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1 Introduction

Simultaneous bidding in multiple first-price auctions is a commonly occurring but rarely

discussed phenomenon in many real-world auction markets.1 In environments where values

over combinations are non-additive in the set of objects won, bidders must account for the

possibility of winning multiple auctions at the time of bidding. This in turn substantially

alters the strategic bidding problem compared to the standard first price auction, with

ambiguous welfare implications depending on the importance of synergies (either positive or

negative) among objects. We develop a structural model of bidding in simultaneous first-

price auctions and study identification and estimation in this framework. We then apply our

methodology to estimate cost synergies arising in Michigan Department of Transportation

(MDOT) highway procurement auctions, using the resulting estimates to analyze revenue

and efficiency performance of the simultaneous first-price mechanism in this application.2

To illustrate the policy questions arising in simultaneous multi-object auctions, note that

given a set of L heterogeneous objects for sale, bidders i’s preference structure could in

principle be as complex as a complete 2L-dimensional set of signals describing the valuations

i assigns to each of the 2L possible subsets of objects. Meanwhile, the simultaneous first-

price mechanism allows bidders to submit (at most) L individual bids on the L objects being

sold. Consequently, the simultaneous first-price auction format is necessarily inefficient—the

“message space” (standalone bids) is insufficiently rich to allow bidders to express their true

preferences. The auctioneer could alleviate this “message space” problem by, for instance,

allowing combination bids, but these still need not produce efficient allocations, and may

1To underscore the prevalence of simultaneous bidding in applications, note that many widely studied
first-price marketplaces in fact exhibit simultaneous bids. Concrete examples include markets for highway
procurement in many US states (Krasnokutskaya (2011), Somaini (2015), Li and Zheng (2009), Groeger
(2014), many others), snow-clearing in Montreal (Flambard and Perrigne (2006)), recycling services in Japan
(Kawai (2011)), cleaning services in Sweden (Lunander and Lundberg (2013)), oil and drilling rights in the US
Outer Continental Shelf (Hendricks et al. (2003)), and to a lesser extent US Forest Service timber harvesting
(Lu and Perrigne (2008), Li and Zhang (2010), Athey et al. (2011), many others).

2This paper focuses on complementarities arising when auctions are run simultaneously. This comple-
ments the literature on potential linkages in valuations over time, e.g. Balat (2015), De Silva (2005), De
Silva et al. (2005), Groeger (2014) and Jofre-Bonet and Pesendorfer (2003) among others.
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involve substantial practical costs; see, e.g., Cramton et al. (2006) for a review. Hence in

evaluating the simultaneous first-price format, it is first necessary to assess potential welfare

and revenue effects of simultaneous bidding, about which little is presently known.

We develop a structural empirical model of bidding in simultaneous first-price auctions

when objects are heterogeneous and bidders have non-additive preferences over combinations,

to our knowledge the first in the literature. We represent the total value bidder i assigns

to each combination as the sum of two components: the sum of i’s standalone valuations

for each object in the combination individually, plus a combination-specific complementar-

ity (either positive or negative) capturing the incremental change in value i associates with

winning the combination as a whole. We interpret standalone valuations as private informa-

tion drawn independently across bidders conditional on observables, and complementarities

as deterministic functions of observables.3 We find this framework natural in a variety of

procurement contexts—when, for instance, non-additivity in preferences can be represented

as the expectation over a cost shock realized following a multiple win. Furthermore, and

crucially, our framework collapses immediately to the standard separable model when com-

plementarities are zero, supporting formal testing of this hypothesis.

Building on this framework, we make four main contributions to the literature on struc-

tural analysis of auction markets. First, we establish a new set of identification results

applicable even when complementarities are non-zero. We start by showing that optimal be-

havior in this environment yields an inverse bidding system non-parametrically identified up

to the unknown function describing complementarities, which in turn collapses to the stan-

dard inverse bidding function of Guerre et al. (2000) when complementarities are zero. Under

natural exclusion restrictions—namely, that marginal distributions of standalone valuations

are invariant either to characteristics of rival bidders or characteristics of other objects—we

then translate this inverse bidding system into a system of linear equations in unknown bid-

3Note that this structure does not restrict dependence between i’s standalone valuations for different
objects in the market. We view this flexibility as critical, as in practice we expect i’s standalone valuations
to be positively correlated among each other even if independent from other bidders valuations.
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der complementarities, with excludable variation in competition and other characteristics

yielding non-parametric identification of these.

Second, we develop a two-step procedure by which to estimate primitives in our structural

model. First, in Step 1, we estimate the multivariate joint distribution of bids as a function

of bidder- and auction-level characteristics. In Step 2, we use pairwise differencing and

GMM estimation to estimate complementarities using the inverse bidding system. Once

complementarities are estimated, it is straightforward to use the inverse bidding system to

estimate standalone project completion costs for each bidder.

Third, we apply our structural framework to analyze simultaneous bidding in Michi-

gan Department of Transportation (MDOT) highway procurement markets. We view this

market as prototypical of our target application: large numbers of projects are auctioned

simultaneously (an average of 45 per letting round in our 2005-2015 sample period), more

than half of bidders bid on at least two projects simultaneously (with an average of 2.7 bids

per round across all bidders in the sample), and combination and contingent bidding are

explicitly forbidden. Within this marketplace, we show that factors such as size of other

projects, number of bidders in other auctions, and the relative distance between projects

have substantial reduced-form impacts on i’s bid in auction l, a finding hard to rationalize

in standard separable models. We then apply the estimation algorithm described above to

recover structural estimates of primitives. We find substantial complementarities in this ap-

plication: comparing the 10th to the 90th percentile of estimated complementarities, we find

that a combination win may generate anything from approximately 23.8 percent cost savings

to approximately 11 percent cost increases depending on bidder and project characteristics,

with large, heterogeneous, and overlapping projects more likely to be substitutes.

Finally, building on our structural estimates, we measure potential inefficiencies asso-

ciated with the simultaneous first price auction design. Toward this end, we compare the

simultaneous first-price auction used in the MDOT marketplace with a simple efficient com-

binatorial benchmark: the Vickrey-Clarke-Groves (VCG) mechanism. As expected, the VCG
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mechanism yields lower social costs: our estimates suggest total social gains of approximately

6 percent, with relatively larger gains in lettings with larger complementarities. Interestingly,

however, the counterfactual VCG auction also slightly increases MDOT’s procurement costs

by about 1 percent. In other words, even in the presence of substantial complementarities,

the simultaneous first-price auction format appears to perform very well.4 This is, to our

knowledge, the first formal comparison of the simultaneous first-price and VCG mechanisms,

and may help to explain the popularity of the simultaneous first-price format in practice.5

While this is to our knowledge the first structural analysis of bidding in simultaneous

first-price auctions, our work builds on a small but growing structure literature analyzing

combinatorial auctions.6 Cantillon and Pesendorfer (2006) analyze combinatorial first-price

sealed-bid auctions for London bus routes, using the possibility of package bidding to iden-

tify bidder preferences over combinations. More recently, Kim et al. (2014) employ a re-

lated methodology to analyze the large-scale combinatorial auctions used in procurement

of Chilean school meals. A key source of identification in these combinatorial settings is

observation of package bids, which are directly informative regarding relative preferences for

specific combinations. Since, by construction, we observe only standalone bids, identifica-

tion in our simultaneous first-price setting is a substantially different (and more challenging)

problem, for which we develop a novel solution.

We are also aware of two recent studies structurally analyzing synergies across auctions

when package bids are not available. In the context of FCC simultaneous ascending auctions,

4We also explored other leading combinatorial mechanisms, such as the descending proxy auction of
Ausubel and Milgrom (2002). By construction, these lead to the same efficient allocation as the VCG
auction, and in preliminary tests they also led to very similar expected revenue. For this reason, we chose
to focus for simplicity on the VCG auction.

5More generally, this analysis contributes to the growing literature that aims to understand the per-
formance of different auction formats in procurement auctions. Other studies in this area includes among
others: Athey et al. (2011) who compare open versus sealed bid auctions for timber harvesting contracts,
Lewis and Bajari (2011) who compare first price versus scoring rules with time incentives for the procure-
ment of roadwork contracts, and Decarolis (2017) who studies first price auctions with ex-post screening and
average-bid auctions in the Italian procurement.

6Although only tangentially related to our problem, there is also a growing empirical literature on multi-
unit auctions, which focus on markets for homogeneous, divisible goods like electricity and treasury bills.
See e.g. Fevrier et al. (2004); Chapman et al. (2007); Kastl (2011); Hortacsu and Puller (2008); Hortacsu
and McAdams (2010) and Hortacsu (2011); Wolak (2007); and Reguant (2014).
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Bajari and Fox (2013) estimate the deterministic component of bidder valuations under the

assumption that the allocation of licenses is pairwise stable in matches, a condition which

need not hold in the simultaneous first-price setting we consider here. Meanwhile, Kong

(2018) studies identification and estimation in sequential auctions allowing for synergies and

affiliation in each bidder’s private valuations across auctions, complementing our analysis

allowing for both features in simultaneous auctions.7 Although the economic considerations

motivating our analysis closely parallel those of Kong (2018), simultaneous and sequential

bidding introduce fundamentally different empirical challenges which render our respective

methodological contributions entirely distinct.

Paralleling these structural studies, there is also a small reduced-form literature seek-

ing to quantify the role of preferences over combinations in multi-object auctions. Ausubel

et al. (1997) and Moreton and Spiller (1998) measure synergy effects in FCC spectrum auc-

tions. Lunander and Lundberg (2013) empirically compare combinatorial and simultaneous

first-price auctions in a Swedish market for internal cleaning services, finding that bidders

inflate their standalone bids in combinatorial auctions relative to first-price auctions but

that this does not significantly affect the procurer’s final costs. De Silva (2005) and De Silva

et al. (2005) analyze spatial synergies in Oklahoma Department of Transportation highway

procurement auctions, finding that previous winners participate more often and bid more

aggressively in subsequent nearby projects. These findings are consistent with the hypothesis

of spatial synergies in procurement, motivating the structural model we consider here.

Finally, from a more theoretical perspective, there have been several studies analyzing

strategic interaction in stylized models involving simultaneous first-price auctions; see, for

example, Szentes and Rosenthal (2003) and Ghosh (2012) among others. Gentry et al. (2019)

study existence and proprieties of equilibrium in a setting closely paralleling that studied

here. There is also a substantial literature analyzing properties of various combinatorial

7We emphasize that both we and Kong (2018) allow for affiliation in valuations across objects for each
bidder, but not affiliation in valuations across bidders. Formally, therefore, both studies fall within the
independent private values paradigm.
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auction mechanisms: Ausubel and Milgrom (2002), Ausubel and Cramton (2004), Cram-

ton (1997, 2006), Krishna and Rosenthal (1996), Klemperer (2008, 2010), Milgrom (2000b,

2000a), and Rosenthal and Wang (1996), to mention just a few. Detailed surveys of this

literature are given in De Vreis and Vorha (2003) and Cramton et al. (2006).8

The rest of this paper is organized as follows. Section 2 outlines the model of simultaneous

first-price auctions on which our structural analysis is built. Section 3 studies identification

in this model. Section 4 describes the Michigan Department of Transportation (MDOT)

highway procurement marketplace, and Section 5 presents our structural estimation strat-

egy and the estimation results. Section 6 compares MDOT’s simultaneous first-price format

with a combinatorial VCG mechanism. Finally, Section 7 concludes. Additional results are

collected in a set of technical appendices: Appendix A collects technical proofs, Appendix

B extends our framework to incorporate entry, and Appendices C-H present extended iden-

tification, testing, and Monte Carlo simulation results.

2 Empirical framework

Consider a population of simultaneous first-price lettings. In each letting t, a set Nt =

{1, ..., Nt} of risk-neutral bidders compete for (subsets of) a set Lt = {1, ..., Lt} of objects

allocated via separate but simultaneous first-price auctions. Each bidder i ∈ Nt participates

in a set of auctions, Lit ⊂ Lt, submitting a scalar bid bitl in each auction l in which she

participates. Bidding is simultaneous and objects are awarded auction by auction: the high

bidder in auction l wins object l and pays her bid, with ties broken independently across

bidders and auctions. Let Lit denote the number of auctions in which bidder i is participating,

and bit ≡ (bitl)l∈Lit denote the Lit × 1 vector of bids submitted by i in letting t.

8There is also a growing theoretical literature on simultaneous first-price auctions in computer science;
see Feldman et al. (2012) and Syrgkanis (2012) among others. This literature focuses primarily on deriving
bounds on the “Bayesian price of anarchy,” or fractional efficiency loss, in simultaneous first-price auction
markets. Results in this literature are largely restricted to settings with negative complementarities, and even
in these settings bounds tend to be wide (e.g. Feldman et al. (2012) show that Bayesian Nash equilibrium
captures at least half of total social surplus).
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For each letting t, the econometrician observes the following data. First, for each object

l = 1, ..., Lt auctioned in letting t, the econometrician observes a vector of characteristics

Xlt describing this object. Second, for each bidder i active in letting t, the econometrician

observes bidder i’s bid vector bit, participation set Lit, and a vector of generic bidder charac-

teristics Zit. In what follows, let Xt ≡ (X1,t, ..., XLt,t) describe characteristics of all objects

auctioned in letting t, and Zt ≡ (Z1t, ..., ZNt,t) describe characteristics of all active bidders.

Following Cantillon and Pesendorfer (2006) and Bajari and Fox (2013), we analyze bid-

ding in the simultaneous first-price auction taking participation as given. That is, we take

the endogenous outcome of interest to be the bid vectors (b1t)
Nt
i=1 submitted by each bidder,

conditional on auction characteristics Xt, bidder characteristics Zt, and participation sets

(Lit)Nti=1. We view this as a natural, and arguably necessary, first step toward understanding

simultaneous first-price auction markets: here, as elsewhere, one cannot analyze participa-

tion without understanding bidding. Importantly, however, one can also view our analysis as

applying to bidding within a two-stage entry and bidding model in which entry is interpreted

as a process of value discovery; the key hypothesis in this case is that bidders discover private

information about valuations only following costly entry. We return to this point in detail

in Section 3.4 below, with a completely specified entry and bidding model in Appendix B.

For concreteness, we follow many prior studies on highway procurement auctions, e.g.

Bajari and Ye (2003), Krasnokutskaya (2011), and Krasnokutskaya and Seim (2011) among

many others, in assuming that bidders observe the participation structure (Lit)Nti=1 at the time

of bidding. We note, however, that our identification analysis applies equally when bidders

observe only the set of potential participants in each auction; e.g., the set of planholders as

in Li and Zheng (2009). In this case, one would simply reinterpret Lit as the set of auctions

in which i is a potential participant, then proceed as we describe below.

In either case, to streamline notation, we adopt the convention that bidder i’s charac-

teristics Zit include her participation set Lit. From the perspective of both bidders and the

econometrician, the common-knowledge observables (Xt, Zt) fully characterize letting t.
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Our baseline model turns on two sets of structural assumptions: the first regarding bidder

preferences, the second regarding equilibrium behavior. In this section, we describe each of

these in turn. We discuss extensions of this baseline model to settings with endogenous

participation, unobserved heterogeneity, and richer preferences in Section 3.4.

2.1 Bidder preferences

Since our identification analysis applies at the population level conditional on specific real-

izations of common-knowledge observables (Xt, Zt), for the next two sections we suppress

the letting subscript t for notational compactness. We reintroduce the letting subscript t

when discussing estimation in Section 5.

By construction, if bidder i = 1, ..., N participates in Li ≥ 1 auctions, then she may win

any of 2Li possible combinations of objects. We index these possible combinations with an

Li × 1 outcome vector ωi, where ωil = 1 if object l is allocated to bidder i and ωil = 0

otherwise. We represent the set of all 2Li combinations possible for bidder i with a 2Li × Li

outcome matrix Ωi, where each row of Ωi corresponds to a distinct outcome ωi. For example,

if Li = 2, then Ωi would be given by

Ωi =



0 0

1 0

0 1

1 1


.

Equivalently, one may view each outcome ωi as the binary representation of some integer

in the set {1, ..., 2Li} indexing i’s possible combinations, with Ωi collecting all such binary

representations. With slight abuse of notation, we therefore use the shorthand “ω ∈ Ωi” to

indicate that outcome ω is possible for bidder i.

Bidders have preferences over combinations of objects, which need not be additive over

elements in the combination. Specifically, to each potential outcome ω ∈ Ωi, bidder i
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associates a combinatorial valuation Y ω
i , which she receives in the event that this outcome

is realized. Let Yi ≡ [Y ω
i ]ω∈Ωi , a 2Li×1 vector, collect i’s combinatorial valuations Y ω

i for all

possible outcomes ω ∈ Ωi. For simplicity, and without loss of generality, we normalize the

value of winning nothing to zero: Y 0
i = 0.

Let bidder i’s standalone valuation for object l, denoted Vil, be the valuation i assigns

to the outcome “i wins object l alone”. Accordingly, let i’s standalone valuation vector,

denoted Vi, be the Li × 1 vector describing i’s standalone valuations for each object in her

participation set: Vi ≡ [Vil]
Li
l=1. Finally, let Kω

i denote i’s complementarity between objects

in combination ω ∈ Ωi, defined as the difference between i’s combinatorial valuation Y ω
i and

the sum of i’s standalone valuations for objects won under ω:

Kω
i = Y ω

i − ωTVi.

Let Ki ≡ [Kω
i ]ω∈Ωi be the 2Li × 1 vector containing the complementarities associated by i

with each possible outcome ω ∈ Ωi. Note that, by construction, we have

Yi ≡ ΩiVi +Ki.

We may thus equivalently represent bidder i’s preferences in terms of the pair (Vi, Ki),

where Vi describes i’s valuations for each object individually, while Ki reflects departures

from additivity in i’s preferences over combinations. In particular, our model reduces to the

canonical additively separable case if and only if Ki = 0 for all i.

As usual, we interpret standalone valuation vectors Vi as stochastic and private informa-

tion for each bidder i. We further assume that standalone valuation vectors (V1, ..., VN) are

distributed independently across bidders conditional on observables:9

Assumption 1 (Independent private standalone valuations). For each bidder i = 1, ..., N ,

9In Appendix C, we allow for the presence of auction-level unobserved heterogeneity Al, which is common
knowledge among bidders but unobserved to the econometrician.
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standalone valuations Vi are distributed according to a joint c.d.f. Fi(·|Z,X), with Vi inde-

pendent from Vj for all j 6= i, and Fi(·|Z,X) common knowledge.

While standalone valuations are stochastic private information, we model complementar-

ities Ki as determined by observables. We view this structure as natural in applications such

as highway contracting, snow cleaning (Flambard and Perrigne (2006)), recycling (Kawai

(2011)), and cleaning (Lunander and Lundberg (2013)), where factors such as capacity con-

straints, distance between projects, timing of projects, or types of work are the main consid-

erations motivating analysis of complementarities. We emphasize, however, that insofar as

our model interprets all correlation across bidders and complementarities across objects as

arising through observables, the suitability of the model will inherently depend heavily on

what observables are available.

Assumption 2 (Deterministic complementarities). For all i = 1, ..., N and each combina-

tion ω ∈ Ωi, K
ω
i = κωi (Z,W ω

i ), where W ω
i is an observed vector of characteristics of the

combination ω ∈ Ωi, and κωi (Z,W ω
i ) is common knowledge to bidders.

One may also interpret the function κωi (Z,Wi) as reflecting bidders’ expectations, at the

time of bidding, over ex ante unknown synergy effects associated with winning combination

ω. The crucial hypothesis is that, at the time of bidding, this expectation depends only on

common-knowledge observables. For example, if value discovery is costly, bidders may in-

vest in learning standalone valuations prior to bidding, but invest in discovering idiosyncratic

synergy effects only following a multiple win. In Appendix D, we generalize our identification

analysis to settings where complementarities additionally incorporates an ex ante unknown

affine transformation of standalone valuations. This extension further allows compementar-

ities to be stochastic private information, so long as the private information component of

bidders’ expected complementarities can be fully explained by standalone valuations.

In what follows, let Wi ≡ [W ω
i ]ω∈Ωi collect characteristics of all combinations of auc-

tions in which bidder i participates, and W ≡ (W1, ...,WN) collect characteristics of all
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combinations of auctions in which all bidders participate. With slight abuse of notation,

we write Ki = κi(Z,Wi) to indicate the vectorization of Assumption 2 across all potential

combinations ω ∈ Ωi of auctions in which bidder i participates.

We denote combination characteristics W and auction characteristics X distinctly for

conceptual clarity, although in practice W will typically be derived through transformation

of X. For example, in our highway procurement application, X includes factors such as

project size, project location, and type of work in each project, whereas W includes factors

such as distance between projects, sum of project sizes, and the degree of schedule overlap

among projects in each combination. We view these as the main factors inducing potential

nonseparability in this market, motivating Assumption 2 as noted above.

Taken together, Assumptions 1 and 2 embed the canonical separable IPV model within

a substantially richer framework allowing both flexible nonparametric complementarities

and arbitrary dependence among elements of Vi for each bidder i. We view the latter as

an essential empirical complement to the former, since “reduced form” correlation in i’s

bids could be driven either by complementarities in i’s preferences or by dependence in i’s

valuations. By leaving such dependence unrestricted, we focus cleanly on identification of

nonadditivities per se, even when bidder i’s own valuations are correlated across auctions.

2.2 Equilibrium behavior

Let M ≡ (Z,X,W ) denote the set of market characteristics observed to both bidders and

the econometrician. Let Vi ⊂ RLi
+ denote the support of the standalone valuation vector Vi

for bidder i = 1, ..., N , and let Bl ⊂ R+ denotes the set of feasible bids in auction l = 1, ..., L.

Generically, one would define a pure strategy for bidder i as a mapping from the space of

combinatorial valuation vectors Yi to the space of feasible bids. Under Assumptions 1 and

2, however, each bidder’s private information is fully described by their vector of standalone

valuations Vi. To emphasize this point, in what follows we focus on Vi as the type space for

bidder i in market M , and define a pure strategy for bidder i in market M as a mapping

12



σMi : Vi → Bi, where Bi ≡ ×l∈LiBl denotes i’s action space in the simultaneous bidding

game.10 Let σM = (σM1 , ..., σ
M
N ) denote a strategy profile for all bidders in market M , and

σM−i denote a strategy profile for all rivals of bidder i.

Building on the first-order approach of Guerre et al. (2000), we base identification on

necessary conditions for best-response behavior in simultaneous first-price auctions. For this

analysis to proceed, we require the following assumptions on bidder behavior:

Assumption 3. For each market structure M , the distribution of bids observed at M are

generated by a strategy profile σM which is a Bayesian Nash equilibrium of the simultaneous

bidding game. Furthermore, for each M , only one strategy profile σM is played.

When complementarities are zero, existence of a pure strategy equilibrium is immediate

and uniqueness follows under regularity conditions (Lebrun (1999)). More generally, with

nonzero complementarities, existence of a pure strategy equilibrium in any discrete bid space

follows from results in Milgrom and Weber (1985). Analysis of equilibrium with arbitrary

complementarities in continuous bid spaces would be a fundamental breakthrough in its own

right, and as such is well beyond the scope of this paper.11 In this respect, our setting

parallels many other studies on complex auction games, in which either existence (Bajari

and Fox (2013) on spectrum auctions, Ausubel and Milgrom (2002) on proxy auctions)

or uniqueness (Jofre-Bonet and Pesendorfer (2003), Roberts and Sweeting (2013), Somaini

(2015) and references therein) is assumed as it cannot be guaranteed in general.12

10We focus on pure strategies for expositional simplicity, but this is without essential loss of generality; all
results below apply equally when bidders play mixed strategies.

11“Fundamental” in the sense that existing theoretical tools appear inadequate to study existence in set-
tings with complementarities. As in multi-unit auctions, the presence of both multidimensional bids and
multidimensional types leads to failure of classical differential-equations approaches to Bayes-Nash equilib-
rium. Monotonicity-based methods widely used in multi-unit auctions—e.g. Athey (2004), McAdams (2006),
and Reny (2011))—can be applied in special cases, but do not apply at the level of generality we consider
here. Other approaches—e.g. that of Jackson et al. (2002) applied in Cantillon and Pesendorfer (2006)—
deliver generalizations of Bayes-Nash equilibrium, but not Bayes-Nash equilibrium itself. See Gentry et al.
(2019) for a detailed discussion of these issues, plus results on equilibrium existence in some special cases.

12We note, however, that almost every real-world bid space is ultimately discrete. For instance, if bidders
must bid in pennies, then existence is guaranteed as noted above. In this sense, we see existence as of more
theoretical than practical concern. In the main text, we follow the literature’s convention of interpreting
bid spaces as continuous, and proceed to analyze identification. Appendix F provides a more general partial
identification analysis applicable in settings where discreteness is viewed as empirically important.
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To leverage necessary conditions for optimal behavior, we require only the hypotheses

on equilibrium behavior stated in Assumption 3. For such an analysis to yield point (rather

than partial) identification of model primitives, we further require equilibrium behavior to

satisfy the following additional conditions:

Assumption 4. For each observed market structure M , the equilibrium strategy profile σM

is such that (i) the joint cumulative distribution function of bids is absolutely continuous,

and (ii) for any auction l = 1, ..., L and any bidders i, j active in auction l, the marginal

distributions of bids bil, bjl have common lower support.

As above, under the null of separability (Ki = 0), these properties follow immediately

from standard regularity conditions; when Ki 6= 0, we require them as assumptions, although

key implications of these assumptions can be verified directly.13 In practice, absolute conti-

nuity implies that marginal bid distributions are atomless, which in turn permits extension

of the Guerre et al. (2000) first-order approach to settings with simultaneous auctions. If

equilibrium bid distributions instead involve atoms, model primitives will typically be par-

tially identified, although identified sets may be quite informative as we show in Appendix

F. Meanwhile, common lower support ensures that bidders do not submit never-winning (or

null) bids with positive probability. This may fail if, for example, bidders draw standalone

valuations from distributions with asymmetric supports, or in the presence of binding public

reserve prices. If so, the data will yield only an upper bound on standalone valuations consis-

tent with such bids, although complementarities will in many cases remain point identified.

We analyze this case in detail in Appendix F.4.

3 Nonparametric identification

We analyze identification based on a large number of simultaneous first-price auction mar-

kets. By hypothesis, for each market, the econometrician observes the vector of common-

13Specifically, one can verify whether the data involve ties and test whether bids exhibit common support,
although testing for absolute continuity is infeasible in finite samples.
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knowledge covariates M characterizing bidders, objects, and combinations in the market,

together with the bid vectors (bi)
N
i=1 submitted by each bidder active in the market. The

identification problem is to recover the nonparametric primitives Fi(·|Z,X) and κi(Z,Wi)

for each bidder i active in market M .

In analyzing this problem, we adopt the following notation. For each bidder i = 1, ..., N ,

let Gi(·|M) be the joint cumulative distribution function of the Li×1 bid vector bi submitted

by i conditional on market characteristics M , and gi(·|M) be the corresponding conditional

joint density. Taking equilibrium rival strategies σM−i as given, suppose that bidder i submits

bid bi ∈ Bi. For each auction l ∈ Li, let Γil(bi|M) denote this bidder’s marginal probability

of winning auction l, and for each combination ω ∈ Ωi, let P ω
i (bi|M) denote the joint

probability that she wins combination ω, both interpreted as functions of i’s bid vector bi

taking rival strategies σM−i as given. Finally, let Γi(bi|M) ≡ (Γil(bi|M))l∈Li , an Li× 1 vector,

collect marginal win probabilities Γil(bi|M) across auctions l ∈ Li, and let Pi(bi|M) ≡

[P ω
i (bi|M)]ω∈Ωi , a 2Li × 1 vector, collect combinatorial win probabilities P ω

i (bi|M) across

combinations ω ∈ Ωi. Note that, if there are no ties, then i’s marginal probability of winning

auction l, i.e. Γil(bi|M), is simply the c.d.f. of the maximum rival bid in auction l, evaluated

at i’s bid bil. Furthermore, by construction, marginal win probabilities Γi(bi|M) are related

to combinatorial win probabilities Pi(bi|M) by the identity Γi(bi|M) ≡ ΩT
i Pi(bi|M).

Observe that, under Assumption 3, Gi(·|M) is identified directly for each i = 1, ..., N ,

with identification of (Gi(·|M))Ni=1 implying identification of Pi(·|M) and Γi(·|M) for all i.

In what follows, we thus take bid distributions Gi(·|M), marginal win probabilities Γi(·|M),

and combinatorial win probabilities Pi(·|M) as known. We aim to recover Fi(·|Z,X) and

κi(Z,Wi) given knowledge of Gi(·|M), Pi(·|M), and Γi(·|M) for all i = 1, ..., N .

We begin by showing that bidder i’s primitives (Fi, κi) are nonparametrically identified

up to κi. We then provide sufficient conditions for identification of κi based on excludable

variation in either the set of competitors faced or the characteristics of other objects. Finally,

we discuss identification under several extentions to the baseline model, including endogenous
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participation and additively separable auction-level heterogeneity.

3.1 Nonparametric identification of Fi up to κi

Consider the bidding problem faced by bidder i = 1, .., N with preferences (Vi, Ki) in market

M , where standalone valuations Vi are drawn privately from Fi(·|X,Z) and complementari-

ties Ki = κi(Z,Wi) are common knowledge as described above. By hypothesis, taking rival

strategies σM−i as given, this bidder optimally submits the Li × 1 bid vector bi ∈ Bi which

maximizes her expected interim profit function

πMi (bi;Vi, Ki) = Γi(bi|M)T (Vi − bi) + Pi(bi|M)TKi, (1)

where Γi(bi|M)T (Vi− bi) reflects the expected sum of bidder i’s canonical standalone payoffs

over each auction individually, and Pi(bi|M)TKi reflects the change in i’s expected payoffs

induced by non-additivities in her preferences over combinations.

Under Assumption 4, one can show that the interim function profit function (1) is dif-

ferentiable in bi almost surely with respect to the measure on Bi induced by Gi(·|M); we

establish this formally in the proof of Proposition 1 below. Hence, under the hypothesis of

equilibrium play, almost every bid bi ∈ Bi submitted by i must satisfy the Li × 1 system of

necessary first-order conditions a.e.:

∇bΓi(bi|M)(Vi − bi) = Γi(bi|M)−∇bPi(bi|M)Ki, (2)

where ∇bΓi(bi|M) is an Li × Li diagonal matrix and ∇bPi is an 2Li × Li matrix. Clearly,

the system (2) is not solvable for (Vi, Ki) jointly; we have only Li equations for 2Li − 1

unknowns. But under Assumptions 3 and 4, this system is almost surely solvable for Vi

given Ki. In other words, under the hypothesis Ki = κi(Z,Wi), there almost surely exists

a unique candidate for Vi at which bi satisfies first order necessary conditions for a best

response:
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Proposition 1. Suppose that Assumptions 1-4 hold. Let Ki be any candidate for bidder

i’s unknown complementarity vector κi(Z,Wi): i.e. any vector in R2Li whose first Li + 1

components are zero.14 Then for almost every bi drawn from Gi(·|M), there exists a unique,

identified vector ξi(bi|M ;Ki) solving (2) under the hypothesis κi(Z,Wi) = Ki:

ξi(bi|M ;Ki) ≡ Υi(bi|M)−Ψi(bi|M) ·Ki, (3)

where Υi(bi|M) is an identified Li × 1 vector defined by

Υi(bi|M) ≡ bi +∇bΓi(bi|M)−1Γi(bi|M), (4)

and Ψi(bi|M) is an identified Li × 2Li matrix defined by

Ψi(bi|M) ≡ ∇bΓi(bi|M)−1∇bPi(bi|M)T . (5)

Furthermore, if Ki = κi(Z,W ), then Vi = ξi(bi|M ;Ki) almost surely.

Proof. See Appendix A.

Note that, interpreted as a function of Ki, ξi(bi|M ;Ki) is affine in Ki for all bi and M . The

additive term Υi(bi|M) in this affine function is the canonical auction-by-auction inverse

bidding function of Guerre et al. (2000), vectorized over the Li auctions played by i.15 The

multiplicative term Ψi(bi|M) ·Ki adjusts this standard inverse bidding function for potential

nonadditivities in i’s preferences, reflected in the conjectured complementarity vector Ki.

The weights Ψi(bi|M) on Ki correspond, intuitively, to the marginal effect of increasing each

14These zero components correspond to the outcomes in which bidder i wins either no objects (ω =
(0, . . . , 0)) or one object (ω′ω = 1), for which complementarities are zero by construction.

15To see this, recall that under Assumption 4 the lth element of Γi(bi|M) is simply the c.d.f. of the
maximum bid among i’s rivals in auction l, evaluated at bil. Hence the lth element of Υi(bi|M) reduces to

Υil(bi|M) = bil +
Γi,l(bil|M)

γi,l(bil|M)
where γi,l(bil|M) ≡ d

dbil
Γi,l(bil|M),

i.e., the usual standalone inverse bid function of Guerre et al. (2000) in auction l.
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bid bil on i’s probability of winning each higher-order combination, relative to the marginal

effect of bil on i’s overall probability of winning auction l.

Finally, observe that if the conjecture κi(Z,Wi) = Ki is in fact correct, then we must have

Vi = ξi(bi|M ;Ki) almost surely. Hence to each candidate Ki for κi(Z,Wi), there corresponds

a unique, identified candidate F̂i(·|M ;Ki) for the unknown c.d.f. Fi(·|Z,X):

F̂i(v|M ;Ki) =

∫
Bi

1[ξi(Bi|M ;Ki) ≤ v]Gi(dBi|M). (6)

In other words, if κi(Z,Wi) were known, then we could recover Fi(·|X,Z) immediately

through the identity Fi(·|X,Z) ≡ F̂i(·|M ;κi(Z,Wi)). Identification of bidder i’s primitives

therefore reduces to recovery of the unknown non-parametric function κi(Z,Wi).

3.2 Nonparametric identification of complementarities based on

variation in rival characteristics

In view of Proposition 1, it is also clear that further structure is necessary for identification:

under Assumptions 1-4, we can identify valuations only up to complementarities. But sup-

pose that, to these assumptions, we add the hypothesis that bidder i’s primitives (Fi, κi)

depend only on bidder i’s characteristics Zi, not on the characteristics of rival bidders Z−i:

Assumption 5. For all bidders i, Fi(·|Z,X) = Fi(·|Zi, X) and κi(Z,Wi) = κi(Zi,Wi).

Similar assumptions have been widely employed in the empirical auction literature; see,

e.g., Guerre et al. (2009), and Somaini (2015) among others. We will show that under

Assumption 5, variation in competitor characteristics Z−i induces a large (infinite) set of

restrictions on the finite vector κi(Zi,Wi).
16 Under mild conditions on variation in Z−i

made precise below, these restrictions will have the unique solution Ki = κi(Z,Wi), leading

to nonparametric identification of κi(Z,Wi) and hence the model as above.

16Notice that as Z−i refers also to the set of participated auctions, variation in Z−i could also imply
variation in W−i if there is a change in the auctions in which −i participates.
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Toward this end, consider any bidder i = 1, ..., N . Fix any realization of auction charac-

teristics X, own characteristics Zi, and combination characteristics Wi. Let M ≡ (X,Z,W )

and M ′ ≡ (X ′, Z ′,W ′) be any two market structures such that the characteristics affecting

i’s primitives are held constant, but the characteristics of i’s competitors vary: that is, such

that X = X ′, Zi = Z ′i, and Wi = W ′
i , but Z−i 6= Z ′−i. Bids observed at market structures M

and M ′ will of course typically correspond to different realizations of i’s standalone valua-

tions Vi. But, in view of Assumption 5, we know that Vi is drawn from the same distribution

Fi(·|X,Zi) under both M and M ′. Furthermore, from Proposition 1, we know that for each

market structure M and each candidate complementarity Ki, there exists a unique, identified

candidate F̂i(·|M ;Ki) for the unknown distribution Fi(·|X,Zi). Hence, if Ki = κi(Zi,Wi),

then for almost every v ∈ RLi we must have

F̂i(v|M ;Ki) = Fi(v|X,Zi) = F̂i(v|M ′;Ki). (7)

Clearly, if F̂i(·|M ;Ki) and F̂i(·|M ′;Ki) coincide almost everywhere, then the expectations

of random vectors drawn from these distributions must also coincide. But recall that, by

definition, F̂i(·|M ;Ki) is the distribution of the random vector V̂i ≡ ξi(Bi|M ;Ki), where

Bi ∼ Gi(·|M). Hence, if Ki = κi(Zi,Wi), then in view of (7) we must also have

∫
Bi
ξi(Bi|M ;Ki)Gi(dBi|M) =

∫
Bi
ξi(Bi|M ′;Ki)Gi(dBi|M ′). (8)

Finally, recall that ξi(·|M ;Ki) is affine in Ki. Hence we may equivalently rewrite each integral

in (8) as an identified affine function of Ki as follows:

∫
Bi
ξi(Bi|M ;Ki)Gi(dBi|M) =

∫
Bi

[Υi(Bi|M)−Ψi(Bi|M) ·Ki] Gi(dBi|M)

≡ Ῡi(M)− Ψ̄i(M) ·Ki, (9)

where Ῡi(M), an identified Li × 1 vector, and Ψ̄i(M), an identified Li × 2Li matrix, denote
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the expectations of the functions Υi(·|M) and Ψi(·|M) defined in Proposition 1 with respect

to bids drawn from i’s equilibrium bid distribution Gi(·|M):

Ῡi(M) ≡
∫
Bi

Υi(Bi|M)Gi(dBi|M),

Ψ̄i(M) ≡
∫
Bi

Ψi(Bi|M)Gi(dBi|M).

Substituting (9) into (8) under the hypothesis Ki = κi(Zi,Wi), we ultimately obtain a system

of Li linear restrictions on the unknown vector κi(Zi,Wi) ∈ Ki:

[
Ῡi(M)− Ῡi(M

′)
]
−
[
Ψ̄i(M)− Ψ̄i(M

′)
]
· κi(Zi,Wi) = 0. (10)

Recall that the first Li + 1 elements of κi(Zi,Wi) are zero by construction. Hence (10) is

effectively a system of Li equations in 2Li − Li − 1 unknowns. When Li > 2, we have

2Li − Li − 1 > Li, hence the system (10) alone will be insufficient to identify κi(Zi,Wi).

But recall that (10) must hold for any pair of markets M , M ′ such that X = X ′, Zi = Z ′i

and Wi = W ′
i . In other words, for given (X,Zi,Wi), every distinct realization of rival

characteristics Z−i generates an additional set of Li linear restrictions parallelling (10), all of

which must hold simultaneously at Ki = κi(Zi,Wi). Pooling such linear restrictions across

many markets with varying rival characteristics Z−i, we ultimately conclude:

Proposition 2. Consider any bidder i = 1, ..., N and any realization of i’s bidder and com-

bination characteristics (Zi,Wi). Let M0,M1, ...,MJ be any collection of market structures

such that Zi, Wi and X are constant for all j = 1, ..., J , and suppose that the submatrix

formed by the last (2Li − Li − 1) columns of the J(J − 1)Li × 2Li matrix

∆Ψ̄ ≡
[

Ψ̄i(M
j)− Ψ̄i(M

k)

]
j,k∈{1,...,J}

has rank 2Li − Li − 1. Then κi(Zi,Wi) is identified.
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Recall that the identification criterion (10) exploits only invariance of first moments

of Fi(·|Zi, X), even though the underlying distributional invariance restriction (7) implies

that relations analogous to (8) hold for the whole characteristic function. The system of

equations in Proposition 2 merely provides a simple and testable sufficient condition under

which the full characteristic system has a unique solution. Note also that variation in,

e.g., number of rivals in each auction will produce exactly the kind of variation needed for

full column rank of ∆Ψ̄: nonlinear changes in the Jacobian Ψi of probabilities of winning

different combinations, which map into bidding as weights on the unknown vector κi(Zi,Wi).

Even discrete variation in Z−i thus naturally gives rise to full column rank of ∆Ψ̄, yielding

nonparametric identification of κi(Zi,Wi) and hence the model as above.

3.3 Nonparametric identification of complementarities based on

variation in characteristics of other objects

While the restriction that own primitives are invariant to competitor characteristics is both

natural and widely employed, it could potentially be violated in environments with richer

strategic interaction among players. For instance, if there is an upstream market for sub-

contractors, then capacity utilization by i’s rivals could in principle affect i’s costs. We

therefore also consider nonparametric identification of κi(·) based on excludable variation in

characteristics of other auctions. This key hypothesis underlying this approach, also widely

maintained in the literature, is that standalone valuations in each auction l depend only on

object l’s characteristics Xl, not on the characteristics of other objects X−l:

Assumption 6. For each bidder i and object l ∈ Li, Fil(·|Z,X) = Fil(·|Z,Xl).

This assumption allows both Fi(·|Z,X) and κi(Z,Wi) to depend on Z−i, but requires each

marginal distribution to be invariant to characteristics of other objects. The subsequent iden-

tification argument closely follows the steps above, with variation in X−l replacing variation
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in Z−i, and is therefore omitted for brevity.17 Obviously, where appropriate, Assumptions 5

and 6 can also be maintained jointly, as we do in our application.

3.4 Extensions

While our analysis so far has focused on the baseline model defined in Assumptions 1-4, our

identification insights extend to accommodate endogenous participation, unobserved hetero-

geneity, complementarities depending on standalone valuations, and positive probabilities of

ties or never-winning bids. We develop these extensions in detail in Appendices B-F below.

For completeness, however, we also describe the main ideas of each extension briefly here.

Appendix B formally embeds our bid-stage analysis within a two-stage entry and bidding

game. In this extension, following Levin and Smith (1994), Krasnokutskaya and Seim (2011),

Moreno and Wooders (2011), Athey et al. (2011), Groeger (2014), and Li and Zhang (2015)

among others, we interpret entry as a process of value discovery. Bidders first simultane-

ously choose which combinations of auctions to enter on the basis of the common-knowledge

primitives (Fi, Ki)
N
i=1 plus a vector of private, potentially combinatorial, entry costs. Condi-

tional on entry, each bidder i then discovers their standalone valuations Vi for each auction in

which they have entered. Finally, based on private valuations Vi plus the common-knowledge

characteristics M , entering bidders submit bids as above.

How does such endogenous participation change our understanding of the underlying

bidding game? Clearly, the sets of auctions which bidders actually enter will not be random;

rather, bidders will endogenously select into both auctions for which they expect high valu-

ations and combinations for which they anticipate positive complementarities. This implies,

for instance, that the complementarities we actually observe will differ from those which

would arise if bidders were randomly assigned to auctions, a point to which we return in

interpreting our results. Crucially, however, so long as this selection is solely on the basis of

the common-knowledge primitives (Fi, Ki)
N
i=1, entry in fact strengthens prospects for iden-

17Note that variation in X−l may also vary W−i without varying Wi if i does not bid in auction l and
some rival does.
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tification in two respects. First, this model of participation provides a formal equilibrium

justification for Assumption 5 above.18 Second, the combinations of auctions which bidders

choose to enter will themselves convey additional information about complementarities. We

develop both points more fully in Appendix B.

Next, in Appendix C, we extend our identification analysis to accommodate unobserved

auction heterogeneity, modeled as an auction-level characteristic Al such that Vil = Uil +Al,

with Ui ≡ [Uil]
Li
l=1 independent private information for each bidder and Al common knowledge

to bidders but not the econometrician. The main complication induced by such unobserved

heterogeneity is a first step in which, following Krasnokutskaya (2011), one nets out variation

in bids driven by the separable unobservables A ≡ [Al]
L
l=1. Non-parametric identification of

bidder-level primitives then proceeds as described above.

In Appendix D, we generalize our non-parametric identification results to the case where

compementarities are stochastic but their randomness can be fully explained by the stan-

dalone valuations. Such a case could arise if, for instance, winning two auctions together

increases i’s valuation for one or both objects by a fixed percentage.

In Appendix E, we discuss additional identifying restrictions induced by variation in

combination characteristics Wi. In a parametric environment, variation in Wi alone will often

be sufficient to identify the parameters governing κi. Nonparametrically, however, variation

in Wi alone is typically insufficient to identify κi, although such variation does enrich the

system of identifying restrictions based on variation in Z−i and X−l derived above.

Finally, in Appendix F, we extend our analysis to accomodate potential violations of

Assumption 4, such as might arise if the bid distribution involves atoms or if bidders submit

18If bidders instead select into entry on the basis of private information about their valuations Vi, as in
the “selective entry” models of Roberts and Sweeting (2013) and Gentry and Li (2014), then matters would
be more complicated. In this case, for instance, the set of potential competitors bidder i faces will generally
affect the information sets at which bidder i choose to enter, and hence the distribution of valuations Fi

drawn upon entry. Even in this case, however, the identification insights below still apply so long as bidder
i observes the set of rival entrants prior to bidding. In this case, one would include the set of potential
competitors in each auction in X, and the set of actual entrants in Z. Furthermore, regardless of whether
bidders observe actual rivals prior to bidding, the testing insights we develop below continue to apply: even
when entry is selective, cross-auction spillovers can arise only if auctions are not additively separable.
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bids which never win. We show that Assumption 4 can be viewed as a sufficient condition

for point identification within a richer partial identification framework maintaining only

Assumptions 1-3. More generally, if the bid distribution involves atoms, then both κi and

Fi will typically be partially identified, although identified sets may be quite informative as

we show in Appendix H.1. Meanwhile, if bidders submit never-winning bids, then the lower

tail of standalone valuations corresponding to these bids will be endogenously truncated.

So long as the support of standalone valuations is sufficiently rich, however, quantiles of

standalone valuations above the truncation point will be identified up to κi and invariant to

Z−i. Focusing on these quantiles yields a continuum of identifying restrictions, a subset of

the system (7), which will generically identify κi, although Fi will be identified only on the

region of valuations corresponding to non-trivial bids.

4 Application: Michigan Highway Procurement

We now turn to our empirical application: Michigan Department of Transportation (MDOT)

highway construction and maintenance contracts. MDOT allocates contracts for a wide

range of highway construction and maintenance services via low-price sealed-bid auctions.

The vast majority of MDOT projects are allocated via large simultaneous letting rounds,

which take place on average every three weeks.19 There are an average of 45 auctions per

letting round and more than half (56 percent) of bidders submit bids on multiple contracts

within a letting.20 A bid is an itemized description of unit costs for each line item specified

in contract plans; bids are submitted to MDOT project by project, with the winner of each

project the bidder submitting the bid involving the lowest total project costs. Contracts are

advertised up to ten weeks prior to letting, with the closing deadline for submitting, amending

or withdrawing bids typically 10am on the letting date. MDOT then publicly opens bids and

19There are only two months without lettings.
20MDOT runs a pre-qualification process, which ensures quality of work. The process involves a check on

the financial status of the firm and its backlogs from all construction activities. A bid submission includes a
detailed break down of all costs involved in the contract. The winner is determined solely by the total cost
of the project.
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allocates contracts, with winning bidders held liable for completion of contracts won. In view

of prior evidence on complementarities and capacity constraints in highway procurement, we

expect factors such as capacity constraints, project proximity, project types, and scheduling

overlap to induce substantial non-additivities in bidder payoffs across auctions. In this

application, we focus on potential complementarities across auctions within a MDOT letting

round, abstracting from potential complementarities across letting rounds.21

4.1 Data

MDOT provides detailed records on contracts auctioned, bids received, and letting outcomes

on its letting website (http://www.michigan.gov/mdot). Drawing from these records, we

observe data on (almost) all contracts auctioned by MDOT over the sample period January

2005 to March 2014.22 Our sample includes a total of 8224 auctions, where for each auction

the following information is observed: project description, project location, pre-qualification

requirements, the internal MDOT engineer’s estimate of total project cost, and the list of

participating firms and their bids. Based on project descriptions, we classify projects into five

project types: bridge work, major construction, paving (primarily hot-mix asphalt), safety

(e.g. signing and signals), and miscellaneous, leading to a final distribution of projects across

types summarized in Table 1. As evident from Table 1, roughly 80 percent of contracts are

for road and bridge construction and maintenance broadly defined, with the remainder split

between safety and other miscellaneous construction.

The data contains information on a total of 714 unique bidders active in the MDOT

marketplace over our sample period, which we classify by size and scope of activity as follows.

We define a bidder as “regular” if it submitted more than 100 bids in the sample period, and

“fringe” otherwise. This yields a total of 36 regular bidders, with all other bidders classified

21A formal analysis of both static and dynamic complementarities is beyond the scope of the current paper,
although it would be a very interesting avenue for future research.

22MDOT records for a small number of contracts are incomplete. Although we have data from October
2002 to March 2014, we have discarded the first few years (from October 2002 to December 2004) as we use
lettings from these years to construct bidder backlog variables.
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Table 1: Summary of Projects by Type

Contract Type Frequency

Bridge 13.33
Major Construction 9.64
Paving 56.33
Safety 12.25
Miscellaneous 8.45

as “fringe.” For the subsample of bidders who have submitted more than 50 bids, we also

collect data on number and location of plants by firm. This data is derived from a variety

of sources: OneSource North America Business Browser, Dun and Bradstreet, Hoover’s,

Yellowpages.com and firms’ websites. We then further classify bidders as “large” or “small”

based on this data, with “large” bidders those owning at least 6 plants in Michigan. We

thus obtain a final classification of 8 large regular bidders, 28 small regular bidders, and 686

fringe bidders (of which 4 are large bidders) in the MDOT marketplace.

Table 2 surveys the auction side of the MDOT marketplace. The first key feature emerg-

ing from this table is the large number of contracts auctioned simultaneously in the market:

a mean of 45 per letting, with a maximum of 133 on a single letting date.23 On average

about five bids are received per contract, which is small relative to the average number of

bidders (approximately 84) active in any given letting. For each contract, MDOT prepares

an internal “Engineer’s Estimate” of expected procurement cost released to bidders before

bidding; as evident from the dispersion in this estimate, projects vary substantially in size

and complexity. The statistic “Money Left on the Table” measures the percent difference

between lowest and second-lowest bids. On average, this is 7.4 percent, or roughly $112,000

per contract, suggesting the presence of substantial uncertainty over rival bids.

Table 3 summarizes bidder behavior in the MDOT marketplace. Consistent with Table 2,

the average bidder competes in roughly 2.7 auctions per round, with large and regular bidders

competing in substantially more. The variable “backlog” provides a bidder-specific measure

23Note that smaller supplemental lettings are occasionally held two or three weeks after the main letting
in a given month.
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Table 2: Auction Level Summary Statistics

Mean St. Dev. Min Max

Auctions per Round 45.19 35.67 1 133
Total Bids per Round 228.1 180.9 1 669
Distinct Bidders per Round 83.97 57.06 1 207
Number of Bidders per Auction 5.048 3.186 1 28
Large Regular Bidders per Auction 0.407 0.674 0 3
Regular Bidders per Auction 1.500 1.362 0 7
Fringe Bidders per Auction 3.149 2.926 0 23
Engineer’s Estimate (in thousands) 1,514 4,689 4.412 165,313
Project Duration (in days) 175.8 205.1 2 1,838
Money Left on the Table 0.0744 0.0966 0 3.016

Table 3: Bidder Level Summary Statistics

Mean St. Dev. Min Max
Bids by Round 2.716 2.785 1 33
Bids by Round if Large 6.545 6.237 1.000 33.000
Bids by Round if Regular 5.96 4.58 1.00 33.00
Backlog (in millions) 5.792 19.01 0 275.5

of capacity utilization. As usual, we define backlog for bidder i at date t as the sum of work

remaining among projects l won by i up to t, where work remaining on project l at date t

is defined as total project size (measured by the engineer’s estimate) times the proportion

of scheduled project days remaining at date t. Note that number of bids submitted by any

given bidder is small relative to the number of auctions in the marketplace, with even large

bidders competing in less than fifteen percent of total auctions on average.

Finally, Figure 1 plots the histogram (over all bidders i and lettings t) of the number of

bids submitted by bidder i in letting t.24 As evident from Figure 1, more than 55 percent

of active bidders submit multiple bids in the same letting. Despite this, it is relatively

uncommon for a typical bidder to compete in a large number of auctions; roughly 92 percent

of bidders in our sample bid in 6 or fewer auctions and only 2.5 percent bid in more than 10.

24An observation for the purposes of Figure 1 is thus a bidder-letting pair.
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Figure 1: Number of Simultaneous Bids Submitted, Bidder by Letting
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4.2 Descriptive regressions

We next explore a series of simple regressions designed to explore the economic implications

of simultaneous bidding in the MDOT marketplace. The unit of analysis in these regressions

is a bidder-auction-round combination. The dependent variable is the log of bid submitted

by bidder i in auction l in letting t, regressed on a vector of covariates intended to capture

the effect of own- and cross-auction characteristics on i’s bid in auction l.

Regression specification As usual, we control for a number of auction-level characteris-

tics which we expect to be key direct determinants of i’s bid in auction l: the size of auction

l, captured by the MDOT engineer’s estimate of project cost, the level of competition i faces

in auction l, and the distance between project l and i’s base of operations.25 To control for

the direct cost effects of capacity usage, we also include a standardized bidder-level backlog

variable, derived from the backlog measure described above by subtracting the mean and

25We construct for each bidder-project pair the minimum straight-line distance (in miles) between any of
i’s plants and the centroid of the county in which project l is located. We take the shortest distance if bidder
i owns multiple plants.
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dividing by the standard deviation of backlogs for each bidder over time.

To explore cross-auction interaction in the MDOT marketplace, we seek a set of covariates

relevant for combination payoffs but irrelevant for standalone valuations after conditioning

on characteristics of auction l. Toward this end, we construct the following covariates.

To control for cross-auction competition which may shift combination win probabilities,

we consider the total number of rivals across all auctions played by bidder i. The effect

of cross-auction competition on i’s bids in auction l is theoretically ambiguous, depending

both on the sign of κi and on strategic responses by rival bidders. Heuristically, however,

if objects are substitutes, we expect greater competition in auction k to increase marginal

returns to winning auction l, and conversely if objects are complements.

To capture the presence of capacity constraints or diseconomies of scale, we consider two

variables. First, as a direct measure of total project size, we consider the (log of) the sum

of engineer’s estimates across all auctions in which i is bidding. Second, as a measure of the

degree of schedule overlap on projects for which i is bidding, we consider the total number of

overlapping days for projects for which i submits bids, scaled by the sum of days scheduled

for each of these projects. Insofar as marginal costs are increasing in capacity utilization, we

expect the coefficients on these variables to be positive.

In principle, complementarities arising between similar projects may differ from those

arising between different projects. To account for this possibility, we consider an index of

concentration for the types of projects for which i is bidding, defined as a Herfindahl index

over shares of each project type in i’s participation set. A negative coefficient on this index

is interpreted as a relative complementarity between similar projects.

Finally, to measure potential economies or diseconomies induced by distance between

projects, we consider the (log of) total distance between the current project and each other

project for which i bids, normalized by the total distance between each of these projects and

the closest plant owned by bidder i. Insofar as relatively more distant projects potentially

reduce economies of scale, we expect this variable to have a positive sign.
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Regression results Table 4 reports OLS estimates for our baseline regression specifica-

tions: log bids on the own- and cross-auction characteristics defined above. We include a full

set of bidder type, project type, and letting date indicators, with standard errors clustered by

bidder and round to allow for correlation in elements of bit. We also consider a specification

with bidder identity rather than bidder type fixed effects.

Estimated effects of own-auction characteristics correspond closely both to our prior and

to findings elsewhere in the literature. As expected, bids are increasing almost one for one

in project size, with the coefficient on log engineer’s estimate exceeding 0.97. Bidders facing

more competition bid more aggressively, with one additional competitor associated with a 4

to 5 percent decrease in average bids. Finally, a one percent increase in i’s distance to the

project leads to about a 2 percent increase in i’s bid on average.

More importantly, estimated cross-auction effects are also significant, with magnitudes

stable across specifications and signs broadly consistent with our prior expectations. The

positive coefficient on log sum of engineer’s estimates suggests that competing for many large

projects leads to a substantial decrease in aggressiveness by bidder i in auction l, with the

negative coefficient on same-type projects suggesting that this effect is ameliorated slightly

when the two projects are of the same type. Similarly, the positive sign on log distance

among projects suggests that increasing distance to other projects reduces the synergies

among them. Finally, the significant negative coefficient on total number of rivals in auctions

participated by i suggests that facing more competition across auctions leads bidder i to bid

more aggressively in auction l. Taken together, these results corroborate the hypothesis that

simultaneous bidding induces strategic spillovers across auctions.

5 Structural estimation of complementarities

We now turn to this paper’s primary interest: structural estimation of the function κi(·)

describing preferences over combinations. In principle, the results in Section 3 support fully
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Table 4: OLS Estimates of Cross-Auction Effects

y = ln(bid) 1 2

Log engineer’s estimate 0.9708*** 0.9763***
(0.0018) (0.0018)

Log number of rivals -0.0496*** -0.0355***
(0.0049) (0.0047)

Log distance to project 0.0213*** 0.0135***
(0.0013) (0.0012)

Log days to project start 0.004*** 0.0036**
(0.0016) (0.0017)

Standardized backlog 0.0023** 0.0024***
(0.0009) (0.001)

Log number of big rivals faced 0.0016 0.0101*
(0.0056) (0.0054)

Log number of regular rivals faced 0.0238*** 0.0229***
(0.0041) (0.004)

Multiple-bid indicator -0.0897*** -0.175***
(0.0273) (0.0256)

Log sum engineer’s estimate across played auctions 0.0058*** 0.0114***
(0.0019) (0.0018)

Log sum number of rivals across played auctions -0.0146*** -0.0123***
(0.0028) (0.0025)

Log distance across played projects 0.0037* 0.0037*
(0.0022) (0.002)

Fraction overlapping time across projects 0.0189*** 0.0148***
(0.0054) (0.0055)

Same-type-auctions concentration index -0.011* -0.0284***
(0.006) (0.0058)

Big bidder - 0.0093**
- (0.0043)

Regular Bidder - -0.0031
- (0.0024)

Year FE, Month FE, Auction type FE YES YES
Bidder type FE NO YES
Bidder ID FE YES NO
R-squared 98.02 97.78

Unit of analysis is bidder-auction-round, with standard errors clustered by bidder within each round. There are 41,524
observations. Variables log of engineer’s estimate, log of number of rivals in the auction and log of distance to the county
centroid measure size, strength of competition, and distance to project l respectively. Remaining variables capture
cross-auction characteristics: number of rivals in other auctions, sum engineer’s estimate, distance to auctions scaled
by distance to project l in which i is competing and number of overlapping days among projects scaled by the total
number of days to completion.
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non-parametric estimation of κi. In practice, of course, the dimensionality of the problem

renders this infeasible. We therefore implement our structural procedure in two steps. First,

following Cantillon and Pesendorfer (2006) and Athey et al. (2011) among others, we estimate

a parametric approximation to the equilibrium distribution Git of bids submitted by each

bidder i in letting t. Second, we map these estimates through the inverse bidding function

(3) to obtain a set of moment conditions based on the exclusion restrictions discussed in

Section 3, which we then use to estimate parameters in κi. Following Groeger (2014), we

assume there is no binding reserve price.26

5.1 First step: estimation of Git

As usual, the first step in our procedure is to estimate the conditional joint distribution Git

and pdf git of bids submitted by each bidder i in letting t. In view of the dimensionality of this

problem, we follow Cantillon and Pesendorfer (2006) and Athey et al. (2011) in estimating a

parametric approximation to this joint distribution, which we specify as follows. We model

the Lit× 1 bid vector bit as drawn from a multivariate log-normal distribution characterized

by mean vector µit and variance-covariance matrix Σit:

ln(bit) ∼ g(µit,Σit).

In theory, each bidder’s equilibrium bid function depends not only on the bidder’s own

characteristics and the characteristics of the projects for which it bids, but but also on

competitors’ characteristics and the characteristics of all the auctions where they participate.

In practice, it will be impossible to condition on all theoretically relevant variables, so we

propose a parsimonious specification where we choose variables in each category guided

by the reduced form analysis in Section 4. Thus we allow the parameters µit and Σit to

depend on a vector of observables including i’s characteristics Zit, project characteristics

26When a bidder is the sole participant (which happens only 136 times out of 8824 auction analyzed), he
will face MDOT that draws a completion cost from a fringe bidder’s cost.
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Xlt, combination characteristics Wit, and the number and types of rivals i faces within and

across auctions. Specifically, for each auction l = 1, ..., Lit played by i, we model the mean

and variance of ln(bit,l) as µit,l = α ·Mµ
it,l and σ2

it,l = exp(β ·Mσ
it,l) respectively, where Mµ

it,l

and Mσ
it,l are vectors of covariates specified in Panels A and B of Table 5, and α and β

are parameter vectors to be estimated. Meanwhile, we model the covariance ρit,kl between

distinct elements ln(bit,k) and ln(bit,l) of ln(bit) as

ρit,kl =
exp(γ ·Mρ

it,kl − 1)

exp(γ ·Mρ
it,kl + 1)

,

where Mρ
it,kl is a vector of interactions between observable characteristics of projects k and

l specified in Panel C of Table 5, and γ is a vector of parameters to be estimated.27

We estimate this first-step model by maximum likelihood, pooling data from bidders

that participate in different numbers of auctions. The first-step log-likelihood function is

therefore equal to:
T∑
t=1

Nt∑
i=1

log g(bit|µit,Σit).

Table 5 reports maximum likelihood estimates of the first-step parameters (α, β, γ) deter-

mining the distribution g(µit,Σit). In Panel A, we report coefficient estimates α̂ on covariates

Mµ
it,l appearing in the mean function µit; not surprisingly, these are very similar to coeffi-

cients in our descriptive regressions. Panel B reports coefficients β̂ on covariates Mσ
it,l in

the variance function σ2
it,l, which suggest that bidders competing in multiple auctions and

for larger projects submit less dispersed bids.28 Finally, in Panel C, we report coefficients

γ̂ on covariates Mρ
it,kl in the covariance function ρit,kl. These suggest at least two broad

patterns in bidding behavior across auctions. First, bidders bid tend to bid more similarly

for projects in the same county or of the same type. Second, when competing for projects

27Since at this stage we model the distribution of bids conditional on observables as continuous with respect
to continuous characteristics, we implicitly assume continuity of the equilibrium selection mechanism, which
represents a strengthening of Assumption 3. For further discussion on the continuity of equilibrium selection
in games with multiple equilibria, see de Paula (2013) and Aguirregabiria and Mira (2008).

28While the parametrization of Σilt does not imply its positive semi-definitiveness, the estimated variance-
covariance matrix is positive semi-definite.
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Figure 2: Predicted versus actual distribution of log bids

whose schedules overlap, bidders tend to bid for one more aggressively than the other. This

is consistent with our prior that overlapping schedules exacerbate diseconomies of scale.

To evaluate goodness of fit of this first-step model, Figure 2 plots the observed distribution

of log bids across all auctions and bidders, together with predicted distribution of log bids

implied by the estimates in Table 5. As can be seen in Figure 2, the fit of our parametric

approximation appears excellent, reinforcing confidence in the first-step estimates above.

5.2 Second step: estimation of complementarities

In view of our low-bid procurement application, we here reinterpret the general model in

Section 2 as follows. Let Vitl be i’s private standalone cost for completing project l ∈ Lit,

and κi(Zit,Wit) be the vector of cost complementarities associated by bidder i with each

combination ω ∈ Ωit. We adopt the convention that κωi (Zit,Wit) > 0 means that winning
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Table 5: First-step MLE estimates of parameters in Gi

Mean µilt α̂ MLE SEs 95% CI

Auction l and bidder characteristics
Constant 0.3766 0.0158 0.3456 0.4076

Log engineer’s estimate 0.9769 0.0008 0.9753 0.9785
Log rivals in auction -0.0352 0.0027 -0.0405 -0.0299

Log distance to project 0.0129 0.0009 0.0111 0.0147
Log days to the start 0.0039 0.0008 0.0023 0.0055
Standardize backlog 0.0024 0.001 0.0004 0.0044

Big bidder 0.0023 0.0044 -0.0063 0.0109
Regular bidder -0.0023 0.0025 -0.0072 0.0026

Log number of big rivals faced 0.0104 0.003 0.0045 0.0163
Log number of regular rivals faced 0.0237 0.0021 0.0196 0.0278

Bidder Type FE YES - - -
Auction Type FE YES - - -

Other auctions characteristics
Multiple bids dummy -0.1728 0.0206 -0.2132 -0.1324

Same-type-auctions index -0.0292 0.005 -0.039 -0.0194
Fraction overlapping time 0.0148 0.0035 0.0079 0.0217

Log sum engineer’s (across l) 0.0113 0.0014 0.0086 0.014
Log sum rivals (across l) -0.012 0.002 -0.0159 -0.0081

Log distance across played projects 0.0032 0.0017 -0.0001 0.0065

Year FE YES - - -
Month FE YES - - -

Variance σ2
ilt β̂ MLE SEs 95% CI

Constant 0.0652 0.0723 -0.0765 0.2069
Multiple bids dummy -0.2211 0.0189 -0.2581 -0.1841

Log engineer’s estimate -0.2582 0.0053 -0.2686 -0.2478

Covariance ρiklt γ̂ MLE SEs 95% CI

Constant 0.0052 0.0005 0.0042 0.0062
Same county projects 0.0033 0.0006 0.0021 0.0044

Same type projects 0.0019 0.0004 0.0011 0.0027
Fraction overlapping time -0.001 0.0005 -0.002 0
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combination ω increases bidder i’s joint completion costs, while κωi (Zit,Wit) < 0 means that

winning combination ω decreases bidder i’s joint completion costs.

While, in theory our identification argument allows for κωi (Zit,Wit) to be fully nonpara-

metric, in practice the high dimensionality of κωi renders nonparametric inference infeasible.

We therefore adopt a parsimonious parametric structure in which the complementarity i

associates with combination ω is modeled as a linear index of a 1×Q vector of bidder and

combination-level observables Mω
it which includes the total size, the distance among projects,

the overlapping time between projects, the Herfindahl index of project types in combination

ω, and a set of dummies for type of bidder i:

κωi (Zit,Wit) = Mω
itθ0, (11)

where θ0 ⊂ Θ is a Q×1 vector of structural parameters to be estimated. With slight abuse of

notation, let Mκ
it be the 2Lit ×Q matrix whose rows collect covariate vectors Mω

it describing

each combination ω ∈ Ωit.
29 By construction, under (11), we then have κi(Zit,Wit) = Mκ

itθ0.

We consider estimation maintaining both Assumptions 5 and 6, exploiting variation in

rival characteristics Z−it, characteristics of other auctions X−lt, and combination character-

istics Wit to identify θ0. Specifically, letting bit denote the vector of bids submitted by bidder

i in letting t, and rewriting this bidder’s standalone cost realization vitl = E[Vitl|Xlt, Zit]+εitl

without loss of generality, we have almost surely that

E[Vitl|Xlt, Zit] + εitl = Υitl(bitl|Mt)−Ψit,l(bit|Mt) · κi(Zit,Wit)

= Υitl(bitl|Mt)−Ψit,l(bit|Mt)M
κ
it · θ0, (12)

where the second line substitutes the parametric form κi(Zit,Wit) = Mκ
itθ0 assumed above.

We aim to estimate the parameters θ0 governing complementarities. Toward this end,

recall that the objects Υitl(bit,l|Mt) and Ψit,l(bit|Mt)M
κ
it appearing on the right-hand side

29If ω contains only one object, then of course Mω
it and κωi (Zit,Wit) are taken to be zero.
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of (12) are “observable,” in the sense that they depend deterministically on the observed

bid vector bit, the combination characteristics Mκ
it, and the equilibrium bid distribution

estimated in Section 5.1. By contrast, both terms on the left-hand side of (12) are ex

ante unknown. The expected standalone cost E[Vit,l|Xlt, Zit] is an unknown function of the

characteristics (Xlt, Zit) which we ultimately aim to eliminate through matched differences

as described below. The residual εitl reflects the difference between bidder i’s standalone

cost realization vitl and the average cost function E[Vitl|Xlt, Zit]. Since i’s equilibrium bid

vector bit depends on i’s standalone cost vector vit, the residual εitl will be correlated with

the “observables” Υitl(bit,l|Mt) and Ψit,l(bit|Mt)M
κ
it. Under Assumptions 5 and 6, however,

we have that E[Vitl|Mt] = E[Vitl|Xtl, Zit]. These conditions in turn imply that the residuals

εitl in (12) satisfy the key conditional moment restriction E[εitl|Mt] = E[εitl|Xlt, Zit] = 0.

If the mean function E[Vitl|Xtl, Zit] were known, or were of known parametric form, then

one could immediately translate these orthogonality restrictions on εitl into a GMM strategy

for estimation of θ0, using functions of the covariates Mκ
it and other elements of the market

structure vector Mt as instruments for the endogenous “regressors” [Ψitl(bit|Mt)M
κ
it] multi-

plying θ0 in (12). Observe that the covariates Mκ
it enter [Ψit,l(bit|Mt)M

κ
it] directly, while other

market characteristics Mt enter [Ψit,l(bit|Mt)M
κ
it] through the combinatorial win probability

gradient Ψit,l(bit|Mt). Thus any element of (Z−i,t, X−l,t,Wt) which shifts Ψit,l(bit|Mt) will be

a relevant instrument for the endogenous vector [Ψit,l(bit|Mt)M
κ
it] multiplying θ0 in (12).

In practice, however, the mean function E[Vitl|Xtl, Zit] is unknown, and we aim to esti-

mate without further parametric restrictions. To proceed, therefore, we must first eliminate

the unknown function E[Vitl|Xtl, Zit] from the left-hand side of (12). Toward this end, par-

alleling our identification procedure, we employ a matched pairwise differencing strategy in

the spirit of Honoré and Powell (2005) and Aradillas-Lopez et al. (2007). Specifically, for

any distinct bidder-auction observations itl and jτs, define the differenced residual

ηitl,jτs = (Υil,t(bil|Mt)−Υjs(bjs|Mτ ))−
[
Ψit(bi|Mt)M

κ
it −Ψjτ (bjτ |Mτ )M

κ
jτ

]
· θ0. (13)
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Then for any two observations itl, jτs matched such that xtl = xτs and zit = zjτ , we have

ηitl,jτs = εitl − εjτs, and therefore E[ηitl,jτs|Mt,Mτ ] = 0. At the same time, this allows un-

matched variables (Z−it, Xt,−l,Wt) to differ from (Z−j,τ , Xτ,−s,Wτ ), with all of these variables

relevant instruments for the endogenous difference term multiplying θ0 in (13).

In implementing this pairwise differencing strategy, we match on both a set of discrete

covariates denoted by yditl and a set of continuous covariates denoted by ycitl. Discrete covari-

ates yditl incude year, month, regular, bidder type, project type, number of plants owned by

each bidder, backlog30 and a dummy indicating whether the project starts in the next 180

days. Meanwhile, continuous covariates ycitl are size and distance, all standardized to have

mean zero and standard deviation one. For discrete covariates yd, we employ exact matching,

which effectively splits the whole dataset into a finite number of subgroups, among which we

form all non-redundant matches. Let D̂n be a subgroup defined by the discrete covariates

and D̂ = {D̂1, ..., D̂n, ..., D̂|D̂|} the collection of these subgroups. Within each subgroup of

discrete matches, we then use a Gaussian product kernel to assign weights to each potential

match on the basis of differences in their continuous covariates yc, scaling bandwidths for

each covariate proportionally to Scott’s rule of thumb based on the size of each subgroup.

Given the sample of weighted matched pairs thus formed, we proceed as follows. For

each bidder in the estimation sample, we construct empirical analogs of the objects Υ̂itl and

Ψ̂it of the equilibrium objects Υi(bitl|Mt) and Ψi(bit|Mt) from our first-step bid distribution

estimates (Ĝi(·|Mt))
Nt
i=1, approximating gradients using finite differences.31 Plugging in these

first-step estimates Υ̂itl and Ψ̂it into (13), we obtain an estimated residual η̂itl,jτs for each

pair of bidders in our matched sample. We form moments based on interactions between

these weighted matched differenced residuals η̂itl,jτs and a vector of instruments Iitl,jτs (at

least Q-dimensional) formed from Mt and Mτ .
32

30For purposes of this matching procedure, we discretize backlog in three categories: low (up to 25th
percentile), medium, and high (above 75th percentile).

31In practice, a small number of estimated Ψ̂it and Υ̂itl are either very small or very large. To prevent
bias from these outliers, we trim the top and bottom 2.5 percent of values in each of Ψ̂it and Υ̂itl.

32The instruments used are of three types: Zi/Wi-type instruments such as the individual characteristics
(big, regular, bidder type dummies), the sum of the characteristics for the maximum possible number of
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Based on these moments, we estimate θ0 using a two-step efficient GMM procedure.

Formally, the resulting GMM objective function is

θ̂0 = arg min
θ
m̂(θ)′W−1m̂(θ), (14)

where omitting the normalization factor for simplicity,

m̂(θ) =
∑
D̂n∈D̂

∑
x∈D̂n

k 6=x∈D̂n

1

h(1)(ydx) · h(2)(ydx)
×R

(
y
c,(1)
x − yc,(1)

k

h(1)(ydx)
,
y
c,(2)
x − yc,(2)

k

h(2)(ydx)

)
I ′x,kη̂x,k (15)

where x ≡ itl and k ≡ jτs denote distinct bidder-letting-auction observations, ydx = ydk for

all x ∈ Dn and k 6= x ∈ Dn, h(1)(ydx) and h(2)(ydx) are the bandwidths and R is a bivariate

Gaussian product kernel defining continuous matching weights. Finally, the standard errors

are adjusted to account for the first step estimation as in Newey and McFadden (1994).

Appendix H reports the results of two Monte Carlo simulation studies exploring the

performance of this weighted matched-difference GMM procedure. These confirm that our

matching procedure can recover informative estimates of complementarities even in moder-

ately sized samples. We refer interested readers to Appendix H for further details.

5.3 The main result: structural estimates of θ0

Table 6 reports the main structural estimates derived from the two-step matched-difference

GMM procedure outlined above. Coefficient magnitudes are in millions of dollars, with

negative signs reflecting lower costs and positive signs reflecting higher costs. Bearing these

auctions and the average of the combinatorial-auction characteristics for all possible combinations, the log
sum of engineer estimates interacted with regular- and big-bidder dummies, log sum of distance and log
overlapping time across the maximum number of auctions. Moreover, we use the total number of auctions in
which the bidder participates, the Z−i-type instruments such as the total number of rivals across auctions,
the total number of big rivals across auctions, and the total number of regular rivals across auctions. Finally,
we use X−l-type instruments such as the log sum of engineer estimates and distance across all other auctions
(but for the current auction).
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Table 6: Estimated complementarity parameters θ0

Combination characteristics (Elements of W ) θ̂ SE

Fraction overlapping time across projects 0.1002*** 0.0385
Distance across played projects -0.0001 0.00007
Sum engineer’s estimate in millions 0.0272** 0.0115
Same-type-auctions index -0.1616** 0.0776
Regular Bidder -0.3830** 0.1666
Big Bidder 0.1507 0.1825
Bidder Type FE YES -

Coefficient magnitudes are in millions of dollars, positive coefficients
imply higher completion costs associated with a combination win.

conventions in mind, these coefficients have the following economic interpretations.

The variable “Sum of engineer’s estimates” reflects the total size of projects in a combi-

nation, with a positive coefficient suggesting that more total work renders a joint win less

valuable, as we would expect in the presence of capacity constraints. The coefficient on

“Fraction overlapping time” measures the effect of schedule overlap on costs, with magni-

tude suggesting that perfect schedule overlap increases the average completion costs by about

$100, 200. Meanwhile, the coefficient on “Same-type auction index” suggests that more ho-

mogeneous combinations are less costly; a 0.1 change in the Herfindahl index of project types

reduces costs by $16, 160. Regular bidders seem to have positive cost synergies. With the

exception of the coefficient on distance between projects, which is negative although small

and not statistically significant, these effects are all natural and consistent with our priors.

While not reported in Table 6, we also include a vector of bidder type dummies in κ(·); signs

on these vary, but suggest negative complementarities on aggregate as we quantify next.

To illustrate the economic significance of these parameter estimates, we next translate

the parameter estimates θ̂ in Table 6 into estimates for the underlying complementarities κ(·)

themselves. Specifically, we first construct, for each bidder i in the sample, the estimated

complementarity associated with i winning the combination of all projects for which they bid.

We then normalize this complementarity by the total size of projects in this combination,
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Table 7: Empirical distribution of normalized comple-
mentarities across bidders

Decile rank Decile of normalized complementarities

10th -0.2380
20th -0.1358
30th -0.0794
40th -0.0428
50th -0.0165
60th 0.0038
70th 0.0211
80th 0.0512
90th 0.1079

“Normalized complementarity” denotes the estimated
complementarity κω(Zi,Wi; θ̂) among all projects bid
by i divided by the sum of engineer’s estimates for these
projects, with deciles evaluated over the empirical distri-
bution of (Zi,Wi). Negative numbers mean lower costs.

and analyze the deciles of these normalized complementarities across bidders.

Table 7 summarizes the results of this procedure, reporting deciles of normalized comple-

mentarities for all bidders in our MDOT sample. As evident from Table 7, there is substantial

heterogeneity in complementarities across bidders in the MDOT sample, with a joint win

leading to cost savings of approximately 23.8 percent of combination size at the 10th quan-

tile of complementarities across bidders, transitioning to cost increases of approximately 11

percent at the 90th quantile. Recalling the parameter estimates in Table 6, we view these

pattern as consistent with an underlying U-shaped cost curve, with completion costs falling

until firm resources are fully employed and rising thereafter.

We conclude this section with a note on interpretation of Tables 6 and 7 under endogenous

entry. In Appendix B, we embed the bidding model considered here within a fully specified

entry (interpreted as a process of value discovery upon costly entry) and bidding game,

showing that our estimation strategy is robust to this extension. Hence the parameter

estimates reported in Table 6 remain valid even under entry. In interpreting Table 7, however,

it is important to note that the distribution of complementarities among projects in which
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bidders enter will differ from that which would arise if projects were randomly assigned. In

particular, insofar as bidders tend to bid for complementary combinations, we would expect

the distribution in Table 7 to be positively selected.

6 Counterfactuals

While the simultaneous first-price auction is clearly inefficient when bidders have combi-

natorial preferences, little is known about the magnitude of these inefficiencies in practice.

Furthermore, little is known either theoretically or empirically about the revenue properties

of the simultaneous first-price auction (FPA) mechanism relative to other feasible multi-

object mechanisms such as the Vickrey-Clarke-Groves (VCG) auction.

As a first step toward answering these questions, we compare revenue and efficiency un-

der MDOT’s actual simultaneous low-price form with counterfactual outcomes which would

have arisen under a combinatorial VCG auction. While the VCG mechanism is guaranteed

to reduce social costs, its effect on payments to bidders is very much an open question. Es-

pecially in the context of multi-object auctions, the mechanism design literature has noted

that VCG can yield poor outcomes for the auctioneer. See, for example, Ausubel and Mil-

grom (2006), who highlight several potential weaknesses of the VCG mechanism when bidder

preferences involve synergies, including the possibility of zero revenue even with competitive

bidding. Other relevant features of the auction environment, such as bidder asymmetry, may

also lead FPA to generate higher revenue than VCG.33 Theoretically, therefore, there are

two open questions which this counterfactual aims to address. First, by how much does the

VCG mechanism reduce social costs? Second, does VCG reduce or increase procurement

costs relative to simultaneous FPA, and if so by how much?

Since both the number of combinations and the number of potential allocations increase

exponentially in the number of auctions played, it is unfortunately infeasible to solve for

VCG outcomes on the full MDOT sample. We therefore focus on the subsample of 5481 self-

33See, for example, Krishna (2009) for one example of this effect.
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Table 8: Combinatorial VCG outcomes versus simultaneous FPA outcomes

Mechanism Outcome Estimate Std Err

Combinatorial VCG Completion cost per auction (in dollars) 1, 311, 862 33, 898
MDOT payments per auction (in dollars) 1, 617, 044 8436

Simultaneous FPA Completion costs per auction (in dollars) 1, 396, 127 5686
MDOT payments per auction (in dollars) 1, 599, 995 –

Results based on R = 60 draws of first-step estimated parameters, for the self-contained
sample of auctions such that no bidder in any auction . For each draw, we

contained auctions such that no bidder is competing against a rival bidding in more than 12

auctions.34 For this counterfactual sample, we consider R = 60 simulation replications. In

each replication, we draw a new set of Step 1 distributional parameters from their asymptotic

distribution and re-estimate complementarity parameters as in Step 2.35 For each replication,

we then estimate standalone costs for each bidder i and letting t in the counterfactual

sample by mapping i’s observed bid bit through the inverse bid function (2), given the

relevant complementarity estimates.36 We simulate allocations, costs of project completion,

and payments to bidders under both the baseline simultaneous FPA and the counterfactual

combinatorial VCG, computing final completion costs inclusive of complementarities in both

cases.37 Finally, we take means and standard deviations of per-auction payments and costs

across replications to obtain our final counterfactual results, reported in Table 8.

Two patterns emerge from this exercise. First, as expected, the simultaneous first-price

mechanism is socially inefficient, generating expected social costs of roughly $1.40 million

34To construct this self-contained sample, we first drop all bidders competing in more than 12 auctions.
We then drop any bidder facing a rival (in any auction) who is dropped, and proceed recursively in this
fashion until no further bidders are dropped. This recursive procedure alleviates the curse of dimensionality
inherent in the VCG allocation problem while ensuring that counterfactual VCG outcomes are comparable
to actual FPA outcomes, in the sense that every bidder in the VCG counterfactual is bidding in the same
auctions against the same rivals as in the actual data. The resulting counterfactual sample consists of 5481
of our original 8224 auctions, representing approximately 24,000 of our original 41,000 bid-level observations.

35Since resampling bidders could lead to potentially large changes in the definition of our self-contained
counterfactual subsample, we hold the sample of bidders fixed across counterfactual replications.

36In practice, a small fraction of estimated standalone costs are either negative or implausibly large. To
prevent bias from these outliers, we windsorize standalone costs at thresholds derived from the 5th and 95th
percentiles of relative standalone costs among single-auction bidders.

37In these simulations, we set MDOT’s effective reserve price for each project equal to 200 percent of the
MDOT engineer’s cost estimate; other plausible values generate very similar results.
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per auction, versus $1.31 million per auction for the VCG mechanism. In other words, within

our counterfactual sample, per-auction completion costs are roughly $84,000 lower under the

VCG mechanism than under the simultaneous FPA mechanism. In both level and percentage

terms, this efficiency gain is nontrivial, suggesting that switching mechanisms could lower

social project completion costs by approximately 6 percent.38

Second, although leading to substantially lower social costs, the VCG mechanism in fact

slightly increases MDOT’s payments to bidders: $1.60 million per auction under the baseline

simultaneous first-price auction, versus $1.61 million per auction under VCG. In other words,

even though the VCG mechanism is more efficient socially, our estimates suggest that it will

increase MDOT’s procurement costs by approximately 1 percent. From MDOT’s perspective,

the simultaneous first-price auction therefore appears to perform quite well relative to leading

combinatorial alternatives such as VCG.39

As noted above, this pattern of higher procurement costs could arise either through

revenue weaknesses of the VCG mechanism in the presence of synergies, or through other

potential channels such as asymmetric bidders. To explore how these factors interact to

shape VCG payment performance, we also simulated payments to bidders under the VCG

mechanism using the same estimated costs as in the full counterfactual simulation, but setting

complementarities to zero.40 We find that, absent complementarities, VCG payments would

increase by a further 1.1 percent relative to the baseline reported above. In other words, the

overall payment increase observed under VCG reflects a roughly 2.1 percent baseline payment

increase driven by asymmetric standalone costs alone, with about half of this baseline increase

offset by lower payments induced by the presence of complementarities.41

38Across counterfactual replications, the standard deviation of per-auction savings is approximately
$34,000 in level terms and 2.1 percent in percentage terms.

39This analysis is of course only partial in that we effectively hold entry behavior fixed across mechanisms.
By construction, since the VCG auction reduces social costs while increasing MDOT payments, it must also
generate greater profit to bidders. In equilibrium, this should translate into greater entry, which could reduce
procurement costs relative to our findings above. In contrast, since new entrants are by definition marginal,
we expect efficiency gains net of entry to be similar to those reported above.

40Note that the complementarities we estimate above still affect estimated standalone costs. The goal is
to determine how complementarities affect VCG revenue, holding standalone costs constant.

41To gain further insight on factors affecting VCG versus FPA revenue performance, we also conducted
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7 Conclusion

Motivated by an institutional framework common in procurement applications, we develop

and estimate a structural model of bidding in simultaneous first-price auctions, to our knowl-

edge the first such in the literature. We analyze identification of this model, showing that

excluded variation in either characteristics of rival bidders or characteristics of other auctions

supports nonparametric identification of cross-object complementarities. Finally, we apply

this framework to data on Michigan Department of Transportation highway construction

and maintenance auctions. Our estimates suggest that winning a two-auction combination

generates cost effects ranging from roughly 23.8 percent cost savings (relative to combination

size) at the 10th percentile to roughly 11 percent cost increases at the 90th percentile, with

combination costs increasing in joint size of, scheduling overlap between, and heterogene-

ity in work types in the combination. Despite these substantial complementarities, we find

that switching to an efficient Vickrey-Clarke-Groves mechanism would generate only modest

social gains: roughly 6 percent savings in social costs of project completion, while slightly

increasing MDOT’s expected procurement costs. We view this as strong suggestive evidence

that simultaneous first-price auctions can perform relatively well even in environments with

economically important complementarities. This observation may partially rationalize the

widespread popularity of simultaneous first-price auctions in practice.

Appendix A: Proof of Proposition 1

The proof of Proposition 1 rests on two key claims. First, the first-order system (2) must be well-
defined for almost every bi submitted by i, i.e. almost everywhere with respect to the measure
induced by Gi(·|M). Second, at almost every bi at which first order conditions hold, the matrix
∇Γi must be invertible. We establish each claim in turn.

several simple numerical simulations in a setting where two asymmetric bidders compete in two auctions,
with one or both bidders having a positive complementarity. The results, reported in Appendix H.3, broadly
confirm that either revenue ranking is possible depending on the interaction between asymmetry and com-
plementarities, with asymmetry alone typically favoring FPA, and the effects of complementarities varying
depending on whether these are assigned to the strong bidder, the weak bidder, or both.
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First show that the first order system (2) is well-defined for almost every bi submitted by i.
Recall that we can write bidder i’s objective as

π(vi, b|K;M) = (Ωvi +K − Ωb)TPi(b|M).

where vi and K are given at the time of maximization. Note that the system (2) necessarily
holds at any best respose where π(vi, ·|K;M) is differentiable and that Assumption 3 implies that
each observed bi is a best response. Hence the system (2) will be well defined for almost every bi
submitted by i if and only if π(vi, ·|K;M) is differentiable almost everywhere with respect to the
measure on Bi induced by Gi(·|M). But under Assumption 4, Gi(·|M) is absolutely continuous.
To establish the claim, it thus suffices to show differentiability of π(vi, ·|K;M) a.e. with respect to
Lebesgue measure on Bi.

Clearly (Ωvi + K − Ωb) is differentiable in b. Thus differentiability of π(vi, ·|K;M) at b is
equivalent to differentiability of Pi(·|M) at b. Let B−i be the Li × 1 random vector describing
maximum rival bids in the set of auctions in which i participates. Again applying Assumption 4 to
rule out ties, the probability i wins combination ω at bid b is

Pω(b|M) = Pr({∩{m:ωm=1}0 ≤ B−i,m ≤ bi,m} ∩ {∩{m:ωm=0}bi,m ≤ B−i,m <∞}).

For each ω ∈ Ωi, let bω be the (
∑
ω)× 1 sub-vector of b describing i’s bids for objects in ω, Bω

−i be
the (

∑
ω) × 1 sub-vector of B−i describing maximum rival bids for objects in ω, and Gω−i(b

ω|M)
be the equilibrium joint c.d.f. of Bω

−i. Applying the formula for a rectangular probability and
simplifying, we can then represent Pi(·|M) in the form

Pω−i(b|M) =
∑
ω′∈Ω

aωω′G
ω′
−i(b

ω′ |M),

where each aωω′ is a known scalar (determined by ω, ω′) taking values in {−1, 0, 1}. But by absolute
continuity each c.d.f. Gω−i(·|M) is differentiable a.e. (Lebesgue) in its support, and interpreted as a

function from Bi to RLi , each bω
′

is continuously differentiable in b. Thus interpreted as a function
from Bi to R, each Gω

′
−i(b

ω′ |M) is differentiable on a set of full Lebesgue measure in B−i. The set

of points in Bi at which all Gω
′
−i(b

ω′ |M) are differentiable is the intersection of points in Bi at which

each Gω
′
−i(b

ω′ |M) is differentiable, i.e. the intersection of a finite collection of sets of full Lebesgue

measure in Bi. But from above differentiability of Gω
′
−i(b|Z,W ) for all ω′ implies differentiability of

Pω−i(b|M). Hence Pω−i(·|M) is differentiable on a set of full Lebesgue measure in Bi. This in turn
implies differentiability of π(vi, ·|K;M) a.e. with respect to the measure on Bi induced by Gi(·|M),
as was to be shown.

We next establish that the first-order system (2) must yield a unique solution ṽ for almost every
bi submitted by i. Let B̃i be the set of points in Bi at which π(·, ·|K;W,Z) is differentiable in b;
from above, B̃i is a subset of full Lebesgue measure in Bi. Choosing any b ∈ B̃i and rearranging
(2) yields

∇bΓi(b|Z,W )ṽ = ∇bΓi(b|Z,W )b+ Γi(b|Z,W )−∇bPi(b|W,Z)TKi.

Hence uniqueness of ṽ is equivalent to invertibility of the Li × Li matrix ∇bΓi(b|Z,W ). Recall
that Γi(b|Z,W ) is an Li × 1 vector whose lth element describes the probability that bid vector b
wins auction l. Note that b ∈ B̃i rules out ties at b. Thus for b ∈ B̃i the mth element of Γi(b|Z,W )
is the marginal c.d.f. of the maximum rival bid B−i,m in auction m, from which it follows that
∇bΓi(b|Z) is a diagonal matrix whose m,mth element is the marginal p.d.f. of B−i,m. Denote
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this p.d.f. by g−i,m(b|Z,W ); recall that by absolute continuity this p.d.f. is well defined. Then
∇bΓi(b|Z,W ) will be invertible at b if and only if g−i,m(b|Z,W ) > 0 for all m = 1, ..., Li.

We aim to show that this latter property is an implication of equilibrium bidding under As-
sumption 4. Toward this end, recall that by hypothesis of equilibrium play, each submitted bid
bi is a best response to rival play at (Z,W ) for some (v,K). Suppose that there exists an ε > 0
such that g−i,m(·|Z,W ) = 0 on (bim− ε, bi]. Then player i could infinitesimally reduce bim without
affecting either Γi or Pi. Furthermore, if Γim(bi|M) > 0, so that bidder i wins auction m with
strictly positive probability at bid bi, this deviation will strictly increase bidder i’s profits. Hence
we must have either g−i,m(·|M) > 0 or Γim(Bi|M) = 0 almost everywhere (Lebesgue) in the sup-
port of Bi. By absolute continuity of Gi, this in turn implies we must have either g−i,m(·|M) > 0 or
Γim(Bi|M) = 0 for almost every bi submitted by i. Furthermore, absolute continuity and common
lower support jointly imply that we can have Γim(Bi|M) = 0 for at most a set of bids of Gi-measure
zero. Hence we must have g−i,m(·|Z,W ) > 0 for Gi-a.e. bid bi submitted by i.

Since m was arbitrary, we must have ∇bΓi(bi|M) invertible for Gi-a.e. bid bi submitted by i.
Hence for almost every bi submitted by i there will exist a unique ṽ satisfying (2) at bi, given by

ṽ = bi +∇bΓi(bi|M)−1Γi(bi|M) +∇bΓi(bi|M)−1∇bPi(bi|M)TK.

The RHS of this expression is identified up to K, establishing the claim.

Appendix B: Entry

In this Appendix, we formally embed the bidding model we describe above within a two-stage
entry-plus-bidding model paralleling those considered by Levin and Smith (1994), Krasnokutskaya
and Seim (2011), Athey et al. (2011), Moreno and Wooders (2011), Li and Zhang (2015), and
Groeger (2014) among others. This discovery process proceeds as follows.

At the beginning of the game, each bidder i is endowed with a L×1 standalone valuation vector
V 0
i drawn by nature from a joint distribution F 0

i . However, realizations of V 0
i are ex ante unknown

to i and can be discovered by i only through costly entry.
Specifically, let S denote the power set of L, i.e. the set of all sets of auctions in which bidder

i could enter. Let S ∈ S denote a particular subset of auctions S ∈ L. Suppose that, at the
beginning of Stage 1, each bidder i observes a 2L × 1 vector of private combinatorial entry costs
Ci, with element CSi of Ci describing the total cost i must incur to enter the set of auctions S ∈ S.
This cost vector Ci satisfies the following properties:

Assumption 7 (Private Entry Costs). For each bidder i, Ci is drawn independently of V 0
i from

cost distribution FC,i with support on a compact, convex set Ci ⊂ R2L, with Ci private information,
FC,i common knowledge, and cost draws independent across bidders: Ci ⊥ Cj for all i, j.

Having observed Ci, bidder i chooses a set of auctions Li ∈ S in which to enter, pays the corre-
sponding entry cost CLii , and proceeds to Stage 2. Then at the beginning of Stage 2, Bidder i
observes the realizations of her standalone valuation vector Vi ≡ (V 0

il ) for the auctions l ∈ Li in
which she has entered. Lastly, bidder i submits a single bid bil for each object l in her entry set Li.
The bidding subgame then proceeds exactly as described in the main text.

While the combinatorial nature of the entry problem renders notation somewhat involved, this
model is in fact the natural combinatorial generalization of the canonical entry and bidding models
cited above. Specifically, when valuations and entry costs are additively separable and the entry
cost distributions FC,i is atomistic, we obtain the mixed-strategy entry models considered by Levin
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and Smith (1994), Krasnokutskaya and Seim (2011), and Athey et al. (2011). Alternatively, if
auctions are separable and entry costs are continuously distributed, we obtain a pure-strategy
value discovery model paralleling Moreno and Wooders (2011), Li and Zhang (2015), and Groeger
(2014). The structure we consider here generalizes these canonical value-discovery models to our
substantially richer setting involving both common-knowledge complementarities and (potentially)
combinatorial entry costs.

We now turn to consider equilibrium entry behavior. Following Milgrom and Weber (1985),
define a distributional entry strategy for player i as a measure σEi over Ci ×S whose marginal over
Ci is FC,i, with σE = (σE1 , ..., σ

E
N ) a profile of distributional entry strategies. Then any Bayes-Nash

equilibrium must have the following form.
Suppressing generic object, bidder, and combination characteristics, let a market structure

M = (S1, ..., SN ) now denote any vector of participation sets for each bidder. Each market structure
M gives rise to a different simultaneous bidding subgame, the structure of which parallels that
described in the main text. Let σM = (σM1 , ..., σMN ) be any profile of Bayesian Nash equilibrium
bidding strategies in the simultaneous bidding subgame arising under market structure M ; as in
the main text, we focus on pure strategies for simplicity, although this is inessential.

Recall that bidder i’s standalone valuations Vi are unknown at the time of entry. Hence, taking
subgame strategies σM as given, the ex ante (pre-entry) expected profit bidder i associates with
market structure realization M is given by

Πi(M) =

∫
Vi

[
(Vi − σMi (Vi))

TΓi(σi(Vi)|M) + κTi Pi(σ
M
i (Vi)|M)

]
Fi(dVi|M), (16)

where, as in the main text, the vectors Γi(bi|M) and Pi(bi|M) denote the expected marginal and
combinatorial win probabilities i associates with bid vector bi, taking rival bidding strategies σM−i
as given.

Now consider the entry decision by bidder i. With slight abuse of notation, let S−i = (Sj)j 6=i
denote any realizations of participation sets for i’s rivals, so that we may write market structure as
M = (Si, S−i). Taking rival entry strategies σE−i as given, we may write i’s Stage 1 expected payoff
from entering auction combination Si ∈ S as

Ξ(S, σE−i) = E[Πi(S, S−i)|σE−i],

where the expectation is over ex ante unknown rival entry decisions S−i. Hence, in Stage 1, bidder
i will optimally choose the participation set Li maximizing her expected payoff net of entry costs:

Li = arg max
S∈S

Ξ(S, σE−i)− CSi . (17)

The Stage 1 action set for each bidder is the finite set S, and private entry cost vectors Ci, Cj are
independent across bidders i, j. Hence, taking the continuation payoff functions Π1(M), ...,ΠN (M)
as given, by Proposition 1 of Milgrom and Weber (1985) there exists an equilibrium in distributional
strategies for the Stage 1 entry game. So long as continuation payoffs Π1(M), ...,ΠN (M) are
themselves generated from play of a Bayes-Nash equilibrium under every market structure M , this
in turn will constitute an equilibrium of the overall entry and bidding game.

In general, equilibrium Stage 1 entry may be in either pure or mixed strategies. If, however, we
add the restriction that FC,i is atomless on Ci for each i, then Proposition 4 of Milgrom and Weber
(1985) implies existence of a equilibrium in which bidders play pure entry strategies.

How does this entry and bidding subgame shape our understanding of the bid-stage subgame
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we consider in the main text? Clearly, when entry is endogenous, each bidder i will tend to enter in
combinations for which she expects either high standalone valuations, or positive complementarities,
or both. Furthermore, as noted above, entry may be in either pure or mixed strateges, and there
may exist many entry equilibria. So long as, however, only one set of equilibrium bidding strategies
σM is played conditional on realization of each potential market structure M , we may proceed with
identification maintaining Assumptions 1-5 as in the main text.

Furthermore, since Cj ⊥ Vj for all bidders j, the distribution of i’s post-entry private informa-
tion is invariant to the realizations S−i of entry decisions by i’s competitors, variation in S−i will
be will be effectively exogenous and thus excludable with respect to Fi. In other words, so long as
there exists at least some variation in rival entry decisions conditional (X,Zi,Wi)—whether induced
by variation in rival entry costs, mixed entry strategies as in Athey et al. (2011) and Levin and
Smith (1994), or mixing across entry equilibria—then equilibrium entry will induce precisely the
form of variation required for our identification argument. In this sense, the entry model described
above provides a formal equilibrium justification for the key exclusion restriction (Assumption 5)
on which we base our nonparametric identification argument.

Finally, note that the equilibrium entry conditions (17) in principle provide an additional set
of identifying restrictions on complementarities. Specifically, we know that the combination which
bidder i actually entered must yield the highest ex ante profit among all combinations which i
could have entered. Furthermore, under the hypothesis Ki = κi(Zi,Wi), there exists a unique
candidate Π̂i(M,Ki) for the ex ante profit function Πi(M), which is identified up to Ki. Exploiting
necessary conditions for optimality—for instance, that bidder i should not gain in expectation by
adding or removing one auction from her participation set—one could translate (17) into a set
of restrictions on complementarities Ki and entry costs Ci jointly. In principle, these would pro-
vide further identifying information on Ki. Unfortunately, these conditions also involve numerous
high-dimensional integrals, evaluation of which would involve significant computational costs. In
practice, we therefore focus on restrictions on Ki induced by the bidding model, without reference
to additional restrictions induced by entry.

Appendix C: Unobserved auction heterogeneity

In this Appendix, we discuss how our identification results can be extended to allow for addi-
tively separable unobserved auction heterogeneity. Specifically, suppose that bidder i’s standalone
valuation Vil in auction l is

Vil = Uil +Al,

where Al is the unobserved heterogeneity in auction l, common knowledge to bidders, and Uil is
private information for each bidder i. As is well known in the literature, if Uil are independent
across i, independent of Al, and each Al has a log-concave density, then the vector of standalone
valuations (V1l, . . . , VNl) is affiliated.

We further assume that the distribution of unobserved heterogeneity Al in auction l depends
only on the characteristics Xl of object l:

Al ⊥ Z | X,W, Al ⊥W | X, Uil ⊥ Al | X,Z,W, (18)

Al ⊥ X−l | Xl,W, Al ⊥ Al̃ | X,W for l 6= m̃, (19)

Denote A = (A1, . . . , AL)>. Under regularity conditions analogous to those in our main text,

49



bidding at observables X,Z,W and unobservable realization A must satisfy the F.O.C.

Ui +A = Bi +∇bΓi(Bi|X,Z,W,A)−1 × Γi(Bi|X,Z,W,A)

−∇bΓi(Bi|X,Z,W,A)−1 ×∇bPi(Bi|X,Z,W,A)TKi. (20)

Also note that, if the strategy profile σh(·|X,Z,W ) is a Bayes-Nash equilibrium at observable
market characteristics (X,Z,W ) and unobservables A = 0, then the strategy profile

σ(·|X,Z,W,A) ≡ σh(·|X,Z,W ) +A

is a Bayes-Nash equilibrium at observables (X,Z,W ) and unobserved heterogeneity realization A.
To see why this is so, note that conditional on (X,Z,W ) and A, the strategy profiles σ(·|X,Z,W,A)
yields the same allocations and payoffs as does the strategy profile σh(·|X,Z,W ). We assume
throughout that, conditional on (X,Z,W ), the same “fundamental” strategies σh(·|X,Z,W ) are
played for all realizations of A, so that variation in A shifts bids in each auction additively.

Under these assumptions, we can use techniques in Krasnokutskaya (2011) to establish that
under suitable normalizations of mean bids within each auction l, both the distribution of Bil
conditional on Al, X, Z,W and the distribution of Al conditional on X,W are identified from the
distribution of Bil conditional on X,Z,W (recall that, conditional on X,W , Al is independent of
Z). In turn, by independence of Al across auctions conditional on W,X, identification of each
marginal Al|X,W implies identification of the distribution of the whole vector A|X,W .

The next step is to identify the joint distribution of the bid vector Bi conditional on X,Z,W,A
from the following information known to the econometrician: (i) the joint distribution of Bi condi-
tional on Z,X,W ; (ii) the distribution of A|X,W . Here we employ the fact that

Bi = Bh
i +A.

Thus, given identification of distributions ofBi|X,Z,W andA|X,Z,W , the distribution ofBh
i |X,Z,W

is identified by a standard deconvolution argument. Note that the distribution of Bh
i |X,Z,W does

not depend on A and, thus, the distribution of Bi|X,Z,W,A is simply a location shift (by A) of
the distribution of now identified Bh

i |X,Z,W .
The rest of the identification strategy is analogous to our baseline case. Namely, we can apply

either the identification strategy based on Assumption 5 (varying rival characteristics Z−i), or
the identification strategy based on Assumption 6 (varying characteristics of other auctions X−l)
to identify distributions of “undisturbed” standalone valuations Uil and complementarities Ki.
Together with the conditions above on unobserved auction heterogeneity, the former approach
would give us that E[Ui +A |X,Z,W ] does not depend on Z−i, while the latter would give us that
E[Uil +Al |X,Z,W ] does not depend on X−l. In either case, the system for determining Ki(i,Wi)
will be exactly the same as described in Section 3.

Appendix D: Complementarities depending on V

In this appendix, we explore prospects for generalizing our non-parametric identification results to
the case where complementarities are additively separable functions of standalone valuations. In
other words, conditional on Z,W,X the compementarities are stochastic but their randomness can
be fully explained by the standalone valuations. As a special case, we consider a scenario when
these functions are affine in standalone valuations. Such a case could arise if, for instance, winning
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two auctions together increases i’s valuation for one or both objects by a fixed percentage.

Notation and definitions We say complementarities are additively separable in standalone
valuations if for each ω that contains at least two non-zero components (that is, ‖ω‖2 ≥ 2),
the complementarity for outcome ω is a function of the vector of standalone valuations vi =
(vi1, vi2, . . . , viLi)

T such that

Kω(vi, Zi,Wi) =
∑
l:ωl=1

φl(vil, Zi,Wi) + K̄ω(Zi,Wi) (21)

for some functions φl, l = 1, . . . , L. If each function φl is linear in vil, then we obtain the special
case of complementarities affine in vi:

Kω(vi, Zi,Wi) =
∑
l:ωl=1

δl(Zi,Wi)vil + K̄ω(Zi,Wi), if ‖ω‖2 ≥ 2. (22)

As usual, if ω contains at most one component equal to one (that is, ‖ω‖2 ≤ 1), then we set
Kω(vi, Zi,Wi) ≡ 0. An interesting special case of (22) is when all δl are identical and K̄ω = 0 for
any ω. This case describes the situation of a constant relative complementarity – that is, when
Kω(vi, Zi,Wi) is a constant ratio of the additive valuation.

Now assume that complementarities are affine in vi, and define an Li × 1 vector δ(Zi,Wi) and
an Li × Li matrix D(δ(Zi,Wi)) as follows:

δ(Zi,Wi) ≡ (δ1(Zi,Wi), δ
2(Zi,Wi), . . . , δ

Li(Zi,Wi))
T

D(δ(Zi,Wi)) ≡ diag(δ1(Zi,Wi), δ
2(Zi,Wi), . . . , δ

Li(Zi,Wi)).

To write this in a convenient vector-matrix notation, let Ai denote the 2Li × 2Li matrix such that
its submatrix (alj)l,j=Li+2,...,2M coincides with the identity matrix of size 2Li − Li − 1, with all the
other elements of Ai being 0. We then have

K(vi, Zi,Wi) = AiΩiD(δ(Zi,Wi))vi + K̄(Zi,Wi),

where K̄(Zi,Wi) denotes the 2Li × 1 vector of constant components in the complementarities
(obviously, K̄(Zi,Wi) ∈ Ki). Clearly, the rank of matrix AiΩi is equal to Li.

As can be seen, the functional form of complementarities does not depend on Z−i. As we show
below, under weak conditions there is enough variation in Z−i |Zi,W,X to determine the linear (in
vil) part of complementarities as well as the constant part.

Non-parametric identification Using the first-order conditions and taking into account the
form of K(vi, Zi,Wi), obtain

vi = bi + [∇bΓi(bi|Z−i)]−1 Γi(bi|Z−i)− [∇bΓi(bi|Z−i)]−1∇bPi(bi|Z−i)T
[
AiΩiD(δ)vi + K̄

]
,

where for notational simplicity conditioning on Zi,W,X is omitted from the notation in the rest of
this Appendix. Rewrite that system of equations by collecting all terms with vi on the left-hand
side: (

ILi + [∇bΓi(bi|Z−i)]−1∇bPi(bi|Z−i)TAiΩiD(δ)
)
vi = bi + [∇bΓi(bi|Z−i)]−1 Γi(bi|Z−i)

− [∇bΓi(bi|Z−i)]−1∇bPi(bi|Z−i)T K̄,
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and introduce a notation for the matrix in front of vi on the left-hand side:

Π(bi, δ, Z−i) ≡ ILi + [∇bΓi(bi|Z−i)]−1∇bPi(bi|Z−i)TAiΩiD(δ).

Define ∆(Z−i) as the set of δ ∈ <Li such that

Π(bi, δ, Z−i) is non-singular for almost all bi.

This set is non-empty as e.g. 0 ∈ ∆(Z−i). If δ ∈ ∆(Z−i), then we can multiply the system from
the left by Π(bi, δ, Z−i)

−1 resulting in

vi = Π(bi, δ, Z−i)
−1bi + Π(bi, δ, Z−i)

−1 [∇bΓi(bi|Z−i)]−1 Γi(bi|Z−i)
−Π(bi, δ, Z−i)

−1 [∇bΓi(bi|Z−i)]−1∇bPi(bi|Z−i)T K̄.

Assuming that δ ∈ ∆(Z−i) and carrying on with fixed Zi,W,X, let us denote

D1(δ, Z−i) ≡ EBi
[
Π(Bi, δ, Z−i)

−1Bi
∣∣Z−i]+ EBi

[
Π(Bi, δ, Z−i)

−1 [∇bΓi(Bi|Z−i)]−1 Γi(Bi|Z−i)
∣∣Z−i] ,

D2(δ, Z−i) ≡ EBi
[
Π(Bi, δ, Z−i)

−1 [∇bΓi(Bi|Z−i)]−1∇bPi(Bi|Z−i)T
∣∣Z−i] .

Keeping Zi,W,X fixed, let us draw another value Z ′−i from Z−i|Zi,W,X. Due to the assumptions
made on the distribution of the standalone valuations, E[Vi|Zi, Z−i,W,X] = E[Vi|Zi, Z ′−i,W,X].
Therefore, for δ ∈ ∆(Z−i) ∩∆(Z ′−i),

D1(δ, Z ′−i)−D1(δ, Z−i) =
(
D2(δ, Z ′−i)−D2(δ, Z−i)

)
K̄.

For fixed Zi,W,X, this system has 2Li − 1 unknowns (Li in δ and 2Li − Li − 1 in K̄) and Li
equations. This gives us the following result.

Proposition 3. Suppose that for (Zi,W,X) ∈ Zi×W×X , there exist J+1 ≥ (2Li−1)/Li+1 vectors
Z−i,0, Z−i,1, . . . , Z−i,J in the support Z−i|Zi,W,X such that there is a unique δ ∈

⋂J
j=0 ∆(Z−i,j)

and a unique κ ∈ Ki that solve the system of J · Li equations

D1(δ, Z−i,j)−D1(δ, Z−i,0) = (D2(δ, Z−i,j)−D2(δ, Z−i,0))κ, j = 1, . . . , J. (23)

Then the values of δ(Zi,Wi) and K̄(Zi,Wi) are identified, and thus, the complementarity function
is identified for these values of Zi, Wi.

System (23) is non-linear in δ. However, for each fixed δ ∈
⋂J
j=0 ∆(Z−i,j), this system is linear

in κ. Proposition 3 implies that in the case of identification it is not possible to have a situation
when for different δ1 and δ2, where δ1, δ2 ∈

⋂J
j=0 ∆(Z−i,j), system (23) has solutions κ1 ∈ Ki and

κ2 ∈ Ki, respectively. Thus, in this sense the question of identification of δ(Zi,Wi) and K̄(Zi,Wi)
comes down to the question of the existence of a solution to a system of linear equations: (23) can
have a solution κ for one δ only, and for that δ it has to be unique. Using the Kronecker-Capelli
theorem, which gives the necessary and sufficient conditions for the existence of a solution to a
system of linear equations, and also the necessary and sufficient conditions for the uniqueness of
such a solution, we formulate the identification result in the Proposition 4 below.

Before we proceed to Proposition 4, let us rewrite (23) in a more convenient way. At the moment
Ki has to satisfy certain restrictions (namely, the first Li + 1 components of this vector are 0) and
we first want to rewrite it through an unrestricted parameter to apply certain tools from algebra.
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Let Ei denote the 2Li× (2Li−Li−1) matrix such that its submatrix (ẽij)i=Li+2,...,2Li , j=1,...,2Li−li−1

coincides with the identity matrix of size 2Li − Li − 1, and all its other elements (that is, all the

elements in the first Li+1 rows) are equal to zero. For every κ ∈ Ki there is a unique κ̌ ∈ R2Li−Li−1

such that
κ = Eiκ̌.

Obviously, this κ̌ is a parameter that does not have to satisfy any prior restrictions. It is formed
by the last 2Li − Li − 1 values in κ. System (23) can equivalently be written as

D1(δ, Z−i,j)−D1(δ, Z−i,0) = (D2(δ, Z−i,j)Ei −D2(δ, Z−i,0)Ei) κ̌, j = 1, . . . , J, (24)

with κ̌ ∈ R2Li−Li−1. For a fixed δ, system (23) is linear in κ, has the J · Li × 2Li matrix of
coefficients, and imposes restrictions on the solution κ by requiring that κ ∈ Ki. Its equivalent
representation (24) is linear in κ̌ for a fixed δ, has the J ·Li × (2Li − Li − 1) matrix of coefficients,

and does not impose any restrictions on the solution κ̌ ∈ R2Li−Li−1. This allows us to apply the
Kronecker-Capelli theorem to system (24) in a straightforward way.

Proposition 4. Suppose that for (Zi,Wi, X) ∈ Zi×Wi×X , there exist J+1 ≥ (2Li−1)/Li+1 vec-
tors Z−i,0, Z−i,1, . . . , Z−i,J in the support Z−i|Zi,W,X such that there is a unique δ ∈

⋂J
j=0 ∆(Z−i,j)

that satisfies the following two conditions:

1. First,
rank ([M1(δ) |M2(δ)]) = rank (M2(δ)) , (25)

where M2(δ) denotes the J · Li × (2Li − Li − 1) matrix

M2(δ) ≡

 D2(δ, Z−i,1)Ei −D2(δ, Z−i,0)Ei
...

D2(δ, Z−i,J)Ei −D2(δ, Z−i,0)Ei

 ,
and M1(δ) denotes the J · Li × 1 vector

M1(δ) ≡

 D1(δ, Z−i,1)−D1(δ, Z−i,0)
...

D1(δ, Z−i,J)−D1(δ, Z−i,0)

 .
2. Moreover, this δ is such that M2(δ) has full column rank:

rank (M2(δ)) = 2Li − Li − 1. (26)

Then the values of δ(Zi,Wi) and K̄(Zi,Wi) are identified, and thus, the complementarity function
is identified for these values of Zi, Wi.

Condition (25) requires that in system (24), the rank of the matrix of coefficients M2(δ) is
equal to the rank of the augmented matrix [M1(δ) |M2(δ)] for one δ only. The Kronecker-Capelli
theorem guarantees then that (24) has a solution κ̌ for that δ only. Condition (26) then guarantees
this κ̌ is determined uniquely, and, thus, κ = Eiκ̌ is determined uniquely.

Note that all the identification conditions in Proposition 4 are formulated in terms of δ. The
closed form for δ(Zi,Wi) cannot be found, but in practice one can find δ(Zi,Wi) and K̄(Zi,Wi) by
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solving, e.g., the following optimization problem:

min
δ∈

⋂J
j=0 ∆(Z−i,j), κ̌∈R2Li−Li−1

Q(δ, κ̌, Zi,W,X),

where
Q(δ, κ̌, Zi,W,X) ≡ (M1(δ)−M2(δ)κ̌)T (M1(δ)−M2(δ)κ̌) .

Appendix E: Additional identifying restrictions induced

by variation in characteristics of combinations

In Section 3, we show that excludable variation in charateristics of either other bidders or other
objects can be used to obtain nonparametric identification of complementarities. But what about
variation in combination characteristics Wi directly affecting complementarities? Intuitively, one
might expect variation in Wi to be of considerable use in identifying complementarities. In this
Appendix, we show that variation in Wi does indeed induce an additional set of partial differen-
tial equations which restrict the relationship between levels of κ(Z,Wi) and changes in κ(Z,Wi).
Unfortunately, however, these restrictions alone will typically be insufficient to identify κ(Z,Wi).

In this discussion, it is important to bear in mind one key caveat: in practice, Wi is typically a
function of observables (X,Z). The extent to which one can vary Wi independently from (X,Z), or
one element of Wi independently from others, may thus be mechanically limited by this dependence.
Nevertheless, it may be natural to consider variation in Wi holding relevant features of (X,Z)
constant—for instance, by changing the distance between two projects, holding i’s distance to each
project constant. What additional identifying restrictions are induced by such variation?

Toward this end, recall from Proposition 1 that we must have Vi = Υi(bi|M) − Ψi(bi|M) ·
κi(Z,Wi) almost surely. This in turn implies the equilibrium identity

E[Vi|X,Z] = Ῡi(M)− Ψ̄i(M) · κi(Z,Wi). (27)

Suppose that element Wik of Wi varies conditional on (X,Z). Assume for simplicity that the
right-hand side of (27) is differentiable in Wik; otherwise, we may proceed in finite differences.
Differentiating both sides of (27) with respect to Wik, noting that E[Vi|X,Z] does not depend on
Wik, and rearranging, we obtain

Ψ̄i(M) · ∂κi(Z,Wi)

∂Wik
=
∂Ῡi(M)

∂Wik
− ∂Ψ̄i(M)

∂Wik
· κi(Z,Wi). (28)

For bidders competing in exactly two auctions, Equation (28) represents a system of Li = 2
differential equations in the unknown scalar-valued function κi(Z,Wi); in this case, variation in
Wi alone may support nonparametric identification of κi(Z,Wi). For bidders competing in more
than two auctions, Equation (28) represents a system of Li first-order differential equations in the
unknown (2Li − Li − 1) dimensional vector-valued function κi(Z,Wi). Even if the initial value

κi(Z,Wi) is given, it will generically be impossible to solve for the gradient ∂κi(Z,Wi)
∂Wik

uniquely from
this system. Hence, absent additional a priori knowledge—for instance, that sufficiently many
elements of ∂κi(Z,Wi)

∂Wik
are equal to zero—it will generally be impossible to uniquely identify even

changes in κi(Z,Wi) from variation in Wi alone.
If, however, we additionally have excludable variation in either rival characteristics Z−i or char-

acteristics of other auctions X−l, we can add the derivative restrictions (28) to the level equations
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(10) considered in the main text. For example, by choosing a different rival structure Z ′−i, we could
add an additional set of equations paralleling (28). With enough equations, under suitable regular-
ity conditions, we can find a solution to this system that is unique up to a boundary condition on
κi(Z,Wi) when Wik is fixed at some boundary value Wik0. This boundary condition may depend
on the values of Zi and the values of other components in Wik. It also has to be compatible with the
boundary conditions when one considers similar systems using variation in Wir, r 6= k. The knowl-
edge of κi(Z,Wi) at at some boundary value Wik0 may be achieved either through normalization,
or through excludable variation in either Z−i or X−l as in Section 3.

Finally, in applications where κi(Z,Wi) is modeled as parametric, so that levels and changes in
κi(Z,Wi) both depend on some underlying parameter θ, then equations of the form (28) will often
be sufficient to identify θ even without further excluded variation in either Z−i or X−l. This is
true, for example, in our application in Section 5, where a linear form for κi(·) would, in principle,
permit identification even without excludable variation in Z−i. In practice, however, we exploit
both variation in Wi and variation in Z−i in estimation, as both sources of variation add information
on the underlying paramters of interest.

Appendix F: Identification relaxing conditions on equi-

librium bidding in Assumption 4

Our point identification result for the vector-function of complementarities κi(Zi,W,X) and the
conditional distribution of Vi|Zi,W,X relied on the first order conditions obtained from bidder’s
optimization of the payoff function. To derive those equations we employed the absolute continuity
of the bid distribution functions Gi. That, in particular, eliminated the possibility of bidders play-
ing atoms in the equilibrium. In this appendix, we analyze identification maintaining Assumptions
1-3 and 5, but dropping Assumption 4: that is, without assuming either absolute continuity or
common support. We derive robust identified sets for κi(Zi,Wi) and the joint cumulative distri-
bution function of Vi|Zi, X applicable to any data generating process satisfying these maintained
assumptions, including those involving either atoms or non-common support.

Importantly, these robust identified sets collapse to point identification as in the main text if
the data generating process additionally satisfies Assumption 4, even without maintaining Assump-
tion 4 a priori. In other words, Assumption 4 may be viewed as a sufficient condition for point
identification within the richer partial identification framework we develop below. In this sense,
our fundamental identification insights are applicable with or without Assumption 4, although this
assumption does sharpen and simplify the identification process.

We further show that the nature of partial identification depends critically on the specific
violation of Assumption 4. In F.1 and F.2, we show that both κi and valuations are typically
partially identified when the equilibrium bid distribution involves atoms, although identified sets
may be quite informative.42 Meanwhile, in F.4, we show that if bid distributions do not satisfy
common support, but are differentiable for bids with interior probabilities of winning, one can

42For example, in Appendix H.1, we simulate a two-auction equilibria between a global bidder and several
local bidders, restricting all bids to a discrete grid. Our main focus in Appendix H.1 is estimation based
on first-order approximations to optimal bidding behavior, which we show perform very well even when
underlying bids are actually discrete. For completeness, however, we also compute identified sets for κi
explicitly accounting for discreteness as in F.2 below, assuming that the global bidder faces either one or
three local rivals in each auction. The nonparametric identified superset is approximately [0.04, 0.16] when
κi = 0.1, [−0.14,−0.03] when κi = −0.1, and [−0.36,−0.22] when κi = −0.3.
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typically identify κi and valuations corresponding to interior bids exactly, although valuations
corresponding to always losing bids will still be only partially identified.43 In particular, this
latter analysis allows some bidder types to submit always-losing bids with positive probability—
as could arise with asymmetric supports of standalone valuations, or with binding public reserve
prices. Intuitively, in this case, one can base identification of κi on upper quantiles of standalone
valuations, which will be identified and invariant to Z−i even though lower quantiles will not.

F.1: Sharp identified set for κi

Let us fix (Zi,Wi, X) ∈ Zi×W×X . For each realization (Z−i,W−i) in the support of (Z−i,W−i)|Zi,Wi, X,
bidder maximizes the payoff function

πM (vi, b) = vTi Γi(bi|M)− bTi Γi(bi|M) + Pi(bi|M)Tκi(Zi,Wi)

with respect to bi ∈ Bi. Omitting fixed (X,Zi,Wi) from the notation for ease of exposition, and
letting κi denote the true complementarity vector κi(Zi,Wi) evaluated at the (fixed) observables
(Zi,Wi), every observed bid vector bi must satisfy the best-response requirement

vTi (Γi(bi|Z−i)− Γi(b|Z−i)) + (Pi(bi|Z−i)− Pi(b|Z−i))T κi ≥
bTi Γi(bi|Z−i)− bTΓi(b|Z−i) ∀ b ∈ Bi. (29)

For any conjectured complementarity vector κi, the system of linear inequalities (29) will define an
identified, convex set of valuations rationalizing the observed bid vector bi against rival characteris-
tics Z−i; we denote this set by Vi(bi;Z−i, κi). In principle, one may apply the results of Chesher and
Rosen (2017) to characterize the sharp identified set for κi, using the set of solutions Vi(·;Z−i, κi)
to (29) as the set-valued mapping implied by the bidding model, and rival characteristics Z−i as in-
struments shifting this mapping but not the latent distribution Fi. In practice, however, this sharp
identified set would be very difficult to operationalize numerically. We therefore proceed instead to
derive analytically simpler identified supersets for κi, which nevertheless yield point identification
when the data generating process satisfies Assumption 4.

F.2: Identified supersets based on single-bid deviations

First consider any bid vector bi such that Γil(bil|Z−i) < 1; we return to the case of Γil(bil|Z−i) = 1
below. Let b be any bid vector such that b = bi + εel ∈ Bi for some ε > 0; i.e., any candidate
deviation to a higher bid in auction l, holding bids in all other auctions constant. We then obtain
from (29) that

vil (Γil(bil|Z−i)− Γil(bil + ε|Z−i)) + (Pi(bi|Z−i)− Pi(bi + εel|Z−i))T κi ≥
bilΓil(bil|Z−i)− (bil + ε)Γil(bil + ε|Z−i),

43Intuitively, although the lower tail of standalone valuations will be unidentifiable in the presence of
dominated bids, the upper tail of valuations will be identified up to κi above the (also identified) minimum
threshold ensuring an interior bid. One can then form a continuum of identifying restrictions based on
invariance of identified upper quantiles of Vil to rival characteristics Z−i, which generically will substantially
over-determine the finite-dimensional vector κi. The main technical challenge in formalizing this argument
in our multi-auction context is that the threshold at which Vil is truncated generically depends on both Z−i
and on bids in other auctions. We provide a detailed resolution of this issue in F.4.
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where we used the assumption that the ties are broken independently across auctions at bi, and thus
that a change in the lth component of bi affects only the lth component of Γi. Since Γi,l is (weakly)
increasing in bil, we have Γi,l(bil|Z−i) − Γi,l(bil + ε|Z−i) ≤ 0. Furthermore, since Γil(bil|Z−i) < 1,
there will exist some ε > 0 such that this inequality is strict. For any such ε > 0, we can rear-
range the best-response inequality above to obtain an informative upper bound on the standalone
valuation vil corresponding to bid bi:

vil ≤
bilΓil(bil|Z−i)− (bil + ε)Γil(bil + ε|Z−i)

Γil(bil|Z−i)− Γil(bil + ε|Z−i)
−
[
Pi(bi|Z−i)− Pi(bi + εel|Z−i)
Γil(bil|Z−i)− Γil(bil + ε|Z−i)

]T
· κi. (30)

This upper bound is well defined for any bid vector bi such that Γil(bil|Z−i) < 1, and identified up
to the unknown complementarity vector κi.

Next consider any observed bid vector bi such that Γil(bil|Z−i) > 0. For any such bid, there
will exist some ε > 0 such that Γil(bil|Z−i) − Γil(bil − ε|Z−i) > 0. Proceeding analogously to
the derivation above, but this time considering a deviation bid b = bi − εel ∈ Bi, we obtain an
informative lower bound on the standalone valuation vil corresponding to bid observed bid bi:

vil ≥
bilΓil(bil|Z−i)− (bil − ε)Γil(bil − ε|Z−i)

Γil(bil|Z−i)− Γil(bil − ε|Z−i)
−
[
Pi(bi|Z−i)− Pi(bi − εel|Z−i)
Γil(bil|Z−i)− Γil(bil − ε|Z−i)

]T
· κi. (31)

As above, this lower bound is well defined so long as Γil(bil|Z−i) > 0, and identified up to the
unknown vector κi describing complementarities.

The inequalities (30) and (31) will be the basis for our analysis. For any bid vector bi such that
Γil(bil|Z−i) ∈ (0, 1), these inequalities yield informative two-sided bounds on the set of standalone
valuations vil rationalizing bi as an equilibrium bid. For bid vectors bi such that Γil(bil|Z−i) = 0,
only the upper bound (30) will be informative. Meanwhile, for bid vectors bi such that Γil(bil|Z−i) =
1, only the lower bound (31) will be informative.

To handle bid vectors bi for which one of (30) or (31) is uninformative, we assume there
exist known (extended real) scalars v, v̄ such that Vil ∈ [v, v̄]. Unless noted otherwise, in the
notation below, one may take v = −∞ and v̄ = ∞, which accommodates the case of completely
uninformative bounds. For the expectations-based superset we derive below, however, we require
both v and v̄ to be finite (i.e., for the researcher to have some prior information on V̄il. We explicitly
indicate finiteness of v and v̄ when this is required.

Before proceeding to characterize the identified superset based on (30) and (31), we first in-
troduce some notation. For any function f , let ∆+

ε,l[f(u)] and ∆−ε,l[f(u)] denote differences in the
values of f(·) associated with adding ε and −ε to the lth component of u respectively:

∆+
ε,l[f(u)] = f(u+ εel)− f(u),

∆−ε,l[f(u)] = f(u− εel)− f(u),

where el denotes the Li-dimensional mth unit vector.
For each bi ∈ Bi, define Υ+

ε,l(bi|Z−i) and Υ−ε,l(bi|Z−i) as follows:

Υ−ε,l(bi|Z−i) =

{
v if ∆−ε,l[Γi(bi|Z−i)] = 0,

∆−ε,l[b
T
i Γi(bi|Z−i)]

∆−ε,l[Γi,l(bi|Z−i)]
else

}
;

Υ+
ε,l(bi|Z−i) =

{
v̄ if ∆+

ε,l[Γi(bi|Z−i)] = 0,
∆+
ε,l[b

T
i Γi(bi|Z−i)]

∆+
ε,l[Γi,l(bi|Z−i)]

else

}
.
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By construction, Υ−ε,l(bi|Z−i) and Υ+
ε,l(·|Z−i) represent finite-difference analogs to the lth element

of the vector Υε(bi|Z−i) defined in the main text. Interpreted as functions of bi, Υ−ε,l(bi|Z−i)
and Υ+

ε,l(·|Z−i) extend the first term in each of the bounds (30) and (31) to cases with potentially

uninformative bounds. Furthermore, for each ε > 0, both Υ−ε,l(bi|Z−i) and Υ+
ε,l(bi|Z−i) are identified

up to the researcher-specified bounds v, v̄.
Analogously, for each bi ∈ Bi, define the identified functions Ψ−ε,l(bi|Z−i) and Ψ+

ε,l(bi|Z−i) by

Ψ−ε,l(bi|Z−i) =

{
0 if ∆−ε,l[Γi(bi|Z−i)] = 0,

∆−ε,l[Pi(bi|Z−i)]
∆−ε,l[Γi,l(bi|Z−i)]

else

}
;

Ψ+
ε,l(bi|Z−i) =

{
0 if ∆+

ε,l[Γi(bi|Z−i)] = 0,
∆+
ε,l[Pi(bi|Z−i)]

∆+
ε,l[Γi,l(bi|Z−i)]

else

}
.

Note that Ψ−ε,l(bi|Z−i) and Ψ−ε,l(bi|Z−i) also represent finite-difference analogs to the lth column of

the 2Li×Li matrix Ψε,l(bi|Z−i) defined in the main text. Interpreted as functions of bi, Ψ−ε,l(bi|Z−i)
and Ψ+

ε,l(bi|Z−i) extend the terms multiplying κi in each bound (30) and (31) to accommodate
potentially uninformative bounds.

Substituting the definitions above into the inequalities (30) and (31), we conclude that the
following inequalities must hold for every ε > 0 and almost every equilibrium bid bi:

Υ−ε,l(bi|Z−i)−Ψ−ε,l(bi|Z−i)
Tκi ≤ vi ≤ Υ+

ε,l(bi|Z−i)−Ψ+
ε,l(bi|Z−i)

Tκi.. (32)

Identified supersets using bounds on marginal distribution functions By definition,
we know that κi is a 2Li × 1 vector whose first Li × 1 components are zero. We further know that,
evaluated at the true complementarity vector κi, the inequalities (32) must hold for all ε > 0 and all
bi and Z−i in the relevant equilibrium supports. In what follows, let Ki denote the set of candidates
K for κi such that both of these conditions hold. Since, from above, failure of either condition
implies K 6= κi, we can restrict attention to this candidate set Ki without loss of generality.

For each K ∈ Ki, let F̃−il (·|K;Z−i) denote the c.d.f. of

sup
ε>0

(
Υ−ε,l(bi|Z−i)−Ψ−ε,l(bi|Z−i)

TK
)
,

and let F̃+
il (·|K;Z−i) denote the c.d.f. of

inf
ε>0

(
Υ+
ε,l(bi|Z−i)−Ψ+

ε,l(bi|Z−i)
TK
)
.

By construction, F̃−il (·|K;Z−i) and F̃+
il (·|K;Z−i) are identified for each candidate K ∈ Ki. Fur-

thermore, in view of (32), at the true complementarity vector K = κi, we must have

F̃+
il (·|κi;Z−i) ≤ Fil(·) ≤ F̃−il (·|κi;Z−i)

for all possible rival characteristic vectors Z−i ∈ Z−i.
Then inequalities (30) and (31) imply that a superset of the identified set of κ(Zi,Wi) for bidder

i can be found as
Li⋂
m=1

K̃i,l(Zi,Wi),
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where K̃i,l(Zi,Wi) is defined as

K̃i,l(Zi,Wi) = {K ∈ Ki
∣∣ F̃+

il (·|K;Z−i) ≤ F̃−il (·|K;Z ′−i) ∀Z−i, Z ′−i ∈ Z−i|Zi,W,X}.

Let us denote this superset as H(1)
i,κ (Zi,Wi).

Supersets using bounds on expected values Finally, we translate the identified super-
sets based on invariant marginal distributions to identified supersets based on invariant expected
valuations. Even though the resulting supersets will be larger than those discussed previously, they
are easier to characterize numerically.

Toward this end, suppose that the researcher’s a priori bounds v, v̄ on Vil are finite; note that
this is the only step in which we need finiteness of v and v̄. Define Li×1 vectors Ῡ−ε (Z−i), Ῡ+

ε (Z−i)
and Li × 2Li matrices Ψ̄−ε (Z−i), Ψ̄+

ε (Z−i) as follows:

Ῡ−ε (Z−i) ≡
[
E[Υ−ε,l(Bi|Z−i)|Z−i]

]Li
l=1

Ῡ+
ε (Z−i) ≡

[
E[Υ+

ε,l(Bi|Z−i)|Z−i]
]Li
l=1

Ψ̄−ε (Z−i) ≡
[
E[Ψ−ε,l(Bi|Z−i)|Z−i]

T
]Li
l=1

Ψ̄+
ε (Z−i) ≡

[
E[Ψ+

ε,l(Bi|Z−i)|Z−i]
T
]Li
l=1
.

Then, applying the expectation over the distribution of bids conditional on Zi,W,X to inequal-
ities (30) and (31) and pooling restrictions across Z−i, Z

′
−i and l = 1, . . . , Li, we establish that a

superset of the identified set for κ(Zi,Wi) can be found in the following way:

H(2)
i,κ (Zi,Wi) =

⋂
ε>0

K̂εi(Zi,Wi),

where K̂εi(Zi,Wi) is defined as

K̂εi(Zi,Wi) ≡
{
K ∈ Ki

∣∣∣ (Ῡ−ε (Z−i)− Ῡ+
ε (Z ′−i)

)
−
(
Ψ̄−ε (Z−i)− Ψ̄+

ε (Z ′−i)
)
K ≤ 0 for all Z−i, Z

′
−i ∈ Z−i|Zi,W,X

}
. (33)

Observe that the identified supersetH(2)
i,κ (Zi,Wi) can be represented as the intersection of a set of

half-spaces in Ki, where half-spaces are bounded by hyperplanes involving slope vectors (Ψ̄−ε,l(Z−i)−
Ψ̄+
ε,l(Z

′
−i)) and intercepts (Ῡ−ε,l(Z−i) − Ῡ+

ε,l(Z
′
−i)), and the intersection is taken over collections of

(Z−i, Z
′
−i, ε, l). It follows immediately that H(2)

i,κ (Zi,Wi) is convex. Furthermore, H(2)
i,κ (Zi,Wi) will

be bounded so long as rival characteristics induce sufficient variation in (Ῡ−ε,l(Z−i)− Ῡ+
ε,l(Z

′
−i)), in

the sense that there exists a collection {(Z−i,k, Z ′−i,k)}Kk=1 of competition structures such that the
cone spanned by the rows of the matrix Ῡ+

ε,l(Z−i,1)− Ῡ−ε,l(Z
′
−i,1)

...
Ῡ+
ε,l(Z−i,K)− Ῡ−ε,l(Z

′
−i,K)


contains the space of candidate complementarity vectors Ki. This latter condition is essentially the
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generalization of the rank conditions for identification in the main text to the system of half-spaces
defined by (33). Notice, however, that in the absence of absolute continuity this condition may
require somewhat more variation in Z−i, as variation in Z−i will additionally need to overcome
mechanical differences between Ῡ+

ε,l(Z−i,k) and Ῡ−ε,l(Z−i,k) induced by discreteness.

Supersets for the distribution of standalone values Finally, we construct supersets of
the identified sets for the distributions of standalone valuations. Let Fc(Rp) denote the set of all
continuous cumulative distribution functions on Rp, and let Hi,κ(Zi,Wi) be either of the identified
supersets for κi defined above.

A superset of the identified set for the c.d.f. of the standalone valuation Vil conditional on Zi, X
can be found as the set of univariate functions Fil(·) ∈ Fc(R) such that for any η ∈ R,

Fil(η) ∈
⋂

W∈W|Zi,X

⋂
κ0∈Hi,κ(Zi,Wi)

⋂
Z−i,Z′−i∈Z−i|Zi,W,X

[F̃+
il (η|κ0;Z−i), F̃

−
il (η|κ0;Z ′−i)]}. (34)

Here we applied the exclusion restriction that the distribution of standalone valuations conditional
on Zi,Wi, X does not depend on Wi. Let us denote this superset as Hi,Fl(Zi, X).

Our final step is to construct a superset Hi,F (Zi, X) for the identified set for the joint distri-
bution of the vector of standalone valuations. Hi,F (Zi, X) can be found as the set of Li-variate
functions Fi(·) ∈ Fc(RLi) such that each lth marginal distribution function generated by Fi(·)
belongs to Hi,Fl(Zi, X), l = 1, . . . , Li. Moreover, for any η = (η1, . . . , ηLi),

Fi(η) ≤ min
l=1,...,Li

inf
W∈W|Zi,X

inf
κ0∈Hi,κ(Zi,Wi)

inf
Z−i∈Z−i|Zi,W,X

F̃+
il (ηl|κ0;Z−i), (35)

Fi(η) ≥ max

{
Li∑
m=1

sup
W∈W|Zi,X

sup
κ0∈Hi,κ(Zi,Wi)

sup
Z−i∈Z−i|Zi,W,X

F̃−il (ηl|κ0;Z−i)− Li + 1, 0

}
, (36)

where we employed the well known result on sharp Frechet-Hoeffding bounds for joint distributions.

F.3: Robust supersets yield point identification when the data gen-
erating process satisfies Assumption 4

We next show that analysis based on the supersets above yields point identification if the underlying
data generating process additionally satisfies the conditions in Assumption 4. In other words,
from an identification perspective, the partial identification analysis described here in fact loses
no information relative to the simpler first-order approach described in the main text; if the data
generating process satisfies the relevant smoothness and support conditions, then the identified
supersets derived above will collapse to point identification, even when these conditions are not
maintained a priori. In this sense, one may essentially view Assumption 4 as a sufficient condition
for point identification within the robust partial identification analysis described above.

Toward this end, suppose that in addition to Assumptions 1-3 and 5 maintained throughout
this Appendix, the data generating process satisfies the absolute continuity and common support
conditions of Assumption 4. Since Gi is absolutely continuous for each bidder, then bidder i’s
objective function will be differentiable for almost every observed bi. Furthermore, if bids satisfy
common support, then combined with absolute continuity it follows that we can have Γi(bi|Z−i) = 0
or Γi(bi|Z−i) = 1 on at most a set of bids bi having measure zero with respect to Gi. Hence for
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almost every bid bi submitted by bidder i, we will have for all l

lim
ε→0

∆−ε,lbiΓi(bi|Z−i)
∆−ε,lΓi,l(bi|Z−i)

= lim
ε→0

∆−ε,lbiΓi(bi|Z−i)/ε
∆−ε,lΓi,l(bi|Z−i)/ε

=
∂(biΓi(bi|Z−i))/∂bil
dΓi,l(bi|Z−i))/dbil

,

and therefore Υ−ε,l(bi|Z−i) → Υε,l(bi|Z−i). Analogously, Υ+
ε,l(bi|Z−i) → Υε,l(bi|Z−i), Ψ−ε,l(bi|Z−i) →

Ψε,l(bi|Z−i), and Ψ+
ε,l(bi|Z−i) → Ψε,l(bi|Z−i) almost surely. Applying the expectations operator, it

follows that Ῡ−ε (·)→ Ῡ(·), Ῡ+
ε (·)→ Ῡ(·), Ψ̄−ε → Ψ̄(·), and Ψ̄+

ε → Ψ̄(·).
Hence, returning to the inequality (33) defining the robust expectations-based identified super-

set for the unknown complementarity vector κi, it follows that

Ῡ(Z−i)− Ψ̄(Z−i)κi ≤ Ῡ(Z ′−i)− Ψ̄(Z ′−i)κi ∀ Z−i, Z ′−i ∈ Z−i|Zi,W,X.

Noting that Z−i, Z
′
−i are interchangeable, we thus have for any Z−i, Z

′
−i ∈ Z−i|Zi,W,X:

Ῡ(Z−i)− Ψ̄(Z−i)κi ≤ Ῡ(Z ′−i)− Ψ̄(Z ′−i)κi

Ῡ(Z ′−i)− Ψ̄(Z ′−i)κi ≤ Ῡ(Z−i)− Ψ̄(Z−i)κi,

or equivalently

Ῡ(Z−i)− Ψ̄(Z−i)κi = Ῡ(Z ′−i)− Ψ̄(Z ′−i)κi ∀ Z−i, Z ′−i ∈ Z−i|Zi,W,X.

But this is exactly the identification restriction invoked in Proposition 3 in the main text. In other
words, even the coarsest identified superset we derive maintaining neither absolute continuity nor
smoothness a priori will collapse to point identification as in the main text under Assumption 4. In
this sense, Assumption 4 may be viewed as a sufficient (though not necessary) condition for point
identification within a robust identification analysis maintaining only Assumptions 1-3 and 5.

F.4: Point identification of κi without common support

Finally, we consider identification dropping the common support condition of Assumption 4, but
maintaining the hypothesis that marginal bid distributions Gil are absolutely continuous for every
bid vector bi with a positive probability of winning in auction l. More precisely, for each bidder
i and each combination ω ∈ Ωi, we assume that marginal distribution Gωi (bil|Zil) of i’s bids in
combination ω admits a density for almost every bid vector such that Γil(bil|Z−i) > 0 in each
auction l such that ωl > 0. In other words, we assume that i’s bid distribution is smooth almost
everywhere i’s bids are relevant, although potentially involving mass points at bids which win
with probability zero.44 Such a case could arise, for example, if asymmetric bidders have different
supports of standalone valuations, in which case some types of weak bidders may have no strictly
profitable bid. Similarly, although we do not model reserve prices explicitly, a binding public reserve
price in auction l could lead at least some types of some bidders to submit null bids in auction l.
Interpreting these as bids below the reserve price, this would be isomorphic in our notation to a
situation where bidder i submits a positive mass of bids with Γil(bil|Z−i) = 0.

Toward this end, maintain the smoothness conditions above, and consider any bid vector bi

44The methods discussed here could also apply to bidders who bid such that Γil(bil|Z−i) = 1 with positive
probability, but (except in cases of extreme asymmetry) such bids are typically difficult to rationalize as an
equilibrium phenomenon. For ease of exposition, we therefore focus on cases where Γil(bil|Z−i) = 0, which
are likely to arise more frequently in practice.
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such that Γil(bil|Z−i) > 0. Bearing in mind that rival bid distributions are differentiable almost
surely over all relevant marginals involving auction l, we then have Υ−l,ε(bil|Z−i) → Υl(bil|Z−i),
Υ+
l,ε(bil|Z−i) → Υl(bil|Z−i), Ψ−l,ε(bil|Z−i) → Ψl(bil|Z−i), and Ψ+

l,ε(bil|Z−i) → Ψl(bil|Z−i) as ε → 0.
Consequently, as in the last section, the two-sided bounds (32) collapse to the equality

vil = Υl(bil|Z−i)−Ψl(bil|Z−i)Tκi,

where both Υl(bil|Z−i) and Ψl(bil|Z−i) are identified from limits of identified objects as above. In
other words, for each bid vector bi such that Γil(bil|Z−i) > 0, there exists only one standalone
valuation vil consistent with the bid bi given the complementarity vector κi.

Next, let bi, b
′
i be any two bid vectors in the support of Gi which differ only in their lth element;

i.e., such that bil = b′ik for all k 6= l. Without loss of generality, take b′il > bil, and suppose that
Γil(bil|Z−i) < Γil(b

′
il|Z−i). Let K be any element of the set Ki of candidates for κi, and consider

any candidates vil, v
′
il consistent with the bounds (32) evaluated at κi = K.45 Observe that, taking

ε = b′il − bil, the bounds (32) satisfy the following marginal monotonicity property:

v′il ≥ Υ−ε,l(b
′
i|Z−i)−Ψ−ε,l(b

′
i|Z−i)TK

= Υ+
ε,l(bi|Z−i)−Ψ+

ε,l(bi|Z−i)
TK

≥ vil,

where the middle equality follows since, by definition, Υ+
ε,l(bi|Z−i) = Υ−ε,l(b

′
i|Z−i) and Ψ+

ε,l(bi|Z−i) =

Ψ−ε,l(b
′
i|Z−i). In other words, fixing i’s bids in other auctions, we require a higher standalone

valuation in auction l to rationalize a higher (nontrivial) bid in auction l.
Now let bil = inf{bl : Γil(bl|Z−i) > 0} be the infimum of bids at which i has a positive probability

of winning auction l, and consider any bid vector bi such that bil ≤ bil; note that bil is implicitly
determined by Z−i, although we suppress this in notation. For any such bid, the lower bound
(31) will be uninformative, but there will exist some ε > 0 such that the upper bound (30) will be
informative. Furthermore, we know this upper bound is bounded from above by the standalone
valuation rationalizing the bid vector (bil, bi,−l) in which i’s actual bid bil is replaced by the infimum
undominated bid bil in auction l. In other words, defining

vil(bi,−l;Z−i, κi) = inf
ε>0
{Υ+

l,ε(bil, bi,−l|Z−i)−Ψ+
l,ε(bil, bi,−l|Z−i)

Tκi},

bil ≤ bil implies vil ≤ vil(bi,−l;Z−i, κi) almost surely, where vil(bi,−l;Z−i, κi) is identified up to κi.
Finally, suppose that the support of i’s undominated valuations is sufficiently rich in the fol-

lowing sense. For each auction l, define the maximum and minimum marginal complementarities i
associates with object l as follows:

∆κ+
il = max

ω
κω+el − κω : ωl = 0

∆−κil = min
ω
κω+el − κω : ωl = 1.

Note that, by definition, ∆κ+
il represents the maximum change in complementarity κωi induced by

winning object l versus not, while ∆κ−il reflects the minimum such change. We then maintain the
following assumption on the support of the conditional distribution of Vil given V−i,−l:

45Recall that we restrict attention to the set Ki such that such candidate valuation vectors exist almost
surely.
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Assumption 8. There exists α > 0 such that for all realizations vi,−l in the support of Vi,−l,

Pr(Vil + ∆κ−il ≥ max
j 6=i
{vjl + ∆κ+

jl}|Vi,−l = vi,−l) ≥ α,

where vjl is the infimum of the support of bidder j’s valuation in auction l. In other words, bidder i’s
minimum marginal valuation (over combinations) exceeds the minimum of each rival j’s maximal
marginal valuation (over combinations) with probability bounded away from zero.

Observe that bidder i would always be willing to win auction l at any price below Vil + ∆κ−il ,
while bidder j would never be willing to win auction l at any price above Vjl + ∆κ+

jl. Hence, under
Assumption 8, at least fraction α of i’s bids in auction l will be undominated, regardless of how i
bids in other auctions. For these bids, we may identify candidate standalone valuations vil exactly
for any K ∈ Ki. Furthermore, by marginal monotonicity, we know that these candidates will always
contain (at least) the α highest quantiles of the marginal distribution of Vil, although the lower tail
of Vil may be truncated by a threshold vil(bi,−l;Z−i,K) which varies with bi,−l.

Bearing these facts in mind, let Ṽil be the random variable defined by

Ṽil =

{
vil(Bi,−l;Z−i,K), Bil < bil
Υl(Bil|Z−i)−Ψl(Bil|Z−i)TK, Bil ≥ bil

,

and let F̃il(·|Z−i;K) denote the marginal c.d.f. of Ṽil. In view of the analysis above, at K = κi, we
must have (at least)

F̃il(vl|Z−i;K) = Fil(v) for all vl ≥ νil(Z−i,K),

where F̃ (·|Z−i;K) is identified up to the candidate complementarity vector K ∈ Ki, and

νil(Z−i,K) = sup
bi,−l

vil(bi,−l;Z−i,K)

denotes the identified supremum of vil(bi,−l;Z−i,K) across bids submitted by i in other auctions.
Furthermore, recall that the true distribution Fil(·) is invariant to Z−i. Hence, for any two

competition structures Z−i, Z
′
−i, we must have

F̃il(vl|Z−i;κi) = F̃il(vl|Z ′−i;κi) for all vl ≥ max{νil(Z−i, κi), νil(Z ′−i, κi)}, (37)

where all objects in (37) are identified up to κi.
Since, under Assumption 8, both candidate CDFs must assign probability of at least 1 − α

to valuations above their respective truncation points, the system (37) will define a continuum of
equations in the unknown vector κi for each distinct pair of competition structures Zi and Z ′−i.
Intuitively, these require that at K = κi, (at least) the α highest quantiles of the conjectured
distribution F̃il(·|Z−i;K) be invariant to Z−i. Since each such quantile is a nonlinear function of
K, it is difficult to provide formal sufficient conditions for a unique solution. Nevertheless, it is clear
that this system will generically be overdetermined. Hence so long as the support of standalone
valuations is sufficiently rich and the distribution of undominated bids is differentiable a.e., one
will typically obtain point identification of κi even without common support, although one will be
able to point-identify Fi(·) only over the region of valuations leading to undominated bids.
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Appendix G: Nonparametric tests for complementari-

ties

While our main analysis focuses on identification, this Appendix briefly discuss approaches to
testing for the presence of complementarities based on the bid data together with bidder-specific
and individual-specific characteristics. Taking the complementarities function as deterministic, the
condition of the absence of complementarities can be written as

κi(Z,Wi) = 0 for each i.

We can rely on testing the following testable implications on the distribution of bids:

H0 : E [Bi|X,Z,W ] = E [Bi|X,Z] a.e.,

which can be equivalently written as

E [Bi − E [Bi|X,Z] |X,Z,W ] = 0 a.e.

The alternative hypothesis H1 is the negation of the null.
There are a variety of tests in econometrics and statistics for testing the null hypothesis above.

We could, e.g., use the test of Delgado and Manteiga (2003), which requires residuals obtained
from nonparametric estimation under the null. We could also employ tests in Lavergne (2001)
or Neumeyer and Dette (2003) that develop general tests for the equality of two nonparametric
regression curves (the former work uses smoothing techniques whereas the latter is non-smoothing
test). A test proposed in Racine (1997) looks as whether the partial derivatives of the regression
function with respect to the variables being tested are zero.

Many of these tests require i.i.d. observations. In light of this, we can focus only on the bidders
that participate in two (or some other fixed number of) auctions and construct test statistics by
picking one such bidder per letting date.

Appendix H: Monte Carlo simulation study

Finally, we report results of two Monte Carlo experiments evaluating the estimators developed in
Section 5. In practice, the main constraint on design of these simulations is solving for equilibrium
bidding strategies; numerically speaking, this is a very challenging problem, since standard ordinary-
differential-equation methods for solving equilibrium bids no longer apply in simultaneous auctions
with nonseparable preferences. In view of this constraint, we explore two distinct Monte Carlo
designs, both considering one global bidder against many local bidders. In the first, we approximate
equilibrium in a two-auction market numerically over a finite grid. In the second, we solve best
responses exactly for a global bidder competing in three auctions against local rivals who bid
according to log-normal distributions. In each case, we specify complementarities as linear in
combination characteristics Wit: κit = Witθ0. Our objective is to estimate θ0.

Toward this end, we employ the matching GMM procedure outlined in Section 5. Specifically,
differencing the key first-order condition (12) across distinct bidder-letting-auction pairs itl and
jτ`, we obtain matched residual differences of the form

εit,l − εjτ,` = (Υit,l −Υjτ,`)− (ΨT
it,lWit −ΨT

jτ,`Wjτ ) · θ0. (38)
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Our maintained exclusion restrictions imply that, conditional on matching observations such that
Zit = Zjτ andXtl = Xτ`, the differenced residuals εitl−εjτ` are independent of the instrument vector
Iitl,jτ` = [Z−i,t, Z−j,τ , Xt,−l, Xτ,−`,Wit,Wjτ ]. Specializing to mean independence, this implies

E[Iitl,jτ` · (εitl − εjτ`)|Zit = Zjτ , Xtl = Xτ`] = 0. (39)

Furthermore, since rival characteristic Z−i,t shift ΨT
it,l, while combination characteristics Wit shift

the product ΨT
it,lWit both directly and indirectly through Ψit, the excluded variables Iitl,jτ` are

relevant instruments for the endogenous “regressors” (ΨitWit −ΨjτWjτ ) multiplying θ0.
In practice, we implement estimation based on (39) in two steps. In the first step, we substitute

estimates Υ̂it,l, Ψ̂it for the directly identified objects Υit,l,Ψit. In the second step, we form all
nonredundant (or randomly selected) matched differences of the form (38) across relevant distinct
observations jτ 6= it. We kernel weight these matched differences based on distance between
(Zit, Xtl) and (Zjτ , Xτ`), using a Gaussian kernel for continuous covariates. We then estimate
Then estimate θ0 using weighted optimal GMM on the resulting synthetic sample of matched
differences, based on orthogonality conditions of the form E[(εitl − εjτ`)Wit, Z−i,t,Wjτ , Zjτ )] = 0.

Appendix H.1: Equilibrium bidding on a finite grid

Our first Monte Carlo design considers one global bidder competing in two auctions against different
sets of local rivals who bid in one auction only. Specifically, the global bidder faces n1 local rivals in
auction 1, and n2 local rivals in auction 2, where each of n1, n2 vary on {1, 3}. Standalone valuations
for each bidder are drawn i.i.d. across bidders and auctions from a log-normal distribution with
mean parameter zero and scale parameter 0.5, with each valuation shifted up by one so that the
lower limit of support is v = 1. The complementarity for the global bidder is given by κ12 =
θ1 + Wθ2, where W is a scalar observable taking values in {−0.3,−0.1., 0.1}, the true parameters
are θ1 = 0 and θ2 = 1, and negative complementarities imply lower joint valuations. The true
complementarity κ12 thus takes three possible values: κ12 ∈ {−0.3,−0.1, 0.1}. For this exercise,
we abstract from covariates X shifting the distribution of valuations; we introduce these in our
second Monte Carlo exercise below. There are thus 12 possible configurations {n1, n2, κ12} of the
data generating process.

Even in this simplified setting, solving for equilibrium on a continuous bid space would be a
formidable computational challenge, requiring solution of a system of partial differential equations
which themselves depend on integrals over non-rectangular, a priori unknown, subsets within the
space of valuations. In view of this challenge, we instead solve for equilibrium restricting bidding to
a finite grid. Specifically, in each auction, bidders may bid on a 100-element grid evenly spaced on
the interval between v−min{κ12, 0} (the lowest possible marginal valuation) and 2.8 (a non-binding
upper limit). If there is a unique high bidder, this bidder wins; otherwise, ties are broken i.i.d.
across bidders and auctions.46

For each configuration {n1, n2, κ12}, we approximate equilibrium by iterating over simulated
best responses. For each bidder, we first draw 120,000 standalone valuations from the ex ante
distribution. For each simulated draw for each bidder, we calculate best-responses against the
simulated distribution of rival bids at the last iteration. We then update a randomly selected
fraction of bids for each bidder (in practice, 5 percent) to their best response values and proceed.

46In practice, to ensure strictly positive winning probabilities, we further assume that each bidder perceives
a small probability (0.001) of exogenously facing no rivals in each auction. This is purely for purposes of
numerical stability, and should not affect the estimator otherwise.
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At each iteration, we compute each bidder’s proportional profit lost, defined as the ratio of simulated
average profit at current bids to simulated average profit at best-response bids, assuming rivals bid
as in the last iteration. We stop when each bidder’s proportional profit lost falls below 10−6,
implying that no bidder can increase average profit by more than one ten-thousandth of a percent
by unilaterally changing their bidding strategy. While more efficient algorithms could doubtless
be developed, this simple iterative scheme leads to steady convergence for all DGPs we consider,
typically reaching an approximate equilibrium in between 2000 and 3000 iterations.

Having solved for approximate equilibria, we implement R = 1000 Monte Carlo replications as
follows. For each replication r = 1, ..., R and each of the 12 possible configurations of {n1, n2, κ12},
we draw a subsample of T bids (with replacement) for each bidder from our original sample of
120,000 simulated equilibrium bids. For each bidder, we estimate perceived winning probabilities
on the discrete bid grid using the empirical distribution of resampled rival bids. We smooth these
estimated probabilities using third-order polynomial interpolation across the discrete grid. We
then form estimates (Υ̂i, Ψ̂i) for the terms (Υi,Ψi) appearing in (38) on levels and gradients of
this polynomial interpolation. For a small number of observations in the tails of the distribution,
imprecise first-step estimates of winning probabilities lead to either very large or very small esti-
mated (Υ̂i, Ψ̂i); we account for this by dropping observations having values of Υ̂i in the top and
bottom 0.01 percent of the estimated distribution of Υ̂i for the global bidder. We then estimate θ0

using matched-difference GMM as described above.
Since, in this simple exercise, all bidders draw from the same distribution of standalone valua-

tions in all auctions, any two observations may in principle be matched with each other. In practice,
we treat auction identifier (auction 1 or auction 2) as a dummy auction type, and perform matching
based on this “covariate”. To assess how the number of matches affects the performance of the
estimator, we match each observation with m ∈ {1, 10, 100} counterfactual observations selected at
random from bidders participating in the same auction. We first estimate allowing matches only
among observations for the global bidder, then also allowing matches between the global bidder
and local bidders competing in the same-type auction.

The results of this exercise are reported in Table 9. On net, these are quite encouraging, and
confirm that our theoretical estimators perform well. Estimates of θ1 are essentially unbiased across
all sample sizes, although precision improves considerably as sample size increases. Estimates of θ2

are biased upward by approximately 10 percent in the smallest sample, with this bias dissipating to
less than 1 percent in the largest sample. Not surprisingly, increasing the number of matches per
bidder reduces mean squared error of both parameter estimates, especially in the largest sample
considered. Encouragingly, however, this reduction is relatively small—moving from m = 1 match
per observation to m = 100 matches per observation reduces root mean squared error by roughly
20 percent, with most of this gain appearing by m = 10—suggesting that our matching procedure
can perform well even if relatively few matches per observation are available.

Interestingly, as we quadruple sample size from T = 250 to T = 1000 samples per configuration
of (n1, n2,W ), both standard deviation and root MSE fall by factors of roughly 3. This reduction
is larger than the factor of 2 expected from the

√
T -convergence predicted for standard GMM,

consistent with the fact that larger samples reduce error in both first-step distribution estimates
and second-step GMM estimates. To assess which of these channels was more important, we started
from the largest T = 1000 sample, but estimating two sets of first-step parameters on samples of
size T = 500 for each configuration, finding bias closer to the T = 500 case than the T = 1000 case.
This suggests that, at least in small to moderate samples, gains from improving first-step estimates
are relatively larger than gains from more second-step GMM observations.

We emphasize that this estimation approach represents a continuous first-order approximation
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Table 9: Matched Difference GMM estimates of complementarity parameters, using a con-
tinuous first-order approximation to data simulated on a discrete equilibrium. True comple-
mentarities for the global bidder are given by κ12 = θ1 + θ2W , where θ1 = 0, θ2 = 1, and
W ∈ {−0.3,−0.1, 0.1}. The global bidder faces nl ∈ {1, 3} local rivals in each auction l = 1, 2.
In each Monte Carlo replication, estimates are based on T observations per configuration of
{n1, n2, κ12}, drawn randomly from a sample of 120,000 simulated equilibrium bids, using m
randomly drawn matches per original bid.

Sample size: T = 250 lettings per configuration of (n1, n2,W )

Mean Bias Median Bias Std Dev Root MSE
Matched differences GMM, m = 1 θ1 0.0032 0.0108 0.2209 0.2209

θ2 0.1054 0.0979 0.3305 0.3469
Matched differences GMM, m = 10 θ1 0.0030 0.0147 0.1956 0.1956

θ2 0.1050 0.0975 0.2947 0.3128
Matched differences GMM, m = 100 θ1 0.0045 0.0164 0.1955 0.1955

θ2 0.1040 0.1008 0.2932 0.3111

Sample size: T = 500 lettings per configuration of (n1, n2,W )

Mean Bias Median Bias Std Dev Root MSE
Matched differences GMM, m = 1 θ1 0.0097 0.0165 0.1596 0.1599

θ2 0.0486 0.0480 0.2409 0.2457
Matched differences GMM, m = 10 θ1 0.0107 0.0148 0.1622 0.1626

θ2 0.0432 0.0340 0.2441 0.2479
Matched differences GMM, m = 100 θ1 0.0091 0.0172 0.1697 0.1700

θ2 0.0437 0.0390 0.2460 0.2498

Sample size: T = 1000 lettings per configuration of (n1, n2,W )

Mean Bias Median Bias Std Dev Root MSE
Matched differences GMM, m = 1 θ1 -0.0056 -0.0019 0.0905 0.0906

θ2 0.0105 0.0124 0.1247 0.1251
Matched differences GMM, m = 10 θ1 -0.0047 -0.0011 0.0764 0.0765

θ2 0.0083 0.0098 0.1121 0.1124
Matched differences GMM, m = 100 θ1 -0.0046 -0.0024 0.0773 0.0774

θ2 0.0075 0.0115 0.1093 0.1095
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to a discrete equilibrium; bidders are truly choosing bids to maximize profit on a finite grid,
but we model them as choosing bids to satisfy a first-order condition on a continuous bid space.
Furthermore, the granularity of the bid space in this simulation (less than 100 relevant bid points)
is many orders of magnitude coarser than that in our application (in which the bid interval is one
cent, with bids in hundreds of thousands or millions). One byproduct of this exercise is therefore to
confirm that the canonical first-order approach we pursue in the main text can continue to perform
well, even in the presence of much more discreteness than is typical in practice.

Finally, for completeness, we also compute identified sets for κi explicitly accounting for dis-
creteness as described in Appendix F.2 above. Encouragingly, we find that these bounds are quite
tight, even when the global bidder faces only two possible competition levels (nl = 1 or nl = 3)
in each auction. Specifically, we consider nonparametric identified supersets based on the quantile
invariance criterion described in Appendix F.2. We find supersets of approximately [0.04, 0.16]
when κi = 0.1, [−0.14,−0.03] when κi = −0.1, and [−0.36,−0.22] when κi = −0.3. Given the
difficulties surrounding set inference, we do not consider estimation based on these sets in detail.
Nevertheless, this exercise confirms that the robust identification sets we describe above in fact
convey considerable information on κi, even in the face of significant atoms in bids.

Appendix H.2: Best response bidding against parametric rival dis-
tributions

While our first Monte Carlo exercise confirms that the matching estimator in Section 5 can yield
informative estimates of complementarities, the computational challenges involved in solving for
equilibrium render it difficult to extend the simulation exercise beyond a simple two-auction market.
As a second Monte Carlo exercise, we therefore explore how our estimator performs in a richer en-
vironment with three simultaneous low-price sealed bid auctions, in which standalone costs for the
global bidder are correlated across projects and both standalone costs and complementarities de-
pend on project size. We consider one global bidder competing against many local rivals, assuming
that the global bidder bids optimally against local rivals who bid according to log-normal distri-
butions. As in Section 5, we estimate parameters of this distribution in a first step, then estimate
complementarities for the global bidder using the kernel-weighted mean- and matched-difference
estimators described above.

The data generating process for this exercise involves a single global bidder, competing in
three auctions l = 1, 2, 3 against nl symmetric local rivals, where the number of rivals nl varies
independently across auctions on {2, 4, 6}. Each project has a size xl which is common knowledge to
all bidders, drawn independently from a log-normal distribution with mean parameter µx = 0 and
scale parameter σx = 0.5. The global bidder’s standalone cost for competing project l is given by
cl = exp(xl+el), where el is a standalone cost shock whose marginal distribution is truncated normal
with mean parameter µe = 2 and standard deviation parameter σe = 0.5, truncated on the interval
[0, 4]. To allow for correlation in the global bidder’s cost shocks, we further incorporate dependence
between [e1, e2, e3] via a Gaussian copula with correlation parameter ρ = 0.5. Except for the fact
that the marginal distributions are truncated at 4 standard deviations, [e1, e2, e3] are thus nearly
jointly normal with correlation ρ = 0.5. The complementarity the global bidder associates with a
combination ω varies with the sum of the sizes of projects won: κω = I [

∑
ω ≥ 2] · [θ1 + θ2(ωTx)],

where θ1 = −0.5 reflects the economies of scope arising from a small joint win, and θ2 = 0.2 reflects
the rate at which these economies of scope decrease as combination size ωTx increases.

Each local rival in auction l = 1, 2, 3 bids according to a log-normal distribution which depends
on the size xl of project l and the number of bidders nl + 1 in auction l, with the mean and scale
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Table 10: Matched Difference GMM estimates of complementarity parameters for a global bidder
competing against local rivals who bid according to log-normal distributions. True parameters
are θ1 = −0.5, θ2 = 0.2. Results based on T = {250, 500, 1000} three-auction lettings.

Median Bias Mean Bias Std Dev Root MSE

Matched differences GMM, T = 250 θ1 0.0211 0.0312 0.2749 0.2755
θ2 -0.0148 -0.0180 0.2839 0.2841

Matched differences GMM, T = 500 θ1 0.0096 0.0135 0.1924 0.1925
θ2 -0.0076 -0.0144 0.1933 0.1934

Matched differences GMM, T = 1000 θ1 0.0089 0.0111 0.1405 0.1407
θ2 0.0074 0.0028 0.1352 0.1353

parameters of this distribution calibrated to match the mean and standard deviation of log bids
that would arise among nl + 1 local bidders drawing standalone costs cl distributed as above.47

Meanwhile, the global bidder chooses bids [b1, b2, b3] optimally against anticipated play by local
rivals, given its private cost information e = [e1, e2, e3], the commonly known vector of project sizes
x = [x1, x2, x3], and the set of local rivals z = [n1, n2, n3] faced in each auction.

We simulate T observations for the global bidder under the data generating process above,
drawing numbers of local rivals, costs for the global bidder, and bids for local rivals according the
the process above, then solving for the global bidder’s optimal bids [b1, b2, b3] against the expected
distribution of play by local rivals. Using this sample of S simulated lettings, we estimate the
parameters of the bid distribution among local rivals by maximum likelihood. We translate these
first-step parameters into estimates (Υ̂i, Ψ̂i) for the terms (Υi, Ψi) appearing in the first-order
condition of the global bidder. We then estimate (θ1, θ2) using optimal GMM on kernel matched
differences as above, weighting potential matches by differences in standalone project size based on
a Gaussian kernel. As instruments in the second-step GMM, we employ the number of rivals in the
current auction, the size of the current auction, the sum of rivals faced in other auctions, the sum
of sizes of other projects, the product of size and rivals in the current auction, and the product of
size and rivals in other auctions.

Table 10 reports the results of this exercise for samples of T = 250, T = 500, and T = 1000
three-auction lettings respectively. Encouragingly, our estimator performs well even in moderately
sized samples. Even for the smallest sample, T = 250, estimates exhibit little bias, although
standard deviations are somewhat imprecise. As sample size increases, both bias and standard
deviation fall, with θ significantly different from zero for both T = 500 and T = 1000 (although for
these parameters θ2 becomes individually significant only for sample sizes larger than T = 1000).
Bearing in mind these sample sizes are quite small relative to our empirical application (in which we
observe approximately T = 6000 multi-auction bidders), this exercise offers encouraging evidence
regarding the finite-sample properties of our matching GMM estimator.

47That is, we calibrate parameters of the log-normal distribution to approximate the distribution of equi-
librium bids that would arise if cross-auction complementarities were zero.
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Table 11: Simulated comparison of VCG versus FPA revenue

(a) Same bidder strong in both auctions, K = 0 for both bidders

Degree of Asymmetry FPA Revenue VCG Revenue

Vs ∼ U [0, 1], Vw ∼ U [0, 1] 0.6647 0.6668
Vs ∼ U [0, 1.5], Vw ∼ U [0, 1] 0.8100 0.7782
Vs ∼ U [0, 2], Vw ∼ U [0, 1] 0.9153 0.8331

(b) Same bidder strong in both auctions, K = 0.3 for weak bidder

Degree of Asymmetry FPA Revenue VCG Revenue

Vs ∼ U [0, 1], Vw ∼ U [0, 1] 0.8141 0.8472
Vs ∼ U [0, 1.5], Vw ∼ U [0, 1] 0.9412 1.0235
Vs ∼ U [0, 2], Vw ∼ U [0, 1] 1.0357 1.1019

(c) Same bidder strong in both auctions, K = 0.3 for strong bidder

Degree of Asymmetry FPA Revenue VCG Revenue

Vs ∼ U [0, 1], Vw ∼ U [0, 1] 0.8138 0.8472
Vs ∼ U [0, 1.5], Vw ∼ U [0, 1] 0.9687 0.9075
Vs ∼ U [0, 2], Vw ∼ U [0, 1] 1.0802 0.9333

(d) Each bidder strong in one auction, K = 0.3 for both bidders

Degree of Asymmetry FPA Revenue VCG Revenue

Vs ∼ U [0, 1], Vw ∼ U [0, 1] 0.9708 1.0507
Vs ∼ U [0, 1.5], Vw ∼ U [0, 1] 1.1179 1.1934
Vs ∼ U [0, 2], Vw ∼ U [0, 1] 1.2347 1.2799

Appendix H.3: Numerical simulations of VCG versus FPA revenue

To explore how asymmetry and complementarities interact to shape VCG revenue performance,
we also implemented a series of simple numerical simulations involving two potentially asymmetric
bidders competing in two auctions, where one or both bidders assign a positive complementarity to
winning both objects together. Specifically, we considered two bidders competing for two auctions,
drawing valuations from uniform distributions with potentially asymmetric upper supports (repre-
senting asymmetric bidder strengths). In each auction, at least one bidder was “weak”, drawing
valuations from U [0, 1], while the other was “strong,” drawing valuations from either U [0, 1] (in
which case valuations are symmetric), U [0, 1.5], or U [0, 2]. We considered two cases: one bidder
strong in both auctions, and each bidder strong in one auction. We also endowed one or both bid-
ders with a complementarity K = 0.3 for winning both objects together, varying whether this was
assigned to neither bidder, the bidder weak in both auctions, the bidder strong in both auctions, or
symmetrically to horizontally differentiated bidders. We then simulated VCG versus FPA revenue
in each case, using the iterative algorithm described in Appendix H.1 to solve for an (approximate)
FPA equilibrium on a grid of 40 possible bid values.

Table 11 summarizes the results of this simulation exercise. These confirm that either FPA or
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VCG can yield higher revenue, depending on the interaction between asymmetry and complemen-
tarities. Intuitively, in this example, asymmetry alone favors FPA relative to VCG, by inducing
aggressive bidding from the weak bidder. A positive complementarity for the strong bidder enhances
this effect by increasing the strong bidder’s incentives to bid aggressively to win both objects, lead-
ing to even higher revenue under FPA than VCG. By contrast, a complementarity for a relatively
weak bidder has a relatively small effect on FPA bids (since the weak bidder seldom wins both
objects), while substantially increasing the strong bidder’s expected payments under VCG.
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