a,b) = gyaz (a,b).

Proof. (May be skipped.) Let h,k >0 be such that the rectangle with corners (a,bd), (a + h,b),
(a,b+k), (a+h,b+k)liesin U. Let D(h,k) := f(a+h,b+k)— f(a+h,b)— f(a,b+ k) + f(a,b).

(a,b+k) (a+h,b+k)

(a,b) (a+h,b)
Define G(z) = f(x,b+ k) — f(x,b), € [a,a+ h]. Then D(h,k) = G(a+ h) — G(a). By the Mean
Value Theorem for G on [a, a+h], there exists an z; € (a, a+h) such that G(a+h)—G(a) = hG'(21),
and so D(h, k) = G(a + h) — G(a) = hG'(z1) = h(ZL (w1,b+ k) — &L (21,b)). Applying the Mean
Value Theorem to the function gi (z1,-) on [b,b + k], there exists a y; € (b,b + k) such that
(w1, b+ k) — L(21,b) = kgyam (z1,11). Thus
2
D(h, k) = hk£L (@1, 41). (%)
Define H(y) = f(a+ h,y) — f(a,y), y € [b,b+ k]. Then D(h,k) = H(b+ k) — H(b). By the Mean
Value Theorem for H on [b, b+k], there exists an y, € (b, b+k) such that H(b+k)—H (b) = kH'(y2),
and so D(h,k) = H(b+ k) — H(b) = kH'(y2) = k(& (a + h,y2) — & (a,92)). Applying the Mean
Value Theorem to the function %(-,yg) on [a,a + h], there exists a x5 € (a,a + h) such that
2
(a + h,ya) — f(a Ya2) = hgz—éy(zg,yg). Thus
D(h. k) = hkZL (2, 92). (%)
From (x) and (x*),
gyéz (r1,91) = Széy (72, 92)- (*)
Now we take h = k = % for all n € N large enough, say n > N, so that the aforementioned

rectangle lies in U. We use the notation (acgn),ygn)) and (z ("), ygn)) instead of (z1,y1) and (22, y2)

to highlight the dependence on the n at hand. We note that the sequences (xngrN),yngrN))ke

and (xéHN) ; yék+N))k€N both converge to (a, b), by virtue of the following inequalities: For n > N,

a<:c§")<a+l, b<y(")<b+l, a<z§")<a+l, b<y(")<b+l

it follows that 24 (a,b) = Z4-(a,0). O

From (*) and the continuity at (a, b) of 3 2 0 and 2 52

Yy 08’
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Exercise 5.62 (A law of conservation of symbols). Let f : R — R has continuous partial derivatives up
to order 2, and %% = 0. Show that %% =0.

Exercise 5.63. Let de N, and f : R? — R be such that for all ¢ € R and all x € R?, f(¢-x) = tf(x). Show
that f(0) = 0. Suppose moreover that f is differentiable at 0. Show that f is a linear transformation.
Hint: For a nonzero h e R and § > 0, |th — 0|2 < § for all |¢| small enough.

5.6. Notes (not part of the course)

Continuous everywhere, differentiable nowhere functions. In connection with Theorem 5.1, we
might wonder how badly behaved continuous functions can be with respect to the notion of differentiability.
It turns out that there are functions that are continuous everywhere, but differentiable nowhere. One
construction is that of the blancmange function obtained by taking the basic sawtooth function fi,

and constructing fa, f3,--- by setting fo(z) = @7 fa(z) = f1(4z ey fulz) = %:I)?--., and
0

adding these: b(z) = Y fa(x), z € R. Then it can be shown that b is continuous on R, but not differentiable
n=1

at any = € R.

Sufficient condition for differentiability. We have seen in Example 5.50 that even though all the
partial derivatives exist at a point, the function may not be differentiable at that point. However, the
following result says that if the partial derivatives are continuous in a neighbourhood of the point, then
the function is differentiable in that neighbourhood. Here is the precise statement of the result.

Theorem 5.64. Let U c R™ be open, and f : U — R™ be such that #, tef{l,---,m}, je{l,---,n},

are continuous on U. Then f is differentiable on U.

Proof. By Exercise 5.56, it suffices to take m = 1. Let @ = (a1, -+ ,an) € U. As U is open, there
exists an r > 0 such that B(a,r) ¢ U. Given h = (hi,---,h,) with |h|2 < 7, define hg = 0, and
h; = (h1,"' 7hi,0,~-- 70)7 7:6{1,--- ,n}. Then

fla+h)— f(a) = g(f(a +hi) — f(a+ hi1)).

a+hs
a
a+hy a+hs
By the Mean Value Theorem applied to [ai,a; + hi] 3 x — f(a1 + h1, - ,ai—1 + him1, %, 0511, ,Qn),
there exists a b; € (as,a; + h;) such that
fla+hi)—fla+hi-1) = flar+h1, -, ai-1 + hi—1,a + hi,aip1, -+, an)
—f(a1 +hi,oyai-1 + hi—17ai7ai+17"' ,an)
= hzﬁc—(m +hi, e ai-1 + hie1,biaigr, o an)
- hl (‘?x (b )7
where b; := (a1 + h1,- -+ ,ai—1 + hi—1,bi,ai41, -+ ,an). We note that ||b; — a|2 < |h|2. So for h # 0,
[fla+h)—fla)= Shift(a)  [Shi(E(b) - £(a)]

2 _ A i ) of of lhil o & of
- - ST < B ) - @) < $1EL ) - A (@)l
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By the continuity of a%% in U and noting that |b; — a|2 < |||z, i € {1,--- ,m}, it follows that given any
e > 0, we can choose a ¢ € (0,7) such that whenever € U satisfies 0 < | — al2 < J, we have with
h := & — a that the left-hand side above is < e. This completes the proof. So f is differentiable at a. As
a € U was arbitrary, f is differentiable in U. O

Inverse Function Theorem and Implicit Function Theorem. A useful analogue of the Differentiable
Inverse Theorem we met in Exercise 5.11 is the following result.

Theorem 5.65 (Inverse Function Theorem).

Let O < R™ be an open set and f : O — R™ be a continuously differentiable function on O. Suppose
that f'(a) is invertible for some a € O. Then there exist open sets U and V in R™ such that a € U,
f(a) e V, f is injective on U, f(U) =V, and f~' : V — R™ is continuously differentiable on V, with
(F)(f(@) = (f()~" forallzelU.

The above result can be used to derive further corollaries, for example, the Implicit Function Theorem,
stated below. In order to motivate this result, consider a curve {(z,y) € R? : F(z,y) = 0} and the question
of whether there exists a local description of the curve around a point (a, b) of the form (g(y),y) with the
‘parameter’ y belonging to some open interval containing b. The Implicit Function Theorem answers this
question. Before we state this result, we introduce some convenient notation. For a linear transformation
T:R*™™ — R", we define T}, : R® — R™ and T, : R™ — R" by

T.h = T(h,0) (heR"),

T,k = T(0,k) (keR™).

Theorem 5.66 (Implicit Function Theorem).

Let O < R™™ be an open set and f : O — R™ be a continuously differentiable function on O. Let
(a,b) € O be such that f(a,b) = 0 and the linear transformation (f'(a,b))s : R™ — R" is invertible.
Then there exist open sets U < R™™™ and V < R™, with (a,b) € U and b e V such that for every y eV,
there is a unique vector g(y) such that (g(y),y) € U and f(g(y),y) = 0. The map g : V — R" is
continuously differentiable, g(b) = a and g'(b) = —((f'(a,b))) *(f'(a,b)),.

For a proof of the Inverse Function Theorem and the Implicit Function Theorem, see for example [R]. The
Implicit Function Theorem in turn is very useful, for example to show the Lagrange Multiplier Theorem

in constrained optimisation, see e.g. [A].






Chapter 6

Integration

One traditional topic in real analysis that we haven’t covered yet in these notes is Integration
Theory. There are two important types of integrals: Riemann integrals and Lebesgue integrals.
Riemann integration has the advantage that it is intuitive and easy to follow, and multivariable
Riemann integration will be covered in the course MA212 Further Mathematical Methods. How-
ever, it turns out that Riemann integration is not amenable to certain natural limiting processes.
For example, it turns out that the functional analogue of the Euclidean space R™, namely the
space Cla, b] equipped with the norm

1£]2 == A/S01f(2)2de (f € Cla,b])

is not complete, which turns out to be awkward when one wants to deal with applications. To
remedy this, a more general integral called the Lebesgue integral can be defined, which rescues
this situation. The interested reader is referred to the book by Rudin [R] for these matters.

In this last chapter, we study the foundations of Riemann integration in the case of a function
f i [a,b] > R. We study the definition, elementary properties and finish with establishing the
Fundamental Theorem of Integral Calculus.

6.1. Motivation and definition of the Riemann integral

Let f: [a,b] > R be a ‘nice’ function, and consider its graph:

It is a basic problem in geometry to calculate the area under the graph of such a function f.
Let us (for now) denote this area by A(f). For example, when f : [-r,r] — R is given by
f(z) = +/r?2 —2? (—r <z < r), then we would like to calculate the area A(f) under the graph of
f, which is the area of the semicircular region:
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But what do we mean by ‘area’ and for which f : [a,b] — R does A(f) exist? Consider first
a very simple case, namely when f : [a,b] — R is a constant function f(z) = ¢, = € [a,b].
Clearly, the area A(f) under the graph of f should be the area of the shaded rectangle, given by
A(f) = c¢- (b—a) (the product of the length with the breadth of the rectangle).

C

a b

But what if f is not constant, and instead looks like this?

a b

If there are numbers M, m such that m < f(z) < M for all = € [a,b], then clearly we should
have m - (b —a) < A(f) < M - (b — a). This is illustrated by the picture below: The area A(f)
under the graph of f is flanked by the areas of the two shaded rectangles, that is, it satisfies
mb—a) < A(f) < M(b—a).

M

f
" I
a b
This gives us the idea that we can estimate the area A(f) by considering little rectangles, as shown

in Figure 1 below, and we anticipate that if we make the rectangles finer and finer, then we should
be able to approximate A(f) better and better.

a b

Figure 1. The area A(f) under the graph of f satisfies S < A(f) < S, where S is the sum of

all the areas of the rectangles shown above which lie below the graph of f, and S is the sum of

all the areas of the rectangles shown in the picture which lie above the graph of f.
In order to make this precise, we introduce the notions of
« a partition P of an interval [a, b], and
« an upper/lower sum associated with a partition P of [a, b] and a bounded function f : [a,b] — R.
Definition 6.1 (Partition of an interval). A partition (of an interval [a,b] < R) is a finite set
P = {xgp,x1, + ,&n_1,2n} such that g 1= a < 21 < 23 < 23 < -+ < Tp_1 < b =: z,,. The
collection of all partitions of [a,b] is denoted by Py, 4.
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Example 6.2. The sets {a, b}, {a, "T*b, b}, {a, a—i—b*Ta, b}, {a, a-l—b;—“, a+2b;—“, o at(n—1)=2 b}
(n € N), are examples of partitions of [a,b], and all of these belong to P 1. O
Exercise 6.3. Which of the following statements is true?

(1) {0,1,3,%,---} is a partition of [0, 1].

(2)
(3) {0,1, 2,3} is a partition of [0, o).
(4) {3,332} is a partition of [0,1].

Definition 6.4 (Bounded function). A function f : [a,b] — R is said to be bounded if there exist
M, m such that for all z € [a,b], m < f(z) < M.

Every interval [a, b] has an infinite number of partitions.

M,

m; ;
a b

Pictorially, if we imagine a light source at ‘c = 4+00’, sending parallel light rays to the left, then
the ‘shadow of the graph of f on the y-axis’ is a bounded set. The following are equivalent:

(1) f:[a,b] — R is bounded.

(2) There exists an M > 0 such that for all x € [a,b], |f(z)] < M

(3) The range of f, namely the set {f(x) : x € [a,b]} is a bounded set.

That (2) and (3) are equivalent follows from Exercise 2.58. For (1 ):>( ), if for all = € [a,b] we

have m < f(z) < M, then also —f(z) < —m, giving | f(z)| < maX{M —m} =: M, i.e., (2) holds.
Vice versa, if (2) holds, then for all z € [a,b], m := —M < f(z) < M, i.e., (1) holds.

Example 6.5. The function f : [0, 1] — R given by f(z) = 2%, z € R, is bounded. Indeed, for all
€[0,1], we have m :==0 < f(z) =22 <1 =M.
Lifo<z<

On the other hand, the function g : [ ,1] = R given by g(z) = { 6” =0 <1 } is not bounded:

or all z € [0,1], then in particular, for all n € N,
% =n < M, (n € N), which is impossible by the
Archimedean Property of R. ’ O

If there ex1sts an M € R such that g(x) < M
with z := + € [0,1], we would have g(z) =

Definition 6.6 (Upper sum). Let f : [a,b] — R be bounded, and P be a partition of [a, b].

The upper sum S(f, P) of f associated with a partition P is S(f, P) := nile (Xg+1 — =k ), where
k=0

My := sup f(z),and ke {0,1,--- ,n—1}.

€Tk, Th41]
The set {f(x) : x € [xk, Tk+1]}, namely the range of f restricted to the subinterval [xy, zg+1] of
[a,b] is nonempty and bounded above (by any upper bound for the range of f on [a,b]). So M}
above makes sense for all indices k. The upper sum is formed by the addition of the various terms
My, (41 — x) for the different indices k. Each one of such terms is the area of the rectangle with
base as the interval [z, zr11] and height M), for the various indices k, i.e., it is the area of the
shortest rectangle lying above the graph of f in the interval [z, zx41].

M,

Tk Tk+l
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The rationale behind the notation S(f, P) is that S is for ‘sum’ (of areas of rectangles), the ~
reminds us that the rectangles have their upper edges lying above the graph of f, and the (f, P)
tells us which function f and partition P of [a,b] we are forming the upper sum for.

Example 6.7. For n € N, let P, be the partition P, := {0, %, %, %, e ,"T_l, 1} of the interval
[0,1], and let f: [0,1] — R be the squaring function f(x) = 22, x € [0,1]. As f is increasing, we
2 —
have My, := sup f(x) = (k:—zl) Thus the upper sum S(f, P,,) associated with f and P, is
me[%,%]

g n-l n—1 n—1
S(f7Pn) = ZM]C(M—%): ZMk:lz Zo(k"‘l)
B e e (IR E

In (%), we used the fact that for all m e N, 12 + 22 + 32+ ... + n? = w, which can be
proved using induction on n. <

Definition 6.8 (Lower sum). Let f : [a,b] — R be bounded, and P be a partition of [a, b].
The lower sum S(f, P) of f associated with a partition P is S(f, P) := nilmk (xg+1 — xk), where
k=0

my = inf  f(x),and k€ {0,1,--- ,n—1}.

z€[zk,Tht1]
The set {f(z) : € [z, xk+1]}, namely the range of f restricted to the subinterval [xy, xgi1]
of [a,b] is nonempty and bounded below (by any lower bound for the range of f on [a,b]). So
my, above makes sense for all indices k. The lower sum is obtained by adding the various terms
my (xx+1 — x) for the different indices k. Each of such term is the area of the rectangle with base
as the interval [z, xk4+1] and height my, i.e., it is the area of the tallest rectangle lying below the
graph of f in the interval [zk, zg41]-

T Tkl

The rationale behind the notation S(f, P) is that S is for ‘sum’ (of areas of rectangles), the -
reminds us that the rectangles have their upper edges lying below the graph of f, and the (f, P)
tells us which function f and partition P of [a,b] we are forming the lower sum for.
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Example 6.9. For n € N, let P, be the partition P, := {0, +, 2 5, 3 ..., 2=1 1} of the interval
[0,1], and let f:[0,1] — R be the squaring function f( ) = x2 e [0, 1] As f is increasing, we
have my := sup f(z) = n—z Thus the lower sum S(f, P,) associated with f and P, is
16[%,%]
n—1 n—1 — n—1
S(FP) = "Smi (bt =5y = Sm b =S L= LT
k=0 k=0 b= k=0

= (02412422 4+ (n—1)2 :%%:%(1f%)(2,%)_ >

In order to arrive at a sensible definition of the integral of f : [a,b] — R, that is, of the area A(f)

under the graph of f, we first make the following observations, which will help us to formulate

this sought after definition:

(1) For any partition P, we expect the area A(f) under the graph of f to satisfy A(f) < S(f,P),
and so the number A(f) should be a lower bound for the set of all upper sums S(f, P) where
P belongs to the collection Py, of all partitions of [a,b]. Thus

A(f) <S() = nt S(f,P). (6.1)

(2) For any partition P, we expect the area A(f) under the graph of f to satisfy S(f, P) < A(f),
and so the number A(f) should be an upper bound for the set of all lower sums S(f, P) where
P belongs to the collection P, 3 of all partitions of [a,b]. Thus

sup  S(f, P) =: S(f) < A(f). (6.2)

PE’P[ayb]

(3) Putting (6.1) and (6.2) together, we see that our notion of the integral must satisfy
S(f) < A(f) <S8(f)-

5 S(£P)

- .

S(f, P)S(f) )

Also, as our partitions P get finer, we expect that for nice functions f (for which we can define
the area under its graph), S(f, P) ~ S(f, P), and so for such nice functions, we would then expect
that S(f) = A(f) = S(f). And this motivates the following definition.

Definition 6.10 (Riemann integral of a Riemann integrable function).
Let Ppq,5 be the collection of all partitions of [a, b], and let f : [a,b] — R be bounded.

Then f is said to be Riemann integrable (on [a,b]) if S(f) = S(f), and the Riemann integral,
denoted by SZ f(z)dx is defined to be this common value: SZ f(x)dz = S(f) = S(f).

The set of all Riemann integrable functions on [a, b] is denoted by RI[a,b].

In the notation Sz f(z)dz, the § symbol is really an elongated S from ‘sum’, and the ‘f(x)dz
reminds us that we are taking in the upper and lower sums, we have areas of little rectangles,
whose base length is an elemental change dx in x, and height is f(z). The a and b at the bottom
and top simple indicate what interval [a, b] we are working with. The function f is often referred
to as the integrand.

We will soon show that in general for any bounded function f : [a,b] — R (Riemann integrable
or not), we have S(f) = S(f). For non-Riemann integrable functions, one has a strict inequality,
and for Riemann integrable functions, one has an equality. In order to prove the inequality, we will
need to investigate what happens to upper and lower sums when points are added to a partition.
The new partition obtained by the process of adding extra points is called a refinement.
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Definition 6.11 (Refinement of a partition).
If P, P, are partitions of [a, b] such that P c Py, then P, is called a refinement of P.

When a partition is refined, one can imagine that the approximations to the area under the graph
of f becomes better, and so lower sums ought to increase, and upper sums ought to decrease. This
is exactly what happens, and this is the content of the next result.

Lemma 6.12 (Refinement Lemma).
If P, Py are partitions of [a,b] with P Py, and f : [a,b] — R is bounded, then S(f, Py) < S(f, P),

Proof. Let P = {xg,x1, " ,Zpn_1,Z,}. First suppose that P, has just one extra point z,
occurring in some subinterval [z, Zgt1].

Tk Ty  Th+l

If we compare S(f, P) with S(f, Py), we notice that most of the terms in the two sums are
identical, except for the terms involving the interval [zy, zk+1]. (From the picture above, we see
that S(f, P) — S(f, Ps) essentially is the nonnegative area of the shaded rectangle.) We have
S(f,P)=S(f, Ps) =( sup f(x))(@ps1—2x) — ( sup f(z))(zs—zx) = ( sup [(@))(Thi1—2x)

TE[Tk, Tht1 z€[z), T %] TE[T g, Tpy1]

=( sup f(@))(@r1—zatze—zr)—( sup f(2))(wx—zk)=( sup [f(2))(Tr1—24)

TE€[Tk, Tht1] rE[Tk, T ] TE[T g, Tht1]

=( sup f(z)— sup f(x))(ws—zk)+( sup f(x)— sup f(x))(Tks1—T4)
z€[@),Thy1] T[Tk, m4] z€[zk,Tp41] z€[T s, Tp41]

=>0+0=0.

If P, has several additional points (instead of just one additional point), then we repeat the
argument several times, considering one extra point in each step to obtain

S(f,P) < -+ < S(f,R) < S(f.P) < 5(/,P)
where
P is a refinement of P having one more point than P,
P is a refinement of P; having one more point than P;, and two extra points than P,
and so on.
Thus S(f, Px) < S(f, P). The proof of S(f, Py) = S(f, P) is analogous. O

Corollary 6.13. If f : [a,b] — R is bounded then S(f) = S(f).

Proof. If P, P’ are any two refinements of [a,b], then P U P’ is a refinement of P as well as P’,
and so by the Refinement Lemma, we have

S(f,P)=S(f.PUP)=5(f,PuP)=>S(fP)
Thus S(f, P) = S(f, P'), for any two partitions P, P’. (So any upper sum is always bigger than

any lower sum!) Let P be a fixed partition. For any partition P’ € P, ), S(f, P) = S(f,P"). So

S(f,P)= sup S(f,P')=S(f). As P € P,y was arbitrary, inf S(f,P)=S5(f)=S(f). O
P'ePay) PEPla)
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Let us now show that the squaring function is Riemann integrable on [0, 1], and calculate its value.

Example 6.14. Consider the bounded function f : [0,1] — R given by f(z) = 22, = € [0,1]. We
will show that f € RI[0,1] and that Sé 22dx = % Rather than considering all partitions, it turns
out that we can be efficient and consider just the special partitions P,, = {0, %, %, %, cee "Tfl, 1},
n € N. From Examples 6.7 and 6.9, S(f,P,) = g(1 + 2)(1 4+ 2) and S(f, P,) = (1 — 2)(1 — 2).
Thus

— . —= . = el 1 1 (:) 1

S(f) = pabf | S(f,P) < inf S(f, Pp) = inf (1 + )2+ 3) = 35, and

S(f) = sup S(f,P)=supS(f, P,) —sup (1 - 1)2— 1) ) 1,
PePro,1) neN neN

For the justification of () and (x*), note that the sequence with n'® term (1 + 1)(2 + 1) is

decreasing and bounded below by 0, and hence convergent to ing $(1+ L)(2+1). On the other
ne
hand, from the Algebra of Limits, the limit must be &(1+ limo 2+ limo 1) =3(1+0)(2+0) = £.

The proof of (x#) is analogous.
Hence 3 > S(f) = S(f) = 1, and so S(f) = S(f) = . Thus f € RI[0,1] and §y2%dz = L. ©

In the above example, we had to work rather hard to find the integral of a simple function. But
we will soon learn about the Fundamental Theorem of Calculus, which will enable us to avoid
such complicated calculations with partitions, lower and upper sums, infimums and supremums
etc. Indeed, the Fundamental Theorem of Calculus says that if the integrand f is the derivative of
a function F, then SZ f(z)dx = F(b)— F(a) ! In light of this result, we can now easily evaluate our

previous example for the squaring function. Indeed, we simply note that the integrand f := 2?2 is
3 3 3
the derivative of F' := £, and so S(l) 2?dz = % — % = 1. But before we establish the Fundamental

Theorem of Calculus, we will first learn about a few basic, but important properties of the Riemann
integral in the next section.

Are all bounded functions f : [a,b] — R Riemann integrable? The answer is no, and here is
an example.

Example 6.15. (1g ¢ RI[0,1].) Consider the indicator function' 1g of the rationals:

1 ifze@Q
1 _ ’
a(®) {0 if = ¢ Q.
Clearly 1g is bounded: for all z, 0 < 1g(z) < 1. We will show that (the restriction of) 1g
on [0,1] is not Riemann integrable on [0,1] by showing that S(1g) = 1 > 0 > S(1g). Let
P={x9g=0,21,  + ,Tp_1,Tn = 1} be any partition of [0, 1]. Then by the density of Q in R, each
[z, Tr+1] contains a rational number, say « € Q, and an irrational number, say S ¢ Q. Thus

My = sup  f(x) = flax) =1, and my:= inf  f(z) < f(Bk) = 0.
r€[T),TR41] zE[zr,Tp1]
Hence
— n—1 n—1
S(1g, P) = I;OMI@ (Thr1 — 1) = ;;ol (Thr1 — 1)
=(@r—x0)+(xa—z1)+ -+ (@n —Tp=1) =T, —2o=1—-0=1
Similarly ﬁ(l@, P) = nilmk (Tp1 — xp) < nfo(ka —x) = 0.
k=0 k=0
So S(1g) = inf S(1g,P)=>1>0> sup S(lg,P) =S(1g), and 1g ¢ RI[0,1]. &
PE'P[OJ] PEP[O,l]

Hence we have RI[a,b] < Bla,b], where BJa, b] denotes the set of all bounded functions on [a, b].

11f S is a subset of R, then the indicator function 1g is defined by 1g(z) =1ifx e Sand 0ifx ¢ S.
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0 ifze[0,1\Q
z ifzxe0,1]nQ
Hint: For any partition P = {20 =0 <21 <+ < Tn_1 < Ty = 1}, Tp41 = w, ke{0,---,n—1}
Use this to find a positive lower bound on upper sums.

Exercise 6.16. Define f : [0,1] —» R by f(z) = { } Is f Riemann integrable on [0, 1]?

Let us now show that there is an ample supply of Riemann integrable functions: all continuous
functions are Riemann integrable, that is, C[a,b] < RI[a,b].

Theorem 6.17. Every continuous function on [a,b] is Riemann integrable on [a,b].

Proof. As f is continuous on [a,b] and since [a,b] is a compact interval, f is also uniformly

continuous on [a,b]. Let € > 0. Then there exists a § > 0 such that whenever z,y € [a, b] satisfy

|z —y| < §, we have |f(x) — f(y)| < e. Consider any partition Py, = {xo, 21, ,Tp_1,Tn} such
that max |zpt1 — a2k < 0. Let My :=  sup  f(z) and my := inf  f(x). By the
ke{0,1,--- ,n—1} 2E[Th,Thi1] z€[T),T41]

Extreme Value Theorem, My = f(cx) and my = f(dy) for some cy,dy € [zk, 2x+1]. Thus

—

n—

S(f, Ps) = S(f, Py) = :é;(Mk —mp)(Tpr1 — k) = ¥ (fler) — f(dr))(Tre1 — 2k)

b
o

—_

< Ye(xpyr —a) = €e(b—a).

k=0
Thus 0 < S(f) — S(f) < S(f, P«) — S(f, Px) < (b — a). Since € > 0 was arbitrary, it follows that
S(f) = S(f), that is, f € RI[a,b]. 0
Example 6.18. All polynomial functions, being continuous, are Riemann integrable on every
compact interval [a, b]. <&

Example 6.19 (Definition of 7). Consider the continuous function f : [—1,1] — R defined by
f(z) = /1 —2a2% x € [-1,1]. Then f is Riemann integrable. We define the number = € R by
=2 Sl_l v/1 — x22dx = two times the area of the semicircular disc of radius 1.

-1

(It can be shown that for a circle of radius r, the area enclosed by it is mr?; see Exercise 6.48.) <

Exercise 6.20. (The aim of this exercise is twofold: first, to show that C[a,b] & RI[a,b], and secondly,
to point out that the Riemann integral gives the signed area under the graph of f, so that if the graph
lies below the z-axis, then the area is attributed a negative sign.) Let f : [0,2] — R be given by

1 ifxel0,1
f@) = {71 if z e E?z%
Show that fe RI[0,2]\C|0,2] and 5(2) f(z)dz=0. Hint: Consider the partitions P, ={0,1,1+ 2,2}, neN.
Exercise 6.21. For a partition P = {z0 = a,z1, - ,Zn-1,Zn = b} of [a,b], with zx < xk41 for all
ke {0,---,n— 1}, define ®(P) := max{rr11 —xr : k = 0,--- ,n — 1}. Which of the following is always
true for any continuous function f : [a, b] — R?
(A) If P, is a refinement of P; (that is, Pi ¢ P»), then ®(P2) < ®(P1).

(B) If ®(P,) < ®(P1), then S(f, P2) < S(f, P1).

(C) If B(P2) < ®(P1), then S(f, P2) < S(f, P1).
(D) <o <

S
D) If ®(Ps) (P1), then S(f, P2) < S(f, P1).
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Theorem 6.22.% If f,ge RI[a,b] and a € R, then f + g € RI[a,b], a-f € RI[a,b].
Moreover, SZ(f(:E) +g(x))dx = SZ flx)dx + SZg(z)dz, and Ss(wf)(:c)d:c =« SZ f(z)dx

Proof. (May be skipped.) Let ¢ > 0. Then there exist partitions Py, Py of [a,b] such that
S(f,Pr) < S(f) + 5 and S(g, Py) < S(g) + 5. Then P := Py U Py =: {wo,z1, -+ ,Tn—1,Ty} is &
refinement of Py and P,, and
S(f+9) <8 +a.P)="S( suwp  (f2)+9(x) (@rer — k)

k=0 ze[zp,Tr41)
n—1

< Y( suwp  fla)+ sup  g(2))(zre1 — k) = S(f, P) + S(g. P)
k=0 zelzy,zr11] z€[zk,Th41]
S(f,Pr) +8(g,Py) <S(f) +5+S(9) +5=5(f
As € > 0 was arbitrary, it follows that S(f + g) < ( )+ S(g
)+

)-
In a similar manner we can show that S(f,g) = S(f) + S(g). Here are the details. Let € > 0.
There are partitions Py, Py of [a,b] so that S(f, Py) > S(f) — § and S(g, Py) > S(g) — 5. Then
P:=P;u Py =:{zg,21, - ,Tn—1,%n} is a refinement of Py, P,, and

S(f+9) = S(f+9,P)="S(_inf  (F(x)+9(x)) (w1 — 21)

k=0 z€[Tk,Try1)

>N ( inf f@)+  inf g(@) (@ker —2x) = S(f, P) + S(g, P)

k=0 Z€[Tk,Tk+t1] z€[Tk,Tht1]
= S(f, Pr) +58(9,Py) > S(f) — 5+ 8(9) — 5 = S(f) + 5(f) -
As € > 0 was arbitrary, we obtain S(f, g) = S(f) + S(g).
From S(f + g) < S(f) + S(g) and S(f,9) = S(f) + S(g), we have
S(f) +8(g9) < S(f +9) < S(f +9) <S5(f) + S(9). (*)
S(9)

Since f,g € RI[a,b], we have S(f) = S(f) and = S(g). Thus the first and last terms in (%)
are equal. Consequently, S(f + g) = S(f + g), that is, f + g € RI[a,b]. Moreover, we have that

§2(f (@) + g(x))dz = S(f +g) = S(f) + 5(g) = " f(x)da + §. g(a)dz

For the second claim, consider the three possible cases a > 0, « = 0 and a < 0 separately:

+5(g) + €.

~

1° a > 0. For every partition P of [a,b], we have

Sla-f,P) ="S( sup  (af@)(@rer—ax)=Sal  sup  f(@)(zei1—a)=aS(f, P),
k=0 ze[zk,zr41] k=0 ze[zy,zx41]
n—1 n—1

S(a-f,P) =3 ( inf (af (@) (@h1—zx)= X al inf  f(z))(zre1—2x) =S/, P).

koze[zkzkﬂ] k=0 z€[rk,Tri1]
Thus
S(a-f) = inf S(a-f,P)= inf aS(f,P)= inf S(f,P)=a8
S(af) = dnf Slaf,P)= it aS(f,P)=a if B(fP)=aS(f)

=0¢§(f)=a sSup ﬁ(f,P): Sup Oéﬁ(f,P): sup §(af,P)=§(af)
P€ePra,p) PePra,p) PeP(a,b)
Hence a- f € RI[a,b] and SZ(a-f)(m)dx =S(a-f)=aS(f) = O‘SZ f(x)dx
2° o = 0. Then af(z) = 0 for all x € [a,b], and so for every partition P of [a,b], we have
S(a-f,P) = 0 = S(a-f,P), so that S(a-f) = 0 = S(a-f). Hence a-f € Rl[a,b] and
folo- f)@)dz =0 =0, f(x)dz = af, f(x)dz
2The content of this result can be expressed in linear algebraic language by saying that RI[a, b] forms a vector space with

operations of addition and scalar multiplication defined pointwise, and that the map f +— SZ f(z)dz : RI[a,b] > Ris a
linear transformation.
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3°a<0. Let P={xg,21, " ,Tn-1,%s} be any partition of [a,b]. First let & = —1. Then
— n—1 n—1 .
S(=f,P)=%( sup —f(@)(@p+1—2p)= X (= inf  f(@))(@pe1—z)==S(f, P).
k=0 ge[xp,zrpq1] k=0 x€[Tk,Tk41]
By replacing f by —f, we obtain from the above that S(—f, P) = —S(f, P). Hence we have
S(—f) = inf S(—f,P)= inf —-S(f,P)=- sup S(f,P)=-S
() =t L) = il SSUP) == sw S(P) = -5()
ﬁ(_f) = Sup ﬁ(_fa P) = Sup _g(fa P) =— inf g(fa P) = _g(f)
PePla.b) PEP(a 1] PePra,p)

Thus S(—f) = fS(f) S(f) S(— f), and so —f € RI[a,b]. Moreover, we have that
fo ~fl@)dr =5(~f) = =5(f) = ~ {, f(«)

For general o < 0, we have a = —|a, and as f € RI[a,b], it follows from 1° that |«|f € RI[a,].
From the above, we now obtain that —|a|-f € RI[a,b], that is, a- f € RI[a,b]. Also,

SZ af(z)dx = SZ —|alf(z)dx = — SZ o) f(x)dx = —|a SZ f(x)dx = aSZ f(x)dx. O

Example 6.23. For n € N, the map « — 2" : R — R is continuous, and so 2™ € RI|[a,b] for all

a,b. Thus the polynomial p € RI[a,b], where p(x) := ¢y + c12 + - -+ + cgz?, and moreover, we

have SZp(x)dx = co SZ ldx + ¢; SZ xdr+ -+ +cq SZ xddx. After learning the Fundamental Theorem

of Calculus, we will know that Sb x"dr = 52 4 ”2::11 dx = bnjjjnﬂ, for alln = 0,1,2,3,---. So
b 2_ 2 +1 +1
§, p(x)de = co(b—a) + a5+ et — e o

The following result will play an important role in the sequel.
Theorem 6.24 (Riemann Condition). Let f : [a,b] = R be bounded. Then we have:
f € RI[a,b] < |for all € > 0, there exists a partition P. € Pla,5) such that S(f,P.)—S(f, P.) <e

Proof. (May be skipped.)
(<) For all e > 0,0 < S(f) — S(f) < S(f, P.) — S(f, P.) < e. It follows that S(f) = S(f).

(=) Suppose f € RI[a,b]. Let € > 0. Then there exists a partition P; of [a,b] such that
S(f,P1) < S(f) + 5. Similarly, there exists a partition P, such that S(f, ) > S(f) — 5.
Consider the refinement P, := P; U P, of P; and P,. Then S(f,P.) < S(f,P1) < S(f) + 55

andﬁ(f,Pe)2§(f,P2)>§(f)—§ SOOgg(f,Pg)—ﬁ(f,P€)< (f)_ﬁ(f)+6_6' U
[ ———

=0
Let us now show that restrictions of Riemann integrable functions are Riemann integrable.
Theorem 6.25. If [¢,d] < [a,b] and f € RI[a,b], then f € RI[c,d].
f

a c d b

Proof. (May be skipped.) Let € > 0. As f € RI[a,b], by the Riemann Condition, there exists a
partition P, of [a,b] such that S(f, P.)—S(f, P.) <e. Let P/ := P.u{c,d} = P,V Pie,a)Y Pra),
where Py,  is a partition of [a, c], P q) is a partition of [c,d], and P4y is a partition of [d, b].

Plaq Pea Plapy
f—};ﬁ(—‘}\—\
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We know that

(f, Pla,e) +
(fs Pla,c)) +

(fa P[c,d]) +

S
ﬁ(fa P[c,d]) +

S(f, Pay),

S(fs Pray))-

Thus

¢ > S(f, P)=S(f, P.)=S(f, Pla.c) +S(f, Pe.ay) +S(f, Prap) —(S(f, Pla.c) +S(f, Pre.ay) +S(f, Flay))
> S(f, Pla,)) = S(f, Pla,e) + S(f, Plea) — S(f, Pre,ay) + S(f, Prawy) — S(f5 Playy)
>0+ S(f, Pie.a) — S(f, Pie,ay) + 0 = S(f, Pe,a)) — 8(f, Ple.ay)-

Hence by the Riemann Condition, f € RI[c,d]. O

Exercise 6.26. Let f : [a,b] > R, a < c < b, f € RI[a,c] and f € RI[c,b]. Then f € RI[a,b] and
moreover SZ f(@)dz = § f(x)dz + SE f(x)dx

Exercise 6.27. Let f : [a,b] — R be a bounded function, such that f has only one discontinuity at
€ (a,b). Show that f € RI[a,b]. Extend the result to a finite number of discontinuities of f in (a,b).

Theorem 6.28. If f,g € RI[a,b], then f g€ RI[a,b].

Proof. (May be skipped.) Let ¢ > 0. Let My, M, > 0 be such that |f(z)] < My and |g(z)| < M,
for all z € [a,b]. Since f € RI[a,b], by the Riemann Condition, there exists a partition Py of [a, b]
such that S(f, Pf) — S(f, Py) < . As g € RI[a,b], there exists a partition P, of [a,b] such
that S(f, P,) — S(f,Py) < m. Cons1der the refinement P := Py u Py =: {xo, %1, - ,Tpn_1,Tn}
of P; and P,. For a bounded function ¢ on [a,b] and a k€ {0,1,--- ,n — 1}, we use the notation
My = sup  @(x), and myp := inf  o(z). Then for 2,y € [k, k1],

T€[Th, Tht1] T€[Th, Tht1]

(f-9)(@) = (f-9)y) = f(x)g(x) = f(x)g(y) + f(@)g(y) — f(y)g(y)
= f(@)(9(x) = g(y)) + (f(@) = f(y)g(y)
< [f@)llg(@) — g)| + [gW)I|f(x) = f(y)]
< My(Mg . — mgr) + Mg(Myp — mypp).
As z,y € [xr, xp11] were arbitrary, My.gx —my.gr < Mp(Mgr —mgr) + Mg(Myr —myy). Thus
S(f-9)—=S(f-g9) <S(f-9,P)—8(fg,P) < M(S(g, P) — S(g, P)) + My(S(f, P) - S(f, P))
< My (S(g, Py) — S(g, Py)) + My(S(f, Pr) = S(f, Pr)) < Mygip + Mygir = €.

By the Riemann Condition, we conclude that f - g € RI[a,b]. O

Some conventions. When defining SZ f(z)dx, we assumed that a < b.

To simplify matters in what is to follow, we will adopt the following new definitions:
(1) If @ = b, then every f : [a,b] — R is Riemann integrable, and we define § f(z)dz := 0.
(2) Ifa > band f : [b,a] — R is Riemann integrable, then we define SZ f(@)dx = =, f(z)dz.

Theorem 6.29 (Domain additivity). Suppose that f € RI[a,b] and let ¢ lie between a and b.
Then SZ fla)de = § f(z)dz + Si f(x)dx
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Proof. As restrictions of Riemann integrable functions are Riemann integrable, f € RI[a,c] and
f € RI[e,b]. The claim now follows immediately from Exercise 6.26. O

Some useful inequalities associated with Riemann integration.
Theorem 6.30. Let a < b and f,g € RI[a,b]. Then we have:

1) If for all x € [a,b], f(z) = 0, then SZ f(z)dx = 0.

(1)

(2) If for all x € [a,b], f(z) = g(x), then SZ f(x)dx = SZg(x)dx.

(3) |f| € RI[a,b] and | §" f(x)da| < § | f(x)|de.

(4) Let f € C[a,b] and for all z € [a,b] f(x) = 0.

If Sa f(x)dx =0, then f =0 on [a,b], that is, f is identically zero on [a,b].

Proof. (May be skipped.)
(1) We have §, f(z)de = S(f) = sup S(f,P) = S(f,{a,b}) = ( inf f(x))(b—a) >0.

PEPla,b) z€[a,b]
N —
>0
(2) We apply (1) to h := f — g. Clearly, h(z) = 0 for all z € [a,b], and h = f — g € RI[a,b].
So Sz f(x)dx — SZg(m)dx = SZ(f(m) —g(z))dz = Sz h(z)dx = 0. Thus SZ f(z)dz = SZg(m)dm
(3) Let € > 0. By the Riemann Condition, there exists a partition P. = {zg,z1, - ,Tpn_1,Tn} of
[a,b] such that S(f, P.) — S(f, P.) <«

Claim: §(|f|;PE) *§(|f|aPE) <€

For any fixed k € {0,1,--- ,n — 1}, let z,y € [vg, zr+1]. With My = sup  f(z) and
z€[zK,Tht1]
mg = [inf ]f(z), we have that f(z) — f(y) < My — my, and f(y) — f(z) < M — my.
TE| Tk Th41
Hence |f ()= f(y)| < Mi—mx. So [f[(x)=|fI(y) = [f(@)|=[f W) < |f(2) = F(y)| < My —my..
Thus  sup |fl(z) — inf |f|(y) < My —mip = sup f(z)— inf  f(y). So
€[TR, Tht1] YE[Tr,Thi1] z€[Tk,Tht1] YE[Tr,Thi1

S(f], P.) = S(If], P.) < S(f, P.) = 8(f, P.) < e. This completes the proof of the claim.
By the Riemann Condition, |f| € RI[a, b].
Moreover, for all z € [a,b], f(z) < |f(z)| and —f(z) < |f - So §° f(a)da < §° |f(x)|de and
— " f(a)de < §° |f(2)|da. Thus |§ f(2)dz| < §) |f(x)
(4) Let —=(f =0 on [a,b]). Then there exists a c € [a,b] such that f(c¢) #0. As f =0, f(c) >0

For € := @ > 0, by the continuity of f at ¢, there exists a § > 0 such that whenever

x€|a, b] satisfies |z —c| <d, we have |f(x)ff(c)|<e=@, and so

( F@)<If(e) = f@)| =|f(@)— )| < L.

Hence f(z) > f(c) — f = f(;) > 0 for « € [a,b] U (¢ — d,¢ + ). This also shows that

if ¢ = a or ¢ = b, then there are other values of ¢ where f is positive. Thus there is no loss

of generality in assuming that ¢ € (a,b). Also, by reducing § if necessary, we may assume that
a<c—9d<c+d<b With P, :={a,c—d,c+ 6,b}, we have

§ f(x)de=S(f)=5(/, P*)=(z inf. f(w))(c—d—a)+(ze[ci_rgc+6]f($))25+(zelcnfébf( z))(b—c—9)
>0+ 12 25+0 §f(c) >0,

a contradiction. O
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Exercise 6.31.
(1) Let f,g € RI[a,b]. Show that max{f, g}, min{f,g} € RI[a,b], where max{f, g} := max{f(z),g(x)}
and min{f, g} := min{f(z), g(x)}, for all z € [a,b]. Hint: max{a,b} = %‘a*b‘ for a,b e R.

(2) The aim of this exercise is twofold: Firstly, to show that the pointwise supremum of a sequence of
Riemann integrable functions need not be Riemann integrable, and secondly, to demonstrate that the
pointwise limit of Riemann integrable functions need not be Riemann integrable.

Let r1,72,73,- - be an enumeration of the rationals in [0, 1].
) (1l ifxe{r,---,ra},
Define fn : [0,1] = R by fn(z) = {0 otherwise.
Is each fn € RI[0,1]? Let (sup fn)(z) := sup fn(x), z € [0, 1]. Is sup fn € RI[0,1]?
neN neN neN

Exercise 6.32. We have seen in Theorems 6.22, 6.28 and 6.30(3) that if f,g € RI[a,b], then so is their

pointwise sum, product and their respective modulus. Give examples of bounded f, g : [0, 1] — R that are

not Riemann integrable, but for which the functions |f|, f + g, fg are all Riemann integrable on [0, 1].

Exercise 6.33 (An integral mean value result). Let f € C[a,b], ¢ € RI[a,b], and let p be pointwise
nonnegative. (We may interpret p as the ‘mass density’ of a rod, along the interval [a, b], made of a possibly
inhomogeneous material. If p = ¢, a constant, then the rod has uniform density along its length.) Show
that there is a ¢ € [a, b] such that SZ f(@)p(z)dz = S oz (So for p=1, —S f(x)dz = f(c).)
If f(x) = z, then we can interpret the position ¢ as the Center of mass’ of the horizontal (1nhomogene0us)
rod, namely the place about which if the rod is pivoted, it will remain balanced, since the moments
about that point due to the weight of the the constituent particles of the rod add up to 0. If the rod is
Pa? _ SZx-l dx = cSZl dx = c(b — a), that is,

c= “TM, as expected based on our physical intuition.
Give an example to show that the assumption f € C[a,b] cannot be dropped for the conclusion to hold.

Moreover, provide an example to show that the nonnegativity of p is also a necessary condition.

Exercise 6.34 (Cantor set). The aim of this exercise is to show that there exist Riemann integrable
functions which have infinitely many points of discontinuity. Indeed, we will show that the indicator
function 1¢ of the Cantor set (see Example 2.66) is Riemann integrable on [0, 1]. Proceed as follows.

(1) As C c F,, clearly 1¢ < 15, . Since 1p, has only finitely many discontinuities, 15, € RI[0,1].
Show that So 1r, (z)dxz = length of the intervals in F,, = (2)".
Conclude that if € > 0, then there exists a partition P of [0, 1] such that S(1r,, P) < (%)™ +e.

Deduce that S(1¢) < 0.
(2) As 1¢ =0, it is clear that S(1¢, P) = 0 for all partitions P of [0,1], and so S(1¢) = 0.
(3) Conclude from Parts (1) and (2) that 1¢ € RI[0,1], and that S(l) lo(z)dz = 0.

Exercise 6.35. Can the assumption that f € C[0,1] in Theorem 6.30-(4) be replaced by the condition
that f € RI[0,1]?

Exercise 6.36 (Dirac §). For doing quantum mechanical computations, the physicist Paul Dirac intro-
duced the 0 ‘function’ (as eigenstates of the position operator). The aim of this exercise is to show that
such function does not exist®. Show that there is no function 6 : R — R such that for all a > 0,

(1) d|[—a,qa] is bounded, and 6 € RI[—a,a].

(2) For every ¢ € C[—a,a], §*  d(z)p(x )d:v = ¢(0).

Exercise 6.37 (Cauchy-Schwarz). If f,g € RI[a,b], then show that
(52 f(@)g()dz)* < (§, (f(x))*de)(§; (9(x))*dz)

by proceeding as follows. For t € R, define p(¢ S (f +t-g)(x))?dx. Then ¢ is a quadratic function
of the variable ¢, and ¢(¢t) = 0 for all ¢ € R. ThlS means that the discriminant of ¢ must be < 0, since
otherwise, f would have two distinct real roots, and would then have negative values between these roots!
Calculate the discriminant of ¢ and show that its nonpositivity yields the desired inequality.

Exercise 6.38. Define || - |2 := SZ |f(z)|*dz, f e Cla,b]. Show that (C[a,b],| - |2) is a normed space.

SHowever, the mathematician Laurent Schwartz later gave a mathematical foundation to the Dirac § by viewing it as a
‘distribution’, in which one thinks of § as a (linear) map & : C5°(R) — R, which sends ¢ € Cg°(R) to the number ¢(0). Here
C§ (R) denotes the set of all functions ¢ : R — R, which are infinitely many times differentiable and vanishing outside some
compact interval (depending on ). Distributions play a fundamental role in the study of partial differential equations.
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Exercise 6.39. The aim of this exercise is to prove Proposition 2.47. Let (fn)nen be a sequence in RI[a, b)
and f : [a,b] — R be such that (fn)nen converges uniformly to f. We want to show that f € RI[a,b] and
SZ f(z)dz = nlgrolo SZ fn(x)dz. Proceed as follows:
(1) Show that f is bounded and so for each n € N, My, := sup |fn(z) — f(x)| is well-defined.
(2) Prove that for all n € N and all z € [a,b], fn(x) — M, 265;1(;]) < fn(z) + M.
(3) Use (2) to conclude that for all n € N, SZ(fn(:v) — My)dx < S(f) < S(f) < SZ(fn(x) + My)dx.
(4) Use (3) to show for all n € N, 0 < S(f) — S(f) < 2M, (b — a), and Exercise 2.38 to show f € RI[a,b].
(5) Tt follows from (3) that for all n € N, S(f) — Mn(b—a) < SZ fu(x)dx < My (b—a) + S(f).

Use the Sandwich Theorem to conclude that SZ f(z)dx = nlgrolo SZ fr(x)d.

6.3. Fundamental Theorem of Calculus

Calculus has two components:

| Differentiation | | Integration
Local process: Global process:
Derivative at a point depends only on || Takes into account values of the function
values of the function near the point. in the entire interval.

But now we will learn about a bridge between these two seemingly different worlds of differentiation
and integration, namely the Fundamental Theorem of Calculus, which says, roughly that the two
processes of differentiation and integration are inverses of each other.

§0 L f(a)de = £(b) - fla)

f differentiate il integrate f

& f(tdt = f(2)

f integrate F differentiate

Before stating the Fundamental Theorem of Calculus, we give the following definition.

Definition 6.40 (Primitive of a function). Let f : [a,b] — R. Then a function F : [a,b] — R is
called a primitive of f if

(1) F is differentiable on [a,b] and
(2) for every x € [a,b], F'(z) = f(x).

4The derivative at the boundary point a is the number L =: F’(a) (if it exists) such that for every € > 0, there exists a

Fle)=Fla) _ 1| < ¢. Similarly, the derivative F'(b) at
the boundary point b is the number such that for every € > 0, there exists a § > 0 such that whenever z € [a, b] satisfies
0 <b—a <6, we have | Z2L®)

F’(a) exists, then F is continuous at a, and if F’(b) exists, then F is continuous at b.

6 > 0 such that whenever z € [a, b] satisfies 0 < z —a < 4, we have |

— F’(b)| < e. A straightforward adaptation of the proof Theorem 5.1 shows that if
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Example 6.41 (Primitives are not unique). Both the functions % and 12—2 — 399 are primitives

of z. In fact, any function x? + C, where C is an arbitrary constant, is a primitive of z. &

The previous example shows that primitives are not unique. But we will show later on that they
are unique ‘up to additive constants’, that is, for any two primitives F, F' of f, there is a constant
C (depending on the pair F, F') such that F' = F + C on [a, b].

Theorem 6.42 (Fundamental Theorem of Calculus). Let f € RI[a,b]. Then:
(1) If f has a primitive F, then Sz ft)dt = F(x) — F(a) for all x € [a,b].

(2) Define F : [a,b] > R by F(x —S f)dt for all x € [a,b].
If f is continuous at c € [a,b], then F is differentiable at ¢, and F'(c) = f(c).
In particular, if f € Cla,b], then F is a primitive of f.

Proof. (of Part (1):)
(If = a, the both the left hand side and right hand side are 0, and so the result holds. So let us

assume that > a.) Let P = {xg, 21, -+ ,Zn_1,2Zn} be any partition of [a,z]. By the Mean Value
Theorem, W = f(c), for some ¢ € (xg, xr4+1). Thus

— n—1

S(f,P)=3x( sup f(@)(@k+1 — k)

3 >
[l

0 zelzp,zpi1]
1 n—1

= Y fler)(@ppr — ) = X (F(zpea) — Flar))

B

= F(x1) — F(ao) + Faz) — F(z1) + -+ + F(xn) — F(xn-1)
F(z

n) = F(zo) = F(z) — F(a).
Thus, for any partition P of [a,z], we have S(f, P) > F(z) — F(a), and so
5(/) > Fla) — Fa). (63)
Similarly,

n—1

S(P)=S (it @)@ —o0) < 5 (00 @ =) = L (@) =Flew) = F(@)=F(a).

0 €[TK,Thi1

Hence, for any partition P, we have S(f, P) < F(z) — F(a), giving

S(f) < F(x) — Fla). (6.9)
From (6 3) and (6.4), we obtain §” f(t)dt = S(f) < F(z)—F(a) < S(f) = §. f(t)dt. Consequently,
F(x) — = {7 f(t)dt. This finishes the proof of Part (1). O

Before moving on to the proof of Part (2), here is an example illustrating Part (1).

Example 6.43. With F := £~ and f := 22, we have I/ = f on R. Since f € C[0,1] = RI[0,1], it

follows from the above and the Fundamental Theorem of Calculus that Sé x2dx = g — % = l . Note

the remarkable simplicity obtained (as opposed to the calculation done earlier in Example 6.14),
thanks to the Fundamental Theorem of Calculus. <&

Now let us continue with the proof of Part (2) of the Fundamental Theorem of Calculus.

Proof. (of Part (2)): Let e > 0. As f is continuous at ¢, there exists a § > 0 such that whenever
t € [a,b] satisfies |t — ¢| < d, we have |f(t) — f(c)| < e. Let x € [a,b]\{c}. Then by the definition
of F' and the result on Domain Additivity7 we obtain

P Ple) - L (§ f(tydt — §¢ f(t)dt) = 2§ f(t)dt. (6.5)
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Also, by Part (1) of the Fundamental Theorem of Calculus,
§. fle)dt = S (f(e) - t)dt = f(c) - x— f(c) - c= f(c) (z — o),
and so for z € [a, b]\{c},

flo)= ;4 (6.6)
From (6.5) and (6.6), | =1 — f(e)] = | L Cs dm CS floydt] = 251 2 (F(O)—f(e)) dt]

xr—c

for all x € [a,b]\{c}. So for x € [a, b] satisfying 0 < |z — ¢| < J, we have
E@=FE ()] = L (1) - f(0)di] < = et o) — (o)t
S0 = £ e o)) < gele —dl = e
Consequently, F'(c) = f(c). O

<

Geometric interpretation of the Fundamental Theorem of Calculus. The plausibility of
Part (2) of the Fundamental Theorem of Calculus can be illustrated geometrically. See the figure
above, in which we have depicted the graph of a Riemann integrable function f.

f

T r+dr

Let F be defined by F(x) = S f(®)dt for all x = a. Then F(x) is the area under the graph of f
from a to x. Con51der an x > a, and imagine increasing x by a tiny amount dz. The area of the
little strip created is F(x + dx) — F(z) ~ f(z) - dz, and dividing throughout by dz, we obtain

F/(z)%F(rerd#Nf( ).

Example 6.44. For n € Z\{—1}, (n+1 )Y =a" x # 0. If b> a > 0, then by the Fundamental

L+l prtl_gntl

Theorem of Calculus, Sa a"de = b := =—=%—. (The notation F(z)|} means F(b) — F(a).)
What if n = —1? Define ‘logarithm’ function log : (0,00) — R by logz := Sf 1dt, x > 0.

area =: log

By the Fundamental Theorem of Calculus, (logx)’ Sf 1dt = —, x> 0. <&

Exercise 6.45. Suppose that f : [a,b] — R is bounded, and that f € RI[a,b]. Define F : [a,b] — R by
x) = {7 f(t)dt for all x € [a,b]. Show that F' is uniformly continuous on [a, b].

Exercise 6.46 (Leibniz’s Rule for Integrals). If f € Cf[a,b] and u,v are differentiable on [¢,d] and
u(le, d]) < [a,b], v([e,d]) < [a,b], then %= §°7) f(t)dt = f(v(2))v'(x) — f(u(z) v (2), = € [¢,d].

u(z)
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Exercise 6.47 (Integration by Parts). Let f,¢,G : [a,b] — R be such that f, G are continuously differ-
entiable on [a,b], and G’ = g. Prove that SZ f(x)g(x)dx = f(x)G(x)]% — SZ I (z)G(z)dz.
Use integration by parts to show that Si’ log xdx = 3log 3 — 2.

Exercise 6.48 (Integration by Substitution/Change of Variables). Let ¢ be continuously differentiable
on [a, B], @([e, B) = [a,b], and [ € C[a, b]. Show that §*%) f(w)dx = 52 [((1)) /() dt.
Show that if r > 0, then " +/r? —az2dx = "—;2 (Recall that 7 := 2 Sil V1—2x2dx.)

Exercise 6.49. Let f : [0,00) — R be continuous. Find f in each of the cases below if the given equation
is known to hold for all x > 0, or if no such f exists, justify why not.

(1) S§2 ftydt = e @) (" 2dt = e (3) ggfﬁ f(t)dt = z°.

Exercise 6.50. Let f be a continuous function on R and A # 0. Consider y(z) = 1 {o f(t) sin(A(z —t))dt
+ ANy(x) = f(z) for

for x € R. Show that y is a solution to the inhomogeneous differential equation y”(z
all z € R and with the initial conditions y(0) = 0 and y'(0) = 0.

Exercise 6.51. Using the binomial fomula (142z)" = i (Z):vk, and the Fundamental Theorem of Calculus,
2n+1 1 k=0
n+1

show that 3 (") =
Eﬂkﬂ (k)

Exercise 6.52. Let eV := i #y”, y € R. From Example 3.33 that this series converges for all y € R.
!

Note that ¢ = 1, and from Exercise 5.35(3), we also know that Z—yey =eY, yeR

(1) Show that Z—y(eyefy) = 0 using the Product Rule and the Chain Rule for differentiation.
Conclude that eVe™ =1 for all y € R.

(2) Show that log defined in Example 6.44 is strictly increasing, and that its range is R.

So log : (0,00) — R is bijective. Denote its inverse by f : R — (0,00). Aslogl = Si 1dt =0, f(0) = 1.

(3) Use the Differentiable Inverse Theorem (Exercise 5.11) to show that f'(y) = f(y) for all y € R.

(4) Show that the initial value problem {g(%y)):(g(y) (ye R)} has the unique solution g(y) = Ce".

Hint: Differentiate Z—y(e_yg)A

(5) Show that the inverse f of log is the exponential function: f(y) = €Y, y € R.
Hint: Consider the initial value problem above with C' = 1.

(6) By considering the initial value problem above with C' = e*, and the two functions g(y) = e¥** and
G(y) = e®e?, show that e**® = e%e® for all a,b e R.

(7) Show that log(z1z2) = log z1 + log z2 for all z1,22 € (0,0).
(8) Let e := f] L = f(1). Then loge = 1. Show that 2 < e < 4.

(9) Let @ > 0 and b € R. Define a® = €®!°5®. Show that if n € N, then a™ = a---a (n times).
Prove that if ¢ € R, then (a®)¢ = a®°.

6.4. Notes (not part of the course)

In this section, we give a summary of the Lebesgue integral in one dimension. This is of course no
substitute for a thorough exposition to the subject. We will work in one dimension, although one can
more generally work in R? in an analogous manner.

The extended real number system. For several reasons (e.g. handling limiting processes), it will be
useful to extend the real number system by adding two symbols oo and —o0. The set R = R u {00, —o0}
is called the extended real number system. We extend the order < from R to R by defining —o0 < & < o0
for all z € R. Every subset of R has an upper bound oo, and a lower bound —o0. Then every subset of R
has a least upper bound and a greatest lower bound in R. For example, supR = o0 and sup &J = —o0. We
also define the following:

ForzeR,z+0=0=0+z,z+ (—0) =—0 = (—0) + z.

Ifx>0,thenz-00 =0 =0 -z and z-(—0) = —

Ifx <0, thenz 00 =—-00=00- 2 and z-(—w0) =
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Measurable sets. The length of an interval I — R is defined to be
NG {b—a if I =[a,b], (a,b), (a,b], [a,b) and — o0 < a < b < w0,

0 if I is unbounded.
We shall now associate a ‘measure’ to more general subsets of R following a method originally due to
Henri Lebesgue (1875-1941). The more general sets which possess a measure will be called measurable
sets, and we will denote the measure of a measurable set A c R by A(A). The associated integral, which
we will define in the next section is called the Lebesgue integral.
Step 1: Compact sets. Let K < R be a compact set, that is, closed and bounded. Let K be covered
by intervals I, -+, I, € R, n € N. Then we expect A(K) to satisfy A\(K) < S A(Ix). This should hold
k=1
for every such cover of K, and we expect the right-hand side above to be close to the left-hand side when
the ‘overlap’ of the covering intervals becomes smaller. This motivates the following definition. We define
AMEK) :=inf{ S \(Ix) : K < U1}, where the infimum is taken over all covers of K by a finite number of
k k

intervals . We note that if K = [a,b], then our definition above delivers A(K) = b — a, which is indeed
the length of the interval [a,b]. Also, we note that A(K) < oo for compact K.

Step 2: Open sets. The measure of an open set U < R is A(U) := sup{\(K) : K < U, K compact}. For
open sets U, 0 < A(U) < 0. If U = (a,b), then \(U) = b — a for finite a,b, and is o0 if a = 00 or b = 0.

Step 3: Bounded measurable sets. Let A — R be a bounded set. Consider all compact sets K < A
and all open sets U > A. Then we have A(K) < A(U). Thus sup AMK) < inf  XU). We say

compact Kc A pen UDA
that the bounded set A is measurable if there is equality above, and define its measure A(A) to be the

common value, that is, A(A) := sup AMK) = inf AU).If A is compact, then this definition
compact KC A open UDA
coincides with the ones from Step 1. Also, if A is open and bounded, then this definition coincides with

the one from Step 2. It can be shown (invoking Zorn’s Lemma) that there exist bounded subsets A ¢ R

that are not measurable.

Step 4: Measurable sets. Let A < R. We call A measurable if for every compact set K < R, the
bounded set A n K is measurable, and we define the measure A\(A) of A by A(A) := sup A(An K).
If A is bounded, then this definition coincides with the one from Step 3. K compact

This is how the (Lebesgue) measure A\(A) is defined for (Lebesgue) measurable subsets A of R. We have:

(1) If A is measurable, then R\A is also measurable.

(2) Let A be measurable and z € R. Set t + A:={zx +a:a€ A} and zA := {za: a € A}.
Then z + A and zA are measurable, and A(z + A) = A(A) and A(zA) = |z|A(A4).

(3) If A1, Ay are measurable and A1 c As, then A(A1) < A(Az2).

Now suppose that (An)nen is a sequence of measurable sets.

(4) U Anx is measurable, and A\({J An) < 5 AAp).
neN n=1

neN

If A; n A; = J whenever i # j, then A\(|J An) = i AMAR).
neN n=1

If Ay € Ay c Az < -+, then A(|J An) = sup A(A4n).

neN neN

(5) N Ar is measurable.

neN

Sets of measure zero. Sets of measure 0 play an important role in measure theory (for example, they
underlie the notions of ‘almost everywhere’ and ‘for almost all’, as we shall see). For example:

e A = {a}, a singleton, because A is then an interval in R, with A\(A) =a —a = 0.

o A={ai,az,as,- -} = |J{an}, a countable set. Then A\(A) = s A{an}) = $0=0.
neN n=1 n=1

There are uncountable sets with Lebesgue measure 0, for example, the Cantor set, recalled below.

Example 6.53 (Cantor set). Recall the Cantor set C' from Example 2.66. Let us show that C is un-
countable. We will prove that there is a one-to-one correspondence between points of C' and the points
of [0,1]. Any point z in C is associated with a sequence of letters ‘L’ or ‘R’ as follows. Let x € C. Then
for any n, x € F,, and when the middle thirds of each subinterval in F;, is removed, x is present either
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th

in the left part or the right part of the subinterval, and the n"™ term in the sequence of letters is L or R

accordingly. For example,

0 = LLLLLL,---
1 = RRRRRR,---
: = LRRRRR, -
2 = LRLLLL,--
2 = RLRLLL,---.

But points in [0, 1] are also in one to one correspondence with such sequences. Indeed,

[0,1] = [0, 3] v (5,1]
= [07 %] Y (ivé] Y (%7%] Y (%71]
$1vEiv@ v v il Elv G

= [0, 5] (

If z € [0, 1], then for each n, we can look at the n'™® equality, and see if z falls in the left or the right part,
when each subinterval in the right-hand side of the n'® equality is divided into two parts, and this gives
the (n + 1)* term of the sequence of Ls and Rs associated with x: for example,

0 = LLLLLL,---
R7R7R7R7R7R7 e

I = LRRRRR, .

,_.
Il

As [0, 1] is uncountable, it follows that so is C'.

As the sum of the lengths of the intervals removed is % + 23% + 43% + -+ =1, the measure of F' is
1 —1 = 0. So this is an example of an uncountable set with measure 0. &

Any subset of a measurable set of measure 0 is also measurable with measure 0. We say that two functions
x1,x2 : A — R defined on a measurable set A are equal almost everywhere if there exists a measurable set
N with A(N) = 0 such that @1 (t) = x2(t) for all t € A\N. Sometimes then we also say that x1(t) = x2(t)
for almost allt € A.

Measurable functions. Let A be a measurable subset of R. A function @ : A — R u {—00, 00} is called
measurable if  has any of the following equivalent properties:

(M1) For all y e R, {t € A: x(t) < y} is measurable.

(M2) For all y e R, {t € A: x(t) < y} is measurable.

(M3) For all ye R, {t € A: x(t) > y} is measurable.

(M4) For all y e R, {t € A: x(t) = y} is measurable.
Practically all functions are measurable, and they are abundant:

(1) All continuous functions are measurable.

(2) All functions that are continuous outside a set of measure 0.
. 1 ift=-,neZ\{0}, ort =0
For example if (¢) := L otherwise

sin =
t
Such functions are called continuous almost everywhere.

, then @ is measurable.

(3) All monotone functions are measurable.

(4) If A is a measurable set, then its indicator function 14, given by 14(¢) = {(1) ii i Z i} ,is a

R ify <0,
measurable function, since {t e R:14(t) 2y} =< A if0<y<1,
o ify>1.

(5) The sum, product and (if well-defined) the quotient of measurable functions are all measurable.

(6) If  is measurable, then so is |x|.
Hence® if @1, T2 are measurable, then max{x1, x>} and min{x1,x2} are also measurable.

(7) If (@n)nen is a sequence of measurable functions, such that their pointwise limit, say x, exists,
then x is measurable.

5For real a, b, max{a, b} = %‘a*b‘, and min{a, b} = a + b — max{a, b}.
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The integral of measurable functions. While defining the Riemann integral, we consider upper and
lower sums corresponding to a partition P = {a = to,t1,  * ,tn—1,tn = b} of the domain [a,b] of the

function @, for example the lower sum S(z, P) = n21( : inf | 2(t))(tk+1 —tr). This is really the Riemann
k=0 t€[t, try1

integral of a step function, which assumes finitely many values, and is constant on intervals.

While defining the Lebesgue integral, we shall consider simple functions. A simple function assumes finitely
many values (just as before, with step functions), but now is constant (more generally than the case of step
functions) on measurable sets (instead of mere intervals). Roughly speaking, such simple functions arise
from a partition of the range (rather than a partition of the domain for the step functions considered when
defining the Riemann integral). Every step function is a simple function (as every interval is measurable),
but not every simple function is a step function (since not every measurable set is an interval).

Now let A be a measurable set, and let s : A — R be a simple function. This means that s assumes
finitely many values, which we arrange in increasing order: —o0 < y1 < y2 < -+ < Yy, < 00, and let
A ={te A:s(t) =yx}, 1 <k <n. Thus we may write s =y1 -1a, + -+ yn - 1a,. If s(t) = 0 for all
t € A, then y1 > 0, and in this case, we define §, s(t)dt := y1 - A\(A1) + - - - 4 yn - A(4An). The right-hand
side is either a nonnegative real number or oo (if one of the sets Ay has infinite measure).

The collection of all nonnegative simple functions on A is denoted by S (A). For each s € S;(A), we
have defined §, s(t)dt. If A is a set of measure 0, then for all s € Sy (A), §, s(t)dt = 0. Indeed, since every
subset of a set of measure 0 is also a measurable set of measure 0, it follows, with the notation from the
previous paragraph, that AM(Ax) = 0 for all 1 < k < n. The claim follows by the definition of the integral.

Let  : A - R U {—00, 0} be a measurable function, and @(t) > 0 for all t € A. Then we define
§,s(t)dt = sup §, s(t)dt.
)

x=s€S (A

The right-hand side is either a nonnegative real number or co0. In this sense, we can say that for nonnegative
measurable functions, their Lebesgue integral always exists, but this is not the case with Riemann integrals.

1 iftis irrational}

Example 6.54. Let A = [0,1], and let « : [0, 1] — R be defined by x(t) = {O i ¢ is rational

The sets Ao = {t € [0,1] : @(¢) = 0} and A; = {t € [0,1] : &(¢) = 1} are measurable. Since A is countable,
A(Ao) = 0. On the other hand, A(A1) = A(A\Ao) = AM(A) — A(Ao) =1 —0=1. Since & = 14, is a simple
function, §, #(t)dt = 1- A(A1) = 1. But we had seen earlier that « is not Riemann integrable. &

Let A be a measurable set. Suppose that all the functions appearing in the list below are defined on A,
take values in [0, 0) U {00}, and are measurable. Then we have:

(1) § (1 (t) + @2(t))dt = § , &1 (t)dt + § , x2(t)dt.

(2) For a >0, §, ax(t)dt = of , x(t)dt.

(3) If for all t € A, 1(t) < @2(t), then §, a1 (t)dt < §, x2(t)dt.

(4)

4) (Monotone Convergence Theorem).
IFO<@i(t) <a2(t) <---, and ®(t) := lim @, (t). Then §, x(t)dt = lim §, a,(t)di.
n—oo n—o

(5) If A(A) = 0, then §, «(t)dt = 0.
(6) If § , x(t)dt < oo, then there exists a set N of measure zero such that x(t) < oo for all £t € A\N.

Let @ : A — R u {—00, 0} be a measurable function defined on the measurable set A. Note that « is no
longer assumed to be nonnegative. We can, nevertheless, write « as a difference, * = x4+ — x_, of the two
nonnegative (and measurable) functions ¢ := max{x,0} and z_ := max{—z,0} = — min{x, 0}.
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We say that @ is (absolutely) integrable on Aif § , |a(t)|dt < co. Then §, @(t)dt := §, @ (t)dt—§, = (t)dt.
Since 0 < a:+( ) < |x(t )|7 and thanks to assumption that §, |a: t)|dt < oo, 1t follows from (3) on page 98,
that §, @, (t)dt, §, 2 (t)dt < oo, and so their difference, § , (t)dt, is finite too.

The set of all absolutely integrable functions on A is denoted by L£'(A). For @i, x2,x € L*(A) and
a € R, we have the following:
1) xr1 + T2 € ﬁl(A) and SA(w1 + :l)g)(t)dt = SA 1 t)dt + SA wg(t)dt
a-xelL'(A)and §,(a- z)(t)dt = af, (t)dt.
|¢| € £'(A) and SA|a: )|dt < |SA t)dt|.
If § , |&(t)|dt = 0, then there exists a set N A of measure 0 such that a(t) = 0 for all t € A\N.
Let A = B u C, where B,C are measurable too and BnC=g.
Then x € L'(B), x € £'(C) and §, z(t)dt = §, x(t)dt + §, x(t)dt.
(6) Ify: A—Ru{—o0,+00} is measurable and |y(t)| < x(t) for almost all t € A, then y € L*(A)
and | §, y( dt|<SA|y dt < § , x(t)dt.
The parts (1), (2) assert that £'(A) is a real vector space, and the integral & — §, @(t)dt : L' (A) — R is
a linear transformation (or a linear functional, since the co-domain is the field of scalars R).

We also remark that in part (4), under the given hypothesis, we cannot in general conclude that & = 0
on all of A. Indeed, S(l) 1gnpo,11(t)dt = AM(Q n [0,1]) = 0, as Q is countable, however the integrand is not
identically zero: for example, its value at % is 1. On the other hand, if in (4), we are also given that x is
continuous, then we can safely conclude that & = 0 on A.

The Dominated Convergence Theorem says that if there is an £'-majorant for all the terms @, in a
sequence of functions, then assuming that their pointwise limit @ exists almost everywhere, this pointwise
limit is also an element of £'(A).

Dominated Convergence Theorem. Let A be measurable. Let (2,)nen be a sequence in £'(A), and
x : A — R, be such that lim @, (t) = x(t) for almost all t € A. Let y € £'(A) be such that for all n € N,
n—00
| ()| < y(t) for almost all ¢ € [0,1]. Then @ € £'(A), and lim §, zn(t)dt = §, lim @, (t)dt = §, @(t)dt.
n—0o0 n—00
We remark that the hypothesis of the existence of an £' majorant is essential, as demonstrated by the
following two examples.

Example 6.55. (Lacking an £' majorant). Let A = R.

(1) Let @, = 1[—p n], ® = 1. Then x, € [,I(IR)7 (zn)nen converges pointwise everywhere on R to x,
but = ¢ £'(R).

(2) Let @ = 1u,n41], € = 0. Then x,, € L'(R), (2n)nen converges pointwise everywhere on R to ,
butSR t)dt =0#1= hm SRa:n t)dt. O

Link with the Riemann integral. Let € C[a,b]. Then x € £'[a, b] and
(the Lebesgue integral) SZ x(t)dt = (the Riemann integral) SZ x(t)dt.
That x € L£'[a,b] follows from the fact that x is measurable (since it is continuous), and it is bounded

(Extreme Value Theorem).

The space L'[0, 1]. Consider on £'[0, 1] the candidate norm |z := S(l) |(t)|dt for all x € £L1[0,1]. This
map | - |1 fails to be a norm because functions that are almost everywhere 0 (e.g. lgn[o,1]) have zero
norm. Hence we should essentially ‘consider such functions to be also the zero vector in the vector space
£'0,1]’. This intuitive remark can be made rigorous by considering the following relation on £'[0,1].
We say that @ ~ y if there exists a set® N < [0, 1] of measure 0, such that x(t) = y(t) for all t € [0, 1]\N.
It can be seen that ~ is an equivalence relation on £'[0, 1], that is,

(ER1) (Reflexivity). & ~ x for all € £'[0, 1].

(ER2) (Symmetry). If &,y € £'[0,1] and & ~ y, then y ~ @.

(ER3) (Transitivity). If ¢,y,z € £'[0,1], * ~ y and y ~ z, then = ~ 2.

6depending in general on @ and y
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Let [z] denote the equivalence class of : [x] = {y € £'[0,1] : & ~ y}. Thus [«] is the collection of all
elements of £'[0, 1] that are almost everywhere equal to = on [0, 1]. Define L'[0,1] := {[z] : € £*[0, 1]}.
Then we can endow a vector space structure on L'[0, 1] by setting [x] + [y] = [:l: +y]and a-[z] = [a-x]
for [x],[y] € £'[0,1] and a € R. Tt can also be seen that these operations +,- are well-defined, that
is, they do not depend on the chosen representatives @,y € £'[0, 1] for the equivalence classes [z], [y],
respectively.

We now define the map | - |1 : L'[0,1] — R by ||[z][1 := So t)dt for all [x] € L'[0,1]. Then it can
be checked that || - |1 defines a norm on L'[0,1]. In particular, now if |[z]|1 = 0, then it follows that

x(t) = 0 for almost all ¢ € [0,1], and so [x] = [0], that is, [x] is the zero vector from the vector space
L'[0,1], as desired.

The normed space L'[0,1] is complete, and in this sense L'[0,1] is ‘better’ than C[0,1] with the
| - |1 norm (see Exercise 2.32). We supply a sketch of the proof. Let ([@n])nen be a Cauchy sequence in
Ll[O7 1]. To prove its convergence, it is enough to show the convergence of a subsequence. So we may
assume (by passing to a subsequence if necessary) that |[@n+1] — [®n][1 < 5% (n € N). Let o := 0. Set

yn(t) 1= $ [z (t) — aa(0)] andy(t) = 5
By the Triangle Inequality, we have
Iynll = §g lyn (8)ldt < D ll@es] = [zl < l[21] = 2ol + X 7

@pi1(t) — @k (t)]-

By the Monotone Convergence Theorem,

Iyl = 5o ly(t )|dt = lim. §o lyn(Dldt < [[@1]]1 + 1 < 0.

Hence the function y is finite almost everywhere on [0, 1]. So the series i (zr+1(t) — xk(t)) is absolutely
convergent for almost all ¢ € [0, 1]. For such ¢, we set e

2(t) = 5 @k () — (1),

But @, (t) = Zé:(wkﬂ(t) — i (t)) for all ¢t € [0, 1], and so nlgtgo @, (t) = x(t). Furthermore,

|z (t)] < nil|a:k+1(t) —xi(t)] < y(t) for almost all ¢ € [0, 1].
k=0
By the Dominated Convergence Theorem,

So |z (t)|dt = hrn So |z (t)|dt < So t)dt < 0.

Hence [x] € L'[0,1]. Also, note that [|x|] + [y] € L'[0, 1], and furthermore |x — x| < |x| 4+ y for all n.
The Dominated Convergence Theorem again gives

. . 1
Tim ] ~ [2]]s = lim {3 #a(t) 2 (0)]d =0,

showing that ([@,])nen converges to [x] in (L[0,1],] - [1). Consequently, (L'[0,1],] - [1) is complete.
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Equivalence relations

Definition A.1 (Relation).
A relation R on a set S is a subset of the S x S := {(a,d) : a,b € S}. If (a,b) € R, then we write
aRb.

For example, if we take S to be the set of all human beings, then
Raibling := {(a,b) € S x S : a,b have the same biological parents}

is a relation. As another example, we can take the set S = Z, the set of all integers, and
Rmod 2 = {(m,n) € Z x Z : m — n is divisible by 2}. Sometimes we use the symbol ~ to denote a
relation, and then instead of aRb, we will write a ~ b.

Definition A.2 (Equivalence relation).

A relation R on a set S is called an equivalence relation if it satisfies the following;:
(ER1) R is reflexive, that is, for all a € S, aRa.
(ER2) R is symmetric, that is, if aRb, then bRa.
(ER3) R is transitive, that is, if aRb and bRe, then aRe.

In our example above, where S = {all human beings}, Ribling can easily be checked to be an
equivalence relation”. Similarly Rpoq 2 is an equivalence relation on Z.

Why are equivalence relations useful? They help ‘partition’ the set into ‘equivalence classes’,
and help to break down the big set into smaller subsets, such that all the elements in each subset
are related to each other, and hence ‘equivalent’ in some way. For example, Rgipling enables one to
partition the set of human beings into equivalence classes consisting of groups of brothers/sisters.
On the other hand, Ryoq 2 partitions Z into the sets {even integers} and {odd integers}.

Definition A.3 (Equivalence class).
If R is an equivalence relation of a set S, then the equivalence class of a, denoted by [a], is defined
to be the set [a] = {b€ S : aRb}.

Given any a, b € S, either [a] = [b] or [a] " [b] = &. Indeed, let [a] n[b] # . Suppose c € [a] N [b],
that is, aRc and bRec. By symmetry, cRb. As aRc and cRb, by transitivity, we obtain aRb, and
again by symmetry, bRa. If d € [a], then aRd. As bRa and aRd, by transitivity, bRd. So d € [b]
too. So we have shown that [a] < [b]. In the same way, one can show [b] < [a] as well. So

la] = [b]-
Clearly, |J [a] = S. For a€ S, aRa (reflexivity), and so a€[a]. Thus S< | J[a]. So S = | [a].

aesS aesS aesS

THere we accept that a person is one’s own sibling.

101
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As any two distinct equivalence classes do not overlap at all, it follows that S is partitioned into
equivalence classes by R, as shown in the schematic picture below.

So the idea is that an equivalence relation is really an ‘attention focusing device’, where we have
chosen to ignore other distinguishing features of objects which are related, and have put them
together in an equivalence class. So an equivalence relation gives one a ‘pair of glasses’ through
which we ‘clump together’ things which are ‘essentially the same’ (equivalent under the relation)
and see them as one object! For example, if our set is the collection of children in a school bus and
we consider the equivalence relation R; of ‘having the same sex’, then through these glasses, we
see only two equivalence classes: boys and girls. On the other hand, if we consider the equivalence
relation Ry of ‘having the same age’, then through these glasses, we see groups of children sorted
by age.

Real numbers

Finally we have reached the point where we can learn about the construction of the most important
number system from the point of view of Mathematical Analysis, namely the real number system
R. Roughly speaking, the set of real numbers are the numbers to which Cauchy sequences in Q
‘want to converge to’. As these limits may not be rational, we just name/label these numbers
by the whole Cauchy sequence in Q itself! But then two Cauchy sequences in Q might want to
converge to the same thing (e.g. think of (ap)nen and (a, + %)nEN), and so we ought not to
distinguish between such two Cauchy sequences. So we must build an equivalence relation ~ on
Cauchy sequences, so that

(@n)nen ~ (bn)nen if lingo(an —b,) =0,

and consider the real numbers as equivalence classes of Cauchy sequences under this equivalence
relation. Since we are trying to construct the reals, we are only allowed to use rational numbers.
So we need to restrict ourselves to € that are rational in the definition of convergence. We do this
carefully below.

Definition A.4.

o A Cauchy sequence in Q is a sequence (a,)nen of rational numbers such that for every rational
€>0, there exists an N € N such that whenever m,n> N, we have |a, — a,| < €.

o The set of all Cauchy sequences in Q is denoted by C.

o Let 7 € Q. A sequence (an)nen in Q converges to r in Q if for every rational € > 0, there exists
an N e N such that for all n > N, |a, —r| <e.

e The relation ~ on C is defined as follows:

(an)nen ~ (bn)nen if the sequence (a, — by )nen converges to 0 in Q.
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Exercise A.5. Let (an)nen, (bn)nen be Cauchy sequences in Q. Show that (an+bn)nen is Cauchy sequence
in Q too.

Proposition A.6. Fvery Cauchy sequence in Q is bounded.

Proof. Let (ay)nen be a Cauchy sequence in Q. Choose a rational e >0, say e=1. Then there
exists an N € N such that for all n,m > N, we have |a, — an| < € = 1. In particular, with
m=N+1> N,and n > N, |a, —an+1| < 1. Hence by the Triangle Inequality® in Q, for all
n> N,

lan| = lan —ant1 + any1| < lan —ania| + |lany1| < 1+ [an4a]-
On the other hand, for n < N, |ay| < max{|a1],...,|an],|an+1| + 1} =1 M > 0. Consequently,
lan| < M (n € N), that is, the sequence (ay,)nen is bounded. O

Exercise A.7. Let (an)nen and (bn)neny be Cauchy sequences in Q. Show that (anbn)nen is Cauchy
sequence in Q too.

Exercise A.8. Suppose that (an)nen and (bn)nen are sequences in Q such that (an)nen (respectively
(b )nen) converges in Q to rq € Q (respectively 7 € Q).

(1) Show that the limit is unique: If (an)nen converges in Q to ry, € Q, then rq = 7.

(2
(3

Show that (— an)nen converges to —rq.

=

Show that (an + bn)nen converges to rq + 7.

Exercise A.9. Show that ~ is an equivalence relation on C.
Definition A.10 (The set of real numbers).
A real number is an equivalence class of C under the relation ~. If (a,)nen € C, then [(an)nen]

denotes the real number which is the equivalence class of C containing the sequence (a,)nen. The
set of all real numbers is denoted by R.

The set of real numbers is supposed to be an extension of the rational numbers Q, that is, we
want to see that Q ‘=’ R. Given a rational number r € Q, the constant sequence 7,7, r,---, that
is, (7)nen, is a Cauchy sequence in Q. Thus [(7)nen] is a real number. We have the following.

Proposition A.11. The map Q 3 r — [(r)nen] € R is injective.

Proof. Let r, s € Q be such that [(7)nen] = [($)nen]. Then (7)peny ~ ($)nen. So

li —s)=0.

i (r = 5)

But the constant sequence r — s, — s,r — s,--- converges in Q to 7 — s. By the uniqueness of
limits, r — s = 0, that is, r = s. (|

Addition and multiplication

If addition in R is to respect the addition in Q, we expect that for r, s € Q, [(r)nen]|+[(8)nen] equals
[(r + $)nen]. Similarly, [(7)nen] - [($)nen] should equal [(rs)nen]. This motivates the following.

Definition A.12. The sum of the real numbers [(a,)nen] and [(bn)nen] is given by
[(@n)nen] + [(bn)nen] = [(an + bn)nen]-
The product of the real numbers [(ay)nen] and [(by)nen] is defined by
[(@n)nen] - [(bn)nen] = [(anbn)nen]-

8The proof of the Triangle Inequality is exactly the same, replacing ‘real/R’ everywhere by ‘rational/Q’. Note that we are
not allowed to use reals yet, and so we can’t just specialise the Triangle Inequality for R to the rationals.
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As usual, we have to check well-definedness. We leave this as an exercise for addition, but give an
argument below for multiplication. Let [(an)nen] = [(a],)nen] € R and [(bn)nen] = [(b),)nen] € R.
The idea is to use the inequality

|a;zb:z — apby| = |a;zb:z - a;bn + a;bn — apbn| < |a:z||b;z —by| + |a’/n — ap||by]
and the boundedness of the terms al,, b, to show (anbp)neny ~ (al,b),)nen. We carry out the details
below.

As (a],)nen is Cauchy, it is bounded, and let A’ > 0 be a rational number such that |a],| < A’
for all n € N. Similarly, (b, )nen is bounded, and let B > 0 be a rational number such that |b,| < B
for all n € N. Let € > 0 be a rational number As (an)nen ~ (a),)nen, we have that (a, — al,)nen
converges in Q to 0. So for the rational 5% > 0, there exists an N, € N such that |a;, — an| < 5%
Similarly, as (bn)neN ~ (b)) nen, we have that for the rational 55 > 0, there exists an Ny, € N such
that |0}, — b,| < 55. Set N = N, + Np. For all n > N, we have

|al bl anb | = |a,bl, — al by, + al by, — anby| < |al||b], — bn| + |al, — an||bn]

< A'|Y, — by| + |a), an|B<A’ﬁ+—B—e

Thus (anbn)nen ~ (a7,b7,)nen-

Exercise A.13 (Addition is well-defined). Let (an)nen ~ (@ )nen and (bn)nen ~ (by)nen. Show that
(an + bn)neN ~ (a;, + b',n,)nEN-

Example A.14 (The real numbers 0 and 1). We define the real numbers 0 = [(0)nen] and
1 = [(1)nen]. Then for every real number x € R, we have

O+x=r=2x+0, and
l-z=r=x- 1.
Thus 0 serves as the additive identity and 1 serves as the multiplicative identity. Clearly 1 # 0

because the sequence (1 — 0),en converges in Q to 1 # 0. O

The set R, together with the operations +,-: R x R — R forms a ‘field’, i.e., the following hold.

( (F1) (Associativity) Forall z,y,zeR, x + (y+ z) = (x + y) + 2.
(F2) (Additive identity) ForallzeR, x +0=a =0+ x.
+< (F3) (Inverses) For all € R, there exists —x € R

such that ¢ + (—x) =0 = —x + «.

(F4) (Commutativity) Forallxz,yeR, x+y=1y+ x.

(F5) (Associativity) Forall z,y,zeR, z-(y-2)=(x-y) 2
(F6) (Multiplicative identity) 1# 0 and forallzeR, z-1=2=1 -«
(F7) (Inverses) For all © € R\{0}, there exists z~! e R

suchthat x -z ! =1=2"1

(F8) (Commutativity) Forallz,yeR, z-y=vy - x.

- X.

+,-{ (F9) (Distributivity) Forallz,y,z€R, z-(y+2)=z - y+x- 2.

In fact, if we replace everywhere R by Q (and 1,0 by the rational numbers 1, 0, respectively), then
the set Q of rational numbers with their addition and multiplication, also satisfy the same proper-
ties. We say that (Q, +,-) is also a field. (However, (Z, +,-) is not a field, because multiplicative
inverses don’t always exist: The equation 22 = 1 has no solution x € Z.)

We will not check each the above, as they essentially follow by ‘termwise verifications’, and
by using the corresponding properties from the field of rationals. We remark that the additive
inverse of @ = [(an)nen] I8 —@ := [(—an)nen]. Let us show the existence of multiplicative inverses
for nonzero reals. First we prove the following lemma.
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Lemma A.15. Let € R be such that  # 0. If (an)nen € @, then there exists a rational d > 0
and an N € N such that for alln > N, |a,| > d.

Proof. As [(an)nen] = # 0 = [(0)nen], we have — ((an)nen ~ (0)nen), i-e.,
= ((an — 0)nen converges in Q to 0), i.e.,
—(V rational € > 0, 3N € N such that Vn > N, |a, — 0] <), i.e.,

Thus
3 rational € > 0 such that YN € N, In > N such that |a,, — 0] > e. (%)

Since (an)nen € C, for the rational €/2 > 0, there exists an N, € N such that for all n,m > N,

lan — am| < §. From (x), taking N = N, there exists ny > Ny such that |a,, — 0| = €. Hence

for n > N, we have

€ €
lan| = an — Gny + ny| = |an, | — [an — any| =€ — 3=5 = d. g
Proposition A.16. Let the real number & # 0. Then there exists an ' € R such that
z-xl=1=z1 2

Proof. Let = [(an)nen]- By Lemma A.15 there exists a rational d > 0 and an N € N such that
|an| > d for all n > N. In particular, a,, # 0 for all n > N. Set’

I 0if 1<n<N,
e a;l if n> N.

Then (by,)nen is a Cauchy sequence in Q. Firstly, for n,m > N,

- |an|am| h d?
Secondly, as (an)nen is a Cauchy sequence in Q, given a rational € > 0, there exists an M € N
such that for all n,m > M, |a, — am| < ed?®. Hence for all n,m > N + M,

1 1 — —
ool = | =~ L | = lenmaml  Jan ol
an

am

lan — am|  ed?
—rF <E-°
Consequently, (by)nen is a Cauchy sequence in Q. We have'®
ab e 0if 1 <n <N,
" 1ifn> N.

|bn - bml <

Hence (a,by)nen converges in Q to 1. So [(anbn)nen] =1. Set =1 :=[(by)nen]. Then we have
z-rxl=1=x"' =z U

Exercise A.17 (Distributive law). Let a,b,c€ R. Prove that a- (b+¢)=a-b+a-c.

Order

To compare real numbers = [(an)nen] and y = [(bn)nen], we would like to use the order relation
< on Q. If we try to define * < y by saying that for all n € N, a,, < b,, then this will not
be a well-defined notion. Indeed, changing the first few terms of (a,)nen we could easily violate
this, without changing [(ay,)nen]. Intuitively, @ is the real number that (a,)nen converges to. So
thinking formally

‘x =lima,’, ‘y=I1limb,’,
we would say « < y if ‘lima,, < limb,,’, that is,

lim(by, —ayn) > 0.

9A1though we set b, = 0 for 1 < n < N here, any arbitrary N rational numbers can be specified here.

101124 we specified by, - - - , by arbitrarily, we would get a bunch of initial terms a,b, for 1 < n < N, but this won’t affect
the rest of the proof.
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But from our former intuition with limits, we know that this means that for all large enoughn € N,
b, — a, stays away from 0 by some positive distance d, say. This motivates the following.

Definition A.18. Let @ = [(an)nen] and y = [(by)nen] be real numbers. Then x < y if there
exists a rational number d > 0 and an N € N such that for alln > N, b, —a, > d. If € <y, we
write equivalently y > @.

Let us show that this is a well-defined notion.

Proposition A.19. Let [(an)nen] = [(a),)nen] € R and [(bn)nen] = [(V),)nen] € R. Suppose that
there exists a rational number d > 0 and an N € N such that for alln > N, b, — a, > d. Then
there exists a rational number d' > 0 and an N' € N such that for alln > N, b}, —a, > d'.

Proof. As (ap)nen ~ (al,)nen, we know that (a, —a’,)nen converges in Q to 0. So for the rational
d/4 > 0, there exists an N, € N such that for all n > N, |a,—al,| < d/4,i.e., —d/4 < ap—a), < d/4.
In particular

d
anfa;l>71 for all n > N,. (%)

Similarly, (b, )nen ~ (0], )nen yields the existence of an Nj, € N such that

*)

d
b, — by > -1 for all n > N, (%
Set N’ = N, + Ny + N. Then for all n > N’, using () and (##), we have

d d d
So with the rational @’ := £ > 0, for all n > N’, we have b/, — al, > d'. O

Exercise A.20. Show that if r,s € Q and r < s, then [(r)nen] < [($)nen]. (In particular, for the real
numbers 0,1, we have 0 < 1.)

Exercise A.21 (Transitivity of <). Let @, y, z € R be such that * < y and y < z. Prove that ¢ < z.

Theorem A.22 (Trichotomy Law). Let @,y € R. Then one and exactly one of the following hold:
1° z <uy. 2° x=uy. 3° xz>uy.

Proof. Let x = [(an)nen] and y = [(bp)nen]. If @ = y, then (a, — by)nen converges in Q to 0.
Let us show that —(x > y). Indeed, otherwise there exists a rational d > 0 and an N € N such
that a, — b, > d for all n > N. But then taking the rational € := d/2 > 0, we get, thanks to the
convergence of (a, — by )nen, that there is an N’ € N such that for all n > N’| |a,, — b,| < d/2. So
with n = N + N’, we arrive at the contradiction that d < a, — b, < |a, — b,| < d/2. Soif ¢ =y,
then —(x > y). Interchanging the roles of @, vy, we also have that if & = y, then —(x < y). Let
us also note that if @ < y, then —(y < x): Otherwise there exist rational d,d’ > 0 and N, N’ e N
such that for all n > N we have b,, — a,, > d, and for all n > N’, we have a,, — b, > d’, so that
with n:= N + N, we get d' < a,, — b, < —d, giving 0 >d +d > d + 0 = d, a contradiction.

Let [(an)nen] := @ # y =: [(bn)nen]. Then it is not the case that the sequence (a,, — by)nen
converges in Q to 0. Thus there exists a rational e, > 0 such that

for all N € N, there exists an n > N such that |a, — by| = €. (%)

As (ap)nen is Cauchy, there exists an N, € N such that for all m,n > N,, we have |a, —am| < €x/4,
ie, —€x/4 < an — am < €x/4. In particular, a, — a, > —ey/4 for all n,m > N. Similarly, as
(bn)nen is Cauchy, there exists an Np € N such that for all m,n > Ny, |by, — by| < €4/4, giving in
particular b, — b, > —ey/4. Now take N = N, + N in (). Then there exists an ny > N such
that |an, — bn,| = €x > 0. In particular, an, — b,, # 0. So by the trichotomy law for < in Q, we
have the following two mutually exclusive possible cases:
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1° any — bpy >0. Then ay,, — by, =|an, — by, | =€s. For all m> ny (>N =Ny,+Ny),
Um = bm = Gy — by + Gy — Gy + gy — by > € — G — S = S =1 @,
So for all m > n,, we have that a,, — b,, > d, showing * > y.

2° ap, — bn, <0. Then by, — an, =|an, — bp,|=€x. Forall m> ny (> N=N,+Ny),

bn — Gm = bny — Gny + b — by + Gy — A > € — G — G2 = S =1 4
So for all m > ny, we have that b,,, — a.,, > d, showing y > x. O

Definition A.23 (The set P of positive reals). We define P:= {x e R : > 0}.
Exercise A.24. Let ,y € P. Show that  + ye Pand -y € P.

Exercise A.25. Let & € R be such that @ > 0. Prove that there exists an r € Q such that 0 < [(7)nen] <
x. We write this succinctly as 0 < r < «.

Exercise A.26. Let (an)nen be a Cauchy sequence in Q. Suppose there exists an N € N such that for
all n > N, we have a, > 0. Show that the real number & = [(an)nen] = 0.

Exercise A.27 (No order for C). A field F is called ordered if there is a subset P — F, called the set of
positive elements of IF, satisfying the following:
(P1) For all z,ye P,z +y € P.
(P2) For all z,ye P,z -y € P.
(P3) For each z € P, one and only one of the following three cases is true:
1° z=0. 2° x€eP. 3 —xeP
(Once one has an ordered set of elements in a field, one can compare the elements of F by defining a
relation >p in F by setting y >p x for z,y e Fif y —x € P.)
Show that C is not an ordered field. Hint: Consider x := i, and first look at = - z.

The least upper bound property of R

Finally we are ready to prove the ultimate goal, namely the least upper bound property of R, i.e.,
we show the following;:

Theorem A.28 (Least upper bound property of R).
Every nonempty subset of R which is bounded above has a supremum.

We first give an example to show that @Q does not possess the Least Upper Bound Property.

Example A.29 (Q does not possess the Least Upper Bound Property).

Consider the set S := {x € Q : 22 < 2}. Clearly S is a subset of Q and it is nonempty since 1 € S:
12 =1 < 2. Let us show that S is bounded above. In fact, 2 serves as an upper bound of S. Since
if > 2, then 22 > 4 > 2. Thus if x € S, then 22 < 2, and so = < 2.

If Q@ has the Least Upper Bound Property, then the above nonempty subset of Q which is
bounded above must possess a least upper bound uy := sup S € Q. We will show that this uy, € Q
must satisfy that u2 = 2. But we know that this is impossible as we know that there is no rational
number whose square is 2.

Firstly, usx = 1 (as uy is in particular an upper bound of S and 1 € S). Now define

2
uz —2  2(us + 1)
= — = > 0. Al
T Ug + 2 Uy + 2 (A1)

As uy € Q, the rightmost expression for r shows that r € Q as well. Then

2 . 2(“2 -2)
r¢—2= 7(1&* Toe (A.2)

1° Suppose u2 < 2. Then (A.2) implies that 7> —2 < 0, and so r € S. But from (A.1), r > uy,
contradicting the fact that w, is an upper bound of S.
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2° Suppose that u2 > 2. If v’ > r (> 0), then > =7 -7/ > r-v' > r-r =% From (A.2), r* > 2,

and so from the above, we know that r'? > 2 as well. Hence ' ¢ S. So we have shown that if
r’ € S, then ' < r. This means that r is an upper bound of S. But this is impossible, since
(A.1) shows that r < uy, and uy is the least upper bound of S.

So it must be the case that u2 = 2. But this is impossible. Hence Q does not possess the Least
Upper Bound Property. &

This ‘analytical flaw’ of the rational number system is remedied by the set of real numbers.
Moreover, we had seen that not all Cauchy sequences in Q converge in Q. In contrast, we have
shown, using the Least Upper Bound Property of R, that we the following happy situation in R:
{Cauchy sequences in R} = {convergent sequences in R}.

We will show that every nonempty subset of R which is bounded above has a supremum.

Lemma A.30 (‘Baby’ Archimedean Principle). If & € R, then there exists a natural numbern € N
such that n > x.

We cannot use the Archimedean Principle to prove the above, since that earlier result was proved
using the Least Upper Bound Property of R, which we haven’t established yet!

Proof. If x < 0, then take n = 1, since 0 < 1 gives by transitivity that < 1.

Let @ = [(an)nen] > 0. We have seen that every Cauchy sequence in Q is bounded. So there
exists a rational A > 0 such that for all n € N, a,, < A. This implies < [(A + 1),en] (since
A+l-a,>A+1-A=1>0forallneN). Write A+1=[(£)], where p,g€ N. Set n =p+1.
Then A+ 1 = [(%)] < [(})] (sincep < p+1<(p+1)g=ng). Sox < [(A+ 1)nen] < [(})]-
Succinctly, z < n. O

Lemma A.31 (Density of Q in R redone). Let x,y € R be such that € <vy. Then there exists an
reQ such that y <r < x.

Proof. Asy—x > 0, we have in particular y—x # 0, and so (y—x)~! exists in R. By Lemma A .30,
there exists an n € N such that n > (y —x)™!, and so n(y — ) > 1, i.e., n® + 1 < ny.

By Lemma A.30, there exists an mj € N such that m; > na, and there exists an mo € N such that
me > —nx. SO0 —mg < nx < my for some integers mi, ms. Among the finitely many integers
k € Z such that —ms < k < mg, we take as |nx| the largest one such that it is also < na.

Let m := |nx| + 1. Then |nx| < nz < |nz| + 1, that is, m — 1 < nz <m. So

m _nxr+1l ny
r<— < <=
n n n

m
With r := — € Q, the proof is complete. (I
n

Lemma A.32. Let @ = [(an)nen] € R. Given any rational € > 0, there exists an N € N such that
foralln>N,a,+e>x>a, —¢.

Proof. Let a rational € > 0 be given. As (an)nen is a Cauchy sequence in Q, there exists an
N € N such that for all n,m > N, |an — an| < €/2,ie., =5 < a, —am, < 5. Fixann > N. For
allm>N,ap +e=ay, —am+am +€>—5 +am +e=an+3,ie,

(an +€) —am > 5 =:d>0.

Thus [(an + €,an, + €,an + €,-+ )] > [(@m)men] = ®. For all m > N, we also have

€

Ap —€=0Qp —am + @y — €< 5+ Ay — €= apy — 5,

ie., am— (an—€)>5>0. So T=[(am)men] > [(an — €, an —€,an —€,--+)]. O
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Lemma A.33. Let x = [(an)nen]. Suppose that there exist a, 3 € R and N € N such that for all
n>N,a<a, <B. Then a < x < 3.

Proof. By the density of Q in R, for each n € N; there exist a,,, 8, € Q such that
1 1
a——<a,<a,and 3< S, <B+ —.
n n

We claim that (ap)nen is a Cauchy sequence in Q. Indeed, for any n,m € N

1
a——<ap<a, and —a<—q, <-—-a+ —,
n m

which together give f% < ap — oy < % Given any rational € > 0, let N’ € N be such that

N’ > e 1. Then for n,m > N’,

1 1 1 1
so that |a, — am| < 1/N’ < €. So (an)nen is a Cauchy sequence in Q. A similar proof shows that
also (Bn)nen is a Cauchy sequence in Q.

We now show that ¢ = [(an)nen]- To do this we eliminate the other possibilities, namely
a < [(an)nen] or a > [(an)nen]. Let a = [(Gn)nen]-
1° Suppose @ < [(@n)nen]. Then there exists a rational d > 0 and an M € N such that for all
n> M, o, — &, > d. By Lemma A.32 with € = d/2, there exists an M’ € N such that for all
n>M &, +e=ad,+d/2>a. Thusforn>M+M' d< a,—a&, < an—a-l-% < O—i—% = g,
a contradiction.
2° Suppose a > [(ap)nen]. Then there exists a rational d > 0 and an M € N such that for all
n> M, &, — a, > d. By Lemma A.32 with € = d/4, there exists an M’ € N such that for all
n>M' &, — €= a&, —d/4 < a. Finally, there exists an M” € N such that M"” > 4/d. Then
for all n > M + M’ + M”, we have d < &), — a, < %+a—an<%+% <%+% = g,
contradiction.

a

Thus o = [(@n)nen]. In a similar manner, we also have 8 = [(55)nen].

Since for all n > N we have a,, — a,, > o« — «a,, > 0, and 8, — ap, = B, — 3 > 0, it follows from
Exercise A.26 that [(an, — an)nen] = 0 and [(By, — an)nen] = 0, that is, x —a > 0 and B8 —x > 0.
Rearranging, we obtain a« < « < 3. (I

Theorem A.34. Every nonempty subset of R, bounded above, has a supremum.
Proof. Let S < R be a nonempty subset, which is bounded above. Since S is nonempty, there

exists an element ag € S, and as S is bounded above, there exists an upper bound by € R, that is,
a<byforallaces.

S

T T
ap bO

We define aq, by as follows:

1° If 2ot ig an upper bound of S, then define a; := ag and by 1= 2tbo,

S

T I !
o b1 bo

=Iay

Then ag<ai, bg=0b1, a1 € S, by is an upper bound of S, 0 < by — a1 < b"g“".

2° If “‘)—;bo is not an upper bound of S, then there exists a b € S such that % < b, and taking
any such b, we define a1 := b and by = by.
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T I
an b bo

=:a =:b;
Then ag < a1, by = by, a1 € S, by is an upper bound of S, 0 < by — a1 < WT'JU.

Suppose for some n € N,

® ag,a1, - ,a,—1 €5 and

® by, by, ,by—1, upper bounds for S,
have been constructed such that

®ap < a1 < < Up-—1

eby=by = =b,_1, and

e 0<by—ap <5t kefl,- ,n—1}

Now we construct a new a, € S and a new upper bound b, of S.

o Gn_1+bn_1 an—1+bn_1
o If Gnsit .

is an upper bound of S, then a, := a,—1 and b, :=
bn_1 = by, an € S, by, is an upper bound of S, and

. Then a,_1 < ay,,

0 < bn —a, = bnflgan—l < bg—ag — bofa().

~ 2.271—1 on
2° If a"*ligb"*l is not an upper bound of S, then there exists a b € S such that %’12& < b, and
taking any such b, define a,, := band b,, = b,,_1. Then a,,_; = %r=ton1 < a"”l’;b"*l <b=anp,

bn—1 = by, an €S, by, is an upper bound of S, and

by _ bp_1—an_ —
Oébn—an=bn_1—b<bn_1— n—1+an 1_ bn-1—an 1<bg ag

2 2 2n

So we get sequences ag,ay,--- in S, and by, by, - -- of upper bounds of .S, such that
®ag < ap <,
e by>=b =, and
e 0<b,—a, < b“;‘lo,neN.

2

If for some n > 0, a,, = b, then we claim that uy := b, is the supremum of S. Indeed, firstly,
Uy = b, is an upper bound of S by construction. Moreover, for any v < us = b,, u cannot be an
upper bound of S (because u < uy = b, = a, € S).

So we now have to consider the case that for all n > 0, a, < b,. By the density of Q in R
(Lemma A.31), for each n € N| there exists an 7, € Q such that a, < r, < b,. We claim that
(rn)nen 1s a Cauchy sequence in Q. To see this, let € > 0 be a given rational number. By the
‘baby’ Archimedean principle (Lemma A.30), there exists an N € N such that N > %2=% and so

€

bo —ag _ by —ao
2N s N
(thanks to the inequality n < 2" for n € N: Indeed, we have 1 < 2!, and if n < 2", then
n+l<2t+1 < 27427 = 2.2" = 2"*H) Now if n > m > N, then a,, < 7 < b, @ < 7y < by,
Gpn = G, Which together give

T — Tn < bm —Thn <bm — an < by — am.

As b,, < by, we have
T — Tn > Qm — Tn > A, — b = A, — by
Hence
bo — ap bo — ag bo — ag
< <
2m 2N N
So (7 )nen is a Cauchy sequence in Q, and uy := [(rn)nen] € R.

[P — Pn| < b — am <

< €.
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We will now show that u, is the supremum of S. First, for every fixed m, we have for all
n = m that a,, <a, <r, <b, < by, and so by Lemma A.33,

A < Uy < by (*)

Now suppose that uy is not an upper bound of S. Then there exists an a € S such that a > wu,.
By the density of Q in R, there exists an r € Q such that

0<r<a-—us. (x%)
By the ‘baby’ Archimedean Principle, there exists an m € N such that m > I"’_T“". So

bo —ag _ by — ag
< <r

Hence using () and (x%),
by < @ +1 <ug +7r <a,
a contradiction to the fact that b,, is an upper bound of S.

Next, suppose that u < uy. Let r € Q be such that 0 < r < uy — u. In the same manner as
above, there exists an m € N such that 0 < b,,, — a,,, < r. Then

(*)
Am > by — 1 = Uyp — T > u,

showing u is not an upper bound of S. So uy is the least upper bound of S. O
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partial derivative, 72
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