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SEQUENTIAL ESTIMATION OF DYNAMIC DISCRETE GAMES:
A COMMENT

BY MARTIN PESENDORFER AND PHILIPP SCHMIDT-DENGLER1

Recursive procedures which are based on iterating on the best response mapping
have difficulties converging to all equilibria in multi-player games. We illustrate these
difficulties by revisiting the asymptotic properties of the iterative nested pseudo max-
imum likelihood method for estimating dynamic games introduced by Aguirregabiria
and Mira (2007). An example shows that the iterative method may not be consistent.

KEYWORDS: Dynamic discrete games, multiple equilibria, pseudo maximum likeli-
hood estimation, recursive methods.

AGUIRREGABIRIA AND MIRA (2007), henceforth AM (2007), studied pseudo
maximum likelihood estimators of dynamic games and proposed an iterative
nested pseudo maximum likelihood method.

This comment revisits the asymptotic properties of the sequential method.
We illustrate that the method may not be consistent. We provide an example
in which the sequential method converges to a fixed number distinct from the
true parameter value with probability approaching 1.

EXAMPLE: Consider a repeated game with t = 1�2� � � � �∞. Every period t,
two firms, indexed by i = 1�2, simultaneously decide whether to be active or
not. Firm i’s period payoff is equal to ε1

i if firm i is active and firm 3 − i is not
active; θ + ε1

i if both firms are active; and ε2
i if firm i is not active. The true

parameter θ0 is contained in the interior of a compact interval Θ with Θ =
[−1�−10]. The tuple of random variables (ε1

i � ε
2
i ) is such that the difference

εi = ε1
i −ε2

i is drawn independently every period from the distribution function
Fα and observed privately by firm i prior to making the choice with

Fα(εi)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − α+ 2α

[
�

(
εi − 1 + α

σ

)
− 1

2

]
� [1 − α�∞)�

εi� [α�1 − α)�

2α�
(
εi − α

σ

)
� [−∞�α)�

(1)

where � denotes the standard normal cumulative distribution function, σ =
2α/

√
2π, and α(θ0) > 0 is small.2 There are no publicly observed state vari-

1We thank the editor, an anonymous referee, Helmut Elsinger, and Oliver Linton for helpful
comments.

2The cumulative distribution function (c.d.f.) Fα arises when the joint density of (ε1� ε2) takes
the form fα(ε

1 − ε2) · φ(ε2), where φ(·) denotes the standard normal probability distribution
function (p.d.f.) and fα(x) is a p.d.f. that equals 2α

σ
φ( x−α

σ
) for x ∈ [−∞�α), equals 1 for x ∈

[α�1 − α), and equals 2α
σ
φ( x−1+α

σ
) for x ∈ [1 − α�∞).
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ables, and firms strategies are a function of the privately observed payoff shock
only. Firms play a Markov equilibrium. The example satisfies Assumptions 1–4
in AM (2007). By construction Fα approaches the uniform distribution in the
limit when α vanishes. We assume that α(θ0) is chosen sufficiently small (as a
function of the level of θ0) to allow us to focus on the uniform distribution part
of Fα. The assumption α> 0 ensures that εi is distributed on the real line.

EQUILIBRIUM

Let Pi denote the probability that firm i is active and let P = (P1�P2). Firm i
is active if and only if (θ+ε1

i ) ·P3−i+ε1
i ·(1−P3−i) > ε2

i , which yields (θ) ·P3−i >
ε2
i −ε1

i and gives the following expression for firm i’s probability of being active:

Pi = Ψ(P3−i� θ)(2)

= 1 − Fα(−θ · P3−i)�

We denote Ψ(P� θ) = (Ψ(P2� θ)�Ψ(P1� θ)). An equilibrium solves P = Ψ(P�
θ). The symmetric equilibrium for α small is given by Pi = 1

1−θ
for i = 1�2.

The equilibrium is the unique symmetric equilibrium, but it is not a stable
equilibrium in the sense that the fixed point on the best response mapping is
not asymptotically stable. The equilibrium is evolutionary stable in the sense of
Maynard Smith (1982). The instability property in the best response mapping
plays a central role in establishing inconsistency of the nested pseudo likeli-
hood (NPL) method, but does not appear to be a reasonable equilibrium re-
finement concept for the incomplete information Markov game. The reason is
that another firm’s strategy is not observable and it is not clear how firms learn
from opponents’ behavior to justify the best response mapping as a refine-
ment concept. To “learn” from opponents’ play, a firm would have to calculate
long-run averages to infer strategies. But any such long-run average calculation
would violate the Markov assumption.

NPL METHOD

Let P̃M = (P̃1
M� P̃

2
M) denote the sample frequency estimator of the choice

probabilities. The pseudo log-likelihood for any tuple (P1�P2) is proportional
to

QM(θ�P) ∝ P̃1
M ln(1 − Fα(−θ · P2))+ (1 − P̃1

M) lnFα(−θ · P2)(3)

+ P̃2
M ln(1 − Fα(−θ · P1))+ (1 − P̃2

M) lnFα(−θ · P1)�

AM (2007, p. 18, eqs. (29) and (30)) defined the NPL method as a sequence of
estimators {θ̂K

M}, where the K-stage solves

θ̂K
M = arg max

θ∈Θ
QM(θ� P̂K−1)(4)
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and the probabilities {P̂K} are obtained recursively as

P̂K = Ψ(P̂K−1� θ̂
K
M(P̂K−1))�(5)

We shall examine the limit of the sequential method. Notice that function (5)
is distinct from the best response function (2), as θ is not fixed but a function
of the choice probabilities.

AM (2007) introduced the NPL fixed point as a pair (θ̂� P̂) that satisfies the
two conditions

θ̂ = arg max
θ∈Θ

QM(θ� P̂) and P̂ =Ψ(P̂� θ̂)�(6)

The NPL estimator is defined as the NPL fixed point with the highest value
of the pseudo likelihood among all the NPL fixed points. AM (2007) estab-
lished the consistency of the NPL estimator. We shall illustrate that the sequen-
tial method may not converge to the correct fixed point. We shall illustrate that
the sequential NPL method can lead to inconsistent estimates.

NPL LIMIT

We examine the limit θ̂∞
M of the NPL sequence θ̂K

M . An estimator θM is con-
sistent if θM

P−→ θ0, that is, limM→∞ Pr(|θM − θ0| ≥ μ) = 0. The proof of the
following result is given in the Appendix.

LIMIT RESULT: The following statements hold.
(i) P̃M

P−→ P0.
(ii) Suppose P̃M is the starting value of the NPL choice probability sequence.

Then θ̂∞
M

P−→ −1 for any θ0 ∈ (−1�−10).

The limit estimator θ̂∞
M converges with probability 1 to the number −1 for

any value of the true parameter θ0 ∈ (−1�−10), even when the choice proba-
bility sequence is initialized at the consistent frequency estimator. The example
shows that properties of the estimator θ̂K

M rely on the order in which the limit
is taken. When M is held fixed and the limit K → ∞ is considered, then the
sequential method converges to a number distinct from the true value.

ILLUSTRATION

Figure 1 illustrates the NPL difference equation graphically. To simplify the
illustration, we depict the NPL difference equation in terms of choice proba-
bility ratios, p̂K = P̂2

K/P̂
1
K . The NPL sequence for p̂K is formally stated in equa-

tions (8) and (9) in the Appendix. The illustration assumes a true parameter
value of θ0 = −2. The equilibrium choice probabilities are then P1 = P2 = 1/3
and P̃1

M ≈ P̃2
M ≈ 1/3 for large M .
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FIGURE 1.—NPL difference equation.

The NPL difference equation has three fixed points. The middle fixed point
p = 1 yields the true parameter value θ0 = −2. This fixed point is unstable,
as the slope of the difference equation is larger than 1 at p = 1. So the NPL
sequence attains the fixed point p = 1 only if it starts at the true value p = 1.
For any starting value with p 	= 1, the NPL sequence moves away from that
point.

There are two additional fixed points of the NPL sequence with approxi-
mate values for (p�θ) of (3�73�−1), (1/3�73�−1), respectively. These fixed
points are stable, and notice that both fixed points imply an approximate para-
meter value of θ ≈ −1. Any starting point p > 1 converges to the fixed point
(3�73�−1) with equilibrium choice probabilities of P1

∞ ≈ 0�21 and P2
∞ ≈ 0�79.

Any starting point p< 1 converges to the third point that equals (1/3�73�−1)
with equilibrium choice probabilities of P1

∞ ≈ 0�79 and P2
∞ ≈ 0�21.

The NPL method always converges. A researcher reaches a stable fixed point
with probability approaching 1 as M increases. The stable fixed points have
approximately the same likelihood values and the same parameter value esti-
mates. Hence, the researcher may incorrectly conclude that the NPL estimate
of θ is unique. Observe that the probability that the NPL method converges
to the true parameter value approaches zero as M increases, as only starting
values that lie on the 45 degree line, where p = 1, yield consistent estimates.
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With the frequency estimator, the probability that p̂ = 1 approaches zero as M
increases.

Note that the instability of the fixed point at p = 1 stems from θ0 being
smaller than −1� For θ0 ∈ (−1�0), the NPL difference equation will only have
one stable fixed point and the NPL method will converge to the true parameter
with probability approaching 1.

AM (2007) explained that in case of multiple fixed points, the researcher
may initiate the sequence at different starting values for the choice probabil-
ities P̂0 and choose the sequence that maximizes the pseudo maximum likeli-
hood in the limit. This suggestion works in the example only if the econometri-
cian guesses correctly that the choice probability estimates lie on the 45 degree
line. The 45 degree line emerges in this simple example because of the as-
sumed symmetry. Guessing the relationship between choice probabilities cor-
rectly may be more difficult in richer settings. For instance, introducing a slight
asymmetry in payoffs in the current example would require the researcher to
find the solution to a cubic equation.3 Yet, as already observed in AM (2007),
consistent estimates of θ emerge only if all the NPL fixed points are calculated
and compared. Computationally, the task of finding all fixed points is demand-
ing. Importantly, this task is not achieved by the NPL method when the fixed
point on the best response mapping is not asymptotically stable.

The inconsistency of the NPL method appears not to be an artefact of the
chosen static example. A Monte Carlo study in Pesendorfer and Schmidt-
Dengler (2008) illustrated that the same problem may emerge in richer set-
tings. In a rich and realistic dynamic entry game, the NPL method converged,
but did not converge to the true value in three of five dynamic entry equilibria.

APPENDIX: PROOF OF THE LIMIT RESULT

(i) This follows immediately as the sample frequency estimator is consistent.
(ii) We begin by describing the expression for the NPL difference equation.

In the description, we initially impose the condition that along the NPL se-
quence

P1�P2 ∈ (α�1 − α)�(A)

Later, we establish that condition (A) indeed holds at each point along the
NPL sequence P̂K . Observe that condition (A) eventually holds at the start-
ing values, that is, for any μ > 0 there exists an M such that, for all M >M�

Pr(P̃1
M� P̃

2
M ∈ (α�1 − α)) > 1 − μ. This follows immediately from part (i) as

P0 ∈ (α�1 − α).

3Details of such an example are available from the authors on request.
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The necessary first order condition in problem (4) when P1 and P2 satisfy
property (A) yields

∂QM/∂θ = P̃1
MP

2/(1 + θ · P2)+ (1 − P̃1
M)/θ(7)

+ P̃2
MP

1(1 + θ · P1)+ (1 − P̃2
M)/θ

= 0�

which gives rise to a quadratic equation in θ.4 Substituting the solution θ̂M(P)
into equation (5) yields the following difference equation that characterizes
the NPL method:

(P1
K�P

2
K) =

(
1 + h

M

(
P2
K−1

P1
K−1

)
�1 + h

M

(
P2
K−1

P1
K−1

)
· P

1
K−1

P2
K−1

)
�(8)

where

h
M
(p) = −2 − P̃1

M

4
− 2 − P̃2

M

4
·p

+ 1
4

√
[2 − P̃1

M − (2 − P̃2
M) ·p]2 + 4 · P̃1

MP̃
2
M ·p�

We wish to study the limit of the NPL sequence (8). Notice that the right
hand side in equation (8) is determined by the probability ratios pK−1 =
P2
K−1/P

1
K−1 and does not depend on the probability levels. Restating the se-

quence in terms of the probability ratios yields a one dimensional difference
equation which is easier to analyze:

pK = gM(pK−1)= 1 + h
M
(pK−1)/pK−1

1 + h
M
(pK−1)

�(9)

When P̃1
M� P̃

2
M < 1/2, the function gM in (9) has exactly three fixed points:

p= 1�

p∗
M = [

2 − P̃1
M − P̃2

M +
√
(2 − P̃1

M − P̃2
M)

2 − 4P̃1
MP̃

2
M

]
/(2P̃1

M)�

p∗∗
M = [

2 − P̃1
M − P̃2

M −
√
(2 − P̃1

M − P̃2
M)

2 − 4P̃1
MP̃

2
M

]
/(2P̃1

M)

with p∗∗
M < 1 < p∗

M . Part (i) and the assumption θ0 < −1 imply that for any
μ> 0, there exists an M such that, for all M >M , Pr(P̃1

M� P̃
2
M < 1/2) > 1 −μ,

4With solution θ̂M(P) = −(2 − P̃1
M)/(4P2) − (2 − P̃2

M)/(4P1) + ([(2 − P̃1
M)/(4P2) − (2 −

P̃2
M)/(4P1)]2 + P̃1

MP̃2
M/(4P1P2))1/2�
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and the described fixed points arise with probability 1 as M → ∞. The first
fixed point implies equal choice probabilities of (P̃1

M + P̃2
M)/2 which yields θ

close to θ0. The second and third fixed points yield choice probabilities of
(1/(1 +p∗

M)�p
∗
M/(1+p∗

M)) and (1/(1+p∗∗
M)�p

∗∗
M/(1+p∗∗

M)), respectively, with
θ = −1.

Which of the described fixed points is attained as the NPL limit is deter-
mined by the shape of the function gM and the starting values. Next, we ob-
serve four properties of gM which are then used to determine the limit of the
NPL sequence. Then we briefly sketch the proofs of these properties.5

Properties of gM

PROPERTY 1: gM(p) > 1 if and only if p > 1, and gM(p) = 1 if and only if
p = 1.

PROPERTY 2: gM has a nonnegative derivative for p≥ 1.

PROPERTY 3: The derivative ∂gM(p)/∂p evaluated at p = 1 equals −1 +
2/(P̃1

M + P̃2
M) and, from Limit Result part (i), ∂gM(p)/∂p|p=1

P−→ −θ0.

PROPERTY 4: For any μ > 0 there exists an M such that, for all M > M ,
Pr(limp→∞ gM(p) <∞) ≥ 1 −μ.

Property (A) implies that 1+h
M
(pK−1)/pK−1�1+h

M
(pK−1) ∈ (α�1−α), and

Property 1 follows immediately from inspection of equation (9). Without loss
of generality, we may relabel firms’ identities and by Property 1, we may restrict
attention to the case p ≥ 1 and to fixed points p = 1 and p = p∗

M . We do so
for the remainder of this proof. Properties 2 and 3 can be seen by taking the
derivative. Property 4 can be established by using l’Hospital’s rule as

lim
p→∞

h
M
(p) = lim

p→∞
[
(h

M
(p)/p)/(1/p)

]
= lim

p→∞
∂(h

M
(p)/p)

∂p

/∂(1/p)
∂p

�

The derivative Property 3 combined with monotonicity Property 2 imply that
the fixed point p = 1 is unstable and fixed points p∗

M (and p∗∗
M ) are stable. To

see this, observe that for any μ> 0 there exists an M such that, for all M >M ,
with probability 1 −μ, the monotone function gM intersects the 45 degree line
at p = 1 from below, as the slope is strictly larger than 1 at p = 1. In turn, this
implies that the function gM intersects the 45 degree line at fixed points p∗

M

5A complete proof of the properties can be obtained from the authors.
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(and p∗∗
M ) from above. Now, as the function gM is monotone for p ≥ 1 (and

finite at ∞), it must hold that the slope of the function gM at fixed points p∗
M

(and p∗∗
M ) is between 0 and 1 (and strictly less than 1 from Property 4), which

establishes (local) stability.
We can now determine the limit of the NPL sequence. For any μ> 0, there

exists an M such that, for all M > M , with probability 1 − μ, equation (9)
converges to fixed point p∗

M whenever the starting value exceeds 1 (and it con-
verges to fixed point two, p∗∗

M , whenever the starting value is less than 1). To
see this, notice that for starting values in the interval (1�p∗

M), the difference
equation (9) increases toward fixed point p∗

M as the function gM is monotone
increasing and above the 45 degree line. On the other hand, for starting val-
ues in the interval (p∗

M�∞), the difference equation (9) decreases toward fixed
point p∗

M as the function gM is monotone increasing and below the 45 degree
line.

Next, we establish property (A). We already know from part (i) that for any
μ > 0, there exists an M such that, for all M >M , Pr(P̃1

M� P̃
1
M ∈ (P0 − α�P0 +

α)) > 1 −μ. We need to establish that the updated choice probabilities, based
on the updating equation (8), are contained in (α�1−α) whenever p ∈ [α/(1−
α)� (1 − α)/α]. Without loss of generality, we relabel firms’ identities so that
P2 ≥ P1 and we examine the condition for p ∈ [1� (1 −α)/α]. We need to show
that α < P1

K(p) and P2
K(p) < 1 − α. The second inequality can be established

by rewriting the equation hM(p) conveniently as hM(p)= −[(2− P̃1
M)/4+ (2−

P̃2
M) · p/4] +

√
[(2 − P̃1

M)/4 + (2 − P̃2
M) ·p/4]2 − (2 − P̃1

M − P̃1
M) ·p/2. For any

μ > 0, there exists an M such that, for all M >M , with probability 1 − μ, the
term in parentheses is strictly positive, and the term under the square root is
strictly smaller than the square of the first term in square brackets. Thus, with
probability 1 − μ, the expression hM(p) is strictly less than zero on [1�p∗

M].
Since P2

K = 1 + h
M
(p)/p, this implies that P2

K < 1 − α. An examination of the
derivative of P1

K(p) reveals that it equals ∂h
M
(p)/∂p, which is nonpositive.

Thus, it suffices to establish that limp→∞ P1
K(p) > α with probability 1 − μ.

Rewriting the inequality yields√
[2 − P̃1

M + (2 − P̃2
M) ·p]2 − 8(2 − P̃1

M − P̃1
M) ·p

>−4(1 − α)+ [2 − P̃1
M + (2 − P̃2

M) ·p]�
The expression under the root is positive (which can be immediately seen from
the equivalent representation of the root in (8)). Squaring both the left and
right hand sides yields (after cancelling) p · [P̃1

M − α(2 − P̃2
M)] > (1 − α)[P̃1

M −
2α], which indeed holds with probability 1 −μ for p sufficiently large.

So far we have shown that for starting values P2 	= P1, the NPL sequence
converges to the limit θ = −1. To complete the argument, we need to establish
that limM→∞ Pr(P̃1

M = P̃2
M)= 0. Note that the most likely outcome of an (M�P0)
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binomial distribution is given by k = �(M + 1)P0�� where �x� is the smallest
integer less than or equal to x. Using this notation, we find that an upper bound
on the probability

Pr(P̃1
M = P̃2

M) =
M∑
k=0

(
M
k

)
(P0)

k(1 − P0)
M−k

(
M
k

)
(P0)

k(1 − P0)
M−k

is given by[
M∑
k=0

(
M
k

)
(P0)

k(1 − P0)
M−k

][(
M

k

)
(P0)

k(1 − P0)
M−k

]
= Pr(k= k)�

Robbins (1955) illustrated bounds on M! and showed that M! = √
2πM(M/

e)MerM , where 1/(12M+1) < rM < 1/(12M). For M > max(1/P0�P0/(1 − P0)),
we can use these bounds to obtain that Pr(k= k) is less than or equal to√

M

2πk(M − k)

(MP0)
k

(k)k

(M(1 − P0))
M−k

(M − k)(M−k)
e1/(12M)

≤
√

M

2π(MP0 − 1)(M(1 − P0)− P0)

(MP0)
k

(MP0 − 1)k

× (M(1 − P0))
M−k

(M(1 − P0)− P0)(M−k)
e1/(12M)

=
√√√√√ 1

2π(MP0 − 1)
(
(1 − P0)− P0

M

) 1(
1 − 1

P0M

)k

× 1(
1 − P0

M(1 − P0)

)(M−k)
e1/(12M)

≤
√√√√√ 1

2π(MP0 − 1)
(
(1 − P0)− P0

M

) 1(
1 − 1

P0M

)(M+1)P0

× 1(
1 − P0

M(1 − P0)

)M
e1/(12M)�
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The inequalities follow because (MP0 − 1) < �(M + 1)P0� < (M + 1)P0. The
first term in the last expression converges to zero, and the remaining three
terms are bounded. It follows that limM→∞ Pr(P̃1

M = P̃2
M) = 0. This completes

the proof. Q.E.D.
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