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Abstract

This paper studies the timing of entry into a new market. Potential entrants differ

in their efficiency. In an entry game with two firms, the more efficient firm always enters

first in equilibrium. In a game with three firms instead, the equilibrium order of entry

does not necessarily reflect the efficiency ranking. We characterize conditions on the

primitives of the model that induce an inefficient order of entry.
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1 Introduction

The order of entry in a new market does not always reflect the relative efficiency of the

entering firms. A more efficient firm earns higher per-period profits upon entry, hence one

may conclude that it has a stronger incentive to enter than a less efficient firm. Therefore,

it should enter earlier, even if this comes at a higher cost. This is not always the case.

In several examples of new markets, the firms who enjoyed a cost advantage due to

economies of scope with their pre-existing activities were late entrants. Procter and Gamble,

who dominated the market for granular detergents, entered the market for liquid laundry

detergents with its brand Era only in 1972, following the pioneer Lever Brothers, who had

introduced Wisk in 1956. In the wine cooler market, the pioneer was California Cooler

in 1981, while Gallo and Seagram, who dominated the wine and distilled spirit industries,

followed only a few years later. The firm who pioneered the mass market for sugar-free diet

beverages was RC Cola in 1961, followed only years later by Pepsi (1964) and Coca Cola

(1982).1

When planned economies opened markets to Western firms, the first entrants were not

always the strongest firms. In 1995, the first entrant in the Bulgarian beer market was

Interbrew, while the European market leader Heineken was second.2 In 1992, four small

foreign firms were present in the Chinese market ((San Miguel, Asia-Pacific Breweries,

Pabst, and Beck’s) while the global market leaders (Annheuser-Busch, Heineken, South

African Breweries (SAB), Interbrew) only followed a few years later.3

One explanation of the fact that the order of entry in a market does not always reflect

relative efficiency is that in some cases efficiency is endogenous. With ongoing technological

progress, later entrants are endogenously more efficient because the choice to wait allows

them to develop a better production process, or a higher-quality product. This explanation

is analyzed by Dutta Lach and Rustichini (1995) for the case of costless technological

progress, and by Hoppe and Lehman-Grube (2001) for the more general case of potentially

1See Tellis and Golder (1996).
2See Marinov and Marinova (1999).
3See Heracleous (2001).
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costly R&D.

In this paper, we provide an alternative explanation that may be more suitable for mar-

kets for technologically “mature” products. For these products, asymmetries in productive

efficiency and/or in product quality are already given at the time the new market opens.

We construct a model of a dynamic entry game with entry cost declining over time. Our

main result is that for this class of markets, the intuition that a more efficient firm has a

stronger incentive to enter than a less efficient firm, hence it should enter earlier, is correct

if the game is played by two firms but can fail when there are three firms: adding a third

competitor qualitatively changes the equilibrium outcome.

In particular, we consider a game where three firms have to decide when to enter a

new market. Post-entry profits are declining in the number of rival entrants, and the cost

of entry declines exogenously over time. This is a preemption game: Firms want to delay

entry in order to reduce the entry cost, but they also want to enter earlier than their rivals

in order to earn higher flow profits before the following entries.

To show that with more than two potential entrants the order of entry does not neces-

sarily reflect relative efficiency, we consider a tractable extension of the two-firm model: the

case of three potential entrants. In our setup, the entry game is played by one efficient firm

(“type A” firm) and two inefficient firms (“type B” firms). We show that with a general

payoff structure, the unique equilibrium outcome may be such that the order of entry is

B−A−B. That is, one of the inefficient firms enters first, the efficient firm follows strictly

later, to be followed by the remaining inefficient firm. We also provide sufficient conditions

on the primitives of the model, that is on firms’ post-entry profits, that guarantee that this

is indeed the equilibrium entry order. In the Appendix, we numerically obtain the range of

parameters for which the equilibrium entry order is B−A−B in an example where profits

are derived from Cournot competition.

The intuition behind our result is as follows. When a firm considers entering first, it

takes into account for how long it will earn monopoly profits. Thus the incentive to enter

first, to preempt its rivals, depends on the timing of second entry, which in turn depends

on the intensity of the preemption race in the ensuing two-player subgame. If firm A enters
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first, the resulting subgame among the two type B firms can involve a relatively intense

preemption race, and thus second entry will occur relatively soon. If however a type B firm

enters first, the resulting subgame among firm A and the remaining type B firm involves

relatively weak preemption incentives: The second entrant is firm A, and it can afford to

wait long and enter at a relatively low cost, because B is a weak competitor. As we show,

it can hold that as a result the first entrant enjoys monopoly profits for a shorter period

if it is of type A than if it is of type B. This shorter monopoly period can outweigh the

fact that the monopoly profit flow earned would be higher for the more efficient firm. As a

result, in equilibrium one of the inefficient type B firms will enter first. The exact timing of

first entry will be determined by a preemption race among the two inefficient firms. Rents

among the two inefficient type B firms are equalized.

The conditions on the primitives of the model that guarantee that the first entrant is

one of the less efficient firms are clearly related to the above intuition: first, post-entry

profits have to be such that the preemption race to be second rather than third is more

intense when played by two type B firms than by A and a type B firm. Second, monopoly

profits cannot be too much higher for A than for a B type firm, or else A would have a

strong incentive to be the first entrant, even if the monopoly period were short.

Our model builds on the classic literature on two-player preemption games. We rely on

Fudenberg and Tirole (1985) to derive the outcome of the two-player symmetric subgame

played by two inefficient firms. From Riordan’s (1992) analysis, we obtain the outcome of

the two-player asymmetric subgame. It follows from Riordan (1992) that in a two-player

asymmetric game, the more efficient firm always enters first. We contribute to this literature

by showing that this order of entry may be reversed when adding a third firm.

Our result can also be relevant to the recent empirical literature on static entry games

with asymmetric potential entrants. Following Berry (1992), it is often assumed that entry

occurs in the order of profitability to solve the inherent multiplicity problem. Indeed, Quint

and Einav (2005) show that this assumption can be rationalized by the outcome of a war

of attrition where entry costs are sunk gradually: The entrants in the unique subgame

perfect equilibrium in such a game are the most efficient firms. Our game shows that if the
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underlying game is a preemption game this result may be reversed: At any given point in

time, the firms observed in the market are not necessarily the most efficient ones.

Similarly, our result may be important when evaluating potential anticompetitive effects

of a merger. Section 3 of the Merger Guidelines4 states that “A merger is not likely to create

or enhance market power [...] if entry into the market is so easy that market participants

[...] could not profitably maintain a price increase above premerger levels. Such entry likely

will deter an anticompetitive merger [...].” Therefore, in evaluating the role of potential

entry in deterring anticompetitive mergers, one needs to predict the efficiency of the firm

most likely to enter first after the merger. Our result shows that this might not be the most

efficient among the potential entrants.

2 Model

We model entry in a new market as an infinite horizon dynamic game in continuous time.

Our assumptions correspond to those made by Fudenberg and Tirole (1985) and Riordan

(1992), when specialized to the case of a new market, and with a third firm added to the

model. In particular, we consider a model with one efficient firm, firm A, and two identical

“type B” firms. Each firm has to decide whether and when to enter a new market. Before

entry, it receives no profits. Upon entry, firm i (for i = A,B) earns flow profits πi(m,−i),

where m is the total number of firms that have entered, hence m ∈ {1, 2, 3}, and −i stands

for the identity of rival firms that have entered. For example, πB(2, A) stands for the profits

of a type B firm in duopoly if its rival is firm A. The following profits are relevant in our

model:
Firm A Type B firms

Monopoly πA (1) πB (1)

Duopoly πA (2) πB (2, A) πB (2, B)

Triopoly πA (3) πB (3)

In monopoly there are no rival firms and in triopoly the identity of rivals is uniquely iden-

tified by the identity of firm i. Similarly, in a duopoly firm A will always oppose a type
4See US Department of Justice and Federal Trade Commission (1992).
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B firm. Hence, to economize on notation, we leave out the −i term in the monopoly and

triopoly cases as well as for firm A’s duopoly profits.

All the above profits are positive. For a given firm, profits decline in the number of

competitors. Moreover, firm A’s higher efficiency is reflected in payoffs.5 Firm A always

earns higher profits than a type B firm, for a given number of competitors. Also, a type B

firm earns lower profits if its opponent is firm A than if its opponent is the other type B

firm, i.e. profits decline in the efficiency of rival firms. Formally:

Assumption 1

(i) πi(m,−i) > 0 ∀(m,−i)

(ii)

πA (1) > πB (1)

πA (2) > πB (2, B) > πB (2, A)

πA (3) > πB (3)

πA (1) > πA (2) > πA (3)

πB (1) > πB (2, B) > πB (2, A) > πB (3)

In Appendix A we consider an example of post-entry competition that gives rise to a

profit structure that satisfies Assumption 1: Firms compete à la Cournot with constant

marginal costs, and firm A’s marginal cost is strictly less then the type B firms’ marginal

cost.

The present value at time zero of entering the market at time t is c (t). Following the

literature,6 we assume that it declines over time, at a decreasing rate:

Assumption 2

(i)
¡
c (t) ert

¢0
< 0 ∀t

(ii)
¡
c (t) ert

¢00
> 0 ∀t

5We assume that payoffs are independent of the time of entry, which implies that there is no ongoing
technological progress. Dutta, Lach and Rustichini (1995) and Hoppe and Lehman-Grube (2001) analyze
the case where efficiency is endogenously determined by the time of entry.

6See Fudenberg and Tirole (1985) and Riordan (1992).
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The payoff function for firm i, conditional upon a given entry order in which i is the

j-th entrant, as a function of its own entry time tj and the competitors’ entry times t−j is:

fi (tj , t−j) ≡
3X

m=1

I [j ≤ m] ·
Z tm+1

tm

πi(m,−i)e−rsds− c (tj) (*)

where I [·] is the indicator function and t4 ≡ +∞. Before tj , firm i receives zero prof-

its. Then, it receives flow profits πi(m,−i) depending on the number and identity of the

competitors present in the market. Finally, c (tj) denotes entry cost.

Assumption 3 normalizes time as to guarantee that entry at time 0 is not profitable.

Assumption 3

(i) πA(1)
r − c(0) < 0

(ii) −c0(0) > πA(1)

Part (i) implies that even if a firm could preempt all its rivals and earn monopoly profits

forever, entry at time zero would be too costly. Part (ii) guarantees that fi (tj) is increasing

at time zero.

Assumption 4 instead guarantees that the entry cost eventually becomes so low, and

slows down so much, that even entry with the lowest possible profits dominates staying out.

Assumption 4

(i) ∃τ such that c (τ) erτ < πB(3)
r

(ii) limt→∞ c0(t)ert ∈ (−πB (3) , 0]

Next, to highlight the trade-offs faced by each firm, we extend the terminology in Katz

and Shapiro (1987) and define the stand-alone entry time for the profit flow πi(m,−i).

Consider the hypothetical problem of firm i, if it could act as a single decision maker and

select the optimal time to make an investment which has cost c (t) and guarantees flow

payoff of πi(m,−i) forever, where c (t) and πi(m,−i) satisfy assumptions 1 and 2. This

firm would solve the following problem:

max
t

gi,m,−i (t) ≡
πi(m,−i)

r
e−rt − c (t) . (1)
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We denote the solution to this problem as T ∗i (m,−i). Our assumptions guarantee that

gi,m,−i (t) is strictly quasi-concave in t and admits a strictly positive finite maximum, which

solves the first order condition:

−πi(m,−i)e−rt − c0(t) = 0.

The condition is easily interpreted: a marginal delay of entry implies foregone profits

πi(m,−i)e−rt and cost savings c0(t). Given the quasiconcavity of gi,m,−i (t) in tj , it fol-

lows that T ∗i (m,−i) is decreasing in πi(m,−i). Hence, the following inequalities follow from

assumption 1(ii):

T ∗A(1) < T ∗B(1)

T ∗A(2) < T ∗B(2, B) < T ∗B(2, A)

T ∗A(3) < T ∗B(3)

T ∗A(1) < T ∗A(2) < T ∗A(3)

T ∗B(1) < T ∗B(2, B) < T ∗B(2, A) < T ∗B(3)

It is clear that firm A’s stand-alone entry time, for a given rank in the entry order, is always

earlier than that of a less efficient firm: By delaying entry, A would forego a higher profit

than a type B firm would.

In order to model entry as a preemption game of complete information in continuous

time, we follow Hoppe and Lehmann-Grube (2005), who illustrate how to adopt the frame-

work introduced by Simon and Stinchcombe (1989) for this class of games. As in Simon

and Stinchcombe (1989), we restrict play to pure strategies and interpret continuous time

as “discrete time, but with a grid that is infinitely fine.”

Moreover, we need to address the issue of nonexistence of an equilibrium in pure strate-

gies in preemption games, which is related to the possibility of coordination failures.7 Since

we adopt the Simon and Stinchcombe (1989) framework, we need to explicitly rule out the

7See the example in Simon and Stinchcombe (1989, p. 1178-1179).
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possibility of coordination failures,8 and we do so using a randomization device as in Katz

and Shapiro (1987), Dutta, Lach and Rustichini (1995), and Hoppe and Lehmann-Grube

(2005):

Assumption 5

If n firms invest at the same instant t (with n ∈ [2, N ]), then only one firm, each with

probability 1
n , succeeds.

Assumption 5 rules out the possibility of coordination failures and thus ensures existence

of an equilibrium in pure strategies.

3 Inefficient Entry

In this section, it is shown that while in a preemption race with only two asymmetric players

the first firm to enter is always the most efficient one, this result can be reversed if the game

is played by more than two players.

3.1 The Game with Two Asymmetric Firms.

Let us first consider a preemption game played by two asymmetric firms, that is one efficient

firm of type A and one inefficient firm of type B. In such a game, it follows from the analysis

in Riordan (1992) that the first entrant is A. Below, we illustrate the key mechanism behind

Riordan’s (1992) result in the context of our model.

Consider the payoff for each firm in case it is the “leader” in this game, i.e. the first

entrant, or the “follower”, i.e. the second entrant. Suppose that firm A enters first at time

t. Provided that t is earlier than firm B’s stand-alone entry time T ∗B(2, A), B follows exactly

at at T ∗B(2, A). Hence, firm A receives payoff

eLA(t) = πA(1)

Z T∗B(2,A)

t
e−rsds+ πA(2)

Z ∞

T∗B(2,A)
e−rsds− c(t)

8This observation is due to Hoppe and Lehmann-Grube (2005).
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and firm B receives payoff

eFB(t) = πB(2)

Z ∞

T∗B(2,A)
e−rsds− c(T ∗B(2, A)).

Suppose instead that firm B enters first at time t. Provided that t is earlier than firm A’s

stand-alone entry time T ∗A(2), A follows exactly at T
∗
A(2). The leader’s and follower’s payoff

are eLB(t) = πB(1)

Z T∗A(2)

t
e−rsds+ πB(2, A)

Z ∞

T∗A(2)
e−rsds− c(t)

and eFA(t) = πA(2)

Z ∞

T∗A(2)
e−rsds− c(T ∗A(2)).

respectively. Notice that, as we argue in section 2, the fact that πA(2) > πB(2, A) implies

that firm A’s optimal entry time as a follower is earlier than firm B’s: T ∗A(2) < T ∗B(2, A).

Now consider the incentive for each firm to preempt the competitor and be the leader,

rather than the follower. Firm A prefers to enter as a leader at time t whenever

eDA(t) = eLA(t)− eFA(t)
= πA(1)

Z T∗B(2,A)

t
e−rsds− πA(2)

Z T∗B(2,A)

T∗A(2)
e−rsds+

−[c(t)− c(T ∗A(2))]

is positive. Similarly, firm B prefers to enter as leader at t if

eDB(t) = eLB(t)− eFB(t)
= πB(1)

Z T∗A(2)

t
e−rsds+ πB(2, A)

Z T∗B(2,A)

T∗A(2)
e−rsds

−[c(t)− c(T ∗B(2, A))]

is positive.

It follows immediately from Riordan (1992) that firm A is the leader in equilibrium. This

result is based on the comparison between the two eDi(t) functions. More precisely, on the
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fact that for any time t earlier than T ∗A(2), the incentive to preempt is always stronger for A

than for B, that is eDA(t) > eDB(t). The crucial observation to prove this inequality is that

T ∗A(2) < T ∗B(2, A). Consider the first term in eDA(t) and eDB(t). Monopoly profits are not

only higher for A, but also earned for a longer period, that is until T ∗B(2, A) rather than until

T ∗A(2). Consider then the third term in eDA(t) and eDB(t). Anticipating entry from T ∗A(2) to

t is cheaper than anticipating entry from T ∗B(2, A) to t. To complete the argument, one only

needs to show that the increase in duopoly profits for B and the decrease in duopoly profits

for A do not offset the previous two effects. The intuition is as follows.9 By preempting

B, firm A delays the date from which it earns duopoly profits from T ∗A(2) to T
∗
B(2, A). In

the interval [T ∗A(2), T
∗
B(2, A)) duopoly profits are replaced by monopoly profits, so the total

effect is still positive. B instead, by preempting A, anticipates the date from which it earns

duopoly profits, from T ∗B(2, A) to T
∗
A(2). By definition of T

∗
B(2, A), anticipating entry as a

duopolist to the left of this point is detrimental: extra duopoly profits are more than offset

by the increase in entry cost.

Consider now the remaining information we have about eDA(t) and eDB(t). First, they are

both negative for t = 0: by Assumption 2 preemption is too costly at time zero. Moreover,

they are both strictly quasi-concave, because of the convexity of the cost function, and have

a maximum in T ∗i (1) for i = A,B respectively. Finally, in t = T ∗A(2), the function eDA(t) is

strictly positive.

Following the argument in Riordan (1992), the equilibrium has the following features.

First entry cannot take place for t very close to zero, because eDA(t) and eDB(t) are both

negative. From some eT 1A < T ∗A(2) onwards, eDA(t) becomes positive: firm A would rather

be leader than follower, and ideally it would like to delay first entry until T ∗A(1). If eDB(t)

is negative in the interval
h eT 1A, T ∗A(1)i, firm B has no incentive to enter before T ∗A(1), and

firm A can therefore not only be the first to enter, but also enter at its preferred time. If

instead eDB(t) is positive from some point eT 1B ∈ ³eT 1A, T ∗A(1)´ onwards, then A is forced to

anticipate first entry to t = eT 1B by the threat of preemption.10 Following the terminology
in Riordan (1992), we refer to firm A as a “strong leader” if T ∗A(1) < T 1B and as a “weak

9For a formal proof of a similar argument, see the proof of Claim 4 in the Appendix.
10The fact that DA(t) > DB(t) guarantees that TB(1) < TA(1).
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leader” otherwise.

In any case, B cannot enter first in equilibrium. In a candidate equilibrium with first

entry by B at some time t, it has to hold that in t firm B strictly prefers the leader’s payoff

to the follower’s payoff. But then eDA(t) is also positive, hence A can profitable deviate

preempting B and entering at (t− ε).

3.2 The Game with Three Firms.

Here we consider the game with one A firm and two B firms. We show that the efficient-

entry result in the two-firm game can be reversed when there are three firms. More precisely,

we show that the unique equilibrium outcome can be that the entry order is B−A−B and

provide sufficient conditions on post-entry profits to guarantee that this happens.

With a construction similar to the one presented in subsection 3.1, we first derive the

payoff from being the leader, or one of the followers, for each firm. Then, we compute the

preemption incentives, that is the difference between the leader’s and the follower’s payoff

for each firm. Finally, we show under which circumstances the entry order in equilibrium

will be B−A−B. We will show that the main difference with the two-firm case is that with

three asymmetric firms it is not always the case that the most efficient firm has a strictly

stronger preemption incentive.

If firmA enters first in this game, the ensuing subgame will be played by two firms of type

B. We call this subgame the “BB-subgame.” If on the other hand a firm of type B enters

first, the ensuing subgame will be played by firm A and the remaining type B firm. We call

this the “AB-subgame.” The unique equilibrium outcomes of these two-player subgames

are readily known from work by Fudenberg and Tirole (1985) for the BB-subgame and

by Riordan (1992) for the AB-subgame. It follows from their analysis that the first entry

times of both subgames are uniquely determined. We we will denote them as t2(ABB) and

t2(BAB) respectively. They further show that in either subgame last entry is by a B firm,

and occurs at T ∗B(3), a type B’s stand-alone time as a last entrant.

Consider the case in which the type A firm preempts its rivals and enters first at time t.

The B firms will follow at t2(ABB) and T ∗B(3) respectively, hence firm A will earn a leader
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payoff:

LA(t) = πA(1)

Z t2(ABB)

t
e−rsds+ πA(2)

Z T∗B(3)

t2(ABB)
e−rsds+ πA(3)

Z ∞

T∗B(3)
e−rsds− c(t)

and each of the B firms will earn a follower payoff:

FB(t) = πB(2, A)

Z T∗B(3)

t2(ABB)
e−rsds+ πB(3)

Z ∞

T∗B(3)
e−rsds− c (t2(ABB))

= πB(3)

Z ∞

T∗B(3)
e−rsds− c (T ∗B(3))

where the l.h.s. of the last equality represents the payoff of the early entrant in the subgame,

the r.h.s. represents the payoff of the late entrant, and the equality describes the “rent

equalization” result in Fudenberg-Tirole (1985).

If instead a type B firm enters first, a two-player game with asymmetric firms ensues

in which the type A firm enters at t2(BAB) and the remaining B firm at time T ∗B(3). The

early B firm obtains the leader payoff:

LB(t) = πB(1)

Z t2(BAB)

t
e−rsds+ πB(2, A)

Z T∗B(3)

t2(BAB)
e−rsds+ πB(3)

Z ∞

T∗B(3)
e−rsds− c(t).

Firm A is preempted and thus earns the follower payoff:

FA(t) = πA(2)

Z T∗B(3)

t2(BAB)
e−rsds+ πA(3)

Z ∞

T∗B(3)
e−rsds− c(t2(BAB))

and the late B firm obtains follower’s payoff FB(t).
11

We can now write the incentive to be the first entrant in the game for an efficient and

an inefficient firm, respectively.

11Observe that a B firm’s follower payoff is independent of whether the subgame following first entry is
between two type B firms or one type A and one type B firm.
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Firm A would like to preempt its rivals whenever

DA(t) = LA(t)− FA(t)

= πA(1)

Z t2(ABB)

t
e−rsds+ πA(2)

Z t2(BAB)

t2(ABB)
e−rsds− c(t) + c (t2(BAB))

is positive. By preempting the rivals, firm A gains monopoly profits from time t until

t2(ABB), achieves duopoly profits starting from t2(ABB) rather than t2(BAB), and finally

sustains a higher entry cost because it enters earlier.

Similarly, a type B firm prefers to be the leader rather than the follower if

DB(t) = LB(t)− FB(t)

= πB(1)

Z t2(BAB)

t
e−rsds+ πB(2, A)

Z t2(ABB)

t2(BAB)
e−rsds− c(t) + c (t2(ABB))

is positive. By preempting the rivals, a B firm gains monopoly profits from t until t2(BAB),

achieves duopoly profits starting from t2(BAB) rather than t2(ABB), and finally sustains

a higher entry cost because it enters earlier.

In order to characterize a region of the primitives of the model for which the equilibrium

entry order is B − A − B, we need to find conditions that guarantee that the preemption

incentive as described by the functions Di(t) for i = A,B is “stronger” for the type-B firms

than for A, in a sense that we formalize in the next section.

3.3 The inefficient equilibrium.

The formal construction we present here is analogous to the ones presented in Fudenberg

and Tirole (1985) and Riordan (1992). Consider the Di(t) functions, for i = A,B. In t = 0,

they are both negative, because by Assumption 3 preemption is too costly at time zero.

Moreover, they are both strictly quasi-concave because of the convexity of the cost function,

and have a maximum in T ∗i (1) for i = A,B respectively.

Suppose that the earliest point in time in which a B firm weakly prefers to be a leader

rather than a follower is even earlier than the first point in time in which A weakly prefers to
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be the leader. That is, the smallest point in which DB(t) intersects zero, is earlier than the

earliest point in which DA(t) intersects zero. Then, the equilibrium outcome will be that

one type-B firm enters first, exactly at the earliest time in which DB(t) intersects zero, and

an AB subgame ensues, with firm A and the remaining type-B firm entering at t2(BAB)

and T ∗B(3) respectively.

Formally, let T 1B and T 1A be defined as:

T 1B =

⎧⎨⎩ min {τ such that DB(τ) = 0} if DB(t) admits at least one zero

+∞ otherwise

T 1A =

⎧⎨⎩ min {τ such that DA(τ) = 0} if DA(t) admits at least one zero

+∞ otherwise

The following Lemma holds:

Lemma 1 If T 1B < T 1A, the game admits a unique SPNE outcome, in which the entry order

is B − A − B, and entry times are t1 = T 1B, t2 = t2(BAB), t3 = T ∗B(3). In equilibrium,

both inefficient firms achieve the same equilibrium payoff, and the efficient firm achieves a

higher payoff.

In equilibrium, first entry takes place exactly at T 1B. Clearly, no firm has an incentive

to enter earlier, because for t < T 1B, each firm prefers to be the follower rather than a

very early leader. Moreover, first entry cannot take place later than T 1B because in a right-

neighbourhood of T 1B, DB(t) is positive. If first entry took place at t > T 1B, one of the

two B firms would enter third at T ∗B(3) and receive FB(t). That firm would rather deviate,

preempt the rivals, and be a leader at T 1B + ε. Following a logic that is analogous to that

in Fudenberg-Tirole (1985), the preemption race between the two B firms guarantees that

first entry takes place exactly at T 1B so that there is rent equalization for the two B firms

and neither has an incentive to preempt further. Moreover, T 1B < T 1A guarantees that in T
1
B

firm A strictly prefers to be follower rather than leader, hence has no incentive to deviate

either.

15



3.4 Conditions for inefficient entry

In this subsection, we present our main result: sufficient conditions on the primitives of the

model that guarantee that T 1B is indeed smaller than T 1A.

Proposition 1 If

1) πB (2, A) is sufficiently large

2) πA (2), πB (2, B) and πB (3) are sufficiently small

3) πA(1)− πB(1) is sufficiently small,

then T 1B < T 1A and the equilibrium entry order in the game is B −A−B.

There exists a range of payoffs such that assumption (1) and the above conditions are sat-

isfied.

The first two conditions guarantee that second entry takes place earlier in a BB subgame

than in an AB subgame, which is crucial to guarantee that there is inefficient entry in

equilibrium. To see why this is the case, suppose instead that t2(BAB) < t2(ABB). In this

case, the preemption incentive to be the first rather than the second entrant would always

be stronger for A than for a B-type firm, for the following reasons: the first entrant achieves

monopoly profits for some time. For firmA, these profits are higher than for firmB, and they

would be achieved for a longer time (until t2(ABB), rather than until t2(BAB)). Moreover,

by entering at t and being a leader rather than a follower, each firm sustains a higher entry

cost. The cost would increase less for firm A, who would otherwise enter at t2(BAB), than

for firm B, who would otherwise enter at t2(ABB). Finally, by being leader rather than

follower, a firm changes the time from which it starts earning duopoly profits. For an A-type

leader, this date would be delayed from t2(BAB) to t2(ABB). In that interval, duopoly

profits would be replaced by monopoly profits, so the total effect would be positive. For B

instead, this date would be anticipated from t2(ABB) to t2(BAB). Nonetheless, the extra

duopoly profits earned in this period would be more than offset by the increase in entry

cost, so the total effect would be negative.12 In sum, if t2(BAB) < t2(ABB), then the total

12For a formal argument, see the Proof of Claim 5.
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preemption incentive to be first rather than second is stronger for firm A than for a type-B

firm and inefficient entry cannot happen in equilibrium.

The intuition for why conditions (1) and (2) guarantee that second entry takes place

earlier in a BB subgame than in an AB subgame is derived observing how the intensity of

the preemption race in a BB subgame and in an AB subgame depend on the underlying

parameters.

The difference [πB (2, A)− πB (3)] is a measure of the intensity of the preemption race in

a BB subgame: the larger this difference, the stronger the incentive to be second rather than

third, after A enters first, hence the earlier is t2(ABB). Next, consider an AB subgame. If

A is a “strong leader” in this subgame, t2(BAB) is equal to T ∗A(2). Therefore, the smaller

πA (2), the later is t2(BAB). Similarly, if A is a “weak leader”, t2(BAB) is determined

by the incentive B has to preempt A, which is increasing in both πB (2, B) and πB (3): by

being second rather than third, B would receive duopoly profits for some time, and triopoly

profits for a longer time (from T ∗A(3) rather than from T ∗B(3) ).

Finally, consider condition (3). Conditions (a) and (b) guarantee that t2(ABB) <

t2(BAB). Let us assume they hold, and compare the incentive to be first rather than

second entrant for firm A and for a B firm, respectively.

• Per-period monopoly profits are higher for A than for B.

• If B is the leader, it achieves monopoly profits for a longer time, with respect to an

A−type leader (until t2(BAB) rather than just until t2(ABB)).

• In the interval from t2(ABB) to t2(BAB), a B-type leader earns monopoly rather

than duopoly profits.

• For firm A, duopoly profits are earned from t2(ABB) if it is a leader, and from

t2(BAB) if it is a follower. The latter is preferred, because in that interval the entry

cost decreases at rate higher than πB(2, A).

• Finally, the cost increase due to the anticipation of entry to be first rather than

second is higher for an A-type leader, who would otherwise enter at t2(BAB), than

17



for a B-type leader, who would instead enter at t2(ABB).

The first of these effects contributes to a stronger preemption incentive for A than for B.

Every other effect goes in the opposite direction. Therefore, if the difference in monopoly

profits is sufficiently small, the first effect is sufficiently small with respect to the other

effects that DB(t) > DA(t) in some range, and in particular T 1B < T 1A.

We conclude this section by discussing for which markets the conditions in Proposition

1 are likely to be satisfied.

Condition (3) requires that the difference in monopoly profits is sufficiently small. Given

the assumption that πA (2) > πB (2, A), conditions (1) and (2) imply that also the difference

in duopoly profits between A and B in an AB duopoly has to be sufficiently small, although

positive. Finally, given that πB (3) is bounded above by πA (3), the statement that πB (3)

has to be sufficiently small also means that the difference in triopoly profits has to be

sufficiently large. In sum, our conditions can be satisfied in markets where the impact of a

given difference in efficiency on firms’ profits is amplified as the number of competitors in

the market increases.

It is easy to generate examples with this feature assuming that post-entry profits are

derived from Cournot competition and firms produce at a constant marginal cost which is

lower for A than for B. For example, in such a market, if demand is linear in prices or

exhibits constant elasticity, the ratio of A’s profits over B’s profits is larger in an ABB

triopoly than in an AB duopoly. Appendix A analyzes the case of Cournot competition

with constant elasticity of demand using numerical methods. It presents the range of

asymmetry values, as measured by the difference between the two marginal costs, for which

the equilibrium entry order is B −A−B.

4 Conclusions

We presented a preemption game of entry into a new market with ex-ante asymmetric firms.

It is well known from the literature that in a two-firm game the equilibrium entry order

reflects the efficiency ranking. We show that this result can be reversed if the game is
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played by more than two firms and provide sufficient conditions on the parameters of the

model which guarantee that the equilibrium is one with first entry by a less efficient firm.

Our result provides an explanation for late entry by leading firms into new markets for

technologically mature products.
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Appendix A: Numerical Example

We now present an example to illustrate that a profit structure satisfying the conditions of

Proposition (1) can be generated by a standard asymmetric oligopoly model for a range of

parameter values.

Flow profits upon investment arise from Cournot competition. The inverse demand

function is given by P (Q) = Q−η, where Q is total output in the industry and η ∈ (0, 1) is

the elasticity. Firms’ cost functions are given by Ki(qi) = kiqi for i = A,B. We normalize

the efficient firm’s marginal cost kA to 1. Marginal costs then satisfy: kB > kA = 1. In

order to guarantee that all firms produce strictly positive quantities in all possible market

structures,13 we assume kB ∈
³
1, 1
1−η

´
. The resulting profit structure satisfies Assumption

1. The present value cost of entry declines exponentially at rate α, satisfying Assumptions

2 and 4:14 c(t) = ce−(r+α)t.

We fix r = 0.03 and c = 20. For a range of values of a, η and kB for which Assumption

3 is satisfied as well we compute the equilibrium entry order. Table 1 shows that for some

pairs (α, η), there exists a range of values of kB for which the entry order in equilibrium is

B −A−B.

Table 1: Ranges of kB for which the equilibrium order of entry is B-A-B
η

α 0.2 0.4 0.6 0.8

0.02 ∅ ∅ ∅ ∅

0.03 ∅ ∅ ∅ (1.1031, 1.1165 )

0.04 ∅ ∅ (1.0580, 1.0718) (1.0636, 1.1336)

0.05 (1.0150, 1.0165) (1.0298, 1.0405) (1.0387, 1.0781) (1.0264, 1.1451)

0.06 (1.0118, 1.0174) (1.0204, 1.0428) (1.0193, 1.0825) (1.0000, 1.1534)

0.07 (1.0082, 1.0181) (1.0107, 1.0445) (1.0000, 1.0859) (1.0000, 1.1596)

0.08 (1.0044, 1.0186) (1.0000, 1.0458) (1.0000, 1.0885) (1.0000, 1.1646)

To relate these results to the conditions stated in Proposition 1, consider the effect of

13See Corchon (2007).
14This choice of cost function is motivated by the example given in Fudenberg and Tirole (1985).
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a change in kB on profits. An increase in kB, ceteris paribus:

1. reduces πB(2, A),

2. increases πA(2), and reduces πB(2, B) and πB(3),

3. increases πA(1)− πB(1).

These effects are illustrated in Figure 1.

Figure 1: The effect of kB on firms’ profits for η = 0.6, α = 0.05.
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As kB increases, conditions 1 and 3 are less likely to be satisfied. This is one of the

reasons why the range of values of kB for which the entry order in equilibrium is B−A−B

is bounded above.

Moreover, consider condition 2. For sufficiently strong asymmetry, that is for sufficiently

large kB, firm A is a strong leader in an AB subgame. A further increase in kB, by increasing

πA(2), accelerates entry by firm A in such a subgame. The equilibrium entry order B−A−B

then becomes less likely. This provides a second reason why the range is bounded above.

On the other hand, for some pairs (α, η), the equilibrium entry order for values of

kB close to one is A − B − B (e.g. for α = 0.05, η = 0.2). However, a range of values

of kB for which the equilibrium entry order is B − A − B still exists. For values of kB

very close to one, firm A is a weak leader in an AB subgame. A marginal increase in kB
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decreases πB(2, B) and πB(3). Thus, it weakens the preemption constraint on firm A in

such a subgame, delaying its entry. The equilibrium entry order B −A−B then becomes

more likely.

Appendix B: Proofs

Proof of Lemma 1. We prove the result through a series of Claims. As in most preemp-

tion games, the equilibrium is constructed starting from the end of the game and moving

backwards. This requires the analysis of a large set of off-equilibrium path subgames which

makes a lenghty proof with several intermediate steps necessary. We first give an outline of

the structure of the proof.

Outline of the proof.

Claims 1 and 2 establish that all firms must enter by T ∗B(3). Claim 3 describes the equi-

librium outcome of subgames with two B firms active, building on the results by Fudenberg

and Tirole (1985). Similarly, Claim 4 describes the equilibrium outcome of subgames with

A and one of the B firms active, building on the results by Riordan (1992). Claim 5 proves

an important necessary condition: If T 1B < T 1A, then it has to be the case that second entry

takes place earlier if the first entrant is A, than if it is a B-type firm. Finally, Claims 6, 7

and 8 complete the result establishing the equilibrium outcome of subgames with all three

firms active, starting late in the game (Claim 6), early in the game (Claim 7), and at time

zero (Claim 8).

Claim 1 In any subgame starting at time τ , with only one active firm i, firm i enters at

max{τ , T ∗i (3)}.

Proof. For t ≥ τ , the function

gi,3 (t) ≡
Z +∞

t
πi (3) e

−rsds− c (t)

that is maximized at T ∗i (3), represents firm i’s payoff from entering last at time t. By

assumptions 4(i) and 2(i) it is strictly positive for every t larger than some finite t0. Hence
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its maximum value is strictly positive. Therefore, if τ < T ∗i (3) firm i will wait until T ∗i (3)

and then enter, while if τ ≥ T ∗i (3) then it will enter immediately. ¥

An immediate consequence of Claim 1 is the following:

Claim 2 In any subgame starting at time τ ≥ T ∗B(3), with any number of active firms, all

firms enter immediately.

Proof. The proof is analogous to the proof of Claim 1 in Argenziano and Schmidt-

Dengler (2009).¥

The next Claim analyzes BB subgames starting at τ < T ∗B(3). It follows immediately

from our assumptions and the analysis in Fudenberg and Tirole (1985) that, given the

functions

L2,AB (t) = πB(2, A)

Z T∗B(3)

t
e−rsds− c(t)

F 2,AB (t) = πB(3)

Z +∞

T∗B(3)
e−rsds− c (T ∗B(3))

D2,A
B (t) = L2,AB (t)− F 2,AB (t)

there exists a point T 2,AB ∈ (0, T ∗B(2, A)) such that D
2,A
B

³
T 2,AB

´
= 0 and that the following

result holds:

Claim 3 In any SPNE, in any BB subgame starting at time τ < T ∗B(3) there is a unique

equilibrium outcome, such that:

(i) entries take place at t2 = max
n
τ , T 2,AB

o
and t3 = T ∗B(3).

(iii) If τ ≤ T 2,AB , both B firms achieve payoff F 2,AB (T ∗B(3)), while if τ > T 2,AB payoffs for the

early and late entrant are L2,AB (τ) and F 2,AB (τ) < L2,AB (τ) respectively.

Claim 4 analyzes AB subgames starting at τ < T ∗B(3).

Consider the following function

D2,B
B (t) = πB(2, B)

Z T∗A(3)

t
e−rsds+ πB(3)

Z T∗B(3)

T∗A(3)
e−rsds− [c(t)− c(T ∗B(3))] (2)
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It is strictly quasiconcave and admits a unique global maximum in t = T ∗B(2, B) ∈ (T ∗A(2), T ∗B(3)) .

It takes negative value at zero by assumptions 1 and 3(i), and in t = T ∗A(3) by definition of

T ∗B(3). Hence, in the interval t ∈ [0, T ∗A(3)] the following cases are possible:

Case 1 The function is negative everywhere

Case 2 The function has two (possibly coinciding) intersections with zero,
n
T 2,BB , T

2,B
B

o
such that T 2,BB ≤ T

2,B
B , and T ∗A(2) ≤ T 2,BB

Case 3 The function has two (possibly coinciding) intersections with zero,
n
T 2,BB , T

2,B
B

o
such that T 2,BB ≤ T

2,B
B , and T 2,BB < T ∗A(2).

Define T 2,BB as follows:

T 2,BB =

⎧⎨⎩ +∞ in case 1

T 2,BB in cases 2 and 3.

The following result holds:

Claim 4 In any SPNE, in any AB subgame starting at time τ < T ∗B(3), it holds that:

(i)If τ ≤ min
n
T 2,BB , T ∗A(2)

o
, firm A enters first in the subgame, at t2 = min

n
T 2,BB , T ∗A(2)

o
and firm B enters later, at t3 = T ∗B(3)

(ii)If τ > min
n
T 2,BB , T ∗A(2)

o
:

- in case 1, firm A enters first in the subgame, at t2 = τ and firm B enters later, at

t3 = T ∗B(3).

- in cases 2 and 3, for τ /∈
h
T 2,BB , T

2,B
B

i
, firm A enters first in the subgame, at t2 = τ and

firm B enters later, at t3 = T ∗B(3), while for τ ∈
h
T 2,BB , T

2,B
B

i
either firm A enters first in

the subgame, at t2 = τ and firm B enters later, at t3 = T ∗B(3), or firm B enters first in the

subgame, at t2 = τ and firm A enters later, at t3 = T ∗A(3).

Proof. To prove this result, we first show that in our model, in an AB subgame, the

condition ∆j (yj , zj , zi) < ∆i (yi, zi, zj) in Theorem (1) in Riordan (1992) is satisfied, with

the interpretation that i = A and j = B. The equivalent of the condition ∆j (yj , zj , zi) <

∆i (yi, zi, zj) in our model, for an AB subgame, is that T 2A < T 2,BB , where T 2A is defined as
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the smallest value of t such that the following function is null:

D2
A(t) = πA(2)

Z T∗A(3)

t
e−rsds+ [πA(2)− πA(3)]

Z T∗B(3)

T∗A(3)
e−rsds− [c(t)− c(T ∗A(3))].

The function D2
A(t) is strictly quasi-concave in t, strictly negative for t = 0, it has strictly

positive value for t = T ∗A(3), and admits a unique global maximum in t = T ∗A(2) < T ∗A(3).

Hence, T 2A is well defined and belongs to the interval (0, T
∗
A(2)). For T

2
A < T 2,BB to hold, it

is sufficient that D2
A(t)−D2,B

B (t) > 0 for every t < T ∗A(3). To see that this condition holds,

notice that D2
A(t)−D2,B

B (t) can be rewritten as

[πA(2)− πB(2, B)]

Z T∗A(3)

t
e−rsds+ [πA(2)− πA(3)]

Z T∗B(3)

T∗A(3)
e−rsds

−πB(2, B)
Z T∗B(3)

T∗A(3)
e−rsds+ c (T ∗A(3))− c (T ∗B(3)) .

The first two terms are positive by assumption 1(ii) and the last one by definition of T ∗B(3).

Given that T 2A < T 2,BB , condition ∆j (yj , zj , zi) < ∆i (yi, zi, zj) in Theorem (1) in

Riordan (1992) is satisfied, and part (i) of the Lemma follows immediately from part

(i) of Riordan’s theorem. Moreover, part (ii) of the Lemma follows from the analysis

in the Appendix of Riordan (1992), in particular from Lemma A3 and from the proof

of Lemma A4, where c∆1 (z1) ≥ c∆2 (z2) is equivalent to T ∗A(3) ≤ T ∗B(3), t
³c∆1 (x1)´ is

equal to T ∗A(2), ∆2 (y2, z2, z1) < c∆1 (x1) ≤ ∆1 (y1, z1, z2) is equivalent to T 2A < T ∗A(2) ≤

T 2,BB , ∆2 (y2, z2, z1) = c∆1 (x1) < ∆1 (y1, z1, z2) is equivalent to T 2A < T ∗A(2) = T 2,BB and

∆2 (y2, z2, z1) > c∆1 (x1) is equivalent toT ∗A(2) > T 2,BB .¥

Next, we prove that T 1B < T 1A implies t2(BAB) < t2(ABB).

Consider subgames with three active firms starting at τ < min
n
T 2,AB , T 2,BA

o
. The

functions DA(·) and DB(·) as defined in section 3.2 are negative at zero by assumptions 1

and 3(i), are strictly quasiconcave, and maximized at T ∗A(1) and T
∗
B(1) > T ∗A(1) respectively.

The following Claim holds:

Claim 5 If T 1B < T 1A, then it has to be the case that T
2,A
B < min

n
T ∗A(2), T

2,B
B

o
.
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Proof. We prove the result by contradiction. Suppose min
n
T ∗A(2), T

2,B
B

o
≤ T 2,AB .

Then, by Claims 3 and 4, for any t ≤ min
n
T ∗A(2), T

2,B
B

o
, DA (t) and DB (t) can be written

as

DA (t) = πA(1)

Z min{T∗A(2),T 2,BB }

t
e−rsds+ [πA(1)− πA(2)]

Z T2,AB

min{T∗A(2),T 2,BB }
e−rsds

−c(t) + c
³
min

n
T ∗A(2), T

2,B
B

o´
,

DB (t) = πB(1)

Z min{T∗A(2),T 2,BB }

t
e−rsds+πB(2, A)

Z T 2,AB

min{T∗A(2),T 2,BB }
e−rsds−c(t)+c

³
T 2,AB

´
.

Both functions are strictly quasiconcave and negative at zero. DA

³
min

n
T ∗A(2), T

2,B
B

o´
is strictly positive, so it has to be the case that T 1A < min

n
T ∗A(2), T

2,B
B

o
. Moreover,

DB

³
min

n
T ∗A(2), T

2,B
B

o´
is strictly negative because the function

∙
πB(2, A)

R +∞
min{T∗A(2),T 2,BB } e

−rsds− c(t)

¸
is strictly quasiconcave and maximized at T ∗B(2, A) > T 2,AB ,hence it is strictly increasing inh
min

n
T ∗A(2), T

2,B
B

o
, T 2,AB

i
. It follows that either T 1B > min

n
T ∗A(2), T

2,B
B

o
> T 1A, in which

case the statement follows, or T 1B ≤ min
n
T ∗A(2), T

2,B
B

o
. For the latter case, we show that

DA (t) > DB (t) for any t ∈
h
0,min

n
T ∗A(2), T

2,B
B

oi
which in turn implies the result.

First, notice that by Assumption (1) the first term in DA (t) is greater than the first

term in DB (t), and the second term in DA (t) is positive. Moreover,

−πB(2, A)
Z T2,AB

min{T∗A(2),T 2,BB }
e−rsds+ c

³
min

n
T ∗A(2), T

2,B
B

o´
− c

³
T 2,AB

´
> 0

by definition of T ∗B(2, A). We can therefore conclude that even if T
1
B ≤ min

n
T ∗A(2), T

2,B
B

o
,

DA (t) > DB (t) for any t ∈
h
0,min

n
T ∗A(2), T

2,B
B

oi
, which in turn implies it cannot be the

case that T 1B < T 1A. ¥

Next, we assume that the condition T 1B < T 1A in the statement of the Proposition

holds, and consider subgames starting at τ ∈
h
T 2,AB , T ∗B (3)

´
with all the three players still

active. The analysis will rely on the implication derived in the previous Claim, namely that

T 2,AB < min
n
T ∗A(2), T

2,B
B

o
.
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At time τ , if all three firms are active and A enters first, it follows from Claim 3 that

the two B firms follow at τ and T ∗B(3) respectively. Payoffs are

LA(τ) = L2A(τ) = πA(2)

Z T∗B(3)

τ
e−rsds+ πA(3)

Z ∞

T∗B(3)
e−rsds− c(τ)

for A and a lottery between L2,AB (τ) and F 2,AB (τ) for both B firms, with L2,AB (τ) > F 2,AB (τ).

If instead one of the B firms enters at τ , it follows from Claim 4 that if

τ ∈ [T 2,AB ,min
n
T 2,BB , T ∗A(2)

o
), then the entry order isB−A−B , entry times are

³
τ ,min

n
T 2,BB , T ∗A(2)

o
, T ∗B(3)

´
and payoffs are LB(τ), L

2
A(min

n
T 2,BB , T ∗A(2)

o
) and F 2,BB (τ) for the first, second and third

entrant, respectively.

If instead τ ∈
h
min

n
T 2,BB , T ∗A(2)

o
, T ∗B(3)

i
, then:

- in case 1, entry order is B − A − B , entry times are (τ , τ , T ∗B(3)) and payoffs are

L2,AB (τ), L2A(τ) and F 2,BB (τ) for the first, second and third entrant, respectively.

- in cases 2 and 3, for τ /∈
h
T 2,BB , T

2,B
B

i
, entry order, entry times and payoffs are those

described for case 1, while for τ ∈
h
T 2,BB , T

2,B
B

i
either entry order, entry times and payoffs

are those described for case 1, or entry order is B−B−A, entry times are (τ , τ , T ∗A(3)) and

payoffs are L2,BB (τ) for the first two entrant and

F 2A(τ) ≡ πA(3)

Z +∞

T∗A(3)
e−rsds− c(T ∗A(3)).

for firm A.

The following Claim holds:

Claim 6 In any SPNE of the game, the outcome of subgames with three active firms

starting at τ ∈
³
T 2,AB , T ∗B (3)

´
is as follows:

(i) If τ ∈
h
T 2,AB ,min

n
T 2,BB , T ∗A(2)

o´
, one of the B firms enters at t1 = τ , the A firm enters

at t2 = min
n
T 2,BB , T ∗A(2)

o
and the remaining B firm enters at t3 = T ∗B (3);

(ii) If τ ∈
h
min

n
T 2,BB , T ∗A(2

o
, T ∗B (3)

´
:

(iia) for any τ in the interval in case 1, and for any τ in the interval such that τ /∈h
T 2,BB , T

2,B
B

i
in cases 2 and 3, the unique outcome is that firm A and one of the B firms
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enter at t1 = t2 = τ and the remaining B firm enters at t3 = T ∗B (3) ;

(iib) moreover, in cases 2 and 3, for τ ∈
h
T 2,BB , T

2,B
B

i
the outcome is either that firm A and

one of the B firms enter at t1 = t2 = τ and the remaining B firm enters at t3 = T ∗B (3) , or

that both B firms enter at t1 = t2 = τ and the A firm enters at t3 = T ∗A (3).

Proof. For simplicity, we develop the proof of this Claim under the following assump-

tion: Suppose that at any time t, if a firm is indifferent between being the m-th investor

at t and the (m + 1)-th investor, then it invests at t. It is immediate to verify that even

without this assumption the result still holds.

First, consider subgames with three active firms starting at τ ∈ [T ∗A(2), T ∗B (3)) for case

1, or τ ∈
³
T
2,B
B , T ∗B (3)

´
for case 2. In equilibrium, at τ , it has to be the case that both B

firms play Enter and A plays either Enter or Wait. Assumption 5 and Claims 3 and 4 then

guarantee the result.

If firms play either of these action profiles, payoffs are L2A(τ) for the A firm, and a lottery

between L2,AB (τ) and F 2,AB (τ) for the B firms. By Claim 3, in this interval L2,AB (τ) > F 2,AB (τ)

so no B firm has an incentive to deviate and receive F 2,AB (τ) with probability one. By the

same argument, there cannot be an equilibrium in which at τ only one of the type-B firms

plays Enter, regardless of A’s action, because the other one would rather deviate and play

Enter. Consider now firm A. Given that both B firms play Enter, A’s action does not affect

its payoff, so A has no profitable deviation from either profile described above.

Next, we prove that there are no other action profiles at τ compatible with equilibrium.

There cannot be an equilibrium in which only firm A plays Enter at τ , because each of the

B firms would receive a lottery between L2,AB (τ) and F 2,AB (τ) and would rather deviate and

play Enter at τ as well, thus receiving a similar lottery but with higher probability to obtain

L2B(τ). Moreover, there cannot be an equilibrium in which all three firms play Wait at τ .

In such an equilibrium, the first entry would happen at some time t later than τ . By Claim

2 first entry would happen at some later t ∈ (τ , T ∗B(3)]. From the arguments presented so

far in the proof of part (ii) of this Claim, it could only be the case that the A firm and one

of the B firms enter simultaneously at t and the remaining B firm follows at T ∗B(3). Since

the function L2A(τ) is strictly quasiconcave and maximized at T
∗
A(2) ≤ τ , A would then have
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an incentive to deviate and preempt the rivals playing Enter at (t − ε). So, in case 1, for

τ ∈ [T ∗A(2), T ∗B (3)) there cannot be an equilibrium in which all three firms play Wait at τ .

Hence, we can conclude that for any τ in this interval the unique equilibrium outcome is

the one described in part (iia) of the Claim.

Next, consider subgames with three active firms starting at τ ∈
h
T 2,BB , T

2,B
B

i
We prove

that in equilibrium, all firms play Enter at τ . Assumption 5(i), together with Claims 3 and

4 then guarantee the result.

If firms play the above profile, A receives L2A(τ) with probability
2
3 and F 2A(τ) with

probability 1
3 . By the proof of Claim 4, D2

A(τ) = L2A(τ) − F 2A(τ) is weakly positive in

[T ∗A (2) , T
∗
A (3)] , hence in the interval we are considering. It follows that A has no incentive

to deviate because it would then receive L2A(τ) or F
2
A(τ) with probabilities

1
2 ,
1
2 . (By an

analogous argument, there cannot be an equilibrium in which at τ A plays Wait and either

one or both B firms play Enter). As for the B firms, if the above profile is played, each B

firm receives L2,BB (τ), L2,AB (τ) and F 2,AB (τ) with probabilities
¡
1
3 ,
1
3 ,
1
3

¢
while by deviating it

would receive a similar lottery with probabilities
¡
1
4 ,
1
4 ,
1
2

¢
. Since in this interval D2,B

B (t) =

L2,BB (τ) − F 2,BB (τ) > 0 and L2,AB (τ) > F 2,AB (τ), the deviation is not profitable. (By an

analogous argument, there cannot be an equilibrium in which at τ A plays Enter, and one

or both of the B firms play Wait).

Finally, there cannot be an equilibrium in which all three firms play Wait at τ . In such

an equilibrium, by the argument presented above, the first entry would take place at some

later time t ≤ T
2,B
B . If in t only one or two firms plays Enter, any firm who plays Wait has

an incentive to deviate and play Enter at (t− ε) . Similarly, if in t all three firms play Enter,

each of them has an incentive to deviate and play Enter at (t− ε). Hence, we can conclude

that for any τ in this interval the unique equilibrium outcome is the one described in part

(iiib) of the Claim.

Next, for case 2, consider subgames with three active firms starting at τ ∈
h
T ∗A(2), T

2,B
B

i
.

Given part (iib) of this Claim, the equilibrium outcome of any such subgame must be that

first entry happens weakly before T 2,BB . Then, the same arguments presented in the first

part of this proof guarantee that in equilibrium, at τ both B firms play Enter and A plays
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either Enter or Wait, which in turn guarantees that for any τ in this interval the unique

equilibrium outcome is the one described in part (iiia) of the Claim.

Finally, consider subgames with three active firms starting at τ ∈
h
T 2,AB ,min

n
T 2,BB , T ∗A(2)

o´
.

In equilibrium, at τ , it has to be the case that the B firms play Enter and the A firm plays

Wait. Then, Assumption 5(i), together with Claim 4, guarantees the result. If firms play

the prescribed actions, A receives FA(τ), and the B firms a lottery between LB(τ) and

F 2,AB (τ) = F 2,BB (τ) with probabilities
¡
1
2 ,
1
2

¢
By Assumption 1 LB(τ) > L2,AB (τ) which is

turn larger that F 2,AB (τ). Therefore, no B firm has an incentive to deviate and receive

F 2,AB (τ) with probability 1. By the same argument, there cannot be an equilibrium in

which at τ only one B firm plays Enter.

As for firm A, by deviating it would receive a lottery between FA(τ) and L2A(τ). It is

easy to verify that this deviation is not profitable, using the fact that the function

πA(2)

Z T∗B(3)

t
e−rsds+ πA(3)

Z +∞

T∗B(3)
e−rsds− c(t)

is strictly quasiconcave and maximized at T ∗A(2) > τ . By an identical argument, a strategy

profile in which the A firm and one or two B firms play Enter at τ , cannot be an equilibrium,

since A would want to deviate and play Wait.

Finally, we prove that a profile in which all three firms play Wait at τ cannot be part

of an equilibrium. By part (ii), first entry would then take place at some later time t ≤

min
n
T 2,BB , T ∗A(2)

o
. In t, it holds that LB(t) > L2,AB (t) > F 2,AB (t).

Suppose at time t only the two B firms play Enter. By continuity, regardless of what

A plays at t, each of the B firms has a strict incentive to preempt the rival and enter at

time (t − ε). Similarly, if at time t only one of the B firm plays Enter, then the other B

firm has an incentive to preempt and enter at time (t− ε). Finally, if at time t only the A

firm plays Enter, then each B firm has an incentive to preempt and enter at time (t − ε).

Therefore, there cannot be an equilibrium of the subgame starting at τ in which the first

entry happens later than τ . ¥

Next, we analyze subgames with three active firms starting at τ ∈ [0, T 2,AB ). Consider
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again the functions DA(τ) and DB(τ). Evaluated at T
2,A
B , DB(τ) is positive, because

DB(T
2,A
B ) = [πB(1)− πB(2, A)]

Z min{T∗A(2),T
2,B
B )

T2,AB

e−rsds > 0

by Assumption (1). It follows that there exists one and only one point T 1B ∈
³
0, T 2,AB

´
such

that DB(T
1
B) = 0. As for DA(τ) instead,

DA(T
2,A
B ) = πA(2)

Z min{T∗A(2),T
2,B
B )

T 2,AB

e−rsds− c(T 2,AB ) + c
³
min{T ∗A(2), T

2,B
B )

´
< 0

because the function

πA(2)

Z min{T∗A(2),T
2,B
B )

t
e−rsds− c(t)

is strictly quasiconcave, maximized at T ∗A(2), hence strictly increasing for t ∈
h
T 2,AB ,min{T ∗A(2), T

2,B
B )

i
.

It follows that two cases are possible:

Case a DA(τ) < 0 ∀τ ∈
h
0, T 2,AB

i
, and T 1A = +∞;

Case b There exist two points, T 1A and T
1
A , with 0 < T 1A ≤ T

1
A < T 2,AB , in which

DA(τ) is null, and T 1A = T 1A.

Given the assumption T 1B ≤ T 1A, the following Claim holds:

Claim 7 In any SPNE of the game, the outcome of subgames with three active firms start-

ing at τ ∈ [0, T 2,AB ) is as follows:

(i) If τ ≤ T 1B one of the B firms enters at t1 = T 1B, the A firm enters at t2 = min
n
T 2,BB , T ∗A(2)

o
and the remaining B firm enters at t3 = T ∗B (3)

(ii) If τ ∈ (T 1B, T
2,A
B ) :

(iia) for any τ in the interval in case a, and for any τ in the interval such that τ /∈
h
T 1A, T

1
A

i
in case b, the unique outcome is that one of the B firms enters at t1 = τ , the A firm enters

at t2 = min
n
T 2,BB , T ∗A(2)

o
and the remaining B firm enters at t3 = T ∗B (3)

(iib) moreover, in case b, for τ ∈
h
T 1A, T

1
A

i
the outcome is either as in (iia), or that firm

A enters at t1 = τ and the B firms enter at t2 = T 2,AB and t3 = T ∗B (3) respectively.
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Proof. First, consider subgames with three active firms starting at τ ∈ [T 1B, T
2,A
B ) for

case a, or τ ∈ (T 1A, T
2,A
B ) for case b. In equilibrium, at τ , it has to be the case that A

plays Wait, and the B firms play Enter. If firms play the above profile, A receives FA(τ)

and each B firm a lottery between LB(τ) and FB(τ). By deviating, A would receive LA(τ)

with positive probability and a B firm would receive FB(τ). Then, the fact that DA(τ) < 0

and DB(τ) > 0 guarantees that no firm has an incentive to deviate. There cannot be an

equilibrium in which firm A and one of the B firms play Wait, and the other B firm plays

Enter, because the B firm which plays Wait would rather deviate and play Enter, thus

exchanging FB(τ) for a lottery between LB(τ) and FB(τ). There cannot be an equilibrium

in which the A firm and at least one of the B firms play Enter, because the A firm would

then receive a lottery between LA(τ) and FA(τ) and would rather deviate and receive FA(τ).

There cannot be an equilibrium in which the A firm plays Enter and both B firms play

Wait, because both B firms would receive FB(τ) and would rather deviate and receive a

lottery between LB(τ) and FB(τ). Finally, there cannot be an equilibrium in which all

three firms play Wait at τ . In such an equilibrium, by Claim 6 first entry would take place

at some later time t ≤ T 2,AB . But this cannot be part of an equilibrium, because at t one of

the following action profiles would have to be played:

- A plays Enter and either one or both B firms play Enter: then the A firm would rather

deviate and play Wait.~

- A plays Enter and both B firms play Wait: then each B firm would rather deviate and

play Enter

- A plays Wait and either one or both B firms play Enter: then each B firm would rather

deviate and play Enter at (t− ε) .

Hence, we can conclude that for any τ in this interval the unique equilibrium outcome

is the one described in part (iia) of the Claim.

Next, for case b, consider any subgame with three active firms starting at τ ∈
h
T 1A, T

1
A

i
.

In equilibrium, all firms play Enter at τ . If firms play the above profile, each firm i receives a

lottery between Li(τ) and Fi(τ), and the fact that in this intervalDA(τ) > 0 and DB(τ) > 0

guarantees that there are no profitable deviations. Similarly, this fact guarantees that there
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cannot be an equilibrium in which either one or two firms only play Enter at τ , because in

that case there is at least one firm which plays Wait and has an incentive to deviate and

play Enter. Finally, there cannot be an equilibrium in which all three firms play Wait at

τ . In such an equilibrium, by the argument presented above first entry would happen at

some later time t ≤ T
1
A. If at t only one or two firms plays Enter, any firm who plays Wait

has an incentive to deviate and play Enter at (t− ε). Similarly, if in t all three firms play

Enter, each of them has an incentive to deviate and play Enter at (t− ε). Hence, we can

conclude that for any τ in this interval the unique equilibrium outcome is the one described

in part (iiib) of the Claim.

Next, for case b, consider any subgame with three active firms starting at τ ∈
£
T 1B, T

1
A

¢
.

Given part (iib), the equilibrium outcome of any such subgame must be that first entry

happens weakly before T 1A, then the same arguments presented in the first part of this

proof guarantee that in equilibrium, at τ , the A firm plays Wait and the B firms play

Enter, which in turn guarantees that for any τ in this interval the unique equilibrium

outcome is the one described in part (iiia) of the Claim.

Finally, consider subgames with three active firms starting at τ ≤ T 1B. In equilibrium,

all firms play Wait for any t ∈ [τ , T 1B). If they do so, the outcome is the one described in

part (i) of the Claim and firm i receives payoff Fi(τ). (Notice that each B firm receives a

lottery between LB(T
1
B) = FB(T

1
B) by definition of T

1
B, and FB(τ) = FB(T

1
B)). The fact

that in this interval DA(τ) < 0 and DB(τ) < 0 guarantees that there are no profitable

deviations. By the same argument, there cannot be an equilibrium in which any number of

firms plays Enter at τ , because then there would be at least one firm receiving Li(τ) with

positive probability, and this firm would rather deviate and receive Fi(τ) with probability

one. Hence, we can conclude that for any τ in this interval the unique equilibrium outcome

is the one described in part (i) of the Claim. ¥

Finally, given the assumption T 1B ≤ T 1A, the following Claim holds:

Claim 8 The unique SPNE outcome of the game is that one of the B firms enters at

t1 = T 1B, the A firm enters at t2 = min
n
T 2,BB , T ∗A(2)

o
and the remaining B firm enters at

t3 = T ∗B (3).
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Proof. The result is an immediate implication of Claim 7, because the game itself is a

subgame with three active firms, starting at τ = 0.¥

The statement in Lemma 1 follows immediately from the above Claims. ¥

Proof of Proposition 1

First, we prove that conditions (1) and (2) are sufficient for t2(ABB) < t2(BAB).

Consider the quantities T 2,BB and T 2,AB defined in the proof of Lemma 1. In the limit case

πA (2) = πB (2, B) = πB (2, A), it holds that D2,A
B (t) > D2,B

B (t), hence T 2,AB < T 2,BB .

Moreover, it follows from Fudenberg and Tirole (1985) that T 2,AB < T ∗B(2, A). Since πB(2) =

πA(2, A) implies T ∗A(2) = T ∗B(2, A), it follows that T
2,A
B < T ∗A(2). Therefore, it holds that

T 2,AB < min
n
T ∗A(2), T

2,B
B

o
, that is t2(ABB) < t2(BAB).

Next, we prove that T 2,AB is decreasing in πB (2, A) and increasing in πB (3), that T ∗A(2)

is decreasing in πA (2), and that T
2,B
B is decreasing in both πB(2, B) and πB(3).

First, notice that T 2,AB is implicitly defined by

D2,A
B

³
T 2,AB

´
= πB(2, A)

Z T∗B(3)

T 2,AB

e−rsds−
h
c(T 2,AB )− c (T ∗B(3))

i
= 0.

By the implicit function theorem:

∂T 2,AB

∂πB (2, A)
= −

h
e−rT

2,A
B − e−rT

∗
B(3)

i
/r

−πB (2, A) e−rT
2,A
B − c0

³
T 2,AB

´ < 0 and

∂T 2,AB

∂πB (3)
=

∂T 2,AB

∂T ∗B(3)
· ∂T

∗
B(3)

∂πB (3)
= − πB (2, A) e

−rT∗B(3) + c0 (T ∗B(3))

−πB (2, A) e−rT
2,A
B − c0

³
T 2,AB

´ · ∂T ∗B(3)
∂πB (3)

> 0

where the inequality in the first line holds because both the numerator and the denominator

are positive, as T 2,AB < T ∗B(3), and T
2,A
B < T ∗B (2, A). The inequality in the second line holds

because ∂T∗B(3)
∂πB(3)

< 0, and both the numerator and the denominator of ∂T 2,AB
∂T∗B(3)

are positive

because T ∗B(3) > T ∗B (2, A) and T 2,AB < T ∗B (2, A).

Next, notice that T ∗A(2) is decreasing in πA (2), as we proved in Section 2. Moreover,
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T 2,BB satisfies equation (2) and by the implicit function theorem:

∂T 2,BB

∂πB (2, B)
= −

h
e−rT

2,B
B − e−rT

∗
B(3)

i
/r

−πB (2, B) e−rT
2,B
B − c0

³
T 2,BB

´ < 0

where the inequality holds because both the numerator and the denominator are positive,

as T 2,BB < T ∗B(3) and T 2,BB < T ∗B(2, B). Moreover,

∂T 2,BB

∂πB (3)
= −

£
e−rT

∗
A(3) − e−rT

∗
B(3)

¤
/r +

£
πB(3) · e−rT

∗
B(3) + c0(T ∗B(3)

¤
· ∂T

∗
B(3)

∂πB(3)

−πB (2, B) e−rT
2,B
B − c0

³
T 2,BB

´ < 0

where the inequality holds because the first term in the numerator is positive, as T ∗A(3) <

T ∗B(3), and the second term is null by definition of T ∗B(3).

Finally, by continuity, there is a region of the parameter space around the limit case

πA (2) = πB (2, B) = πB (2, A) for which it holds that t2(ABB) < t2(BAB).

Next, we show that given that t2(ABB) < t2(BAB), condition (3) guarantees that

T 1B < T 1A. Consider the difference between the functions DB(t) and DA(t).

DB(t)−DA(t) =

[πB(1)− πA(1)]

Z t2(ABB)

t
e−rsds+

+[πB(1)− πB(2, A)]

Z t2(BAB)

t2(ABB)
e−rsds

−πA(2)
Z t2(BAB)

t2(ABB)
e−rsds+ [c (t2(ABB))− c (t2(BAB))]

The first term is negative, and vanishes for πA(1) − πB(1) sufficiently small. The second

term is positive. The expression in the third line is positive by definition of T ∗A (2). To see
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this, notice that

πA(2)

Z t2(BAB)

t2(ABB)
e−rsds− [c (t2(ABB))− c (t2(BAB))]

= πA(2)

Z +∞

t2(ABB)
e−rsds− c (t2(ABB))−

"
πA(2)

Z +∞

t2(ABB)
e−rsds− c (t2(BAB))

#

and the function πA(2)
R +∞
t e−rsds − c (t)) is strictly increasing for t < T ∗A (2) , hence also

in the interval from t2(ABB) to t2(BAB). Therefore, for πA(1) − πB(1) sufficiently small

DB(t) −DA(t) > 0 and so the earliest point in which DB(t) intersects zero is earlier than

the earliest point in which DA(t) intersects zero.

Finally, we need to check thatDB (t) has at least one intersection with zero. We evaluate

it in t2(ABB).

DB(t2(ABB)) =

= πB(1)

Z t2(ABB)

t2(ABB)
e−rsds+[πB(1)− πB(2, A)]

Z t2(BAB)

t2(ABB)
e−rsds−c(t2(ABB))+c (t2(ABB)) > 0.

¥
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