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Introduction

What is a Partial Differential Equation?

A Partial Differential Equation (PDE) is an equation involving known and unknown
functions of several real variables and their partial derivatives.

So a PDE is analogous to an ODE (Ordinary differential equation, which is an
equation involving known and unknown functions of one variable t, usually thought of
as time), except that now we have functions of several variables (say, t, x1, ¨ ¨ ¨ , xn).
Exercise 0.1 (ODE background). In our study of PDEs, we will need the knowledge of solutions
to the following two ODEs, and the aim of this exercise is to quickly recall this.

(1) (First order linear ODE). Let a : R Ñ R be a continuous function. Show that the initial
value problem "

x1ptq “ aptqxptq, t P R,

xptiq “ xi P R.

has a unique solution, given by xptq “ exp
´ ż t

ti

apτqdτ
¯

¨ xi, t P R.

(2) (Second order linear ODE). Let λ P R. The aim of this exercise is to show that the
equation

x2ptq ` λxptq “ 0, xp0q “ A and x1p0q “ B (0.1)

has the unique solution given by

xptq “

$
’’’’&
’’’’%

A cospktq ` B

k
sinpktq if λ “ k2, k ą 0

A `Bt if λ “ 0

A coshpktq ` B

k
sinhpktq if λ “ ´k2, k ą 0.

To see this, first verify that the x given by the formula above is a solution.
One can show that if A,B are zero, then 0 is the only solution, as follows. First

note that by virtue of the equation x2 ` λx “ 0, it is clear that x is infinitely many
times differentiable. Moreover, xp2nq “ p´1qnλnx and xp2n´1q “ p´1qn´1λnx. Since

1



2 Introduction

xp0q “ x1p0q “ 0, it follows that xpkqp0q “ 0 for all k. Using a Taylor polynomial of
degree 2n´ 1, Taylor’s Formula gives the existence of a θ P p0, 1q such that

xptq “ xp2nqpθtq
p2nq! t2n.

Now suppose we choose any c ą 0, and let M ą 0 be such that |xptq| ď M on r´c, cs.
Then |xp2nqptq| ď |λ|nM on r´c, cs. Thus

0 ď |xptq| ď |λ|nM
p2nq! c

2n “ M ¨ p
a

|λ|cq2n
p2nq!

nÑ8ÝÑ M ¨ 0 “ 0.

Thus x ” 0 on r´c, cs. But as c ą 0 was arbitrary, we conclude that x ” 0 on R.
The uniqueness to (0.1) now follows immediately by just considering the difference

of two possible solutions.

Here are a few examples of PDEs.

Example 0.1 (Transport Equation). Consider

Bu
Bt px, tq ` Bu

Bxpx, tq “ 0.

The function px, tq uÞÑ upx, tq is the unknown function. In the sequel, it will be conve-
nient to use the notation

ut :“ Bu
Bt ,

ux :“ Bu
Bx.

The transport equation can then be written simply as ut ` ux “ 0. ♦

In general, if w is a smooth enough function of the variables x1, x2, ¨ ¨ ¨ , xn (and possi-
bly several others), then it will be convenient to use the following notation:

wx1¨¨¨xn :“ Bnw
Bx1 ¨ ¨ ¨ Bxn

.

Example 0.2 (Mathematical physics). Most of the equations in Mathematical Physics
are PDEs. So PDEs describe our physical universe! For example in (nonrelativistic)
quantum mechanics, the fundamental equation is the Schrödinger equation. For the
hydrogen atom, this equation is

´iℏΨt “ ℏ2

2m
pΨxx ` Ψyy ` Ψzzq ` e2a

x2 ` y2 ` z2
Ψ,

where

m is the mass of the electron,

e is the charge of the electron,

ℏ is h{2π, and h is Planck’s constant,

Ψ is the “wave function”.
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Note that this is a PDE. The quantity
¡

Ω

|Ψ|2dxdydz

gives the probability of finding the electron in the region Ω Ă R3 at time t. (This equa-
tion can be used for example to explain the energy levels of the electron in the hydrogen
atom. Variations of the equation explain the structure of all atoms and molecules, and
so all of Chemistry!)

As opposed to the above PDE example, with just one equation, one can also have
a system of PDEs where there are m ą 1 equations in ℓ ą 1 unknowns. A classical
example is the Maxwell equations1 of electromagnetism describing the evolution of the
electric field E and the magnetic field B.

...and there was light!
∇ ¨ E “ ρ

∇ ˆ E “ ´ BB
Bt

∇ ¨ B “ 0

∇ ˆB “ j ` BE
Bt

In Einstein’s theory of General Relativity, describing spacetime, the “spacetime metric”
is obtained as a solution to a PDE called the Einstein field equation. ♦

Exercise 0.2 (Schrödinger equation).

(1) (Probability is conserved). Consider the free one dimensional Schrödinger equation

iℏΨt “ ´ ℏ2

2m
Ψxx.

Show that for any C8 solution Ψ : R ˆ r0,8q Ñ C such that Ψp¨, tq has compact
support for all t,

ż 8

´8
|Ψpx, tq|2dx “

ż 8

´8
|Ψpx, 0q|2dx.

(2) The one dimensional Schrödinger equation is

iℏΨt “ ´ ℏ2

2m
Ψxx ` V pxq ¨ Ψ,

1See Exercise 0.3 for an explanation of the notation ∇ˆ and ∇¨.



4 Introduction

where V is the potential energy. One method to find solutions is to assume that
variables separate, that is, the solution has the form

Ψpx, tq “ XpxqT ptq.
Substituting this in the Schrödinger equation gives

iℏT 1ptq
T ptq “ ´ ℏ

2

2m
X2pxq ` V pxqXpxq

Xpxq .

As the left hand side depends only on t and the right hand side only on x, the only way
equality can occur is if both sides are equal to the same constant, say E (for “energy”).
So we obtain the equation following for T ,

T 1ptq “ ´iE
ℏ

T ptq,

which has the solution

T ptq “ C exp
´ ´iEt

ℏ

¯
“ C

ˆ
cos

´Et
ℏ

¯
´ i sin

´Et
ℏ

¯˙
.

The equation for X is

´ ℏ2

2m
X2pxq ` pV pxq ´ EqXpxq “ 0.

Consider a free particle of mass m confined to the interval 0 ă x ă π (so that V ” 0
in p0, πq), and suppose that Ψp0, tq “ Ψpπ, tq “ 0 for all t. (Imagine the particle to be
in an “infinite potential well”.) Show that this problem has a nontrivial solution if and
only if

E “ n2ℏ2

2m
, n “ 1, 2, 3, ¨ ¨ ¨ .

Sketch the probability density function |Ψ|2 when n “ 1, 2, and compute the probabil-
ity that the particle is in the interval r0, 1{4s in each case.

Exercise 0.3 (curl:=∇ˆ and div:=∇¨). The aim of this exercise is to introduce the fundamental
operators called curl and divergence from vector calculus. A vector field v : R3 Ñ R3 is just a
map which assigns to every point x P R3 a vector vpxq. For a vector field

v “ pv1, v2, v3q : R3 Ñ R3,

we define the curl of v, ∇ ˆ v : R3 Ñ R3, by

∇ ˆ v :“ det

»
–

i j k
B

Bx
B

By
B

Bz
v1 v2 v3

fi
fl :“

´Bv3
By ´ Bv2

Bz ,
Bv1
Bz ´ Bv3

Bx ,
Bv2
Bx ´ Bv1

By
¯
.

The divergence of v, ∇ ¨ v : R3 Ñ R, is defined by

∇ ¨ v :“
´ B

Bx,
B

By ,
B

Bz
¯

¨ pv1, v2, v3q “ Bv1
Bx ` Bv2

By ` Bv3
Bz .

Roughly speaking, the curl measures the amount of “curling” taking place in the vector field,
and points in a direction perpendicular to the plane in which the curling takes place—if the
fingers of our right hand curl in the plane in which curling of v takes place around a point, then
the thumb points in the direction of the curl ∇ ˆ v at that point. The divergence measures the
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amount of “spreading out” taking place (that is, the extent to which a vector field acts like a
source/sink at a point). To illustrate this, consider first the vector field

vpx, y, zq “ p´y, x, 0q.
Draw representative vectors of v in the xy-plane at the points

p1, 0, 0q, p1, 1, 0q, p0, 1, 0q, p´1, 1, 0q, p´1, 0, 0q, p´1,´1, 0q, p0,´1, 0q, p1,´1, 0q.
Calculate the curl and the divergence of v.

Next, consider the vector field

rpx, y, zq “ px, y, zq.
Draw representative vectors of r in the xy-plane at the points

p1, 0, 0q, p1, 1, 0q, p0, 1, 0q, p´1, 1, 0q, p´1, 0, 0q, p´1,´1, 0q, p0,´1, 0q, p1,´1, 0q.
Calculate the curl and the divergence of r.

Exercise 0.4. Suppose that f : R3 Ñ R is a twice continuously differentiable function. Show
that ∇ ˆ p∇fq “ 0.

Exercise 0.5. Suppose that v : R3 Ñ R3 is has twice continuously differentiable components.
Show that ∇ ¨ p∇ ˆ vq “ 0.

Exercise 0.6 (Finding potentials results in solutions to Maxwell’s equations). Let ϕ : R4 Ñ R

be any twice continuously differentiable function, and A : R4 Ñ R3 be any function with twice
continuously differentiable components. Set

E :“ ´∇ϕ ´ BA
Bt ,

B :“ ∇ ˆA.

(ϕ is then called a scalar potential, and A is called a vector potential for pE,Bq). Also, set

ρ :“ ∇ ¨E and j “ ∇ ˆB ´ BE
Bt .

Prove that these E,B, ρ, j satisfy Maxwell’s equations of electromagnetism.

Example 0.3 (Economics). In Economics, the economic agents optimize, and in prob-
lems involving continuous-time optimization, for example

$
’’’’’’’&
’’’’’’’%

minimize ϕpxptf qq `
ż tf

ti

F pt,xptq,uptqqdt

subject to x1ptq “ fpt,xptq,uptqq, t P rti, tf s,
xptiq “ xi P Rn,

uptq P U Ă Rm, t P rti, tf s,

a sufficient condition for solvability is the existence of a solution to the Bellman equation,
which is the following PDE:

BV
Bt px, tq ` min

uPU

´
∇xV px, tq ¨ fpt, x,uq ` F pt, x,uq

¯
“ 0, x P Rn, t P rti, tf s
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with the boundary condition

V px, tf q “ ϕpxq for all x P Rn.

The unknown in this equation is V : Rn ˆ rti, tf s Ñ R. ♦

Exercise 0.7 (Bellman’s equation for an LQ2 problem). Consider the optimal control problem
$
’’’&
’’’%

minimize

ż 1

0

´
pxptqq2 ` puptqq2

¯
dt

subject to x1ptq “ uptq, t P r0, 1s,
xp0q “ xi.

(1) Write down Bellman’s equation for this problem with the appropriate boundary condi-
tion.

(2) It can be justified3 that one expects the solution to be “separable”: V px, tq “ x2 ¨ pptq
for some function p : r0, 1s Ñ R. Assuming this form of V , show that the ordinary
differential equation that p must satisfy is

p1ptq “ ppptqq2 ´ 1, t P r0, 1s,
with pp1q “ 0. This is a well known ODE, called a Riccati equation, and it can be
shown to have the unique solution

pptq “ 1 ´ e2pt´1q

1 ` e2pt´1q , t P r0, 1s.

Thus V px, tq “ x2 ¨ 1 ´ e2pt´1q

1 ` e2pt´1q , x P R, t P r0, 1s.

(Finally, using this V one can find the u that solves the given optimization problem
following Bellman’s method, again something we won’t do here.)

Exercise 0.8 (Euler-Lagrange Equation in Calculus of Variations). Suppose that Ω Ă Rd is a
region, and that

L : Rd ˆ R ˆ Rd ÝÑ R

pX1, ¨ ¨ ¨ , Xd, U, V1, ¨ ¨ ¨ , Vdq ÞÝÑ LpX1, ¨ ¨ ¨ , Xd, U, V1, ¨ ¨ ¨ , Vdq
is a given C2 function (called the Lagrangian density). We are interested in finding u P C1pΩq
which minimize I : C1pΩq Ñ R given by

Ipuq “
ż

Ω

Lpx1, ¨ ¨ ¨ , xd, u, ux1
, ¨ ¨ ¨ , uxd

qdx1 ¨ ¨ ¨ dxd “
ż

Ω

L
`
x, upxq,∇upxq

˘
dx, u P C1pΩq.

In the subject of Calculus of Variations, using tools akin to ordinary Calculus, it can be shown
that a necessary condition for a minimizer u of I is that it satisfies the following PDE, called
the Euler-Lagrange equation:

BL
BU

`
x, upxq,∇upxq

˘
´

dÿ

i“1

B
Bxi

´ BL
BVi

`
x, upxq,∇upxq

˘¯
“ 0.

2LQ=Linear ODE, with a Quadratic cost
3See for example [S2].
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(This plays an important role in connection with the fundamental equations in the applied
sciences, for example in Physics. The Einstein field equation, and the basic equations of elec-
tromagnetism are both the Euler-Lagrange equation for some Lagrangian density.) Here, we
consider an example of deriving the Euler-Lagrange equation describing minimal area surfaces.

Consider a smooth surface in R3, representing the graph of a function px, yq ÞÑ upx, yq
defined on an open set Ω Ă R2. The area of the surface is given by

Ipuq “
ĳ

Ω

b
1 ` }∇u}2

2
dxdy, u P C2pΩq.

Show that if u is a minimizer, then u must satisfy the PDE given by

p1 ` u2xquyy ´ 2uxuyuxy ` p1 ` u2yquxx “ 0.

Verify that the following are solutions to this PDE: u “ Ax`By`C (plane) and u “ tan´1py{xq
(helicoid). In the case of the helicoid, show that the a parametric representation of the surface
is given by

xps, tq “ s ¨ cos t,
yps, tq “ s ¨ sin t,
zps, tq “ t,

by setting s “
a
x2 ` y2 and t “ tan´1py{xq. Use the command

with(plots): plot3d([s˚os(t), s˚sin(t), t℄, s=-3..3, t=-3..3)

to plot the surface (which is the minimimal area surface having a helix as its boundary).

Example 0.4 (Finance). In Finance, the Black-Scholes equation describes the price of the
European option over time:

BV
Bt ` 1

2
σ2S2 B2V

BS2
` rS

BV
BS ´ rV “ 0,

where

V (“ V pS, tq) is the price of the option,

S is the stock price,

t is the time,

r is the risk-free interest rate,

σ is the volatility of stock.

We will revisit this equation again, and obtain an explicit formula for V in terms of
given data, by recasting it (via a change of variables) into a diffusion equation (which
can be solved explicitly using the Fourier transform). We’ll see this in Chapter 4. ♦

Example 0.5 (Navier-Stokes). A celebrated equation modeling incompressible fluid flow
in hydrodynamics, which plays an important role in the design of airplanes, ships, flow
of ink in a printer, the study of blood flow in arteries, etc., is following PDE, called the
Navier-Stokes equation:

Bu
Bt ` pu ¨ ∇qu “ ´∇p

ρ
` ν∇2u.
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(Here ∇2 is the vector Laplacian, u is the velocity of the fluid, p is the pressure, ρ is
the fluid density, ν is the kinematic viscosity.) Showing the existence and smoothness
of solutions of the Navier-Stokes equation is a famous open problem in Mathematics,
and is one of the Millennium Prize problems stated by the Clay Mathematics Institute
in 2000—a correct solution to which results in a US $1,000,000 prize. ♦

Example 0.6 (Complex Analysis). In calculus, a function f : pa, bq Ñ R is said to be
differentiable at c P pa, bq with a derivative f 1pcq P R if

lim
xÑc

fpxq ´ fpcq
x´ c

“ f 1pcq.

Analogously, we can also define the complex derivative of a complex-valued function of
a complex variable as follows. If U Ă C is a open subset of C “ R2, and w P U , then
f : U Ñ C is said to be complex differentiable at w with complex derivative f 1pwq P C if

lim
zÑw

fpzq ´ fpwq
z ´ w

“ f 1pwq.

This seemingly innocent generalization of the derivative from the real to complex case
is anything but that! Indeed, the subject of complex analysis is radically different
from real analysis. This big difference stems from the geometric meaning of complex
multiplication in the plane. To illustrate the truly different nature of the two subjects,
here is a remarkable fact: If a function f : U Ñ C is complex differentiable once in U ,
then it is infinitely many times complex differentiable in U . Clearly the real analogue of
this statement is not true. There are functions that are real differentiable everywhere,
but for which the derivative function is differentiable nowhere! Nevertheless, there is a
deep link between complex analysis and real analysis via the path of PDEs! Indeed, one
has the following result:

Theorem 0.1. Let U Ă C be open and let w P U . Then f : U Ñ C is complex differentiable

at w if and only if u :“ Repfq and v :“ Impfq are real differentiable at w, and the
Cauchy-Riemann equations hold at w “ px0, y0q:

Bu
Bxpx0, y0q “ Bv

By px0, y0q,

Bu
By px0, y0q “ ´ Bv

Bx px0, y0q.

Moreover, then f 1pwq “ Bu
Bxpx0, y0q ` i

Bv
Bx px0, y0q. ♦

Exercise 0.9. In the following, x, y will be real numbers.

(1) Using Theorem 0.1, show that z “ x ` iy ÞÑ exppzq :“ expcos y ` i sin yq is complex
differentiable everywhere, and find its complex derivative.

(2) Using Theorem 0.1, show that z “ x ` iy ÞÑ z :“ x ´ iy is complex differentiable
nowhere.
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As seen in the examples above, a (scalar) PDE for an unknown function u of the inde-
pendent variables x1, ¨ ¨ ¨ , xn is

F px1, ¨ ¨ ¨ , xn, u, ux1
, ¨ ¨ ¨ , uxn , ux1x2

, ¨ ¨ ¨ q “ 0,

where F is a known function. This equation is often supplemented with Initial Con-
ditions and Boundary Conditions, as we will explain later. We will study only scalar
equations in this course.

Why study PDEs?

We study PDEs because the need arises in applications, as suggested by the examples
listed in the previous section. Traditionally, PDE models were common in Physics and
Engineering, but recently they have been used in all applied sciences such as Biology,
Chemistry, Economics and so on. This is understandable since in any area where there is
an interaction between a number of variables, and where rates of changes are involved,
one obtains PDE models.

What does “study” mean?

Our study of PDEs involves two interrelated aspects, qualitative and quantitative. Qual-
itative aspects concern deriving information about the solution to a given problem from
the structure of the PDE and associated boundary and initial conditions. For example,
we will learn later on that for a vibrating string with clamped ends, the total mechanical
energy, defined as the sum of the kinetic energy (energy of motion) and the potential
energy (energy from the string’s tension), is conserved. Hence from an energy perspec-
tive, the motion of the string is the exchange process between the kinetic and potential
forms of energy. Fundamental qualitative questions for PDEs are:

(1) Existence: Does the PDE have a solution?
Clearly, in a description of reality leading to a PDE model, the absence of a
solution would imply that we have an incorrect model.

(2) Uniqueness: Is the solution unique?
Again, in a realistic situation, we expect just one reality, and so if our PDE
model has multiple solutions, this indicates that we have modelled incorrectly.

(3) Stability: Is it the case that a small change in the equation/ side conditions
results in a small change in the solution?
In making any measurement, we incur experimental errors. Hence we may not
know the precise values of the coefficients in our PDEs or the precise boundary
and initial conditions. So the question of stability is a natural one: basically
we are asking if the solution doesn’t change too much if we perturb the data
slightly.

Collectively, if the answers to the above three questions are all “yes”, then we say that
the PDE is well-posed, otherwise it is called ill-posed. In this first course on PDEs, we
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will learn the basics of well-posedness considerations for simple equations, prototypical
of “big classes”.

For a well-posed PDE, a natural question is also that of devising numerical methods
to find an approximate solution. This is a part of the study of quantitative aspects of
PDEs concerned with constructing explicit solutions or numerical approximations of so-
lutions to PDEs. Almost always, determining exact solution formulas for PDEs involves
a reduction to a bunch of ODEs. Another important question is that of regularity of
solutions: that is, given regularity (such as smoothness) of the boundary or initial data,
then how is this reflected in the solution? For example, the homogeneous heat equation
always has smooth solutions, no matter how irregular the initial data, while the wave
equation propagates the singular behaviour of the initial data.

Let us clarify what we mean by a solution to a PDE.

Function spaces, operators, solutions

If k P N and D Ă Rn, then we say that u P CkpDq if u : D Ñ R is k times continuously
differentiable on D. In other words, the partial derivatives

Bk
Bxi1 ¨ ¨ ¨ Bxik

exist in D for all 1 ď i1, ¨ ¨ ¨ , ik ď n, and they are continuous on D. We take C0pDq
to be the set of real valued continuous functions on D. Sometimes we simply write
“u P Ck” instead of “u P CkpDq”.

A function u P Ck that satisfies a PDE of order k is called a classical or strong
solution of the PDE.

However, in the modern theory of PDEs, we will often deal with solutions that are
not classical, and will be referred to as weak solutions. These will satisfy the PDE too,
albeit in a “generalized sense”. We will see some examples of such solutions, and what
they mean, later on in Chapter 5.

Exercise 0.10 (Transport equation). Show that if f P C1pRq, then px, tq ÞÑ fpx ´ vtq satisfies
ut ` vux “ 0.

Exercise 0.11. Show that each of the following equations has a solution having the form
upx, yq “ eαx`βy, with real α, β. Find constants α, β in each case.

(1) ux ` 3uy ` u “ 0.

(2) uxx ` uyy “ 5ex´2y.

(3) uxxxx ` uyyyy ` 2uxxyy “ 0.

Exercise 0.12 (An ill-posed problem). Show that the system

ux “ ax2y ` y,

uy “ x3 ` x

with the condition up0, 0q “ 0 has a unique solution when a “ 3, but no solution when a ‰ 3.
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Order of a PDE

The order of a PDE is the order of the highest derivative that appears in the equation.

Example 0.7.

The Black-Scholes equation has order 2 (or “is a second order PDE”).

The transport equation ux ` ut “ 1 has order 1 / is a first order PDE.

The diffusion equation ut´uxx “ 0, the wave equation utt´c2uxx “ 0 and the Laplace
equation uxx ` uyy “ 0 are second order PDEs.

ut ` uxxxx “ 0 is a fourth order PDE.

puttq2 ´ puxxq2 “ sinpxyq is a second order PDE. ♦

Linear versus nonlinear

Mappings between various function spaces are called operators, typically denoted by L.
The result of acting L on a function u is the function Lu. While studying PDEs, we will
meet operators involving partial derivatives and will be called differential operators. For
example,

u
L1ÞÝÑ x2

1
ux1

` ¨ ¨ ¨ ` x2nuxn : Ck ÝÑ Ck´1,

u
L2ÞÝÑ ux1

¨ ¨ ¨ uxn : Ck ÝÑ Ck´1,

are both differential operators.

A differential operator L satisfying

(L1) Lpu1 ` u2q “ Lpu1q ` Lpu2q and

(L2) Lpα ¨ uq “ αLpuq
for all functions u1, u2, u in the domain of L and all scalars α will be called linear. On
the other hand, if (L1) or (L2) doesn’t always hold for some L, then such a differential
operator L is called nonlinear. In the example above, L1 is linear, but L2 isn’t. In
general, it can be seen that a differential operator L of the form

Lu :“ P px, Bq :“
ÿ

0ďk1,¨¨¨ ,knďN

ck1,¨¨¨ ,knpx1, ¨ ¨ ¨ , xnq Bk1`¨¨¨`kn

Bxk1
1

¨ ¨ ¨ Bxknn
u

is linear. If L is a linear differential operator, then the equation

Lu “ f

is called a linear PDE. Moreover, if all the coefficient functions ck1,¨¨¨ ,knpx1, ¨ ¨ ¨ , xnq are
constants, then we call Lu “ f a constant coefficient linear PDE.

Example 0.8.

The Black-Scholes equation is linear, but not constant coefficient. The diffusion equation
ut ´ uxx “ 0 is linear and constant coefficient. x9ux ` exyuy ` psinpx2 ` y2qq2u “ x3

is linear, but not constant coefficient.
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u2x ` u2y “ 1 is nonlinear. uxx ` uyy “ u3 is nonlinear. ♦

Homogeneous versus nonhomogeneous

If L is a linear differential operator, then the PDE

Lu “ 0

is called homogeneous, while the equation

Lu “ f

with a nonzero f is called inhomogeneous (or sometimes nonhomogeneous).

Example 0.9. The Laplace equation uxx ` uyy “ 0 is homogeneous.

The equation uxx ` uyy “ f with a nonzero f is called Poisson’s equation. For
example, in electrostatics, one meets the Poisson’s equation

uxx ` uyy “ ´ρ,
where ρ is the charge density. ♦

In the context of linear PDEs, one has the following easy, but fundamental result.

Theorem 0.2 (Superposition Principle). Let L be a linear differential operator on a region
Ω of the independent variables. Then the following hold on Ω:

(1) A linear combination of solutions of the homogeonous PDE Lu “ 0 is again a

solution to Lu “ 0.

(2) Let f be a function on Ω, and let up satisfy Lup “ f . Then every solution u of
Lu “ f has a decomposition

u “ up ` uh,

where uh satisfies Luh “ 0. pIn other words, every solution to Lu “ f is the sum

of the particular solution up and a solution uh of the homogeneous equation.q

Proof.

(1) If Lu1 “ 0 and Lu2 “ 0, then for any scalars c1, c2, it follows, using the linearity of
L that

Lpc1 ¨ u1 ` c2 ¨ u2q “ c1 ¨ Lpu1q ` c2 ¨ Lpu2q “ c1 ¨ 0 ` c2 ¨ 0 “ 0.

Hence c1 ¨ u1 ` c2 ¨ u2 is also a solution.

(2) Let u satisfy Lu “ f . Define uh :“ u ´ up. Then

Luh “ Lpu´ upq “ Lu´ Lup “ f ´ f “ 0,

and so uh satisfies the homogeneous equation Luh “ 0. �
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Exercise 0.13. Classify the given PDEs by filling the table:

Order
Linear/
nonlinear

Constant/
nonconstant
coefficient

Homogeneous/
inhomogeneous

(1) ut “ uxx ` 2ux ` u

(2) ut “ xuxx ` e´t

(3) uxx ` 3uxy ` uyy “ sinx

(4) utt “ uuxxxx.

The classical trinity

In this book, we will focus our attention on three important linear, second order PDEs:
the diffusion equation, the wave equation and the Laplace equation in two independent
variables.

‚ The diffusion equation is

ut ´ uxx “ 0,

and models the physical phenomenon of the diffusion of heat or of matter. In
the case of the diffusion of heat, imagine a hot rod cooling down as time passes,
and the temperature upx, tq at place x along the rod and at time t satisfies the
diffusion equation.

‚ The wave equation is

utt ´ c2uxx “ 0,

governs the motion of a vibrating string, and upx, tq denotes the displacement
at place x and at time t.

‚ The Laplace equation is

uxx ` uyy “ 0,

arises in a variety of “steady-sate” problems and in complex analysis. The
equation uxx ` uyy “ f with a with a nonzero f is called the Poisson equation.

We focus on these since they are prototypical examples of whole classes of PDEs. We
will elaborate on this in Chapter 2.

Exercise 0.14 (Laplacian). In Rn, the operator

∆ :“ B2

Bx2
1

` ¨ ¨ ¨ ` B2

Bx2n
is called the Laplace operator or the Laplacian. The equation

∆u “ 0
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is called the Laplace equation, and the equation ∆u “ f with a nonzero f is called the Poisson
equation.

(1) (Harmonic functions). Twice continuously differentiable functions that satisfy the
Laplace equation in two independent variables are called Harmonic functions. Show
that the following functions are harmonic: upx, yq “ x2 ´ y2, upx, yq “ ex cos y,

upx, yq “ log
a
x2 ` y2 (in R2ztp0, 0qu).

(2) (Link with complex analysis). Show that if U Ă C is open, and f : U Ñ C is complex
differentiable in U , then u :“ Repfq and v :“ Impfq are harmonic in U .

Remark 0.1. In fact it can be shown that every harmonic function on a “simply con-
nected” open set arises in this manner. So, in particular, every harmonic function is
locally the real part of some complex differentiable function.

(3) (Harmonic functions give steady state behaviour). Consider the diffusion equation

Bu
Bt “ B2u

Bx ` B2u

By2
in two spatial variables. (Imagine a hot plate cooling down with time.) Show that if,
after a long time, the temperature profile does not change with time (“steady-state”),
then u satisfies the Laplace equation.

(4) (Link with Brownian motion). Consider a particle in a two dimensional domain D, say
the unit square. Divide the square into N2 identical little squares, and denote their
vertices by pxi, yjq. The size of each edge of a little square is h. A particle located at an
internal vertex pxi, yjq jumps during a time interval τ to one of its nearest neighbours
with equal probability (1{4). When the particle reaches the boundary BD, it dies. We
ask:

What is the life expectancy upx, yq of a particle that starts its life at a point
px, yq in D as h Ñ 0, τ Ñ 0, while maintaining h2{p2τq “: k?

We shall arrive at an answer while relying on an intuitive notion of the life expectancy
upx, yq, that is, the “average time” it takes for a particle starting at px, yq to reach BD.
Obviously a particle starting its life at a boundary point dies at once, so that we have
upx, yq “ 0 on BD. Now consider an internal point px, yq. A particle can go to one of
its four neighbours with equal probability, and moreover it takes a time τ to get to one
of these neighbours. So we obtain

upx, yq “ τ ` upx` h, yq ` upx, y ` hq ` upx´ h, yq ` upx, y ´ hq
4

.

Expand all the functions using a Taylor expansion, assuming u P C3, and take the
limit as stipulated in the question to obtain the Poisson equation

∆u “ ´2

k
, px, yq P D,

with the boundary condition upx, yq “ 0 on BD.

(5) Let us consider an application of a one-dimensional analogue of the model considered
in the previous item. Many models in the stock market are based on assuming that
stock prices vary randomly. Assume that a broker buys a stock at a price m. The
broker decides in advance to sell it if its price reaches an upper bound M (in order to
cash the resulting profit) or a lower bound m (in order to minimise losses in case the
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stock dives). How much time on an average will the broker hold the stock assuming
that the stock price performs a Brownian motion? The relevant equation is

u2pxq “ ´1

k
, upmq “ upMq “ 0.

Compute the average time as a function of x.

(6) (Electrostatic/Gravitational potential). Show that

upx, y, zq :“ 1

r
:“ 1a

x2 ` y2 ` z2
,

satisfies ∆u “ 0 on R3ztp0, 0, 0qu.
Exercise 0.15 (Fundamental solution of the diffusion equation). Show that

upx, tq “ 1?
4πt

e´ x2

4t , x P R, t ą 0

satisfies the diffusion equation ut “ uxx for px, tq P R ˆ p0,8q. Use Maple to plot up¨, tq for
t “ 1, 0.1, 0.001.

Exercise 0.16 (Travelling wave solution to the wave equation). Show that if f P C2, then

upx, tq “ fpx` ctq ` fpx´ ctq
solves the wave equation utt “ c2uxx.

Initial Boundary Value Problems

Recall that ODEs typically come with initial values or boundary values. For example,
consider a spring mass system, where the displacement u satisfies

m:u` ku “ f

where m is the mass of the bob, k is the spring constant, and f is the externally applied
force. See the left picture in the following figure. Typically, we would be interested in
solving this equation given a pair of initial conditions of the form

up0q “ u0 and 9up0q “ v0,

which specify the initial position and velocity of the mass at the initial time t “ 0.
Taken together, the differential equation, with the pair of initial conditions is called an
“initial value problem”.

x “ 0 x “ L

u0

v0
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An example of a different sort is the following. Consider

u2pxq “ ´ g

c2
,

which models the displacement u of an elastic string along the position x due to gravity.
See the picture on the right above. (Here g is the usual acceleration due to gravity and
c2 is a constant depending on the material properties of the string.) If the string is
clamped between the two endpoints at x “ 0 and x “ L, then we have the boundary
conditions

up0q “ 0 and upLq “ 0.

Taken together, the differential equation, with the pair of boundary conditions is called
a “boundary value problem”.

Generally, a PDE involves a time variable t ą 0 and one or more spatial variables.
Typically the spatial variables are restricted to some open set. For example, we may be
interested in the temperature of a heated rod of length L in which case we consider the
heat equation in the domain

Ω :“ tpt, xq : t ą 0 and 0 ă x ă Lu.

Physically it makes sense that information concerning the transfer of heat energy on
the boundary is needed; in other words, we need boundary conditions at x “ 0 and
at x “ L. There are three main types of boundary conditions that occur in most
applications:

‚ Dirichlet conditions, specifying the unknown function on the boundary. (In the
heat flow case, this means the temperature is specified at the two end points of
the rod.)

‚ Neumann conditions, prescribing the normal derivative on the boundary. (In
the heat flow case, this means specifying the rate of energy transfer, ux at the
two end points.)

‚ Robin conditions, where a linear combination of the function and the normal
derivative is specified on the boundary.

In equations involving time, one or more initial conditions are usually needed to obtain
a unique solution to the PDE. Typically this number equals the highest order of differen-
tiation with respect to time occurring in the PDE. For example, in the diffusion equation,
one initial condition is needed, while in the wave equation, two initial conditions are
needed.
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0 L
x

t

initial
condition

boundary
condition

boundary
condition

PDE

The combination of a PDE with associated boundary conditions and initial conditions
is called an initial boundary value problem.

If time is not involved in the PDE (for example in the Laplace equation), the com-
bination of the equation with associated boundary conditions is called a boundary value
problem.

Some historical remarks

Many equations and results in PDEs bear the name of their originator. Here is a
selective list of historical characters which gives a feeling of the span of time and an
indication of the key milestones in the subject.

The one dimensional wave equation was introduced and analyzed by d’Alembert in
1752 as a model of a vibrating string. His work was extended by Euler (1759) and later
by D. Bernoulli (1762) to 2 and 3 dimensions. The Laplace equation was first studied
by Laplace in his work on gravitational potential fields around 1780. The heat equation
was introduced by Fourier in his celebrated memoir Théorie analytique de la chaleur
(1810). Thus, the three major examples of second-order PDEs—hyperbolic, elliptic and
parabolic—had been introduced by the first decade of the 19th century, though their
central role in the classification of PDEs, and related boundary value problems, were
not clearly formulated until later in the century. Besides the three classical examples,
a profusion of equations, associated with major physical phenomena, appeared in the
period between 1750 and 1900:

‚ The Euler equation of incompressible fluid flows, 1755.

‚ The minimal surface equation by Lagrange in 1760 (the first application of the
Euler-Lagrange principle in PDEs).

‚ The Monge-Ampére equation by Monge in 1775.

‚ The Laplace and Poisson equations, as applied to electric and magnetic prob-
lems, starting with Poisson in 1813, Green in 1828, and Gauss in 1839.
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‚ The Navier-Stokes equations for fluid flows in 1822 by Navier, followed by Pois-
son (1831) and Stokes (1845).

‚ Linear elasticity, Navier (1821) and Cauchy (1822).

‚ Maxwell’s equations in electromagnetic theory in 1864.

‚ The Helmholtz equation and the eigenvalue problem for the Laplace operator
in connection with acoustics in 1860.

‚ The Plateau problem (in the 1840s) as a model for soap bubbles.

‚ The Korteweg-de Vries equation (1896) as a model for solitary water waves.

A central connection between PDE and the mainstream of mathematical development
in the 19th century arose from the role of PDE in the theory of analytic functions of a
complex variable. Cauchy had observed in 1827 the link between the Cauchy-Riemann
PDEs and complex differentiable functions. From the later point of view of Riemann
(1851), this became the central defining feature of complex differentiable functions.

The modern theory of PDEs began with the work of Poincaré, when in 1890, he gave
the first complete proof, in rather general domains, of the existence and uniqueness of
a solution of the Laplace equation for any continuous Dirichlet boundary condition.

In his celebrated address to the International Mathematical Congress (ICM) in Paris
in 1900, Hilbert presented 23 problems (the so-called Hilbert problems), two of which
are concerned with the theory of nonlinear elliptic PDEs. In connection with one of
these (Problem 20), Hilbert revived the interest in Riemann’s approach to the Dirichlet
principle. In connection with these problems extensive analysis by numerous mathe-
maticians, for example, Lebesgue, Fubini, Courant, Fredholm, gave rise to new tools for
the analysis of PDEs.

Another important machinery to carry through the study of solutions of PDEs was
introduced by S.L. Sobolev in the mid 1930s: the definition of new classes of function
spaces, now called the Sobolev spaces. Besides Sobolev, many advances were made in
PDE theory in the 20th centry by the application of functional analysis, by Banach,
Friedrichs, Browder, Gårding, Lax, J.L. Lions, Hille, Yosida, and others.

Laurent Schwartz, in his celebrated book La théorie des distributions (1950) presented
the generalized solutions of PDEs in a new perspective. He created a calculus, based
on extending the class of ordinary functions to a new class of objects, the distribu-
tions, while preserving many of the basic operations of analysis, including addition,
multiplication by C8 functions, differentiation, as well as, under certain restrictions,
convolution and Fourier transform. These tools proved to be fundamental to the study
of PDEs, and has been the subject of intensive investigation beginning in the mid-1950s
in the work of Ehrenpreis, Malgrange and Hörmander, revolutionizing the subject. PDE
theory continues to be an active and a rich area of research even today.



Chapter 1

First Order PDEs

A first order PDE for an unknown function px1, ¨ ¨ ¨ , xnq ÞÑ upx1, ¨ ¨ ¨ , xnq has the
general form

F px1, ¨ ¨ ¨ , xn, u, ux1
, ¨ ¨ ¨ , uxnq “ 0,

where F is a given function of 2n` 1 variables. First order equations arise in a number
of models appearing in the various applied sciences, and we give one simple example
below, which also illustrates how a PDE can arise from basic considerations like a
conservation law.

1.1. An example of deriving a PDE: traffic flow

Consider car traffic along a single lane of a highway only in one direction, and without
any entrances or exits. Let upx, tq be the density of cars at position x and at time t.
If there are a lot of cars, the it is reasonable to ignore the “granularity” of cars, and
think of u as being a continuously differentiable real-valued function (rather than an
integer-valued function).

Now imagine counting the number of cars which pass a lamppost at place x per
unit time. This is called the flux of cars at place x and at time t, and is denoted by
ϕpx, tq.

If we imagine any stretch of highway between the points x “ a and x “ b, it is clear
that the total number of cars at time t in this stretch is

Nptq “
ż b

a

upx, tqdx.

Thus the rate of change of the number of cars at time t within this stretch is

dN

dt
ptq “ d

dt

ż b

a

upx, tqdx “
ż b

a

Bu
Bt dx.

On the other hand, we know that there are no entrances or exits on this highway, and
so by the “law of conservation of cars”, it must be the case that this rate of change in

19
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the number of cars at time t over this stretch of highway equals the difference in the
fluxes of cars at the endpoints x “ a and x “ b, that is,

ż b

a

Bu
Bt dx “ dN

dt
ptq “ ϕpa, tq ´ ϕpb, tq.

But we can convert the right hand side into an integral too:

ϕpa, tq ´ ϕpb, tq “ ´
ż b

a

Bϕ
Bx px, tqdx.

Consequently, we obtain for all a, b that
ż b

a

´Bu
Bt px, tq ` Bϕ

Bx px, tq
¯
dx “ 0.

We claim that this implies that
Bu
Bt ` Bϕ

Bx “ 0

for all x and t. Suppose that there was some point px0, t0q where

Bu
Bt px0, t0q ` Bϕ

Bx px0, t0q ‰ 0,

and there is no loss of generality in assuming that this is a positive number ǫ. Assuming
that u is C1, there then exists a small neighbourhood pa, bq of x0 such that

Bu
Bt px, t0q ` Bϕ

Bx px, t0q ą ǫ

2
ą 0

for x P pa, bq. So the integral
ż b

a

´Bu
Bt px, tq ` Bϕ

Bx px, tq
¯
dx ą pb ´ aq ǫ

2
ą 0,

a contradiction, completing the proof of our claim. So we arrive at the following PDE:

Bu
Bt ` Bϕ

Bx “ 0.

The number ϕ of cars per hour passing a place equals the density u of cars times the
velocity v of cars:

ϕ
cars

hour
“ u

cars

km
¨ v km

hour
.

We make the simplifying assumption that the speed v a car moves is a known function
f of the traffic density. This makes sense, since if the traffic density is high, cars move
slowly, while if it is low, it is like driving on a free highway with its maximum speed
limit. Here is an example of such a function f :

v “ fpuq :“ V
´
1 ´ u

U

¯
, 0 ď u ď U. (1.1)



1.1. An example of deriving a PDE: traffic flow 21

(Here V (freeway maximum speed) and U (maximum density of cars) are constants.)
Hence our PDE for traffic flow becomes

Bu
Bt ` B

Bxpufpuqq “ 0.

See the picture below, where U “ 250 cars/km and V “ 80 km/hr.

If we assume there is always light traffic, then we can take v ” V , so that the traffic flow
PDE becomes

Bu
Bt ` V

Bu
Bx “ 0,

which is the transport equation (which we had mentioned earlier).

Exercise 1.1. Show that the PDE for traffic flow, if f is given by (1.1) is

Bu
Bt ` V

´
1 ´ 2u

U

¯Bu
Bx “ 0.

By taking the average car length as 4 meters, determine a value for U , the maximum possible
density of cars (cars per km) along a stretch of single lane road.

For simplicity, we will only consider PDEs in two independent variables. One reason is
that the geometric ideas will become very transparent, since the solution upx, yq to an
equation

F px, y, u, ux, uyq “ 0,

will have a graph which can be visualized as a surface in R3. Also, we will focus on
quasilinear equations.

Definition 1.1 (Quasilinear PDE). A PDE which is linear in the highest order of deriva-
tives, with coefficients that can depend on lower order derivatives as well as on the
independent variables, is called quasilinear.
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Example 1.1 (A first order quasilinear equation). The general first order quasilinear
equation in two independent variables is

a
`
x, y, upx, yq

˘Bu
Bx px, yq ` b

`
x, y, upx, yq

˘ Bu
By px, yq “ c

`
x, y, upx, yq

˘
.

For example the inviscid Burgers’s equation, ut ` uux “ 0 is an example of a quasilinear
first order equation. ♦

Exercise 1.2. Write the general form of a second order quasilinear PDE.

In this chapter, we will learn a method for solving first order quasilinear equations in
two independent variables:

apx, y, uqux ` bpx, y, uquy “ cpx, y, uq,
where a, b, c : R3 Ñ R are given continuously differentiable (C1) functions. The key
idea behind the approach is a geometric one:

The PDE says that the normal pux, uy,´1q to the graph of u is perpen-
dicular to the vector pa, b, cq at each point on the graph of the solution
u.

This information will be used to “knit” together a solution of the PDE, given data (values
of the solution u along a curve in the independent variable plane). All this is a mystery
right now, but will become clearer as we proceed.

1.2. The method of characteristics

The method of characteristics was developed in the 19th century by Hamilton in con-
nection with his investigation of the propagation of light. Although one can stipulate
precise assumptions which are sufficient for the existence of a unique solution to a quasi-
linear PDE which can be found using the method of characteristics, in our treatment,
we will assume that there exists a function u whose graph is a surface which is the union
of “characteristic curves” (constructed from the quasilinear equation and initial data),
and show that this u then solves our quasilinear equation with the given initial data.
This will give a concrete procedure to solve first order quasilinear equations in two
independent variables by reducing it to solving the ODEs for the characteristic curves.

As we had mentioned earlier, the method of characteristics is based on “knitting”
the solution surface with a one-parameter family of curves that intersect a given curve
in space (where we have initial data for the PDE).

Suppose that we are given the quasilinear first order PDE in two independent vari-
ables

apx, y, uqux ` bpx, y, uquy “ cpx, y, uq, (Q)

where a, b, c are assumed to be continuously differentiable (C1). Suppose that we are
given the “initial condition” which is given parametrically by the curve γ : R Ñ R3:

R Q s γÞÝÑ
`
x0psq, y0psq, u0psq

˘
P R3.
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In other words, our solution u should satisfy

u
`
x0psq, y0psq

˘
“ u0psq ps P Rq.

Pictorially, the surface (graph of u) in R3 we want to construct must pass through the
curve γ, as shown below. Thus

(Q) and γ

constitute the data for our problem, which we refer to as the “initial value problem” or
“Cauchy problem”.

x

y

γ

u

Let us fix s P R. This in turn fixes the point γpsq “
`
x0psq, y0psq, u0psq

˘
in R3 lying

on the image of the curve γ. See this point indicated as blue dot on the red curve in
the picture below.

x

y

γ

γpsq

u

The idea behind the method of characteristics is that if we imagine the graph of u as a
sheet of cloth, then we construct this sheet one “thread” at a time. To this end, consider,
for this fixed s, the system of ODEs

9Xsptq “ a
`
Xsptq, Ysptq, Usptq

˘
Xsp0q “ x0psq,

9Ysptq “ b
`
Xsptq, Ysptq, Usptq

˘
Ysp0q “ y0psq,

9Usptq “ c
`
Xsptq, Ysptq, Usptq

˘
Usp0q “ u0psq,
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where t P R. From the theory of ODEs, since a, b, c P C1, we know that these ODEs
admit (at least a local) solution

t
ΓsÞÝÑ

`
Xsptq, Ysptq, Usptq

˘
.

This curve Γs is called a characteristic curve for the pair (Q), γ. Note that Γs passes
through the point γpsq at time t “ 0. This is “one of the threads of the cloth” u. See
the picture below.

x

y

γ

γpsq

u

Γs

Now suppose that the union of these characteristic curves Γs for the various s give
rise to a surface which is the graph of a C1 function u : R2 Ñ R, that is, for each
px, yq P R2 there is a unique ps, tq P R2 such that x “ Xsptq, y “ Ysptq, and moreover,

u
`
Xsptq, Ysptq

˘
“ Usptq ps, t P Rq. (1.2)

See the picture below.

x

y

u is made from the characteristic curves Γs

u

We claim that this u solves our PDE (Q). To see this we just differentiate both sides of
(1.2) with respect to t and use the chain rule:

Bu
Bx

`
Xsptq, Ysptq

˘
¨ 9Xsptq ` Bu

By
`
Xsptq, Ysptq

˘
¨ 9Ysptq “ 9Usptq,
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and appealing to the definition of the characteristic curve Γs, we obtain

Bu
Bx

`
Xsptq, Ysptq

˘
¨ a

´
Xsptq, Ysptq,u

`
Xsptq, Ysptq

˘¯

` Bu
By

`
Xsptq, Ysptq

˘
¨ b

´
Xsptq, Ysptq,upXsptq, Ysptq

˘¯

“ c
´
Xsptq, Ysptq, u

`
Xsptq, Ysptq

˘¯
.

With px, yq “
`
Xsptq, Ysptq

˘
, this becomes

Bu
Bxpx, yq ¨ a

`
x, y, upx, yq

˘
` Bu

By px, yq ¨ b
`
x, y, upx, yq

˘
“ c

`
x, y, upx, yq

˘
.

Moreover, u
`
x0psq, y0psq

˘
“ u

`
Xsp0q, Ysp0q

˘
“ Usp0q “ u0psq, and so u has the

appropriate initial data as well. This completes the proof of the validity of the method
of characteristics for solving the quasilinear equation (Q) with initial data γ.

Summarizing, in the method of characteristics, we construct u from the character-
istic curves Γs (which amounts to solving a system of ODEs). The characteristic curves
take with them a initial piece of the information from the initial data γ, and propagate
it with them, by evolving along an ODE.

Let us demonstrate this method in the case of the transport equation.

Example 1.2 (Transport equation). Consider the (linear) equation

ut ` cux “ 0,

where (the speed) c is a constant. We are given the initial data

up0, xq “ fpxq, x P R.

Thus the initial data curve γ is given by γpsq “ ps, 0, fpsqq, s P R. See the picture
below.

x

t

f
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The characteristic equations are

9Xspτq “ c Xsp0q “ s,
9Tspτq “ 1 Tsp0q “ 0,
9Uspτq “ 0 Usp0q “ fpsq,

This has the unique solution given by

Xspτq “ cτ ` s,

Tspτq “ τ,

Uspτq “ fpsq.
Thus with

x :“ Xspτq “ cτ ` s,

t :“ Tspτq “ τ,

we have
upx, tq “ Uspτq “ fpsq “ fpx´ ctq.

For example, if f “ e´x2

and c “ 1, then the graph of up¨, tq is shown on the left below
below at the time instances t “ 0, 1, 2, 3.

Note that the method of characteristics also seems to work formally for initial data f
which may not be smooth. For example, if we take

fpxq “
"
x if 0 ă x ă 1,

0 otherwise,

then the solution up¨, tq “ fp¨ ´ tq is displayed on the right above at the time instances
t “ 0, 1, 2, 3. However, this is not a classical solution, but solves the transport equation
in a “weak” sense. We will revisit this in Chapter 5 when we learn about distributions,
and make this precise. ♦

Of course, it may happen that the projections
`
Xsp¨q, Ysp¨q

˘
and

`
Xs1 p¨q, Ys1 p¨q

˘
of two

characteristic curves Γs and Γs1 intersect each other. At such points, there are two
available values for u: Usptq and Us1pt1q, and we don’t know what the value of u should
be at

`
Xsptq, Ysptq

˘
“

`
Xs1pt1q, Ys1 pt1q

˘
. We give an example below.

Example 1.3 (Shock wave). Consider the inviscid Burgers’s equation

ut ` uux “ 0,

with the initial condition
upx, 0q “ e´x2

.
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The characteristic equations are

9Xspτq “ Uspτq Xsp0q “ s,
9Tspτq “ 1 Tsp0q “ 0,
9Uspτq “ 0 Usp0q “ e´s2 .

This has the unique solution given by

Uspτq “ e´s2 ,

Tspτq “ τ,

Xspτq “ e´s2τ ` s.

The projections of the characteristic curves are plotted above, and we see that they
intersect. (Nevertheless, a “shock wave solution” can be given beyond the time where
the characteristics intersect. For more details, we refer the interested student to the
book [K].) ♦

Exercise 1.3. Solve ux “ 1 subject to the initial condition up0, yq “ fpyq.
Exercise 1.4. Solve ux ` plog uquy “ 0 subject to the initial condition up0, yq “ ey .

Exercise 1.5. Solve ux ` u2uy “ 0 subject to the initial condition up0, yq “ ?
y, x, y ą 0.

Exercise 1.6. Solve ux ´ x2uy “ ´u subject to the initial condition up0, yq “ fpyq.
Exercise 1.7. Solve ux ` yuy “ x subject to the initial condition up0, yq “ fpyq.
Exercise 1.8. Solve ux “ ´3yu subject to the initial condition up0, yq “ fpyq.
Exercise 1.9 (Advection equation). The equation

ut ` cux “ kpx, tq
is used to model AIDS epidemics, fluid dynamics, and other situations involving the transport of
matter with flow. As a concrete application, suppose that a factory spills out a pollutant in the
air, which is carried by the wind blowing in the x direction at a speed c meters per second. Let
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upx, tq be the density (number of particles per meter) at time t, and suppose that the particles are
falling out of the air at a constant rate proportional to upx, tq, with constant of proportionality
r ą 0. Then u satisfies the equation ut ` cux “ kpx, tq, with kpx, tq “ ´rupx, tq.

(1) If the initial condition is upx, 0q “ fpxq, then show that upx, tq “ e´rtfpx´ ctq.
(2) Let M denote the number of particles in the air at time t “ 0. Show that the number

of particles at time t ą 0 is e´rtM .

Exercise 1.10 (Pollution assessment). A river flows in a planar region

D “ tpx, yq : |y| ă 1, x P Ru.
A factory spills a contaminant into the river. The contaminant is further spread and convected
by the flow in the river. The velocity field of the river water is only in the x-direction. The
concentration of the contaminant at a point px, yq in the river at time t is denoted by upx, y, tq.
Conservation of matter and momentum leads to the following first order PDE for u:

ut ´ py2 ´ 1qux “ 0.

Suppose that the initial condition is upx, y, 0q “ eye´x2

.

(1) Note that y appears in the PDE just as a parameter. So considering the PDE in the
two independent variables px, tq, use the method of characteristics to find its solution
upyqpx, tq, and hence find an expression for upx, y, tq “ upyqpx, tq.

(2) Next suppose that a fish lives near the point px, yq “ p2, 0q in the river. The fish can
tolerate a contaminant concentration level of 0.5. If the concentration exceeds this
level, the fish dies at once. Will the fish survive? If yes, explain why. If no, then find
the time at which the fish will die.

Exercise 1.11 (Utility Theory). In Utility Theory, one encounters the following problem: Find
all functions u “ upx, yq with the property that the ratio between the marginal utilities with
respect to x and y depends on (say) x only. Thus we must solve the equation

ux ´ fpxquy “ 0,

where f is a given function. Assuming that up0, yq “ ϕpyq, where ϕ is given, show that

upx, yq “ ϕ
`
y ` F pxq

˘
,

where F is given by

F pxq :“
ż x

0

fpξqdξ.



Chapter 2

The classical trinity

In this chapter we will consider general second order PDEs and introduce the three
main examples of second order PDEs we will study in this course.

2.1. Classification of second order linear PDEs

Consider a general second order linear PDE in two variables:

Auxx ` 2Buxy ` Cuyy `Dux ` Euy ` Fu “ G,

where A,B,C,D,E, F,G are known functions of x, y. Recall that this equation is
called homogeneous if G “ 0. The principal part of a linear PDE collects the terms of
highest order, and in the case of our second order PDE, this is

pN “ Auxx ` 2Buxy `Cuyy.

It turns out that this term has a lot to do with the qualitative behaviour of the solutions.
The quadratic form

qps, tq :“ As2 ` 2Bst` Ct2

associated with the principal part is used to classify the second order PDE.

Definition 2.1 (Parabolic/Elliptic/Hyperbolic). We call the second order PDE

Auxx ` 2Buxy ` Cuyy `Dux ` Euy ` Fu “ G,

(1) elliptic if AC ´B2 ą 0 everywhere,

(2) parabolic if AC ´B2 “ 0 everywhere,

(3) hyperbolic if AC ´B2 ă 0 everywhere.

Here “everywhere” means “everywhere in the set of interest”. The set of interest may be
a strict subset of R2.

Here are a few examples.

29
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Example 2.1 (Classical trinity classification!).

The Laplace-Poisson equation uxx ` uyy “ g is elliptic. Indeed, here A “ C ” 1,
B ” 0, and so AC ´B2 ” 1 ą 0.

The diffusion equation ut ´ uxx “ g is parabolic. Indeed, here A “ B ” 0, C ” ´1,
and so AC ´B2 ” 0.

The wave equation utt´c2uxx “ g is hyperbolic. Indeed, here A ” 1, B ” 0, C ” ´c2,
and so AC ´B2 ” ´c2 ă 0. ♦

In the above example, the coefficients were all constants, and so a global classification
was possible. However, in the case of variable coefficients, the nature of the PDE might
change depending on what subset of R2 is considered.

Example 2.2. Consider the equation yuxx `uyy “ 0. Then A “ y, B “ 0, and C “ 1.
So AC ´B2 “ y. Hence the PDE is elliptic if y ą 0, parabolic if y “ 0, and hyperbolic
if y ă 0. ♦

Why make this fuss about this (seemingly weird) classification? It turns out that after
a change of variables, essentially any second order linear PDE can be brought to a
canonical form resembling the Poisson/Diffusion/Wave equation (but possibly with first
order terms) depending on whether the PDE was elliptic/parabolic/hyperbolic, respec-
tively, to begin with. (This is analogous to what one does in Linear Algebra, where by a
process involving diagonalization, one observes that the zero set in R2 of any quadratic
polynomial in two variables is an ellipse, a parabola or a hyperbola.) Moreover, the
respective PDE solutions share common features characteristic to each of these three
classes. For example:

(1) the solutions to the elliptic PDE arise as the steady state energy minimal func-
tions,

(2) the solutions to the parabolic PDE even out fluctuations,

(3) the solutions to hyperbolic PDEs behave like disturbances that persist and prop-
agate.

Remark 2.1. Even for more than two variables, a similar classification is possible for
second order PDEs. With the coefficients in the principal part of the equation, one
builds a quadratic form. And depending on whether this quadratic form is definite,
semidefinite or indefinite, one calls the equation elliptic, parabolic or hyperbolic, re-
spectively. A classification for equations of order bigger than 2 and for systems of PDEs
is also available (although it is not as complete as for order 2).

Exercise 2.1. Consider the telegraph equation important in electrical engineering,

vxx “ KLvtt ` pKR ` LSqvt `RSv,

where vpx, tq is the electrostatic potential at time t at a point x units from one end of a
transmission line that has an electrostatic capacity K , self-inductance L, resistance R, and
leakage conductance S, all per unit length. Show that the equation is hyperbolic if KL ą 0,
and that it is parabolic if either K or L is zero.
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2.2. Uniqueness and stability

A physical system must evolve in a determined way under given conditions, and exper-
iments should be reproducible. In mathematical models, this corresponds to existence
and uniqueness of solutions. We won’t go into general existence questions here, since
we will be constructing explicit solutions for our PDEs. But in order to justify that there
aren’t any solutions besides what our constructive procedures deliver, we will sometimes
need to use the following uniqueness results.

2.2.1. Wave equation with Dirichlet conditions. Consider the wave equation with
Dirichlet conditions:

B2u
Bt2 ´ B2u

Bx2 “ v p0 ă x ă 1, t ą 0q,

up0, tq “ αptq and up1, tq “ βptq pt ą 0q,

upx, 0q “ fpxq and utpx, 0q “ gpxq p0 ă x ă 1q.

Let u1, u2 be two solutions to the problem. Then their difference w :“ u1 ´ u2 satisfies

B2w
Bt2 ´ B2w

Bx2 “ 0 p0 ă x ă 1, t ą 0q,

wp0, tq “ 0 and wp1, tq “ 0 pt ą 0q,

wpx, 0q “ 0 and wtpx, 0q “ 0 p0 ă x ă 1q.

Consider the “energy integral”

Ewptq :“ 1

2

ż
1

0

ˆ´Bw
Bt

¯2

`
´Bw

Bx
¯2

˙
dx.

Then we obtain

dEw

dt
“

ż
1

0

wtwttdx`
ż

1

0

wxwxtdx

“
ż

1

0

wtwttdx`
´
wxwt

ˇ̌
ˇ
1

0

´
ż

1

0

wxxwtdx
¯

“
ż

1

0

wt pwtt ´ wxxqlooooomooooon
“0

dx ` wxp1, tqwtp1, tqloomoon
“0

´wxp0, tqwtp0, tqloomoon
“0

“ 0.

So Ew must be constant1, and so Ewptq “ Ewp0q “ 0, where the latter equality follows
from the initial conditions wpx, 0q “ 0 (implying wxpx, 0q “ 0) and wtpx, 0q “ 0.
Hence we obtain for all t ą 0 that

0 “ Ewptq “ 1

2

ż
1

0

ˆ´Bw
Bt

¯2

`
´Bw

Bx
¯2

˙
dx,

1Energy is converved in the free vibrations of a string.
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giving

wt “ 0 and wx “ 0 p0 ă x ă 1, t ą 0q.
So w is constant along vertical lines and along horizontal lines in p0, 1q ˆ p0,8q. From
here it also follows that w must be constant. From the initial condition wpx, 0q “ 0, we
also see that the constant value must be zero. Thus w ” 0, and so u1 “ u2!

Exercise 2.2. Consider a flexible beam with clamped ends at x “ 0 and x “ 1. Small wave
motion in the beam satisfies

B2u

Bt2 ` γ2
B4u

Bx4 “ 0 p0 ă x ă 1, t ą 0q,

up0, tq “ 0 “ up1, tq and uxp0, tq “ 0 “ uxp1, tq “ 0 pt ą 0q,

where γ is a a constant depending on the shape and the material of the beam. Show that the
energy

Eptq “ 1

2

ż 1

0

´
putq2 ` γ2puxxq2

¯
dx

is conserved along a solution u.

2.2.2. Diffusion equation with Dirichlet conditions. Consider the diffusion equa-
tion with Dirichlet conditions:

Bu
Bt ´ B2u

Bx2 “ v p0 ă x ă 1, t ą 0q,

up0, tq “ αptq and up1, tq “ βptq pt ą 0q,

upx, 0q “ fpxq p0 ă x ă 1q.

Let u1, u2 be two solutions to the problem. Then their difference w :“ u1 ´ u2 satisfies

Bw
Bt ´ B2w

Bx2 “ 0 p0 ă x ă 1, t ą 0q,

wp0, tq “ 0 and wp1, tq “ 0 pt ą 0q,

wpx, 0q “ 0 p0 ă x ă 1q.

The PDE and integration by parts give

0 “
ż

1

0

wpwt ´ wxxloooomoooon
“0

qdx “
ż

1

0

wwtdx ´
ż

1

0

wwxxdx

“
ż

1

0

wwtdx ´ pwwxq
ˇ̌
ˇ
1

0

`
ż

1

0

w2
xdx.

The second term on the right hand side is 0 thanks to the boundary conditions. Since
the third term is nonnegative, the first one must be ď 0. Thus

1

2

d

dt

ż
1

0

w2dx “
ż

1

0

wwtdx ď 0.
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So we conclude that the map

t ÞÑ
ż

1

0

w2dx

is decreasing. Since its initial value is
ż

1

0

pwpx, 0qq2dx “
ż

1

0

02dx “ 0,

it follows that ż
1

0

w2dx ď 0 pt ą 0q.

But this implies that w ” 0 for all t ą 0, that is, u1 ” u2.

Exercise 2.3 (Maximum Principle). Consider the heat equation

Bu
Bt ´ B2u

Bx2 “ 0 p0 ď x ď 1, t ě 0q,

up0, tq “ αptq and up1, tq “ βptq pt ě 0q,

upx, 0q “ fpxq p0 ď x ď 1q.

Suppose that f, α, β are bounded. Thus there are constants m,M such that

m ď fpxq ď M, m ď αptq ď M, m ď βptq ď M p0 ď x ď 1, t ě 0q.
Then the maximum principle states that if u is a solution to the above initial boundary value
problem, then

m ď upx, tq ď M p0 ď x ď 1, t ě 0q.
We won’t give a mathematical proof of this, but the result is surely expected physically. Indeed,
the physical meaning of the last right-most inequality is if the initial temperature distribution
and the temperature at the endpoints do not exceed a certain value M , then the temperature
distibution inside the rod at any subsequent time will remain smaller than M . Similarly, if the
initial temperature distribution and the temperature of the endpoints do not fall below a certain
value m, then we expect that the temperature distribution inside the rod at any later time will
stay bigger than m.

The aim of this exercise is three-fold. We would like to give a justification of the unqiueness
using the Maximum Principle, to justify a Comparison Principle, and to justify stability of the
solution under initial condition perturbations.

(1) (Uniqueness). Show that if u1, u2 are two solutions to the initial boundary value prob-
lem above, then the Maximum Principle implies that u1 “ u2.

(2) (Comparison Principle). Suppose that pα1, β1, f1q and pα2, β2, f2q are two sets of
initial/boundary condition data, such that the each function in the second set of data
dominate the respective function from the first set of data: for all t ě 0 and all
0 ď x ď 1,

α1ptq ď α2ptq, β1ptq ď β2ptq, f1pxq ď f2pxq.
If u1 is a solution to the initial boundary value problem with the first set of data, and
u2 is a solution to the initial boundary value problem with the second set of data, then
show that

u1px, tq ď u2px, tq p0 ď x ď 1, t ě 0q.
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(3) (Stability). Show the stability of solutions for perturbations of the initial/boundary
values in the L8 norm, that is, if u1 and u2 are solutions to the initial boundary value
problem with the initial/boundary data pα1, β1, f1q and pα2, β2, f2q, respectively, then

sup
0ďxď1

tě0

|u1px, tq ´ u2px, tq| ď max
!
sup
tě0

|α1ptq ´ α2ptq|, sup
tě0

|β1ptq ´ β2ptq|,

sup
0ďxď1

|f1pxq ´ f2pxq|
)
.

Exercise 2.4. The aim of this exercise is to show that the maximum principle does not hold
when one has an internal source of heat. Based on our physical intuition, we expect this, but let
us see a concrete example. The problem is the following:

Bu
Bt ´ B2u

Bx2 “ 2pt` 1q ` xp1 ´ xq p0 ď x ď 1, t ě 0q,

up0, tq “ 0 and up1, tq “ 0 pt ě 0q,

upx, 0q “ xp1 ´ xq p0 ď x ď 1q.

(1) Verify that u given by upx, tq “ pt ` 1qxp1 ´ xq is a solution.

(2) What are the maximum values of the initial and boundary data?

(3) Show that the maximum principle conclusion does not hold.

2.2.3. The Laplace equation with Dirichlet conditions. In order to prove the unique-
ness of solutions for the Laplace equation with Dirichlet boundary conditions, we will
need some preliminaries from vector calculus in the plane, notably Green’s Identity,
which we establish now. These results are useful in their own right and various versions
are used extensively in PDE theory.

Definition 2.2.

A smooth curve (in R2) is a map t
γÞÝÑ

`
xptq, yptq

˘
: ra, bs Ñ R2, where x, y are

continuously differentiable.

A smooth curve is closed if γpaq “ γpbq.
A closed curve is simple if whenever t1, t2 P ra, bs with t1 ‰ t2 and γpt1q “ γpt2q, then
t1, t2 P ta, bu. (That is, γ doesn’t intersect itself except at the endpoints.)

Example 2.3. The curve γ : r0, 2πs Ñ R2 given by γptq “ pcos t, sin tq, t P r0, 2πs, is
a simple curve. The image of the curve γ is just a circle with center p0, 0q and radius 1.
♦

In our example, we note that the simple curve, namely the circle, divides the plane
into two regions: one bounded, which is the interior of the circle, that is, the disk
tpx, yq P R2 : x2 ` y2 ă 1u, and another region, which is the unbounded and is the
exterior of the circle: tpx, yq P R2 : x2 ` y2 ą 1u. This is no coincidence. Jordan
proved that a simple curve γ always divides the plane into two regions: one bounded
and interior to γ, and one unbounded and exterior to γ. This result is known as the
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Jordan Curve Theorem. In order to prove our uniqueness result for Laplace’s equation,
we will assume that we are working in a region Ω which is the interior of a simple curve
γ.

Ω

γpra, bsq

A simple curve γ : ra, bs Ñ R2 is positively oriented if, while thinking of γptq as the
position at time t, the motion is such that the interior of γ always lies on the left. See
the pictures below.

γ given by
γptq “ pcos t, sin tq, t P r0, 2πs,

is positively oriented.

γ given by
γptq “ pcosp´tq, sinp´tqq, t P r0, 2πs,

is negatively oriented.

Definition 2.3 (Line integral). Let t
γÞÝÑ

`
xptq, yptq

˘
: ra, bs Ñ R2 be a smooth curve

and f : γpra, bsq Ñ R be a continuous function. The line integral of f over γ is defined
by ż

γ

fpx, yqds :“
ż b

a

f
`
xptq, yptq

˘a
px1ptqq2 ` py1ptqq2dt.

We also introduce two other integrals which will be of interest to us:
ż

γ

fpx, yqdx :“
ż b

a

f
`
xptq, yptq

˘
x1ptqdt,

ż

γ

fpx, yqdy :“
ż b

a

f
`
xptq, yptq

˘
y1ptqdt.

The line integral has many properties akin to the Riemann integral, and are readily
verified. We state some of these properties for the integral with ds. Similar identities
also hold with dx or dy.
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(1) (Linearity). For scalars α, β and continuous f, g we have
ż

γ

`
αfpx, yq ` βgpx, yq

˘
ds “ α

ż

γ

fpx, yqds` β

ż

γ

gpx, yqds.

(2) (Concatenation). Let

γ1 : ra1, b1s Ñ R2 and

γ2 : ra2, b2s Ñ R2

be two paths such that

γ1pb1q “ γ2pa2q

(so that γ2 starts where γ1 ends). Define γ1 ` γ2 : ra1, b1 ` b2 ´ a2s Ñ R2 to
be their “concatenation", given by:

pγ1 ` γ2qptq “
"
γ1ptq for a1 ď t ď b1,

γ2pt´ b1 ` a2q for b1 ď t ď b1 ` b2 ´ a2.

γ1
γ2

γ1 ` γ2

If f is continuous on the image of γ1 ` γ2, then
ż

γ1`γ2

fpx, yqds “
ż

γ1

fpx, yqds`
ż

γ2

fpx, yqds.

(3) (Opposite curve).
Given a smooth curve γ : ra, bs Ñ R2, its opposite path, ´γ : ra, bs Ñ R2,
is defined by p´γqptq “ γpa ` b ´ tq, t P ra, bs. Then p´γqpaq “ γpbq and
p´γqpbq “ γpaq, and so ´γ starts where γ ends, and ends at the starting point
of γ, while traversing the same path of γ, but in the opposite direction.

γ
´γ

But why do we denote the opposite path by ´γ? Here’s why.
ż

´γ

fpx, yqds “ ´
ż

γ

fpx, yqds.
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Some more notation: If N,M : γpra, bsq Ñ R are two continuous functions, then
ż

γ

`
Mpx, yqdx `Npx, yqdy

˘
:“

ż

γ

Mpx, yqdx `
ż

γ

Npx, yqdy.

With these preliminaries out of the way, we are now ready to state Green’s2 Theorem.
This result relates the line integral around a simple curve to a double integral over the
region bounded by the curve.

Theorem 2.1 (Green’s Theorem). Let γ be a positively oriented simple curve with interior
Ω, and let M,N be continuous functions with continuous partial derivatives on the image

of γ and in Ω. Then
ż

γ

`
Mpx, yqdx `Npx, yqdy

˘
“

ĳ

Ω

´BN
Bx ´ BM

By
¯
dxdy.

Proof. We will first prove this result in the case when γ is a standard curve, by which
we mean that no vertical or horizontal line can intersect γ in more than two points.
Once this is done, we will see how to derive the result also in the case of non-standard
curves.

As illustrated in the picture below, given a standard curve γ, we can find an interval
ra, bs and two differentiable functions f and g on ra, bs, such that γ is composed of a
top portion γtop, which is the graph of f , and a bottom portion γbot, which is the graph
of g. Since γ is positively oriented, the reverse of γtop is parametrized by

`
x, fpxq

˘
, as

x runs from a to b, while γbot is parametrized by
`
x, gpxq

˘
, as x runs from a to b.

g

fγtop

γbot

a b x

y

Ω

So

´
ż

γtop

Mpx, yqdx “
ż b

a

M
`
x, fpxq

˘
dx and

ż

γbot

Mpx, yqdx “
ż b

a

M
`
x, gpxq

˘
dx.

2Named after the British mathematical physicist Green (1793-1841).
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Also,

ĳ

Ω

BM
By dxdy “

ĳ

Ω

BM
By dydx “

ż b

a

´ ż fpxq

gpxq

BM
By dy

¯
dx

“
ż b

a

´
M

`
x, fpxq

˘
´M

`
x, gpxq

˘¯
dx

“ ´
ż

γtop

Mpx, yqdx ´
ż

γbot

Mpx, yqdx

“ ´
ż

γ

Mpx, yqdx.

In a similar manner, one can show that

ĳ

Ω

BN
Bx dxdy “

ż

γ

Npx, yqdy.

Upon subtraction, we obtain

ĳ

Ω

´BN
Bx ´ BM

By
¯
dxdy “

ż

γ

`
Mpx, yqdx `Npx, yqdy

˘
,

establishing Green’s Theorem for standard curves.

What about non-standard curves? Here is the sketch of how it works. The result
follows simply by subdividing the region into regions with positively oriented standard
curve boundaries. Let γk, k “ 1, 2, 3, ¨ ¨ ¨ , n be the resulting boundary curves, and Ωk

the region inside γk . The construction is illustrated in the picture below with n “ 5.

γ

Each curve consists of portions of the curve γ and portions not on γ. The portions
on γ are traversed once in the positive direction, while the ones not on γ are traversed
twice, in opposite ways. As a result, the sum of the integrals over all γk add up to the
integral over γ, since the integrals over the portions not on γ cancel out. Applying
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Green’s Theorem for the standard curves γk, and adding the integrals, we obtain
ż

γ

`
Mpx, yqdx `Npx, yqdy

˘
“

nÿ

k“1

ż

γk

`
Mpx, yqdx `Npx, yqdy

˘

“
nÿ

k“1

ĳ

Ωk

´BN
Bx ´ BM

By
¯
dxdy

“
ĳ

Ω

´BN
Bx ´ BM

By
¯
dxdy.

This completes the proof. �

Example 2.4 (Area as a line integral). Let γ be a positively oriented simple curve with
interior Ω. Then the area of Ω is given by

ż

γ

´ydx.

Take Mpx, yq “ ´y and Npx, yq “ 0. Then

BN
Bx “ 0 and

BM
By “ ´1,

and so by Green’s Theorem,

area of Ω “
ĳ

Ω

dxdy “
ĳ

Ω

´BN
Bx ´ BM

By
¯
dxdy

“
ż

γ

`
Mpx, yqdx `Npx, yqdy

˘
“

ż

γ

´ydx. ♦

Exercise 2.5. Let γ be a positively oriented simple curve with interior Ω. Show that the area
enclosed by γ is also given by any of the following two expressions:

ż

γ

xdy,
1

2

ż

γ

p´ydx` xdyq.

Exercise 2.6. Let C be the positively oriented circle given by Cptq “ pcos t, sin tq, t P r0, 2πs.
Verify Green’s Theorem with Mpx, yq “ y2 and Npx, yq “ ´x.
Exercise 2.7. Find the area enclosed by the ellipse given by

x2

a2
` y2

b2
“ 1

by expressing it as a line integral. What happens when a “ b?

Exercise 2.8 (Divergence Theorem in the plane). Let γ be a positively oriented simple curve
with interior Ω, and u be a twice continuously differentiable function on Ω and on γ. Then

´ ĳ

Ω

∇ ¨ p∇uqdxdy
¯

“
ĳ

Ω

∆udxdy “
ż

γ

´
´ Bu

By dx` Bu
Bxdy

¯
.
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Using Green’s Theorem, one can derive Green’s Identity, which will be used to show the
uniqueness of solutions to the Laplace equation.

Theorem 2.2 (Green’s Identity). Let γ be a positively oriented simple curve with interior
Ω. Let u, v have continuous second order partial derivatives in Ω and on γ. Then

ĳ

Ω

`
u∆v ` ∇u ¨ ∇v

˘
dxdy “

ż

γ

u
Bv
Bnds.

Before we go on to prove this, let us clarify what we mean by the symbol

Bv
Bn,

called the normal derivative along the curve γ:

Bv
Bn :“ ∇u ¨ n “ pux, uyq ¨

`
y1ptq,´x1ptq

˘
a

px1ptqq2 ` py1ptqq2
.

In the above expression, we recognize py1ptq,´x1ptqq as the normal vector to the curve
γ (at the point γptq), and the length of this normal vector is

a
px1ptqq2 ` py1ptqq2. So

py1ptq,´x1ptqqa
px1ptqq2 ` py1ptqq2

is the unit normal vector to the curve at the point γptq. Hence the normal derivative of
v along the curve at a point γptq is just the directional derivative of v in the direction
given by the normal vector to the curve at the point γptq.

Proof of Green’s Identity. First note that

ż

γ

u
Bv
Bnds “

ż b

a

u
vxy

1 ´ vyx
1

a
px1q2 ` py1q2

a
px1q2 ` py1q2dt

“
ż b

a

upvxy1 ´ vyx
1qdt “

ż b

a

uvxy
1dt´

ż b

a

uvyx
1dt

“
ż

γ

uvxdy ´
ż

γ

uvydx “
ż

γ

up´vydx` vxdyq.

Let M “ ´uvy and N “ uvx. Then

My “ ´uyvy ´ uvyy,

Nx “ uxvx ` uvxx.
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Applying Green’s Theorem, we obtain
ż

γ

u
Bv
Bnds “

ż

γ

up´vydx ` vxdyq “
ż

γ

pMdx `Ndyq “
ĳ

Ω

´BN
Bx ´ BM

By
¯
dxdy

“
ĳ

Ω

`
uxvx ` uvxx ` uyvy ` uvyy

˘
dxdy

“
ĳ

Ω

pu∆v ` ∇u ¨ ∇vqdxdy.

This completes the proof. �

Exercise 2.9 (Green’s Second Identity). Let γ be a positively oriented simple curve with interior
Ω. Let u, v have continuous second order partial derivatives in Ω and on γ. Then show that

ĳ

Ω

pu∆v ´ v∆uqdxdy “
ż

γ

´
u

Bv
Bn ´ v

Bu
Bn

¯
ds.

Theorem 2.3 (Uniqueness). Let γ be a simple curve with interior Ω and f be a continuous

function on γ. Then the boundary value problem
"

∆u “ ρ in Ω,

u|γ “ f,

has at most one continuous solution.

Proof. Suppose that u1, u2 satisfy

∆u1 “ ρ “ ∆u2 in Ω, and

u1|γ “ f “ u2|γ .
Set w :“ u1 ´ u2. Then

∆w “ 0 in Ω, and

w|γ “ f ´ f “ 0.

We want to show that w ” 0 in Ω. Applying Green’s Identity with u :“ w and v :“ w

gives ĳ

Ω

∇w ¨ ∇wdxdy “
ż

γ

w
Bw
Bn ds “ 0.

Here we have used the fact that ∆w “ 0 in Ω, and also that w vanishes on γ. Soĳ

Ω

pw2
x `w2

yqdxdy “ 0,

and since the integrand is nonnegative and continuous, it follows that wx “ wy ” 0

on Ω. This means that w is constant along vertical segments and along horizontal
segments. But then (since any two points in Ω can be joined by a “stepwise” path
comprising horizontal and vertical segments) w must be constant in Ω.



42 2. The classical trinity

γ

Ω

As w is zero on the boundary of Ω, and since w is continuous, it follows that the value
of this constant must be 0. So w ” 0 on Ω and the range of γ, as wanted. �

Exercise 2.10 (Uniqueness up to constants in the Neumann problem for the Poisson equation).
Let γ be a simple curve with interior Ω and f be a continuous function on γ. Suppose that
u1, u2 are two solutions to the boundary value problem

$
&
%

∆u “ ρ in Ω,
Bu
Bn

ˇ̌
ˇ
γ

“ f.

Show that there exists a constant C such that u2 ” u1 ` C on Ω.

Exercise 2.11 (Compatibility condition in Neumann problems). Let γ be a simple curve with
interior Ω.

(1) If v has continuous second order partial derivatives in Ω and on γ, then show that
ĳ

Ω

∆vdxdy “
ż

γ

Bv
Bnds.

(2) Now suppose that u has continuous second order partial derivatives in Ω and on γ and
that ∆u “ 0 in Ω. Show that the normal derivative of u must integrate to 0 along the
boundary, that is, ż

γ

Bu
Bnds “ 0.

This means that the boundary values of the normal derivative of a harmonic function
u cannot be arbitrary; they must satisfy the compatibility condition

ż

γ

Bu
Bnds “ 0.

(3) Consider the Neumann problem for the interior D of the unit circle C with center p0, 0q
and radius 1: #

∆u “ 0 in D,
Bu
Bn

ˇ̌
ˇ
C

pcos t, sin tq “ fptq, t P r0, 2πs,

where f is the continuous function given by

fptq “
"

sin t if t P r0, πs,
0 if t P rπ, 2πs.

Does this problem have a solution?
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Exercise 2.12. Let γ be a simple curve with interior Ω. Suppose that u has continuous second
order partial derivatives in Ω and on the range of γ, and also suppose that ∆u “ 0 in Ω.

(1) Show that

ż

γ

´ Bu
By dx´ Bu

Bxdy
¯

“ 0.

(2) Moreover , if v has continuous second order partial derivatives in Ω and on γ, and if
v “ 0 on γ, then show that

ĳ

Ω

∇u ¨ ∇vdxdy “ 0.

Exercise 2.13 (Dirichlet’s Principle). The aim of this exercise is to show that harmonic functions
are energy minimizing functions.

Let γ be a simple curve with interior Ω. Let u be the unique solution to the Dirichlet
Problem for the Laplacian: "

∆u “ 0 in Ω,

u|γ “ f.

The energy of a function ϕ defined on Ω is

Epϕq “ 1

2

ĳ

Ω

}∇ϕ}22dxdy.

Dirichlet’s Principle states that among all the functions v on Ω Y γ that satisfy the Dirichlet
boundary condition v|γ “ f , the one that minimizes the energy integral is the harmonic function
u! That is, if v|γ “ f , then Epvq ě Epuq. Follow the outline below to prove the principle.

(1) Write v “ u` pv ´ uq “: u` w, and note that w|γ “ 0. Show that

}∇v}22 “ }∇u}22 ` 2∇v ¨ ∇w ` }∇w}22.
(2) Show that Epvq “ Epuq ` Epwq. Conclue that Epvq ě Epuq.

Exercise 2.14 (Mean Value Property).

(1) (For the case of a disc). Consider the Dirichlet problem for the Laplace equation in the disc
DR :“ tpx, yq P R2 : px´ x0q2 ` py ´ y0q2 ă R2u, with smooth data f on the boundary BDR:

"
∆u “ 0 in DR,

u|BDR
“ f

Show that upx0, y0q “ 1

2π

ż 2π

0

fpx0 `R cos θ, y0 `R sin θqdθ.

(In other words the value at the center of the disc DR is the average/mean of the values of u on
the boundary of the disc DR).

Hint: Differentiate r ÞÑ 1

2π

ż 2π

0

upx0 ` r cos θ, y0 ` r sin θqdθ, r P r0, Rs, and use Exercise 2.8.

(2) (General domains). Suppose that Ω is any region in R2, and u is harmonic in Ω. Then for
any closed disc DR :“ tpx, yq P R2 : px´ x0q2 ` py ´ y0q2 ď R2u Ă Ω, we have

upx0, y0q “ 1

2π

ż 2π

0

upx0 `R cos θ, y0 `R sin θqdθ.
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Exercise 2.15 (Maximum Principle). The aim of this exercise is twofold: first of all to prove the
Maximum Principle for the Dirichlet problem for the Laplace equation, and secondly, to apply
the Maximum Principle for obtaining uniquenss of solutions to the Dirichlet problem for the
Laplace equation.

Maximum Principle. Let γ be a simple curve with interior Ω. Let u be a twice continuously
differentiable function on Ω and on γ which satisfies the Dirichlet problem for the Laplacian
with continuous boundary data f :

"
∆u “ 0 in Ω,
u|γ “ f

Then max
ΩYγ

u “ max
γ

f and min
ΩYγ

u “ min
γ
f .

Note that the continuous function u has a maximizer and a minimizer on the compact set ΩYγ.
Similarly, the continuous function f has a maximizer and a minimizer on the compact set γ (or
rather the image of the curve γ).

(1) For ǫ ą 0, define vpx, yq “ upx, yq ` ǫpx2 ` y2q. Show that ∆v ą 0 in Ω.

(2) Show that the maximizer of v on Ω Y γ exists, but it can’t lie in Ω.

(3) If px˚, y˚q P γ is a maximizer of v, then for all px, yq P Ω Y γ,

upx, yq ď vpx, yq ď vpx˚, y˚q “ upx˚, y˚q ` ǫpx2˚ ` y2˚q
ď max

γ
f ` ǫ ¨ d2,

where d is the largest distance of the points of γ to the origin p0, 0q. Conclude that
max
ΩYγ

u “ max
γ

f .

(A similar proof can be given to show that also min
ΩYγ

u “ min
γ
f .)

(Uniqueness). Show, using the Maximum Principle, the uniqueness of solutions to the Dirichlet
problem for the Laplacian: "

∆u “ 0 in Ω,

u|γ “ f

Remark 2.2. In the initial and boundary value problems considered so far, we have only
looked at bounded spatial regions. However, we will also consider unbounded domains
in Chapter 4, where one has some natural constraints on the solutions, for instance
boundedness or convergence to 0 at 8. Even in these cases one has uniqueness. We
satisfy ourselves by describing three situations where one has a unique solution provided
the initial and boundary conditions are sufficiently regular. For the wave equation and
the diffusion equation, the proofs are simply a modification of the proofs given above.
But the proof in the case of the Laplace equation is more involved.

(1) Laplace’s equation uxx ` uyy “ ρ in the half plane x P R, y ą 0, with a given
boundary condition up¨, 0q “ f has at most one bounded solution.

(2) The Diffusion equation ut ´ uxx “ v in the half plane x P R, t ą 0 with a
given initial condition up¨, 0q “ f has at most one solution u with the property
that for each x, upx, tq Ñ 0 as t Ñ 8.
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(3) The wave equation utt ´ uxx “ v in the half plane x P R, t ą 0 with given
initial conditions up¨, 0q “ f , utp¨, 0q “ g has at most one solution u with the
property that for each x, upx, tq Ñ 0 as t Ñ 8.

As far as the question of stability is concerned (that is, whether small changes in the
initial and boundary conditions result in small changes of the solution), for our second
order PDEs considered above, this desired property of stability does hold. In other
words, our 2nd order linear PDE problems are well-posed.

2.3. Discretization and the finite difference method

In this section we give a quick overview of an important class of numerical method
for PDEs, called the finite difference method3. The idea is to replace the derivatives
appearing in the differential equation by their difference quotients.

We recall that if f is a three times continuously differentiable function, then Taylor’s
formula gives

fpx˘ hq “ fpxq ˘ hf 1pxq ` h2

2
f2pxq ` oph2q as h Ñ 0.

Here “ϕpx, hq “ ψpx, hq ` opgphqq as h Ñ 0” means that

lim
hÑ0

ϕpx, hq ´ ψpx, hq
gphq “ 0.

Using this Taylor expansion for f , it follows that

fpx` hq ´ fpxq
h

“ f 1pxq ` op1q,
fpx` hq ´ 2fpxq ` fpx´ hq

h2
“ f2pxq ` op1q

as h Ñ 0.

By replacing the derivatives in our second order PDEs with such difference quo-
tients, we get difference equations. We elaborate on this method by considering the
case of the diffusion equation as an illustrative example.

Example 2.5. Consider the initial and boundary value problem for the diffusion equa-
tion given by

Bu
Bt “ a

B2u
Bx2 p0 ă x ă 1, t ą 0q,

up0, tq “ αptq and up1, tq “ βptq pt ą 0q,

upx, 0q “ fpxq p0 ă x ă 1q.

3There is another important numerical method in connection with PDEs, called the finite element method, where
the idea is to decompose the domain of the PDE into a finite number of simple polygonal pieces (called elements) and
approximate the solution in these pieces by very simple functions. However, we will not treat this here. The interested
reader is referred to [St, §8.5].
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For j “ 0, 1, ¨ ¨ ¨ , n, we set
∆x “ 1

n
and xj “ j

n
.

Also, let

tk “ k∆t,

where ∆t ą 0, and we will choose it appropriately below. With

urj, ks :“ upxj , tkq pj “ 0, 1, ¨ ¨ ¨ , n, k “ 0, 1, 2, 3, ¨ ¨ ¨ q,
and by replacing the derivatives in the diffusion equation by their respective difference
quotient approximations, we obtain

1

∆t
purj, k ` 1s ´ urj, ksq “ a

p∆xq2 purj ´ 1, ks ´ 2urj, ks ` urj ` 1, ksq,

where j “ 1, ¨ ¨ ¨ , n´ 1 and k “ 0, 1, 2, 3, ¨ ¨ ¨ . Now we choose ∆t so that

α “ a
∆t

p∆xq2 ,

where α will be determined later! Then we obtain

urj, k ` 1s “ αurj ´ 1, ks ` p1 ´ 2αqurj, ks ` αurj ` 1, ks, (2.1)

that is,

´urj, k ` 1s ` αurj ´ 1, ks ` p1 ´ 2αqurj, ks ` αurj ` 1, ks “ 0. (2.2)

This is a linear equation system with infinitely many unknowns, namely the

urj, ks, j “ 1, ¨ ¨ ¨ , n´ 1, k “ 1, 2, 3, ¨ ¨ ¨ .
In the picture on the left below, we have sketched the grid of points on which urj, ks is
defined.

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

α α

´1

1´2α

j

k

Intial value

Boundary
value

Boundary
value

The system has a special structure, which makes it easy to solve. From the equation
(2.1), we see that the values

urj, 1s, j “ 1, ¨ ¨ ¨ , n ´ 1,

can be determined from the initial values

urj, 0s, j “ 0, 1, ¨ ¨ ¨ , n,
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and thereafter the values of u on row k ` 1 can be determined from the values of u
on row k. Here one also uses the boundary values corresponding to j “ 0 and j “ n.
The solution procedure can be described by the schematic “molecule” shown on the
right in the previous picture, where inside the rings, we have shown the coefficients
appearing in the equation (2.2). The molecule moves over the grid, row-wise, from
bottom upwards, and in each position, the value of u in the marked “atom” with double
rings is determined with the help of the values of u in the others.

Now for the choice of α. It can happen that the values obtained for u grow without
bound. Then the difference method is said to be unstable. For example, if α “ 1, the
molecule is shown on the right, and for the initial boundary value data shown on the
left, we get the values of u as shown in the interior of the grid on the left.

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
0 1 ´3 6 ´7 6 ´3 1 0

0 0 1 ´2 3 ´2 1 0 0

0 0 0 1 ´1 1 0 0 0

0 0 0 0 1 0 0 0 0

1 1

´1

´1

j

k

The reason behind the growing values is that one of the coefficients in the molecule (the
central atom) is negative. On the other hand, if we choose the value of α so that

0 ď α ď 1

2
, (2.3)

then all the coefficients in (2.1) are nonnegative. In this case the formula is telling us
that urj, k ` 1s is a convex combination of the three values of the function on row k.
Indeed, α ` p1 ´ 2αq ` α “ 1. So the new function value urj, k ` 1s lies between the
largest and the smallest value determined previously. Thus if the initial and boundary
values are bounded, then it follows that the values of u everywhere in the grid will stay
bounded! So the difference method is now stable. (When the difference method is stable,
the rounding and other errors stay under control, while they grow unboundedly when
the difference method is unstable.) ♦

Exercise 2.16 (Finite difference method for the Laplace equation). Consider the Dirichlet Prob-
lem for the Laplacian: "

∆u “ 0 in R,
u|BR “ f

where R is the rectangle tpx, yq P R2 : 0 ă x ă a, 0 ă y ă bu with boundary BR. Set

∆x :“ a

m
, ∆y :“ b

n
,

and uri, js “ upi∆x, j∆yq, i “ 0, 1, ¨ ¨ ¨ ,m, j “ 0, 1, ¨ ¨ ¨ , n.
(1) Obtain a recurrence relation for the uri, js by using difference quotient approximations.
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(2) Consider the case of a square. Take m “ n. Show that uri, js is the average of the
values of u at the four neighbouring points of the grid.

(3) Let a “ 1, m “ n “ 3, and the boundary condition be given by fpx, 0q “ sinpπxq for
0 ď x ď 1 and 0 elsewhere on the boundary of the square. Determine uri, js for all
1 ď i, j ď 2.



Chapter 3

Separation of variables

In this chapter we will learn a method of solving linear PDEs in certain bounded do-
mains based on Fourier series theory, the superposition principle, and “separating vari-
ables”. By separating variables in a solution, we mean that the function of several
variables arises as a product of functions of each variable separately. We have men-
tioned the superposition principle earlier, although in this chapter, we will need to
superimpose infinitely many functions. We will begin our discussion with Fourier Series
of periodic functions.

3.1. Fourier series

We are familiar with a Taylor series of an analytic1 function f : p´a, aq Ñ R, where
one expresses f as a combination of the simple functions 1, x, x2, x3, ¨ ¨ ¨ : for example,

1

1 ´ x
“ 1 ` x` x2 ` x3 ` ¨ ¨ ¨ p´1 ă x ă 1q,

cos x “ 1 ´ x2

2!
` x4

4!
´ x6

6!
` ´ ¨ ¨ ¨ px P Rq.

With Fourier series, we are interested in expanding a “T -periodic” function in terms of
the special set of functions

1, cospω0xq, cosp2ω0xq, cosp3ω0xq, ¨ ¨ ¨ , sinpω0xq, sinp2ω0xq, sinp3ω0xq, ¨ ¨ ¨ .
Here ω0 :“ 2π{T . Note that the constant function 1 “ cosp0 ¨ ω0xq. Thus a Fourier
series expansion2 of a function f is an expression of the type

fpxq “ a0

2
`

8ÿ

n“1

`
an cospnω0xq ` bn sinpnω0xq

˘
.

1See for example [S, Remark 6.3, p. 335].
2The somewhat strange “2” appearing in the first term a0{2 is related to wanting a nicer unifying formula for the

an, which works for all n, as we shall see later — if we did not have this 2, then we would have a formula for the an
for n ě 1, and a different formula (containing an extra 2!) when n “ 0.

49
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Definition 3.1 (Periodic function). A function f : R Ñ R is said to be periodic if there
exists a T ą 0, called a period of f , such that

for all x P R, fpx` T q “ fpxq.
f is then said to be T -periodic.

Example 3.1. Let T ą 0 and ω0 :“ 2π{T . Let n P N. The functions sinpnω0xq and
cospnω0xq are T -periodic, since for all x P R,

sin
`
nω0px` T q

˘
“ sinpnω0x` 2π ¨ nq “ sinpnω0xq,

cos
`
nω0px ` T q

˘
“ cospnω0x` 2π ¨ nq “ cospnω0xq. ♦

Example 3.2. The fractional part function t¨u : R Ñ R is defined by

txu “ x´ txu, x P R.

Here txu denotes the greatest integer ď x. It is clear that if x P Z, then txu “ x. Also,
for all real x, tx`1u “ txu `1. So if x P Z, then tx`1u “ 0 “ txu, and for noninteger
x,

tx ` 1u “ x` 1 ´ tx ` 1u “ x ` 1 ´ ptxu ` 1q “ x´ txu “ txu.

1

Hence t¨u is 1-periodic. ♦

Note that the function t¨u is not continuous at the integer points, but is smooth every-
where else, and moreover, it is also well behaved in the sense that the limits on either
side of the discontinuity of both the function and its derivative exist. It will be conve-
nient to develop the Fourier expansion theory for such “piecewise smooth” functions.
So we give the following definition.

Definition 3.2 (Piecewise smooth). A function f : ra, bs Ñ R is called piecewise smooth
if there exist finitely many points c0 :“ a ă c1 ă ¨ ¨ ¨ ă cn ă b “: cn`1 such that f is
continuous and continuously differentiable on each subinterval pci, ci`1q, and the limits

lim
xÑa`

fpxq, lim
xÑc1´

fpxq, lim
xÑc1`

fpxq, ¨ ¨ ¨ , lim
xÑcn´

fpxq, lim
xÑcn`

fpxq, lim
xÑb´

fpxq,

lim
xÑa`

f 1pxq, lim
xÑc1´

f 1pxq, lim
xÑc1`

f 1pxq, ¨ ¨ ¨ , lim
xÑcn´

f 1pxq, lim
xÑcn`

f 1pxq, lim
xÑb´

f 1pxq,

all exist. That is, at each point of discontinuity, the left and right hand limits of the
function and also of its derivative exist.

A T -periodic function f : R Ñ R is piecewise smooth if f is piecewise smooth on
r0, T s.
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Exercise 3.1. Which of the following functions is piecewise smooth on R? In each case fp0q “ 0,
and for x ‰ 0, f is given by:

l (A) fpxq “ sinp1{xq
l (B) fpxq “ x sinp1{xq
l (C) fpxq “ x2 sinp1{xq
l (D) fpxq “ x3 sinp1{xq.

Exercise 3.2. Let f, g : R Ñ R be both T -periodic. Show that their pointwise product f ¨ g is
also T -periodic.

Exercise 3.3. Show that if f1, ¨ ¨ ¨ fk are all T -periodic, and c1, ¨ ¨ ¨ , ck are real numbers, then
their linear combination c1 ¨ f1 ` ¨ ¨ ¨ ` ck ¨ fk (defined pointwise) is also T -periodic.

Exercise 3.4. Show that the function cosx` cosp
?
2xq is not periodic. Does this contradict the

previous exercise? (This function is an example of an almost periodic function.)

Exercise 3.5. Show that piecewise smooth periodic functions on R are bounded.

Exercise 3.6. Let f be a continuous T -periodic function on R. Show that for any a P R,
ż T

0

fpxqdx “
ż a`T

a

fpxqdx.

Hint: Consider F pxq :“
ż x`T

x

fpξqdx.

In our study of Fourier series, the questions we ask are:

(1) For which functions is a Fourier expansion guaranteed?

(2) If we know that a function has a Fourier expansion, then how are the “Fourier
coefficients” (the an and bn) computed?

These questions are answered by the following result:

Theorem 3.1. Let f be a T -periodic piecewise smooth function. Set ω0 “ 2π{T . Then there
exist real sequences panqně0 and pbnqně1 such that for all x P R,

fpx`q ` fpx´q
2

“ a0

2
`

8ÿ

n“1

`
an cospnω0xq ` bn sinpnω0xq

˘
.

Moreover, the Fourier coefficients an, bn are given by

an “ 2

T

ż

period
fpxq cospnω0xqdx, n “ 0, 1, 2, 3, ¨ ¨ ¨

bn “ 2

T

ż

period
fpxq sinpnω0xqdx, n “ 1, 2, 3, ¨ ¨ ¨ .

(In the above, the subscript “period” for the integral means that the integral is from
x “ a to x “ a ` T , with any3 real a.)

3In practice, while doing computations for a concrete periodic function, we will take some convenient interval for
integration, such as r´T {2, T {2s or r0, T s.
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Proof. See the appendix to this chapter, Section 3.8. �

Remark 3.1. In particular, if the T -periodic piecewise smooth function f is continuous
at x, then

fpxq “ a0

2
`

8ÿ

n“1

`
an cospnω0xq ` bn sinpnω0xq

˘
.

The smoother f is, the faster the Fourier coefficients converge to 0, and the faster the
Fourier series converges to f . For a function with discontinuities, the Fourier series does
not converge to the function uniformly. This means that no partial sum of the Fourier
series approximates the function well on the whole interval. Irrespective of how many
terms one takes in the partial sum, the approximation error to the function does not
become small near the discontinuity, and this is called Gibb’s phenomenon.

Exercise 3.7 (Triangular wave). The 2π periodic triangular wave is given on r´π, πs by

fpxq “
"
π ` x if x P r´π, 0s,
π ´ x if x P r0, πs.

(1) Sketch the graph of f .

(2) Find the Fourier series of f .

(3) Plot partial sums with 3, 33 and 333 terms using Maple.

(4) Show that

1 ` 1

32
` 1

52
` 1

72
` ¨ ¨ ¨ “ π2

8
.

Exercise 3.8 (Gibbs Phenomenon).

(1) (Square wave) The 2π periodic square wave is given on r´π, πs by

fpxq “
"

´1 if x P p´π, 0q,
1 if x P r0, πs.

Show that the Fourier series coefficients are given by an :“ 0 for all n, bn “ 0 for all
even n, and

bn :“ 4

nπ
if n is odd.

Let sN is the partial sum given by

sN pxq “ 4

Nÿ

n“0

sinpp2n ` 1qxq
p2n` 1qπ .

It can be shown that sN takes its maximal value at

x “ π

2pN ` 1q .

Plot sN for N “ 3, 33, 333, and calculate the maximal value in each case. Note that
the “overshoot” does not converge to 0, but rather to a value of about 0.17898. This is
an instance of Gibbs Phenomenon.
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(2) Suppose that for a piecewise smooth T -periodic function, the Fourier coefficients are
absolutely convergent, that is,

8ÿ

n“1

|an| ă 8 and
8ÿ

n“1

|bn| ă 8.

Prove that the convergence in Theorem 3.1 is uniform4, that is, Gibbs Phenomenon
does not occur.

Exercise 3.9 (Even and odd functions). Let f be a 2L-period function and let

fpxq “ a0

2
`

8ÿ

n“1

ˆ
an cos

´nπx
L

¯
` bn sin

´nπx
L

¯˙
,

be its Fourier series.

(1) Show that f is even if and only if bn “ 0 for all n “ 1, 2, 3, ¨ ¨ ¨ . In this case,

fpxq “ a0

2
`

8ÿ

n“1

an cos
´nπx
L

¯
,

where an “ 2

L

ż L

0

fpxq cos
´nπx
L

¯
dx, n “ 0, 1, 2, 3, ¨ ¨ ¨ .

(2) Show that f is odd if and only if an “ 0 for all n “ 0, 1, 2, 3, ¨ ¨ ¨ . In this case,

fpxq “
8ÿ

n“1

bn sin
´nπx
L

¯
,

where bn “ 2

L

ż L

0

fpxq sin
´nπx
L

¯
dx, n “ 1, 2, 3, ¨ ¨ ¨ .

3.1.1. Half period expansions. In the sequel, we will often need to represent by a
Fourier series, a function f that is only defined in a finite interval, say r0, Ls. (This may
appear as the initial condition in our PDE problem.) Since f is not periodic, the result
above is not applicable. However, in this section we will see that we can extend f in a
periodic manner to the whole of R to obtain a 2L-periodic function f˚, and then use
the results from the previous section. This can be done in one of two ways: if we make
f˚ an even function, then we will get a cosine expansion for f in r0, Ls, while if f˚ is
an odd function, then we will get a sine expansion of f .

1˝ Even half period extension. We first extend f on the interval p´L,Lq by setting
f˚p´xq :“ fpxq, ´L ă x ă 0, and then extend this periodically with period 2L to get
f˚ on the whole of R. The following picture illustrates this.

4Recall that if f, fn : R Ñ R (n P N) are functions, then the sequence pfnqnPN is said to converge uniformly to f
if for all ǫ ą 0, there exists an N P N such that for all n ą N , and for all x P R, |fnpxq ´ fpxq| ă ǫ.



54 3. Separation of variables

´LL L00

f˚f

Now we expand f˚ in its Fourier series, and note that the bns are all zeros. Thus for
x P p0, Lq where f is continuous we have

fpxq “ f˚pxq “ a0

2
`

8ÿ

n“1

an cos
nπx

L
,

where an “ 2

L

ż L

0

fpxq cos nπx
L

dx for all n “ 0, 1, 2, 3, ¨ ¨ ¨ .

2˝ Odd half-period extension. We first extend f on the interval p´L,Lq by setting
f˚p´xq :“ ´fpxq, ´L ă x ă 0, and then extend this periodically with period 2L to
get f˚ on the whole of R. The following picture illustrates this.

L 00

f˚f

Now we expand f˚ in its Fourier series, and note that the ans are all zeros. Thus for
x P p0, Lq where f is continuous, we have

fpxq “ f˚pxq “
8ÿ

n“1

bn sin
nπx

L
,

where bn “ 2

L

ż L

0

fpxq sin nπx
L

dx for all n “ 1, 2, 3, ¨ ¨ ¨ .

3.2. Dimensionless form

We will now consider the classical trinity of PDEs, and often we will assume them to
live on the special interval r0, πs, and also set physical constants to 1. We do this in
order to simplify formulae; so that we can focus on the essential things, rather than get
distracted by other superficial stuff. Let us show that there is no loss in generality in
doing this, since it is only a matter of scaling space/time variables.



3.3. Diffusion equation with Dirichlet conditions 55

Consider as a specific example, the diffusion equation

Bu
Bt “ a

B2u
Bx2 , p0 ă x ă L, t ą 0q,

where a is a constant. By defining

x1 “ πx

L
,

we see that when x ranges over p0, Lq, x1 ranges over p0, πq. Then our PDE leads to
the equation5

Bu
Bt “ aπ2

L2

B2u
Bx2

1

, p0 ă x1 ă π, t ą 0q.

Now the ugly constant can also be removed by defining

t1 “ aπ2

L2
t,

so that
Bu
Bt1

“ B2u
Bx2

1

, p0 ă x1 ă π, t1 ą 0q.

We say then that our original equation has been converted into a “dimensionless form”.
(The terminology arises from “dimensional analysis” in mechanics, where all physical
quantities can be expressed in terms of length, mass and time.)

With these preliminaries out of the way, we are now ready to describe the method
of separation of variables for finding PDE solutions.

3.3. Diffusion equation with Dirichlet conditions

We begin by considering the one dimensional homogeneous diffusion equation with
Dirichlet boundary conditions, namely:

Bu
Bt ´ B2u

Bx2 “ 0 p0 ă x ă π, t ą 0q,

up0, tq “ upπ, tq “ 0 pt ą 0q,

upx, 0q “ fpxq p0 ă x ă πq.

One can interpret this equation as a model for heat diffusion in a wall of thickness π,
with much bigger other dimensions, and such that the temperature at either side is 0.
Note that both the PDE and the boundary conditions are homogeneous. That the PDE
is homogeneous means that there are not heat sources or sinks inside the region. We
will assume that the initial value function f is piecewise smooth. We will demonstrate
the method of separation of variables in the following steps.

5Here there is a slight abuse of notation, where instead of u, we should have, strictly speaking, used the function

u1 defined by u1px1, tq :“ upLx1

π
, tq.
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Step 1. Determine all nonzero functions of the form upx, tq “ XpxqT ptq such that

Bu
Bt ´ B2u

Bx2 “ 0 p0 ă x ă π, t ą 0q,

up0, tq “ upπ, tq “ 0 pt ą 0q.

Inserting such a u into the PDE gives

XpxqT 1ptq ´X2pxqT ptq “ 0.

If Xpxq ‰ 0 and T ptq ‰ 0, we obtain

T 1ptq
T ptq “ X2pxq

Xpxq .

The left hand side is a function of t, and the right hand side is a function of x. As they
are equal, it follows that their common value must be a constant. (After all, changing t
doesn’t change the left hand side, while changing x doesn’t change the right hand side!)
Denoting the common constant value by ´λ, we obtain

T 1ptq
T ptq “ X2pxq

Xpxq “ ´λ,

that is,

X2pxq ` λXpxq “ 0,

T 1ptq ` λT ptq “ 0.

The variables x and t are now “separated” in the sense that they satisfy two separate
(ordinary) differential equations. The boundary conditions up0, tq “ upπ, tq “ 0 imply
that Xp0qT ptq “ 0 “ XpπqT ptq. If Xp0q ‰ 0 or Xpπq ‰ 0, then we would obtain
T ” 0, and so also u ” 0. As we are interested in nonzero solutions, we assume that

Xp0q “ Xpπq “ 0.

Step 2. As the above ODE for X comes equipped with boundary conditions, we will
treat this equation first (and it will help us to narrow down the possible values of λ,
as we shall see). We know (see Exercise 0.1) that the solution to X2 ` λX “ 0 has
different character depending on whether λ is positive, negative or 0, and we will show
that nontrivial solutions for X arise only when λ is positive.

1˝ λ ă 0. Then X2 ` λX “ 0 has the general solution given by

Xpxq “ A coshp
a

|λ|xq `B sinhp
a

|λ|xq,
where A,B are constants. Now Xp0q “ 0 gives A ¨1`B ¨0 “ 0, and so A “ 0.
Thus Xpxq “ B sinhp

a
|λ|xq. Next, the boundary condition Xpπq “ 0 gives

B sinhp
a

|λ|πq “ 0. But B is not zero (for otherwise X , being B sinhp
a

|λ|xq
would then be identically zero, and so would u be). So sinhp

a
|λ|πq “ 0, giving

λ “ 0, a contradiction.
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2˝ λ “ 0. Now X2 “ 0, and so Xpxq “ Ax ` B. Then Xp0q “ 0 “ Xpπq give
B “ 0 and Aπ ` B “ 0. Thus A “ 0 “ B, resulting in the trivial solution
again.

3˝ λ ą 0. Then

Xpxq “ A cosp
?
λxq `B sinp

?
λxq

where A,B are constants. The boundary conditions Xp0q “ 0 “ Xpπq give
A “ 0 and

0 “ A cosp
?
λπq `B sinp

?
λπq “ 0 `B sinp

?
λπq “ B sinp

?
λπq.

If B “ 0, we would get X ” 0, again resulting in the trivial solution. So B ‰ 0,
and hence sinp

?
λπq “ 0. As

?
λπ ą 0, we conclude from sinp

?
λπq “ 0 that?

λπ P πN, and so λ “ n2, where n P N. So with

λ “ λn “ n2, n “ 1, 2, 3, ¨ ¨ ¨ ,
the nontrivial solutions are

Xnpxq “ sinpnxq p0 ă x ă π, n “ 1, 2, 3, ¨ ¨ ¨ q.
(In linear algebraic terminology, we say that the differential operator

´ d2

dx2

with homogeneous Dirichlet boundary conditions on the interval r0, πs has the eigen-
functions Xn, with eigenvalues λn “ n2, n “ 1, 2, 3, ¨ ¨ ¨ .)

Next we solve the equation for T , namely T 1ptq ` λT ptq “ 0, where λ “ ´n2,
giving

Tnptq “ cne
´λnt “ cne

´n2t.

Thus the PDE and the boundary conditions (but not yet the initial condition!) are
satisfied by

unpx, tq “ TnptqXnpxq “ cne
´n2t sinpnxq, n “ 1, 2, 3, ¨ ¨ ¨ .

In order that the intial condition is satisfied too, the plan is to take a combination of
these uns, with appropriate cns, and determine these using a Fourier expansion of f .
We will see this in the next step.

Step 3. Build formally the infinite sums

upx, tq “
8ÿ

n“1

unpx, tq “
8ÿ

n“1

TnptqXnpxq “
8ÿ

n“1

cne
´n2t sinpnxq.

It remains to find cn so that the initial condition is satisfied. In order to start with the
given initial value, we put t “ 0 and obtain

fpxq “ upx, 0q “
8ÿ

n“1

cn sinpnxq p0 ă x ă πq.
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Note that each sinpnxq, n P N, is 2π-periodic, and so the right-hand side is the Fourier
series of a 2π-periodic function. Comparing this with the sine series for the odd half-
period 2π-periodic extension of f , we obtain

cn “ 2

π

ż π

0

fpxq sinpnxq dx.

Thus with these values of cns, u given by

upx, tq “
8ÿ

n“1

cne
´n2t sinpnxq,

does satisfy the initial condition.

If we had a finite sum, then we would have been done, thanks to the superposition
principle. Indeed, we could have just said that u satisfies the PDE and the homogeneous
boundary conditions because each of the uns do. But as we have an infinite sum / series
at hand, we must consider convergence issues, and we do so in the next step.

Step 4. From Step 3, we know that for t “ 0, and with piecewise smooth and continuous
data f , the series does converge to fpxq for all 0 ă x ă π. In order to study the
convergence for t ą 0, we investigate the size of the terms. We know that f is bounded,
that is, there is an M such that |fpxq| ď M for 0 ă x ă π. Thus

|cn| “
ˇ̌
ˇ 2
π

ż π

0

fpxq sinpnxq dx
ˇ̌
ˇ ď 2

π

ż π

0

|fpxq|| sinpnxq|dx ď 2

π

ż π

0

M ¨ 1dx “ 2M.

Hence |cne´n2t sinpnxq| ď 2Me´n2t. Now e´n2t ă 1

n2t
, thanks to the inequality

en
2t “ 1 ` n2t

1!
` ¨ ¨ ¨ ą n2t.

So it follows by the Comparison Test that the series for u converges (absolutely).

Since each un satisfies the PDE, it follows that u also satisfies the PDE because it
can be shown that termwise differentiation is allowed in this case, as sketched below.

Proposition 3.2 (Termwise differentiation). If on an interval I

(1)
8ÿ

n“1

fn is pointwise convergent, and

(2)
8ÿ

n“1

f 1
n is uniformly convergent,

then
´ 8ÿ

n“1

fn

¯1
“

8ÿ

n“1

f 1
n on I .

This result from Real Analysis and its proof can be found, for example, in the notes6

on MA203 or [R, Theorem 7.17, p. 152].

6available at http://personal.lse.a.uk/sasane/ma203.pdf
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We will show using this that we can differentiate our series termwise twice with
respect to x and once with respect to t. We will show that the series obtained by
termwise differentiation,

B
Bx :

8ÿ

n“1

ncne
´n2t cospnxq

B2
Bx2 ,

B
Bt :

8ÿ

n“1

´n2cne´n2t sinpnxq

converge uniformly in the strips Sδ :“ tpx, tq : 0 ă x ă π, t ě δu, δ ą 0.

To do this, one can use the “Weierstrass M -test” [R, Theorem 7.10, p.148].

Proposition 3.3. If on an interval I , |fnpxq| ď mn, x P I , n P N, and
8ÿ

n“1

mn converges,

then
8ÿ

n“1

fn converges uniformly on I .

Since in our case the coefficients cn are bounded, the terms satisfy

|n2cne´n2t sinpnxq| ď Mn2e´n2δ pt ě δq.
Using the estimate en

2δ ą n4δ2

2!
, we obtain n2e´n2δ ă 2

δ2n2 , and so from the Weierstrass
M -test, the termwise differentiated series converge uniformly in the strips Sδ , justifying
the termwise differentiation in Sδ . As δ ą 0 was arbitrary, we see that the PDE is
satisfied by u everywhere in the region t ą 0 and 0 ă x ă π:

´ B
Bt ´ B2

Bx2
¯
u “

´ B
Bt ´ B2

Bx2
¯ 8ÿ

n“1

un “
8ÿ

n“1

´ B
Bt ´ B2

Bx2
¯
un “

8ÿ

n“1

0 “ 0.

Remark 3.2 (Regularity of the solution: u P C8!). As a curiosity, note also that along
the same lines as the above proof, we can in fact see that u may be differentiated
arbitrarily many times with respect to x and with respect to t, so that u is a C8

function! This is an example of a “regularity result” mentioned in the preface.

Remark 3.3 (The factor e´n2t). Also we note that the presence of the factor e´n2t was
crucial in the justification of termwise differentiation. Such exponential factors appear
with all types of diffusion problems. In the sequel, we proceed with the knowledge that
the above treatment can be carried out, without actually doing so in each case—so we
will be skipping “Step 4”.

The factor e´n2t also helps the convergence speed. For a fixed t ą 0, the terms go
quickly to 0 as n Ñ 8, and so in numerical calculations one can often get away with
using just the first few terms of the series for u.

Thus we have solved the initial boundary value problem. Are there any other
solutions? The answer is no, thanks to the unqiueness shown in §2.2.2.
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The method that we have used is called the Fourier method or the method of sep-
aration of variables. From the calculations above, we remember that the solution to
the homogeneous diffusion equation with homogeneous Dirichlet conditions can be ex-
pressed as a sine series. This can be used to solve concrete problems, and instead of
doing separation of variables from scratch, we assume a solution in the form of a sine
series. The following example illustrates this.

Example 3.3. A rod of length L is insulated, and heated uniformly to 100˝C. At time
t “ 0, the endpoints are cooled down to 0˝C, and are kept at this temperature (for
example by touching the ends by ice cubes). We wish to determine how the temperature
evolves in time. Thus we have

Bu
Bt ´ a

B2u
Bx2 “ 0 p0 ă x ă L, t ą 0q,

up0, tq “ upL, tq “ 0 pt ą 0q,

upx, 0q “ 100 p0 ă x ă Lq,

where a is a constant. As we have homogeneous Dirichlet conditions, the solution has
the form

upx, tq “
8ÿ

n“1

unptq sin nπx
L

.

Putting this in the PDE gives
8ÿ

n“1

´
u1
nptq ` an2π2

L2
unptq

¯
sin

nπx

L
“ 0.

Thus uniqueness of coefficients in the Fourier expansion gives

u1
nptq ` an2π2

L2
unptq “ 0, n “ 1, 2, 3, ¨ ¨ ¨ .

These have the solutions unptq “ cne
´ an2π2t

L2 , n “ 1, 2, 3, ¨ ¨ ¨ . Thus

upx, tq “
8ÿ

n“1

cne
´ an2π2t

L2 sin
nπx

L
.

Putting t “ 0 gives 100 “ upx, 0q “
8ÿ

n“1

cn sin
nπx

L
(0 ă x ă L). Hence

cn “ 2

L

ż L

0

100 sin
nπx

L
dx “ 200

`
1 ´ cospnπq

˘

nπ
“ 200

`
1 ´ p´1qn

˘

nπ
.

Consequently, the temperature of the rod is given by

upx, tq “
8ÿ

n“1

200
`
1 ´ p´1qn

˘

nπ
e

´ an2π2t

L2 sin
nπx

L
.

Here is a plot of the graph of u. The calculations have been done for iron, for which
a “ 1.5 ¨ 10´5 m2{s, and with L “ 1 m.
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We have also sketched the temperature profiles up¨, tq as functions of x for various
different fixed values of t.

Figure 1. The temperature profiles at times t equal to 1 minute, 10 minutes, 20 minutes,
1 hour, 2 hours and 5 hours.

We note that the temperature u converges to 0 as time increases, as expected physically
(since the endpoints are maintained at temperature 0). Also, the bigger the constant a
is, the faster this happens. ♦
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Exercise 3.10. Solve

Bu
Bt ´ B2u

Bx2 “ 0 p0 ă x ă 1, t ą 0q,

up0, tq “ up1, tq “ 0 pt ą 0q,

upx, 0q “ x p0 ă x ă 1q.

You may use the Fourier series expansion for an odd half-period 2-periodic extension of upx, 0q:

upx, 0q “ x “
8ÿ

n“1

2p´1qn`1

πn
sinpnπxq p0 ă x ă 1q.

Exercise 3.11. Solve

Bu
Bt ´ B2u

Bx2 “ 0 p0 ă x ă 1, t ą 0q,

up0, tq “ up1, tq “ 0 pt ą 0q,

upx, 0q “ sinpπxq ` 2 sinp3πxq p0 ă x ă 1q.

Exercise 3.12 (Separation of variables). Find solutions u of the form upx, yq “ XpxqY pyq for
the following:

(1) ux ` uy “ 0

(2) ux ` uy “ 2px` yqu
(3) uxy ´ u “ 0.

3.4. Diffusion equation with Neumann conditions

We shall now change the boundary conditions from Dirichlet to Neumann and do the
corresponding calculations for the initial boundary value problem

Bu
Bt ´ B2u

Bx2 “ 0 p0 ă x ă π, t ą 0q,

uxp0, tq “ uxpπ, tq “ 0 pt ą 0q,

upx, 0q “ fpxq p0 ă x ă πq.

For the case of the diffusion of heat in a rod, these boundary conditions have the physical
meaning that the endpoints are completely insulated (so that the “heat flow/transfer” ux
is 0 at these points). Assuming that upx, tq “ XpxqT ptq gives

X2pxq ` λXpxq “ 0,

T 1ptq ` λT ptq “ 0.

The boundary conditions give

X 1p0q “ X 1pπq “ 0.

We consider the three cases:
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1˝ λ ă 0. Then Xpxq “ A coshp
a

|λ|xq ` B sinhp
a

|λ|xq for some constants

A,B. So X 1pxq “ A
a

|λ| sinhp
a

|λ|xq ` B
a

|λ| coshp
a

|λ|xq. The bound-

ary condition X 1p0q “ 0 gives B
a

|λ| “ 0 and so B “ 0. Hence we have

X 1pxq “ A
a

|λ| sinhp
a

|λ|xq. The boundary condition X 1pπq “ 0 now gives

A
a

|λ| sinhp
a

|λ|πq “ 0. If A “ 0, then X ” 0, and u ” 0. So A ‰ 0 and
hence λ “ 0, which is a contradiction.

2˝ λ “ 0. Then Xpxq “ Ax`B for some A,B. Then X 1pxq “ A. The boundary
conditions give A “ 0. So B can be arbitrary. Thus for λ “ 0, we obtain a
nontrivial solution,

X0pxq “ 1,

and its multiples.

3˝ λ ą 0. Then Xpxq “ A cosp
?
λxq `B sinp

?
λxq for some constants A,B. We

have X 1pxq “ ´A
?
λ sinp

?
λxq `

?
λB cosp

?
λxq. The boundary conditions

give

0 “ X 1p0q “
?
λB ùñ B “ 0, and using this,

0 “ X 1pπq “ ´
?
λA sinp

?
λπq ` 0 ùñ pA “ 0 or λ “ n2, n P Nq.

So the nontrivial solutions are obtained when λ “ n2, n “ 1, 2, 3, ¨ ¨ ¨ , and then

Xnpxq “ cospnxq, n “ 1, 2, 3, ¨ ¨ ¨ .

Summarizing: the differential operator ´ d2

dx2 with homogeneous Neumann conditions
on r0, πs have eigenfunctions

Xnpxq “ cospnxq,
corresponding to the eigenvalues λn “ n2, n “ 0, 1, 2, 3, ¨ ¨ ¨ . Note that the case λ “ 0

has been included in the above by starting from n “ 0.

Now let us look at the t variable. With λ “ n2, we have

Tnptq “ cne
´n2t, n “ 0, 1, 2, 3, ¨ ¨ ¨ .

Thus the PDE and the boundary conditions are satisfied by

unpx, tq “ XnpxqTnptq “ cne
´n2t cospnxq, n “ 0, 1, 2, 3, ¨ ¨ ¨ .

Now we build a formal sum

upx, tq “
8ÿ

n“0

unpx, tq “ c0 `
8ÿ

n“1

cne
´n2t cospnxq.

Using the initial condition gives

fpxq “ c0 `
8ÿ

n“0

cn cospnxq.
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Using an even half period extension of f , we have that

c0 “ 1

π

ż π

0

fpxqdx,

cn “ 2

π

ż π

0

fpxq cospnxq dx, n “ 1, 2, 3, ¨ ¨ ¨ .

In the same way as the Dirichlet case, one can show that the series converges and gives
the unique solution to the problem.

In this case, we note that the solution consists of a stationary, time independent

part (n “ 0), and transient parts (n ě 1). The transient parts contain the factor e´n2t,
n “ 1, 2, 3, ¨ ¨ ¨ , and converge to 0 as t Ñ 8. The stationary part is constant, equal to

c0 “ 1

π

ż π

0

fpxqdx,

which is the “average value” of the initial condition! For an insulated rod this means
that the temperature after a long time is approximately constant along the rod (and the
constant value is the average value of the initial temperature). This is what one expects
to happen physically.

An important conclusion of the above calculations is that in the case of homoge-
neous Neumann condition at both ends, one can write the solution to the diffusion
equation as a cosine series.

Exercise 3.13. Solve

Bu
Bt ´ B2u

Bx2 “ 0 p0 ă x ă 1, t ą 0q,

uxp0, tq “ uxp1, tq “ 0 pt ą 0q,

upx, 0q “ x p0 ă x ă 1q.

You may use the Fourier series expansion for an even half-period 2-periodic extension of upx, 0q:

upx, 0q “ x “ 1

2
´ 4

π2

8ÿ

n“0

cos
`
p2n` 1qπx

˘

p2n` 1q2 p0 ă x ă 1q.

Exercise 3.14 (Average temperature). Consider the Neumann problem for the diffusion equation,

Bu
Bt ´ a

B2u

Bx2 “ 0 p0 ă x ă L, t ą 0q,

uxp0, tq “ uxpL, tq “ 0 pt ą 0q,

upx, 0q “ fpxq p0 ă x ă Lq.

Define the average temperature by Tavptq :“
1

L

ż L

0

upx, tqdx.

Show that the average temperature does not change with time. What is the constant value in
terms of the initial condition f ?
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Exercise 3.15 (Uniqueness). Consider the Neumann problem for the diffusion equation,

Bu
Bt ´ B2u

Bx2 “ v p0 ă x ă 1, t ą 0q,

uxp0, tq “ αptq, uxp1, tq “ βptq pt ą 0q,

upx, 0q “ fpxq p0 ă x ă 1q.

Define the energy by Eptq :“ 1

2

ż 1

0

`
upx, tq

˘2
dx.

Show by energy considerations that the above initial boundary value problem has a unique
solution.

3.5. Wave equation with Dirichlet conditions

Let us now consider the following problem, describing the wave equation in one dimen-
sion:

B2u
Bt2 ´ c2

B2u
Bx2 “ 0 p0 ă x ă L, t ą 0q,

up0, tq “ upL, tq “ 0 pt ą 0q,

upx, 0q “ fpxq and utpx, 0q “ gpxq p0 ă x ă Lq.
This may describe the motion of a thin elastic string which is not acted upon by any
force. The boundary conditions mean that the ends of the string are kept fixed. Among
the initial conditions, the function f gives the initial shape of the string, while g gives
the initial speed. We had shown the uniqueness of the solution in Subsection 2.2.1.

f

0 L

Once again, we use the method of separation of variables. Set

upx, tq “ XpxqT ptq.
By putting this into the PDE, we get XT 2 “ c2X2T. So

X2

X
“ 1

c2
T 2

T
“ ´λ,

where λ is a constant. Thus we arrive at

X2 ` λX “ 0,

T 2 ` c2λT “ 0.
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The boundary conditions give Xp0q “ XpLq “ 0. So we arrive at exactly the same
equation for X with the same boundary conditions as in Section 3.3. Proceeding in the
same manner, we see that the nontrivial solutions exist only in the case when λ ą 0,
and then

Xpxq “ A cosp
?
λxq `B sinp

?
λxq.

The boundary conditions give

0 “ Xp0q “ A,

0 “ XpLq “ B sinp
?
λLq ùñ pB “ 0 or

?
λL “ nπ, n P Nq

So we see that the nontrivial solutions to X2 ` λX “ 0 with the boundary conditions
Xp0q “ XpLq “ 0 exist when

λ “ λn “
´nπ
L

¯2

, n “ 1, 2, 3, ¨ ¨ ¨ ,

and then the solutions are

Xnpxq “ sin
nπx

L
, n “ 1, 2, 3, ¨ ¨ ¨ .

Next we solve the ODE T 2 ` c2λT “ 0, where λ “ λn “
´nπ
L

¯2

, giving

Tnptq “ an cos
nπct

L
` bn sin

nπct

L
.

Analogous to the diffusion equation, we form the formal sum

upx, tq “
8ÿ

n“1

XnpxqTnptq “
8ÿ

n“1

´
an cos

nπct

L
` bn sin

nπct

L

¯
sin

nπx

L
. (3.1)

Here we must choose the constants an and bn so that the initial conditions are satisfied.
Putting t “ 0 in the expressions for u and ut gives

fpxq “ upx, 0q “
8ÿ

n“1

an sin
nπx

L
,

gpxq “ utpx, 0q “
8ÿ

n“1

bn
nπc

L
sin

nπx

L
.

The second line above is obtained by formally differentiating the series for u termwise
with respect to t. We get the coefficients an, bn by expanding f, g in their respective
(odd half period extension) sine series. Thus

an “ 2

L

ż L

0

fpxq sin nπx
L

dx,

bn “ L

nπc
¨ 2

L

ż L

0

gpxq sin nπx
L

dx.

With these coefficients, (3.1) is the unique solution to the initial boundary value problem.
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We observe that just as in the diffusion equation, the homogeneous Dirichlet conditions
at both ends give rise to a solution in the form of a sine series. With this knowledge, we
can directly assume a solution to the problem in the form of a sine series, and perform
calculations in specific examples, as we shall see below in the case of a plucked string.

Remark 3.4. The careful reader is probably awaiting an explanation for the validity
of the termwise differentiation in (3.1) so that one can check that the wave equation is
solved by this u. In this series, the coefficients are of the same order of size as the
coefficients for the initial condition functions. There is no reason to expect that the
series in (3.1) would be termwise differentiable unless such a thing happens with the
series for the functions in the initial conditions. So the function in (3.1) is not a solution
to the problem in the classical sense. Despite this, (3.1) is the physical solution to the
wave equation. The mathematical explanation of this is that the function satisfies the
wave equation with derivatives in the sense of distributions, and we will elaborate on this
in Chapter 5.

Remark 3.5. The various steps in the solution of the wave equation can be interpreted
physically. The separated solution

TnptqXnpxq “ Tnptq sin nπ
L
x

represents a vibration where the “form” or “shape” of the string in the x direction stays
the same over time, while its amplitude varies periodically in time. Such a vibration is
called a standing wave or a normal mode. The frequency of Tn,

ωn “ nπc

L
,

is called the natural frequency. In the pictures below, the standing waves have been
plotted for n “ 1, 2, 3. The points where Xn “ 0 are called nodes.

Figure 2. Standing wave profiles for n “ 1, 2, 3.
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The idea behind the solution can be expressed physically by saying that the wave motion
of the string is the superposition of standing waves.

As is well-known, a vibrating string, for example in a guitar, often produces a
sound. How we perceive it depends on what simple harmonic vibrations are involved.
The fundamental frequency of the string corresponds to the standing wave with n “ 1:

ω1 “ πc

L
.

The other n values are called overtones. In what degree these appear depends on the
Fourier coefficients in (3.1). The size of the coefficients determines the intensity of the
corresponding tone. As we have seen above, this depends on the initial conditions.

Let us do some computations in some musical examples.

Example 3.4 (Guitar). Consider a plucked guitar string of length L, which is lifted up
to a height a at a point having distance L{4 from one end point, and let go from rest
(so that the initial speed is 0). At the initial moment, the string profile looks like this:

a

L{4 L x0

Let us determine the evolution of the displacement u of the string. u is the solution to

B2u
Bt2 ´ c2

B2u
Bx2 “ 0 p0 ă x ă L, t ą 0q,

up0, tq “ upL, tq “ 0 pt ą 0q,

upx, 0q “ fpxq and utpx, 0q “ 0 p0 ă x ă Lq,

where

fpxq “

$
’’&
’’%

4a

L
x if 0 ď x ď L

4
,

4a

3L
pL ´ xq if

L

4
ď x ď L.

Since we have homogeneous Dirichlet boundary conditions, we expect a solution in the
form of a sine series:

upx, tq “
8ÿ

n“1

´
an cos

nπct

L
` bn sin

nπct

L

¯
sin

nπx

L
.

The coefficients an, bn are determined from the initial conditions. As g ” 0, it follows
that bn “ 0, n “ 1, 2, 3, ¨ ¨ ¨ . On the other hand, one can calculate

an “ 2

L

ż L

0

fpxq sin nπx
L

dx “ 32a

3n2π2
sin

nπ

4
, n “ 1, 2, 3, ¨ ¨ ¨ .



3.5. Wave equation with Dirichlet conditions 69

Summarizing, the solution is given by

upx, tq “
8ÿ

n“1

32a

3n2π2
sin

nπ

4
cos

nπct

L
sin

nπx

L
.

The figure below shows the shape of the string at uniformly spaced time instances.

In the following picture , we have shown the standing waves for n “ 1, 2, 3, 4, 5, together
with their sum (bottom picture) at various time instances. ♦

Remark 3.6. In the case of the guitar string, there are no additional forces, which give
a homogeneous wave equation. In this case, one talks of free vibrations. On the other
hand, if the string is made to vibrate with a bow, as is the case in a violin, one has
forced vibrations, and one has an inhomogeneous wave equation at hand. In this case,
there appear additional terms (due to the particular solution) besides the terms in (3.1).
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Example 3.5 (Piano). Consider a taut piano string of length L and density per unit
length ρ, getting an impulse P from a hammer blow, where the width of the hammer is
b, and the midpoint of the hammer is at x “ a along the string. In this case, the initial
conditions become

upx, 0q “ 0,

utpx, 0q “

$
’&
’%

P

ρb
if |x´ a| ă b

2
,

0 otherwise.

The solution is given by (3.1), where the coefficients are

an “ 0,

bn “ ´2LP

bρc

1

n2π2

ˆ
cos

nπ

L

´
a` b

2

¯
´ cos

nπ

L

´
a ´ b

2

¯˙

“ 4LP

bρc

1

n2π2

´
sin

nπa

L

¯´
sin

nπb

2L

¯
.

The pictures below show the profile of the string at various time instances. In the left
pictures, a is small, while in the right pictures, a “ L{2.
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In the left pictures, the pulse seems to travel left to right, gets reflected from the right
end, propagates to the left end, gets reflected there, and continues in this manner. In
the right pictures, the wave spreads to both ends, gets reflected at both ends, and this
process continues.

One can see how the sound depends on a (where the hammer hits), and on b (the
width of the hammer). For example, when one plays a1 (440 Hz), one also gets overtones:

n “ 1 n “ 2 n “ 3 n “ 4 n “ 5 n “ 6 n “ 7

440 Hz 880 Hz 1320 Hz 1760 Hz 2200 Hz 2640 Hz 3080 Hz
a1 a2 e1 a3 c4 e4 g4

To a musical ear, among these overtones, the overtone n “ 7 sounds dissonant with
the n “ 1 note, while the others are perceived to form a pleasing combination. So it is
desirable to suppress this n “ 7 overtone. This can be achieved by simply making the
coefficient b7 “ 0! To this end, we could take a “ L{7, and then we see that one of the
factors in the term b7, namely

sin
nπa

L
“ sin

nπpL{7q
L

“ sin
πn

7

pn“7q“ 0,

so that b7 “ 0, as desired. Note that when we take a “ L{7, we are hitting the string at
a node of the 7th overtone. ♦

In all of our examples of the vibrating string, we only considered fixed endpoints,
that is homogeneous Dirichlet boundary conditions. In the case of acoustic vibrations,
for example in an organ pipe, one also encounters Neumann boundary conditions.
Just as with the homogeneous Neumann conditions for the diffusion equation, one
gets a solution as a cosine series also for the wave equation with Neumann boundary
conditions.

Exercise 3.16. Solve

B2u

Bt2 ´ B2u

Bx2 “ 0 p0 ă x ă π{2, t ą 0q,

up0, tq “ upπ{2, tq “ 0 pt ą 0q,

upx, 0q “ 0 and utpx, 0q “ x cosx p0 ă x ă π{2q.

You may use the Fourier series expansion for an odd half-period π-periodic extension of upx, 0q:

utpx, 0q “ x cosx “
8ÿ

n“1

16

π
p´1qn`1

n

p4n2 ´ 1q2 sinp2nxq p0 ă x ă π{2q.

Use Maple to plot the graphs of up¨, tq at time instances

t “ 0,
π

4
,
π

3
,
3π

4
, π

first with just one term of the solution series, and next with 333 terms. Can you explain
mathematically why are the plots almost the same by noting the Fourier coefficients of the initial
condition?
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3.5.1. D’Alembert’s solution. One can express the solution to the wave equation with
Dirichlet boundary conditions in a somewhat simpler form, without going through the
Fourier series malarchy. Consider the problem

B2u
Bt2 ´ c2

B2u
Bx2 “ 0 p0 ă x ă L, t ą 0q,

up0, tq “ upL, tq “ 0 pt ą 0q,

upx, 0q “ fpxq and utpx, 0q “ gpxq p0 ă x ă Lq.

Let the odd half period 2L-periodic extension of f , g be denoted by f˚ and g˚, respec-
tively. Then the solution to the above is given by d’Alembert’s Formula,

upx, tq “ f˚px ´ ctq ` f˚px` ctq
2

` 1

2c

ż x`ct

x´ct

g˚pξqdξ.

We can check this by direct differentiation. We have

Bu
Bt “ B

Bt
´f˚px´ ctq ` f˚px ` ctq

2
` 1

2c

ż x`ct

x´ct

g˚pξqdξ
¯

“ ´cf 1
˚px´ ctq ` cf 1

˚px ` ctq
2

` 1

2c
¨
`
g˚px` ctq ¨ c ´ g˚px ´ ctq ¨ p´cq

˘

“ c

2

`
f 1

˚px` ctq ´ f 1
˚px´ ctq

˘
` 1

2

`
g˚px ` ctq ` g˚px´ ctq

˘
.

Differentiating again with respect to t, we obtain

B2u
Bt2 “ c2

2

`
f2

˚px ` ctq ` f2
˚px ´ ctq

˘
` c

2

`
g1

˚px` ctq ´ g1
˚px ´ ctq

˘
. (3.2)

Similarly, by differentiating u with respect to x we obtain

Bu
Bx “ B

Bx
´f˚px ´ ctq ` f˚px` ctq

2
` 1

2c

ż x`ct

x´ct

g˚pξqdξ
¯

“ f 1
˚px ´ ctq ` f 1

˚px ` ctq
2

` 1

2c
¨
`
g˚px` ctq ´ g˚px ´ ctq

˘
.

Differentiating again with respect to x, we obtain

B2u
Bx2 “ 1

2

`
f2

˚px ` ctq ` f2
˚px ´ ctq

˘
` 1

2c

`
g1

˚px` ctq ´ g1
˚px ´ ctq

˘
. (3.3)

It follows from (3.2) and (3.3) that
B2u
Bt2 ´ c2

B2u
Bx2 “ 0.

Let us check that the boundary conditions are satisfied. Note that

up0, tq “ f˚p´ctq ` f˚pctq
2

` 1

2c

ż ct

´ct

g˚pξqdξ “ 0 ` 0 “ 0

since f˚, g˚ are odd. Now we would like to check upL, tq “ 0 too. To this end, we make
the following observations:
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(1) Using the oddness and 2L-periodicity of f˚, we have

f˚pL ` ctq “ f˚pL ` ct ´ 2Lq “ f˚pct ´ Lq “ f˚p´pL ´ ctqq “ ´f˚pL´ ctq.
(2) The map η ÞÑ g˚pη ` Lq is odd since g˚ is odd and 2L-periodic:

g˚p´η`Lq “ g˚p´η `L´2Lq“ g˚p´η ´Lq“ g˚p´pη `Lqq“ ´g˚pη ` Lq.

So we have

ż L`ct

L´ct

g˚pξqdξ pη“ξ´Lq“
ż ct

´ct

g˚pη ` Lqdη “ 0.

Hence upL, tq “ 1

2

`
f˚pL´ ctq ` f˚pL` ctqloooooooooooooomoooooooooooooon

“0 by p1q

˘
` 1

2c

ż L`ct

L´ct

g˚pξqdξ
looooooomooooooon

“0 by p2q

“ 0 ` 0 “ 0.

Finally, we can check if the initial conditions is satisfied. We have

upx, 0q “ f˚pxq ` f˚pxq
2

` 1

2c

ż x

x

g˚pξqdξ “f˚pxq ` 0 “ f˚pxq “ fpxq p0 ă x ă Lq.

Also, from our previous calculation, we have

Bu
Bt px, 0q “ c

2

`
f 1

˚px ` 0q ´ f 1
˚px ´ 0q

˘
` 1

2

`
g˚px` 0q ` g˚px´ 0q

˘

“ 0 ` g˚pxq “ gpxq p0 ă x ă Lq.

When the initial velocity g is zero, d’Alembert’s solution takes on the simpler form

upx, tq “ f˚px ´ ctq ` f˚px ` ctq
2

,

which has an interesting geometric interpretation. For a fixed t, the graph of f˚p¨ ´ ctq
is just a shifted version of the graph of f˚ by ct units to the right. As t increases, the
graph travels to the right, representing a travelling wave, moving to the right with a
speed c. Similarly the graph of f˚p¨ ` ctq with increasing t represents a travelling wave
moving to the left with speed c. And the solution of the wave equation is an average of
these two travelling waves moving in opposite directions, and the shape of the wave is
determined by the initial shape of the string. Revisit the pictures shown in Example 3.4.

Exercise 3.17. Consider the wave equation with Dirichlet boundary conditions and with initial
speed 0:

B2u

Bt2 ´ c2
B2u

Bx2 “ 0 p0 ă x ă L, t ą 0q,

up0, tq “ upL, tq “ 0 pt ą 0q,

upx, 0q “ fpxq and utpx, 0q “ 0 p0 ă x ă Lq.

Use the trigonometric identity 2psinAqpcosBq “ sinpA´Bq`sinpA`Bq to derive d’Alembert’s
Formula from the solution given by the separation of variables method.
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Exercise 3.18 (Characteristic Parallelogram). The lines given by the equations x´ct “ constant
and x ` ct “ constant are called characteristic lines in the domain D :“ p0, Lq ˆ p0,8q Ă R2

for the wave equation with Dirichlet boundary conditions:

B2u

Bt2 ´ c2
B2u

Bx2 “ 0 p0 ă x ă L, t ą 0q,

up0, tq “ upL, tq “ 0 pt ą 0q,

upx, 0q “ fpxq and utpx, 0q “ gpxq p0 ă x ă Lq.

A parallelogram in the domain D which has sides along characteristic lines is called a charac-
teristic parallelogram.

t D

L x0

lines of the form
x´ ct “ constant

lines of the form
x` ct “ constant

P1

Q1

P2

Q2

Show that if pP1, P2q and pQ1, Q2q are pairs of opposite vertices of a characteristic parallelo-
gram, then the solution u satisfies

upP1q ` upP2q “ upQ1q ` upQ2q.

Hint: With Gpxq :“
ż x

0

g˚pξqdξ, we have
ż x`ct

x´ct

g˚pξqdξ “ Gpx ` ctq ´Gpx ´ ctq.

3.6. Laplace equation

Our next example uses the separation of variables method for Laplace’s equation in
a rectangle with homogeneous Dirichlet boundary conditions on two opposite sides.
Once we know this case, we can handle the general case by superposition.

Example 3.6. Consider the problem of finding the steady state / equilibrium tempera-
ture upx, yq in a non-insulated building where the temperature outside is 0˝C and the
temperature in the ground under the house is given by a sine function, as shown in the
cross section of the building:
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h

0

0

0

0

T0 sin
πx
b b

This is described by

B2u
Bx2 ` B2u

By2 “ 0 p0 ă x ă b, 0 ă y ă hq,

up0, yq “ upb, yq “ 0 p0 ă y ă hq,

upx, 0q “ T0 sin
πx
b

and upx, hq “ 0 p0 ă x ă bq.

With

upx, yq “ XpxqY pyq,
we get from the PDE that X2Y `XY 2 “ 0, and so

X2

X
“ ´Y 2

Y

from which we conclude that their common value must be a constant, say ´λ. Thus we
arrive at the equations

X2 ` λX “ 0,

Y 2 ´ λY “ 0.

The boundary conditions for X are Xp0q “ Xpbq “ 0. In the x-direction, we thus
have the same situation as the diffusion equation with homogeneous Dirichlet boundary
conditions. We know then that for nontrivial solutions to exist, we must have

λ “ λn :“
´nπ
b

¯2

, n “ 1, 2, 3, ¨ ¨ ¨ .

The solutions are then given by

Xnpxq “ sin
nπx

b
.

Next we solve the equation in the y-direction, Y 2 ´ λY “ 0, for λ “ pnπ{bq2. The
general solution is7

Ynpyq “ ane
nπy
b ` bne

´nπy
b .

7One could equivalently use hyperbolic functions here.
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The the temperature distribution can be written in the form

upx, yq “
8ÿ

n“1

YnpyqXnpxq “
8ÿ

n“1

`
ane

nπy
b ` bne

´nπy
b

˘
sin

nπx

b
.

It remains to choose an and bn so that the conditions at y “ 0 and y “ h are satisfied.
These give

upx, 0q “ T0 sin
πx

b
“

8ÿ

n“1

pan ` bnq sin nπx
b
,

upx, hq “ 0 “
8ÿ

n“1

`
ane

nπh
b ` bne

´nπh
b

˘
sin

nπx

b
.

By the uniqueness of coefficients in Fourier expansions, we obtain

a1 ` b1 “ T0,

an ` bn “ 0, n “ 2, 3, 4, ¨ ¨ ¨ ,
ane

nπh
b ` bne

´nπh
b “ 0, n “ 1, 2, 3, ¨ ¨ ¨ .

From the equations

an ` bn “ 0,

ane
nπh
b ` bne

´nπh
b “ 0,

for n “ 2, 3, 4, ¨ ¨ ¨ , we conclude that

an “ bn “ 0, n “ 2, 3, 4, ¨ ¨ ¨ .

On the other hand, from the equations

a1 ` b1 “ T0,

a1e
πh
b ` b1e

´πh
b “ 0,

we obtain

a1 “ ´T0
e´πh

b

e
πh
b ´ e´πh

b

and b1 “ T0
e

πh
b

e
πh
b ´ e´πh

b

.

Substituting these in the series for u, we obtain

upx, yq “ T0
e

πph´yq
b ´ e´πph´yq

b

e
πh
b ´ e´πh

b

sin
πx

b
“ T0

sinh
πph ´ yq

b

sinh
πh

b

sin
πx

b
.

With the help of this expression, we can determine the “isotherms” (which are level
curves of the temperature u). One can also plot the graph of u.
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We observe that in homogeneous Dirichlet problems in the x-direction have a solution
in the form of a sine series. So one can also solve the problem alternatively by assuming
this form for the solution, and calculating the y-dependent coefficients. ♦

Exercise 3.19. Solve

B2u

Bx2 ` B2u

By2 “ 0 p0 ă x ă 1, 0 ă y ă 1q,

up0, yq “ up1, yq “ 0 p0 ă y ă 1q,

upx, 0q “ 2 sinpπxq and upx, 1q “ ´ sinp2πxq p0 ă x ă 1q.

3.7. p˚q Inhomogeneous Dirichlet and Neumann problems

So far, we have looked at the separation of variables method for

‚ homogeneous PDEs, and

‚ homogeneous boundary conditions.

We shall now make a few remarks to show how one can also handle the cases when we
don’t have such a situation, and we will do so by just considering a few examples.

3.7.1. Inhomogeneous boundary value problems. As a typical case, we consider the
diffusion equation

Bu
Bt ´ B2u

Bx2 “ 0 p0 ă x ă π, t ą 0q,

up0, tq “ A and upπ, tq “ B pt ą 0q,

upx, 0q “ fpxq p0 ă x ă πq.

If A ‰ 0 or B ‰ 0, then the (Dirichlet) boundary conditions are not homogeneous,
and we can’t directly use the Fourier method. To handle this, we will bring this to
the homogeneous boundary value case by subtracting a time-independent “stationary /
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steady-state / equilibrium” temperature distribution, x ÞÑ ustatpxq, such that it satisfies
the differential equation and the boundary conditions:

u2
statpxq “ 0 p0 ă x ă πq,
ustatp0q “ A and ustatpπq “ B.

Thus

ustatpxq “ A` B ´A

π
x,

as shown in the picture below.

A

B

π0 x

ustat

Now set
vpx, tq “ upx, tq ´ ustatpxq.

Then

Bv
Bt “ Bu

Bt ,
B2v
Bx2 “ B2u

Bx2 ,

vp0, tq “ up0, tq ´ ustatp0q “ A ´A “ 0,

vpπ, tq “ upπ, tq ´ ustatpπq “ B ´B “ 0,

vpx, 0q “ upx, 0q ´ ustatpxq “ fpxq ´ ustatpxq “: rfpxq,

and so v satisfies

Bv
Bt ´ B2v

Bx2 “ 0 p0 ă x ă π, t ą 0q,

vp0, tq “ 0 and vpπ, tq “ 0 pt ą 0q,

vpx, 0q “ rfpxq p0 ă x ă πq.

But this new problem for v has homogeneous boundary conditions (albeit with a different,

but known initial rf ). This can be solved as before, and so we can also find u:

upx, tq “ ustatpxq ` vpx, tq “ ustatpxq `
8ÿ

n“1

cne
´n2t sinpnxq.
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The term vpx, tq depends on the initial condition (as opposed to ustat, which doesn’t),
and is called the transient solution. For the diffusion equation, the transient solution

contains the factors e´n2t with n ě 1, and goes to 0 as t Ñ 8. The temperature
distribution thus approaches the stationary solution ustat as t Ñ 8.

Even more generally, one could have boundary conditions that are time dependent,
that is,

up0, tq “ Aptq and upπ, tq “ Bptq pt ą 0q.
Then there does not exist a time independent solution to the differential equation
satisfying the boundary conditions. Nevertheless, the problem can be handled in a
similar manner as the above treatment. Define

rupx, tq “ Aptq ` Bptq ´Aptq
π

x,

vpx, tq “ upx, tq ´ rupx, tq.

Then the boundary conditions for v do become homogeneous:

vp0, tq “ up0, tq ´ rup0, tq “ Aptq ´Aptq “ 0,

vpπ, tq “ upπ, tq ´ rupπ, tq “ Bptq ´Bptq “ 0.

However, now the PDE becomes inhomogeneous:

Bv
Bt ´ B2v

Bx2 “ Bu
Bt ´ B2u

Bx2 ´
´Bru

Bt ´ B2ru
Bx2

¯
“ 0 ´

´Bru
Bt ´ 0

¯
“ ´Bru

Bt .

How one can solve inhomogeneous equations is discussed in the next subsection.

3.7.2. Inhomogeneous PDEs. Consider again as an illustrative example, the diffusion
equation problem

Bu
Bt ´ B2u

Bx2 “ wpx, tq p0 ă x ă π, t ą 0q,

up0, tq “ upπ, tq “ 0 pt ą 0q,

upx, 0q “ fpxq p0 ă x ă πq.

Owing to the boundary conditions, we expect a solution upx, tq which for fixed t can
be expanded as a sine series. So let us write

upx, tq “
8ÿ

n“1

unptq sinpnxq.

The functions w and f can also be expanded into sine series:

wpx, tq “
8ÿ

n“1

wnptq sinpnxq,

fpxq “
8ÿ

n“1

fn sinpnxq.



80 3. Separation of variables

Substituting this into the PDE gives us formally that

8ÿ

n“1

`
u1
nptq ` n2unptq

˘
sinpnxq “

8ÿ

n“1

wnptq sinpnxq.

Uniqueness of the Fourier series coefficients gives

u1
nptq ` n2unptq “ wnptq, n “ 1, 2, 3, ¨ ¨ ¨ .

The initial condition gives

unp0q “ fn, n “ 1, 2, 3, ¨ ¨ ¨ .

From the above system of ODEs and with the initial conditions, we can find out unp¨q
for n “ 1, 2, 3, ¨ ¨ ¨ . This determines the u as well.

In the case when one has a time independent right hand side w “ wpxq, then one
can also solve the equation alternatively by subtracting a time independent particular
solution

u “ ustatpxq
which satisfies the differential equation and the boundary conditions. One first find ustat
by solving

´u2
statpxq “ wpxq,

ustatp0q “ ustatpπq “ 0.

Next, set

vpx, tq :“ upx, tq ´ ustatpxq.
Then v satisfies

Bv
Bt ´ B2v

Bx2 “ Bu
Bt ´ B2u

Bx2 ´
´Bustat

Bt ´ B2ustat
Bx2

¯
“ w ´ p0 ` wq “ 0,

that is, v satisfies the homogeneous equation

Bv
Bt ´ B2v

Bx2 “ 0

with homogeneous boundary conditions. So using our separation of variables method,
we can determine v, and hence also u. Just as in the previous subsection, again the
transient part vpx, tq dies out as t increases, and the solution upx, tq approaches the
stationary solution ustatpxq.

This solution method is an application of the well-known principle

u “ uhom ` upart,

with the homogeneous solution uhom “ v and the particular solution upart “ ustat, for
solving linear equations.
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Exercise 3.20 (Duhamel’s Principle). For s ě 0, let px, t, sq ÞÑ vpx, t, sq be the solution of the
following initial boundary value problem (which depends on the parameter s):

vt ´ vxx “ 0 p0 ă x ă L, t ą sq,

vp0, t, sq “ 0 “ vpL, t, sq pt ě sq,

vpx, s, sq “ F px, sq p0 ď x ď Lq.

Prove that u given by upx, tq “
ż t

0

vpx, t, sqds is a solution of the inhomogeneous problem

ut ´ uxx “ F px, tq p0 ă x ă L, t ą 0q,

up0, tq “ 0 “ upL, tq pt ě 0q,

upx, 0q “ 0 p0 ď x ď Lq.

Hint: Use Leibniz’s Integral Rule saying that if px, tq ÞÑ ϕpx, tq is a function such that ϕt exists
and is continuous, and t ÞÑ aptq, bptq are continuously differentiable, then

d

dt

´ ż bptq

aptq
ϕpx, tqdx

¯
“

ż bptq

aptq
ϕtpx, tqdx ` ϕ

`
bptq, t

˘
¨ b1ptq ´ ϕ

`
aptq, t

˘
¨ a1ptq.

For a proof of this, see for example [F].

3.7.3. Selected additional examples.

Example 3.7 (Nuclear fission reactor). If a nucleus of U235 is hit by a neutron with
enough speed, a nuclear fission reaction takes place. Besides the energy produced, 2 or
3 new neutrons are also produced. If the conditions for collision are sufficiently good,
then an avalanche of neutrons is produced. This is exploited in a nuclear reactor where
the chain reaction, once it has started, is controlled by control rods. For starting the
chain reaction, the reactor must be larger than a certain minimum size. This can be
determined by solving an eigenvalue problem, which can be illustrated by the following
simplified, one dimensional model.

Consider a slab of Uranium of thickness L. The concentration of the neutrons we
are interested in is described by a diffusion equation model:

Bu
Bt ´ a

B2u
Bx2 “ cu,

where a, c are positive constants. The function u is the density of neutrons. We assume
that the density of neutrons outside the slab of Uranium is 0, and so we arrive at the
Dirichlet homogeneous boundary conditions

up0, tq “ upL, tq “ 0 pt ą 0q.
As usual, we assume that

upx, tq “
8ÿ

n“1

unptq sin nπx
L

,



82 3. Separation of variables

which gives u1
nptq ` aλnunptq “ cunptq, where λn “

´nπ
L

¯2

, that is

u1
nptq “ pc ´ aλnqunptq.

Thus

unptq “ cne
pc´aλnqt,

where the coefficients cn can be determined from the initial condition. Hence the
solution has the form

upx, tq “
8ÿ

n“1

cne
pc´aλnqt sin

nπx

L
.

The sign of c´ aλn is significant for the growth of the exponential function for large t.
Since λ1 is the smallest eigenvalue, we have

1˝ (undercritical) if c ă aλ1, then upx, tq Ñ 0 as t Ñ 8,

2˝ (critical) if c “ aλ1, then upx, tq Ñ c1 sin
πx
L

as t Ñ 8,

3˝ (overcritical) if c ą aλ1, then we expect upx, tq Ñ 8 as t Ñ 8.

Since λ1 “ π2{L2, we obtain the critical thickness of the slab for starting the chain
reaction is L “ π

a
a{c. ♦

Example 3.8 (Organ pipe). Consider an organ pipe which is closed at one end (x “ 0)
and open at the other (x “ L) as shown.

x

0

L

The air pressure u fluctuations satisfies the following wave equation and boundary
conditions:

B2u
Bt2 ´ c2

B2u
Bx2 “ 0 p0 ă x ă L, t ą 0q,

uxp0, tq “ 0 and upL, tq “ 0 pt ą 0q.
The eigenvalue problem

X2pxq ` λXpxq “ 0, X 1p0q “ 0, XpLq “ 0

has the solutions

Xnpxq “ cospβnxq,
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where

βn “
´
n´ 1

2

¯π
L
, n “ 1, 2, 3, ¨ ¨ ¨ ,

and λ “ λn “ β2n. The modes / standing waves are shown in the picture below:

Assuming that upx, tq “
8ÿ

n“1

unptqXnpxq gives

u2
nptq ` c2β2nunptq “ 0,

and so the solution has the form

upx, tq “
8ÿ

n“1

`
an cospcβntq ` bn sinpcβntq

˘
cospβnxq. ♦

Exercise 3.21. Solve

utt ´ uxx “ 0 p0 ă x ă π, t ą 0q,

uxp0, tq “ 0 “ uxpπ, tq pt ą 0q,

upx, 0q “ 0 and utpx, 0q “ 0 p0 ă x ă πq.

You may use the following Fourier expansion of the 2π-periodic function given by x ÞÑ |x| on
the interval p´π, πq:

|x| “ π

2
´ 4

π

8ÿ

n“0

cos
`
p2n` 1qx

˘

p2n` 1q2 , x P p´π, πq.

3.8. Proof of the Fourier Series Theorem

We will just prove the following result:

Theorem 3.4 (The Fourier Series Theorem). Let f : R Ñ R be T -periodic and piecewise

smooth, and set ω0 :“ 2π{T . Then

fpx`q ` fpx´q
2

“
8ÿ

n“´8
fne

inω0x :“ lim
NÑ8

Nÿ

n“´N

fne
inω0x px P Rq,
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where fn are the Fourier coefficients of f , defined by

fn “ 1

T

ż T {2

´T {2
fpxqe´inω0xdx pn P Zq.

The proof of this result is based on two auxiliary results, which we prove first. To begin
with, we observe that the Fourier coefficients tend to 0 as n Ñ ˘8, and this is based
on the following more general result.

Lemma 3.5 (Riemann-Lebesgue Lemma). If f : ra, bs Ñ R is piecewise smooth, then

lim
ωÑ˘8

ż b

a

fpxqeiωxdx “ 0.

The result is intuitively clear, since if our function f is as shown in the leftmost picture,
then by multiplying it with a high frequency harmonic eiωx “ cospωxq ` i sinpωxq,
we get a function as depicted in the rightmost picture, with a small magnitude of the
integral (since the area above the x-axis cancels the parts below the x-axis).

Proof. Suppose first that f is continuously differentiable on ra, bs. Then we can use
integration by parts to obtain

ż b

a

fpxqeiωxdx “ 1

iω
fpxqeiωx

ˇ̌
ˇ
b

a
´ 1

iω

ż b

a

f 1pxqeiωxdx.

Since |eiωx| “ 1, we obtain the estimate:
ˇ̌
ˇ
ż b

a

fpxqeiωxdx
ˇ̌
ˇ ď |fpbq| ` |fpaq|

|ω| ` 1

|ω|

ż b

a

|f 1pxq|dx.

It is then immediate that the right hand side goes to 0 as ω Ñ ˘8.

If f is just piecewise smooth, we can split ra, bs into subintervals where f is contin-
uously differentiable and repeat the above on the subintervals. �

Here is the next result we will need to prove our Fourier Series Theorem.
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Lemma 3.6. If f : r´T {2, T {2s Ñ R is piecewise smooth, then

lim
aÑ8

ż T {2

´T {2
fpxqsinpaxq

x
dx “ π

fp0`q ` fp0´q
2

.

Proof. We will just prove

lim
aÑ8

ż T {2

0

fpxqsinpaxq
x

dx “ π
fp0`q

2
.

Then by replacing x by ´x gives

lim
aÑ8

ż
0

´T {2
fpxqsinpaxq

x
dx “ lim

aÑ8

ż T {2

0

fp´xqsinpaxq
x

dx “ π
fp0´q

2
.

Define

Ipaq :“
ż T {2

0

fpxqsinpaxq
x

dx

“
ż T {2

0

fpxq ´ fp0`q
x

sinpaxqdx
loooooooooooooooooomoooooooooooooooooon

“:I1paq

`fp0`q
ż T {2

0

sinpaxq
x

dx
loooooooomoooooooon

“:I2paq

.

We will show that lim
aÑ8

I1paq “ 0 and lim
aÑ8

I2paq “ π

2
.

To calculate the limit of I2paq, we make use of the known integral
ż 8

0

sinx

x
“ π

2
.

This gives

lim
aÑ8

I2paq “ lim
aÑ8

ż T {2

0

sinpaxq
x

dx
pξ:“axq“ lim

aÑ8

ż aT {2

0

sin ξ

ξ
dξ “ π

2
.

Now let ǫ ą 0. We will show that |I1paq| ă ǫ for all large enough a. Since

f 1p0`q “ lim
xŒ0

fpxq ´ fp0`q
x

exists, the function
`
fpxq ´ fp0`q

˘
{x is bounded on p0, T {2s, that is,

|fpxq ´ fp0`q| ď Mx p0 ă x ď T {2q

for some M ą 0. Let δ ą 0 be such that δ ă ǫ{p2Mq and δ ă T {2. Then
ˇ̌
ˇ
ż δ

0

fpxq ´ fp0`q
x

sinpaxqdx
ˇ̌
ˇ ď M

ż δ

0

| sinpaxq|dx ď Mδ ă ǫ

2
.
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Thus we have

|I1paq| “
ˇ̌
ˇ
ż δ

0

fpxq ´ fp0`q
x

sinpaxqdx `
ż T {2

δ

fpxq ´ fp0`q
x

sinpaxqdx
ˇ̌
ˇ

ă ǫ

2
`

ˇ̌
ˇ
ż T {2

δ

fpxq ´ fp0`q
x

sinpaxqdx
ˇ̌
ˇ.

But on the interval rδ, T {2s, the function

x ÞÑ fpxq ´ fp0`q
x

is piecewise smooth (since the only possible singularity is at x “ 0, and we are away
from 0!). The Riemann-Lebesgue Lemma therefore applies, giving

lim
aÑ8

ż T {2

δ

fpxq ´ fp0`q
x

sinpaxqdx “ 0.

So for all sufficiently large a, |I1paq| ă ǫ{2` ǫ{2 “ ǫ, and this completes the proof. �

These two lemmas now allow us to prove the Fourier Series Theorem, and before we
give this proof, we make one important observation, which will use. If z :“ eiϕ ‰ 1,
where ϕ is a real number (which is not an integral multiple of 2π), then

Nÿ

n“´N

einϕ “
Nÿ

n“´N

zn “ z´N
2Nÿ

n“0

zn “ z´N 1 ´ z2N`1

1 ´ z
“ z´N ´ zN`1

1 ´ z

“ z´N´ 1

2 ´ zN` 1

2

z´ 1

2 ´ z
1

2

“ e´iϕpN` 1

2
q ´ eiϕpN` 1

2
q

e´iϕ
2 ´ ei

ϕ
2

“ sin
`
pN ` 1

2
qϕ

˘

sin ϕ
2

. (3.4)

Proof of the Fourier Series Theorem. Let

sN pxq :“
Nÿ

n“´N

fne
inω0x.

We need to show that lim
NÑ8

sN pxq “ fpx`q ` fpx´q
2

for all x.
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First we will derive an integral representation for sN by substituting the integral
expression for fn, as follows.

sN pxq “
Nÿ

n“´N

fne
inω0x “

Nÿ

n“´N

1

T

´ ż T {2

´T {2
fpξqe´inω0ξdξ

¯
einω0x

“ 1

T

ż T {2

´T {2

´
fpξq

Nÿ

n“´N

einω0px´ξq
¯
dξ

“ 1

T

ż T {2

´T {2
fpξqsin

`
pN ` 1

2
qω0px´ ξq

˘

sin
ω0px´ξq

2

dξ (using (3.4))

“ 1

T

ż x`T {2

x´T {2
fpx´ yqsin

`
pN ` 1

2
qω0y

˘

sin ω0y
2

dy (using y “ x´ ξ)

“ 1

T

ż T {2

´T {2
fpx´ yqsinppN ` 1

2
qω0yq

sin ω0y
2

dy,

where to obtain the last equality, we have used the T -periodicity of the integrand (check
this!). This establishes the integral representation of sN , namely

sN pxq “ 1

T

ż T {2

´T {2
fpx´ yqsin

`
pN ` 1

2
qω0y

˘

sin ω0y
2

dy

“ 1

T

ż T {2

´T {2
fpx´ yq y

sin ω0y
2loooooooomoooooooon

“:gpyq

sin
`
pN ` 1

2
qω0y

˘

y
dy.

Now we will apply Lemma 3.6. Note that since lim
yÑ0

y

sin ω0y
2

“ 2

ω0

, we obtain

gp0`q “ 2 ¨ fpx´q
ω0

and gp0´q “ 2 ¨ fpx`q
ω0

.

Thus, using Lemma 3.6, we have

lim
NÑ8

sN pxq “ lim
NÑ8

1

T

ż T {2

´T {2
gpyqsin

`
pN ` 1

2
qω0y

˘

y
dy

“ 1

T
¨ π ¨ gp0`q ` gp0´q

2
“ 2π

ω0T
¨ fpx`q ` fpx´q

2

“ fpx`q ` fpx´q
2

.

This completes the proof. �





Chapter 4

Integral transform methods

We continue our study of initial and boundary value problems for the various types of
PDEs we considered in Chapter 3. But while we have so far considered bounded domains
of space, we now consider unbounded domains.

The method of separation of variables we used in the previous chapter to solve the
diffusion equation

Bu
Bt ´ B2u

Bx2 “ 0 px P I, t ą 0q

with given boundary conditions relied on the fact that I is a bounded interval. We
found the solution to be of the form

upx, tq “
ÿ

k

TkptqXkpxq,

where Xk was a linear combination of sine and cosine functions. These functions Xk

appeared as eigenfunctions of a certain differential operator which took into account
the boundary conditions.

When we now drop the boundedness of I , for example, taking I “ R in the problem
above, then we can no longer expect the solution to be expressed as a series arising
from an eigenfunction expansion. We will see, perhaps not totally unexpectedly, that the
solution is given by an analogous expression, where the summation index k is replaced
by a continuous variable ξ, and the summation sign by an integral:

upx, tq “
ż

R

T pξ, tqeixξdξ.

In order to obtain this, we will use the Fourier transform, which is developed in the first
section, and subsequently used to solve our PDEs in infinite spatial domains.

89



90 4. Integral transform methods

4.1. Fourier transform

Just like we used Fourier series to represent a periodic function, there is an analogue of
the Fourier series for non-periodic functions, called the “Fourier transform”. When we
had a (nice) periodic function f with a period T , then we could express

fpxq “ a0

2
`

8ÿ

n“1

´
an cos

2πnx

T
` bn sin

2πnx

T

¯
“

ÿ

nPZ
fne

in 2π
T
x,

that is, f could be thought of as a ‘discrete superposition” of harmonic functions used in
the Fourier series, where the harmonic functions all have frequencies which are integral
multiples of a fundamental frequency 2π{T . For a (nice) non-periodic function, we will
find

fpxq “ 1

2π

ż 8

´8
pfpξqeiξxdξ,

where pf denotes the Fourier transform of the function f , defined by

pfpξq “
ż 8

´8
fpxqe´iξxdx pξ P Rq.

So now the function can be thought of as a “continuous superposition” of harmonic
functions (as opposed to the discrete superposition met earlier in the context of Fourier
series of a periodic function). Note that below, as in our Fourier series results, f is
piecewise smooth, and we make the standing assumption that

fpxq “ fpx`q ` fpx´q
2

everywhere in order to simplify matters. Sometimes we will also denote Fourier trans-
formation p̈ by F .

Theorem 4.1 (Fourier Integral Theorem). Let f : R Ñ C be an absolutely integrable

function. Then

fpxq “ 1

2π

ż 8

´8
pfpξqeiξxdξ px P Rq,

where pf : R Ñ C is the Fourier transform of f , defined by

pfpξq “
ż 8

´8
fpxqe´iξxdx pξ P Rq.

Proof. See the appendix to this chapter, Section 4.7. �

Note that in the above, a function f : R Ñ C is called absolutely integrable if
ż 8

´8
|fpxq|dx ă 8.

For example, x ÞÑ e´x2

is absolutely integrable, while x ÞÑ eiax (a real) isn’t.
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Example 4.1. Let f : R Ñ R be the absolutely integrable function given by

fpxq “ 1r´a,aspxq ¨ cospξ0xq,
where 1r´a,as is the indicator function / characteristic function of the interval r´a, as:

1r´a,aspxq :“
"

1 if x P r´a, as,
0 if x R r´a, as.

Then the Fourier transform of f is given by (for ξ ‰ ˘ξ0)

pfpξq “
ż 8

´8
fpxqe´iξxdx “

ż a

´a

cospξ0xqe´iξxdx

“
ż a

´a

eiξ0x ` e´iξ0x

2
e´iξxdx “ 1

2

´ ż a

´a

eipξ0´ξqxdx`
ż a

´a

e´ipξ0`ξqxdx
¯

“ eipξ0´ξqa ´ e´ipξ0´ξqa

2ipξ0 ´ ξq ` e´ipξ0`ξqa ´ eipξ0`ξqa

´2ipξ0 ` ξq

“ sin
`
pξ0 ´ ξqa

˘

ξ0 ´ ξ
` sin

`
pξ0 ` ξqa

˘

ξ0 ` ξ
.

The picture below shows the graphs of f (top) when a “ 9 and ξ0 “ 3π, and its Fourier

transform pf (bottom).

Note the peaks near ˘3π, suggesting that the harmonics are concentrated near these
frequencies, as intuitively expected (since for a “large” interval, f is just cosp3πxq). ♦

Exercise 4.1. Let a ą 0. Find the Fourier transform of 1r´a,as.

An important Fourier transform which we will need in the sequel is that of the Gaussian
function.

Example 4.2 (Fourier transform of the Gaussian). Let a ą 0, and consider the Gaussian
function

fpxq “ e´ax2

.

We’d like to find its Fourier transform.
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Recall that

ż 8

´8
e´x2

dx “
?
π. It’ll help in our computation of the Fourier transform.

(With I :“
ż 8

´8
e´x2

dx, we have

I2 “
´ ż 8

´8
e´x2

dx
¯´ ż 8

´8
e´y2dy

¯
“

ż 8

´8

ż 8

´8
e´px2`y2qdxdy

“
ż

2π

0

ż 8

0

e´r2rdrdθ “ π.

So I “
ż 8

´8
e´x2

dx “
?
π.)

As f is an even function, we have

pfpξq “
ż 8

´8
fpxqe´iξxdx “ 2

ż 8

0

e´ax2

cospξxqdx.

Differentiating under the integral sign and using integration by parts yields

pf 1pξq “ ´2

ż 8

0

xe´ax2

sinpξxqdx

“ e´ax2

a
sinpξxq

ˇ̌
ˇ
8

0

´
ż 8

0

ξ cospξxqe
´ax2

a
dx

“ 0 ´ ξ

2a
pfpξq.

So we have obtained a differential equation for pf ! Note that

d

dξ

´
e

ξ2

4a pfpξq
¯

“ e
ξ2

4a ¨ 2ξ
4a

¨ pfpξq ` e
ξ2

4a ¨ pf 1pξq “ 0.

Hence for all ξ,

e
ξ2

4a pfpξq “ 1 pfp0q “
ż 8

´8
e´ax2

dx
pξ“?

axq“
ż 8

´8
e´ξ2 1?

a
dξ “

c
π

a
.

Consequently, pfpξq “
c
π

a
e´ ξ2

4a . ♦

Remark 4.1.

The Fourier transform of the Gaussian x ÞÑ e´ax2

is again a Gaussian, ξ ÞÑ
c
π

a
e´ ξ2

4a .

Exercise 4.2. What is the Fourier transform of e´a|x| where a ą 0? What about
1

a2 ` x2
?

The map f ÞÑ pf is called Fourier transformation. It is easily seen to be a linear trans-
formation (for example from the vector space of all absolutely integrable functions on
R to the vector space of all bounded and continuous functions on R, where both vector
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spaces are equipped with pointwise operations). In our use of Fourier transformation to
solve PDEs, we will also need some further properties of p̈ “ F , given below.

Lemma 4.2 (Translation). If f : R Ñ C is absolutely integrable, then for every a P R,

F
`
fp¨ ` aq

˘
“ eiξaFpfq.

Proof. We have

{fp¨ ` aqpξq “
ż 8

´8
fpx` aqe´iξxdx

“
ż 8

´8
fpuqe´iξpu´aqdu px` a “ uq

“ eiξa
ż 8

´8
fpuqe´iξudu

“ eiξa ¨ pfpξq. �

Exercise 4.3. Show that if x ÞÑ fpxq : R Ñ C is absolutely integrable, then for fixed t P R and
c P R,

Fx

´fp¨ ` ctq ` fp¨ ´ ctq
2

¯
pξq “ pfpξq ¨ cospcξtq pξ P Rq.

Lemma 4.3 (Differentiation). If f, f 1 : R Ñ C are absolutely integrable, then

xf 1 “
`
ξ ÞÑ iξ pfpξq

˘
.

Proof. Note that by the Fundamental Theorem of Calculus,

fpxq “
ż x

0

f 1pξqdξ ` fp0q.

From here it follows, by using the fact that f 1 is absolutely integrable, that

lim
xÑ˘8

fpxq

exist. Moreover, since f is absolutely integrable on R, it also follows that these limits
must equal 0. We have

xf 1 pξq “
ż 8

´8
f 1pxqe´iξxdx “ fpxqe´iξx

ˇ̌
ˇ
8

´8
` iξ

ż 8

´8
fpxqe´iξxdx “ 0 ` iξ pfpξq.

This completes the proof. �

Convolution. A natural question associated with Fourier transformation is this: If f, g
are absolutely integrable, then what is the “inverse Fourier transform” of the pointwise

product of the Fourier transforms pf and pg ? Thus:

f ÐÑ pf,
g ÐÑ pg,

? ÐÑ pf ¨ pg.
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We will learn below that the answer to the question is:

The convolution f ˚ g of f and g.

First, let us define what we mean by the convolution of two functions.

Definition 4.1 (Convolution). If f, g : R Ñ C are two functions, then their convolution
f ˚ g is defined by

pf ˚ gqpxq “
ż 8

´8
fpyqgpx ´ yqdy px P Rq.

Exercise 4.4. Show that convolution products commute, that is, f ˚ g “ g ˚ f .

Exercise 4.5. Let a ą 0 and g be absolutely integrable. Show that

`
1r´a,as ˚ g

˘
pxq “

ż x`a

x´a

gpyqdy, x P R.

Sufficient for the existence of of f ˚g is that f is bounded (“f P L8”) and g is absolutely
integrable (“g P L1”), and then f ˚ g is bounded too:

|pf ˚ gqpxq| “
ˇ̌
ˇ
ż 8

´8
fpyqgpx ´ yqdy

ˇ̌
ˇ ď

ż 8

´8
|fpyq||gpx ´ yq|dy

ď
´
sup
yPR

|fpyq|
¯´ ż 8

´8
|gpx ´ yq|dy

¯
“

´
sup
yPR

|fpyq|
¯

loooooomoooooon
“:}f}8

´ ż 8

´8
|gpηq|dη

¯

loooooooomoooooooon
}g}1

,

and so }f ˚ g}8 ď }f}8}g}1.
Why is the operation ˚ called “convolution”? In ordinary language, one of the

meanings of convolution is “folding”, and this is the origin of the mathematical termi-
nology. Indeed, g is first reflected about the y-axis, then translated (by x), and then
this resulting function is multiplied pointwise by f , and finally the result is integrated
in order to obtain f ˚ g at x. (The “folding” part is when g is reflected, and the re-
flected function is “overlapped” with the graph of f .) The best way to understand this
convoluted explanation is to see an example and the associated pictures.

Example 4.3. Let us find out the convolution 1r0,1s ˚1r0,1s, where 1r0,1s is the indicator
function of the interval r0, 1s:

1r0,1spxq “
"

1 if x P r0, 1s,
0 if x P Rzr0, 1s.

We have p1r0,1s ˚ 1r0,1sqpxq “

$
’’&
’’%

0 if x ď 0,

x if 0 ď x ď 1,

2 ´ x if 1 ď x ď 2,

0 if x ě 2.
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fgpx ´ ¨q

f ˚ g

0

0

1

1 2

♦

Theorem 4.4 (Convolution Theorem). If f, g : R Ñ C are absolutely integrable, then

f ˚ g is also absolutely integrable, and
zf ˚ g “ pf ¨ pg.

Proof. We have

}f ˚ g}1 “
ż 8

´8
|pf ˚ gqpxq|dx “

ż 8

´8

ˇ̌
ˇ
ż 8

´8
fpyqgpx ´ yqdy

ˇ̌
ˇdx

ď
ż 8

´8

ż 8

´8
|fpyqgpx ´ yq|dydx “

ż 8

´8

ż 8

´8
|fpyq||gpx ´ yq|dxdy

“
ż 8

´8
|fpyq|

ż 8

´8
|gpx ´ yq|dxdy “

ż 8

´8
|fpyq|

ż 8

´8
|gpuq|dudy

“
´ ż 8

´8
|fpyq|dy

¯´ ż 8

´8
|gpuq|du

¯
“ }f}1}g}1.
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So f ˚ g is absolutely integrable too. Moreover,

zf ˚ gpξq “
ż 8

´8
pf ˚ gqpxqe´iξxdx “

ż 8

´8

´ ż 8

´8
fpyqgpx ´ yqdy

¯
e´iξxdx

“
ż 8

´8

ż 8

´8
fpyqgpx ´ yqe´iξxdydx “

ż 8

´8

ż 8

´8
fpyqgpx ´ yqe´iξxdxdy

“
ż 8

´8
fpyq

´ ż 8

´8
gpx ´ yqe´iξxdx

¯
dy

“
ż 8

´8
fpyq

´ ż 8

´8
gpuqe´iξpu`yqdu

¯
dy

“
ż 8

´8
fpyqe´iξypgpξqdy “ pgpξq

ż 8

´8
fpyqe´iξydy “ pgpξq pfpξq.

This completes the proof. �

Exercise 4.6. Give a slicker proof of the commutativity of the convolution product for absolutely
integrable functions (as compared with the solution to Exercise 4.4), using the Convolution
Theorem.

Exercise 4.7. Let a ą 0 and g be absolutely integrable. Show that

ˆ
F

´ ż x`a

x´a

gpyqdy
¯˙

pξq “

$
&
%

2pgpξq ¨ sinpξaq
ξ

if ξ ‰ 0,

2apgpξq if ξ “ 0.

Hint: Use Exercises 4.1 and 4.5.

4.2. The Diffusion equation

Consider the diffusion equation describing the temperature in an infinite rod:

Bu
Bt ´ a

B2u
Bx2 “ 0 px P R, t ą 0q,

upx, tq Ñ 0 as t Ñ 8 px P Rq,

upx, 0q “ fpxq px P Rq.

To begin with we will calculate formally, and obtain a candidate expression for the
solution involving the initial condition f . Then we will impose reasonable conditions
on f in order to convince ourselves that the expression we have obtained is meaningful,
and does solve the problem. Knowing uniqueness, we can then conclude that this is the
solution.

A partial Fourier transformation in the x-direction in the PDE gives
ż 8

´8
e´ixξ Bu

Bt dx´ a

ż 8

´8
e´ixξ B2u

Bx2 dx “ 0. (4.1)
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In our formal calculations, we assume that it is allowed to interchange the order of
differentiation in the first term, that is,

ż 8

´8
e´ixξ Bu

Bt dx “ B
Bt

ż 8

´8
e´ixξupx, tqdx “ B

Btpupξ, tq,

where

pupξ, tq :“ pFxuqpξ, tq :“
ż 8

´8
e´ixξupx, tqdx.

For the other term in (4.1), we use the derivative rule for the Fourier transform, giving
us ż 8

´8
e´ixξ B2u

Bx2 dx “
`
Fxpuxxp¨, tqq

˘
pξq “ piξq2pupξ, tq “ ´ξ2pupξ, tq.

Substituting all this in (4.1), yields the following ODE for pupξ, ¨q:
Bpu
Bt pξ, tq ` aξ2pupξ, tq “ 0.

The general solution is

pupξ, tq “ cpξqe´aξ2t.

Note that the “constant” c depends on ξ, that is, c “ cpξq. To determine cpξq, we put
t “ 0, and obtain

cpξq “ pupξ, 0q “
ż 8

´8
e´ixξupx, 0qdx “

ż 8

´8
e´ixξfpxqdx “ pfpxq.

Thus

pupξ, tq “ pfpxqe´aξ2t.

Now we know from Example 4.2 that

e´αx2 FxÞÝÑ
c
π

α
e´ ξ2

4α

and so it follows that

e´atξ2 F
´1
xÞÝÑ 1?

π

1?
4at

e´x2{4at “: Gpx, tq.

Since pu is the product of pf and {Gp¨, tq, it follows that u is the convolution of f and
Gp¨, tq:

upx, tq “
`
Gp¨, tq ˚ f

˘
pxq “ 1?

4πat

ż 8

´8
e´px´yq2{4atfpyqdy.

Remark 4.2. So far, we did not say anything about the initial condition f . We now
make some remarks on how properties of f affect the u, and ensure that u solves our
problem.

Since G is rapidly decreasing as x Ñ ˘8, the convolution integral converges if for
example f is absolutely integrable. One can then retrace the steps above, including the
exchange of the derivative with the integral, and find that u satisfies the initial value
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problem. It can also be shown that upx, tq Ñ 0 as t Ñ 8. The uniqueness theorem
then ensures that this is the only solution.

Another consequence of the rapid decay of the G and its regularity is that the
convolution integral above can be differentiated under the integral sign as many times
as one wishes, either with respect to x or with respect to t. Thus without demanding
any regularity on the initial condition function f (not even continuity!), we nevertheless
get an infinitely differentiable u for all t ą 0!

Even more generally, one may assume that f is an element “of the Schwartz class
of tempered distributions” S 1pRq. We will mention these distributions again at the end
of the next chapter on Distributions. Also, one can consider initial conditions that are
not in S 1pRq, but for some k ą 0, e´kxfpxq is absolutely integrable, and then one may
use the Laplace transform to solve the initial value problem. We will see this later.

Before we consider a concrete example of an initial condition f , we mention the follow-
ing standard notation, which will be useful in our calculations:

erf x :“ 2?
π

ż x

0

e´y2dy (error function),

erfc x :“ 1 ´ erfx (complementary error function).

Since ż 8

0

e´y2dy “
?
π

2
,

we have erf x Ñ 1 as x Ñ 8, and

erfc x “ 2?
π

ż 8

x

e´y2dy.

The following picture illustrates this:

2?
π
e´y2

x y

2?
π

erfx erfcx

By definition, erf x is a primitive function of 2?
π
e´x2

. Moreover, erf is odd, and

lim
xÑ´8

erfpxq “ ´1.

The picture below shows the graph of erf.
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Example 4.4. Let the initial condition function f be given by

fpxq “
"

1 if x ą 0,

´1 if x ă 0.

(Imagine two infinite rods, at uniform temperatures of 1˝C and ´1˝C joined at one end
at time t “ 0.)

ut ´ auxx “ 0

t

xu “ ´1 u “ 1

Then we have the initial boundary value problem

Bu
Bt ´ a

B2u
Bx2 “ 0 px P R, t ą 0q,

upx, tq Ñ 0 as t Ñ 8 px P Rq,

upx, 0q “ fpxq px P Rq.

The solution is given by

upx, tq “ 1?
4πat

ż 8

´8
e´px´yq2{4atfpyqdy.

“ 1?
4πat

´
´

ż
0

´8
e´px´yq2{4atdy `

ż 8

0

e´px´yq2{4atdy
¯

“ ´ 1?
π

ż 8

x{
?
4at

e´ξ2dξ ` 1?
π

ż x{
?
4at

´8
e´ξ2dξ (with ξ “ x´ y?

4at
)

“ ´
´1

2
erfpξq

¯ˇ̌
ˇ̌
8

x{
?
4at

`
´1

2
erfpξq

¯ˇ̌
ˇ̌
x{

?
4at

´8

“ erf
´ x?

4at

¯
.
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The solution spatial profiles at various instances of t are depicted below:

Note that despite the discontinuity at x “ 0 in the initial condition f , the solution looks
very smooth for t ą 0. ♦

Remark 4.3 (Infinite speed of propagation). We remark that a consequence of the
convolution formula is that the initial condition at x “ 0 affects u at every x for every
t ą 0. Thus the diffusion equation model implies an infinite speed of propagation from
the initial condition. (An extreme illustration of this in the diffusion of matter case is
this: if you put a drop of ink in a lake, then it immediately spreads to the opposite
shore!) Clearly, an infinite propagation is not physically realistic, and this suggests that
the model is a bit too simplified. So one should bear in mind that the model won’t give
a good description of physical reality for very tiny values of t.

Exercise 4.8 (Fourier transform method with mixed derivatives). Solve the initial value problem

Bu
BtBx “ B2u

Bx2 px P R, t ą 0q,

upx, 0q “ 1

1 ` x2
px P Rq.

Plot the graphs of up¨, tq at t “ 0, 1, 2, 3.

Exercise 4.9 (An equation with nonconstant coefficients). Solve

t
Bu
Bx ` Bu

Bt “ 0 px P R, t ą 0q,

upx, 0q “ fpxq px P Rq

formally using the Fourier transform method. Assuming that f P C1, check that the obtained
solution does satisfy the initial value problem.

Exercise 4.10 (Tikhonov’s example, 1935). Let f be defined by

fptq “
"
e´1{t2 if t ą 0,

0 if t ě 0.

Then it can be shown1 that f P C8. New set

upx, tq :“
8ÿ

k“0

x2k

p2kq!f
pkqptq px P R, t P Rq.

1See for example, [S, p.335 and p. 490-492].
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Check formally that this u satisfies the diffusion equation, that is, ut “ uxx (x P R, t P R).

(In fact it can be shown rigorously that f P C8pR2q and that it satisfies the diffusion equation;
see for example, [H, Example 2, p.50].)

Remark: The function u ” 0 is clearly a solution, to the initial value problem with upx, 0q “ 0

(x P R), and the above series gives a new nonzero solution with the same initial condition. So
the uniqueness is violated! However, it can be shown that it is not the case that

for all x P R, upx, tq Ñ 0 as t Ñ 8.

So this example shows the relevance of this condition; see Remark 2.2.(2) on page 44.

4.3. Application: European option pricing

In the sub-world of Finance in Economics, there are “financial instruments” called
options. An option is the right, but not the obligation, to buy or sell a stock for an
agreed upon price at some time in the future. The agreed upon price is called the strike
price K . Options come with a time limit at which they must be exercised, called the
expiry date T . An option to buy is called a call option, while one to sell is called a put
option. A fundamental question in Finance is then:

What is a (fair) price V of the option?

0 T
t

S

It is assumed that the reader has met (or accepts on faith) the considerations behind
obtaining the Black-Scholes equation for the pricing of European options:

BV
Bt ` 1

2
σ2S2 B2V

BS2
` rS

BV
BS ´ rV “ 0, S ě 0, t P r0, T s,

where S, t are independent variables, and

V pS, tq is the value of the option at stock price S and time t,
T is the expiry date of the option,
σ is the volatility of the asset,
r is the risk-free interest rate.

T , σ, r are known, and the unknown is V pS, tq for S ě 0 and for t P r0, T s.
We note that the Black-Scholes equation is a second order, linear, parabolic, homo-

geneous, non-constant coefficient PDE, and we will solve it by reducing it to a diffusion
equation, and using the Fourier transform method.
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4.3.1. Reduction to the diffusion equation. If K is the strike price of the option,
then we define

S “: Kex or x :“ log
S

K
,

τ :“ pT ´ tqσ2
2

,

V pS, tq “: Kvpx, τq or vpx, τq :“ V pS, tq
K

.

Then

BV
Bt “ K

Bv
Bτ

Bτ
Bt “ K

Bv
Bτ ¨

´
´ σ2

2

¯
“ ´Kσ2

2

Bv
Bτ ,

BV
BS “ K

Bv
Bx

Bx
BS “ K

Bv
Bx ¨ 1

S{K ¨ 1

K
“ K

S

Bv
Bx,

B2V
BS2

“ ´K

S2

Bv
Bx ` K

S

B2v
Bx2

Bx
BS “ ´K

S2

Bv
Bx ` K

S

B2v
Bx2

1

S{K ¨ 1

K

“ ´K

S2

Bv
Bx ` K

S2

B2v
Bx2 .

By substituting these in the Black-Scholes equation, we obtain

´Kσ2

2

Bv
Bτ ` σ2S2

2
¨ K
S2

´ B2v
Bx2 ´ Bv

Bx
¯

` rS
´K
S

Bv
Bx

¯
´ rKv “ 0,

that is,

0 “ ´σ2

2

Bv
Bτ ` σ2

2

´ B2v
Bx2 ´ Bv

Bx
¯

` r
Bv
Bx ´ rv

“ ´σ2

2

ˆBv
Bτ ´ B2v

Bx2 `
´
1 ´ 2r

σ2

¯ Bv
Bx ` 2r

σ2
v

˙
.

Consequently, with a :“ 2r

σ2
´ 1, we obtain

Bv
Bτ “ B2v

Bx2 ` a
Bv
Bx ´ pa` 1qv.

Now set

upx, tq :“ epa2

4
`a`1qτ e

a
2
xvpx, τq.

Then

Bu
Bτ “

´a2
4

` a` 1
¯
u` epa2

4
`a`1qτ e

a
2
x Bv

Bτ ,
Bv
Bx “ a

2
u ` epa2

4
`a`1qτ e

a
2
x Bv

Bx,
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and

B2v
Bx2 “ a

2

´a
2
u` epa2

4
`a`1qτ e

a
2
x Bv

Bx
¯

` a

2
epa2

4
`a`1qτ e

a
2
x Bv

Bx ` epa2

4
`a`1qτ e

a
2
x B2v

Bx2

“ a2

4
u` aepa2

4
`a`1qτ e

a
2
x Bv

Bx ` epa2

4
`a`1qτ e

a
2
x B2v

Bx2

“ a2

4
u` epa2

4
`a`1qτ e

a
2
x
´
a

Bv
Bx ` B2v

Bx2
¯

“ a2

4
u` epa2

4
`a`1qτ e

a
2
x
´ Bv

Bτ ` p1 ` aqv
¯

“
´a2
4

` a` 1
¯
u ` epa2

4
`a`1qτ e

a
2
x Bv

Bτ
“ Bu

Bτ .

Thus
Bu
Bτ “ B2u

Bx2 ,

where

S “ Kex,

τ “ pT ´ tqσ2
2

,

V pS, tq “ Ke´pa2

4
`a`1qτ e´ a

2
xupx, τq,

a “ 2r

σ2
´ 1.

4.3.2. Solution to the Black-Scholes equation. The payoff at expiry for European
options is given by

V pS, T q “
"

maxtS ´K, 0u for a call option,
maxtK ´ S, 0u for a put option.

Let us solve the Black-Scholes equation for a call option. (The computation is analogous
for a put option.) Note that when t “ T , τ “ 0. Thus

upx, 0q “ 1

K
e

a
2
xV pS, T q

“ 1

K
e

a
2
xmaxtS ´K, 0u

“ 1

K
e

a
2
xmaxtKex ´K, 0u

“ maxtepa
2

`1qx ´ e
a
2
x, 0u.
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By substituting this in the solution to the diffusion equation for u, we obtain

upx, τq “ 1?
4πτ

ż 8

´8
e´ px´yq2

4τ upy, 0qdy

“ 1?
4πτ

ż 8

´8
e´ px´yq2

4τ maxtepa
2

`1qy ´ e
a
2
y, 0udy.

We also note that epa
2

`1qy ´ e
a
2
y

"
ě 0 if y ě 0,

ă 0 if y ă 0.

Thus

upx, τq “ 1?
4πτ

ż 8

0

e´ px´yq2

4τ

`
epa

2
`1qy ´ e

a
2
y
˘
dy.

Let Φ denote the normal cumulative distribution function, defined by

Φpxq “ 1?
2π

ż x

´8
e´y2{2dy.

Then using the change of variable η “ x` 2τα ´ y?
2τ

, it can be seen that

1?
4πτ

ż 8

0

e´ px´yq2

4τ eαydy “ eαpx`ατqΦ
´x` 2τα?

2τ

¯
.

Hence upx, τq “ epa
2

`1qpx` aτ
2

`τqΦ
´x` τa` 2τ?

2τ

¯
´ e

a
2

px` aτ
2

qΦ
´x` τa?

2τ

¯
. Finally,

V pS, tq “ Ke´pa2

4
`a`1qτ e´ a

2
xupx, τq

“ KexΦ
´x` τa ` 2τ?

2τ

¯
´Ke´pa`1qτΦ

´x` τa?
2τ

¯

“ K
S

K
Φ

´ logpS{Kq ` pT ´ tqpr ` σ2

2
q

σ
?
T ´ tlooooooooooooooooomooooooooooooooooon

“:d1

¯

´Ke´rpT´tqΦ
´ logpS{Kq ` pT ´ tqpr ´ σ2

2
q

σ
?
T ´ tlooooooooooooooooomooooooooooooooooon

“:d2

¯
,

that is,

V pS, tq “ SΦpd1q ´Ke´rpT´tqΦpd2q, (4.2)
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where

d1 “ log S
K

` pT ´ tqpr ` σ2

2
q

σ
?
T ´ t

,

d2 “ log S
K

` pT ´ tqpr ´ σ2

2
q

σ
?
T ´ t

,

Φpxq “ 1?
2π

ż x

´8
e´y2{2dy.

Example 4.5 (A numerical example). Suppose that the current price of a security is £62

per share. The continuously compounded interest rate is 10% per year. The volatility
of the price of the security is σ “ 20% per year. The cost of a five-month European
call option with a strike price of £60 per share can be found using the formula (4.2).
We have

S “ 62, t “ 0, r “ 0.1, σ “ 0.2, T “ 5

12
, K “ 60.

Then

d1 “ log 62

60
` p 5

12
´ 0qp0.1 ` 0.12

2
q

0.2
b

5

12
´ 0

« 0.6413,

d2 “ log 62

60
` p 5

12
´ 0qp0.1 ´ 0.12

2
q

0.2
b

5

12
´ 0

« 0.5122.

Using Φp0.6413q « 0.7393 and Φp0.5122q « 0.6957, we obtain V « 5.7981, that is,
the price of the call option is £5.7981. ♦

4.4. Dirichlet’s problem for a half plane

We determine bounded solutions to$
’&
’%

B2u
Bx2 ` B2u

By2 “ 0 py ą 0, x P Rq,

upx, 0q “ fpxq.

∆u “ 0

y

xu “ f
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In the same manner as with the Diffusion Equation, we begin with formal calculations,
and postpone the discussion of the assumptions on f . A Fourier transformation in the
x-direction in the Laplace equation gives the differential equation

piξq2pupξ, yq ` B2pu
By2 pξ, yq “ 0,

where pu “ Fxup¨, yq denotes the Fourier transform of x ÞÑ upx, yq. This differential
equation has the general solution

pupξ, yq “ apξqeξy ` bpξqe´ξy,

where the “constants” a, b depend on ξ. The boundary condition gives

pupξ, 0q “ pfpξq.
Setting y “ 0 in the expression for pupξ, yq gives

apξq ` bpξq “ pfpξq.
So we get a constraint on a, b, but this is not enough to determine these functions. We
now use the condition that u is bounded. To do this, note that if there is ξ ą 0 for which
apξq ‰ 0, then |apξqeξy| Ñ 8 as y Ñ 8. Similarly, we see that if there is ξ ă 0 for
which bpξq ‰ 0, then |bpξqe´ξy| Ñ 8 as y Ñ 8. We cannot expect u to be bounded if
pu is unbounded in this manner. So we take a and b to be such that"

apξq “ 0 if y ą 0,

bpξq “ 0 if y ă 0

Together with the constraint apξq ` bpξq “ pfpξq, we now obtain that

apξq “
"

0 if y ą 0,
pfpξq if y ă 0.

and bpξq “
" pfpξq if y ą 0,

0 if y ă 0.

Thus
pupξ, yq “ pfpξqe´|ξ|y.

From Exercise 4.2 it follows that e´|ξ|y F
´1
xÞÝÑ 1

π

y

x2 ` y2
“: P px, yq.

Using the Convolution Theorem we now obtain that

upx, yq “ pP ˚ fqpx, yq “ 1

π

ż 8

´8

y

px ´ ξq2 ` y2
fpξqdξ.

Remark 4.4. Just as with the diffusion equation, one can check that the integral is
convergent if f is for example absolutely integrable or bounded, and that the calcula-
tions can be traced backwards, so that we do have a legitimate solution to our problem.
Moreover, with the uniqueness theorem, it follows that this is the only possible solution.
The function P above is called the Poisson kernel.

We remark that without the boundedness assumption, the solution is not unique,
for example, we may simply add y to u to obtain a new solution with the same Dirichlet
boundary condition!
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Example 4.6. Suppose that the initial condition for the Dirichlet problem
$
’&
’%

B2u
Bx2 ` B2u

By2 “ 0 py ą 0, x P Rq,

upx, 0q “ fpxq.

is given by

fpxq “
"
T0 if ´ a ď x ď a,

0 otherwise.

Then the bounded solution u is given by

upx, yq “ 1

π

ż a

´a

y

px´ ξq2 ` y2
T0dξ “ T0y

π

ż a

´a

1

px´ ξq2 ` y2
dξ

“ T0

πy

ż a

´a

1

p ξ´x
y

q2 ` 1
dξ

pu“ ξ´x
y

q
“ T0

πy

ż a´x
y

´a´x
y

1

u2 ` 1
ydu

“ T0

π

ˆ
tan´1

´a´ x

y

¯
´ tan´1

´´a´ x

y

¯˙

“ T0

π

ˆ
tan´1

´a´ x

y

¯
` tan´1

´a ` x

y

¯˙
.

If C “ px, yq is any point in the upper half plane, and A “ p´a, 0q and B “ p0, aq,
then by looking at the three cases below, it is easy to see that

=ACB “ tan´1

´a´ x

y

¯
` tan´1

´a ` x

y

¯
.

C ” px, yq C ” px, yqC ” px, yq

´a ´a ´ax x xa aa

´α
α

αβ
β

´β

A AA B B B

Figure 1. Here α :“ tan
´1

´
a ` x

y

¯
and β :“ tan

´1

´
a ´ x

y

¯
.

Thus, if the position of C is at px, yq, and if we denote =ACB by Θpx, yq, then our
PDE solution can be rewritten as

upx, yq “ Θpx, yq
π

T0.

In order to understand this function, we can look at its level curves. Imagining this
to be a temperature distribution, the level curves of u are called isotherms (iso=same,
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therm=temperature). Note that the largest Θ can be is π, and so 0 ď u ď T0. If
T P r0, T0s, then the level curve for this fixed temperature is

tpx, yq : x P R, y ě 0, upx, yq “ T u “
!

px, yq : x P R, y ě 0, Θpx, yq “ T

T0
π

)
.

In other words, we are looking at all points C which subtend a fixed angle ( T
T0
π) at the

line segment AB. But from elementary geometry (see the picture on the left below), we
know that this is a circular arc that passes through A,B and has center O such that
=AOB “ 2Θ.

Θ

A

C O

B

2Θ

For example if T0 “ 100˝C, and a “ 1, then the isotherms are depicted in the picture
on the right above. ♦

Exercise 4.11. Show analytically that the isotherms from Example 4.6 are circular arcs.

Hint: Take tan of both sides of equation u “ T and use the angle addition trigonometric
formula for tan.

Exercise 4.12.

(1) Using the Convolution Theorem, prove the semigroup property of the Poisson kernel,
that is, if

Pypxq :“ P px, yq “ 1

π

y

x2 ` y2
,

then Py1
˚ Py2

“ Py1`y2
.

(2) Solve the Laplace equation in the upper half plane with the Dirichlet boundary condi-
tion

upx, 0q “ fpxq “ 1

4 ` x2
.

What are the isotherms in this case? Using Maple, plot a few of these, when T takes
the values 0.06, 0.1, 0.2. Also plot a the graph of u using Maple, for example in the
region x P r´6, 6s and y P r0, 7s.
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Exercise 4.13. Let D be the interior of a simple curve in R2. Let

ϕ : D Ñ U :“ tz P C : Impzq ą 0u

be complex differentiable in D. Show that if u : U Ñ R is harmonic, then u ˝ ϕ : D Ñ R is
harmonic too.

Now suppose that ϕ : D Ñ U is a bijection, and also that ϕ´1 : U Ñ D is complex
differentiable. We call such a map ϕ a conformal map. Based on the calculation done for the
previous part of the exercise, we conclude that a function u : D Ñ U is harmonic if and only if
u˝ϕ : D Ñ R is harmonic. Thus the existence of a conformal map taking D to U allows one to
transplant harmonic functions from the (possibly complicated) domain D to the (geometrically
simple) domain U. This mobility has the advantage that the Dirichlet Problem in D can be
solved by first moving over to U, solving it there, and then transplanting the solution back to D.

A first natural question is then the following: Given a domain D which is the interior of a
simple curve, is there a conformal map taking D to U? The answer is “yes”!

Theorem 4.5 (Riemann Mapping Theorem). Let D be the interior of a simple curve in R2. Then
there exists a conformal map ϕ : D Ñ U.

Thus the above result guarantees a conformal map, but unfortunately the proof does not give a
practical algorithm for finding it.

Show that the “Möbius transformation” ϕ : D Ñ U, given by

ϕpsq “ i
1 ` z

1 ´ z
, s P D,

is a conformal map from the disc D :“ tz P C : |z| ă 1u to the upper half plane U.

4.5. Oscillations of an infinite string

Let us now consider the boundary value problem
$
’’’’’&
’’’’’%

B2u
Bt2 ´ c2

B2u
Bx2 “ 0 pt ą 0, x P Rq,

upx, 0q “ fpxq px P Rq,
Bu
Bt px, 0q “ gpxq px P Rq.

B2u
Bt2 ´ c2 B2u

Bx2 “ 0

t

x

up¨, 0q “ f, utp¨, 0q “ g
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Taking Fourier transform in the x-direction gives

d

dt2
pupξ, tq ` c2ξ2pupξ, tq “ 0,

pupξ, 0q “ pfpξq,
d

dt
pupξ, 0q “ pgpξq.

The general solution of the ODE (in t) above is

pupξ, tq “ Apξq cospcξtq `Bpξq sinpcξtq,
where A,B are constant in t (but are functions of ξ). We can determine A,B using the
initial conditions:

pfpξq “ pupξ, 0q “ Apξq

pgpξq “ d

dt
pupξ, 0q “ cξBpξq.

Thus

pupξ, tq “ pfpξq cospcξtq ` 1

cξ
pgpξq ¨ sinpcξtq, ξ ‰ 0.

Using the result from Exercise 4.7 (and under the assumption that for each t, Fxpup¨, tqq
is continuous), we obtain

upx, tq :“ fpx´ ctq ` fpx` ctq
2

` 1

2c

ż x`ct

x´ct

gpyqdy,

This is known as D’Alembert’s Formula.

We remark that the solution comprises two parts: one which depends on the string’s
initial wave form, and the second, which depends on the initial speed. These two parts
are illustrated below for some given f, g. The first term in u is shown below, where the
evolution can be thought of as the propagation of the initial shape in both directions
with a speed c.
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On the other hand, the plots of the initial speed and the second term in the solution
are shown below:
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Exercise 4.14. A pressure wave generated as a result of an explosion satisfies

Ptt ´ 16Pxx “ 0

in the domain tpx, tq : x P R, t ą 0u, where P px, tq is the pressure at the point x and time t.
The initial conditions at the explosion time t “ 0 are

P px, 0q “
"

10 if |x| ď 1,

0 if |x| ą 1,

Ptpx, 0q “
"

1 if |x| ď 1,
0 if |x| ą 1.

A building is located at x0 “ 10. The engineer who designed the building determined that it
will sustain a pressure up to P “ 6. Will the building collapse?

Exercise 4.15 (Stability). Consider the Cauchy Initial Value Problem for the wave equation:
$
’’’’&
’’’’%

B2u

Bt2 ´ c2
B2u

Bx2 “ 0 pt ą 0, x P Rq,

upx, 0q “ fpxq px P Rq,
Bu
Bt px, 0q “ gpxq px P Rq,

where f P C2 and g P C1. For i “ 1, 2, let ui be the solution to the initial value problem with
initial data pfi, giq. Fix T ą 0. Given any ǫ ą 0, show that there is a δ ą 0 such that if

}f1 ´ f2}8 :“ sup
xPR

|f1pxq ´ f2pxq| ă δ and }g1 ´ g2}8 :“ sup
xPR

|g1pxq ´ g2pxq| ă δ,

then sup
xPR,

tPr0,T s

|u1px, tq ´ u2px, tq| ă ǫ.

(This shows stability of classical solutions on finite time intervals for the wave equation in the
L8 norm.)
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4.6. The Laplace transform method

In this section, we will use the Laplace transform for solving our second order PDEs
where the spatial variable x lives on the half line r0,8q.

Definition 4.2. If f : R Ñ C is a piecewise smooth function, then its Laplace transform
F is defined by

F psq “
ż 8

0

fptqe´stdt,

for those s P C for which the integral exists.

So in general the Laplace transform for a given f is defined only for a subset of the
complex plane. Typically we will only consider f which are exponentially bounded, that
is, there exist M,a such that

|fptq| ď Meat pt ą 0q.

Then the Laplace transform of F exists for all Repsq ą a. Indeed,

ż 8

0

|fptqe´st|dt “
ż 8

0

|fptq|e´Repsqtdt

ď
ż 8

0

Meate´Repsqtdt “ M

ż 8

0

epa´Repsqqtdt “ M

Repsq ´ a
ă 8.

(It can be shown that for any piecewise smooth function, whenever the Laplace trans-
form converges for some s0 P C, it converges also for all s in the half plane in C given
by Repsq ą Reps0q.)

It can be seen that Laplace transformation is linear. We will denote the Laplace
transformation operator by L.

Example 4.7. Let us find out the Laplace transform of the constant function 1. For
Repsq ą 0, we have

F psq “
ż 8

0

1e´stdt “ e´st

´s
ˇ̌
ˇ
8

0

“ 1

s
.

Thus
`
Lp1q

˘
psq “ 1{s for Repsq ą 0. ♦

The following further properties will be useful to us. (We use capital letters below to
denote the Laplace transform: thus the Laplace transform of f is denoted by F , etc. )

(1) (Injectivity).

If f is continuous on p0,8q, and if F is zero on the real interval pa,8q for some real
a, then fptq “ 0 for all t ą 0. (See for example [A, Exercise 11.38].)



4.6. The Laplace transform method 113

(2) (Differentiation). Lpf 1qpsq “ sF psq ´ fp0´q.
Reason: We have for an exponentially bounded f satisfying |fptq| ď Meat that for
Repsq ą a, fptqe´st Ñ 0 as t Ñ 8. Then for ǫ ą 0, by integrating by parts, we have

ż 8

´ǫ

f 1ptqe´stdt “ fptqe´st
ˇ̌
ˇ
8

´ǫ
` s

ż 8

´ǫ

fptqe´stdt

“ ´fp´ǫqesǫ ` s

ż 8

´ǫ

fptqe´stdt.

Passing the limit as ǫ Œ 0, we obtain
`
Lpfq

˘
psq “ ´fp0´q ` sF psq.

(3) The causal convolution of two functions f, g is defined by

pf f gqptq “
ż t

0

fpτqgpt ´ τqdτ pt ą 0q.

Then Lpf f gq “ F ¨G.
Reason: We have

Lpf f gqpsq “
ż 8

0

pf ˚ gqptqe´stdt “
ż 8

0

´ ż t

0

fpτqgpt ´ τqdτ
¯
e´stdt

“
ż 8

0

ż t

0

fpτqgpt ´ τqe´stdτdt “
ż 8

0

ż 8

τ

fpτqgpt ´ τqe´stdtdτ

“
ż 8

0

fpτq
´ ż 8

τ

gpt ´ τqe´stdt
¯
dτ

“
ż 8

0

fpτq
´ ż 8

0

gpuqe´spu`τqdu
¯
dτ pu “ t´ τq

“
ż 8

0

fpτqe´sτ
´ ż 8

0

gpuqe´sudu
¯
dτ “

ż 8

0

fpτqe´sτGpsqdτ

“ Gpsq
ż 8

0

fpτqe´sτdτ “ GpsqF psq.

(4) Shifting rules:

(a) (Shift in the “s-domain”). L
`
es0tfptq

˘
psq “

`
Lpfq

˘
ps´ s0q for s´ s0 in the domain

of Lf .

Reason:

`
L

`
es0tfptq

˘˘
psq “

ż 8

0

es0tfptqe´stdt “
ż 8

0

fptqe´ps´s0qtdt “
`
Lpfq

˘
ps´ s0q.

A similar result holds for a shift in the time-domain.
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(b) (Shift in the time-domain). For t0 ě 0,
`
L

`
fpt´ t0q1rt0,8q

˘˘
psq “ e´st0

`
Lpfq

˘
psq.

Reason:

L
`
fpt´ t0q1rt0,8qptq

˘
psq “

ż 8

0

fpt´ t0q1rt0,8qptqe´stdt “
ż 8

t0

fpt´ t0qe´stdt

“
ż 8

0

fpτqe´spτ`t0qdτ pτ “ t´ t0q

“
ż 8

0

fpτqe´sτe´st0dτ “ e´st0

ż 8

0

fpτqe´sτdτ

“ e´st0
`
Lpfq

˘
psq.

Let us now see how we can use the Laplace transform to solve PDEs. The idea is similar
to what we did with the Fourier transform, but usually one takes the Laplace transform
with respect to t. Here are couple of examples.

Example 4.8 (A first order equation). Consider the problem
$
’’’&
’’’%

Bu
Bx ` x

Bu
Bt “ 0 pt ą 0, x P Rq,

upx, 0q “ 0 px P Rq,
up0, tq “ t pt ą 0q.

Taking Laplace transform with respect to t, we obtain

L

´Bu
Bx

¯
` x

`
sLpuq ´ upx, 0q

˘
“ 0.

Here upx, 0q “ 0. In the first term, we assume that we may interchange integration and
differentiation:

L

´Bu
Bx

¯
“

ż 8

0

e´st Bu
Bxdt “ B

Bx

ż 8

0

e´stupx, tqdt “ B
BxLu.

Writing Upx, sq :“
`
Lpupx, ¨qq

˘
psq, we obtain

BU
Bx ` xsU “ 0.

This is an ODE with x as the independent variable (and parameter s). The general
solution is

Upx, sq “ Up0, sqe
şx
0

´ξsdξ “ Up0, sqe´sx2{2.

Since
`
Lptq

˘
psq “ 1{s2, the condition up0, tq “ t yields Up0, sq “ 1{s2, and so

Upx, sq “ 1

s2
e´sx2{2.



4.6. The Laplace transform method 115

By the shifting rule, with t0 “ x2{2 ě 0, we obtain

upx, tq “
´
t´ x2

2

¯
1rx2{2,8qptq “

$
’&
’%

0 if 0 ď t ď x2

2
,

t´ x2

2
if t ą x2

2
.

Since we proceeded formally, we need to check that this solution does satisfy the PDE,
and this can be done. ♦

Example 4.9 (Heat equation for a semi-infinite rod). Consider the problem

$
’’’’&
’’’’%

Bu
Bt ´ a

B2u
Bx2 “ 0 pt, x ą 0q,

up0, tq “ fptq pt ą 0q,

upx, 0q “ 0 px ą 0q.

The problem is illustrated in the picture below.

Bu
Bt ´ aB2u

Bx2 “ 0

t

x

u “ fptq

u “ 00

Using Laplace transformation with respect to t, we obtain

sUpx, sq ´ upx, 0qloomoon
“0

“ a
B2U
Bx2 px, sq.

This ODE in x (with parameter s) has the general solution (assuming s is positive and
large)

Upx, sq “ Apsqe
?
sx{?

a `Bpsqe´?
sx{?

a.

Assuming that U stays bounded as s Ñ 8, we set A ” 0. To determine B, we obtain
from the boundary condition up0, tq “ fptq that

Up0, sq “ F psq “ Bpsq ¨ 1.

Hence

Upx, sq “ F psqe´?
sx{?

a.
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By the convolution rule, it follows that upx, tq must be the convolution of f with the

function whose Laplace transform is e´?
sx{?

a. Suppose we are given2 that

L

ˆ
k

2
?
πt3

exp
´

´ k2

4t

¯˙
psq “ e´k

?
s pk ą 0q.

Thus we obtain (with k “ x{?
a ą 0)

L

ˆ
x

2
?
aπt3

exp
´

´ x2

4at

¯˙
psq “ e´?

sx{?
a pk ą 0q.

Hence

upx, tq “ f f x

2
?
aπt3

exp
´

´ x2

4at

¯
“ x

2
?
aπ

ż t

0

fpt´ τq 1?
τ3

exp
´

´ x2

4aτ

¯
dτ.

Note that the solution at time t depends on the value of f on the interval r0, ts. This
is expected since the temperature of the heat reservoir in the future (τ ą t) cannot
possibly affect the temperature of the rod now. Let us find an explicit u in the simple
case when f ” T0 (constant heat source), when the convolution above is doable:

upx, tq “ xT0

2
?
aπ

ż t

0

1?
τ3

exp
´

´ x2

4aτ

¯
dτ.

Substituting z “ x

2
?
aτ

, we have dz “ x

2
?
a

?
τ3

´
´ 1

2

¯
dτ , and so

upx, tq “ 2T0?
π

ż 8

x

2
?

at

e´z2dz “ T0 ¨ erfc
´ x

2
?
at

¯
,

where erfc is the complementary error function, defined by

erfcpxq :“ 1 ´ erfpxq “ 1 ´ 2?
π

ż x

0

e´z2dz “ 2?
π

ż 8

x

e´z2dz.

2This can be found out using Maple or looked up for example in the mathematical reference work called
Abramowitz and Stegun: Handbook of Mathematical Functions, published in 1964. Thus 1046 page treatise has been
one of the most comprehensive sources of information on special functions, containing definitions, identities, approxi-
mations, plots, and tables of values of many functions used in applied mathematics. The notation used in the Handbook
is the standard for applied mathematics even today. The Laplace transform we have looked up is actually entry 29.3.82
on page 1026 of the Handbook, available on the web at: http://people.math.sfu.a/„bm/aands/
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Taking T0 “ 100, we can plot the temperature profiles at various time instances, say
t “ 0.01, 0.1, 1, 10, 100, 1000 (picture on the left above), and also the graph of u for
x P r0, 9s and t P r0, 180s (picture on the right above). ♦

Example 4.10 (Semi-infinite string). Consider the oscillations of an infinite string, sub-
ject to the following conditions:

(1) The string is initially at rest on the x-axis from x “ 0 to 8 (semi-infinite).

(2) For time t ą 0, the left end of the string is displaced according to

up0, tq “ fptq :“
"

sin t if 0 ď t ď 2π,

0 otherwise.

(3) Furthermore, lim
xÑ8

upx, tq “ 0 for t ě 0.

Thus we have
$
’’’’’&
’’’’’%

B2u
Bt2 ´ c2

B2u
Bx2 “ 0 pt, x ą 0q,

up0, tq “ fptq and lim
xÑ8

upx, tq “ 0 pt ą 0q,

upx, 0q “ Bu
Bt px, 0q “ 0 px ą 0q.

(Of course, there is no infinite string, but our model describes a long string or rope
of negligible weight with its right end fixed far out on the x-axis.) Taking Laplace
transform with respect to t, we have for x ą 0 that

c2L
´B2u

Bx2
¯

“ L

´B2u
Bt2

¯
“ s

`
Lputq

˘
´ utpx, 0qloomoon

“0

“ s
`
sU ´ upx, 0qloomoon

“0

˘
“ s2U.
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Interchanging differentiation and integration in the leftmost term, we obtain

B2U
Bx2 ´ s2

c2
U “ 0.

The general solution to this (assuming s is positive and large) is

Upx, sq “ Apsqesx{c `Bpsqe´sx{c.

We have Up0, sq “ Lpup0, ¨qq “ Lpfq “ F psq. On the other hand, assuming that the
order of integrating with respect to t and taking the limit as x Ñ 8 can be interchanged,
we obtain

lim
xÑ8

Upx, sq “ lim
xÑ8

ż 8

0

e´stupx, tqdt “
ż 8

0

e´st lim
xÑ8

upx, tqdt “ 0.

This implies that A ” 0, because c ą 0 and for all (large) s ą 0, the function x ÞÑ esx{c

goes to infinity as x Ñ 8. So we now obtain

F psq “ Up0, sq “ Bpsq,
and so Upx, sq “ F psqe´sx{c. By the Shifting Rule, with t0 “ x{c ě 0, we obtain

upx, tq “ f
´
t´ x

c

¯
¨ 1rx

c
,8qptq,

that is,

upx, tq “

$
’&
’%

sin
´
t´ x

c

¯
if
x

c
ă t ă x

c
` 2π,

0 otherwise.

The pictures below show the plots of up¨, tq for various time instances (t “ 0, 2π, 4π, 6π):

Thus the solution u describes a single-period sine waveform travelling to the right with
speed c. Note that a point x stays at rest until t “ x{c, the time needed to reach that
x if one starts at t “ 0 (start of the motion at the left end) and travels with speed c.
The result agrees with our physical intuition. Since we have worked formally we need
to check that our solution satisfies the wave equation. This can be done, except that it
does so in the “sense of distributions”, and it is a weak solution. We will revisit this in
Chapter 5. ♦
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Exercise 4.16 (Transport revisited). Solve

$
’’’’&
’’’’%

Bu
Bt ` c

Bu
Bx “ 0 pt ą 0, x ą 0q,

up0, tq “ fptq pt ě 0q,

upx, 0q “ 0 px ě 0q,

using the Laplace transform method.

Exercise 4.17 (Falling string). Consider a semi-infinite string fixed at one end, falling under
gravity:

$
’’’’’&
’’’’’%

B2u

Bt2 ´ c2
B2u

Bx2 “ ´g pt ą 0, x ą 0q,

up0, tq “ 0 pt ą 0q,

upx, 0q “ 0 “ utpx, 0q px ą 0q.

We will solve this using the Laplace transform method by following the steps below.

(1) Show that Upx, sq :“
`
L

`
upx, ¨q

˘˘
psq satisfies s2U ´ c2

B2U

Bx2 “ ´g

s
.

(2) Show that Uparticularpx, sq :“ ´ g

s3
satisfies the ODE in part (1).

(3) Show that the general solution to the ODE from part (1) is given by

Upx, sq “ Apsqe s
c
x `Bpsqe´ s

c
x ´ g

s3
.

(4) Now we make the assumption that for each s, x ÞÑ Upx, sq is bounded. Find u.
(5) Take c “ 1 and g “ 9.8ms´2. Plot u for t “ 1, 2, 3, 4, 5, 6.

4.7. Proof of the Fourier Transform Theorem

The proof of the Fourier Series Theorem relied on the two technical results we proved
in Lemma 3.5 and Lemma 3.6. Analogously, one can show the following two results,
which we will use in order to prove the Fourier Integral Theorem.

Lemma 4.6. If f : R Ñ C is absolutely integrable, then lim
ξÑ˘8

ż 8

´8
fpxqe´iξxdx “ 0.

Lemma 4.7. If f : R Ñ C is absolutely integrable, then

lim
aÑ8

ż 8

´8
fpxqsinpaxq

x
dx “ πfp0q.

As the proofs of these auxiliary results are almost identical to those of Lemmas 3.5 and
3.6, we will not give them here.
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Proof of the Fourier Transform Theorem. We have

1

2π

ż 8

´8
pfpξqeiξxdξ “ 1

2π

ż 8

´8

´ ż 8

´8
fpωqe´iξωdω

¯
eiξxdξ

“ lim
aÑ8

1

2π

ż a

´a

ż 8

´8
fpωqeiξpx´ωqdωdξ

“ lim
aÑ8

1

2π

ż 8

´8

ż a

´a

fpωqeiξpx´ωqdξdω

“ lim
aÑ8

1

2π

ż 8

´8
fpωq

´ ż a

´a

eiξpx´ωqdξ
¯
dω

“ lim
aÑ8

1

2π

ż 8

´8
fpωqe

iapx´ωq ´ e´iapx´ωq

ipx ´ ωq dω

“ lim
aÑ8

1

π

ż 8

´8
fpωqsin

`
apx ´ ωq

˘

x´ ω
dω.

In the above we changed the order of integration to obtain the third equality, and this
is allowed thanks to the fact that f is absolutely integrable. Now, the final right hand
side in the above equation array is

ż 8

´8
fpωqsin

`
apx ´ ωq

˘

x´ ω
dω

py“x´ωq“
ż 8

´8
fpx´ yqsinpayq

y
dy,

and so, in light of the above,

1

2π

ż 8

´8
pfpξqeiξxdξ “ lim

aÑ8
1

π

ż 8

´8
fpx´ yqsinpayq

y
dy “ fpxq,

using Lemma 4.7. �



Chapter 5

Distributions and weak solutions

There are three reasons to study “distributions” or “generalized functions”:

(1) To mathematically model the situation when one has an impulsive force (imag-
ine a blow to an object which changes its momentum, but the force itself is
supposed to act “impulsively”, that is the time interval when the force is ap-
plied is 0 !). Similar situations arise in other instances in mathematics and the
applied sciences.

(2) To develop a calculus which captures more general situations than the classical
case. For example, what is the derivative of |x| at x “ 0? It will turn out that
this is also useful to talk about weaker notions of solutions of PDEs.

(3) To extend the Fourier transform theory to functions that may not be absolutely
integrable. For example, what1 is the Fourier transform of the constant function
1?

It turns out that the theory of distributions solves all of these three problems in one
go. This seems like a miracle, and naturally there is a price to pay. The price is that
everything classical is now replaced by a weaker notion, but nevertheless this is useful
since it is often sufficient for what one wants to do. An example is that as opposed
to functions on R, which have a well-defined value at every point x P R, we can no
longer talk about the value of a distribution at a point of R. Another instance in the
context of PDEs is an example we met earlier, where we had a plucked guitar string,
and we discovered that the solution we obtained formally doesn’t solve the PDE in a
classical sense. Notwithstanding this, it turns out that the PDE is satisfied in the sense
of distributions. So with this motivation, we will learn the very basics of the theory of
distributions in this chapter and see a glimpse of its applications to PDEs.

1Although the classical Fourier transform does not exist, it can be shown that in the sense of distributions, the
Fourier transform of the constant function 1 is the Dirac delta distribution δ.
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We make a brief historical remark about the story of the development of distribu-
tions. The prime example of a distribution, the “delta function” δa, was introduced2

by the English physicist P.A.M. Dirac in the 1930s in order to do quantum mechanical
computations (as eigenstates of the position operator). However, a firm mathematical
foundation for this and other generalized functions had to wait till the 1950s when the
French mathematician Laurent Schwartz introduced the concept of distributions and
developed its theory. For this, he was awarded the Fields medal.

5.1. Test functions, distributions, and examples

Let us first quickly recall a few definitions from the topology of Rd:

Definition 5.1.

(1) (The Euclidean 2-norm } ¨ }2 on Rd).

For x “ px1, ¨ ¨ ¨ , xdq P Rd, }x}2 :“
b
x2
1

` ¨ ¨ ¨ ` x2d.

(2) (Open ball). An open ball with center a P Rd and radius r ą 0 is the set

Bpa, rq :“ tx P Rd : }x ´ a}2 ă ru.
(3) (Open set). A set U Ă Rd is open if for every x P U , there exists an r ą 0 such

that Bpx, rq Ă U .

(4) (Bounded set). A set S Ă Rd is bounded if there exists an R ą 0 such that
S Ă Bp0, Rq.

(5) (Closed set). A set F Ă Rd is closed if RdzF is open.

(6) (Compact set). A set K Ă Rd is compact if it is closed and bounded.

Definition 5.2 (Test function). A test function ϕ : Rd Ñ R is an infinitely differentiable
function for which there exists a compact set outside which ϕ vanishes. The set of all
test functions is denoted by DpRdq. Equipped with pointwise operations, DpRdq is a
real vector space.

Example 5.1. Let ϕ : R Ñ R be given by

ϕpxq “
#
e

´ 1

1´x2 if |x| ă 1,

0 if |x| ě 1,

is an element of DpRq. It is clear that ϕ vanishes outside the compact interval r´1, 1s.
Moreover, it is also infinitely many times differentiable. Indeed, it can be seen that the
function f : R Ñ R given by

fpxq “
"
e´ 1

x if x ą 0,

0 if x ď 0,

2There were, however, earlier usages of such an object; for example an infinitely tall, unit impulse function was
used by Cauchy in the early 19th century. The Dirac delta function as such was introduced as a “convenient notation”
by Dirac in his book, The Principles of Quantum Mechanics, where he called it the “delta function”, as a continuous
analogue of the discrete Kronecker delta.
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is clearly infinitely many times differentiable outside 0, and also

@n P N, lim
xÑ0

f pnqpxq “ 0,

showing that f is infinitely many times differentiable everywhere on R. (The details
will be given in Exercise 5.1.) And our function ϕ is just the composition of f with the
polynomial x ÞÑ 1 ´ x2. The picture below shows the graph of ϕ.

Similarly, we could have composed f with the function

x ÞÑ 1 ´ }x}22 “ 1 ´ px21 ` ¨ ¨ ¨ ` x2dq : Rd Ñ R

and obtained a function in DpRdq that is C8 and is zero outside the closed unit ball
Bp0, 1q :“ tx P Rd : }x}2 ď 1u. ♦

Whenever ϕ P DpRdq, we have that for every ǫ ą 0 and every a P Rd, also the function

x ÞÑ ϕ
´x ´ a

ǫ

¯

belongs to DpRdq. By taking linear combinations, we see that we get a huge abundance
of functions in DpRdq. It is also easy to see that DpRdq is closed under partial differ-
entiation. In the following, it will be convenient to introduce the following notation: if
k “ pk1, ¨ ¨ ¨ , kdq is a multi-index of nonnegative integers, then

Dk :“ Bk1`¨¨¨`kd

Bxk1
1

¨ ¨ ¨ Bxkdd
.

In this notation, we have: ϕ P DpRdq ñ Dkϕ P DpRdq for all k.

Exercise 5.1 (A C8 function which is not analytic). (˚)
(1) Let f : R Ñ R be continuous on R, continuously differentiable on R˚ :“ Rzt0u, and

such that

lim
xÑ0

f 1pxq

exists. Show that f is continuously differentiable on R.

(2) Let f : R Ñ R be n ´ 1 times continuously differentiable, n times continuously
differentiable on R˚, and such that

lim
xÑ0

f pnqpxq

exists. Show that f is n times continuously differentiable on R.
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(3) Let f : R Ñ R given by

fpxq “
"
e´ 1

x if x ą 0,
0 if x ď 1.

Show that f is infinitely many times differentiable.
Hint: Using induction on n, show that for x ą 0, f pnqpxq is of the form Rnpxqfpxq,
with Rn a rational function. Prove that lim

xÑ0
x´nfpxq “ 0 for all n P N.

Exercise 5.2. Solve ux “ 0 in DpR2q.

Definition 5.3 (Convergence in DpRdq). We say that a sequence pϕnqnPN converges to
ϕ in DpRdq if

(1) there exists a compact set K Ă Rd such that all the ϕn vanish outside K , and

(2) ϕn converges uniformly3 to ϕ and for each multi-index k, Dkϕn converges
uniformly to Dkϕ.

We then simply write ϕn
DÝÑ ϕ.

Definition 5.4 (Distribution). A distribution T on Rd is a map T : DpRdq Ñ R such
that

(1) (Linearity) For all ϕ,ψ P DpRdq and all α P R, T pϕ ` ψq “ T pϕq ` T pψq and
T pα ¨ ϕq “ α ¨ T pϕq.

(2) (Continuity) ϕn
DÝÑ ϕ ñ T pϕnq Ñ T pϕq.

The set of all distributions is denoted by D1pRdq. With pointwise operations, D1pRdq is
a vector space. We will usually denote T pϕq for ϕ P DpRdq, by xT, ϕy.

Remark 5.1. It is sufficient to check the continuity requirement with ϕ “ 0, since from
the linearity of T , it follows that

T pϕnq ´ T pϕq “ T pϕ ´ ϕnq,

and it is clear that pϕn
DÝÑ ϕq ô pϕn ´ ϕ

DÝÑ 0q.

Example 5.2 (L1
locpRdq functions are distributions). Let f : Rd Ñ R be a locally

integrable function (written f P L1
locpRdq), that is, for every compact set K ,

ż

K

|fpxq|dx ă 8.

Then f defines a distribution Tf as follows:

xTf , ϕy :“
ż

Rd

fpxqϕpxqdx, ϕ P DpRdq.

3That is, for every ǫ ą 0, there exists an N P N such that for all n ą N and all x P K , |ϕnpxq ´ ϕpxq| ă ǫ.
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The integral exists since ϕ is bounded and zero outside a compact set, and so we are
actually integrating over a compact set. It is also easy to see that Tf is linear. Moreover,

if ϕn
DÝÑ 0, with ϕn all vanishing outside a compact set K , then

|xTf , ϕny| “
ˇ̌
ˇ
ż

Rd

fpxqϕnpxqdx
ˇ̌
ˇ ď

ż

K

|fpxq||ϕnpxq|dx ď }ϕn}8

ż

K

|fpxq|dx Ñ 0,

since ϕn converges to 0 uniformly on K (the derivatives play no role here).

The distributions of the type Tf , where f is locally integrable, are called regular
distributions.

For example, the Heaviside function H

Hpxq “
"

1 if x ą 0,

0 if x ă 0,

is an example of a locally integrable function. We denote the corresponding distribution
by the same symbol. ♦

It can be shown that the inclusion map

L1
locpRdq Ă D

1pRdq
is injective. So just like we identify integers as rationals, we may think of all locally
integrable functions as distributions. But distributions are more general, as shown by
the following example.

Example 5.3 (Dirac delta distribution). The distribution δ P D1pRdq is defined by

xδ, ϕy “ ϕp0q, ϕ P DpRdq.
More generally, one defines, for a P Rd, a distribution δa by

xδa, ϕy “ ϕpaq, ϕ P DpRdq.
It is evident that δa is linear and continuous on DpRdq, that is, it is a distribution.

The delta distribution is not regular: there is no function f such that δa “ Tf .
Nevertheless, in a huge amount of literature, one encounters a manner of writing that
suggests that δa is a regular distribution. In place of xδ, ϕy, one writes

ż

Rd

δpxqϕpxqdx “ ϕp0q.

Similarly sometimes one writes

ż

Rd

δapxqϕpxqdx “ ϕpaq.

One then talks about delta “functions” instead of delta distributions. This is of course
incorrect (see the exercise below), but in some sense useful if one wants to do formal
manipulations in order to guess answers, or in order to get physical insights etc. With
this fallcious understanding, one often depicts the “graph of δ P D1pRq” as a spike, with
the intuitive feeling that the “δ function is everywhere 0, but is infinity at x “ 0, and
has integral over R equal to 1”! ♦
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Exercise 5.3. Show that there is no function δ : R Ñ R which has the property that for all
a ą 0,

(1) δ is Riemann integrable on r´a, as,

(2) for every C8 function ϕ vanishing outside r´a, as,
ż a

´a

δpxqϕpxqdx “ ϕp0q.

5.2. Derivatives in the distributional sense

Let us first consider the case when d “ 1.

Definition 5.5 (Distributional derivative). If T P D1pRq, then T 1 P D1pRq is defined by

xT 1, ϕy “ ´xT, ϕ1y, ϕ P DpRq.

Note that if ϕ P DpRq, then clearly ϕ1 P DpRq. So the right hand side above is well
defined. Moreover, the map

ϕ ÞÑ ´xT, ϕ1y
is linear. This map is also continuous onDpRq. Indeed, if ϕn

DÝÑ 0, then also ϕ1
n

DÝÑ 0,
and so

´xT, ϕ1
ny Ñ 0.

Thus T 1 P D1pRq.
Lemma 5.1. If f P C1pRq, then pTf q1 “ Tf 1 .

Proof. Let ϕ P DpRq be such that it vanishes outside ra, bs. Then using integration by
parts,

xpTf q1, ϕy “ ´xTf , ϕ1y “ ´
ż

R

fpxqϕ1pxqdx “ ´
ż b

a

fpxqϕ1pxqdx

“ 0 ´
´

´
ż b

a

f 1pxqϕpxqdx
¯

“ xTf 1 , ϕy.

(Here we have used the facts that ϕ,ϕ1 are zero outside ra, bs, and ϕpaq “ ϕpbq “ 0.)
This completes the proof. �

Remark 5.2. The above result means that whenever one identifies the function f with
the distribution Tf , then the two possible interpretations of the derivative which arise—
the classical sense versus the new distributional sense—coincide. However, the next
example shows that now we can differentiate functions which we couldn’t earlier, albeit
we can do so only in the distributional sense.

Example 5.4 (H 1 “ δ). For any test function ϕ P DpRq, we know that ϕpxq “ 0 for all
sufficiently large x, and so

xH 1, ϕy “ ´xH,ϕ1y “ ´
ż 8

0

ϕ1dx “ ´ϕpxq
ˇ̌
ˇ
8

0

“ ϕp0q “ xδ, ϕy,

and so H 1 “ δ. ♦
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Example 5.5 (Dipole). The derivative δ1 of δ, is called the dipole, and is given by

xδ1, ϕy “ ´xδ, ϕ1y “ ´ϕ1p0q,
for all ϕ P DpRq. ♦

Proposition 5.2 ( Jump Rule). Let f be continuously differentiable on R except at the

point a P R, where the limits fpa`q, fpa´q, f 1pa`q, f 1pa´q exist. Then f, f 1 are locally
integrable, and

pTf q1 “ Tf 1 `
`
fpa`q ´ fpa´q

˘
δa.

We think of fpa`q ´ fpa´q as the jump in f at the point a. One can formulate this
result by saying:

The derivative of f in the sense of distributions is
the classical derivative plus δa times the jump in f at a.

Proof. Let ϕ P DpRq, and suppose that ϕ is 0 outside rα, βs, and that a P rα, βs. Then

xpTf q1, ϕy “ ´xTf , ϕ1y “ ´
ż β

α

fpxqϕ1pxqdx

“ ´
ż a

α

fpxqϕ1pxqdx ´
ż β

a

fpxqϕ1pxqdx

“
ż a

α

f 1pxqϕpxqdx ´ fpa´qϕpaq `
ż β

a

f 1pxqϕpxqdx ` fpa`qϕpaq

“
ż β

α

f 1pxqϕpxqdx `
`
fpa`q ´ fpa´q

˘
ϕpaq

“ xTf 1 , ϕy `
`
fpa`q ´ fpa´q

˘
xδa, ϕy

“
@
Tf 1 `

`
fpa`q ´ fpa´q

˘
δa, ϕ

D
. �

Remark 5.3. This result can be extended to the case when f is continuously differen-
tiable everywhere except for a finite number of points ak, and at these points ak, the
function satisfies the same assumptions as stipulated above. This then leads to

pTf q1 “ Tf 1 `
ÿ

k

`
fpak`q ´ fpak´qloooooooooomoooooooooon

“:σk

˘
δak .

The proof is analogous. In fact the result even extends to the case when f has infinitely
many jump discontinuities provided that in any compact interval, one finds only finitely
many discontinuities. The sum on the right hand side is the distribution defined by

A ÿ

k

σkδak , ϕ
E

“
ÿ

k

σkϕpakq,

where, for a given test function ϕ, only finitely many terms on the right hand side are
nonzero.
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Exercise 5.4. Show that

d

dx
Hpxq cos x “ ´Hpxq sinx` δ,

d

dx
Hpxq sinx “ Hpxq cos x.

Exercise 5.5 (Fundamental solution to the 1D Laplace equation). Show that the equation

d2

dx2
E “ δ

is satisfied by E :“ 1

2
|x|.

When d ą 1, the definition of the distributional derivative is analogous.

Definition 5.6. Let T P D1pRdq. Then the ith-partial derivative of T , 1 ď i ď d, is
defined by A BT

Bxi
, ϕ

E
“ ´

A
T,

Bϕ
Bxi

E
.

Exercise 5.6. Show that for all T P D1pRdq and all i, j,
B2T

BxiBxj
“ B2T

BxjBxi
.

Exercise 5.7. The Heaviside function in two variables, H : R2 Ñ R, is defined by

Hpx, yq “
"

1 if x ě 0 and y ě 0,
0 if x ă 0 or y ă 0.

(That is, H is the indicator function 1r0,8q2 of the “first quadrant”.) Show that
B2H

BxBy “ δ0.

5.3. Weak solutions

A weak solution to a PDE will be one which is not a classical solution, but satisfies the
PDE in the sense of distributions.

5.3.1. Weak solution to the transport equation. We had seen that the transport equa-
tion, $

’&
’%

Bu
Bt ´ c

Bu
Bx “ 0,

upx, 0q “ fpxq
has the solution

upx, tq “ fpx` ctq
provided f is continuously differentiable. Relaxing this latter condition, we claim that
this u is a weak solution provided f is locally integrable. To see this, let ϕ P DpR2q.
Then we have

xut ´ cux, ϕy “ xu,´ϕt ` cϕxy “ ´
ĳ

R2

fpx` ctq
`
ϕtpx, tq ´ cϕxpx, tq

˘
dxdt.
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Hence to prove this claim, it must be shown that the above integral is zero. To do this,
we will make the following change of variables:

ξ “ x` ct

η “ t
ÐÑ x “ ξ ´ cη,

t “ η.

Recall that for a double integral, one has the following “change of variables” formula

under the change of variables given by the map pξ, ηq ΨÞÑ px, tq:
ĳ

R2

F px, yqdxdy “
ĳ

R2

pF ˝ Ψqpξ, ηq ¨ |Jpξ, ηq|dξdη,

where Jpξ, ηq is the Jacobian determinant given by

Jpξ, ηq “ det

»
——–

Bx
Bξ

Bx
Bη

Bt
Bξ

Bt
Bη

fi
ffiffifl .

In our case, the derivative of the map pξ, ηq ΨÞÑ px, tq is

»
——–

Bx
Bξ

Bx
Bη

Bt
Bξ

Bt
Bη

fi
ffiffifl “

„
1 ´c
0 1


,

whose determinant is 1. Furthermore,

ϕt “ pϕ ˝ Ψqξ ¨ ξt ` pϕ ˝ Ψqη ¨ ηt “ cpϕ ˝ Ψqξ ` pϕ ˝ Ψqη,
ϕx “ pϕ ˝ Ψqξ ¨ ξx ` pϕ ˝ Ψqη ¨ ηx “ pϕ ˝ Ψqξ.

Thus ϕt ´ cϕx “ cpϕ ˝ Ψqξ ` pϕ ˝ Ψqη ´ cpϕ ˝ Ψqξ “ pϕ ˝ Ψqη. So
ĳ

R2

fpx` ctq
`
ϕtpx, tq´cϕxpx, tq

˘
dxdt

“
ĳ

R2

fpξq ¨ pϕ ˝ Ψqηpξ, ηq ¨ |1|dξdη

“
ż

R

fpξq
ż

R

pϕ ˝ Ψqηpξ, ηqdηdξ

“
ż

R

fpξq
´

pϕ ˝ Ψqpξ, ηq
ˇ̌
ˇ
η“`8

η“´8

¯
dξ

“
ż

R

fpξq ¨ 0dξ “ 0,
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where we have used the Fundamental Theorem of Calculus to simplify the inner integral,
and used the fact that ϕ has compact support to obtain

pϕ ˝ Ψqpξ, ηq
ˇ̌
ˇ
η“`8

η“´8
“ lim

ηÑ8
pϕ ˝ Ψqpξ, ηq ´ lim

ηÑ´8
pϕ ˝ Ψqpξ, ηq

“ lim
ηÑ8

ϕpξ ´ cη, ηq ´ lim
ηÑ´8

ϕpξ ´ cη, ηq “ 0 ´ 0 “ 0.

This proves the claim.

5.3.2. Weak solution to the wave equation. Recall that if f P C2pRq, then

upx, tq :“ fpx` ctq ` fpx´ ctq
2

(5.1)

is a classical solution to
B2u
Bt2 ´ c2

B2u
Bx2 “ 0

with the initial condition upx, 0q “ fpxq and with zero intial speed utpx, 0q “ 0. Let
us now show that even when f is locally integrable, u given by (5.1) satisfies the wave
equation, but in the sense of distributions. In order to do this, we will use our result
from the previous section, where we considered the transport equation. We have just
seen that u` given by

u`px, tq :“ fpx` ctq,
where f P L1

loc is a dstributional solution of the transport equation

Bu
Bt ´ c

Bu
Bx “ 0.

By replacing c by ´c, we also see that u´ given by

u´px, tq :“ fpx´ctq
is a distributional solution to

Bu
Bt`cBu

Bx “ 0.

But
B2
Bt2 ´ c2

B2
Bx2 “

´ B
Bt ´ c

B
Bx

¯´ B
Bt ` c

B
Bx

¯
,

and using this observation, we will find a weak solution to the wave equation too. Let u
be given by (5.1), and ϕ P DpR2q. Then

AB2u
Bt2 ´ c2

B2u
Bx2 , ϕ

E
“

A´ B
Bt ´ c

B
Bx

¯´ B
Bt ` c

B
Bx

¯
u, ϕ

E

“ ´
A´ B

Bt ´ c
B

Bx
¯
fpx` ctq,

´ B
Bt ` c

B
Bx

¯
ϕ

E

´
A´ B

Bt ` c
B

Bx
¯
fpx´ ctq,

´ B
Bt ´ c

B
Bx

¯
ϕ

E

“ ´0 ´ 0 “ 0.



5.3. Weak solutions 131

Exercise 5.8 (Weak solution exists, but no classical solution). Show that

upxq “
"
c if x ă 0,

x` c if x ą 0,

is a weak solution of the ODE u1 “ H , where H is the Heaviside function.

5.3.3. Multiplication by C8 functions. In general, it is not possible to define the
product of two distributions. For example, the product of two locally integrable func-

tions is not in general locally integrable. (f :“
a

|x|´1
is locally integrable, but f2 isn’t!)

So the product of two regular distributions in general may not define a distribution.

However, one can define the product of a function α P C8pRdq with a distribution
T P D1pRdq by setting

xαT,ϕy “ xT, αϕy, ϕ P DpRdq.
Note that if ϕ P DpRdq, then it is in particular in C8pRdq, and so it is clear that αϕ is
infinitely many times differentiable. Moreover, as ϕ vanishes outside a compact set, so
does αϕ. Hence αϕ P DpRdq, and the right hand side makes sense. It is also easy to
see that

ϕ ÞÑ xT, αϕy : DpRdq Ñ R

is linear, thanks to the linearity of T . Finally, it can be shown (using the Leibniz Rule)

that if ϕn
DÝÑ 0, then also αϕn

DÝÑ 0. Consequently, αT P D1pRdq.
Proposition 5.3. If f P L1

locpRdq and α P C8pRdq, then
αTf “ Tαf .

Proof. α is bounded on every compact set, and so it follows that αf is locally integrable.
For ϕ P DpRdq, we have

xαTf , ϕy “ xTf , αϕy “
ż

Rd

fpxqαpxqϕpxqdx “ xTαf , ϕy.

This completes the proof. �

The above result means that whenever we identify as usual the elements of L1

locpRdq
with distributions, then the two a priori different manners of forming the product with
α lead to the same result.

Example 5.6. One can think of the distribution Hpxq cos x as the product of the C8

function cos x with the distribution Hpxq. ♦

Proposition 5.4. The following calculation rules hold.

For T, T1, T2 P D1pRdq, α1, α2, α, β P C8pRdq, we have
(1) αpT1 ` T2q “ αT1 ` αT2

(2) pα1 ` α2qT “ α1T ` α2T

(3) pαβqT “ αpβT q
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(4) 1T “ T .

(Thus D1pRdq is a C8pRdq-module4.)

Proof. All of these follow from the definition of multiplication of distributions by C8

functions. For example, to check (3), note that for all ϕ P DpRdq, we have
xpαβqT, ϕy “ xT, pαβqϕy “ xT, βpαϕqy “ xβT, αϕy “

@`
αpβT q

˘
, ϕ

D
,

proving the claim. �

The product rule for differentiation is valid in the same manner as for functions.

Theorem 5.5 (Product Rule). For T P D1pRdq and α P C8pRdq,

pd “ 1q : pαT q1 “ α1T ` αT 1

pd ą 1q : B
Bxi

pαT q “
´ Bα

Bxi

¯
T ` α

´ BT
Bxi

¯
.

Proof. When d “ 1 and ϕ P DpRq, we have pαϕq1 “ α1ϕ` αϕ1, and so

xpαT q1, ϕy “ ´xαT,ϕ1y “ ´xT, αϕ1y
“ ´xT, pαϕq1y ` xT, α1ϕy
“ xT 1, αϕy ` xα1T, ϕy
“ xαT 1, ϕy ` xα1T, ϕy
“ xαT 1 ` α1T, ϕy.

The proof is analogous when d ą 1. �

Theorem 5.6. If a P Rd and α P C8pRdq, then
αδa “ αpaqδa.

Proof. For ϕ P DpRdq, we have
xαδa, ϕy “ xδa, αϕy “ pαϕqpaq “ αpaqϕpaq “ αpaqxδa, ϕy “ xαpaqδa, ϕy. �

Example 5.7. We have xδ “ 0, pcos xqδ “ δ, psinxqδ “ 0. ♦

Exercise 5.9. Redo Exercise 5.4 using the Product Rule.

Exercise 5.10 (Fundamental solutions). Show that if λ P R, n P N and ω P Rzt0u, then

(1)
´ d

dx
´ λ

¯
Hpxqeλx “ δ

(2)
dn

dxn

´
Hpxq xn´1

pn´ 1q!
¯

“ δ

(3)
´ d2

dx2
` ω2

¯
Hpxqsinpωxq

ω
“ δ.

4A module is just like a vector space, except that the underlying field is replaced by a ring—here the ring is
C8pRdq.
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Exercise 5.11. Show that if α P C8pRq, then αδ1 “ αp0qδ1 ´ α1p0qδ. Conclude that xδ1 “ ´δ.
Exercise 5.12. Show that for all T P D1pRq, we have

”
x,

d

dx

ı
T :“ x

dT

dx
´ d

dx
pxT q “ ´T.

(Thus the commutant
”
x,

d

dx

ı
“ ´1.)

5.4. Fourier transform

We make a few final parting remarks, which are not really a part of the course, but
which give a glimpse of what lies ahead.

The idea is that we would like to define the Fourier transform of a nice distribution
T by setting

x pT , ϕy “ xT, pϕy.
But pϕ may not have compact support5, and so we need to enlarge our set of test
functions. This leads to the Schwartz class SpRdq of test functions turn out to be
appropriate. We will not define these here, but simply remark that this allows us to
consider the dual space S 1pRdq of the Schwartz class of test functions, giving the space
of tempered distributions

S
1pRdq Ă D

1pRdq.
Much of the classical Fourier transform theory can be extended appropriately for the
class of tempered distributions. This allows one to rigorously justify some of the formal
calculations done in the previous chapters. It also gives rise to some important auxiliary
concepts which are quite useful in the theory of PDEs. One such notion is the concept
of a fundamental solution for a linear PDE.

Definition 5.7 (Fundamental Solution). Given a linear partial differential operator with
constant coefficients,

D “
ÿ

|k|ďK

akD
k,

a fundamental solution is a distribution E P D1pRdq such that

DE “ δ.

(In the above, |k| :“ k1 ` ¨ ¨ ¨ ` kd for k “ pk1, ¨ ¨ ¨ , kdq.)

These are useful since they allow one to solve the inhomogeoneous equation

Du “ g.

For a suitable g (for example a distribution with compact support), it can be shown that

u :“ E ˚ g

5In fact, it can be shown that pϕ belongs to D if and only if ϕ “ 0.
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does the job: Du “ DpE ˚ gq “ pDEq ˚ g “ δ ˚ g “ g. There is also a deep theorem of
Malgrange and Ehrenpreiss which says that every nonzero operator with constant coef-
ficients has a fundamental solution. Fundamental solutions with appropriate boundary
conditions specific to a PDE problem are sometimes referred to as Green’s functions.

Example 5.8. It follows from Exercise 5.5 that a fundamental solution for the one-
dimensional Laplacian operator

d2

dx2

is Ep :“ |x|{2. In fact if we add to Ep any solution to the homogeneous equation
u2 “ 0, then it will also be a fundamental solution. So ax ` b ` |x|{2 with arbitrary
a, b are all fundamental solutions of the one-dimensional Laplacian operator. ♦
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