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Abstract

This paper studies the adoption of nuclear magnetic resonance imaging

(MRI) by US hospitals. I consider a timing game of new technology adop-

tion. The dynamic game allows me to take both timing decisions and strategic

interaction into account. The model can be solved using standard dynamic

programming techniques. Using a panel data set of US hospitals, cross sec-

tional variation in adoption times, market structure and demand is exploited

to recover the pro�t and cost parameters of the timing game. In counterfactual

experiments, I decompose the cost of competition into a business stealing and

a preemption e¤ect. I �nd substantial changes in adoption times and industry

payo¤s due to competition. These changes are mostly due to a business stealing

e¤ect. Preemption accounts for a signi�cant but small share of this change.
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1 Introduction

This paper estimates the impact of competition on the timing of new technology

adoption. In a strategic environment, a �rm�s decision when to adopt is not only

driven by the cost of the new technology and the direct e¤ect of adoption on current

and future payo¤s, but also by an indirect e¤ect. By adopting, a �rm a¤ects its rivals�

payo¤s and thus their adoption timing decisions, which in turn a¤ects the �rm�s

payo¤s. To correctly infer the e¤ect of competition on the timing of adoption, the

endogeneity and the dynamic character of the adoption decision has to be accounted

for.

To accomplish this, I develop and estimate a dynamic game-theoretic model of

technology adoption. Every period, �rms decide whether or not to adopt the new

technology. I consider subgame perfect equilibria and require that each �rm�s decision

be optimal at every point in time. Two sources of ine¢ ciency can arise in this model.

First, there is business stealing: Firms gain from new technology adoption in part at

expense of their rivals. Second, a preemption motive may determine the equilibrium

adoption time: A �rm adopts early to discourage its rivals from adopting and secures

the rents from adoption. This paper builds a framework to quantify the relative

importance of business stealing and preemption in a dynamic setting.

I assume that �rms move sequentially in every period. The sequential structure

of moves implies that there is a unique subgame perfect equilibrium. I can solve for

the subgame-perfect equilibrium using a simple recursive algorithm. I construct a

method of moments estimator based on the equilibrium adoption times.

The model is used to study hospital competition in the context of magnetic reso-

nance imaging (MRI) adoption. MRI is a diagnostic tool for producing high resolution

images of body tissues. It �rst became commercially available in the early 1980s and

di¤used slowly during the subsequent two decades. The cost of new medical tech-

nologies has repeatedly been blamed for the increase in health care expenditures.

Competition among hospitals has been depicted as wasteful and leading to a �medical

arms race.�MRI is a typical example of an expensive new medical technology, given
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that a high �xed asset investment of US$ 2 million was required fo a new imager in

1985.

The adoption of MRI will a¤ect revenues and costs of hospitals but it is a small

investment decision relative to entering or exiting a market. Consequently, the num-

ber of hospitals and hospital characteristics are viewed as exogenous to the adoption

decision. Using information on the timing of MRI adoption within markets as well as

varying degrees of competition and demand across markets, the e¤ects of competition,

demand and costs on the timing decision are separated.

In equilibrium, hospitals�adoption times are determined either by their stand-

alone incentive (the marginal bene�t of adopting) or the preemption incentive (the

incentive to adopt before your rival in order to delay her adoption). Thus, equilibrium

adoption times are not only informative about the marginal bene�t of adopting, but

also about the relative bene�t of being the follower versus the leader. This enables me

to identify the e¤ect of rivals�adoption on the payo¤s of adopters and non-adopters

separately. I �nd that returns to adoption decline substantially with the number

of adopters. The e¤ect of rival adoption on non-adopters�payo¤s is signi�cant but

substantially smaller than the e¤ect on adopters.

Hospitals� organizational structure and hospital size in�uence the adoption de-

cision. Private nonpro�t and for-pro�t hospitals are more likely to adopt the new

technology than community hospitals. Large hospitals bene�t more from MRI adop-

tion. On the cost side, estimates indicate that the real cost of adopting MRI declines

by three percent per year.

I perform two counterfactual experiments that quantify to what extent compe-

tition causes ine¢ ciencies from the hospital industry�s perspective. In the �rst ex-

periment, a regulator chooses adoption times to maximize industry payo¤s. Thus

the regulator takes into account both sources of ine¢ ciency, business stealing and

preemption. This regime delays hospitals�adoption times by as much as four years

and increases the industry payo¤s. In the second experiment, I isolate the role of

preemption by comparing adoption times in a pre-commitment Nash equilibrium to
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the subgame perfect equilibrium outcome.1 In the Nash equilibrium, �rms precom-

mit to their adoption times as in Reinganum (1981), which removes the incentive to

preempt in order to delay the rival�s adoption time. I �nd that preemption accounts

only for a small fraction of the overall loss in industry payo¤s and is only marginally

responsible for the acceleration of adoption arising from strategic adoption timing.

Related Literature. Existing empirical studies of new technology adoption consider

competitive (Griliches (1957)) and monopolistic settings (Rose and Joskow (1990)),

but also environments where strategic interaction might play a role (e.g. Karshenas

and Stoneman (1993), Levin, Levin and Meisel (1992), Baker (2001), and Baker and

Phibbs (2002)). A common approach in this literature is to include rivals�adoptions

or the number of rivals as explanatory variables in the hazard function. The interpre-

tation of the estimated coe¢ cients on rivals�actions in light of the existing theoretical

models is complicated by the potential endogeneity of rivals�adoption times: A �rm�s

decision when to adopt depends on its belief about rivals�adoption times and their

e¤ect on its own pro�ts. A number of recent studies examine the role of strategic

behavior in technology adoption. Hamilton and McManus (2005) �nd that a new

treatment technology di¤used �rst to more competitive markets controlling for the

endogeneity of market structure. Dafny (2005) �nds evidence that �rms make cost

reducing investments to deter entry. Genesove (1999) and Vogt (1999) study the ef-

fect of �rm heterogeneity and rival adoption on the adoption probabilities in duopoly

markets and compare them to predictions from the theoretical literature. The endo-

geneity of the adoption decision has also been addressed in static frameworks either

by using instrumental variable techniques (Gowrisankaran and Stavins (2004)), or by

explicitly modelling technology adoption as a static game (see Dranove, Shanley and

Simon (1992), and Chernew, Gowrisankaran and Fendrick (2002)). Lenzo (2006) stud-

ies strategic complementarities in the adoption of imaging technologies in the context

of a static incomplete information game. The current paper builds on this literature

by modelling technology adoption as a dynamic complete information game, taking

1The impact of preemption on the timing of adoption has been emphasized in the theoretical

literature (e.g. Fudenberg and Tirole (1985) and Riordan (1992)).
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into account both the endogeneity and the dynamic character of adoption decisions.

This paper also contributes to a recent literature that is concerned with the esti-

mation of timing games. Einav (2003) studies the timing of product introduction in

the context of movie release dates. Sweeting (2004) estimates a coordination game,

in which radio stations simultaneously decide when to air radio commercials. As ap-

propriate for the environments studied, these papers consider models where players

commit to the timing of their action at the beginning of time. Players are thus un-

able to revise their decision upon observing their rivals�actions. As it is unlikely that

hospitals are able to pre-commit to an adoption date several years in the future, the

current paper studies a di¤erent model in which �rms decide every period whether

to adopt the new technology or not.

The remainder of the paper is structured as follows. The next section introduces

a discrete time model of technology adoption and discusses the equilibrium proper-

ties. Section 3 describes the MRI technology and its signi�cance for the US hospital

industry, summarizes the construction of the data set, and presents evidence on the

di¤usion of MRI between 1986 and 1993. Section 4 describes the estimation approach

and presents the estimates of the model presented in Section 2. In Section 5 counter-

factual experiments are conducted to examine the role of strategic interaction on the

timing of adoption. Section 6 concludes.

2 A Model of Technology Adoption

This section introduces a model of technology adoption. In this model, an originally

expensive new technology becomes available to a �xed number of competing �rms.

The cost of adoption declines over time. Adoption of the new technology generates a

new source of revenue, but adoption is rivalrous: Bene�ts to adoption decline in the

number of adopters in the market. I will later argue that this type of model resembles

the features of MRI adoption by US hospitals. Section 2.1 introduces the features of

the model. Section 2.2 discusses the equilibrium properties of this model.
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2.1 Model

The model assumptions are similar to those found in the existing theoretical literature.

Since the emphasis of the current paper is on variation in market structure and

strategic interaction in the timing of adoption, I consider a model that allows for �rm

heterogeneity and an arbitrary number of �rms.2 Time is discrete with t = 1; 2; :::;1.

There are I �rms denoted by i = 1; :::; I:

Every period, �rms decide whether to adopt or not. Let ati 2 f0; 1g denote �rm

i�s action at time t and at be an I-vector denoting the action pro�le chosen at time t:

Firm i�s history of actions, hit; is a t vector containing zeros until �rm i has adopted,

and ones from then on. Let Ht be the set of all possible action histories at time t. If

�rm i has not moved at any � < t, i.e. hit = (0; 0; :::::; 0); then its action set at time t

is

Aiht = fdo not adopt; adoptg = f0; 1g:

Firms hold on to the technology inde�nitely once they have adopted. This implies

that the action set is weakly increasing in time. I restrict the attention to pure

strategies. A pure adoption strategy for �rm i is a function mapping the history to

an element of the action set:

sit : ht ! Ait(ht) 8ht 2 Ht

Let nt be the number of adopters in period t :

nt =
IX
i=1

ait

A �rm receives �i0(nt) per period before adoption and �
i
1(nt) thereafter. Let t

i

be �rm i�s adoption time. At the time of adoption it incurs a sunk cost of C(ti).

Firms discount future returns with discount factor �: Hence, a �rm�s discounted

2Existing research either restricts the attention to duopoly markets (Fudenberg and Tirole (1985),

Riordan (1992)), requires payo¤s to be symmetric (Reinganum (1981)), or a monopolistic competi-

tion environment (Goetz (1999)).
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intertemporal pro�ts are

�i =

ti�1X
t=1

�t � �i0(nt) +
1X
t=ti

�t � �i1(nt)� �t
i � C(ti)

Firms choose a strategy to maximize their discounted pro�ts �i:

Let si� = fsitg1t=� be the sequence of �rm i�s adoption strategies starting at time � :

The sequence of strategies by �rms other than i is denoted by s�i� . A subgame perfect

equilibrium is an I-tuple of adoption strategies fs1; s2; ::; si; ::; sIg that constitutes a

Nash equilibrium in every subgame.

I now introduce a set of assumptions regarding the payo¤ and cost functions.

A1: (monotonicity) �ia(n� 1) � �ia(n) for a = f0; 1g and 1 � n; i � I,

A2: (positive returns) �i1(n) � �i0(n� 1); 8 1 � i; n � I

A3: (decreasing returns:) �i1(n � 1) � �i0(n � 2) � �i1(n) � �i0(n � 1); 8 1 � i � I;

8 2 � n � I

A4: (pro�tability order) �i1(n)� �i0(n� 1) > �j1(n)� �j0(n� 1) if and only if

�i1(m)� �i0(m� 1) > �j1(m)� �j0(m� 1); 81 � i; j;m; n � I:

Themonotonicity assumption (A1) states that adoption is rivalrous and thus pay-

o¤s decline monotonically in the number of adopters. Rival adoption hurts both �rms

that have adopted and �rms that have not adopted. This re�ects the presumption

that the new technology opens a new market that has to be shared among adopters,

and that non-adopters lose revenues as rivals become more technologically advanced.

Hence, the game payo¤�i is increasing in rivals�adoption times. I assume that there

are always positive returns (A2) to adoption. Firms can always enjoy higher �ow

pro�ts being an adopter than being a non-adopter, meaning that adoption always

weakly increases �ow pro�ts at the margin: �i1(n) � �i0(n � 1). More amply, the

stand-alone incentive to adopt is always positive. Assumption (A3) says that there

are decreasing returns to adoption. That is, the marginal bene�t to adoption declines

with the rank of adoption. The more �rms have already adopted, the less there is to

gain from adoption. Assumption (A4) requires that the pro�tability order is invariant

to the rank of adoption. If �rm A gains more from adopting than �rm B when one

other �rm has adopted, then it also gains more from adopting when two other �rms
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have adopted, etc..

Next, I make the following assumption regarding the cost function:

A5: (cost function decreasing, convex and bounded)

(i) C(t) > C(t+ 1):

(ii) C(t)� C(t+ 1) > C(t+ 1)� C(t+ 2):

(iii) 9t <1 such that �i1(N)� �i0(N � 1) > C(t)� �C(t+ 1)

(iv) 9t <1 such that C(t) < (�i1(I)� �i0(0))=(1� �) 8i:

The cost function (A5) is assumed to be falling exogenously over time at a decreasing

rate. I also assume that the cost falls eventually to a level such that the gains from

adoption are higher than the cost.

Finally, I introduce an assumption regarding the timing of decisions.

A6: (sequential moves) At each period t �rms sequentially make the decision whether

to adopt. The �rm with the i�th largest marginal bene�t to adopt (�i1(n)��i0(n�1))

moves i� th:

The sequential moves (A6) assumption addresses the potential multiplicity present

in a simultaneous move discrete time game.

2.2 Discussion

Here I discuss the properties of the model. I �rst argue that the assumptions ensure

that the game has a �nite horizon. Then the potential multiplicity in a simultaneous

move game and how sequential moves achieve uniqueness are discussed. The solution

algorithm is described and the model predictions are discussed.

Finite horizon. Assumption (A5) insures that all �rms adopt in �nite time. The

intuition is that if a �rm were never to adopt, then the continuation value of not

adopting must always be higher than that of adopting. Assumption 5(iii) states that

the cost decline cannot continue for ever, so that eventually no �rm would want to

postpone adoption individually. Assumption 5(iv) requires that costs fall to such an

extent that even if all �rms have adopted the technology, �ow pro�ts are higher for

every �rm than if no �rm had adopted the technology.

De�ne �t as the earliest time such that the least pro�table �rm has an incentive
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to adopt when all other �rms have adopted. Assumption (A5) then implies that in

any subgame starting t � �t; all �rms not yet having adopted will adopt immediately.

Consider a subgame starting at some t � �t where (I� i) �rms have adopted. Suppose

one of the remaining �rms adopts at ~t > t: Then it can always increase its payo¤s

by adopting at ~t � 1: Hence, all �rms will adopt immediately at t: This enables me

to solve the model backwards from �t: The endpoint �t can be computed for a given

payo¤ structure and cost process. It is the smallest t where the marginal increase

in period return when adopting I � th is greater than the cost saving when delaying

adoption to time t + 1: For a formal argument see the proof of Proposition 1 in the

appendix.

Simultaneous versus sequential moves. With �rms moving simultaneously the

solution concept of subgame perfect equilibrium does not always generate a unique

prediction regarding adoption times and the identities of adopters. In this model of

technology adoption two forms of multiplicity are present. First, situations similar to

a static entry model (Bresnahan and Reiss (1991), Berry (1992)) can arise, where the

number of adopters can be predicted, but not their identity. In a given period t �rm

A might be willing to adopt as long as �rm B does not adopt and vice versa. A second

source of multiplicity stems from the dynamic nature of the game. The identity of

the �rst adopter may be known, but it cannot be predicted in which period the �rst

adoption will occur. A �rm might delay adoption if it is the adopter in the ensuing

subgame, or it may adopt immediately, because the ensuing subgame involves its

rival adopting. Whether the �rst adoption occurs in a given period or a later period

thus depends on the equilibrium strategies being played in the ensuing subgames.

Multiplicity poses a problem in estimating the model because there is no unique

mapping from observables to the data. I address this issue by assuming that �rms

move sequentially (A6). Since all �rms adopt in �nite time, the game is equivalent to a

�nite horizon game of perfect information. Generically, �rms will never be indi¤erent

between two actions. Consequently, there is a unique subgame perfect equilibrium.

The sequential moves (A6) assumption can be justi�ed, because it produces the same

order of adoptions as if time periods between moves were su¢ ciently small in a two
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player game. The intuition is that if �rm A receives a larger increase in period payo¤s

from adoption than �rm B, and both �rms face the same cost schedule, then at every

point in time the bene�t from adopting �rst today is larger for �rm A than for �rm

B: If time periods are short enough, there will exist a period where �rm A prefers

to adopt �rst and �rm B does not. For the case I = 2 this idea is formalized in

Schmidt-Dengler (2005).3 The robustness of the sequential moves assumption will be

discussed in Section 4.

Solution algorithm. Given the structure of the game, the unique equilibrium can

be computed using a simple recursive algorithm. I order the �rms according to their

pro�tability.4 Thus i represents the i�th most pro�table �rm. Consider the least

pro�table �rm I and let �t be the time by which all �rms adopt. At �t�1; �rm I knows

that all players will adopt next period, regardless of the history of play. If �rm I has

not adopted, it adopts whenever the increase in period payo¤s when adopting today

outweighs the cost saving when adopting next period. This way, I can compute the

value for each history before �rm I makes its decision. Thus, �rm I � 1 knows the

continuation value of adopting versus not adopting and chooses its action accordingly.

Going backwards, I compute the continuation value for all other players and every

history in period �t � 2: I repeat this until period t = 1: This yields the history of

equilibrium play.

Figure 1 illustrates the dynamics of pro�ts in this model for the simple case of two

symmetric �rms. Here, �rm A adopts �rst at time tA and �rm B adopts subsequently

at time tB: Prior to tA, both �rms receive �ow pro�ts of �0(0): At the time of adoption,

3A similar argument may hold for I > 2; but a simple inductive argument cannot be applied.

This can be illustrated for the case I = 3: In a subgame with the two less pro�table �rms not having

adopted, the second adoption may occur sooner than in a subgame where one of the remaining �rms

is the most pro�table, because a more pro�table �rm faces a weaker preemption constraint as shown

in Riordan (1992). By adopting �rst at time t; the most pro�table �rm may induce an earlier second

adoption and enjoying monopoly payo¤s for a shorter period than a less pro�table �rm might. Thus

it is not straightforward to show that the continuation value when adopting is always highest for

the most pro�table �rm.
4The speci�cation chosen in Section 4 will ensure that �rms di¤er in pro�tability with probability

one.
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�rmA�s pro�ts increase to �1(1); but in part at the expense of its rivalB; whose pro�ts

drop to �0(1):When �rm B adopts at time tB; its pro�ts increase, but at the expense

of �rm A: Now both �rms are in the same position and earn �1(2): Note that �ow

pro�ts at a given point in time are only a¤ected to the extent whether a �rm has

adopted or not, but not when it has adopted. Intertemporal pro�ts though depend

on when a �rm has adopted.

Stand alone incentive. A �rm has an incentive to delay adoption, because the

new technology becomes cheaper over time: C(t) > �C(t + 1). On the other hand

it wants to adopt sooner because adoption generates an increase in period returns,

�i1(nt) � �i0(nt � 1): A monopolist weighs the bene�t of higher period payo¤s when

adopting today against the cost-saving when delaying adoption. The same holds for

a �rm whose rivals have all adopted. If �i1(nt) � �i0(nt � 1) > C(t) � �C(t + 1), we

say that �rm i has a stand-alone incentive to adopt.

Preemption incentive. Further, a �rm may have an incentive to adopt, because

it changes its rivals incentive to adopt due to the decreasing returns assumption.

Conversely, there is a cost of waiting, because a rival may adopt which has a negative

impact on the �rm�s own payo¤s and will delay its own adoption time. To illustrate

this, consider a duopoly market with two identical �rms i = A;B as in Figure 2. If

�rm A adopts at TA, it will enjoy the monopoly pro�ts from adoption until costs have

fallen enough such that the stand-alone incentive justi�es the second adoption by �rm

B at TA. De�ne the second adoption time determined by the stand-alone incentive

as TB: Taking this as given, the best response by the �rm A would be an adoption

time TA � TB where the stand-alone incentive justi�es the �rst adoption. Firm A

would enjoy higher pro�ts than B because �A(TA; TB) � �B(TA; TB):5 However �rm

B would in fact prefer to preempt �rm A if �B(TB; T P ) > �B(TA; TB): Hence, the

equilibrium �rst adoption time T P must satisfy �B(TB; T P � 1) � �B(T P ; TB): The
5The following argument is adopted from Fudenberg and Tirole (1985). Note that �A(TA; TB) �

�A(TB ; TB); because TA is a best response. Note that �A(TB ; TB) = �B(TB ; TB) because �rms

are identical and �nally �B(TB ; TB) � �B(TA; TB), because payo¤s are declining in rivals�adoption

times.
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�rst adoption time TB is then determined by the advantage of being the leader over

being the follower, �1(1) � �0(1) : By preempting, �rm A before time TA; �rm B

could gain the entired shaded area and delay �rm A0s adoption time to TB: This is

the preemption incentive.

As the number of �rms increases, the preemption incentive for an early adopter

can be mitigated, because subsequent adopters will adopt soon due to the preemption

motive. Consider the case of three �rms. The �rst �rm knows that the second

adoption date will be �pushed back�due to the preemptive nature of the game played

by the remaining two �rms, and thus monopoly pro�ts can only be enjoyed for a short

period of time. Goetz (1999) discusses the case of a continuum of �rms where the

preemption motive is absent.

3 The Di¤usion of MRI

In this section I describe magnetic resonance imaging, the construction of the data

set, and present the key features of the data.

3.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a diagnostic tool for producing high resolution

images of body tissues. MRI is superior to other imaging techniques such as the

computer tomography scanner (CT scanner) in soft tissue contrast resolution. It is

thus particularly useful in identifying diseases in organs such as brain, heart, liver,

kidneys, spleen, pancreas, breast, and other organs. In the late 1970s, the leading

companies producing in the CT market recognized the potential of MRI for medical

imaging. MRI scanners became commercially available in the early 1980s. By 1983

eight companies had already completed prototypes (Roessner et al. (1997)). The

supply of MRI scanners has been very competitive early on. Lunzer (1988) reports

that more than 25 manufacturers were supplying scanners, although General Electric

enjoyed a 32 percent market share at that time. The adoption of MRI by US hospitals

was slow relative to the CT scanner. One reason was the originally very high capital
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cost, about 10 times that of a CT scanner, with cost of the equipment ranging from

$2 million to $2.6 million, and installation cost ranging from $0.6 million to $1.3

million in 1985 (Steinberg and Evens (1988)). The cost of equipment declined over

time at a rate of 4.5% in real terms (Bell (1996)). A crucial reason for adopting MRI

was the Health Care Finance Administration�s 1985 approval of coverage for scans

performed on Medicare patients,6 because Medicare patients are typically responsible

for 40% of a hospital�s revenue. Hospital managers may also have been aware of the

prestige e¤ect of an imager. Muro¤ (1992) states for example that there is �economic

impact of having a �state-of-the art,�multipurpose MRI unit that might be necessary

to win referrals in a highly competitive environment. [...] Quantifying these bene�ts

is di¢ cult.�This prestige e¤ect may not only directly attract patients, but may also

enable a hospital to attract high quality physicians. A survey of hospital executives

carried out by the American Hospital Association in 1987 shows that competition was

the second most important reason for purchasing MRI, the number one reason being

�improving patient care.�

3.2 Data Description

I use two sources of data for the empirical analysis, adoption data derived from the

American Hospital Association�s (AHA) annual survey database as well as demo-

graphic data derived from the U.S. Census.

The AHA surveys all hospitals operating in the United States every year. The

AHA survey has been used previously to analyze the di¤usion of MRI. Baker (2001)

studies the impact of HMO market share on MRI di¤usion in a hazard framework.

There, the emphasis is on individual hospitals in larger markets, whereas I focus

on strategic interaction among hospitals in small markets. I have however adopted

Bakers�s de�nition of adoption: I record a hospital as having adopted MRI in a

given year if it responds in the survey that it has a hospital based nuclear magnetic

resonance imaging facility. I have constructed a dataset of non-federal general medical

6The coverage was limited to scans performed with imagers that had won the Food and Drug

Administration�s pre-market approval. In 1985, �ve �rms supplied models with pre-market approval.
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and surgical hospitals.7 The survey also includes hospital speci�c information such as

a control code (like non-pro�t versus for pro�t status), the number of beds, whether

it belongs to the Council of Teaching Hospitals, or has a residency program. This

information is available for eight years from 1986 to 1993.

Following the health economics literature (Baker (2001), Baker and Phibbs (2002)),

I de�ne a market as a so-called Health Care Service Area (HCSA). HCSA�s are groups

of counties constructed to approximate markets for health care services based on

Medicare patient �ow data (Makuc et al. (1991)). There are 802 HCSA�s in the

entire United States.

The Area Resource Files (ARF) provide county-level information on demographic

and economic variables derived from the U.S. Census. I aggregate population and per

capita income to the HCSA level, and merge the information with the hospital data

derived from the American Hospital Association�s annual survey.

I select 780 hospitals operating in HCSA�s with a constant number of four hospi-

tals or less operating over time. While strategic interaction may also be present in

markets with more hospitals, this interaction may be restricted to a subset of hospi-

tals within those markets. The restriction to four hospitals or less leaves 306 HCSA�s,

38% of all markets. It is important to recognize the speci�cities of this sample of small

markets relative to all US hospital markets. The key characteristics are documented

in Table 1. While the sample contains more than one third of all markets as de�ned

above, it only represents about 15% of all US hospitals. The average hospital in the

sample has about the half the bed capacity (99 beds) of the average US hospital. The

markets in the sample have an average population of 72,737, about 15% of the aver-

age US market. The average per capita income in the sample markets is about 1,400

dollars below the overall average. In the sample, 322 hospitals are nonfederal gov-

ernment hospitals, 407 are private nonpro�t hospitals and 51 are for-pro�t hospitals.

It contains proportionately less private nonpro�t and for-pro�t hospitals, as these

7That means I exclude rehabilitation hospitals, childrens�hospitals and psychiatric clinics. I also

exclude federal hospitals such as Army or Veterans Administration hospitals, because they only

compete for a small subset of the patient population.
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organizational types are more prevalent in large urban areas. The most signi�cant

di¤erence lies in the fraction of hospitals that are approved for residency training:

Less than two and a half percent of the sample hospitals are teaching hospitals com-

pared to nineteen percent in the sample. Teaching hospitals tend to locate in urban

areas. Similarly, the fraction of hospitals in the sample belonging to a multihospital

system is about half of those in the US. More importantly, in only 16 markets of my

sample (less than �ve percent), hospitals belong to the same system. Adoption deci-

sions by hospitals are thus assumed to be made independently, regardless of system

membership. Finally, the average adoption rate at 23% in the sample lies ten percent

below the overall adoption rate. This may be due to di¤erent demand conditions in

larger markets and -more importantly when interpreting the results of this paper- due

to di¤erent competitive conditions.

3.3 Stylized Facts

I now focus on the main features of the data under consideration. The average

adoption rate at the end of my sample is less than 25 percent. Figure 4 plots the

fraction of markets with at least one MRI over time. Separate lines are drawn for

markets with one, two, three and four hospitals. The fraction is almost always larger

for a market with more hospitals than a market with fewer hospitals, suggesting that

incentives to adopt �rst are larger in markets with more hospitals. Di¤usion is slow,

suggesting that the new technology is not immediately pro�table for most hospitals.

Table 2 provides summary statistics of the covariates against the number of hos-

pitals within a market. The average adoption rate in 1993 is not monotonic in the

number of hospitals. The average adoption rate is smaller in duopoly markets than

in monopoly markets, which suggests that the incentive to adopt second in a duopoly

market is smaller than to adopt �rst in a monopoly market. The interpretation for

the remaining markets however is less clear. Higher adoption rates may be due to

preemption motives that are still present in 1993. Estimation of the structural model

will allow me to disentangle preemption and competitive e¤ects.

To examine the relationship between the number of hospitals in market and adoption
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decisions in more detail, the next four rows in Table 2 cross tabulate the fraction of

markets with a given number of MRI adoptions by 1993 with the number of hospitals

in a HCSA. I observe only a small number of markets with more than one hospital

having adopted. The probability of having at least one MRI is increasing in the num-

ber of �rms. The probability of a second adoption to occur is considerably smaller.

In particular in duopoly markets, the conditional probability of a second adoption

is lower than the probability of adoption by a monopolist, however the probability

of seeing a second adoption in a tripoly market is considerably larger. At the same

time, there are no third adoptions in the tripoly markets. This suggests that there

is preliminary evidence that there is an advantage to adopting �rst in an oligopoly

market, but that marginal bene�ts to adopt decline once a competing hospital has

adopted.

The features of MRI can be summarized as follows. MRI was an originally expen-

sive new technology with costs falling over time. It slowly di¤used over the past two

decades. The adoption generates a new source of revenue, and there is a strategic

component to adopting the new technology. The next section describes an estima-

tion technique that enables me to quantify competition and preemption e¤ects in the

adoption of MRI by US hospitals.

4 Estimation

This section speci�es the functional form of pro�t and cost functions, discusses the

estimation technique and presents the parameter estimates.

4.1 Speci�cation

I observe L independent markets, with I l �rms operating in market l: Each �rm

i0s adoption year til and a set of market and �rm characteristics X = [Wi;Z] are

observed, where Wi is a vector of �rm speci�c variables and Z a vector of market

level demand shifters. I allow for an additive random component in the payo¤function

"i; which is a pro�tability shock. The random component is observed by all �rms in
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the market, but not by the econometrician. It is drawn independently across markets

from a strictly monotonic and continuous distribution function F: Thus, there is a

strict ranking of pro�tability with probability one. The unobserved term can be

correlated across �rms within a market. This correlation is captured by a parameter

�:

I make the following parametric assumptions on the payo¤s when not having

adopted, when having adopted, and on the cost function:8

�i0(n; �) = �0 + Z
0 +W
i�0 + �0 � log(n+ 1)

�i1(n; �) = �1 + Z
1 +W
i�1 + �1 � log(n) + "i (1)

C(ti) = c � �ti

Here n is the number of �rms that have adopted. The vector of model parameters is:

� = (�0; �1; �0; �1;�0;�1;
0;
1; c; �; �; �)

I rescaleWi and Z such that they only take on positive values.

The assumptions regarding monotonicity and decreasing returns hold whenever

�1; �0 � 0; and (�1��0) � 0: The inequalities say that the bene�t of adoption declines

with increasing competition. The number of adopters has a stronger negative e¤ect

on adopters than on non-adopters. Observe that speci�cation (1) requires that the

competitive e¤ects, �0 and �1; are symmetric.9

A su¢ cient condition for the positive returns assumption to hold, is that (�1��0),

(
1�
0) > 0; (�1��0)+(�1��0)�log(I) > 0; and the support of F is the positive real
8Flow pro�ts that satisfy asssumptions 1-4 can arise from alternative speci�cations. One example

is a linear Cournot model in the stage game, where adoption of the new technology reduces marginal

cost (Quirmbach (1986)). Another example, probably more appropriate for the hospital industry,

would be a constant price cost margin toghether with logit demand system, in which the new

technology increases the mean utility of choosing the hospital.
9The model and the estimation technique can be extended to a more �exible functional form.

However, as I observe only few follow-on adoptions, there are limitations to which e¤ects can be

identi�ed. For example, I cannot sharply estimate whether it matters that a rival adopter is a

nonpro�t or for-pro�t hospital.
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line. I assume that F is known. The cost function converges to zero at a decreasing

rate when � 2 (0; 1); satisfying assumptions A5(i-ii).

Assumption A5(iv) implies the restriction

�1 � a0 + �1� log(I) +Wi(�1 � �0) + Z(
1 � 
0) > 0:

The restriction emerges when the cost goes to zero and imposes a lower bound on �1

relative to �1 � a0. Assumption A5(iii) will also be satis�ed.

Identi�cation. The parameter vector of interest � is point identi�ed if two para-

metric speci�cations are not observationally equivalent. The identi�cation of cost

and payo¤ parameters relies on functional form. However it is useful to discuss the

implications from the model that allow us to learn about the payo¤ function. Let

��i(n; �) = �i1(n; �)� �i0(n� 1; �) (2)

be �rm i0s marginal gain from adopting n� th: If �rm i adopts last at ti; it must hold

that

��i(I; �)� c � �ti(1� ��) � 0 (3)

��i(I; �)� c � �ti�1(1� ��) < 0 (4)

Only relative pro�ts ��i(I; �) enter this condition. Thus one can only learn about

(�1��0; �1� �0;�1��0;
1�
0); the di¤erences of the �ow pro�t parameters. This

is not surprising as it is known from discrete choice models that only relative payo¤s

are identi�ed.

However, the subgame perfect solution concept imposes another restriction that

can be used to separately identify the parameters �0 and �1; which is illustrated

in Figure 3. One can learn about the stand alone incentive for the monopolist

from the monopoly markets, ��1(1; �) = �11(1; �) � �10(0; �); and thus the parame-

ters (�1 � �0;�1 � �0;
1 � 
0): If in addition the adoption times of the second

adopters in duopoly markets are observed, we can learn about those stand alone in-

centives: ��2(2; �) = �21(2; �) � �20(1; �) and thus the competitive e¤ect (�1 � �0):

As discussed in the previous section, in duopoly markets where the two hospitals are
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su¢ ciently similar in terms of their pro�tability, the �rst adoption time will be de-

termined by the preemption incentive �21(1; �)� �20(1; �), and thus by the parameters

(�1 � �0 � �0;�1 ��0;
1 � 
0): The hospital gains enough from adoption such that

it adopts at a su¢ ciently early point in time where its rival prefers to be the follower

and adopt later on.

The key argument is that with a cross-section of at least monopoly and duopoly

markets, the coe¢ cients �1��0; �0; �1 can be estimated separately. The intuition can

be summarized as follows. Adding a constant to �1 and �0; leaves �1� �0 unchanged,

and the marginal bene�t of adopting last, �1(2) � �0(1) is una¤ected. However,

the relative bene�t of being the leader versus being the follower in a given period,

�1(1)��0(1); changes. The level of �0 and �1 in�uences preemption incentive and thus

adoption time of the �rst adopter in a duopoly market, whereas it has no e¤ect on the

second adoption time. The appendix shows in more detail how the cost function along

with the competitive e¤ects can be identi�ed separately, given the chosen functional

form.

The variation of observables [W;Z] and adoption times across markets determines

the parameters �1��0;
1�
0: A continuum of combinations of c and the discount

factor � yield the same optimality conditions in (3) and (4). I thus have to �x the

discount factor. The hospital industry literature (e.g. Steinberg and Evens (1988))

uses an interest rate from 10�12 percent for cost calculations. Accounting for in�ation

this corresponds to a discount factor of :94:

I assume that the distribution F of the unobservable pro�tability shock "i is

lognormal. Note that the mean and variance of the unobservable are not identi�ed

separately from the parameters �1 � �0 and c respectively. I �x these parameters

such that the logarithm of the distribution has mean zero and variance one. Having

�xed the variance and the discount factor, the cost parameter c can be estimated as

well.

I now illustrate the role of the unobservable "i: First, it accounts for unobserved

payo¤di¤erences across �rms. In absence of such an error we would be able to predict

behavior perfectly. The idea is similar to Rust (1994), in that the optimal adoption
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time for each �rm is deterministic for the participants in the market but random from

the standpoint of the econometrician. Note that due to the discrete time nature of the

model and data, equations (3) and (4) along with the preemption conditions yield a

set of inequalities, and thus only bounds on the parameters. Making a distributional

assumption about F; one can obtain point estimates of the parameters. Finally it

enables me to integrate over adoption times of hospitals that have not adopted at the

end of my sample.

To allow for unobserved market characteristics that a¤ect the pro�tability of MRI

for all hospitals, I allow for within market correlation of "i: Following Berry (1992), I

choose a speci�c form for this correlation:

"i = exp(
p
(1� �2)�i + ��l)

Here �i is the �rm speci�c component and �l the market speci�c component of the

pro�tability shock. I assume that both are distributed i.i.d standard normal. I restrict

� to lie on the interval [0; 1]:10

There are two possible explanations for di¤usion when costs fall over time. When

there is no �rm heterogeneity (� = 1;�1 � �0 = 0); a competitive e¤ect will cause

di¤usion, because the marginal incentive to adopt changes with the rank of adoption.

In absence of a competitive e¤ect (e.g. �1 � �0 = 0), �rm heterogeneity in payo¤s

will lead to di¤erent adoption times, because di¤erent �rms have di¤erent stand-alone

incentives. These two explanations can be distinguished as they have di¤erent cross

sectional implications for adoption times. Consider �rst the case of no heterogeneity

(� = 1;�1 � �0 = 0): The adoption times in the two markets (T1; T2) and (T 01; T
0
2)

must satisfy T1 � T 01 if and only if T2 � T 02; both �rms within a market gain the

same from adoption. If the �rst �rm gains less from adoption than the �rst �rm

in the other market, the second �rm in one market must also gain less than the
10I chose this speci�cation, because mean and variance of "i are independent of �: The levels of

of the other coe¢ cients are not a¤ected by the choice of �: The within market correlation of "i for

a given � is:

corr("i; "j) =
e�

2 � 1
e2 � 1
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second �rm in the other market. This implies that the second adoption time is a

monotonically increasing function of the �rst adoption time everywhere. On the other

hand, if there were no competitive e¤ect and everything was driven by heterogeneity,

the probability of an adoption occurring would be independent of the number of

adoptions that have already occurred. The small sample does not allow me to directly

test these nonparametric implications, but the argument shows that the identi�cation

of the competitive e¤ect along with the within market correlation is not solely due to

functional form.

4.2 A Method of Moments Estimator

I now introduce a method to estimate the technology adoption model. The model

does not yield a closed �rm solution for the expectation of the vector of adoption times

conditional on the market and �rm speci�c observables and the model parameters. I

propose a Method of Simulated Moments (MSM) Estimator (McFadden (1989), Pakes

and Pollard (1989)) that does not require an analytical solution for the equilibrium

adoption times.

Let � = (�1��0; �0; �1;�1��0;
1�
0; c; �; �) be the vector of parameters to be

estimated: Let Xl = [W, Z] be exogenous market and �rm speci�c variables and T

the vector of adoption years. Let  (T) be a J-dimensional function of the adoption

years. The estimation method is conducted as follows:

Step 1: Compute a J-dimensional vector  ̂(T) of empirical moments:

Step 2: For every market l; obtain S draws of an Il-dimensional vector [v1; ::; vIl ] of

individual pro�tability shocks and a draw �l of the common pro�tability shock. Here

Il is the number of hospitals in market l:

Step 3: For a given parameter-vector �; every draw s and every market l, compute

the period payo¤s and the cost function. Determine the order of moves.

Step 4: Compute the last adoption time �t; and solve the model recursively from �t:

Step 5: Compute the equilibrium history of play. This yields S � L histories of

play. From these simulated histories compute the vector of simulated adoption times

Ts(Xl; �). The simulation draws are held �xed for di¤erent parameter vectors. For
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every market l;compute the average simulated moments ~ S;l =
1
S

PS
s=1  (Ts(Xl; �)):

Step 6: Let g(�) = 1
L

PL
l=1( ̂ � ~ S;l) 
 f(Xl) be the vector of moment conditions,

where f(Xl) is a K�dimensional vector function of the market and �rm speci�c ex-

ogenous variables. Compute the value of the criterion function, the weighted distance

between observed and simulated moments:

J(�) = g(�)0
g(�)

Here 
 is a J �K-dimensional symmetric positive de�nite weight matrix.

TheMSM -estimator �̂ is de�ned as the minimizer of the criterion function. Thus,

Steps 3 to 6 are repeated until convergence, i.e. until a vector � is found that min-

imizes the objective function J(�): The estimator �̂ is consistent and
p
L(�̂ � �0) is

asymptotically normally distributed with zero mean and covariance matrix

(1 +
1

S
)(E

@

@�
g0
E

@

@�
g)�1E

@

@�
g0
Egg0
E

@

@�
g(E

@

@�
g0
E

@

@�
g)�1:

The e¢ ciency of the estimator can be improved by employing an optimal weight

matrix 
 = (Egg0)�1: The asymptotic distribution of
p
L(�̂ � �0) then becomes

(1 + 1
S
)(E @

@�
g0
E @

@�
g)�1: The optimal weight matrix is computed using a consistent

estimate of �. Estimates of the standard errors are obtained by replacing the terms

in the expression for the covariance matrix with consistent estimates.

Note that when generating simulated data, I assume that the game begins at time

t = 1983, which is the year in which MRI scanners became commercially available,

and solve for the entire history of equilibrium play. The simulation procedure thus

integrates out over unobserved adoptions occurring in years before 1986 and after

1993.

The moment selection is guided by the need to capture the dynamics of adoption

and the fact that I only observe the time window from 1986 to 1993. I also require

that the same set of moments is employed for every market, regardless of the number

of hospitals or the number of adoptions actually observed. Thus, the moment selec-

tion is similar to Berry (1992), who deals with varying numbers of potential entrants

across markets. The richest speci�cation, guided by preliminary reduced form analy-

sis, includes the �rm speci�c variables hospital size (measured by the logarithm of the

22



number of beds), a dummy for nonpro�t hospitals and a dummy for for-pro�t hos-

pitals (nonfederal government hospitals or �community hospitals�being the reference

category), and market variables population and per capita income. This implies that

a total of 11 parameters is estimated and at least as many moment conditions are

required. Recall that I observe the years 1986 to 1993. I �rst select the following eight

moments: The number of adoptions by the end of 1986, the number of adoptions by

the end of year 1987, etc. until the number of adoptions by the end of 1993. In order

to capture the e¤ect of market speci�c variables, I interact the number of adopters

by 1993 with the market speci�c observables, population and per capita income. To

capture the e¤ect of hospital size, I add a moment de�ned as whether the largest

hospital has adopted by 1993. Finally, to capture the e¤ect of organizational type I

add one moment de�ned as the number of nonpro�t hospitals that have adopted by

1993, and one moment de�ned as the number of for pro�t hospitals that have adopted

by 1993. This results in a total of 13 moments. With the selected speci�cation, this

yields at least two overidentifying restrictions. Higher order moments could also be

employed.

4.3 Parameter Estimates

Table 3 shows the parameter estimates for �ve speci�cations. The �rst speci�cation

includes no �rm characteristics, such that �rms are identical up to the realization of

the pro�tability shock "i: The proxies for demand are the logarithms of population

and per capita income. Speci�cation 2 includes �rm characteristics such as hospital

size (the log of the number of beds), and organizational form (a dummy for nonpro�t

status and a dummy for for-pro�t status). The reference case is a community hospital.

In the third speci�cation I allow for within market correlation � of the unobservable

pro�tability shock "i; to control for potential unobserved market characteristics that

a¤ect the pro�tability of adoption of all hospitals within a market. Standard errors

are reported in parentheses beneath the estimates. The number of simulation draws
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S per market is 20.11 Speci�cations 4 and 5 examine the robustness of estimates

with respect to functional form and order of moves and will be discussed in the next

subsection.

As we move to richer speci�cations some interesting changes in the estimated co-

e¢ cients occur can be observed. Allowing for �rm speci�c variables (moving from

Spec�cation 1 to Speci�cation 2) has a minor impact on the payo¤ coe¢ cients and

the competitive e¤ects, but increases the initial cost c: This is o¤set by the positive

coe¢ cients on �rm characteristics such as hospital size and for-pro�t and private

nonpro�t status. There is a somewhat surprising e¤ect when I allow for within mar-

ket correlation of the unobservable " in Speci�cation 3. The estimated coe¢ cient �

corresponds to a within market correlation of the unobservable "i of 0:2286; which

is signi�cantly di¤erent from zero (the standard error is 0:0729). A low draw of the

common component means all hospitals in a market gain less from adoption, a large

draw means all �rms gain more from adoption. In static entry models, accounting

for positive within market correlation of the unobservable term may yield stronger

competitive e¤ects. What happens here is that �rm speci�c e¤ects become somewhat

weaker because they may have been picking market level e¤ects up before. At the

same time the coe¢ cient on population becomes stronger (dominating the weaker in-

come e¤ect). In the absence of the within market correlation, the algorithm tried to

�t the few follow-on adoptions with a strong competitive e¤ect (large negative �1��0),

which lowers the incentives for later adopters. Now, this di¤erence is captured by a

change in the cost function parameters, where a slower cost decline has a stronger

negative e¤ect on the incentives of less pro�table than on more pro�table �rms. At

the same time �0 becomes more negative, making preemption relatively more attrac-

tive. Allowing for within market correlation improves the overall �t of the model,

especially the moments regarding the �rm speci�c and market level variables. Hence,

I focus on the Speci�cation 3 in the following discussion.

11For every speci�cation I use same set of starting values. Minimization of the criterion function

was performed in two steps. First, I used an accelerated random search algorithm (Appel et al.,

(2003)) and second, a Nelder-Mead grid search was employed.
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In Speci�cation 3, all of the parameters are estimated very precisely. Adopting

increases period payo¤s evaluated at the median values of population and per capita

income by 25 units, about 5.5 percent of the adoption cost when adopting at time

zero. The real cost declines at a rate of about 3 percent, implying that it is reduced

by 25 percent after about nine and a half years and by 50 percent after about 22 and

a half years. The real �street price�of a premium high �eld MRI unit fell at a rate of

approximately 4.5 percent over the period from 1983 to 1993 (Bell (1996)). Since the

model also includes installation cost, which increased over time (mainly due to rising

labor cost and real estate prices), this result also validates the model ex-post. Payo¤s

decline signi�cantly with the number of adopters, with the e¤ect on adopters about 4

times stronger than that on non-adopters. I �nd that nonpro�t �rms have a stronger

incentive to adopt the new technology than for-pro�t hospitals. This corresponds

to recent �ndings that nonpro�t hospitals act as if they have lower marginal costs

(Gaynor and Vogt (2003)). The literature on nonpro�t hospital behavior suggests

several explanations for this behavior. While the present methodology does not allow

me to distinguish among these explanations, they o¤er useful insights into why we

see this strong positive e¤ect. Nonpro�t hospitals may be maximizing a weighted

average of pro�ts and quality of services provided (Gowrisankaran and Town (1997)).

Sometimes donors tie their contributions to the purchase of a speci�c technology.

Nonpro�t hospitals may also have an advantage in providing a service based on a

new technology because of information asymmetries. Poorly informed customers may

believe that nonpro�t hospitals are less likely to misrepresent the bene�ts of the new

technology due to their lack of pro�t motive. Further, nonpro�t hospitals may be

more willing to experiment with new technologies (Rose-Ackerman (1996)).

Interpretation of parameter estimates. The relative economic signi�cance of the

estimated coe¢ cients can be examined by conducting simulation exercises. I �x the

market characteristics at their median values, and consider the base case with all

hospitals being community hospitals of median size. First, I consider a 10% per-

cent increase in population at the median value. This accelerates adoption by 1.2

months on average. A 10% increase in per capita income however accelerates adop-
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tion insigni�cantly by about 3 days. To illustrate the importance of the interaction

parameters �0 and �1; I compare the adoption times predicted by the estimated model

relative to those when �0 = �1 = 0: This removes any strategic considerations by the

hospitals and they act as if they were facing independent demand curves. The e¤ect

is best illustrated in the duopoly case. The �rst adoption would occur 1 year later on

average, whereas the second adoption occurs about 2 years earlier. The �rst adop-

tion occurs later, because the preemption incentive no longer forces the �rst �rm to

adopt sooner.12 The second adoption occurs sooner, because under this scenario the

marginal bene�t of adopting is the same as adopting �rst. The di¤erence between

the �rst and second adoption times is purely driven by unobserved heterogeneity in

payo¤s.

In Section 5, I will use the estimated parameters to quantify the e¤ect of compe-

tition on adoption times.

4.4 Goodness of Fit and Robustness

Goodness of �t. I focus on the preferred speci�cation, Speci�cation 3. To assess the

�t of the model, I draw from the asymptotic distribution of parameters, simulate the

model and average adoption rates across simulations. The results are presented in

Figure 5. Figure 5 compares the simulated adoption rates to the observed adoption

rates by number of �rms in the market. On average, the model tends to slightly

overpredict adoption at the beginning of the observed period and underpredict after

1987 in the markets with more than one �rm. More speci�cally, the model under-

predicts adoption rates in monopoly and duopoly markets. Especially in the duopoly

markets the underprediction is severe. However, the model �ts markets with three

�rms and four �rms very well. This arises possibly from the fact that most adoptions

are observed in these markets, and therefore most of the identi�cation will be due to

variation in these observations.

Robustness. Two questions arise with respect to the robustness of the parameter

12Asssuming that hospitals have identical observable characteristics overstates the preemption

e¤ect.
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estimates. The results will depend on the choice of functional form and the imposed

order of moves. Recall that the model was tractable for any choice of functional

form and for any order of moves as long as it was known to the �rms ex-ante. To

investigate the robustness of the chosen speci�cation, I �rst test the log-speci�cation

of the competitive e¤ect, and then reverse the order of moves so that the hospital

gaining least from adoption moves �rst.13 Speci�cation 4 in Table 3 presents results

for the model with linear competitive e¤ects. Here it is assumed the n-th adopter

steals as much from rival�s pro�ts as does the (n+1)-th. The e¤ect on the coe¢ cients

can be explained as follows. With linear competitive e¤ects, the originally estimated

parameters would imply a much stronger competitive e¤ect and there would be a

stronger preemption e¤ect. First and last adoption time would thus be further apart.

Consequently the estimated competitive e¤ects are smaller in absolute value. The

cost parameters are robust to this change, as are the coe¢ cients on population and

hospital size. The only remaining parameters that are a¤ected signi�cantly are the

coe¢ cient on per capita income which becomes insigni�cant (and has already been

found economically insigni�cant before), and the coe¢ cient on within market cor-

relation which becomes substantially smaller. This latter e¤ect may be due to the

algorithm attempting to o¤set the stronger competitive e¤ect by increased hetero-

geneity across hospitals.

The results for the reversed order of moves are presented by Speci�cation 5 in

Table 3. Here I assume that rather than the hospital gaining most, the hospital

gaining least from adoption moves �rst every period. With a reversed order of moves,

a more pro�table �rm will often adopt one period earlier than with the original order

of moves to avoid being preempted by a less pro�table �rm that moves earlier in

the next period. To reconcile the model with the data, the competitive e¤ects thus

become smaller with the reversed order of moves, weakening the preemption incentive.

Overall, several parameters are estimated less precisely than in other speci�cations. In

particular, the within market correlation coe¢ cient becomes statistically insigni�cant

from zero. I will revisit the question of robustness in the next section when quantifying

13I also tried a randomized order of moves but the algorithm failed to converge.
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the e¤ects of competition on the timing of adoption.

5 The E¤ect of Competition on MRI Adoption

The e¤ect of new technologies and hospital competition on health care cost has re-

ceived wide attention in the literature (e.g. Weisbrod (1991)). While the results

obtained here do not provide direct evidence for the impact of a new technology on

health care costs or overall welfare, the framework enables me to assess how competi-

tion a¤ects the timing of adoption and industry payo¤s from adoption. In particular,

I want to decompose the e¤ect of competition into a business stealing and a preemp-

tion e¤ect. The preemption motive to adopt a new technology early has received

considerable attention in theoretical literature (see Fudenberg and Tirole (1985) and

Riordan (1992)). To separate the preemption e¤ect from the business stealing ef-

fect, I proceed in two steps. I �rst examine adoption decisions under a regime that

maximizes industry payo¤s. Under this regime all ine¢ ciencies arising from strate-

gic behavior, due to business stealing and preemption, are removed. I then compare

this to adoption times arising from a game in which hospitals are able to precommit

to an adoption time. This isolates the preemption incentive. The experiments are

performed under the two key assumptions. First, policy changes do not trigger entry

into (or exit from) any of the hospital markets studied. Second, policy changes do

not a¤ect the cost of adoption and period payo¤s conditional on adoption decisions.

5.1 Maximizing Industry Payo¤s

I �rst examine the e¤ect of competition by comparing the adoption times under com-

petition to those chosen by an industry regulator, who wishes to maximize industry

payo¤s. To achieve this, the regulator takes into account the e¤ect on the �rms having

adopted as well as the �rms not having adopted, which makes knowledge of the para-

meter �0 essential for this analysis. The regulator thus eliminates both, the business

stealing and the preemption e¤ect. Order the �rms i = f1; 2::::::; Ig according to their

pro�tability. Naturally, the optimal solution requires more pro�table �rms to adopt
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sooner than less pro�table �rms (as long as competitive e¤ects are symmetric). The

industry regulator chooses adoption times T = fT 1; T 2; ::::; T Ig to maximize industry

payo¤s:

�R(T) =
IX
i=1

IX
n=0

1fi>ng�
i
0(n) �

�T
n � �T

n+1

1� �

+

IX
i=1

IX
n=0

1fi�ng�
i
1(n) �

�T
n � �T

n+1

1� �

�
IX
n=1

�T
n � C(T n)

where T 0 = 0 and T I+1 =1:We can now compare the adoption times TR under the

regulatory regime to the equilibrium adoption times T�:

Table 4 describes the e¤ect of the regulatory solution compared to the competi-

tive solution. To assess this e¤ect, I compute the implied adoption times under the

competitive and the regulatory regime for every market. Table 4 presents the average

change in adoption times within a group of markets, where a group is de�ned as

the number of hospitals in a market. Obviously, nothing changes in the monopoly

markets, so only results for duopoly, tripoly and four-hospital markets are reported.

The standard deviations are reported in parentheses. The top four rows in Table 4

describe how the adoption times change on average in these markets. Because the

returns to adoption decline with the rank of adoption and the negative impact on

competitors�pro�ts is larger, adoption times are delayed more the lower the adoption

rank. The �fth row presents the average delay in a given market. It is immediate from

the table, that competition among hospitals accelerates adoption signi�cantly, from

2.3 years per hospital in duopoly markets up to 4 years per hospital in four-hospital

markets.

The percentage numbers in the last row of Table 4 presents estimates of the payo¤

loss.14 The increase in net discounted industry-payo¤s under the regulatory regime

would be 1.86% (2 �rms), 3.86% (3 �rms), and 5.56% (4 �rms). An increase in

14I de�ne the gains from adoption ��(T) as the di¤erence between industry payo¤s under adop-

tion times T and payo¤s when �rms do not adopt at all (which is normalized to zero). The measure

of payo¤ loss �V is then de�ned as the percentage increase in the gains from adoption when moving
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the demand variables lowers the e¤ect of a regulatory solution. The payo¤ loss is

mitigated by the higher mean demand levels in markets with a larger number of

hospitals. The e¤ect can be decomposed into a pro�t e¤ect and a cost e¤ect. The

total e¤ect on discounted �ow payo¤s is negative. The cost savings due to delayed

adoption outweighs the foregone payo¤s by delayed adoption.

I have also computed the �gures reported in Table 4 using the alternative spec-

i�cations discussed in Section 4. In the speci�cation with linear e¤ects, the opti-

mal adoption times for the �rst adopters are close to the ones presented here, while

adoption times by follow on adopters are delayed signi�cantly more. This is due

to the competitive e¤ect not declining in the rank of adoption in a linear speci�ca-

tion. Changing the order of moves has virtually no e¤ect on the relative impact of

competition on adoption times.

5.2 The Role of Preemption

Here the aim is to quantify how the advantage of being an early adopter a¤ects the

corresponding strategic behavior and pro�ts. In particular, I want to quantify the

e¤ect of preemption. Preemption is the phenomenon that a �rm adopts earlier to

prevent its rival from adopting. I compare payo¤s in the subgame perfect equilibrium

to payo¤s if �rms were playing an �open-loop�or a Nash equilibrium strategy. In

a Nash equilibrium �rms precommit to their adoption times (Reinganum (1981)),

which removes the incentive to preempt. A vector of adoption times TNE constitutes

a �pre-commitment�or �open loop�equilibrium if

�i(TNE;i; TNE;�i) � �i(T i; TNE;�i)

for all T i and i: Again, there may be multiple pure strategy equilibria. For the analysis

here, I choose the equilibrium where the most pro�table �rm moves �rst. It is easy

from the competitive regime with adoption times T� to the regulatory regime with adoption times

TR :

�V =
��(TR)���(T�)

��(T�)
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to verify that this equilibrium always exists and is unique. The adoption time TNE;i

of the i� th most pro�table �rm i must satisfy

c � �TNE;i(1� ��)���i(i; �) � 0 < c � �TNE;i�1(1� ��)���i(i; �)

This allows me to compute the Nash equilibrium adoption times TNE;:

Table 5 compares the adoption times and welfare gains of the Nash equilibrium

play relative to the subgame perfect equilibrium outcome. Again, nothing changes

in monopoly markets. Further, the adoption times of the last �rm do not change,

as it makes only a marginal decision even in the subgame perfect equilibrium. The

e¤ects here are much smaller, with adoptions being delayed by less than half a year

on average. Also, the estimated payo¤ loss is only about one sixth of the payo¤

maximizing regime. In the speci�cation with linear competitive e¤ects the impact of

preemption is again found to be stronger. However the results are robust to changes

in the order of moves.

The results from these counterfactual experiments let me conclude that preemp-

tion has a signi�cant but small e¤ect, and most of the payo¤ loss due to competition

is due to a regular �business stealing�e¤ect, caused by �rms simply not taking into ac-

count the negative impact their adoption has on other �rms. These results are robust

with respect to sequential order of moves assumption that enables me to compute the

equilibrium.

6 Conclusion

In this paper I studied a timing game of technology adoption by US hospitals. I

develop an estimable model that allows me to recover the structural parameters of

the timing game. I �nd that there is a strong competitive e¤ect on hospital pro�ts.

Knowledge of the game parameters enables me to conduct counterfactual experiments

to quantify the e¤ect of competition on adoption times and hospital payo¤s. Results

of these experiments show that the competitive solution leads to signi�cantly earlier

adoption times than we would see under a regime that maximizes industry payo¤s.
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The acceleration of adoption times ranges from 2.3 years in duopoly markets to four

years in markets with four hospitals. The bulk of this e¤ect is due to regular business

stealing. The �preemption�e¤ect, which has received considerable attention in the

theoretical literature, accounts for a small share of this change.

The analysis carried out in this paper can be extended along various dimensions

and applied to other technologies. Measuring the e¤ect of technology adoption on

consumer welfare requires a demand model. When patient discharge data are avail-

able, a demand system as in Chernew, Gowrisankaran and Fendrick (2002) could be

estimated. In addition, one might obtain better measures of hospital payo¤s, and

the e¤ect of competition on pro�ts could be weighed against the potential bene�ts of

earlier adoption to patients.

The model analyzed here bears some features which may not be accurate for the

hospital environment. Assuming that �ow pro�ts are constant over time and that

there is no uncertainty about future payo¤s and costs may be restrictive. Incorpo-

rating more realistic features along these dimensions would make the solution and

estimation of this model considerably more complicated. The current framework

does not take into account potential complementarities between adoption decisions

for multiple technologies and the possible endogeneity of market structure. These

issues have recently been addressed by Hamilton and McManus (2005) and Lenzo

(2006) in static frameworks. The extension to a dynamic context is left for future

research.
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7 Appendix

7.1 Finiteness of the Game

Here I show that given the assumptions about the payo¤s, all �rms will adopt in �nite

time and that the order of adoption is unique as time periods become su¢ ciently short.

Proposition 1 Given assumptions (A1) to A(5) all �rms will adopt in �nite time.

Proof. Suppose I � 1 �rms have adopted at time t. Let I be the least pro�table

�rm. Firm I will adopt if and only if the bene�ts to adopting exceed the costs:

�I1(I)� �I0(I � 1) > C(t)� �C(t+ 1)

By the positive returns and the monotonicity assumptions, the term on the left is

always positive and given our assumptions on the cost function A5(iii) there exists

a �t < 1 such that this inequality holds. Now suppose I � 2 �rms have adopted at

some time t0 > �t. Denote the remaining two �rms i = j; k: Then �rm j knows that if

it adopts it triggers immediate adoption by the last remaining �rm k and vice versa:

So either �rm will always want to adopt, if the bene�t from adopting is greater than

the maximum bene�t from not adopting. Let V i
0 (I � 2) be the continuation value

of not adopting when I � 2 �rms have adopted and V i
1 (I � 1) be the continuation

value when having adopted along with I � 2 other �rms. For either of the two �rms

never to adopt, the continuation value of not adopting must be greater than that of

adopting for all t:

�i0(I � 2) + �V i
0 (I � 2) � �i1(I � 2)� C(t) + �V i

1 (I � 2)

So for �rms i = j; k never to adopt it must hold for all t:

�i1(I � 1) + �
�i1(I)

1� �
� C(t) <

�i0(I � 2)
1� �

By monotonicity this implies:

�i1(I)

1� �
� C(t) <

�i0(I � 2)
1� �
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or
�i1(I)� �i0(I � 2)

1� �
< C(t)

The �rst term represents the payo¤ from immediate adoption. Since it triggers adop-

tion from the remaining �rm, it will earn �i1(I): We need to �nd a �t such that the

inequality is reversed. Similarly, if I � 3 �rms have adopted, all �rms will adopt

eventually if
�i1(I)� �i0(I � 3)

1� �
> C(t)

for some t <1: Applying the argument above repeatedly up to a situation where no

�rm has yet adopted yields

�i1(I)� �i0(0)

1� �
> C(t)

for all i = 1:::::I: Assumption A5(iv) ensures that this inequality holds and hence, all

�rms will adopt in �nite time.

7.2 Identi�cation

Here I show that given that the parametric assumptions are su¢ cient to identify the

competitive e¤ects and cost parameters. I look at the simpli�ed model:

�i0(n; �) = �0 + �0 � log(n+ 1)

�i1(n; �) = �1 + �1 � log(n) + "i

C(T i) = c � �T i

I argue how (�1��0; �0; �1; �; c) can be identi�ed. In a monopoly market, a �rm will

have adopted by year t if

��i(1; �)� c � �t(1� ��) � 0

�1 + "i � �0 � c � �t(1� ��) � 0

The probability that �rm i has adopted by year t is thus

Pr("i � ��1 + �0 + c � �t(1� ��)
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The fraction of �rms that have not adopted by year t; S(t), is thus equal to

S (t) = F (��1 + �0 + c � �t(1� ��))

Since we observe S(t), we can form

F�1(S(t)) = ��1 + �0 + c � �t(1� ��)

There are three parameters of interest entering this equation: (�1��0; �; c): Knowing

F suppose we observe the fraction of monopolists that have adopted in three periods

t; t+ 1; t+ 2 : Ŝ(t); Ŝ(t+ 1) and Ŝ(t+ 2): Then we can form:

F�1(Ŝ(t))� F�1(Ŝ(t+ 1))

F�1(Ŝ(t))� F�1(Ŝ(t+ 2))
=

c � �t(1� ��)� c � �t+1(1� ��)

c � �t(1� ��)� c � �t+2(1� ��)

=
1

1 + �

This uniquely determines �: Next, we use F�1(Ŝ(t))�F�1(Ŝ(t+1)) = c ��t(1���)�

c � �t+1(1� ��): Knowing � and � determines c: Finally,

F�1(Ŝ(t)) = ��1 + �0 + c � �(1� ��)

determines (�1 � �0): Next, consider identi�cation of the composite parameter (�1 �

�0): The second �rm in a duopoly market will have adopted by year t if

��2(2; �)� c � �t(1� ��) � 0

�1 + "2 + �1 � log(2)� �0 � �0 � log(2)� c � �t(1� ��) � 0

Since the second �rm is less pro�table, the distribution of "2 is that of the second

order statistic F(2): The fraction of �rms that have not adopted can again be related

to the parameters in the following way:

F�1(2) (Ŝ(t)) = ��1 + �0 � �1 + �0 + c � �t(1� ��)

Where (�1� �0) is the only parameter unknown. What remains is to be shwon is that

�0 can be identi�ed separately. In a duopoly market, the �rst adopter�s hypothetical

optimal second adoption time is:

T 02("
1) =

&
log(�1��0+�1��0+"

1

c�(1���) )

log(�)

'
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Where dxe is the least integer greater or equal to x: Because the �rst adopter adopted

no earlier than T1; it must hold that

"1 < ��1 + �0 + c � �T1�1(1� ��);

because the stand alone incentive was not satis�ed. Let �"1 be the value of "1 that

satis�es the above equation with equality. This is the largest possible value of "1

consistent with optimal behavior of the �rst adopter. Similarly, the fact that the

second �rm adopted at T2 implies that

"2 � ��1 + �0 � �1 + �0 + c � �t(1� ��)

Let "2 be the value of "2 that satis�es the above equation with equality. This is the

lowest possible value of "2 consistent with optimal behavior by the second adopter.

We know it was not optimal for the second �rm to preempt the �rst �rm at T1 � 1,

thus:

(�1 + "2)
1� �(T

0
2("

1)�T1+1)

1� �
+ (�1 + �1 log(2) + "2) � �

T 02("
1)�T1+1 � �(T2�T1+2)

1� �
� c � �T1�1

� �0 + (�0 + �0 log(2)) �
� � �(T2�T1+2)

1� �
� c � �(T2�T1) � �T2

Rearranging terms yields

(�1 � �0 + "2)
1� �(T2�T1+2)

1� �
+ (�1 � �0) log(2)

�T
0
2("

1)�T1+1 � �(T2�T1+2)

1� �
+ ::

::+ �0 log(2)
� � �(T

0
2("

1)�T1+1)

1� �

� c � �T1�1 � c � �(T2�T1) � �T2

or

"2� 1� �

1� �(T2�T1+2)
�

0@ c � �T1�1(1� �(T2�T1) � �T2�T1�1)� (�1 � �0)
1��(T2�T1+2)

1�� � ::

::� (�1 � �0) log(2)
�T

0
2("

1)�T1+1��(T2�T1+2)
1�� � �0 log(2)

���(T
0
2("

1)�T1+1)

1��

1A � 0

For (T1; T2) to be consistent with subgame perfect equilibrium play, the above equa-

tion has to be satis�ed. Call the second term on the left B("1): The estimated
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probability of observing adoption vector (T1; T2); equals

P̂ (T1; T2) =

�"1Z
"2

B("1)Z
"2

f("1)f("2)F ("2)d"1d"2

Here P̂ (T1; T2) can be estimated from the data. Hence �0 is the only unknown in this

equation entering through B("1):

41



Table 1: Comparison of Sample Markets to all US markets

Sample US Sample US

Total # of % of Hospitals

HCSA�s 306 802 w/ Residency training 2.44% 19.01%

Hospitals 780 5,094 Private nonpro�t 52.05% 60.22%

Average Government 41.41% 25.17%

Bed Capacity 99 195 For-pro�t 6.54% 14.60%

Population 72,737 473,895 System member 23.97% 39.92%

Per Capita Income 16,600 18,083 w/ MRI 23.33% 33.63%

Table 2: Hospital & Market Characteristics by # of hospitals in a market

# of Hospitals

1 2 3 4 Total

Average

Bed capacity 80 95 102 108 99

Population 24,089 55,668 89,563 114,680 72,737

Per Capita Income 16,701 16,623 16,548 16,550 16,600

Adoption rate 22.4% 19.2% 21.9% 27.5% 23.3%

% of Markets

w/ 1 MRI 22.6% 27.5% 36.4% 33.3% 30.4%

w/ 2 MRI 5.5% 14.8% 20.3% 10.5%

w/ 3 MRI 0.0% 10.2% 2.3%

w/ 4 MRI 1.4% 0.3%

# number of markets 58 91 88 69 306
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Table 3: Parameter Estimates

� (1) (2) (3) (4) (5)

�1 � �0 11.3400 10.6630 10.5740 10.6997 10.8841

(0.3944) (1.2531) (0.9752) (0.4389) (3.1087)

�1 -4.425 -4.267 -3.467 -3.0698 -2.9559

(-0.2205) (-0.8443) (-0.8128) (0.2833) (0.4694)

�0 -0.8057 -0.7782 -0.8475 -0.8061 -0.8104

(0.0311) (0.1348) (0.2093) (0.0602) (0.2211)

c 410.82 456.96 468.54 467.0345 439.7912

(7.1357) (4.9101) (6.5589) (9.4283) (35.3069)

1=�� 1 0.0344 0.0368 0.0311 0.0341 0.0372

(0.0018) (0.0016) (0.0088) (0.0018) (0.0040)

(
1 � 
0)Pop 0.9442 0.6599 0.895 0.8994 0.7299

(0.0232) (0.0370) (0.1706) (0.0462) (0.1207)

(
1 � 
0)PCI 0.0007 0.1923 0.1034 0.0069 0.0009

(0.0021) (0.0425) (0.0366) (0.0124) (0.0067)

(�1 � �0)beds 0.9218 0.8369 0.8327 0.9186

(0.0827) (0.1659) (0.0547) (0.1491)

(�1 � �0)NP 1.6644 1.6018 1.2925 1.2909

(0.4895) (0.3995) (0.3239) (0.2374)

(�1 � �0)FP 1.3652 0.8813 1.2816 1.2060

(2.3266) (0.3521) (0.1724) (0.5822)

� 0.5756 0.2381 0.1946

(0.0613) (0.2381) (0.1056)

Note: Standard errors are in parentheses. Number of simulations is 20.
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Table 4: Regulatory Regime versus Subgame Perfect Equilibrium

# of Hospitals

2 3 4

TR �T� se(�T) TR �T� se(�T) TR �T� se(�T)

1st 1.2747 (0.0964) 2.0341 (0.1204) 2.5942 (0.1174)

2nd 3.3956 (0.0539) 3.9205 (0.0651) 4.3043 (0.0975)

3rd 4.2159 (0.0522) 4.4493 (0.0787)

4th 4.6667 (0.0674)

Mean 2.3352 (0.0552) 3.3902 (0.0483) 4.0036 (0.0627)

�V 1.86% (0.09) 3.86% (0.15) 5.56% (0.21)

Notes: T �: Adoption time in subgame perfect equilibrium

TR: Adoption time maximizing industry pro�ts

�V : change in industry pro�ts when moving regulatory regime

Standard errors are in parentheses.

Table 5: Nash Equilibrium versus Subgame Perfect Equilibrium

# of Hospitals

2 3 4

TNE �T� se(�T) TNE �T� se(�T) TNE �T� se(�T)

1st 0.4725 (0.0846) 0.7613 (0.1047) 0.5362 (0.0890)

2nd 0.2046 (0.0462) 0.3768 (0.0656)

3rd 0.1159 (0.0388)

4th

Mean 0.4725 (0.0846) 0.4830 (0.0557) 0.3430 (0.0424)

�V 0.33% (0.07) 0.84% (0.10) 0.91% (0.12)

Notes: T �: Adoption time in subgame perfect equilibrium

TNE : Adoption time in Nash equilibrium

�V : change in industry pro�ts when moving to Nash equilibrium

Standard errors are in parentheses.
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Figure 1: Flow Pro�ts: 2 Symmetric Firms
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Figure 2: Gain from Preemption
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Figure 3: Pro�t Margins Determining Adoption Times

Figure 4: Fraction of Markets with at Least One MRI
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Figure 5: Number of Adoptions per Market by Number of Hospitals
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