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Let Ag(D) denote the set of functions belonging to the disc algebringaeal Fourier coefficients. We show
that Ag (D) has Bass and topological stable ranks equal which settles the conjecture made by Brett Wick
in [18]. We also give a necessary and sufficient conditionréducibility in some real algebras of functions on
symmetric domains with holes, which is a generalizatiorhefrain theorem in [18]. A sufficient topological
condition on the symmetric open sbtis given for the corresponding real algebta(D) to have Bass stable
rank equal tal.
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1 Introduction

The notion of stable rank of a ring (which we call Bass stablek) was introduced by H. Bass [2] to facilitate
computations in algebraic K-theory. We recall the defimitid the Bass stable rank of a ring below.

Definition 1.1 Let.4 be a commutative ring with identity. Letn € N. An elementz = (a4, ...,a,) € A"
is calledunimodularif there exists = (b1, ...,b,) € A" such that

(b,a) := Zbkak =1.
k=1

We denote by/,, (A) the set of unimodular elements 4f*.

We say thats = (a1,...,a,) € U,(A) is reducible(in A), if there existhy,...,h,—1 € A such that
(a1 + hian, ..., an-1+ hn-1a,) € U,—1(A). TheBass stable rank aofl, denoted by bs#, is the least integer
n such that every € U,,+1(A) is reducible (and it is infinite if no such integerexists).

The Bass stable rank is a purely algebraic notion, but wheastygig commutative Banach algebras of func-
tions, analysis also plays a role. In [13], M. Rieffel inttmed the notion of topological stable rank, analogous to
the concept of Bass stable rank:

Definition 1.2 Let .4 denote a commutative unital Banach algebra. Dpelogical stable rank ofi, denoted
by tsr.A, is the minimum integer such thatU,,(A) is dense in4™ (and it is infinite if no such integer exists).

Jones, Marshall and Wolff [9] showed that the Bass stable sathe complex disc algebra(D) is equal tol,
and Rieffel [13] showed that its topological stable rankdsa to2. Recall that the complex disc algebddD)
is the Banach algebra of all complex-valued functions defimethe closed unit disb that are holomorphic in
the open unit dis® and continuous o, endowed with the supremum norihf||oc = sup, .5 | f(2)|-
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4 Rupp and Sasane: Stable rank and reducibility in real aégebr

In this article, we study the Bass/topological stable ramksl also consider reducibility of corona pairs, in
some real Banach algebras of “real symmetric” functions défne these below. Throughoutthis article, we use
z* to denote the complex conjugategfand we usé) to denote the closure of the getc C.

Definition 1.3 Thereal disc algebradenoted by (D), is the set of all functions of (D) having real Fourier
coefficients. Equivalently,

Ap(D) = {f € A(D) | ¥z € D, f(z) = (f(z"))"}.

The real disc algebrdg (D) is a real Banach algebra with the supremum ngprnf..
More generally, ifD is an open set irC, then by A(D) we mean the set of functions holomorphic/in
that are continuous and bounded Bn If D is real symmetriq(that is, 2 € D if and only if z* € D), then
we use the symbalir (D) to denote the set of functionsbelonging toA(D) that arereal symmetricthat is,
f(z) = (f(z")" ( € D). B
If D is a real symmetric open set, théi (D) denotes the set of complex-valued, bounded, continuous
functionsf defined onD, that satisfyf(z) = (f(z*))* (z € D).

Brett Wick conjectured [18] that the Bass stable ranklgf{D) is equal to2, and we prove this in Section 2,
by first showing that the topological stable rank4f(ID) is 2. In Section 4 we extend the main result of B. Wick
[18] to the case of subalgebras4f (D). We also completely characterize reducible elements isbabgAg (D)
of real symmetric functions on domains with holes (undedragsumptions) in Theorem 6.4. This generalizes
the main result in [18] from the case of the disc to more gdrdomains. Finally, in Theorem 6.6, we give a

sufficient topological condition on the open deffor Ag (D) to have Bass stable rank equallto

2 Bass and topological stable rank ofi (D)

In this section we prove that bgik (D) = tsr Ag (D) = 2.

We begin by making the observation that the polynomials vati coefficients are dense itk (D). Indeed,
given f € Ar(D), f has real Fourier coefficients, which are the same as the cieets in the Taylor expansion
of the analytic functionf about the poind in D. Sincef is continuous on the circle, and its negative Fourier
coefficients vanish, the Cesaro means of the Fourier skmiesare trigonometric polynomials with real coeffi-
cients which converge uniformly tf. The corresponding polynomials ingive the desired sequence converging
uniformly to f in Ar (D).

Theorem 2.1 The topological stable rank ofg (D) is 2.

Proof. First of all we note thdt; (Ag (D)) is not dense iMg (D). IndeedU; (Ar (D)) is the set of units in
Ag(D), andf is invertible as an element ir (D) only if it has no zero iD. But the uniform limit of a sequence
of functions from the disc algebra which are never zeriis either identically zero or has no zeroslin see
[1, Theorem 2, p. 178]. So taking any function with finitelymyazeros inD, sayz, we have a contradiction. So
tsr Ag(D) > 1.

Next we show that/>(Ag (D)) is dense indg (D)2. Take(f, g) € Ar(D)? and approximat¢, g by polyno-
mialsp, ¢, respectively, having real coefficients. Since R[z], we have the following product representation
for p:

p(z) =CIJG—r) [IG* + 552 + 1),

whereC, r;, s;,t; are real numbers. }f andq have a common root iB, then we replace;, s;, t; by r; +e, s; +

e, t; + e with a sufficiently small reat so that the new polynomial has no common root with in D, and so

(p,q) € Us(Ag(D)) is near(f, g). Consequently tsir (D) < 2. O
We recall the following result [4, Theorem 3, p. 293]:

Proposition 2.2 Let.4 be a commutative unital real (or complex) Banach algebrd/,If.A) is a dense subset
of A", thenbsrA < n.

Theorem 2.3 The Bass stable rank ofg (D) is 2.
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Proof. First we show that bstg(D) > 1. Considera := (z,1 — 2%) € Ar(D)2. The element is
unimodular, since withh := (2, 1) € Ag(D)?, we have(b, a) = 1. Howevera is not reducible. Indeed, otherwise
there exists an elemehtc Ag (D) such that withf(z) := z + h(2)(1 — 22), z € D, f is an invertible element
of Ag(D). However,f(—1) = —1 andf(1) = 1, and so by the intermediate value theoréfm) = 0 for some
¢ € (—1,1), contradicting the invertibility off.

From Theorem 2.1 it follows thdt,(Ar (D)) is dense indg (D)2, and so by Proposition 2.2, we obtain that

bsr Ag(D) < 2. This completes the proof. O
Remark 2.4
1. Brett Wick conjectured in [18] that the Bass stable rankefD) is equal t2; the above result settles this
conjecture.

2. Bass and topological stable ranks 4f (D) play an important role ircontrol theoryin the problem of
stabilization of linear systems. We refer the reader to [@r2jl [17] for background on the connection
between stable rank and control theory.

3 Preliminaries

3.1 Reducibility in general real Banach algebras

We adapt the definition from [14, Definition 1.1] to the caseeafl Banach algebras as follows:

Definition 3.1 Let .4 be a real commutative Banach algebra with unit element @enoy 1. Suppose that
(f,g9) € A2and), u € R. The real numbers, 1 are callecequivalenif there exist elements, k& € A such that

f=X+hg=(f—p)exp(k).

Itis not hard to see that for fixed, ¢) this indeed gives an equivalence relation. We denote thieaguce class
of A by [A].

Theorem 3.2 If (f — p,g) € Ua(A), then[u] is open inR.

The proof is the same as that of [14, Proposition 1.2], but@thbers have to be real.

Theorem 3.3 Let (f,g) € Uz(.A) and suppose that for some positivéhe interval(—oo, €) belongs to the
real inversion set

Ir(f,g9) ={NeR|(f—Ag) € U2(A)}.

Then(f, g) is reducible inA.

The proof is similar to that of [14, Proposition 1.3]: Takeealrnumbet\/ such thatM > || f||. Then there
exists! € A such thatf — (—M) = exp(l). Then(f — (=M), g) € Uz(A) and, by assumption; M and0
belong to the same connected componenfdff, g). But then Theorem 3.2 implies that= —M and\ = 0
are equivalent. (Otherwise the open connected-seb, ¢) would split into disjoint open sets, namely certain
equivalence classes.) Thus there ekist € A such thatf + hg = (f — (—M)) exp(k) = exp(k + 1).

3.2 Some notation and terminology.

When we consider domains with holes in sections 5 and 6, fl@vimg notation will be convenient.

Notation 3.4 Let D denote a bounded symmetric domainGrwith n holes, having a boundary that is a
union of pairwise disjoint Jordan curves. The outer boupdarve is denoted by, ;. From these: holes,
bounded by pairwise disjoint Jordan cunies we haver holes intersectin@® and2m which do not intersect
R. Heren = r + 2m. For notational reasons the Jordan cur¥esbelonging to the upper half plane are
indexed byj; = r + 1,...,r + m, while the Jordan curves belonging to the lower half plareeiadexed by
j=r+m+1,...,r+2m. These curve$, ,,,; are the reflection of’, ;. LetC; be a hole ofD (j =
1,...,r,r+1,...,7+2m). Chooseforeach € {1,...,r} apointr; € RNC;,andforj € {r+1,...,r+m}
letz; € C;. Finally letS = {z1,..., 2%, 21, .., Zm, 21, - ., 21, }- See Figure 1. To ensure that the dom&in
is always to the left of the orientation, we assume that tdalocurved'y, ..., T, surrounding the holes are
negatively oriented, whereas the outer boundary clitvg is positively oriented.
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6 Rupp and Sasane: Stable rank and reducibility in real aégebr

Fig. 1 The domainD with n = r + 2m holes.

Definition 3.5 If D denotes an open subset®fthen we say theorona theorenholds forA (C Ag(D)) if
the following is true for all € N:

(f1,.-+, fa) € Un(A) if and only if there exist$ > 0 such thafy "7, [f;(2)] > 0 (z € D), that is, if and
only if the functionsf, . . ., f, have no common zero iB.

Definition 3.6 For functionsy € Ar (D) thezero setZ, of g is
Zy={2€D|g(z) =0},
and forgd > 0 thelevel setZ(9) is
2(8) == {z € D| |g(=)| < 6}.

Of course the inclusio, C Z(d) holds.
Following B. Wick [18], we will use the following terminolog

Definition 3.7 Let f, g € Agr(D). The functionf is said to bepositive on real zeros of (abbreviated ag is
POZ ofg), if f has the same sign at all real zerogjof

For example, considélf, g) := (2,1 — 22) € Agr(D)2. Thenf is not POZ ofg.

3.3 Technical lemmata.
In this subsection, we will prove two technical lemmata vhidgll be used in the sequel. The first one is well-
known among the workers in the field. For the sake of compésteve include a proof.

Lemma 3.8 For every functiony € Ag(D), the complement \ Z(5) of the level setZ(§) is connected.
Moreover, the complemeft)\ Z, of the zero sef,, is also connected.

Proof. For constant functionsthe assertions are trivially true. So we may assumedhainon constant.
By the very definitionlC \ D C C \ Z(§), and so ifC \ Z(J) is not connected, there exists a bounded component
G c D. Being in the complement of the level set, we must higye)| > § for all z € G C D. On the other
hand,|g(z)| < d forall z € G C D, becaus®G C I(C\ Z(8)) = 0Z(5) C Z(6). This gives|g(z)| = ¢ for
all z € 9G by the maximum modulus theorem, implyingz)| < ¢ for all z € G, a contradiction. Hence no
such bounded component of the complemer# ¢f) can exist. ThaC \ Z,, is connected follows from

C\ Z, = J(C\ 2(5))

6>0

and the fact thaff);. ,(C \ Z(9)) # 0 (indeedC \ D c C\ Z(6) for everys > 0). O
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In order to facilitate handling zero sets, we prove the feifgy result, in which we enclose the zero set by
finitely many closed sets.

Lemma 3.9 Letg € Ar(D) be such that it has at least one zerdlnbut it does not vanish identically. Then
for all 6 > 0, there exist finitely many closed séfs, ..., Hy C D, lying symmetrically with respect to the real
axis, that is,H; = H; for certainy, k, with the following properties:

1. Z, C UN. H; C Z(6).
2. H;y N Hy, =0 (j # k).

3. 1° If no real zero ofg belongs toH;, thenH; N R = (), H; belongs entirely to the upper (respectively
lower) half plane, and?; = H; for somej # k.

2° If at least one real zeray of g belongs toH; (thatis,zo € Z, N H; NR), thenH; = H; holds and
H, is connected.

Proof. The zero sef, is compact, hence finitely many componehts, j = 1,..., M, of the relatively
opensetd := {z € D | |g(z)| < §} will suffice to coverZ,. Note that these components are open becalise
is locally connected. SincH is symmetric with respect to the real axis, its componergsgmmetric as well.
Unfortunately, the closurek; need not be disjoint. However, we may take the closed coadexmponents of
ijzl K; at most there aré/ such components. These components are symmetric as well.

To ensure all the three assertions hold, we must eventuatigate the closed sefs;:

1° If no real zero ofg is in K, then|g(z)| > p; > 0 forall z € (K; NR) x (|Im(z)| < §;). Hence no zero
of g belongstaz € (K; NR) x (|Im(z)| < §;). We truncate as followst; := K; N (|lm(z)| > §;). The
closed sefs; splits in two closed sets belonging entirely to the uppes{eetively lower) half plane.

2° If atleast one real zero gfbelongs tak ;, then we don’t truncate, that i; := K;. By symmetry we have

H; = H;, andH; = K is connected, becaugg; is.

By construction all the zeros gfbelong to exactly one closed sét,j =1,..., N. O

4 Reducibility in real symmetric algebras on the disc

In this section we generalize the main result of B. Wick [I8$tibalgebrast of Ag(D).

In real algebrast C Ar (D) where the corona theorem holds, the real inversion set frioaofiem 3.3 is given
by

Ie(f,9) =R\ f(Z).

That the corona theorem holds fdg (D) follows easily from the corona theorem for the complex atget(D)

by symmetrization of the solution. We refer the reader td b0 a constructive proof (not using any Gelfand
theory nor Banach algebra theory) of the corona theoreneitain subalgebras of(D) and certain domain®
(including, of courseD).

Theorem 4.1(Units) Let A denote one of the algebras: (D), Cr (D) respectively. For any unit € A~!
eitheru or —u can be expressed as

u = exp(h),
whereh € A.

Proof. First of all we prove the theorem in cade= Cg (D). Choose a closed dig¢ > D, small enough
so that a continuous extensiomofo U has no zeros iV. Using a theorem of Borsuk [3, Corollary 4.33], there
exists a continuous logarithmon U © D. However, this functiorh need not be symmetric. Because the wnit
is symmetric we derive

u() = exp(h(2)) = exp((h(s"))"), = €D.
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8 Rupp and Sasane: Stable rank and reducibility in real aégebr

Becausé is connected andl is continuous i), there exists an integérsuch that
h(z) = (h(z"))* + 2kmi.

Restricting to the intervdh1, 1] gives Imh(x) = k. Sinceu is a unit,u(z) is either a positive or negative real
number wherx € [—1,1].

1° If u(xz) > 0, then we havei(z) = exph(xz) > 0, thatis, the integek is even. But therh — ki is a
symmetric continuous logarithm af

2° If u(x) < 0, then we just look at the unitu.

Hence there exists € Cr(D) such that: = exp(h).
The remaining casé = Ag (D) now follows from the first case and the implicit function thexm as follows:
By the holomorphic inverse function theorem appliec:te~ exp(z), we see that it has a local holomorphic

inverse around each poigg, sayg.,. Thusz — h(z) = g.,(u(z)) is holomorphic neat, as well. O

Theorem 4.2 Let A denote a subalgebra ol (D) containing all real polynomials such that the corona
theorem holds ford. The following are equivalent for any unimodular péff, g) € Usz(A):

1. There exists a continuous and zero free extensiaf f from the zero se, to F € Cr(D)~!.
2. (f, g) is reducible inA, that is, there exists a unit € .A~! and there exists & € A such thatf + hg = u.

Proof. The implication (2»(1) is obvious: indeed if there exi#t € A and a unitu € 4—1 such that
[ + hg = u, thenu serves as the desired zero free extensiofifobm the zero sef, tou € Cr (D).

(1)=(2): Using Theorem 4.1 for units i (D), we write eitherF or —F as
F = exp(K),
whereK € Cg(D). For eitherf or — f this gives

f(z) = exp(K(2)) (2 € Z),

and sof (respectively- f) is in fact an exponential on the zero s&t

If ¢ is the zero function thefi must be invertible in4, because the pafif, 0) was assumed to be unimodular.
So(f,0) is reducible in4, and the unit. is just the functionf. Hence we may assume thais not the zero
function, and so the interior of the zero sgfis empty by the identity theorem. By Lemma 3.8 the complement
C\ Z, of the zero set is connected. Using Mergelyan’s theorenetéxist polynomials,, converging uniformly
on Z, to K. BecauseX is symmetric, we can also approximate by the symmetrizaifap,, that is, the real
polynomialsg,, given by

gn(2) + (gn (7))
2

Gn(2) ==
converge uniformly tadX too. Pick a real polynomiajl such that
Re(f(z) exp(—q(2))) > 1/2 (2 € Z,).

Using the corona theorem, all paitbexp(—¢) — A, g) are unimodular foA € (—oo, 1/2). For the real inversion
set from Theorem 3.3 this gives the inclusion

Ir(fexp(—q),9) = R\ (f exp(—q))(Zy) D (—o0,1/2).

Again Theorem 3.3 shows théf exp(—q), ) is reducible inAg (D), hence(f, g), that is, there exists a unit
U € Ag(D)~! andH € Ag(D) such that

f+Hg="U.
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U being a unit, we must have
U(z)| >8>0 (zeD).
Now the real polynomials are densedr (D). Take real polynomialsé € A nearH such that
U(2) = (H(z) = M(2))g(2)] > 6/2>0 (2 €D).
We conclude that
f+hg=U—(H—-h)g
belongs to the algebrd and has no zeros i and so it is invertible, proving the reducibility ¢f, g) in A. O

Theorem 4.3 Let A denote a subalgebra ol (D) containing all real polynomials such that the corona
theorem holds ford. The following assertions are equivalent for any unimodpkr (f, g) € A2:

1. (f,g) is reducible inA.
2. fis POZ ofg.
Proof. (1)=(2): Suppose thdltf, g) is reducible ind. Then there exist, u € A, v € A~! such that
f+h-g=u.
By Theorem 4.1 eithex or —u can be written as
u = exp(k),

for a functionk € Ag(DD). We arrive atf +h - g = exp(k), respectively the same equation withexp(k) instead
of exp(k). Hence the functiorf is POZ ofyg.

(2)=(1): Now assume that is POZ ofg. If g has no zero at all i, then we havéy(z)| > p > 0 forall z € D.
ButthenM := (1 + || f||..)/p gives

1F(2) + Mg(2)| > 1+ [ fllo = [[flloc = 1,

and sof + Mg is invertible in 4; hence the paiff, g) is reducible. We may also assume thas not the zero
function. Otherwisef itself is invertible and again the p&rf, g) would be reducible. So our assumption gs:
has at least one zerohbut is not identically zero. In order to use Theorem 4.2, wetrshow that there exists
a continuous, zero free extensiéiof f from the zero sef, to D.

Becausd f, g) is unimodular there exists > 0 such that f(z)| + |g(z)| > ¢ for all z € D. By Lemma 3.9
(with §/2 instead off), there exist finitely many pairwise disjoint closed sits . .., Hy C D lying symmetri-
cally with respect to the real axis, such that; C Ujvlej and|g(z)| < 6/2 holds there. Henckf(z)| > 6/2
in the union of this sets. Moreover, we have a continuousrltdga of f on Z(4/2): To prove this we quote
a theorem of Borsuk, see [3, Corollary 4.33]: Every contimjazero-free function o¥(d) has a continuous
logarithm onZ () if and only if C \ Z(4) is connected. This is the case by Lemma 3.8. In particulargtbxist
functionsl;, continuous in the closed sets; C Z(6), such that

f(z) =exp(l(2)), zeH;, j=1,...,N.

By assertion (3) of Lemma 3.9, if no real zero@belongs toH; thenH; N R = (. Moreover,H; belongs
entirely to the upper (respectively lower) half plane. Tlesiced logarithm is very easy to obtain for these sets,
because they don't intersect the real line. By symmetry we It = H; for somej # k. So we may redefine
i(2) = (ls(2%)".

Thus only the case of a real zetg of g belonging toH; remains to be discussed. In this c#sgis connected.
Since f is POZ ofg, we may assume thgt(zy) > 0 holds for all real zeros of. Becausef is real symmetric
we derive

f(2) = exp(l(2)) = exp((l(27))") (2 € Hj = Hj).
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10 Rupp and Sasane: Stable rank and reducibility in real aégebr

SinceH; is connected and is continuous ind;, there exists an integérsuch that
Li(z) = (;(z"))" + 2kmi.

Restricting to the real zerey € H; NR of g gives Iml;(zo) = kn. As f(zo) = exp(l;(zo)) > 0, the integerk
must be even. Now; — ki is the desired symmetric logarithm gfon H; = H.
By Tietze’s Theorem we can find a continuous functi@m D such that

l(z)=1;(2) z€H;, j=1,...,N.

The desired logarithm is now given by symmetrizatioiin

2
Recall that we either havie(z) = (Ix(z*))* for H; = Hj;, j # k, or elsel;(z) = (1;(z*))" andH; = H;. We
end up withF" = exp(L), where we havexp(L(z)) = f(z) (z € Zy). O

5 Unitsin Ag(D) and Cg(D)

We recall the notation of the winding numbe(T’; =) from [3, Definition 4.2]:
LetT" denote a closed loop given by a continuous parametrizatien((t) (a < ¢t < b), andz denote a point
outsidel’. Then there exists a continuous logarithrof ((¢) — z, thatis

C(t) — = = exp(h(t)), a<t<b.
The winding number(T'; 2) is defined to be

ity = MO MO _ 00— ole)

where¢ denotes the imaginary part of the logarittunFrom this definition the following facts are easily seen:

(F1) Letf, g denote zero free continuous functions near the closedllodphen we can form the closed loops

f(@), g(@), (f - 9)(T') by their parametrizations({(t)), g(¢(t)), (f - g)(¢(t)), respectively. Sincg andg
never vanish o', we conclude

n((f - 9)(I);0) = n(f(T');0) + n(g(I); 0).
Also n(exp(f)(T);0) = 0.
(F2) The curved’,,,; are the reflection ol ; with reversedrientation, and so
n(f(FrerJrj); 0) = n(f(FrJrj); 0)
holds for all continuous symmetric functions, zero freerriga, ;.

Theorem 5.1(Product theorem for units).et the notations be as in Notation 3.4. Létdenote one of the
algebrasAg (D), Cr(D). For any unitu € A~! there exist integers,, ..., n,, ny11,...,n+m and a function
h € A such that the following structure theorem holds: Eitheasr —u can be factored as

u=p-exp(h),

wherep € A~1, h € A and the unitp is given by

T m

p(e) =[] =) T] 2 = 2(Relz)z + |52+,

Jj=1 Jj=1
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Proof. Choose a small compact neighborh6od D, so small that a continuous extensionuofo U has
no zeros inJ. Each hole o/ belongs to exactly one hole @f. The factorization fow in U follows then from
[3, Theorem 4.59]. To be precise:

uw=p-exp(h),

wherep € A~1, his analytic inU > D, and the unip is given by

T

p(z) =[Gz =)™

Jj=1 J

(2 —z5)"+a

1 J

—
—

(2 = zf)"remts.

1

With these products and the facts above we can compute gggeirsh, (kK = 1,...,r + 2m):

n(u(lx); 0) = Z i n(@riz)+ > neg 0Tk 2)+ Y g -n(Te; 25) +n(exp(h) (Tr); 0),

J=1 J=1

thatis,n(u(I'x); 0) = ng (k = 1,...,7+2m). Recall that the curves, . ,,, . ; are the reflection df, ;. Observe
that reflection hageversedrientation. Using the fact F2 and the symmetric choice ofpmints, we derive

Nrtmtj = (W 4m15);0) = n(u(lry;);0) =npgy (G =1,...,m).
We conclude that

(2= 25)""" (2= )" = (27 = 2-Relzy) 2+ [ (G=1,...,m).

This proves the product representation. We now show thdbtiegithm#h can be chosen to be symmetric. Using
the symmetry of the functionsandp, we conclude that

exp(h(z")") = exp(h(z))

holds in the connected sBt Thus there is an integérsuch that(z) = (h(z*))" +2kmi. Hence Inth(z)) = kn
(x € RN D). Take a point;y € RN D, such thaty > max{x1,...,z,}. Thenp(xy) > 0, and we consider the
two cases:

1° If u(xg) > 0, then we havexp h(zo) = u(zo)/p(xo) > 0. Since In{h(xo)) = k= it follows thatk is even.
But thenh — ki is a symmetric logarithm o /p.

2° If u(zo) < 0, then we just look at the unitw.

6 Reducibility in algebras of real symmetric functions

In this section we generalize our technical lemmata to tise ofcertain finitely connected domains.

Lemma 6.1 Let D denote a domain as described in Notation 3.4. For every nastemt functiory € Ag (D),
the complement \ Z(J) of the level setZ(§) is connected for all sufficiently smail > 0. Moreover, the
complement \ Z, of the zero seZ,, is also connected.

Proof. We will first prove that the compleme@t\ Z, of the zero set is connected. dfis not identically
zero, then by [15, Theorem 3.1], the zero 8gtC D is totally disconnected, and so its covering dimension is
zero. Hence its open complemént, Z, is connected, see [8, Theorem IV.4].

Now we prove thaC \ Z(4) is connected. We connect each h6leby pairwise disjoint cross-cutg; C D,
j=1,...,n, connectind’; to T’ such thay(z) # 0 for all z € |J;_, Q;.(This can best be done mappihy
homeomorphically onto the closure of a circular domain,feee@xample [11]. Note that even in this situation,
the zero set remains totally disconnected.)
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12 Rupp and Sasane: Stable rank and reducibility in real aégebr

Assume thab is sufficiently small, that i$ < dy/2, where

0o := min{|g(z)|7 z € U Qj}
j=1

From Topology we know thab \ U?ZI(QJ- U C;) is a simply connected domain. The restriction to the chéice
gives

Z(5) CE\ U(QJ UCj).

If C\ Z(6) is not connected, then there exists a bounded comp@nentcontrast to the simply connected case
D, we may have two cases:

1° Gc Dor

2° GN(C\ D) # 0, that is, there existg € G belonging to a hole, sa§: soz, € C. But then the hol€ is
contained inG. Using our cross-cuts we can find a patl€iRZ (6) connecting” to the outer boundary,, 1
of D and beyond. So the starting point of this path belongs, twhereas the endpoint does not. Hence there
exists a boundary point € 9G belonging td J_, Q; C D. SincedG C 9(C\ Z(8)) = 0Z(3) C Z(9)
we must havég(w)| < 6, contradicting the choice @f < % = 2 min{|g(z)|, z € Uj=1 @5}

Thus only the first cas€ C D remains to be dealt with. But this is done exactly as in th@pod Lemma 3.8.
Hence no such bounded component of the complemeht&f can exist. O

Lemma 6.2 Let D denote a domain as described in Notation 3.4 angjlet Az (D) be such that it has at
least one zero irD, but it does not vanish identically. Then for &ll> 0, there exist finitely many closed sets
Hi,...,Hy C D, lying symmetrically with respect to the real axis, thatfig, = H;: for certainj, k, with the
following properties:

1. Zy c UYL H; € Z(9).
2. HiNHy =0 (j # k).

3. 1° If no real zero ofg belongs toH;, thenH; N R = (), H; belongs entirely to the upper (respectively
lower) half plane, and?; = H; for somej # k.
2° If at least one real zeray of g belongs toH; (thatis,zo € Z, N H; N R), thenH; = H; holds and
H; is connected.

Proof. The proof proceeds exactly as in the proof of LemmalS@e that the components of the level set
H are open becausé := {z € D | |g(z)| < &} are locally connected by the Jordan curve theorem. We just
replace the use of Lemma 3.8 by Lemma 6.1. O

Theorem 6.3 Let the notations be as in 3.4 above. l&tenote a subalgebra ofg (D) containing all real
polynomials such that the corona theorem holdsAor_et (£, g) € A% be a unimodular pair. Then the following
assertions are equivalent:

1. There exists a continuous and zero free extensiaf f from the zero se¥, to F' € Cr(D)~!.
2. (f, g) is reducible inA, that is, there exists a unit € A~* andh € A such thatf + hg = u.

Proof. The implication (23(1) is obvious: indeed if there exi#t € A and a unitu € ,i—l such that
[ + hg = u, thenu serves as the desired zero free extensiofifobm the zero se, tou € Cr(D)~!.

(1)=(2): Using the factorization theorem 5.1 for units(ifa (D), we can factor eitheF or —F as
= p- exp(K),
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wherep € A~! (becaused contains all polynomials and the corona theorem holds)ine Cr (D). For either
f or —f this gives

f(2)
p(2)

=exp(K(2)) (z€ Zy),

and so the fraction is in fact an exponential on the zerd’gel he rest of the proof is now entirely analogous to
the corresponding case in the proof of Theorem 4.2. O

Recall the Notation 3.4: Leb denote a symmetric domain & with n holes. From these holes, bounded
by pairwise disjoint Jordan curves, we havéoles intersectind® and 2m which do not intersecR. Here
n=r+42m.

LetC;beaholeoD (j =1,...,7,r+1,...,r+2m). Choose foreach € {1,...,r} apointz; € RNCj,
andforj € {r+1,---r+m}letz; € Cj.

Finally let S = {x1,...,2r,21,...,2m,2},...,25}. See Figure 1. For such domains we associate the
following family of 2" polynomials:

P={pe) = [T ™

j=1

m; € {0, 1}}. (1)

As an example, consider an annulus with center at the orggid,let us choose; = 0. ThenP has only two
polynomials, namely; (z) := 1 andpz(z) := z.

In [18], Brett Wick showed that a unimodular péif, g) in Az (D)? is reducible inAg (D) if and only if f is
POZ ofg. We generalize this result from the casdbofo our domaind.

Theorem 6.4 As in Notation 3.4, leD denote a symmetric domain withholes, bounded by pairwise disjoint
Jordan curves, and 16 denote the associated family2fpolynomials (1). Le#d denote a subalgebra ofg (D)
containing all real polynomials such that the corona theoteolds forA. The following assertions are equivalent
for a unimodular pair(f, g) € A%

1. (f,g) is reducible inA.
2. For at least one polynomial € P the producip - f is POZ ofg.
Proof. (1)=(2): Suppose thatf, g) is reducible ind. Then there exist, u € A, u € A~! such that

f+h-g=u.

By the factorization theorem for units (Theorem 5.1)4n (D), there exists an invertible polynomi&l € A
such that eithet, or —u can be factored as

u= P -exp(k),

for a functionk € Ag (D). We arrive atf + h - g = P - exp(k), respectively the same equation wittP instead
of P. Hence the functio® - f is POZ ofg. But the sign ofP(x) depends only on the exponents mod2ilof its
linear factorst — x; . So we can find a polynomiale P such thap - f is POZ ofg.

(2)=(1): Now assume that for a polynomjak P the producp - f is POZ ofg. Sincep € A~!, itis enough to
show that the corona pa(pf g) is reducible, Wherq = f/p. The rest of the proof is ent|rely analogous to the
corresponding case in the proof of Theorem 4.3. O

Remark 6.5 The family P obviously depends on the choice of points in the associaes, hence so does
the second assertion in Theorem 6.4, whereas the questiedwdibility is independent of the particular choice
of S. This mystery can be cleared by Eilenberg’s theorem [3, &se4.36, p. 100]:

For any two points:, b belonging to the same hole &f there exists a continuous logarithog =7 which we
think of as extended continuously & Thus the product representation of the unit in the prooflfedrem 6.4
won’t change much as long as both points belong to the sange hol
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14 Rupp and Sasane: Stable rank and reducibility in real aégebr

The proof of Theorem 2.1 can be generalized to the real Baalaeibrasdg (D), whereD is as in Notation
3.4. By Mergelyan’s theorem, (real) rational functions demse in this Banach algebra, and so the proof alters
only slightly. So we conclude that the Bass stable rank asdglagebras is less than or eqRalHowever, our
domainsD contain an open intervak, b)) C R. Consider the unimodular paje — 2£2, (z — a)(z — b)). The
necessary condition thgtis POZ ofg is violated, and so this pair is not reducible, hence thelestednk of

Agr(D) is 2. Are there situations where the stable rank of the rgalahs is one? Obviously we must allow open
sets instead of domains, since there are no symmetric dersagh thaD NR = §.

Question: For which bounded symmetric open sé&sc C do we have bsAg(D) = 1?

If the stable rank ofiz (D) is 1, then the open sdb necessarily must fulfill the following requiremer2N R
is either empty or totally disconnected.
If DNR is not empty and not totally disconnected, then it contamsgen interva{a, b) C R. The unimodular

pair (z — %2, (z — a)(z — b)) is again not reducible by the intermediate value theorem.

Theorem 6.6 Let D C C be a bounded symmetric open set such fhat:= D N {Im(z) > 0} is a finitely
connected domain anB N R is either empty or a totally disconnected set of linear memgaro. Then the Bass

stable rank ofdr (D) is 1.

Proof. Using [5, Theorem 3.11], we see that the complex Baadgebrad (D+) has Bass stable rank one,
because by Mergelyan’s theorem the rational functions patles off D+ are dense iod (D). Again the corona
theorem holds imd(D) by Arens’s theorem, hence iz (D), see for example [6, Theorem 1.9, p. 31]. (ftg)
be a unimodular pair inlg (D). If D N R = (), we proceed as follows: the unimodular paft g) is reducible in
A(D), that s, there exist, h € A(D7), u invertible in A(D+) such thatf + hg = u . Now we reflectu, h to
the lower half plane. Sinc® N R = () this reflection is well-defined, henég, ¢) is reducible inAg (D).

So we may assume th&xN R is not empty and is a totally disconnected set of linear meszero.

1° f(x) #0forallz € DNR.

Take a peak-functiop in the upper half plane for the totally disconnected Bet R of linear measure
zero. The existence of such a peak function follows from Rsdheorem (see for instance [7, p. 81]) by
conformally mapping the unit disc onto the upper half plaiiéen the function; := 1 —p € A(DT)
vanishes at if and only if zo € D N R. The corona theorem fot(D+) and1° now implies that the pair
(f,q- g) is unimodular inA(D+), and so it is reducible ial(DT). Thus there exists € A(D+) such that

f + h - (gg) has no zeros iD+. We define the functiol € Ag(D) by reflection: H(z) := h(z)q(z) in
casez € Dt andH (z) := (h(z*)q(z*))* in casez € D \ D*. Sinceq vanishes identically o® N R this
reflection is well-defined. We conclude that- H - g has no zeros i and so it is invertible by the corona
theorem. Therefore the pdif, g) is reducible inAg (D).

2° f(z) = 0 for somexr € DNR.

We approximatef uniformly by real rational functiong,, on D, and again use Mergelyan’s theorem and
symmetry. SinceD N R is totally disconnected, we can perturb the finitely manyogesf f,, slightly
(respecting symmetry) such th#t has no zeros irD N R. Using 1° we see that the pairsf,,, g) are
reducible inAg (D), and sq(f, g) is reducible inAg (D), see for example [5, Lemma 3.7].

O
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