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Abstract

This paper studies in�nite horizon complete information preemption games with N

players. We consider a continuous time model where �rms have to choose a point in

time at which they seize an opportunity to make an irreversible one-time investment.

Upon investment, �rms compete with other �rms that have already invested. Flow

pro�ts are declining in the number of investors but the cost of investing declines over

time. Our model captures environments such as new product introduction or entry into

a growing market. We show that there exists a unique subgame perfect Nash equilib-

rium outcome. Payo¤s are equalized. Firms� investments can be clustered, although

coordination failures are ruled out and investment is rivalrous. Increasing the number

of competitors in the investment game does not necessarily accelerate investment. In

particular, the �rst investment in the two-player game is a lower bound for the �rst

investment in any N-player game with linear Cournot competition.
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1 Introduction

Many economic settings can be modeled as a game in which players�payo¤s depend crucially

on the timing of their actions. Examples include a �rm�s decision when to enter or exit a

market, adopt a new technology, introduce a new product or discontinue an old product.

Consider the case of a dynamic game in which �rms have to decide when to enter a

market with growing demand: the timing of entry will determine the level of demand and

the number of competitors a �rm faces. If a �rm enters the market prior to its rivals it will

earn monopoly pro�ts, but only until the �rst rival enters.

The literature distinguishes two classes of such timing games. In a war of attrition,

delay exogenously decreases payo¤s, but a player also has an incentive to wait because she

prefers rivals to act before her. In a preemption game instead, delay exogenously increases

payo¤s, but a player also has an incentive to act early, because there is an early mover

advantage. The war of attrition has been studied extensively, and the properties of a very

general version of this game are well known (see for example Bulow and Klemperer (1999)).

The preemption game on the other hand, has been studied primarily for the case of only two

players following Fudenberg and Tirole (1985). We are often interested in how the degree of

competition, such as the number of potential adopters of a new technology or the number

of potential entrants into a market, a¤ects the timing of actions and the distribution of

payo¤s. Thus, this paper studies the extension of preemption games to a �nite number of

players.

The analysis of two-player preemption games is greatly simpli�ed by the fact that after

the �rst player�s action, the second player�s decision problem becomes a standard single

agent optimization problem. We develop an inductive technique that can be employed to

solve the generalized game.

We study a dynamic, in�nite-horizon investment game with a �nite number of �rms and

observable actions. At the beginning of the game, a new investment opportunity becomes

available. Investment can be interpreted as introduction of a new product or entry into

a new market. There is a �nite number of potential investors who have to decide when,

if ever, to take this opportunity. Time is continuous, and at each moment in time, �rms

have to choose whether to invest or not. Investment is an irreversible stopping decision in

our model, and each �rm can invest at most once. The cost of investment is assumed to
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decrease over time.1 A �rm�s �ow payo¤ depends on whether it has invested or not, and

how many rivals have already invested. In particular, we assume that the payo¤ of a �rm

increases when it invests, but investment is rivalrous: post-investment payo¤s decline in the

number of investors.

The incentives in this game can be summarized as follows: �rst, each �rm would like to

delay investment, as this reduces the cost of investing. Second, a �rm�s investment increases

its �ow payo¤s, making early investment more attractive. Third, due to the rival nature of

investment, a �rm will want to invest before its rivals, thereby reducing their incentives to

invest. This is the preemption incentive. Our model can be viewed as an extension of the

duopoly preemption game studied by Fudenberg and Tirole (1985) to the case of a �nite

number of players. We are able to generalize the analysis to a �nite number of players,

because we assume that pre-investment payo¤s are independent of the number of earlier

investors. Thus the applicability of our model is limited to situations like new market entry

and new product introduction, while Fudenberg and Tirole�s (1985) model also captures

process innovation.

We show that the subgame perfect Nash equilibrium outcome in this game is unique,

up to a relabeling of players.2 We employ an inductive technique to characterize this

unique outcome. Fudenberg and Tirole (1985) �nd that for the case of two players, if

investment does not a¤ect the payo¤of non-investors, then equilibrium payo¤s are equalized

and investment times are distinct.3 We show that only the former result extends to a game

with more than two players.

As in the two-player game, payo¤s are equalized. In particular, equilibrium payo¤s corre-

spond to the equilibrium payo¤ of the last investor in an analogous game with unobservable

actions, such as the one analyzed in Reinganum (1981a,b). An immediate consequence of

this rent equalization result is that any regulatory intervention a¤ecting �ow payo¤s before

the last investment has occurred, will not a¤ect the equilibrium payo¤.

1We focus on this version of the model as it corresponds to that considered in Reinganum (1981a, 1981b)
and Fudenberg and Tirole (1985), which will be the main benchmarks for our results. In Appendix A we
present an alternative model where the real cost of investing is constant but payo¤s are increasing over time.
With assumptions modi�ed in the appropriate places, all equilibrium properties derived in the main part of
the paper are preserved.

2 In the proof of the main result of this paper, we construct all the subgame-perfect Nash equilibria and
show that they all yield the same outcome up to a permutation of players.

3 If instead �rst investment by a player reduces the payo¤ of the player who has not invested yet, then
Fudenberg and Tirole (1985) show that equilibria with late joint-investment are possible. A player who is
preempted has an incentive to invest soon after the rival. This credible threat deters early investment and
allows players to delay investment until it is optimal to act even if the rival acts simultaneously.

2



What distinguishes the game with more than two players from the duopoly game, is that

equilibrium investment times may be clustered. In particular, we argue that there always

exists a structure of �ow pro�ts which induces a cluster. This is surprising at �rst, as

joint adoption or investment times are usually associated with the presence of coordination

failures, informational spillovers, or network externalities, which are all absent in our model.

The intuition for our result can be described in the context of a three-player game. Once

the �rst �rm has invested, the ensuing subgame is a two-player preemption game, where

the preemption motive accelerates the next investment. This implies that monopoly pro�ts

will be enjoyed by the �rst investor only for a short period of time, due to the acceleration

of the next investment. Preemption thus becomes less attractive for the �rst investor, the

stronger the preemption motive in the ensuing two-player subgame. If preemption in the

two-player subgame leads to su¢ ciently early second investment, the �rst investor will have

no desire to preempt the second investor. This results in a cluster of the �rst two �rms

investing simultaneously.

Another interesting feature of the preemption game is that increasing the number of

players does not necessarily accelerate the �rst investment. In particular, we show that for

the case of Cournot competition with linear demand and exponentially declining investment

cost, the equilibrium �rst investment time in the 2-player game is a lower bound for the

�rst investment time in any N -player game.

Related Literature

The properties of preemption games are very well understood for the special case of a

game with only two players. Seminal papers by Reinganum (1981a) and Fudenberg and

Tirole (1985) analyze its properties for the case of unobservable and observable actions,

respectively. Numerous papers have studied variations of this preemption game with two

players, changing the assumptions on the information structure or the payo¤ structure. For

a survey, see Hoppe (2002). Hoppe and Lehman-Grube (2005) study a version of this game

with a general payo¤ structure.

However, little is known about the properties of the general game with many players.

Reinganum (1981b) derives the equilibrium of a game of technology adoption with N �rms
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and unobservable actions.4 Other special cases have been studied in the recent literature.

Anderson and Engers (1994) study a modi�ed game where there is a time window in which

players decide to act and payo¤s of a static game played only among those who have acted

are collected after expiration of this time window. Park and Smith (2006) study general

timing games, assuming that actions are unobservable. Goetz (1999) discusses the case of a

continuum of �rms where the preemption motive is absent. Levin and Peck (2003) develop

a duopolistic model of market entry with private information about the cost of entry, in

which the motivation for delay is not cost-saving, but the risk of coordination failure. They

also present the extension to N �rms, restricting the analysis to the Bertrand case where the

game ends after one �rm has entered. Our paper complements this literature by studying

an environment with features that are present in many situations of interest: payo¤s are

a¤ected immediately by agents�actions (such as technology adoption), actions by rivals are

often observable (such as market entry), the preemption motive is important as long as the

number of �rms is �nite, and markets can sustain more than one �rm.

Strategic investment has also been studied in a real options framework. Greater uncer-

tainty over the pro�tability of investment increases the option value of waiting and thus the

tendency to delay investment. For recent examples see Weeds (2002) and references therein,

as well as the survey by Hoppe (2002). In independent work that is closely related to ours,

Bouis et al. (2006) study dynamic investment in oligopoly in a real options framework.5

The advantage of the real options approach is that it allows for market level uncertainty in

the payo¤ process, but comes at the cost of depending on a particular growth process for

payo¤s (a Brownian motion with drift).

The presence of clusters, or joint investment and adoption times, has sofar mainly

been associated with coordination failures, as in Levin and Peck (2003), with the presence

of positive network externalities, as in Mason and Weeds (2006), or with informational

spillovers (e.g. Chamley and Gale (1994)), where rival investment signals a high pro�tability

of investment. Brunnermeier and Morgan (2006) show that in equilibrium �herding�occurs

in a �clock game�with preemption features, but attribute this herding e¤ect to the fact that

4The assumption of unobservable actions is analogous to assuming that �rms are able to pre-commit
to an investment time. Thus the preemption motive is absent. While this paper is not concerned with
pre-commitment games per se, the equilibrium investment times in the pre-commitment game turn out to
be an important tool when constructing the equilibrium of our observable moves game.

5Our model of entry in a growing market presented in Appendix A coincides with their model without
uncertainty, when we restrict ourselves to exponential growth. Bouis et al. (2006) do not prove provide
an explicit proof of equilibrium existence, but derive comparative statics results conditional upon existence,
which are similar to those obtained in this paper.
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the private information of the �rst player to act is (partially) revealed by his decision to exit.

In our model, clusters arise, although coordination failures are ruled out by assumption,

and rival investment decreases the incentive to invest and has no informational content.6

The remainder of the paper is organized as follows. Section 2 introduces the model.

We build on seminal work by Reinganum (1981a, 1981b) and Fudenberg and Tirole (1985)

on a dynamic investment game, but consider the extension to a �nite number of players.

Following Hoppe and Lehmann-Grube (2005), we adopt the notion of time being continuous

as being �discrete but with a grid that is in�nitely �ne� as introduced by Simon and

Stinchcombe (1989).

In Section 3, we characterize the equilibrium outcome. In Section 3.1 we prove existence

of symmetric and asymmetric subgame-perfect Nash equilibria, and that the outcome across

all equilibria is unique, up to a relabeling of players. We present a simple algorithm to

construct the outcome. With more than two players, the rent equalization results proved by

Fudenberg and Tirole (1985) still holds, but investment times can be clustered. We discuss

how equilibrium payo¤s depend on the structure of �ow payo¤s, and compare equilibrium

investment times and payo¤s to those obtained in a game with pre-commitment. In Section

3.2 we discuss how equilibrium investment times depend on �ow payo¤s and characterize

su¢ cient conditions for the presence of clusters. In Section 3.3 we analyze a slightly modi�ed

game in which we relax the initial assumption that game payo¤s are su¢ ciently large so

that all potential investors invest in �nite time. Thus the number of eventual investors

is determined endogenously. We show that in this case, equilibrium payo¤s will still be

equalized, but the more intense preemption motive drives their level to zero.

In Section 4, we consider a parametric version of our model in which the cost of investing

declines exponentially, and investors sell a homogeneous good, competing in quantities and

facing a linear demand curve. We show how instantaneous payo¤s can be perturbed so

that investment times are clustered. We compare the equilibrium investment times to those

that would maximize industry pro�ts and social welfare, respectively. Finally, we show

that in this model, more competition in terms of increasing the number of players will not

accelerate �rst investment. Section 5 concludes. All proofs are relegated to Appendix B.

6Quirmbach (1986, p. 36) argues that �declining incremental bene�ts are su¢ cient for the di¤usion of
adoptions� in a pre-commitment model.
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2 Model

2.1 The Investment Game

We analyze an in�nite horizon dynamic game in continuous time. At time 0, a new invest-

ment opportunity becomes available, and N players (�rms) have to decide if, and when, to

seize this opportunity. The investment opportunity can be interpreted as adoption of a new

technology, or entry into a new market.

The set of �rms is denoted by N = f1; :::; Ng and a single �rm is denoted by i 2 N.

The model corresponds to the one studied by Reinganum (1981a, 1981b) and Fudenberg

and Tirole (1985) except for the following: Until a �rm invests, it receives a constant �ow

of pro�ts �0 which we normalize to zero. This assumption that pre-investment payo¤s are

independent of the number of earlier investments will be essential for obtaining a unique

outcome in each subgame, and rent equalization.7 Upon investment, a �rm earns �ow pro�ts

of �(m), where m is the number of �rms who have already invested at a given point in time.

Conditional upon the investment decision and the number of investors in the market, payo¤s

are symmetric.8 Let � = [�(1); �(2); :::; �(N)] denote a �ow pro�t structure.

Let c(t) be the present value at time zero of the cost of investing at time t: Without

loss of generality, we relabel �rms so that j denotes the j-th investing �rm. Let T j denote

the investment date of the j-th investor. We can write �rm j�s payo¤ as a function of

investment times

V j(T 1; T 2; :::; T j ; :::; TN ) =

NX
m=j

�(m)

Z Tm+1

Tm
e�rsds� c(T j) (1)

where r denotes the common discount rate, and TN+1 � +1:

We introduce the following assumptions:

Assumption 1

(i) � (m) > 0 8m

(ii) � (m) is decreasing in m

Assumption 1 states that investing always increases period payo¤s for a �rm, but the

7However, the normalization of pre-investment payo¤s to zero, rather than any positive constant, will
not a¤ect the results of the paper.

8This assumption has been relaxed in the recent literature on two player games (e.g. Hoppe and Lehman-
Grube (2005)).
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bene�ts of investing decrease in the total number of investors: as more �rms invest, com-

petition among the investors becomes more intense.

Assumption 2

(i)
�
c (t) ert

�0
< 0 8t

(ii)
�
c (t) ert

�00
> 0 8t

Assumption 2 determines the shape of the current value cost function c (t) ert. It states

that the cost of investing declines over time. This may capture upstream process innovations

or economies of learning and scale. Moreover, cost is assumed to decline at a decreasing

rate.

Assumption 3

(i) �(1)
r � c(0) < 0

Assumption 3(i) guarantees that investing at time zero is too costly. No �rm would

invest immediately, even if it could thereby preempt all other �rms and enjoy monopoly

pro�ts � (1) forever.

Assumption 4

(i) 9� such that c (�) er� < �(N)
r

(ii) limt!1 c0(t)ert 2 (�� (N) ; 0]

Assumption 4(i) ensures that the value of investing becomes positive in �nite time. The

cost of investing eventually reaches a level su¢ ciently low, that it becomes pro�table to

invest, even for a �rm facing maximum competition. Assumption 4(i) is necessary but

not su¢ cient to guarantee that the last investment occurs in �nite time. Assumption 4(ii)

guarantees that the last investor does not have an incentive to delay investment inde�nitely.

We will relax this assumption in Section 3.3.

In Appendix A we present an alternative model in which the current cost of investing

is constant, but payo¤s are exogenously increasing. This illustrates how our results can be

used to study situations such as entry into a growing market.

2.2 Strategies in Continuous-Time Preemption Games

A fundamental problem with modelling timing games is that backwards induction cannot

be applied in continuous time. We follow Hoppe and Lehmann-Grube (2005), who address
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this issue by adopting the framework introduced by Simon and Stinchcombe (1989) for

modelling games with complete information in continuous time. Namely, we restrict play

to pure strategies and interpret continuous time as �discrete time, but with a grid that is

in�nitely �ne.�The discussion below closely follows Hoppe and Lehmann-Grube (2005).

In this framework, the question of how to associate an outcome to a continuous-time

strategy pro�le is addressed in the following way. A continuous-time strategy is interpreted

as �a set of instructions about how to play the game on every conceivable discrete-time

grid.� For any continuous-time strategy pro�le, a sequence of outcomes is generated by

restricting play to an arbitrary sequence of increasingly �ne discrete-time grids, and the

limit of this sequence of outcomes is de�ned as the continuous-time outcome of the pro�le.9

A second, well-known problem with modelling preemption games in continuous time

is that typically games in this class do not have an equilibrium in pure strategies.10 The

problem is related to the possibility of coordination failures. In their seminal paper on

preemption games, Fudenberg and Tirole (1985) address this issue modelling mixed strategy

equilibria of games in continuous time as limits of mixed-strategy equilibria of games in

discrete time. In their framework, coordination failures are ruled out in equilibrium.

Since we adopt the Simon and Stinchcombe (1989) framework, we need to explicitly rule

out the possibility of coordination failures, and we do so using a randomization device as

in Katz and Shapiro (1987), Dutta, Lach and Rustichini (1995), and Hoppe and Lehmann-

Grube (2005):

Assumption 5

If n �rms invest at the same instant t (with n 2 [2; N ]), then only one �rm, each with

probability 1
n ; succeeds.

Assumption 5 rules out the possibility of coordination failures and thus ensures existence

of an equilibrium in pure strategies.

To understand how the randomization device operates, suppose that N = 3 and at a

given time t all three �rms would like to invest, provided that no more than two do so.

Assumption 5 and the interpretation of continuous time as �discrete-time, but with a grid
9The continuous-time outcome is well-de�ned only if the sequence of discrete-time outcomes converges

to a unique limit, which is independent from the speci�c sequence of grids. Simon and Stinchcombe (1989)
identify conditions for the existence and the uniqueness of this limit. In our game, to satisfy these conditions
we shall assume that strategies are piecewise continuous with respect to calendar time, and insensitive to
slight di¤erences in the times at which previous investments occurred. (Notice that the times at which
previous investments took place are payo¤-irrelevant).
10See the example in Simon and Stinchcombe (1989, p. 1178-1179).
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that is in�nitely �ne� guarantee that the following happens at time t: at �rst, all three

�rms try to invest, and only one is successful, i.e. only one actually pays the cost c(t) and

starts receiving �ow payo¤s �(1). Then, �consecutively but at the same moment in time�

(Simon and Stinchcombe (1989), p. 1181) the two remaining �rms try again to invest, and

only one of them is successful. Finally, the third �rm realizes that it is not optimal anymore

to invest at t; and the game continues.11

3 Equilibrium Analysis

In this section, we �rst characterize the subgame-perfect Nash equilibria (SPNE) of the

preemption game, and prove that the SPNE outcome is unique, up to a permutation of

players. In equilibrium, all �rms receive the same payo¤. Clusters of simultaneous invest-

ments are possible. We then present comparative statics results in order to capture the

intuition behind the presence, or absence, of clusters of simultaneous investments. Next, we

provide a simple condition on the �ow pro�t structure � that guarantees the presence of a

cluster. Finally, we investigate the consequences of relaxing Assumption 4, and show that

in a model where the number of players who eventually invest is determined endogenously,

rents are equalized and driven to zero by preemption, and even the last investment can be

clustered with one or more others.

3.1 Investment Times and Rent Equalization

In order to construct the SPNE of the preemption game, it is useful to �rst characterize

the equilibrium investment times T �j (j = 1; :::; N) of a game analogous to ours but with

unobservable moves.

The assumption that players�moves are unobservable (in�nite information lags) is equiv-

alent to the assumption that �rms are able to pre-commit themselves to investment dates.

Reinganum (1981b) proves that in every pure-strategy equilibrium of such a game, the

equilibrium outcome is the same, up to a permutation of players. The j-th equilibrium

investment time can be calculated by maximizing the payo¤ of a �rm conditional on it

11For an interpretation of the randomization device, see Dutta, Lach and Rustichini (1995).
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being the j-th investor:

T �j = argmax
t

�(j)

Z T �j+1

t
e�rsds+

NX
m=j+1

�(m)

Z T �m+1

T �m

e�rsds� c(t)

where T �N+1 � +1: Assumption 2 guarantees that this objective function is strictly quasi-

concave, and assumptions 1, 3 and 4 guarantee that it admits a maximum in a �nite T �j ,

for every j. Moreover, Fudenberg and Tirole (1985) prove that equilibrium payo¤s decline

monotonically in the order of investment thus creating an incentive for late investors to

preempt early investors. Formally:

Lemma 1 Let T �j ; j = 1; :::; N; denote the pre-commitment equilibrium investment times.

They are implicitly de�ned by:

��(j)e�rT
�
j � c0

�
T �j
�
= 0: (2)

Equilibrium payo¤s satisfy

V i(T �i ; T
�
�i) > V

j(T �j ; T
�
�j)

for i < j:

Notice that our assumptions about the �ow pro�t structure � and the cost function c (t)

guarantee that T �i < T
�
j for i < j:

Consider now the game with observable moves. Given our assumptions, no player acts

at time zero and all players invest in �nite time. More precisely, denoting by tj the SPNE

investment time of the j-th investor for j = 1; ::; N; the following Lemma holds:12

Lemma 2 In any SPNE it holds that:

(i) No �rm invests at t = 0:

(ii) All �rms invest in �nite time, and tN = T �N .

Assumptions 1(ii) and 3 guarantee that investment at time zero is too costly. This fact

will be crucial in proving that all players receive the same payo¤ in equilibrium. Relaxing

assumption 3, one could generate an equilibrium in which some players invest at time zero

and receive a higher payo¤ than the remaining players, who would instead invest later and

receive all the same, lower payo¤.
12Existence of SPNE, and uniqueness of the equilibrium outcome up to a permutation of players, will be

proved in Proposition 1.
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The result that the last investment time in the SPNE is the same as in the pre-

commitment equilibrium is not surprising. With observable moves, tN solves the one-player

optimization problem of a �rm who is aware of being the last active player:

max
t
�(N)

Z 1

t
e�rtdt� c(t):

As discussed above, Reinganum (1981b) shows that the solution to this problem is exactly

the N -th equilibrium investment time in the game with observable moves. An immediate

consequence of this result is that if we increase the number of potential investors to N + 1;

leaving �(j) for j = 1; ::; N; constant, and �(N + 1) satis�es Assumptions 1 and 4, the last

investment will occur later in both the observable and unobservable move games.

Next, we present the main result of this section.

Proposition 1 The preemption game with N players admits a unique subgame perfect

equilibrium outcome, up to a permutation of players. All players receive the same payo¤:

�(N)

r
e�rT

�
N � c (T �N ) :

The equilibrium investment times (t1; t2:::; tN ) can be calculated recursively according to the

following algorithm:

(i) tN = T �N ;

(ii) For j = 1; :::; N � 1;

if tj+1 > T �j ; then tj < tj+1; and tj solves

�(j)

Z tj+1

tj

e�rsds� c(tj) + c(tj+1) = 0;

if tj+1 � T �j , then tj = tj+1:

Proposition 1 states that there exists a unique SPNE outcome and provides the algorithm

to construct it.

When pre-investment payo¤s are independent of the number of earlier investors, Fu-

denberg and Tirole (1985) prove that for the case of two players, equilibrium payo¤s are

equalized and investment times are di¤used. In Proposition 1, we establish that with a

general number of players the rent equalization result still holds, but it is possible that
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at one or more points in the sequence of equilibrium investments two or more players act

simultaneously.

To illustrate our results, we show how to construct the unique equilibrium outcome for

the case of three players. Let (T �1 ; T
�
2 ; T

�
3 ) denote the pre-commitment investment times,

which satisfy equation (2). From Lemma 2 we know that all �rms will have invested by T �3 .

In any subgame starting at � � T �3 ; all �rms will invest immediately. Thus the game can

be solved backwards from T �3 and we only need to consider subgames starting at � < T
�
3 :

First, we consider subgames with only one active �rm left, i.e. subgames in which the �rst

two �rms have already invested. This one �rm faces a single agent decision problem. It

optimizes investing at T �3 ; which yields payo¤
�(3)
r e

�rT �3 � c (T �3 ).

Now consider subgames with two remaining active �rms: Each of these subgames is

analogous to the game in Fudenberg and Tirole (1985) for the case of �0 constant. The

two active �rms know that, if one invests, the other will follow at T �3 : By investing at some

t 2 [� ; T �3 ) ; a �rm would receive

�(2)

Z T �3

t
e�rsds+

�(3)

r
e�rT

�
3 � c(t):

Alternatively, it could wait until T �3 and obtain
�(3)
r e

�rT �3 � c (T �3 ) : Let D2(t) denote the

di¤erence between these two functions:

D2(t) = �(2)

Z T �3

t
e�rsds� [c(t)� c (T �3 )] : (3)

This function describes the preemption incentive in the subgame played by the last two

�rms. The �rst term represents the advantage of being the second investor rather than the

third, and the term in brackets is the associated cost. The function is plotted in Figure A.

It is strictly quasiconcave, it has a unique global maximum in T �2 , and is equal to zero at T
�
3 .

For small values of t; it is negative: the cost of investing is very high, so each �rm would be

better o¤ waiting until T �3 rather than investing immediately to preempt the rival. Later,

the function D2(t) intersects zero from below at some point T2 and reaches its maximum

in T �2 2 (T2; T �3 ) : The convexity of the current value cost function
�
c (t) ert

�
guarantees

that D2(t) admits a maximum: In terms of current value, the marginal cost of waiting is

constant, and given by the pro�t �ow �(2) that is forgone, while the marginal bene�t, given

by the reduction in the investment cost, is initially very high, but it decreases, and after T �2
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becomes lower than the marginal cost of waiting.

The fact that the maximum of D2(t) is achieved exactly in T �2 , the second equilibrium

time of the game with precommittment might appear surprising at �rst. The reason is that

the marginal cost and bene�t to delay investment do not depend on either previous nor

following investments. Hence the �rst-order condition of the problem

max
t

�(2)

Z T �3

t
e�rsds+ �(3)

Z +1

T �3

e�rsds� c(t),

namely

��(2)e�rT �2 � c0 (T �2 ) = 0

that identi�es the optimal time for the second investment in a game with pre-commitment,

is also the �rst order condition of the problem

max
t
D2(t) = �(2)

Z T �3

t
e�rsds� [c(t)� c (T �3 )] .

In other words, even in the game without pre-commitment, if a player were guaranteed to

be the second investor, he would choose to invest at T �2 .

The fact that the function D2(t) is strictly positive in T �2 , hence in the whole interval

(T2; T
�
3 ), is a direct consequence of Lemma 1: If �rms invest at their pre-commitment

equilibrium investment times, earlier investors receive a larger payo¤ than later investors.

In particular, V 2(T �1 ; T
�
2 ; T

�
3 ) > V

3(T �1 ; T
�
2 ; T

�
3 ). Since game payo¤s do not depend on earlier

investment times, this in turn implies that V 2(T 1; T �2 ; T
�
3 ) > V

3(T 1; T �2 ; T
�
3 ). This creates

the incentive for preemption and guarantees that the second SPNE investment time t2 is

exactly equal to T2: None of the two active �rms will invest before T2; because for t < T2

the payo¤ from being the second investor is smaller than the payo¤ from being the third

investor. Also, the second investment cannot occur in the interval (T2; T �3 ) because then

the second investor would receive a higher payo¤ than the third, and last, investor. The

latter would thus have an incentive to deviate and preempt the former. Therefore, the

threat of preemption causes rent equalization and the strict quasi-concavity of expression

(3), guaranteed by assumption 2, pins down the second investment time.

Now consider the problem the three �rms are facing at the beginning of the game. First,

it can be shown that the �rst investment cannot occur after t2: In this case, one more �rm

would immediately invest after the �rst investment, since the payo¤ of the second investor
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is larger than the payo¤ of the third investor in the interval (t2; T �3 ). But this cannot be

an equilibrium because the �rst two investors would receive a higher payo¤ than the last

investor, who would therefore have an incentive to preempt them.

At the beginning of the game, each �rm therefore knows that it should either invest at

some time t strictly before t2, or wait exactly until t2: In either case, the two remaining �rms

will invest at t2 = T2 and t3 = T �3 respectively. They will both receive payo¤
�(3)
r e

�rT �3 �

c (T �3 ). If the �rst investor invests at t < t2 his payo¤ is

�(1)

Z t2

t
e�rsds+ �(2)

Z T �3

t2

e�rsds+ �(3)

Z 1

T �3

e�rsds� c(t): (4)

If instead he invests at t2, his payo¤ is

�(2)

Z T �3

t2

e�rsds+ �(3)

Z 1

T �3

e�rsds� c(t2): (5)

The di¤erence between (4) and (5) is

D1(t) = �(1)

Z t2

t
e�rsds� [c(t)� c(t2)] (6)

where the �rst term measures the advantage of being �rst rather than second or third,

and the second term represents the extra-cost associated. The properties of expression (6)

are analogous to those of expression (3): It is strictly quasiconcave and has a maximum

exactly at T �1 ; the �rst equilibrium investment time in the game with unobservable moves.

Whether the �rst investment occurs strictly earlier than the second, or exactly at the

same time, depends on the following. The threat of preemption from the third investor

guarantees that the second investment occurs earlier than T �2 : In particular, the second

investment time t2 might fall either in (T �1 ; T
�
2 ) or even earlier than T

�
1 : In the �rst case,

illustrated in Figure A, the intuition from the subgame with two active players carries over:

the payo¤ di¤erence between the �rst and the second investor is negative for very small

values of t; zero at points T1 and at t2, and positive in (T1; t2) by strict quasiconcavity. The

threat of preemption then guarantees that the �rst investment will occur exactly at t1 = T1

and that all players earn the same equilibrium payo¤s.

If instead the second investment occurs before T �1 ; as illustrated in Figure B, no �rm

will want to invest strictly before t2: The intuition is the following: before T �1 ; the marginal

bene�t of delaying investment, namely the reduction in c(t), outweighs the marginal cost of
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forgoing monopoly pro�ts. This results in the function D1(t) being increasing at t2: Thus

each �rm would rather wait until t2 than invest immediately. We already argued that the

�rst investment cannot happen after t2: Hence, there is a cluster of two investments at

t2: Preemption in the �nal 2-player subgame accelerates the second investment to such an

extent, that it is too costly for any player to invest even earlier.

Equilibrium Payo¤s. As illustrated in Proposition 1, in equilibrium all �rms receive the

same payo¤. Rent equalization in preemption games was �rst established by Fudenberg

and Tirole (1985) for the case of two players. In their general setting, which allows for

�0 to depend on the number of previous investments, the game with two players can have

multiple equilibrium outcomes, and this implies that rent equalization does not necessarily

hold in an analogous game with three or more players. For example, di¤erent continuation

payo¤s might be speci�ed, conditioning on the identity of the �rst investor. In our setting,

in which �0 does not depend on previous investments, the equilibrium outcome is unique

in each subgame, and rent equalization holds for any �nite number of players.

An interesting feature of this game is that a change in � (m) for m < N does not a¤ect

equilibrium payo¤s. The last player optimally chooses to invest at T �N , and this determines

his equilibrium payo¤:
�(N)

r
e�rT

�
N � c (T �N ) :

In turn, the threat of preemption guarantees that in equilibrium every other player receives

exactly the same payo¤. Hence, a change in � (m) for m < N can at most imply a change

in the equilibrium investment times, but not in the equilibrium payo¤s.

If instead there is a change in � (N), this directly a¤ects not only the equilibrium invest-

ment time but also the equilibrium payo¤ of the last player, and thus, by rent equalization,

of all the players in the game. In particular, it follows from the envelope theorem that an

increase in � (N) implies a higher equilibrium payo¤ for the last player, and hence for all

players.

Formally, let tj(�) be the j-th equilibrium investment time for a given �ow pro�t struc-

ture �. Let

V j(tj(�); t�j(�))

denote the corresponding equilibrium payo¤ of the j-th investor. Proposition 2 summarizes

how equilibrium payo¤s depend on the �ow pro�t structure.
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Proposition 2 For every j 2 f1; :::; Ng; in the unique SPNE outcome of the N-player pre-

emption game:

(i) @V j(tj(�);t�j(�))
@�(m) = 0 for m < N

(ii)@V
j(tj(�);t�j(�))
@�(N) > 0:

One interesting implication of this result is that any regulatory policy that a¤ects post-

investment pro�ts � (m) for m < N , for example a policy that reduces monopoly �ow

pro�ts, does not a¤ect players�equilibrium payo¤s.

Now consider increasing the number of investors toN+1:Assume that �(j) for j =1; :::; N ,

are unchanged and that the amended �ow pro�t structure � = [�(1); :::; �(N + 1)]

still satis�es Assumptions 1 to 4. Equilibrium payo¤s will be lower for all �rms. The

reason is that in equilibrium, all players must receive the same payo¤ as the last investor.

The last investor�s �ow pro�t is now smaller (� (N + 1) rather than � (N)), and the envelope

theorem implies that she earns a smaller equilibrium payo¤.

Pre-commitment versus SPNE. Proposition 1 enables us to compare equilibrium invest-

ment times and payo¤s in the presence and in the absence of pre-commitment, respectively.

The following Corollary states that allowing for preemption always accelerates investment

and reduces payo¤s relative to pre-commitment.

Corollary 1 In every SPNE,

(i) investment occurs earlier than in the pre-commitment equilibrium:

tj � T �j for all j = 1; :::; N ;

(ii) payo¤s are lower than in the pre-commitment equilibrium:

V i(ti; t�i) � V i(T �i ; T ��i) for all j = 1; ::; N: The inequality is strict for all j = 1; ::; N � 1:

The Corollary follows immediately from Proposition 1. For Part (i), note that the last

investment occurs at the same time T �N in equilibrium, with or without pre-commitment.

For all j < N; the preemption incentive is always positive at T �j when only j � 1 �rms

have invested. Thus, preemption always accelerates investment times relative to the pre-

commitment equilibrium. This result has an interesting implication. As we mentioned in

the discussion of Proposition 1, even in the game without pre-commitment, if a player were

guaranteed to be the j-th investor, he would choose to invest at T �j . Given the convexity

of the investment cost function, for t < T �j , the marginal bene�t of delaying the j-th
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investment, namely the reduction in the investment cost, outweighs the cost of delay (the

pro�t �ow that is forgone), while for t > T �j the opposite is true. The result in Part (i) of

the Corollary then implies that in any SPNE of the game without precommittment each

player (except the last) would bene�t from a marginal delay of his investment.

For Part (ii), observe that in any SPNE all investors obtain the same payo¤, equal to the

payo¤ of the last investor in the pre-commitment equilibrium. Since in the pre-commitment

equilibrium the last investor receives the lowest payo¤, every �rm is worse o¤ in the game

with preemption.

3.2 Clusters and Di¤usion

A key feature of the unique equilibrium outcome of the preemption game with N players is

that it is possible that there are clusters of simultaneous investments at one or more points

in the sequence of equilibrium investments, although coordination failures are ruled out

by the randomization device we assumed in Assumption 5. In this section, we investigate

under which conditions clusters arise.

First, we present a comparative statics result on the impact of a change in a given � (m)

on the equilibrium investment times. Then, we use this result to provide a simple condition

on the �ow pro�t structure � that is su¢ cient for the presence of a cluster.

In order to identify the mechanism that determines a cluster, we start by looking at the

impact of a marginal change of one of the parameters � (m) on the equilibrium investment

times. A �rst observation is that a marginal change in � (m) can only a¤ect investment

times t1 to tm: In other words, each equilibrium investment time tj is a¤ected only by the

values of the parameters �(m) for m � j: Consider, for example, the last two investment

decisions. The last investment time tN is the solution to a single player decision problem,

which is a¤ected only by � (N) : The (N � 1)-th investment time tN�1 instead, is calculated

by equating the extra cost of investing earlier than tN to the extra bene�t, which is the �ow

of pro�ts � (N � 1) earned between tN�1 and tN . Hence, the only parameters a¤ecting this

calculation are � (N � 1) and � (N), which determines tN . Similarly, the j-th investment

time is determined by considerations that involve the threat of preemption by later investors,

hence it can only be a¤ected by � (j) and by the parameters that a¤ect later investment

decisions, namely � (m) for m > j:

Therefore the question arises of how exactly a change in � (m) a¤ects the equilibrium
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investment times of the m-th investor and of the previous investors.

Suppose the m-th and the (m+ 1)-th investment times are distinct, i.e. tm < tm+1, and

let us consider the impact of a marginal change in � (m) on tm and tm�1:

Proposition 3 Suppose that for a given �ow pro�t structure �; the equilibrium investment

times tm and tm+1 satisfy tm < tm+1: It holds that

(i) @tm
@�(m) < 0:

Moreover,

(ii) if tm�1 < tm; then
@tm�1
@�(m) > 0;

(iii) if tm�1 = tm; then
@tm�1
@�(m) < 0:

If � (m) increases, the m-th investment occurs earlier. The intuition relies on the prin-

ciple of rent equalization. With a higher value of � (m), if the m-th investment time did

not change, the m-th investor would receive a higher payo¤ than later investors, whose

investment times, and payo¤s, are unchanged. This cannot happen in equilibrium, and the

threat of preemption has to equate payo¤s for all players. In the discussion of Corollary

1, we pointed out that since tm < T �m, the m-th investor would bene�t from a marginal

delay of his investment. Therefore, the threat of preemption dissipates the extra payo¤

that the m-th investor would receive due to the increase of � (m), by accelerating the m-th

investment.

The impact on tm�1 instead, depends on whether them-th and the (m�1)-th investment

time are initially clustered or di¤used. If they are clustered, since the increase in � (m)

accelerates tm and does not a¤ect T �m�1, the condition for a cluster, namely tm � T �m�1,

still holds. Therefore, the m-th and the (m� 1)-th investments are still simultaneous, and

as tm decreases, tm�1 decreases as well.

If instead the m-th and the (m � 1)-th investment are initially di¤used, the (m � 1)-

th investment is delayed. The intuition is as follows. To guarantee rent equalization, the

(m� 1)-th investment must take place at the point in time where the incentive to preempt

the rivals and be the (m� 1)-th investor rather than the m-th, as measured by

Dm�1(t) = �(m� 1)
Z tm

t
e�rsds� [c(t)� c(tm)]

is exactly null. By part (i) of Proposition 3, an increase in � (m) accelerates the m-th

investment. This in turn decreases the preemption incentiveDm�1(t) in every t: the (m�1)-
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th investor now receives �(m � 1) for a shorter period, the m-th invests at a higher cost,

and the �rst e¤ect dominates the second because the point where they are evaluated, tm, is

larger than T �m�1, the point where the investment cost changes at a speed exactly equal to

�(m� 1). Since the incentive to preempt the rivals and be the (m� 1)-th investor is now

lower in every t; and in particular is negative for the initial value of tm�1, rent equalization

requires that the (m � 1)-th investment time changes in a way that exactly compensates

for this decrease. From our discussion of Corollary 1, this change must be an increase: a

marginal delay of the (m�1)-th investment would bene�t the (m�1)-th investor while not

a¤ecting the m-th investor.

We now extend the previous comparative statics analysis, describing the impact of a

change in � (m) on all the �rst m equilibrium investment times.

Proposition 4 If for a given �ow pro�t structure �, the �rst m investment times occur

at n � m distinct times indexed by [�t1; �t2; :; �tn�`; ::; �tn]; where �tn = tm, and it holds that

tm < tm+1; then

(i) @�tn�`
@�(m) > 0 if l is odd

(ii) @�tn�`
@�(m) < 0 if l is even

Softening the competition among m investors, i.e. increasing �(m), accelerates some of

the previous investment times, and delays others. An important implication is that increas-

ing the number of potential investors does not necessarily accelerate the �rst investment

into the market. In Section 4, we will show that in the case of entry in a market with linear

Cournot competition, increasing the number of entrants never accelerates �rst entry.

The previous comparative statics results will prove very helpful in understanding what

determines the existence of a cluster of investments in our model. Suppose the (m� 1)-th

and the m-th investments are di¤used for a given �ow pro�t structure �. Since an increase

in � (m) accelerates the m-th investment and delays the (m� 1)-th investment, one would

expect that for a su¢ ciently large � (m) ; namely for a value of � (m) su¢ ciently close to

� (m� 1), the two investments would be simultaneous. In Proposition 5, we formalize this

intuition and prove that there is a simple condition on the �ow pro�t structure � that

guarantees the presence of a cluster: in any equilibrium in which tm�1 < tm < tm+1, we can

perturb either � (m� 1) or � (m) in such a way that [� (m) ; � (m� 1)] becomes su¢ ciently

small that in the new equilibrium the (m� 1)-th and the m-th investment are clustered.
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Proposition 5 Suppose that for a given �ow pro�t structure � the SPNE investment times

satisfy tm�1 < tm < tm+1: Then:

(i) there exists ~� (m� 1) 2 (� (m) ; � (m� 1)) such that the new SPNE involves tm�1 = tm:

(ii) there exists ~� (m) 2 (� (m) ; � (m� 1)) such that the new SPNE involves tm�1 = tm:

We conclude this section by relaxing Assumption 4 and allowing for an endogenous

number of investors.

3.3 Extension: Insu¢ cient Pro�tability of Investment

Throughout our analysis, the number of players N participating in the preemption game

was taken as an exogenously given parameter. In particular, Assumption 4 implied that the

cost of investing eventually became su¢ ciently small, relative to the smallest possible �ow

payo¤ �(N), that all N �rms would invest in �nite time. We now relax this assumption

and explore how the number of investors could be determined endogenously as part of the

equilibrium of an enriched game. We consider a variation of the basic game in which the

maximum number of �rms that can pro�tably invest is smaller than the number of potential

investors. The market might be �too small�for all N �rms to invest.

Formally, we maintain the assumption that the number of players in the game is N; let

Assumptions 1, 2, 3, and 5 still hold, and replace 4 by

Assumption 4�

(i) 9k 2 f2; Ng such that 9� such that c (�) er� < �(k)
r

(ii) limt!1 c0(t)ert 2 (�� (N) ; 0]

Let M denote the highest integer k 2 f2; Ng such that 9� such that c (�) er� < �(k)
r :

the investment cost decreases over time, but only to such an extent that at most M players

can pro�tably invest. The following result holds:

Proposition 6

(a) If M = N; then the unique SPNE outcome of the game is the one characterized in

Proposition 1.

(b) If M < N; then the game admits a unique SPNE outcome in which

� only M �rms invest,

� the equilibrium payo¤ is zero for all N players,
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� the equilibrium investment times (t1; t2:::; tM ) can be calculated recursively according

to the following algorithm:

(i) tM solves �(M)
r � c (t) ertM = 0

(ii) For j = 1; :::;M � 1;

If tj+1 > T �j ; then tj < tj+1 and tj solves

�(j)

Z tj+1

tj

e�rsds� c(tj) + c(tj+1) = 0

If tj+1 � T �j , then tj = tj+1:

If the maximum number of players who can pro�tably invest is smaller than N; the

equilibrium outcome has two novel features: �rst, all players receive a payo¤ of zero in

equilibrium; second, while in the original model the last equilibrium investment time would

never entail a cluster, it is now possible that the last two (or more) investments are clustered.

The intuition for the zero-pro�t result is very simple: some players will have to be

inactive in equilibrium, and therefore make a payo¤ of zero. Through the usual mechanism,

the threat of preemption guarantees rent equalization among all �rms. In particular, this

implies that the equilibrium payo¤ is zero even for the players who invest.

In the basic version of the model, after N � 1 �rms have invested the last active �rm is

not under threat of being preempted, hence it can wait till T �N , the optimal time to invest

conditional on being the N -th investor, and make positive pro�ts in equilibrium. If instead

only M < N �rms can pro�tably invest, after M � 1 �rms have invested there are still

M � (N � 1) players competing to be the last investor. Since N �M of them will not be

able to invest in equilibrium, and will receive a payo¤ of zero, rent equalization requires

that the last investment time cannot be T �M (the optimal time to invest conditional on being

the M -th investor) but has to be some tM < T �M that drives the pro�ts of the last investor

down to zero. This mechanism also allows for the possibility that the threat of preemption

accelerates the last investment to such an extent that afterM�2 investments no �rm would

�nd it pro�table to invest before tM and the last two investments would be clustered at tM .

An interesting implication of Proposition 6 is that for the case ofM = 2 and N � 3 it is

possible that the two �rms who successfully invest in equilibrium do so simultaneously. For

the case of M = N = 2; Fudenberg and Tirole (1985) prove that, if pre-investment pro�ts

are independent of the number of previous investors, investment times will be di¤used. In

the extension considered in this section, we have shown that with N � 3 the possibility of
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clusters of simultaneous investments does not even require that more than two players invest

in equilibrium: the preemption threat exerted by a third potential investor is su¢ cient to

make clusters possible.

4 Example: Entry in a Market with Cournot Competition

We have sofar considered a general rivalrous �ow pro�t structure and declining cost function.

While we were able to characterize the equilibrium times and distribution of payo¤s, the

conclusions that can be reached regarding issues like e¢ ciency of the equilibrium outcome,

and the e¤ects of increased competition on the time of �rst investment, are limited without

specifying a cost function and the nature of post-investment competition. To illustrate

that more precise results can be obtained with a speci�c �ow pro�t and cost structure,

we consider the case where investment is interpreted as entry in a market where investors

compete in quantities facing linear demand, and the investment cost function is exponential.

The present value of the cost of entry at time t is

c(t) = c � e�(�+r)t (7)

where c is the cost of entering at time 0, r denotes the discount rate, and � is the exponential

decay parameter. It is easy to verify that (7) satis�es Assumption 2. With this cost function,

the vector of equilibrium investment times in a game with pre-commitment, as characterized

in Lemma 1, can be calculated analytically as

T �m = �
1

�
� log

�
�(m)

(�+ r) � c

�

for every m = 1; ::; N:

After entering the market, �rms compete à la Cournot and face a linear demand function

P (Q) = a� bQ: Marginal cost is constant at k and identical for all �rms. We assume that

a > k > 0: The period payo¤ when m �rms have invested then becomes �(m) = (a�k)2
b(m+1)2

:

First, we would like to compare the equilibrium investment times to those that maximize

industry pro�ts. Consider the marginal e¤ect of them-th investment on industry �ow pro�ts

�(m) + (m� 1)[�(m)� �(m� 1)]:
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The second term, which corresponds to the business stealing e¤ect, is clearly negative

for m � 2; and null for m = 1 (the �rst entry has no business stealing impact because

there are no incumbents in the market). The marginal private bene�t of investing, on

the other hand, is �(m): Consequently, in a game with precommitment in which the j-

th equilibrium investment time is calculated equating the private marginal bene�t and

the marginal cost of delaying entry, every investment but the �rst occurs too early from

the industry�s perspective. Part (i) in Corollary 1 states that without pre-commitment

investment occurs even earlier: Therefore, from the industry�s perspective, preemption

aggravates the problem of early entry.

Next, we compare the equilibrium investment times to those that maximize social wel-

fare. If the investment game is interpreted as a game of entry in a market, the acceleration of

investment due to preemption does not just reduce industry pro�ts, but also has a positive

e¤ect on consumer surplus. To evaluate the net e¤ect, knowledge of demand and the nature

of post-investment competition is required. In the Cournot example we are considering in

this section, with precommittment the �rst investment occurs too late (the �rst entrant does

not internalize the positive impact on consumer surplus) and every other investment occurs

too early: �rms do not internalize business stealing, nor the change in consumer surplus,

and in this example the former is stronger than the latter. As we relax precommittment

and allow for preemption, all investments are accelerated, therefore for m � 2 the m-th

investment takes place too early from a social point of view, and the result on the �rst

investment time is ambiguous. Under a simple condition, the �rst investment occurs too

late even in the presence of precommittment.

Formally, denoting by TWm the welfare-maximizing m-th investment time, the following

result holds:

Proposition 7 Assume that �ow pro�ts �(m) arise from Cournot competition among the

investors, with a linear demand function and constant marginal cost. Then:

(i) tm � T �m < TWm for m � 2.

(ii) TW1 < T �1 and, if the cost of investment declines exponentially as in (7),

r
� >

g� r
�

�
� 1:275 implies TW1 < t1 � T �1 .

Next, we consider the impact of an increase in the number of potential investors N

on the time of �rst entry. While it is not possible to derive a result that holds for any
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preemption game, for the case of exponential cost of entry into a market with Cournot

competition and a linear demand function, the following holds:

Let tj (N) denote the j-th equilibrium investment time in a game with N potential

investors.

Proposition 8 If the cost of investment declines exponentially as in (7) and �ow pro�ts

�(m) arise from Cournot competition among the investors, with a linear demand function

and constant marginal cost, then t1 (N) > t1 (2).

Proposition 8 states that increasing competition in linear Cournot by adding more po-

tential entrants will not accelerate �rst entry. To capture the intuition, consider the case of

going from two to three �rms. Adding a third �rm accelerates the second entry time, due

to the preemption game played among the last two players. The question then becomes

whether the second entry time is accelerated to such an extent that it takes place before

T �1 , and hence it is clustered with the �rst entry time, or not.

If this is not the case, then the �rst entry must take place at a time t1 (N) that is later

than t1 (2) : The intuition for this delay is that the acceleration of the second entry time

decreases the preemption incentive to be the �rst, rather than the second entrant. This

incentive is measured by the payo¤ di¤erence

D1(t) = �(1)

Z t2

t
e�rsds� [c(t)� c(t2)]

which is increasing in t2. As t2 is accelerated by the presence of the third �rm, the relative

advantage from being �rst rather than second decreases, since monopoly pro�ts are obtained

for a shorter time, and the relative cost decreases as well, since now the second investor

sustains a higher investment cost. Nonetheless, the �rst e¤ect dominates the second, since

they are evaluated in t2; which is larger than T �1 ; the point where the two e¤ects would be

equated.

If instead t2 (3) is accelerated to such an extent that it is clustered with t1 (3), accel-

eration may in principle be strong enough that �rst and second entry occur earlier than

the �rst entry in the two-player game. In our case of linear Cournot, even in the case of

joint �rst and second entry, this cluster still occurs after the �rst entry time of the two-�rm

game.

Finally, we illustrate the mechanism behind Proposition 5. We present an example
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Case 1 Case 2
m �(m) T �m tm �(m) T �m tm
1 4 32.1 28.2 4 32.1 31.9
2 179 42.2 37.2 225 38.4 31.9
3 1 49.4 49.4 1 49.4 49.4

Table 1: Period pro�ts and adoption times

similar to the one that generated Figures A and B. Choosing parameters for the pro�t

function �(m) such that Assumptions 1 to 4 are satis�ed,13 we illustrate in Case 1 of Table

1 the SPNE investment times t relative to the pre-commitment equilibrium investment

times T �, as well as the �ow pro�ts �(m) after m investments. In this case, the preemption

incentive for the �rst investor at t1 is still strong enough so that there is di¤usion. Consider

Case 2 in Table 1. We slightly increased duopoly pro�ts �(2) so that they now lie between

monopoly pro�ts and the original duopoly pro�ts. Consider the e¤ect of this change in

the �ow pro�t structure: The pre-commitment times T �1 and T
�
3 are una¤ected, so that

the last investment time remains unchanged. The second investment time t2 is accelerated.

In particular, the preemption incentive is so strong, such that t2; the time that equalizes

payo¤s from investing second and third, is smaller than T �1 ; hence at time t1 there is a

cluster of two investments. Note also that the �rst equilibrium is now delayed, because the

advantage of being �rst is diminished by the fact that the second �rm would invest early.

5 Conclusion

The existing literature on timing games with complete information focuses on two-player

preemption games. For the case where investment does not a¤ect the payo¤of non-investors,

Fudenberg and Tirole (1985) prove that in a complete information preemption game invest-

ment times are di¤used, and equilibrium payo¤s equalized. We study the extension of that

game to N players. We �nd that there exists a unique subgame-perfect Nash equilibrium

outcome, up to a relabeling of players. Equilibrium payo¤s are equalized across players,

but investment times can be clustered. Clusters of adoption or entry times have often been

ascribed to coordination failures, informational spillovers, or positive network externalities,

but arise here in a game where all those elements are absent.

We also show that increasing the number of competitors in the investment game does

13We parameterize the demand and cost functions in the following way: a = 5; b = 1; k = 1; c = 400;
� = :08; r = :05:
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not necessarily accelerate the �rst investment. In particular, we prove that for the case of

Cournot competition with a linear demand, the �rst investment in the two-player game is

a lower bound for the �rst investment in any N -player game.

While we are able to extend the analysis of the complete information game to N play-

ers, there are also limits to which environments we can study. Pre-investment payo¤s are

constant in our game. Thus, our model encompasses environments such as entry into a new

market or product innovation, but it does not capture process innovation by technology

adoption. The recent literature on two player games has also relaxed the assumption that

post-investment pro�ts are symmetric upon investment (for examples see Hoppe (2002)).

The extension to the N -player case is left for future research.
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Appendix A (Entry in a Growing Market)

In this Appendix, we present an alternative version of the model that captures competition

among N �rms that wait for the optimal moment to enter a market with growing demand.

As in the version presented in the main text, �rms face a trade-o¤ that generates a pre-

emption game among them. Firms have an incentive to delay, since demand in the market

is increasing over time and the current cost of entry is �xed. At the same time, there is an

early mover advantage, since entering before the rivals means facing fewer competitors in

the market, at least for some time.

We present a set of assumptions that guarantee that all the results in the main text are

preserved in this environment as well.

In this version of the model, �Investment�represents entry in a new market. As in the

main model, a �rm earns zero payo¤s before investment. Upon investment, it earns �ow

pro�ts of A(t)�(m): Here, A(t) stands for the current level of demand14 in the market.

The current cost of investing K is constant over time. The present value at time 0 of

the cost of entry is Ke�rt:

Thus, the game payo¤ can now be written as:

V j(T 1; T 2; ::; T j ; :; TN ) =
NX
m=j

�(m)

Z Tm+1

Tm
A(s)e�rsds�Ke�rTj

where r denotes the common discount rate, and TN+1 =1:

Wemaintain assumptions 1, 5 and replace assumptions 2, 3, 4 regarding the cost function

with analogous assumptions concerning the growth of demand:

Assumption A-2

(i) A(t) > 0; 8t

(ii) A0(t) > 0; 8t

Assumption A-2(i) states that demand is positive at all times and Assumption A-2 (ii)

requires that demand is growing over time.

Assumption A-3

(i) � (1)
R1
0 A(s)e�rsds�K < 0

14A(t) could also describe a productivity process so that the dynamics of pro�tability are driven by
exogenously increasing e¢ ciency of �rms.
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Assumption A-3(i) ensures that no �rm enters at time zero, even if it could preempt all

other �rms inde�nitely.

Assumption A-4

(i) 9� such that K < �(N)
R1
� A(s)e�r(s��)ds

(ii) limt!1A(t) 2
�
0; rK
�(N)

�
Assumption A-4(i) requires that demand becomes su¢ ciently large so that entry even-

tually becomes pro�table. Assumption A-4(ii) ensures that no �rm would wish to delay

entry inde�nitely.

An example satisfying Assumption A-2 to A-4 would be an exponentially growing market

with A(t) = A0e�t, where � < r:

It is easy to verify that the main results of the paper go through in this alternative game.

The key is that the Dj(t) curves will again be strictly quasi-concave, negative at time zero,

and positive in some interval. Thus an algorithm corresponding to the one in Proposition

1 can be employed to compute the equilibrium entry times.
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Appendix B

Remark 1 The function

f (�1) �
Z �2

�1

� (m) e�rsds+ k � c (�1)

is strictly quasi-concave in �1 for any m 2 f1; 2:::; Ng; 8k 2 R; and 8f�1; �2g 2 R2+.

Proof. We prove the result by showing that in every critical point of the function the

second derivative is strictly negative. The �rst derivative is

f 0 (�1) = �� (m) e�r�1 � c0 (�1)

and the second derivative is

f 00 (�1) = r� (m) e
�r�1 � c00 (�1) :

From Assumption 2(i) we know

er�1
�
c0 (�1) + rc (�1)

�
< 0

and from assumption 2(ii)

er�1
�
2c0 (�1) r + c (�1) r

2 + c00 (�1)
�
> 0

which together imply

c0 (�1) r + c
00 (�1) > 0:

Using f 0 (�1) = 0 we can rewrite f 00 evaluated at any critical point as

f 00 (�1) = �c0 (�1) r � c00 (�1) ;

which is negative. �

Proof of Lemma 1. Reinganum (1981b) proves that the equilibrium adoption times T �j
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(j = 1; :::N) of the game with unobservable actions are the solution to

max
t
gj(t) � �(j)

Z T �j+1

t
e�rsds+

NX
m=j+1

�(m)

Z T �m+1

T �m

e�rsds� c(t) (8)

for j = 1; :::N; where T �m+1 � +1. To guarantee that the proof still holds under our slightly

di¤erent assumptions, we need to check that, given our assumptions, these quantities are

well de�ned and that the associated payo¤ is greater or equal than the payo¤ from never

investing. First, notice that for any j = 1; ::::; N; the function gj(t) is strictly quasiconcave

by Remark 1. By assumptions 3(i) and 1(ii), it is negative at t = 0: By assumption 4(i) and

2(i) it takes strictly positive values for every � larger than some �nite � 0: Finally, assumption

4(ii) guarantees that its derivative

g0j(t) = ��(j)e�rt � c0 (t)

becomes negative for t su¢ ciently large. Hence, the function admits a unique maximum

and its maximum value is strictly positive.

Next, we adapt the proof from Fudenberg-Tirole (1985) to prove the second claim. Let

i; j 2 f1; :::; Ng with i < j:

V i(T �i ; T
�
�i) > V i(T �1 ; :::; T

�
i�1; T

�
j ; T

�
i+1; :::; T

�
j ; :::; T

�
N )

= V j(T �1 ; :::; T
�
i�1; T

�
j ; T

�
i+1; :::; T

�
j ; :::; T

�
N )

= V j(T �1 ; :::; T
�
i�1; T

�
i ; T

�
i+1; :::; T

�
j ; :::; T

�
N )

= V j(T �j ; T
�
�j)

where the inequality holds because T �i is a strict best response, the �rst equality by symme-

try of the payo¤, and the second equality holds because the payo¤ of a player is independent

of previous investment times. �

Proof of Lemma 2. Assumptions 3(i) and 1(ii) guarantee that there is no investment at

time zero: the cost of investing immediately is higher than the maximum amount of pro�ts

a �rm can obtain in this game. For the second part of the claim, we �rst show that there

exists a �� < 1 such that in equilibrium, in any decision node with one active �rm and
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calendar time t, the �rm plays:

if t < ��; WAIT

if t � ��; INVEST

and that �� = T �N as de�ned in section 3.1.

Suppose N�1 �rms have invested by time t. By Lemma 1, the optimal investment time

for the last active �rm is T �N . The function

gN (t) = �(N)

Z 1

t
e�rsds� c(t)

is strictly quasi-concave, admits a unique maximum at T �N , it is strictly positive for every �

larger than some �nite � 0; and its derivative is negative for t su¢ ciently large. Therefore, we

can conclude that if N � 1 �rms have already invested by time t and t < T �N the last active

�rm will wait until T �N and then invest, while if t � T �N ; then it will invest immediately.

We conclude the proof of the second part of the claim by showing that all �rms invest by

T �N . Suppose the calendar time is t � T �N and N � 2 �rms have invested. Any of the two

remaining �rms can choose whether to

(i) invest immediately: this would trigger immediate rival investment and yield payo¤

� (N)

r
e�rt � c (t) > 0

(ii) never invest: the associated payo¤ would be zero.

(iii) wait until a �nite t + ": With this strategy, two cases are possible. If the rival waits

until t+ " as well, the payo¤ is

� (N)

r
e�r(t+") � c (t+ ") < � (N)

r
e�rt � c (t)

where the inequality holds by strict quasi-concavity and because t � T �N . If instead the

rival invests at � 2 (t; t+ "), the �rm would then have to invest immediately after the rival

and get
� (N)

r
e�r� � c (�) < � (N)

r
e�rt � c (t)

where the inequality holds by strict quasi-concavity and because � > t � T �N : Therefore,
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the �rm will invest immediately at t. Repeating the same argument, even if no �rm has

invested by time t � T �N , then all �rms will invest immediately. �

Proof of Proposition 1. We �rst prove that the game admits a unique symmetric

equilibrium and characterize its outcome. Then, we analyze the asymmetric equilibria, and

show that they induce the same outcome.

Symmetric equilibrium.

To construct the symmetric equilibria of the game, we introduce a mild symmetry as-

sumption. Suppose that at any time t; if a �rm is indi¤erent between being the m-th

investor at t and the (m + 1)-th investor, then it invests at t: The assumption guarantees

that if at time t each of the N �m + 1 active �rms is indi¤erent between the payo¤ from

investing immediately and being the m-th investor and the payo¤ from waiting and being

the (m + 1)-th investor, they all try to invest immediately, and the randomization device

introduced in assumption 5 determines which of them is successful. Through a series of

Lemmata we show that under this assumption the game admits a unique SPNE, which

is symmetric, and characterize the associated outcome. The proof is articulated in the

following steps:

� Denote by tj the SPNE investment time of the j-th investor, for j 2 f1; ::; Ng: In

De�nition 1, we introduce three functions, Lj(t), Fj(t), and their di¤erence Dj (t).

� In Lemma B-1 and Lemma B-2 we characterize their properties. Over a subset of their

domain, Lj(t) and Fj(t) can be interpreted as the payo¤ of the j-th investor and the (j + 1)-

th investor, respectively, if the j-th investment takes place at t and the following investments

take place at tj+1,..., tN respectively. In the de�nition, the existence and uniqueness of the

SPNE investment times is assumed. In the development of the proof, they will be proved.

The existence and uniqueness of tN = T �N was proved in Lemma 2.

� In Lemma B-3, we prove that there exists a time TN�1 < tN in which LN�1(t) =

FN�1(t) and in Lemma B-4 we prove that this is the unique (N � 1)-th equilibrium invest-

ment time, Therefore the equilibrium payo¤ of the last two investors is the same.

� Finally, in Lemma B-5, B-6 and B-7 we identify the algorithm for the construction of

the equilibrium investment times tj for j 2 f1; :::; N � 2g and prove that rent equalization

holds in equilibrium for all players. The argument is based on the induction principle.

Lemma B-5 proves that there exists an algorithm to identify the unique tN�2; given tN�1

and tN , and that the equilibrium payo¤ of the last three investors is the same. Lemma B-6

shows that if an analogous algorithm can be used to identify a unique value of tN�k, given
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tN�k+1,...,tN , and rent equalization holds for the last k players, then the same algorithm

identi�es a unique value for tN�k�1; given tN�k,...,tN , and rent equalization holds for the

last k+1 players. Lemma B-7 concludes that, by the induction principle, the algorithm can

be used to construct the SPNE investment times t1,..., tN�2 and rent equalization holds for

all players. This concludes the proof of the Proposition.

De�nition 1 For each j 2 f1; ::; N � 1g; we de�ne the following three functions over the

interval [0; T �N ]:

Lj(t) � �(j)
Z tj+1

t
e�rsds+

NX
m=j+1

�(m)

Z tm+1

tm

e�rsds� c(t)

where tN+1 � +1;

Fj(t) �
NX

m=j+1

�(m)

Z tm+1

tm

e�rsds� c(tj+1)

which is constant with respect to t; and

Dj (t) � Lj(t)� Fj(t) = �(j)
Z tj+1

t
e�rsds� c(t) + c(tj+1).

Notice that all these functions are clearly continuous.

Lemma B-1

(i) The functions Dj (t) attain a unique global maximum in T �j 2 (0; T �N ].

(ii) T �1 < T
�
2 < ::: < T

�
N :

(iii) Dj(T
�
j ) � 0 for j 2 f1; ::; N � 1g:

Proof.

Part (i): Notice that

Dj (t) = �(j)

Z tj+1

t
e�rsds� c(t) + c(tj+1) (9)

and

gj(t) = �(j)

Z T �j+1

t
e�rsds

NX
m=j+1

+�(m)

Z T �m+1

T �m

e�rsds� c(t) (10)

di¤er by a �nite constant. In the proof of Lemma 1 we showed that (10) attains a unique

global maximum in T �j 2 (0; T �N ]; hence the same is true for (9).
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Part (ii): By the implicit function theorem

@T �j
@�(j)

= � �e�rT
�
j

@(�� (j) e�rT
�
j � c0

�
T �j

�
)=@T �j

< 0;

where the inequality follows from the fact that the denominator is negative, since T �j is a

maximum. Therefore, by Assumption 1(ii), it holds that T �1 < T
�
2 < ::: < T

�
N :

Part (iii): Since Dj (tj+1) = 0 and T �j is the unique global maximizer, it holds that

Dj(T
�
j ) � 0: �

Lemma B-2

(i) If T �j � tj+1; then 9Tj 2 (0 < T �j ]; such that Dj(Tj) = 0;

(ii) If T �j > tj+1; then Dj(t) < 0 and D
0
j(t) > 0 8t < tj+1:

Proof. By Remark 1, Dj(t) is strictly quasi-concave. Also, Dj (0) < 0; since

Lj(0) = �(j)

Z tj+1

0
e�rsds+

NX
m=j+1

�(m)

Z tm+1

tm

e�rsds� c(0) < �(1)

r
� c(0) < 0

� V j+1(t1; :::tN ) =
NX

m=j+1

�(m)

Z tm+1

tm

e�rsds� c(tj+1) = Fj(0)

Here the second inequality holds by assumption 3(i) and the third because no �rm gets a

negative payo¤ in equilibrium as it could always delay investment inde�nitely ensuring a

payo¤ of zero. Further, we have that Dj (tj+1) = 0:

Therefore, two cases are possible: either T �j � tj+1; in which case 9Tj 2 (0 < T �j ]; such

that Dj(Tj) = 0; and Dj(t) > 0 in the interval t 2 (Tj ; tj+1) ; or T �j > tj+1; in which case

Dj(t) < 0 and D0j(t) > 0 8t < tj+1: �

In the next Lemma, we show that for the case j = N�1; case (i) of Lemma B-2 applies.

Lemma B-3 T �N�1 < tN = T �N and 9TN�1 < T �N�1 < T �N such that DN�1 (TN�1) = 0:

Proof. T �N�1 < T
�
N by Lemma B-1 and tN = T

�
N by Lemma 2. The rest of the claim follows

from Lemma B-2. �

In the next Lemma we show that in equilibrium the (N � 1)-th �rm investment time is

TN�1:

Lemma B-4 In equilibrium, it holds that:

in subgames starting at a decision node with calendar time t 2 [TN�1; T �N ) ; each �rm plays:
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(i) If there are n > 1 active �rms, INVEST

(ii) If there is 1 active �rm, WAIT 8� 2 [t; T �N ), INVEST 8� � T �N

in subgames starting at a decision node with calendar time t 2 [0; TN�1) ; each �rm plays:

(iii) If there are 2 active �rms, WAIT 8� 2 [t; TN�1) and INVEST 8� � TN�1
(iv) If there is 1 active �rm, WAIT 8� 2 [t; T �N ), INVEST 8� � T �N

Hence, tN�1 = TN�1 and the equilibrium payo¤ of the last two investors is the same.

Proof. Parts (ii) and (iv) follow from the proof of Lemma 2.

Part (i). Notice that in the interval t 2 [TN�1; T �N ] it holds that DN�1(t) � 0 and that

in the open interval t 2 (TN�1; T �N ) it holds that DN�1(t) > 0: Consider a decision node

with calendar time t 2 [TN�1; T �N ] ; with n > 1 active �rms. First we show that the actions

prescribed in part (i) are compatible with equilibrium, then we rule out other actions.

If they follow the actions prescribed in part (i); all �rms try to invest immediately, until

only one is left, which will then wait to invest until time T �N (see part (ii) and Lemma 2).

The associated payo¤ is :
1

n
[(n� 1)LN�1 (t) + FN�1 (t)]

Suppose one �rm deviates and plays WAIT at t: This deviation cannot be pro�table, since it

increases the probability of receiving payo¤ FN�1 (t) and reduces the probability of receiv-

ing payo¤ LN�1 (t) > FN�1 (t), therefore the actions prescribed in part (i) are compatible

with equilibrium.

Next we will show that strategies pro�les that prescribe actions di¤erent from those pre-

scribed in part (i) for nodes with calendar time t 2 [TN�1; T �N ) and more than one active

�rm cannot be an equilibrium. We develop the argument by induction. First we show it

holds for n = 2, active �rms, then we show that if it holds for some n � 2; then it holds for

n+ 1; and then we conclude it holds for any n � 2 by the induction principle.

� n = 2:

We need to consider two classes of strategy pro�les: one with �rst investment at t by one

�rm only, and one in which both �rms play WAIT at time t; hence the �rst investment is

made at some � 2 (t; T �N ] ; by one or two �rms.

- First, consider any strategy pro�le with �rst investment at t by one �rm only.

For t 2 (TN�1; T �N ); this cannot be an equilibrium, because then the remaining �rm gets at

most FN�1 (t) ; while she could try to invest at t as well and get 12 [LN�1 (t) + FN�1 (t)] >
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FN�1 (t) : For t = TN�1; investment by only one of the active �rms is ruled out by our

symmetry assumption, which requires that if the two active �rms are indi¤erent between

the payo¤ from successfully investing immediately and being the (N � 1)-th investor and

the payo¤ from waiting and being the last investor, they both try to invest immediately.

- Next, consider any strategy pro�le with �rst investment at � 2 (t; T �N ] ; by � = 1 or 2

�rms.

This cannot be an equilibrium for � = 2; because both �rms get

1

2
[LN�1 (�) + FN�1 (�)]

while each of them could deviate by investing at � � " and get LN�1 (� � "). By continuity,

9" > 0 small enough that this is pro�table.

Also, this cannot be an equilibrium with � = 1 because the "late investor" gets FN�1 (�)

while she could deviate by investing at � � " and get

LN�1 (� � ") > FN�1 (�) .

� n) n+ 1

Suppose n+1 �rms are active. Again, we need to consider two classes of candidate equilibria,

with �rst investment at t by � < n + 1 �rms, and with �rst investment at at � > t; by

� � n+ 1 �rms, respectively.

- First, consider any strategy pro�le with �rst investment at t by � < n+ 1 �rms.

Observe that after the �rst successful investment, only n active �rms are left. In the

development of the induction argument, we are now assuming that with n active �rms, in

this class of subgames, all �rms try to invest immediately until only one is left. Consider

then one of the �rms who do not (try to) invest immediately. It gets expected payo¤:

1

n
[(n� 1)LN�1 (t) + FN�1 (t)]

while she could pro�tably deviate by trying to invest at the beginning of the subgame. This

deviation would increase the probability of receiving LN�1 (t) and decrease the probability

of receiving FN�1 (t) < LN�1 (t). Therefore, this is not an equilibrium.

- Next, consider any strategy pro�le with �rst investment at � > t; by � = 2; :::; n+1 �rms.

If at time � one �rm successfully invests, only n active �rms remain, and again, because
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we assume that the argument holds for n; we know that they all try to invest immediately

until only one is left.

This implies that any of the �rms who try to invest at � gets

1

�
LN�1 (�) +

� � 1
�

�
1

n
[(n� 1)LN�1 (�) + FN�1 (�)]

�

while she could deviate by investing at � � " and get LN�1 (� � ") : By continuity, 9" > 0

small enough that this deviation would be pro�table. Therefore, this cannot be an equilib-

rium either.

- Finally; consider any strategy pro�le with �rst investment at � > t; by � = 1 �rm

only. This cannot be an equilibrium either, because all the n �late investors�try to invest

immediately after the �early investor�and receive expected payo¤ get

1

n
[(n� 1)LN�1 (�) + FN�1 (�)]

while any of them could deviate by investing at � � " and get

LN�1 (� � ") >
1

n
[(n� 1)LN�1 (�) + FN�1 (�)] :

This completes the induction argument and we can conclude that strategies pro�les that

prescribe actions di¤erent from those prescribed in part (i) for nodes with calendar time

t 2 [TN�1; T �N ) cannot be an equilibrium.

Part (iii): First, notice that it holds by part (i) that if there are 2 active �rms and the

calendar time is greater or equal than TN�1; both active forms will play INVEST. Next,

consider decision nodes with calendar time t 2 [0; TN�1) and two active �rms. The payo¤

in the candidate equilibrium is

1

2
[LN�1(TN�1) + FN�1 (TN�1)] = LN�1(TN�1) = FN�1 (TN�1)

where the equality comes from the de�nition of TN�1: The deviation payo¤ from investing

at some � before TN�1 is

LN�1(�) < LN�1(TN�1)

where the inequality comes from the fact that LN�1(�) is increasing in [0; TN�1]:

The deviation consisting in playing WAIT at t = TN�1 is not pro�table by the proof of part
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(i) of this Lemma. Therefore, there is no pro�table deviation.

Next, we show that there is no other strategy pro�le compatible with equilibrium for

decision nodes with calendar time t 2 [0; TN�1) and 2 active �rms. Suppose there is �rst

investment at � < TN�1: Let � � 2 be the number of �rms who play INVEST at � : The

equilibrium payo¤ for any of these early investors is

1

�
[LN�1(�) + (� � 1)FN�1 (�)]

Each of them could pro�tably deviate by playing WAIT at � ; since FN�1 (�) > LN�1 (�).

Therefore, there are no strategy pro�les that prescribe action di¤erent from (iii) and are

compatible with equilibrium. This concludes the proof of part (iii):

The conclusion that tN = TN�1 follows directly from parts (i); (ii); (iii) and (iv): By

construction of TN�1, this implies rent equalization for the last two �rms. �

We now identify the algorithm for the construction of the equilibrium investment times

tj for j 2 f1; :::; N � 1g: The argument is based on the induction principle. Lemma B-5

contains a statement for j = N � 2: Lemma B-6 shows that if the same statement holds for

j = N � k; then it holds for j = N � k � 1: Lemma B-7 concludes that, by the induction

principle, the statement holds for a general j:

Lemma B-5 Given tN = T �N and tN�1 = TN�1; tN�2 can be constructed as follows.

Part (a) Suppose T �N�2 < TN�1: In equilibrium it holds that

in subgames starting at a decision node with calendar time t 2 [TN�2; TN�1) each �rm plays:

(i) If there are n > 2 active �rms, INVEST

(ii) If there are n = 2 active �rms, WAIT 8� 2 [t; TN�1) and INVEST at TN�1;

(iii) If there is 1 active �rm, WAIT 8� 2 [t; T �N ), INVEST at � = T �N

in subgames starting at a decision node with calendar time t 2 [0; TN�2) ;each �rm plays:

(iv) If there are 3 active �rms, WAIT 8� 2 [0; TN�2) and INVEST at TN�2
(v) If there are 2 active �rms, WAIT 8� 2 [t; TN�1) and INVEST at TN�1,

(vi) If there is 1 active �rm, WAIT 8� 2 [t; T �N ), INVEST at � = T �N :

Therefore, tN�2 = TN�2 and the payo¤ of the last 3 investors is equalized.

Part (b) Suppose T �N�2 � TN�1. In equilibrium it holds that

In subgames starting at a decision node with calendar time t 2 [0; TN�1] ; each �rm plays
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(i) If there are n = 3 active �rms, WAIT 8� 2 [t; TN�1) and INVEST at TN�1
(ii) If there are n = 2 active �rms, WAIT 8� 2 [t; TN�1) and INVEST at TN�1
(iii) If there is 1 active �rm, WAIT 8� 2 [t; T �N ), INVEST at � = T �N 15

Therefore, tN�2 = TN�1 and the payo¤ of the last 3 investors is equalized.

Proof.

Part (a): From Lemma B-4, tN�1 = T: Hence, from Lemma B-2 (i); it follows that 9TN�2
2 (0 < T �N�2]; such that DN�2(TN�2) = 0: Parts (iii) and (vi) follow from the proof of

Lemma 2. Parts (ii) and (v) are immediate from Lemma B-4. The proof of part (i) follows

from arguments similar to the proof of part (i) of Lemma B-4. The proof of part (iv) fol-

lows from arguments similar to the proof of part (iii) of Lemma B-4. The conclusion that

tN�2 = TN�2 follows directly from parts (i) to (vi). By construction of TN�2, this implies

rent equalization for the last three �rms.

Part (b): From Lemma B-4, tN�1 = T: Hence, from Lemma B-2 (ii); it follows that

DN�2(t) < 0 and D0N�2(t) > 0 8t < TN�1: As in the proof of part (a), (ii) follows from

Lemma B-4, and (iii) follows from Lemma 2.

We now prove part (i): First we show that the actions prescribed in part (i) are compatible

with equilibrium, then we rule out di¤erent actions.

If a �rm invests at � < TN�1; its payo¤ is LN�2(�): The equilibrium payo¤ instead is

LN�2 (TN�1) (In this candidate equilibrium, there is rent equalization among the last 3

�rms: tN�2 = tN�1 guarantees that the �rst two receive the same payo¤ and, by construc-

tion of TN�1, the last two also receive the same pro�ts). The deviation is not pro�table

because DN�2 (�) < 0 = DN�2 (TN�1) implies LN�2 (�) < LN�2 (TN�1), so this is compat-

ible with equilibrium.

Next we will show that strategies pro�les that prescribe actions di¤erent from those pre-

scribed in part (i) cannot be an equilibrium. In other words, we rule out strategy pro�les

that prescribe that if at � < TN�1 there are three active �rms, � � 3 of them play INVEST.

If � = 1; the early investor gets payo¤LN�2(�) while he could pro�tably deviate by waiting

until TN�1 and getting FN�2 (TN�1) = LN�2 (TN�1) > LN�2(�):

If instead � 2 f2; 3g; at least one �rm gets LN�2(�) with positive probability while she

15Notice that it has to be the case that the �rst N-3 �rms invest by TN�1 by Lemma B-4 (i).
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could pro�tably deviate by playing WAIT at � ; thus getting

FN�2(�) > LN�2(�)

where the inequality holds because DN�2(�) < 0:

The conclusion that tN�2 = tN�1 = TN�1 follows directly from parts (i); (ii) and (iii). By

construction of TN�1, this implies rent equalization for the last three �rms. �

Lemma B-6 If the following statement holds for j = N � k; with k � 2; then it holds for

j = N � k � 1:

Given the last N � j equilibrium investment times (tj+1; :::; tN ); the j-th equilibrium invest-

ment time tj can be constructed as follows:

Part (a) Suppose T �j < tj+1: In equilibrium it holds that

in subgames starting at a decision node with calendar time t 2 [Tj ; tj+1) ; each �rm plays:

(i) If there are n > N � j active �rms, INVEST 8� � t

(ii) If there are n � N � j active �rms, WAIT 8� 2 [t; tN�n+1) and INVEST at tN�n+1:

in subgames starting at a decision node with calendar time t 2 [0; Tj) ;each �rm plays

(iii) If there are n = N � j + 1 active �rms, WAIT 8� 2 [0; Tj) and INVEST at Tj
(iv) If there are n < N�j+1 active �rms, WAIT 8� 2 [0; tN�n+1) and INVEST at tN�n+1:

Therefore, tj = Tj and the payo¤ of the last N � j + 1 investors is equalized.

Part (b) Suppose T �j � tj+1: In equilibrium it holds that

in subgames starting at a decision node with calendar time t 2 [0; tj+1] each �rm plays:

(i) If there are n = N � j + 1 �rms left, WAIT 8� 2 [t; tj+1) and INVEST at tj+1
(ii) If there are n = N � j remaining �rms left, WAIT 8� 2 [t; tj+1) and INVEST at tj+1
(iii) If there are n < N � j remaining �rms left, WAIT 8� 2 [t; tN�n+1) and INVEST at

tN�n+1

Therefore tj = tj+1 and the payo¤ of the last N � j + 1 investors is equalized.

Proof. Assume that the statement holds for j = N � k. This implies that either

tN�k = TN�k or tN�k = tN�k+1; and that in both cases payo¤s of the last k + 1 in-

vestors are equalized.
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Now we need to prove that the statement holds for j = N � k � 1:

Part (a): Parts (ii) and (iv) follow from the assumption that the statement holds for

j = N � k.

To prove part (i); �rst notice that in the interval t 2 [TN�k�1; tN�k) it holds thatDN�k�1(t) �

0 and that in the open interval t 2 (TN�k�1; tN�k) it holds that DN�k�1(t) > 0: The rest

of the proof follows arguments similar to the proof of part (i) of Lemma B-4.

To prove part (iii), notice that DN�k�1(t) < 0 and D0N�k�1(t) > 0 8t < TN�k�1: The rest

of the proof of part (iii) follows from arguments similar to the proof of part (iii) of Lemma

B-4.

The conclusion that tN�k�1 = TN�k�1 follows directly from parts (i) to (iv): By construc-

tion of TN�k�1, this implies rent equalization for the last k + 2 �rms.

Part (b): Parts (ii) and (iii) follow from the assumption that the statement holds for

j = N � k:

To prove part (i); �rst notice that, by Lemma B-2, in the interval t 2 [0; tN�k] it holds that

DN�k�1(t) < 0 and D0N�k�1(t) > 0. The rest of the proof follows from arguments similar

to the proof of part (b) (i) of Lemma B-5.

The conclusion that tN�k�1 = TN�k follows directly from parts (i); (ii); (iii). By construc-

tion of TN�k, this implies rent equalization for the last k + 2 �rms. �

Lemma B-7 The statement in Lemma B-6 holds for any j � N � 2:

Proof. The result follows from Lemmata B-5 and B-6 by the induction principle. �

Asymmetric equilibria.

We now relax our symmetry assumption. In other words, we do not require that all

active �rms play INVEST when they are indi¤erent between successfully investing today as

the m-th investor, and investing later as the (m+1)-th investor. This implies that players�

strategies can di¤er in the action they prescribe at times Tj , for j = 1; :::; N . It follows

that the characterization of all the asymmetric equilibria is analogous to the the previous

analysis, with only the following changes:

- In Lemma B-4, part (i), in subgames starting at a decision node with calendar time

TN�1; with n > 1 active �rms, it is admissible that in equilibrium any number of �rms

� � n� 1 play WAIT, and the remaining �rms play INVEST.

- Similarly, in Lemma B-5, part (a), in subgames starting at a decision node with

calendar time TN�2; with n > 2 active �rms, it is admissible that in equilibrium any
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number of �rms � � n� 1 play WAIT, and the remaining �rms play INVEST.

- In Lemma B-6, the statement that holds for j = N � k � 1; provided it holds for

j = N � k, can be modi�ed allowing for the fact that in subgames starting at a decision

node with calendar time Tj ; with n > N � j active �rms, in equilibrium any number of

�rms � � n� 1 play WAIT, and the remaining �rms play INVEST.

Therefore, the game admits asymmetric equilibria with the same equilibrium investment

times and the same equilibrium payo¤s as the symmetric equilibrium, in which the only

di¤erence is that at times tj , for j = 1; :::; N � 1, the number of �rms playing INVEST is

any number between 1 and N � j +1, while in the symmetric equilibrium all the N � j +1

active �rms play INVEST. �

Proof of Proposition 2. By Proposition 1, equilibrium payo¤s are equal to

�(N)

r
e�rT

�
N � c (T �N )

for all players. Part (i) follows immediately, part (ii) follows from the envelope theorem. �

Proof of Proposition 3. Consider part (i). Given tm < tm+1; it has to be the case, from

Proposition 1, that tm solves

� (m)

r

�
e�rtm � e�rtm+1

�
� [c (tm)� c (tm+1)] = 0

Di¤erentiating implicitly yields:

@tm
@�m

= �
�
e�rtm � e�rtm+1

�
=r

�� (m) e�rtm � c0 (tm)

Notice that the numerator is positive, because tm < tm+1: The denominator is positive as

well, because tm < T �m. Therefore, tm decreases in � (m) : Next, consider part (ii). Given

tm and the absence of a cluster, it follows from Proposition 1 that tm�1 solves

� (m� 1)
r

�
e�rtm�1 � e�rtm

�
� [c (tm�1)� c (tm)] = 0

Using the chain rule and di¤erentiating implicitly the expression above:

@tm�1
@�m

=
@tm�1
@tm

� @tm
@�m

= � � (m� 1) e�rtm + c0 (tm)
�� (m� 1) e�rtm�1 � c0 (tm�1)

� @tm
@�m
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Consider the �rst term. The denominator is positive because tm�1 < T �m�1. By assumption

tm > T �m�1, so the numerator is positive as well. The second term has been shown to be

negative in part (i). Therefore, the whole expression is positive. This concludes the proof of

part (ii). Finally, consider part (iii). Since tm�1 = tm; it has to be the case that tm < T �m�1:

If � (m) increases, tm decreases (by part (i)), while T �m�1 doesn�t change. Therefore, it is

still true that tm < T �m�1:and that tm�1 = tm: Consequently, since tm decreases, then tm�1

decreases as well. �

Proof of Proposition 5. First, notice that investment times [tm+1;tm+2; :::; tN ] are con-

stant in �(m � 1) and �(m): Consider part (i). We �rst show that T �m�1 decreases in

� (m� 1) : By de�nition, T �m�1 solves

�� (m� 1) e�rT �m�1 � c0
�
T �m�1

�
= 0

Using the implicit function theorem:

@T �m�1
@� (m� 1) = �

�e�rT �m�1
@(�� (m� 1) e�rT �m�1 � c0

�
T �m�1

�
)=@T �m�1

< 0

where the inequality follows from the fact that the denominator is negative since T �m�1 is a

maximum. Next, notice that

lim
�(m�1)!�(m)

T �m�1 = T
�
m > tm

By continuity, this implies that for small enough � (m� 1) it will be the case that T �m�1 > tm
and there is clustering at tm: This completes the proof of part (i).

Now consider part (ii). By Proposition 3, tm decreases in � (m) : Next, notice that

lim
�(m)!�(m�1)

T �m = T
�
m�1:

Since tm < T �m; this implies that for large enough � (m� 1) it will be tm < T �m�1: �

Proof of Proposition 4. First, assume that for a given period payo¤vector [� (1) ; :::; � (m) ; ::; � (N)]

the SPNE investment times satisfy tm�j < tm�j+1::: < tm: We prove the argument by in-

duction. First, notice that the statement is true for j = 0; 1: For j = 0; @tm@�m
< 0 follows

from Proposition3(i). For j = 1; @tm�1@�m
> 0 follows from Proposition 3(ii). We next show

that if the statement holds for j � 1 it also holds for j: Given the absence of clusters, it
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follows from Proposition 1 that tm�j solves

� (m� j)
r

�
e�rtm�j � e�rtm�j+1

�
� [c (tm�j)� c (tm�j+1)] = 0.

Applying the chain rule and di¤erentiating implicitly yields:

@tm�j
@�m

=
@tm�j
@tm�j+1

� @tm�j+1
@�m

= �� (m� j) e
�rtm�j+1 + c0 (tm�j+1)

�� (m� j) e�rtm�j � c0 (tm�j)
� @tm�j+1
@�m

.

Consider the �rst term. The denominator is positive because tm�j < T �m�j . By assumption,

tm�j+1 > T �m�j , so the numerator is positive as well. Hence, the �rst term is negative. If

j is odd, and the statement is true for j � 1; then tm�j+1 is decreasing in �(m), so the

second term is negative as well and @tm�j
@�m

is positive. Similarly, if j is even the second term

is positive, and @tm�j
@�m

is negative. The statement follows from the induction principle. For

the general case in which for a given period payo¤ vector [� (1) ; :::; � (m) ; ::; � (N)] the �rst

m investment times occur at n � m distinct times indexed by [�t1; �t2; :; �tn�`; ::; �tn]; where

�tn = tm, and it holds that tm < tm+1; then the proof is the same as above, taking into

account the distinction between an adoption tm�j and a distinct adoption time �tn�`: �

Proof of Proposition 6. Part (a) follows from Proposition 1. We prove part (b) through

a series of Lemmata. The proof is articulated through the following steps:

� Suppose the symmetry assumption introduced in the construction of the symmetric

equilibrium of the basic game, in proof of Proposition 1, holds. Lemmas B-8 to B-12

establish that in equilibrium exactly M �rms invest, the last investment occurs at TM ; and

there is rent equalization at zero-pro�ts for the �rms who never enter and the last entrant.

� Given the previous results, it follows immediately that an algorithm analogous to

the algorithm constructed in Proposition 1 permits to construct the unique symmetric

equilibrium.

� Next, suppose that the symmetry assumption is relaxed. Then the game admits

asymmetric equilibria as well. As for the case of Proposition 1, these asymmetric equilibria

have the same equilibrium investment times and payo¤s as the symmetric equilibrium. The

only di¤erence between symmetric and asymmetric equilibria in this case is that at times

tj , for j = 1; :::;M , the number of �rms playing INVEST is any number between 1 and

M � j+1, while in the symmetric equilibrium all the M � j+1 active �rms play INVEST.

Lemma B-8 In equilibrium, in any subgame starting in a node with calendar time t; with
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n � N �M active �rms, each �rm plays WAIT for every � � t.

Proof. Investment in this subgame yields at most

� (N � n+ 1)
r

e�r� � c (�) � � (M + 1)

r
e�r� � c (t) < 0 8� :

Hence no �rm will invest. �

Lemma B-9 In equilibrium there can be at most M active �rms.

Proof. Follows immediately from the previous Lemma. �

Lemma B-10 The function

LM (t) = �(M)

Z 1

t
e�rsds� c(t) = �(M)

r
e�rt � c(t)

is strictly quasi-concave, admits a unique maximum at T �M , is equal to zero in some TM <

T �M (which exists by the assumptions given, in particular by continuity, 3(i) and 4(i) ) and

hence its maximum value is strictly positive. It is nonnegative for t > TM :

Proof. The �rst statement follows from the proof of Lemma 2. The fact that LM (t)

nonnegative for t > TM follows from the assumptions made about the function c (t) ert; since

the sign of LM (t) is the opposite of the sign of
h
c (t) ert � �(M)

r

i
and �(M)

r is a constant

w.r.t. t: �

Lemma B-11 In equilibrium it holds that in all subgames starting at a decision node with

calendar time t � TM ; each �rm plays:

(i) if there are n < N � (M � 1) active �rms, WAIT for every � � t

(ii)If there are n � N � (M � 1) active �rms, INVEST.

Proof. Part (i) follows from Lemma B-8. For part (ii); notice that in a subgame with

[N� (M�1)] active �rms, if a �rm successfully invests, a subgame with N�M active �rms

starts, in which, in equilibrium, no active �rms ever invests. Hence, the successful investor

gets LM (t) and every other �rm gets FM (t) = 0

In a subgame that starts at t � TM ; it holds that LM (t) � FM (t) : The latter inequality

is strict for all t > TM . By the usual arguments, in equilibrium all active �rms play INVEST

and
1

n
LM (t) + (n� 1)FM (t)
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is the expected payo¤. �

Consider now subgames starting at a decision node with calendar time t 2 [0; TM ) with

[N � (M � 1)] active �rms.

Lemma B-12 In equilibrium, it holds that:

In all subgames starting at a decision node with calendar time t 2 [0; TM ) ; each �rm plays:

If there are n = N � (M � 1) ; active �rms, WAIT for every � 2 [t; TM ) ; and INVEST for

every � � TM :

Proof. The proof follows the arguments presented in Lemma B-4. �

Proof of Proposition 7. Part (i): In the case of Cournot competition with a linear

demand function and constant marginal cost, pro�ts are

�(m) =
(a� k)2

b(m+ 1)2
; (11)

consumer surplus is

CS(m) =
m2 (a� k)2

2b(m+ 1)2
;

and total surplus is:

TS(m) =
(a� k)2

(m+ 1)2
m(m+ 2)

2b
:

The change in (instantaneous) welfare after the m-th entry is:

�TS(m) = (TS(m)� TS(m� 1)) = (a� k)2

2b

2m+ 1

m2(m+ 1)2
:

Therefore, total welfare is

W (T ) =

NX
m=1

Z Tm+1

Tm
TS(m)e�rtdt�

NX
m=1

c(Tm):

The socially optimal m-th investment time is given by the following �rst order condition:

TS(m� 1)e�rTm � TS(m)e�rTm � c0(Tm) = 0

or

�TS(m)e�rT
m
= (TS(m)� TS(m� 1)) e�rTm = �c0(Tm) (12)

We can compare this condition to the �rst order condition that characterizes the pre-

46



commitment investment times:

�(m)e�rT
m
= �c0(Tm) (13)

If the left hand side of 12 is less than the left hand side of 13,

�TS(m) < �(m);

the m-th precommitment entry time is earlier than the corresponding welfare maximizing

time. Substituting the expressions for TS(m) and �(m), this is the case if

(a� k)2

2b

2m+ 1

m2(m+ 1)2
<

(a� k)2

b(m+ 1)2

or

2m < 2m2 � 1;

which holds for all m � 2: Hence, by corollary 1, the equilibrium entry times in the pre-

emption game are earlier than the welfare maximizing times for all m � 2:

Part(ii): It follows immediately from the analysis above that for m = 1 :

�TS(1) > �(1)

Thus the �rst pre-commitment time is later than the socially optimal one. We want to

characterize the conditions under which not even preemption eliminates this delay. From

Proposition 8, we know that t1(N) > t1(2) so if we �nd a condition that guarantees that the

�rst investment happens too late, from a social point of view, in a game with two players,

that also guarantees that it happens too late in a game with more than two players. We

know that t1(2) solves

�1

Z T �2

T1

e�rsds� c(T1) + c (T �2 ) = 0:

The expression

�1

Z T �2

TW1

e�rsds� c(TW1 ) + c (T �2 ) (14)

describes the preemption incentive to be the �rst, rather than the second entrant, evaluated

atTW1 , the welfare maximizing time of �rst entry. If expression 14 is negative, the �rst

equilibrium investment time is too late from a social point of view.
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With linear Cournot and exponential cost, it holds that

TW1 = � 1
�
� log

 
3 (a� k)2

8b � (�+ r)c

!

and expression (14) becomes

(a� k)2

4rb

24 3 (a� k)2

8b � (�+ r)c

! r
�

�
 

(a� k)2

9b � (�+ r) � c

! r
�

35�
�c

24 3 (a� k)2

8b � (�+ r)c

! r+�
�

�
 

(a� k)2

9b � (�+ r) � c

! r+�
�

35 ; (15)

which can be simpli�ed to

 
(a� k)2

b(�+ r)

!1+ r
� �1

c

� r
�

8<:14
�
�+ r

r

�"�
3

8

� r
�

�
�
1

9

� r
�

#
�

24�3
8

�1+ r
�

�
�
1

9

�1+ r
�

359=; :
Since  

(a� k)2

b(�+ r)

!1+ r
� �1

c

� r
�

> 0;

we can conclude that expression 14 has the same sign as the expression in curly brackets,

which is negative for r
� >

g� r
�

�
� 1:275: �

Proof of Proposition 8. First, we show that for any cost function and payo¤ structure �

that satisfy Assumptions 1 to 4, t1(N) < t1(2) implies t1 (N) = t2 (N). Suppose t1 (N) <

t2 (N). It follows from the proof of Proposition 3 (ii) that @t1(N)@t2(N)
< 0: Then, since t2 (N) �

T �2 = t2 (2) ; it must be the case that t1 (N) � t1 (2) :

Next we show that even if t1 (N) = t2 (N) ; there is a su¢ cient condition for t1 (N) �

t1 (2) that is satis�ed in the case of exponential cost function and pro�ts arising from

Cournot competition among the investors facing a linear demand function. Let M 2

f2; :::; N � 1g be the size of the initial cluster:

t1 (N) = t2 (N) = ::: = tM (N) < T
�
M < tM+1 (N)

Then, t1 (N) � t1 (2) i¤

�(1)

Z T �2

t
e�rsds� c(t) + c (T �2 ) � �(M)

Z tM+1(N)

t
e�rsds� c(t) + c (tM+1 (N))

48



for every t < T �1 : The above condition can be rewritten as:

[�(1)� �(M)]
Z T �1

t
e�rsds+ [�(1)� �(M)]

Z T �2

T �1

e�rsds �

�(M)

Z tM+1(N)

T �2

e�rsds+ [c (tM+1 (N))� c (T �2 )] (16)

Since

[�(1)� �(M)]
Z T �1

t
e�rsds > 0 > [c (tM+1 (N))� c (T �2 )] ,

condition (16) will hold if

[�(1)� �(M)]
Z T �2

T �1

e�rsds > �(M)

Z tM+1(N)

T �2

e�rsds: (17)

By Corollary 1, tM+1 (N) < T
�
M+1. Hence, condition (17) will hold if

[�(1)� �(M)]
Z T �2

T �1

e�rsds > �(M)

Z T �M+1

T �2

e�rsds. (18)

Since e�rs is decreasing in s, a su¢ cient condition for (18) is that

[�(1)� �(M)] [T �2 � T �1 ] > [�(M)]
�
T �M+1 � T �2

�
(19)

which can be rewritten as

�(1) [T �2 � T �1 ] > �(M)
�
T �M+1 � T �1

�
: (20)

For an exponential cost function

c(t) = c � expf�(�+ r)tg

condition (20) becomes

�(1)

�(M)
>
ln
�

�(1)
�(M+1)

�
ln
�
�(1)
�(2)

� : (21)

If �ow pro�ts arise from Cournot competition among the investors, with a linear demand

function P (Q) = a� bQ; and constant, identical marginal cost k > 0, �ow pro�ts are given
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by (11) and condition (21) becomes

(M + 1)2

22
>
ln
�
M+2
2

�
ln
�
3
2

� ;

which holds for any M � 2: �
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Figure A: Case 1 (no cluster)
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Figure B: Case 2 (cluster)
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