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Aguirregabiria and Mira (2007), henceforth AM (2007), study pseudo max-
imum likelihood estimators of dynamic games and propose an iterative nested
pseudo maximum likelihood method.

This comment revisits the asymptotic properties of the sequential method.
We illustrate that the method may not be consistent. We provide an example
in which the sequential method converges to a fixed number distinct from the
true parameter value with probability approaching one.

Example. Consider a repeated game with t = 1, 2, ...,∞. Every period t
two firms, indexed by i = 1, 2, simultaneously decide whether to be active or
not. Firm i’s period payoff is equal to: ε1i if firm i is active and firm 3 − i
is not active; θ + ε1i if both firms are active; and ε2i if firm i is not active.
The true parameter θ0 is contained in the interior of a compact interval Θ
with Θ = [−1,−10]. The tuple of random variables

(
ε1i , ε

2
i

)
are such that the

difference εi = ε1i−ε2i is drawn independently every period from the distribution
function Fα and observed privately by firm i prior to making the choice with

Fα (εi) =




1− α+ 2α

[
Φ
(
εi−1+α

σ

)
− 1

2

]
[1− α,∞) ;

εi [α, 1− α) ;
2αΦ

(
εi−α
σ

)
[−∞, α) ,

(1)

where Φ denotes the standard normal cumulative distribution function, σ =
2α/

√
2π and α(θ0) > 0 small.1 There are no publicly observed state variables,

and firms strategies are a function of the privately observed payoff shock only.
Firms play a Markov equilibrium. The example satisfies assumptions (1)-(4) in
AM (2007). By construction Fα approaches the uniform distribution in the limit
when α vanishes. We assume that α(θ0) is chosen sufficiently small (as a function
of the level of θ0) in order to allow us to focus on the uniform distribution part
of Fα. The assumption α > 0 ensures that εi is distributed on the real line.

∗We thank the editor, an anonymous referee, Helmut Elsinger and Oliver Linton for helpful
comments.

1The cdf Fα arises when the joint density of
(
ε1, ε2

)
takes the form fα

(
ε1 − ε2

)
· φ
(
ε2
)

where φ (.) denotes the standard normal pdf and fα(x) is a pdf that equals 2α

σ
φ
(
x−α

σ

)
for

x ∈ [−∞, α) ;1 for x ∈ [α, 1− α); and 2α

σ
φ
(
x−1+α

σ

)
for x ∈ [1− α,∞).
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Equilibrium. Let P i denote the probability that firm i is active and P =
(P 1, P 2). Firm i is active if and only if (θ + ε1i ) · P 3−i + ε1i ·

(
1− P 3−i

)
> ε2i ,

which yields (θ) · P 3−i > ε2i − ε1i and gives the following expression for firm i’s
probability of being active:

P i = Ψ(P 3−i, θ) (2)

= 1− Fα
(
−θ · P 3−i

)

and we denote Ψ (P, θ) = (Ψ(P 2, θ),Ψ(P 1, θ)). An equilibrium solves P =
Ψ (P, θ). The symmetric equilibrium for α small is given by P i = 1

1−θ for
i = 1, 2.

The equilibrium is the unique symmetric equilibrium but it is not a stable
equilibrium in the sense that the fixed point on the best response mapping is
not asymptotically stable. The equilibrium is evolutionary stable in the sense of
Smith (1982). The instability property in the best response mapping shall play
a central role in establishing inconsistency of the NPL method but does not ap-
pear a reasonable equilibrium refinement concept for the incomplete information
Markov game. The reason is that another firms’ strategy is not observable and
it is not clear how firms would learn from opponents’ behavior to justify the best
response mapping as a refinement concept. In order to ‘learn’ from opponents’
play, a firm would have to calculate long-run averages to infer strategies. But
any such long-run average calculation would violate the Markov assumption.
NPL Method. Let P̃M = (P̃ 1M , P̃

2
M) denote the sample frequency estimator

of the choice probabilities. The pseudo log-likelihood for any tuple (P 1, P 2) is
proportional to

QM (θ,P) ∝ P̃ 1M ln
(
1− Fα

(
−θ · P 2

))
+
(
1− P̃ 1M

)
lnFα

(
−θ · P 2

)
(3)

+P̃ 2M ln
(
1− Fα

(
−θ · P 1

))
+
(
1− P̃ 2M

)
lnFα

(
−θ · P 1

)

AM (2007) define the NPL method on page 18, equations (29) and (30), as a

sequence of estimators
{
θ̂
K

M

}
, where the K-stage solves

θ̂
K

M = argmax
θ∈Θ

QM
(
θ, P̂K−1

)
, (4)

and the probabilities
{
P̂K

}
are obtained recursively as

P̂K =Ψ
(
P̂K−1, θ̂

K

M(P̂K−1)
)
. (5)

We shall examine the limit of the sequential method. Notice that function (5)
is distinct from the best response function (2) as θ is not fixed but a function
of the choice probabilities.

AM (2007) introduce the NPL fixed point as a pair
(
θ̂, P̂

)
that satisfies the

following two conditions:

θ̂ = argmax
θ∈Θ

QM
(
θ, P̂

)
and P̂ = Ψ

(
P̂, θ̂

)
. (6)
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The NPL estimator is defined as the NPL fixed point with the highest value
of the pseudo likelihood among all the NPL fixed points. AM (2007) establish
the consistency of the NPL estimator. We shall illustrate that the sequential
method may not converge to the correct fixed point. We shall illustrate that
the sequential NPL method can lead to inconsistent estimates.

NPL Limit. We examine the limit θ̂
∞

M of the NPL sequence θ̂
K

M . An

estimator θM is consistent if θM
P−→ θ0 that is limM−→∞Pr(|θM − θ0| ≥ µ) = 0.

The proof of the following result is given in the Appendix.

Limit Result.

(i) P̃M
P−→ P0.

(ii) Suppose P̃M is the starting value of the NPL choice probability sequence.

Then θ̂
∞

M
P−→ −1 for any θ0 ∈ (−1,−10).

The limit estimator θ̂
∞

M converges with probability one to the number −1 for
any value of the true parameter θ0 ∈ (−1,−10) even when the choice probability
sequence is initialized at the consistent frequency estimator. The example shows

that properties of the estimator θ̂
K

M rely on the order in which the limes is taken.
WhenM is held fixed and the limes K −→∞ is considered, then the sequential
method converges to a number distinct from the true value.
Illustration. The following figure illustrates the NPL difference equation

graphically. To simplify the illustration, we depict the NPL difference equation
in terms of choice probability ratios, p̂K = P̂

2
K/P̂

1
K . The NPL sequence for p̂K

is formally stated in equations (8) and (9) in the Appendix. The illustration
assumes a true parameter value of θ0 = −2. The equilibrium choice probabilities
are then P 1 = P 2 = 1/3 and P̃ 1M ≈ P̃ 2M ≈ 1/3 for large M .

[Figure 1 about here]
The NPL difference equation has three fixed points. The middle fixed point

of p = 1 yields the true parameter value θ0 = −2. This fixed point is unstable
as the slope of the difference equation is larger than one at p = 1. So, the NPL
sequence attains the fixed point p = 1 only if it starts at the true value p = 1.
For any starting value with p �= 1 the NPL sequence moves away from that
point.

There are two additional fixed points of the NPL sequence with approximate
values for (p, θ) of (3.73,−1), (1/3.73,−1) respectively. These fixed points are
stable and notice that both fixed points imply an approximate parameter value
of θ ≈ −1. Any starting point p > 1 converges to the fixed point (3.73,−1)
with equilibrium choice probabilities of P 1∞ ≈ 0.21, P 2∞ ≈ 0.79. Any starting
point p < 1 converges to the third point equalling (1/3.73,−1) with equilibrium
choice probabilities of P 1∞ ≈ 0.79, P 2∞ ≈ 0.21.

The NPL method always converges. A researcher reaches a stable fixed point
with probability approaching one as M increases. The stable fixed points have
approximately the same likelihood values and the same parameter value esti-
mates. Hence, the researcher may incorrectly conclude that the NPL estimate
of θ is unique. Observe that the probability that the NPL method converges to
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the true parameter value approaches zero asM increases as only starting values
that lie on the 45 degree line, where p = 1, yield consistent estimates. With the
frequency estimator the probability that p̂ = 1 approaches zero as M increases.

Note that the instability of the fixed point at p = 1 stems from θ0 being
smaller than −1. For θ0 ∈ (−1, 0) the NPL difference equation will only have
one stable fixed point and the NPL method will converge to the true parameter
with probability approaching one.

AM (2007) explain that in case of multiple fixed points the researcher may

initiate the sequence at different starting values for the choice probabilities P̂0
and choose the sequence that maximizes the pseudo maximum likelihood in the
limit. This suggestion works in the example only if the econometrician guesses
correctly that the choice probability estimates lie on the 45 degree line. The 45
degree line emerges in this simple example because of the assumed symmetry.
Guessing the relationship between choice probabilities correctly may be more
difficult in richer settings. For instance introducing a slight asymmetry in pay-
offs in the current example would require the researcher to find the solution to a
cubic equation.2 Yet, and this is already observed in AM (2007), consistent esti-
mates of θ emerge only if all the NPL fixed points are calculated and compared.
Computationally the task of finding all fixed points is demanding. Importantly,
this task is not achieved by the NPL method when the fixed point on the best
response mapping is not asymptotically stable.

The inconsistency of the NPL method appears not to be an artefact of
the chosen static example. A Monte Carlo study in Pesendorfer and Schmidt-
Dengler (2008) illustrates that the same problem may emerge in richer settings.
In a rich and realistic dynamic entry game the NPL method converged, but did
not converge to the true value in three of five dynamic entry equilibria.

APPENDIX

Proof of Limit Result. (i) This follows immediately as the sample frequency
estimator is consistent. (ii) We begin by describing the expression for the NPL
difference equation. In the description we initially impose the condition that
along the NPL sequence

P 1, P 2 ∈ (α, 1− α). (A)

Later-on, we establish that the condition (A) indeed holds at each point along

the NPL sequence P̂K . Observe that condition (A) eventually holds at the
starting values, that is for any µ > 0 there exists an M such that, for all
M >M, Pr(P̃ 1M , P̃

2
M ∈ (α, 1−α)) > 1−µ. This follows immediately from part

(i) as P0 ∈ (α, 1− α).
The necessary first order condition in problem (4) when P 1, P 2 satisfy prop-

erty (A) yields ∂QM/∂θ =

P̃ 1MP
2/
(
1 + θ · P 2

)
+ (1− P̃ 1M)/θ + P̃ 2MP 1

(
1 + θ · P 1

)
+ (1− P̃ 2M)/θ = 0 (7)

2Details of such an example are available from the authors upon request.
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which gives rise to a quadratic equation in θ.3 Substituting the solution θ̂M (P)
into equation (5) yields the following difference equation characterizing the NPL
method

(
P 1K , P

2
K

)
= (1 + h

M

(
P 2K−1/P

1
K−1

)
, 1 + h

M

(
P 2K−1/P

1
K−1

)
· P

1
K−1

P 2K−1
) (8)

where h
M
(p) = −2− P̃

1
M

4
−2− P̃

2
M

4
·p+1

4

√
[2− P̃ 1M − (2− P̃ 2M) · p]2 + 4 · P̃ 1M P̃ 2M · p

We wish to study the limit of the NPL sequence (8). Notice that the
right hand side in equation (8) is determined by the probability ratios pK−1 =
P 2K−1/P

1
K−1 and does not depend on the probability levels. Restating the se-

quence in terms of the probability ratios yields a one dimensional difference
equation which is easier to analyze:

pK = gM(pK−1) =
1 + h

M
(pK−1)/pK−1

1 + h
M
(pK−1)

. (9)

When P̃ 1M , P̃
2
M < 1/2 the function gM in (9) has exactly three fixed points:

p = 1,

p∗M = [2− P̃ 1M − P̃ 2M +

√
(2− P̃ 1M − P̃ 2M)2 − 4P̃ 1M P̃ 2M ]/(2P̃ 1M),

and p∗∗M = [2− P̃ 1M − P̃ 2M −
√
(2− P̃ 1M − P̃ 2M)2 − 4P̃ 1M P̃ 2M ]/(2P̃ 1M)

with p∗∗M < 1 < p∗M . Part (i) and the assumption θ0 < −1 imply that for any

µ > 0 there exists an M such that, for all M > M , Pr(P̃ 1M , P̃
2
M < 1/2) >

1 − µ, and the described fixed points arise with probability 1 as M → ∞.

The first fixed point implies equal choice probabilities of
P̃1

M
+P̃2

M

2 which yields
θ close to θ0. The second and third fixed point yield choice probabilities of

( 1
1+p∗

M

, p∗
M

1+p∗
M

),( 1
1+p∗∗

M

, p∗∗
M

1+p∗∗
M

) respectively with θ = −1.
Which of the described fixed points is attained as the NPL limit is determined

by the shape of the function gM and the starting values. Next, we observe four
properties of gM which are then used to determine the limit of the NPL sequence.
Then, we briefly sketch the proof of these properties.4

Properties of gM :
(1) gM(p) > 1 if and only if p > 1, and gM(p) = 1 if and only if p = 1.
(2) gM has a non-negative derivative for p ≥ 1.
(3) The derivative ∂gM(p)/∂p evaluated at p = 1 equals −1 + 2/(P̃ 1M + P̃ 2M)

and, from part (i), ∂gM (p)
∂p

∣∣∣
p=1

P−→ −θ0.

3with solution θ̂M (P) = −
2−P̃

1

M

4P2
−

2−P̃
2

M

4P1
+

√[
2−P̃1

M

4P2
−

2−P̃2
M

4P1

]2
+

P̃1
M
P̃2
M

4P1P2
.

4A complete proof of the properties can be obtained from the authors.
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(4) For any µ > 0 there exists an M such that, for all M > M , Pr(limp→∞

gM (p) <∞) ≥ 1− µ.
Property (A) implies that 1 + h

M
(pK−1)/pK−1, 1 + hM (pK−1) ∈ (α, 1− α),

and property (1) follows immediately from inspection of equation (9). Without
loss of generality we may relabel firms identities and by property (1) we may
restrict attention to the case p ≥ 1 and to fixed points p = 1 and p = p∗M . We
will do so for the remainder of this proof. Properties (2) and (3) can be seen by
taking the derivative. Property (4) can be established by using l’Hospital’s rule

as limp→∞hM (p) = limp→∞[(hM (p)/p)/(1/p)] = limp→∞
∂(h

M
(p)/p)

∂p /∂(1/p)∂p .

The derivative property (3) combined with monotonicity property (2) imply
that the fixed point p = 1 is unstable and fixed points p∗M (and p∗∗M) are stable.
To see that observe that for any µ > 0 there exists an M such that, for all
M > M , with probability 1 − µ the monotone function gM intersects the 45
degree line at p = 1 from below as the slope is strictly larger than one at p = 1.
In turn this implies that the function gM intersects the 45 degree line at fixed
points p∗M (and p∗∗M) from above. Now, as the function gM is monotone for p ≥ 1
(and finite at ∞) it must hold that the slope of the function gM at fixed points
p∗M (and p∗∗M) is between zero and one (and strictly less then one from property
4) which establishes (local) stability.

We can now determine the limit of the NPL sequence. For any µ > 0 there
exists an M such that, for all M > M , with probability 1 − µ equation (9)
converges to fixed point p∗M whenever the starting value exceeds one (and it
converges to fixed point two, p∗∗M , whenever the starting value is less than one).
To see that, notice that for starting values in the interval (1, p∗M) the difference
equation (9) will increase towards fixed point p∗M as the function gM is monotone
increasing and above the 45 degree line. On the other hand for starting values
in the interval (p∗M ,∞), the difference equation (9) will decrease towards fixed
point p∗M as the function gM is monotone increasing and below the 45 degree
line.

Next, we establish property (A). We already know from part (i) that for

any µ > 0 there exists an M such that, for all M > M , Pr(P̃ 1M , P̃
1
M ∈

(P0−α,P0+α)) > 1−µ. We need to establish that the updated choice probabil-
ities, based on the updating equation (8), are contained in (α, 1− α) whenever
p ∈ [α/(1− α), (1− α)/α]. Without loss of generality we relabel firms’ identities
so that P 2 ≥ P 1, and examine the condition for p ∈ [1, (1− α)/α]. We need to
show that α < P 1K(p) and P

2
K(p) < 1− α. The second inequality can be estab-

lished by rewriting the equation hM(p) conveniently as hM(p) = −[(2−P̃ 1M)/4+
(2− P̃ 2M) · p/4] +

√
[(2− P̃ 1M)/4 + (2− P̃ 2M) · p/4]2 − (2− P̃ 1M − P̃ 1M) · p/2. For

any µ > 0 there exists anM such that, for allM >M , with probability 1−µ the
term in round brackets is strictly positive, and the term under the square root is
strictly smaller than the square of the first term in square brackets. Thus, with
probability 1−µ, the expression hM(p) is strictly less than zero on [1, p∗M ]. Since
P 2K = 1+hM (p) /p this implies that P 2K < 1−α. An examination of the deriv-
ative of P 1K(p) reveals that it equals ∂hM (p) /∂p which is non-positive. Thus, it
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suffices to establish that limp→∞ P
1
K(p) > α with probability 1 − µ. Rewrit-

ing the inequality yields
√
[2− P̃ 1M + (2− P̃ 2M) · p]2 − 8(2− P̃ 1M − P̃ 1M) · p >

−4(1 − α) + [2 − P̃ 1M + (2 − P̃ 2M) · p]. The expression under the root is pos-
itive (which can be immediately seen from the equivalent representation of the
root in (8)). Squaring both the left hand side and right hand side, yields (after

cancelling), p · [P̃ 1M − α(2− P̃ 2M)] > (1− α)[P̃ 1M − 2α], which indeed holds with
probability 1− µ for p sufficiently large.

So far we have shown that for starting values P 2 �= P 1 the NPL sequence con-
verges to the limit θ = −1. To complete the argument, we need to establish that
limM−→∞ Pr(P̃ 1M = P̃ 2M) = 0. Note that the most likely outcome of an (M,P0)
binomial distribution is given by k = ⌊(M + 1)P0⌋ , where ⌊x⌋ is the smallest in-
teger less or equal to x. Using this notation we find that an upper bound on the

probability Pr(P̃ 1M = P̃ 2M) =
M∑

k=0

(
M
k

)
(P0)

k (1− P0)M−k (M
k

)
(P0)

k (1− P0)M−k

is given by

[
M∑

k=0

(
M
k

)
(P0)

k (1− P0)M−k

][(
M
k

)
(P0)

k (1− P0)M−k
]
= Pr(k = k).

Robbins (1955) illustrates bounds onM ! and shows thatM ! =
√
2πM

(
M
e

)M
erM ,

where 1
12M+1 < rM < 1

12M . For M > max( 1P0 ,
P0
1−P0

) we can use these bounds

to obtain that Pr(k = k) is less than or equal to
√

M

2πk
(
M − k

) (MP0)
k

(
k
)k

(M (1− P0))M−k

(
M − k

)(M−k)
e

1

12M

≤
√

M

2π(MP0 − 1) (M(1− P0)− P0)
(MP0)

k

(MP0 − 1)k
(M (1− P0))M−k

(M(1− P0)− P0)(M−k)
e

1

12M

=

√
1

2π(MP0 − 1)
(
(1− P0)− P0

M

) 1
(
1− 1

P0M

)k
1

(
1− P0

M(1−P0)

)(M−k)
e

1

12M

≤
√

1

2π(MP0 − 1)
(
(1− P0)− P0

M

) 1
(
1− 1

P0M

)(M+1)P0

1
(
1− P0

M(1−P0)

)M e
1

12M

The inequalities follow because (MP0 − 1) < ⌊(M + 1)P0⌋ < (M + 1)P0. The
first term in the last expression converges to zero, and the remaining three terms
are bounded. It follows that limM→∞Pr(P̃

1
M = P̃ 2M) = 0. This completes the

proof.
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