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Abstract

This paper studies N-player preemption games. A finite number of firms have to

decide when to make an irreversible, observable investment. Upon investment, a firm

receives flow profits declining in the number of firms that have already invested. The

cost of investment declines over time. We characterize the subgame-perfect equilibrium

outcome, which is unique up to a permutation of players. In games with more than two

players, investment times are clustered when an investment is followed by an intense

preemption race among the remaining active players. We characterize a necessary and

sufficient condition for two or more investments to be clustered. The set or parameter

values for which any two investments are clustered is shown to be non-empty. Our

results show how clustering in the timing of firms’ investment decisions can occur in the

absence of coordination failures, informational spillovers or positive payoff externalities.
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1 Introduction

Consider a game of timing in which players have to decide when to make an investment. The

cost of investing declines over time. A firm earns a positive profit flow upon investment,

but profit flows decline in the number of investors. This is a preemption game: Delay

exogenously increases payoffs through lower investment cost, but each player also has an

incentive to invest early, because there is an early mover advantage.

In a preemption game, investment by a player reduces the post-investment flow profit

for later investors, and hence the incentive of the other players to invest. Therefore, our

intuition lets us expect a period of delay until next investment occurs. This intuition is

correct for the case of two players (Fudenberg and Tirole (1985)) but, as we show in this

paper, may fail otherwise.

We study a general N-Player investment preemption game1 and characterize conditions

under which investment times are clustered. The presence of clusters in this game is sur-

prising, as the timing game literature has attributed the presence of clusters mainly to

coordination failures, as in Levin and Peck (2003), to the presence of positive network ex-

ternalities, as in Mason and Weeds (2010), or to informational spillovers (e.g. Chamley and

Gale (1994)), where rival investment signals a high profitability of investment. Brunner-

meier and Morgan (2006) show that “herding” occurs in a preemptive “clock game”, but

attribute this herding effect to private information being (partially) revealed by the first

player to act.

Also a large body of empirical literature has examined how rival adoption or market

entry affects a the timing of a firm’s own technology adoption or market entry. Several

papers have found that adoption by a rival accelerates the adoption by remaining firms

and interpreted this as evidence of positive payoff externalities or informational effects.2

Our main result is that clusters, which are the most extreme form of acceleration, arise

in a preemption game although coordination failures are ruled out by assumption, rival

investment has no informational content, no positive externalities, and lowers the post-

1 In two related papers, Park and Smith (2008,2010) analyze a timing game with a general payoff structure
and more than two players. See Park and Smith (2008) for the case of unobservable actions, and Park and
Smith (2010) for the case of observable actions and a continuum of players.

2These papers find that a firm’s adoption hazard increases when a rival adopts. Karshenas and Stoneman
(1993, p.521) interpret this acceleration of adoption as “epidemic effects” in the adoption of numerically
controlled machine tools. Hannan and McDowell (1987, p.186) speak of “spillover effects” in the context
of ATM adoption by banks, and Levin et al. (1992, p. 347) argue that there is an informational effect via
customers in the case of optical scanners in grocery stores.
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investment flow profit. We therefore provide an alternative interpretation of the empirical

evidence.

The mechanism through which clusters arise in our model is based purely on preemption

and backward induction. Suppose there are three firms: if being the second investor is

profitable relative to being third, the preemption race to be the second investor is intense,

and in equilibrium the second investment occurs early. In order to obtain monopoly profits

for some time, a firm would have to invest even earlier. If monopoly profits are not much

higher than duopoly profits, no firm wants to incur the extra-cost that is necessary to invest

strictly before the second investor, and the first and second investments are clustered. In a

game with more than three players, a similar mechanism can cause clusters at any point in

the investment sequence.

We characterize the unique equilibrium outcome of the N-player game. We then pro-

vide a necessary and sufficient condition on the model parameters for two investments to be

clustered. A similar condition determines whether a cluster involves more than two simul-

taneous investments. Finally, we show that the set of parameter values for which clusters

occur is nonempty.

The mechanism that causes a cluster here is related to Bulow and Klemperer’s (1994)

model of a seller who has multiple identical objects and multiple buyers with independent

private values. They show that if buyers’ valuations are not too different, frenzies of simul-

taneous purchases can occur because a purchase by a buyer increases the remaining buyers’

willingness to pay. In our model, investment by a player lowers the flow profit achievable

by the next investor. Nonetheless, clusters are possible if this decrease is sufficiently small,

and the ensuing preemption race to take the role of next investor is sufficiently intense.

In independent work, Bouis et al. (2009) study dynamic investment in oligopoly in a real

options framework and find comparative statics result that are closely related to ours.3 The

real options approach allows aggregate uncertainty in the payoff process, but is restricted

to a specific payoff growth process for payoffs (a Brownian motion with drift).

The remainder of the paper is organized as follows. The next section introduces the

model. Section 3 characterizes the equilibrium outcome. Section 3.1 illustrates the bench-

mark case of a two-player game, in which investments are never clustered in equilibrium.

Section 3.2 analyzes the three-player game, and shows under which conditions the first two

3Bouis et al. (2009) provide an explicit argument for existence of equilibrium, and for the existence of a
cluster for the case of N = 3. For the general N -player game they provide comparative statics results under
the assumption that equilibrium exists, and a numerical example.
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investments are clustered. In Section 3.3 we characterize the equilibrium of the game with

N players. The condition for the presence of a cluster is derived in Section 3.4. Section 3.5

discusses clusters involving more than two investments and the possibility of a cluster at

the end of the investment sequence. Section 4 concludes.

2 Model

2.1 The investment game

We analyze an infinite horizon dynamic game in continuous time. At time 0, a new invest-

ment opportunity becomes available, and N identical players (firms) have to decide if, and

when, to seize this opportunity. The investment opportunity can be interpreted as adoption

of a new technology, or entry into a new market. Investment is observable and irreversible.

The set of firms is denoted by N = {1, ..., N} and a single firm is denoted by i ∈N.

The model corresponds to the one studied by Reinganum (1981a, 1981b) and Fudenberg

and Tirole (1985) except for the following: Until a firm invests, it receives constant flow

of profits π0 which we normalize to zero. This assumption that pre-investment payoffs are

independent of the number of earlier investments will be essential for obtaining a unique

outcome in each subgame, which in turn guarantees rent equalization.4 Upon investment, a

firm earns flow profits of π(m), where m is the number of firms that have already invested

at a given point in time. Let π = (π(1), π(2), ..., π(N))denote a flow profit structure.

Let c(t) be the present value at time zero of the cost of investing at time t. If the

outcome of the game is that the vector of investment times is T j, for j = 1, ...N , and firm

i is the j-th investor, firm i’s payoff is the following:

V
j
i (T

1, T 2, ..., T j , ..., TN) =
N∑

m=j

π(m)

∫ Tm+1

Tm
e−rsds− c(T j) (1)

where r denotes the common discount rate, and TN+1 ≡ +∞.

We introduce the following assumptions:

Assumption 1

Flow profits π (m) are (i) strictly positive for any m and (ii) strictly decreasing in m.

4However, the normalization of pre-investment payoffs to zero, rather than any positive constant, will
not affect the results of the paper.
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Investing always increases period payoffs for a firm, but the benefits of investing decrease

in the total number of investors: as more firms invest, competition among the investors

becomes more intense.

Assumption 2

The current value cost function
(
c (t) ert

)
is (i) strictly decreasing and (ii) strictly convex.

The cost of investing declines over time. This may capture upstream process innovations

or economies of learning and scale. Moreover, cost declines at a decreasing rate.

Assumption 3

At time zero, (i) the investment cost exceeds discounted monopoly payoffs: c(0) >
π(1)
r ,

and (ii) there is an incentive to delay: π (1) < −c′ (0). Eventually, (iii) investment is

profitable for all players: ∃τ such that c (τ) erτ <
π(N)
r , and (iv) there is no incentive to

delay: limt→∞ c′(t)ert ∈ (−π (N) , 0].

Assumption 3(i) guarantees that investing at time zero is too costly. No firm would

invest immediately, even if it could thereby preempt all other firms and enjoy monopoly

profits π (1) forever. Assumption 3(ii) guarantees that at time zero the marginal benefit

from delaying investment, that is the reduction in the investment cost, is greater than the

highest marginal cost from delay, that is the highest foregone profit flow. Assumption 3(iii)

ensures that the value of investing becomes positive in finite time: The cost of investing

eventually reaches a level sufficiently low, that it becomes profitable to invest, even for a

firm facing maximum competition.5 Assumption 3(iii) is necessary but not sufficient to

guarantee that the last investment occurs in finite time. Assumption 3(iv) guarantees that

the last investor does not have an incentive to delay investment indefinitely.

In what follows, we will denote by tj the j-th equilibrium investment time.6 The j-th

and (j + 1)-th investments are clustered if they occur at the same instant in time, i.e.

tj = tj+1. Otherwise, they are diffused.

2.2 Strategies in continuous-time preemption games

We model strategies in a timing game with observable actions and continuous time following

Hoppe and Lehmann-Grube (2005), who adopt the framework introduced by Simon and

5We will discuss the implications of relaxing this assumption in Section 3.5.
6 In Proposition 1 we prove that the vector of equilibrium investment times (t1, ..., tN) is unique.
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Stinchcombe (1989). Namely, we restrict play to pure strategies and interpret continuous

time as “discrete time, but with a grid that is infinitely fine.”7

A well-known problem with modelling preemption games in continuous time is that

typically games in this class do not have an equilibrium in pure strategies, due to the

possibility of coordination failures. We explicitly rule out coordination failures introducing

a randomization device as in Katz and Shapiro (1987), Dutta, Lach and Rustichini (1995),

and Hoppe and Lehmann-Grube (2005):

Assumption 4

If n firms invest at the same instant t (with n = 2, 3, ., N), then only one firm, each with

probability 1
n , succeeds.

To understand how the randomization device operates, suppose that N = 2 and at a

given time t each firm would like to invest, provided that the other does not. If at time t

both firms try to invest, only one is successful, i.e. only one actually pays the cost c(t) and

starts receiving flow payoffs π(1). Then, the remaining firm observes that the opponent

has invested, and has the option to either invest “consecutively but at the same moment in

time”8 or to let the game continue. For an interpretation of this randomization device, we

refer to Dutta, Lach and Rustichini (1995).9

2.3 The optimal “stand-alone” investment times

In this subsection we illustrate the basic trade-off of the investment problem, abstracting

from strategic considerations. Consider the hypothetical problem of a firm who acts as a

single decision maker and has to select the optimal time to make an investment which has

cost c (t) and guarantees flow payoff of π (j) forever, for j ∈ {1, ..., N}, where c (t) and π (j)

satisfy assumptions 1 to 3. This firm would choose t to maximize the following profit:

fj (t) ≡
π (j)

r
e−rt − c (t) . (2)

7See the discussion in section 2.1 of Hoppe and Lehmann-Grube (2005) for an illustration of the conditions
that need to be satisfied in order to adopt the Simon and Stinchcombe (1989) framework.

8See Simon and Stinchcombe (1989), p. 1181.
9A possible alternative assumption is the one made by Dutta and Rustichini (1993). In that paper, if two

firms stop simultaneously, both receive a convex combination of the payoff from being the only one to stop at
that time, and the payoff from stopping later, at the optimal time for a “follower”. This assumption would
introduce the possibility of clusters of simultaneous investments through a mechanism that is unrelated to
the one illustrated in our paper.
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We denote the solution to this problem as T ∗j . Adopting the terminology in Katz and

Shapiro (1987), we define it as the stand-alone investment time for π(j). Observe that

fj (t) is strictly quasi-concave and that T ∗j is well-defined
10 for every j ∈ 1, ..., N as the

solution to

f ′j (t) = 0⇐⇒ −π (j) e−rt − c′ (t) = 0. (3)

At time T ∗j , the marginal benefit from delaying investment, that is the cost reduction c′ (t),

is exactly equal to the marginal cost, that is the foregone discounted profit flow π (j) e−rt.

Before T ∗j , a player is willing to delay because the cost is decreasing at a speed that more than

compensates the foregone profit flow. After T ∗j , a player would rather invest immediately

than delay. It follows from the implicit function theorem that T ∗j < T ∗j′ for j < j′: For a

larger foregone profit flow, that is for j < j′, the stand-alone time is earlier.

3 Equilibrium analysis

We now return to the strategic environment, and solve for the equilibria of the game. A

feature of any equilibrium of the game that is built into our assumptions is the following:

Lemma 1 In any SPNE, no firm invests at t = 0, all firms invest in finite time, and the

last investment takes place at the stand-alone investment time T ∗N .

Assumptions 1(ii) and 3(i) guarantee that investment at time zero is too costly.11 As-

sumptions 2(i), 3(iii) and 3(iv) guarantee that all firms invest in finite time. The result that

the last equilibrium investment time is exactly the stand-alone investment time T ∗N is not

surprising: when only one active firm is left, it maximizes the profit (2) for j = N .

Next, we introduce our benchmark: the two-player investment game analyzed by Fu-

denberg and Tirole (1985).

3.1 The benchmark case: two firms, diffused investment

Suppose N = 2. The easiest way to capture the intuition for this game is to use a backward

induction approach. By Lemma 1, both firms invest no later than the second stand-alone

investment time T ∗2 . Therefore, each firm anticipates that if it invests first at some time

10For a proof, see Claim 1 in the Appendix.
11This fact is crucial in proving that all players receive the same payoff in equilibrium. Relaxing assumption

3(i), one could generate an equilibrium in which some players invest at time zero and receive a higher payoff
than the remaining players, who would instead invest later and receive all the same, lower payoff.

6



t < T ∗2 , the opponent will follow at T ∗2 . The payoff from this early investment will then be

what Fudenberg and Tirole define as the Leader Payoff :

L (t) = π(1)

∫ T∗
2

t
e−rsds+ π(2)

∫ ∞

T∗
2

e−rsds− c(t). (4)

Alternatively, a firm could wait until T ∗2 and receive the Follower Payoff:

F (t) = π(2)

∫ ∞

T∗
2

e−rsds− c(T ∗2 ). (5)

The benefit from being the leader, rather than the follower, is that high profits π(1) are

earned for some period. The cost is that early investment is more expensive than late

investment. The fact that the cost of investment, although initially prohibitive, is decreasing

and convex, guarantees that the leader and follower payoff curves have the shape illustrated

in Figure 1. Fudenberg and Tirole (1985) prove that the first time at which an investment

occurs in equilibrium, t1, is the earliest time when the two curves intersect. In equilibrium,

firms invest at different points in time12 (investments are diffused) and payoffs are the same

for both firms (there is rent equalization).

←L(t)

 

t 
1

T*
1

t
2
=T*

2

← F(t)

Figure 1: Diffusion in the two-player game. The LPC brings the first investment forward to

t1. Earlier preemption is not profitable: before t1, F (t) exceeds L(t). The figure is drawn for cost
function c(t) = 2 · 104e−(α+r)t for α = 0.24, r = 0.1, and flow profits π= (275, 214).

The mechanism at work is well-known: if unconstrained by strategic considerations,

a single firm would like to invest at the stand-alone time T ∗1 . Also in the presence of an

opponent, each firm would like to invest first, at T ∗1 . The opponent would then follow at T ∗2 .

The leader would receive a higher payoff than the follower. This cannot be an equilibrium

12The assumption that pre-investment payoffs are constant rules out the possibility of what Fudenberg
and Tirole (1985) define as “late joint adoption equilibria”.
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because the firm who takes the role of the follower could profitably deviate and preempt

the opponent by investing at T ∗1 − ε. The presence of a second player introduces a Leader

Preemption Constraint (LPC) on the time of first investment: Leader investment cannot

take place at a time when earlier preemption is profitable. As a consequence, first investment

must occur strictly earlier than T ∗1 . In particular, it must occur weakly before the first

intersection of the Leader and Follower payoff functions. Since the leader payoff function

is increasing in that interval, first investment will occur at the latest time that satisfies the

LPC, i.e. the first intersection of the two curves.

3.2 The three-firm game: When are the first two investments clustered?

Also in a three-player game, first investment must occur strictly earlier than T ∗1 . The key

difference from the two-player game is that t1 is identified by the presence of two constraints.

One is the LPC constraint discussed above. The second is what we call the Follower

Preemption Constraint (FPC). The latter reflects the fact that the first investment is

followed by a preemption race among the remaining two players. This race among followers

determines an upper bound on the time of first investment.

The aim of this section is twofold. First, we show that the first and second investments

can be clustered or diffused. Which case occurs depends on which of the two constraints

on t1, the FPC or the LPC, is binding in equilibrium. Then, we derive the necessary and

sufficient condition on the model primitives determining which constraint is binding. We

proceed by solving the game by backward induction. Figure 2 illustrates.

The two-firm subgame

Suppose that the first investment has occurred, and consider the ensuing two-firm subgame.

It is analogous to the two-firm game of Section 3.1. By Lemma 1, all firms must invest by

T ∗3 . Each firm anticipates that if it invests first at some time t < T ∗3 , the opponent will

follow at T ∗3 . The Leader Payoff and Follower Payoff for this subgame are

L2 (t) = π(2)

∫ T∗
3

t
e−rsds+ π(3)

∫ ∞

T∗
3

e−rsds− c(t) and (6)

F2 (t) = π(3)

∫ ∞

T∗
3

e−rsds− c(T ∗3 ) (7)

respectively. The threat of preemption guarantees that the first investment in the subgame

must take place at the earliest time when L2 (t) = F2 (t). The second investment time in
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the game, t2, coincides with this intersection. Last investment occurs at T ∗3 .

The Follower Preemption Constraint (FPC)

The conclusion above that second investment occurs at the earliest intersection of L2 (t) and

F2 (t) clearly assumes that the first investment must occur weakly before this intersection.

We show by contradiction that this must be the case in equilibrium. Suppose that the

first investment took place strictly later, at some time τ ≤ T ∗3 . A two-firm subgame would

then start at τ . Because L2 (τ) > F2 (τ), both firms would prefer to be leader rather than

follower in this subgame. They would both try to invest at τ , one would succeed and the

other would invest later at T ∗3 . This cannot be an equilibrium because each of the last two

investors receives a lottery between L2 (τ) and F2 (τ) while it could deviate and guarantee

itself a payoff arbitrarily close to L2 (τ). Deviating by investing at τ − ε, a firm would

be the first investor in the game. It would trigger a two-firm subgame in which one more

investment would occur at τ − ε and the last one at T ∗3 . Therefore, the deviator would

receive a payoff of L2 (τ − ε).

We have established that the time of first investment t1 is constrained by the presence

of a preemption race in the ensuing two-firm subgame: to guarantee that there is rent

equalization in this race, t1 must be no later than the first intersection of the leader and

follower payoff curves of the two-firm subgame, namely L2 (t) and F2 (t). We call this the

Follower Preemption Constraint (FPC). As the second investment time t2 coincides

with this intersection, we say that the FPC is binding in equilibrium if the first investment

occurs exactly at t2, and not binding if it occurs strictly earlier than t2.
13

The Leader Preemption Constraint (LPC)

We now illustrate the LPC for the three-player game. It follows from the analysis above

that the second and third investments will occur at t2, with L2 (t2) = F2 (t2), and t3 = T3

respectively. The FPC requires that the first investment occurs weakly earlier than the first

intersection of L2 (t) and F2 (t). Therefore, the Leader payoff in the three-player game, i.e.

the payoff of the first investor, is:

L1 (t) = π(1)

∫ t2

t
e−rsds+ π(2)

∫ T∗
3

t2

e−rsds+ π(3)

∫ ∞

T∗
3

e−rsds− c(t). (8)

The Follower payoff in the three-firm game, i.e. the payoff from being either the second or

13Observe that in the two-player game in Section 3.1 this constraint is absent: After the first investment,
there is a single follower left, whose investment time is not determined by a preemption race but by a
single-agent decision problem.
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the third investor, is

F1 (t) = π(2)

∫ T∗3

t2

e−rsds+ π(3)

∫ ∞

T∗
3

e−rsds− c(t2) = π(3)

∫ ∞

T∗
3

e−rsds− c(T ∗3 ). (9)

As in the two-player game, there is a LPC: the first investment cannot occur at a time

such that earlier preemption is profitable, because otherwise any of the followers would

have a profitable deviation. We say that the LPC on t1 is binding in equilibrium if given

the subsequent investment times t2 and t3, L1 (t) > F1 (t) for some t < t2. Otherwise,

preempting the leader is never profitable, and we say that the LPC is not binding.

The relationship between FPC and LPC

The FPC reflects the intensity of the follower preemption race that starts after the first

investment: The more intense this race, the earlier is the first intersection of L2 (t) and

F2 (t), i.e. the earlier is t2. The LPC instead reflects the intensity of the race to be the

first investor. To capture the relationship between the two, notice that the earlier is t2,

the shorter the period for which the first investor earns monopoly profits: Early t2 makes

the role of first investor less desirable. Therefore, the more intense the follower preemption

race, the less intense race to be the leader of the three-firm game: the stronger the FPC,

the weaker the LPC.

The key observation of our analysis is that for any given set of parameters, only one of

the two constraints is binding, and which constraint is binding is equivalent to whether the

first two investments are clustered or diffused. If the follower preemption race is sufficiently

intense, only the FPC is binding, and investments are clustered. Otherwise, only the LPC

is binding, and investments are diffused. We discuss these two cases below, and illustrate

them in Figure 2.

First, observe that the leader payoff L1 (t) is strictly quasiconcave, and maximized at

T ∗1 . By construction, it intersects F1(t) in t2. Which constraint is binding depends on the

relative position of t2 with respect to T ∗1 . The intuition for this is that T ∗1 , being determined

by π (1), reflects the desirability of the role of first investor, hence the strength of the LPC,

while t2 reflects the strength of the FPC.
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←L
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 ←L
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(t)

T
1
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2
t
1 t

3
=T*
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↑
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2
(t)
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←L
2
(t)

L
1
(t) →

T
1
* T

2
*t

1
=t

2 t
3
=T*
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↑
F

1
(t)=F

2
(t)
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←L
2
(t)

L
1
(t) →

T
2
*t

1
=t

2
=T

1
* t

3
=T*

3

↑
F

1
(t)=F

2
(t)

2(b)

Figure 2: Clustering vs. Diffusion. In all three panels, the third investment occurs at T ∗3 and

the second at the first intersection of L2(t) and F2(t). Monopoly profits increase from panel 2(a)

to 2(c) bringing forward the optimal stand-alone time T ∗1 . In panels (2a) and (2b), t2≤ T ∗1, so in
the race to be first, F1(t) exceeds L1(t) before t2. Hence, only the FPC is binding and investments

are clustered. Panel (2b) represents the knife-edge case with t2= T ∗1. In (2c), t2> T ∗1. Therefore,
L1(t) exceeds F1(t) before t2 and the LPC alone is binding. The cost function is as in Figure 1.

Flow profits π are (275, 214, 129) for (2a), (315, 214, 129) for (2b), (419, 214, 129) for (2c).

Case 1: t2 ≤ T
∗
1 (Figures 2a and 2b).

The LPC is not binding, because the follower payoff F1(t) exceeds the leader payoff L1(t)

at any t < t2. The first investment occurs exactly at t2: the FPC is binding. The payoffs

of all players are equalized. The first two investment times are clustered : t1 = t2.

Case 2: t2> T
∗
1 (Figure 2c).

The LPC is binding: The leader payoff L1 (t) exceeds the follower payoff F1(t) to the left

of t2. The preemption race to be first investor brings t1 forward to the earliest intersection

of leader and follower payoffs. The payoffs of all players are equalized. The FPC instead,

is not binding. The first two investments are diffused: t1 < T ∗1 < t2.

How model primitives determine the presence of a cluster

As can be seen in Figure 2, whether case 1 or case 2 will occur is equivalent to whether L2(t)−

F2(t), the incentive to preempt in the 2-player subgame that follows the first investment, is

positive or negative when evaluated at T ∗1 .

In the knife-edge case of Figure (2b), the preemption incentive evaluated at T ∗1 is zero:

the first intersection of L2(t) and F2(t), that identifies t2, coincides exactly with T ∗1 . The

follower preemption race is just intense enough to make the FPC binding and the LPC not

binding. If instead the first intersection of L2(t) and F2(t) occurs to the left of T ∗1 , as in

Figure (2a), then the preemption incentive L2(t)−F2(t) evaluated at T ∗1 is strictly positive.
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Conversely, if it occurs to the right of T ∗1 , as in Figure (2c), then L2(t)−F2(t) evaluated at

T ∗1 is strictly negative.

The previous observation allows us to identify the parameter range for which case 1 and

case 2 occur, respectively. Evaluating the preemption incentive L2(t)− F2(t) at T ∗1 :

L2(T
∗
1 )− F2(T

∗
1 ) = π(2)

∫ T∗
3

T∗
1

e−rsds+ π(3)

∫ ∞

T∗
3

e−rsds− c(T ∗1 )−

[
π(3)

∫ ∞

T∗
3

e−rsds− c(T ∗3 )

]

=
π(2)

r

[
e−rT

∗
1 − e−rT

∗
3

]
− [c(T ∗1 )− c(T ∗3 )] (10)

Recalling that T ∗1 is a decreasing function of π (1) and T ∗3 is a decreasing function of π (3),

we can rewrite the preemption incentive evaluated at T ∗1 as a function of the three profit

parameters π (1), π (2), π (3) only:

h1 (π (1) , π (2) , π (3)) ≡
π(2)

r

[
e−rT

∗
1
(π(1)) − e−rT

∗
3
(π(3))

]
− [c(T ∗1 (π (1)))− c(T ∗3 (π (3)))]

(11)

For profit structures such that h1 (·) is nonnegative, the first two investments are clustered,

for all other profit structures, investments are diffused.

The function h1 (·) is monotone in each of the profit parameters π (1), π (2) and π (3).14

The intuition is captured by looking at how each of them affects the relative strength of

the two constraints. First, h1 (·) is decreasing in π (1). Hence, starting from the knife-edge

case, increasing π (1) we fall into case 2 (diffusion). The intuition is that an increase in

π (1) makes the role of leader of the three-player preemption race more attractive. Hence,

the LPC becomes binding.

Next, consider π (2) and π (3). The preemption incentive h1 (·) is increasing in π (2) and

decreasing in π (3). Hence, starting from the knife-edge case, increasing π (2) or decreasing

π(3) there continues to be a cluster. The intuition is that an increase in π(2) or a decrease in

π(3) makes the role of second investor more attractive relative to the role of third investor.

The preemption race among the followers becomes more intense, and this brings t2 forward.

The FPC constraint becomes stronger. At the same time, earlier t2 makes the role of first

investor less attractive so the LPC becomes weaker.
14For a proof, see Corollary 2.
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3.3 The general case: N firms

In this section, we formalize and generalize our characterization of the equilibrium outcome

of the game with three players to the general case of N players.

After the first j − 1 investments have taken place, two constraints determine the next

investment time tj . First, the LPC: preempting the leader of the current subgame, i.e.

the j-th investor, by investing earlier than tj , must be unprofitable. Second, the FPC: tj

must be weakly earlier than the time of next investment, tj+1, which is determined by the

preemption race in the ensuing subgame that will be played by the followers after the j-th

investment.15

Proposition 1 below establishes that the equilibrium outcome of the game is unique,

that the rent equalization result is preserved even for a general number of players, and that

the equilibrium investment times are constructed with the following backwards algorithm:

The last investment time is equal to the last stand-alone investment time, as established

in Lemma 1. For every j < N instead, the equilibrium investment time tj is determined

comparing the (j + 1)-th equilibrium investment time tj+1 with the j-th stand-alone invest-

ment time T ∗j . Two cases are possible: If the (j + 1)-th investment takes place before T ∗j ,

the j-th investment will not be brought forward any further, and there will be a cluster of

investments: tj = tj+1. Otherwise, the j-th investment will take place earlier than tj+1, at

the earliest time that guarantees rent equalization. In the first case, analogous to Case 1 in

Section 3.2, the FPC alone is binding. In the second case, analogous to Case 2 in Section

3.2, the LPC alone is binding.

Proposition 1 The game admits a unique SPNE outcome, up to a permutation of players.

All players receive the same payoff: π(N)
r e−rT

∗
N − c (T ∗N).

The equilibrium investment times (t1, t2..., tN) can be calculated recursively as follows:

The last investment time is equal to the last stand-alone investment time: tN = T ∗N ;

For j = 1, ..., N − 1, two cases are possible:

Case 1. The (j + 1)-th investment time tj+1 is weakly earlier than the j-th stand-alone

investment time T ∗j . Then, the j-th and the (j + 1)-th investments are clustered: tj = tj+1.

Case 2. The (j + 1)-th investment time tj+1 is strictly later than the j-th stand-alone

investment time T ∗j . Then, the j-th and the (j + 1)-th investments are diffused, and tj is

15The above discussion holds for j ≤ N − 2. In equilibrium, the last two investment times are the
equilibrium outcome of a subgame that resembles the two-firm game illustrated in Section 3.1.
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the smallest solution to: π(j)
∫ tj+1
tj

e−rsds− c(tj) + c(tj+1) = 0.

Proposition 1 has two implications that go beyond the features of the three-player

example. First, for N > 3 clusters can include more than two simultaneous investments:

suppose that the preemption race for the role of (j + 1)-th investor is sufficiently intense

that not only tj+1 < T ∗j , but tj+1 < T ∗j−1 < T ∗j : in this case, the (j − 1)-th, j-th and

(j + 1)-th investments will be clustered. In Section 3.5 we illustrate how model primitives

affect the size of a cluster.

Second, clusters can occur not only at the beginning, but at any point of the investment

sequence, except for the last. In Section 3.5 we discuss under which alternative assumption

the last investment can be part of a cluster.

3.4 The condition for a cluster

In this section, we characterize the set of parameter vectors for which the j-th and (j + 1)-th

investments are clustered. Moreover, we show that the set of parameter values for which a

cluster occurs is nonempty.

Proposition 1 establishes that the j-th and the (j + 1)-th investments are clustered if

and only if tj+1 is weakly earlier than T ∗j . As in our discussion of Figure 2, we start from the

observation that the relative position of tj+1 with respect to T ∗j is related to the preemption

incentive in the follower preemption race that follows the j-th investment, evaluated at

T ∗j . We will derive an expression for this preemption incentive, and use it to formulate a

necessary and sufficient condition on the model primitives for a cluster tj = tj+1.
16

Consider the follower preemption race that follows the j-th investment: As in the three-

player game, the intensity of this race determines an upper bound tj+1 on tj. There is one

difference from the special case of a three-player game: The upper bound t2 on t1 is always

strictly earlier than the third investment time T ∗3 . In the N-player game instead, the upper

bound tj+1 may coincide with one or more subsequent investments. To account for this, we

introduce the following definition.

Definition 1 For a given flow profit structure π, consider the subgame starting in equilib-

rium after the j-th investment. Let k ≥ 1 be the number of investments occurring at the

first investment time in this subgame, so that tj+1 = ... = tj+k.

16The analysis closely follows the discussion presented in section 3.2 for N = 3.
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The leader and follower payoffs in the race to be one of the k leaders of the follower

preemption race that follows the j-th investment are given by:

Lj+k (t) = π(j + k)

∫ tj+k+1

t
e−rsds+

N∑

m=j+k+1

π(m)

∫ tm+1

tm

e−rsds− c(t) (12)

Fj+k (t) =
N∑

m=j+k+1

π(m)

∫ tm+1

tm

e−rsds− c(tj+k+1) (13)

respectively,17 where tN+1 ≡ +∞. The incentive to preempt at time t is given by their

difference: Lj+k (t)−Fj+k (t). The point tj+1 = tj+k is the earliest time when this incentive

is null. The relative position of tj+1 with respect to T ∗j , hence the presence or absence of a

cluster of tj and tj+1, depends on the sign of this preemption incentive evaluated at T ∗j :
18

Corollary 1 In equilibrium, the j-th investment is clustered with the (j + 1)-th if and only

if the preemption incentive in the follower preemption race evaluated at T ∗j is nonnegative:

Lj+k(T
∗
j )− Fj+k(T

∗
j ) ≥ 0.

The condition in Corollary 1 allows us to characterize a necessary and sufficient condition

on the profit parameters for a cluster tj = tj+1. The preemption incentive Lj+k(T
∗
j ) −

Fj+k(T
∗
j ) can be rewritten as follows:

Lj+k(T
∗
j )− Fj+k(T

∗
j ) =

π(j + k)

r

[
e−rT

∗
j − e−rtj+k+1

]
−
[
c(T ∗j )− c(tj+k+1)

]
. (14)

Compare (14), the preemption incentive at T ∗j , to its formulation for a three-player game,

for j = 1, by recalling equation (10) from Section 3.2:

L2(T
∗
1 )− F2(T

∗
1 ) =

π(2)

r

[
e−rT

∗
1 − e−rT

∗
3

]
− [c(T ∗1 )− c(T ∗3 )]

The key difference is that in the three player-game t3 coincides with the last stand-alone

investment time T ∗3 , hence only depends on π (3). Instead, in the general N-player game,

tj+k+1 can be determined by the outcome of a preemption race. Hence, tj+k+1 is a function

of a subvector of the profit structure π that not only includes π (j + k + 1), but also profit

parameters associated with later investments. However, the recursive nature of the equilib-

rium characterized in Proposition 1 implies that it is only this subvector
(

π (m)Nm=j+k+1

)

17Note that for N = 3, j = 1 it always holds that k = 1, and equations 12 and 13 correspond to equations
6 and 7.
18This result formalizes the observation in section 3.2, for N = 3 and j = 1.
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that pins down tj+k+1. The two equations are otherwise very similar: the preemption in-

centive (14) is a function of T ∗j , hence of the profit flow π (j). Moreover, it depends directly

on the profit flow π(j + k) earned by each of the k leaders of the preemption subgame that

starts after the j-th investment.

The next Proposition states these insights formally: The preemption incentive in (14)

can be rewritten as a function of only the profit flows associated with having j or more

competitors. Hence, the condition for a cluster from Corollary 1 can be expressed as a

necessary and sufficient condition on the sign of a function of model primitives.

Proposition 2 The preemption incentive in the follower preemption race evaluated at T ∗j

is a function of the N − j + 1 smallest profit parameters only:

hj

(
π (m)Nm=j

)
≡ Lj+k(T

∗
j )− Fj+k(T

∗
j ).

The j-th and the (j + 1)-th investments are clustered if and only if hj

(
π (m)Nm=j

)
≥ 0.

To gain a more transparent insight on how the presence or absence of a cluster is related

to the profit flows, we examine the comparative statics of the function hj (·) with respect

to its arguments.

Corollary 2 The function hj

(
π (m)Nm=j

)
is weakly monotone in each of its arguments. In

particular, it is strictly decreasing in π (j), and strictly increasing in π (j + k).

The intuition for a cluster can be summarized as follows. The more intense the follower

preemption race in the subgame that starts after the j-th investment, the earlier the upper

bound from the FPC, tj+1, becomes. In turn, the earlier this upper bound is, the weaker

the LPC becomes: if high profits π (j) are achieved for a shorter interval of time, the role

of leader, i.e. of j-th investor, is less attractive.

Therefore, any change of the parameters π (m)Nm=j that makes the follower preemption

race more intense, makes it more likely that the FPC alone is binding, and a cluster occurs.

I.e., it increases hj

(
π (m)Nm=j

)
, making it more likely that it is positive. Similarly, any

change that makes the role of leader, i.e. of j-th investor, more attractive, makes it more

likely that the LPC alone is binding, and that investments are diffused. In other words, it

decreases hj

(
π (m)Nm=j

)
.

Consider a change in the flow-profit π (j + k) obtained by the first k firms to invest in

the follower preemption race that starts after the j-th investment. The larger this profit
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flow, the more intense the race to obtain it. Therefore, we expect that the higher π (j + k),

the more likely a cluster is. This is confirmed by Corollary 2 which states that hj (·) is

strictly increasing in π (j + k).

Similarly, consider a decrease in π (j). It does not affect the follower preemption race

that determines the FPC, but it makes the role of leader, i.e. of j-th investor, less attractive.

Hence, we expect that the smaller π (j), the more likely it is that the LPC is not binding,

and the FPC is. I.e., that there is a cluster. This intuition is confirmed by Corollary 2:

hj (·) is strictly decreasing in π (j).

We characterized the set of parameter vectors for which a cluster tj = tj+1 occurs in

Proposition 2. We conclude this section by showing that this set is nonempty. Proposition 3

below states that starting from any parameter vector π for which tj < tj+1, one can modify

π (j) or π (j + 1) individually in such a way that j-th and the (j + 1)-th investments are

clustered.

Proposition 3 Suppose that for a given flow profit structure π the SPNE investment times

tj and tj+1 are diffused. Then:

(i) there exists a sufficiently large π̃ (j + 1) ∈ (π (j + 1) , π (j)) such that in the new SPNE

outcome there is a cluster: tj = tj+1.

(ii) if, in addition, tj+1 and tj+2 are diffused, there also exists a sufficiently small π̃ (j) ∈

(π (j + 1) , π (j)) such that in the new SPNE outcome there is a cluster: tj = tj+1.

3.5 Discussion

Size of clusters

Section 3.4 focused on the question of whether two specific investments, the j-th and (j + 1)-

th, are clustered. The previous analysis can be extended to find a necessary and sufficient

condition on the model primitives for a cluster of two or more investments.

Suppose tj+1 < tj+2. We ask the question whether tj+1 coincides with tj and, more

generally, with one or more previous investments. Proposition 1 implies that there is cluster

in tj+1 if and only if tj+1 ≤ T ∗j−v for some v ≥ 0. There is a cluster of the j-th and (j+1)-th

investments if and only if the upper bound tj+1 from the FPC is weakly earlier than the

stand-alone investment time T ∗j . If the follower preemption race advances tj+1 even ahead of

some previous stand-alone investment time T ∗j−v, then the cluster will include the (j−v)-th

investment as well: tj−v = ... = tj = tj+1.
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It follows from the analysis in Section 3.4 that a condition equivalent to tj+1 ≤ T ∗j−v is

that the preemption incentive in the follower preemption race, evaluated at T ∗j−v, is positive:

Lj+1(T
∗
j−v)− Fj+1(T

∗
j−v) =

π(j + 1)

r

[
e−rT

∗
j−v − e−rtj+2

]
−
[
c(T ∗j−v)− c(tj+2)

]
. (15)

For v = 0, this expression corresponds to expression (14). In general, the size of the cluster

is given by v̄ + 2, where v̄ is the largest v ≥ 0 for which (15) is non-negative.

The mechanism relating profit flows to the presence of “large clusters” is similar to

above. The preemption incentive in (15) is a function of π(j − v) and of all the profit flows

smaller or equal than π(j + 1).

The larger π(j + 1), the earlier tj+1, and the more likely that it advances ahead of

earlier stand-alone investment times. Conversely, a decrease in a profit flow π(j− v) delays

the corresponding stand-alone investment time T ∗j−v so that it becomes more likely that

tj+1 ≤ T ∗j−v and tj−v is part of the cluster.

Clusters including the last investment

An implication of Proposition 1 is that the last two investments are diffused. Suppose we

relax Assumption 3(iii) so that only M < N can profitably invest. After the (M − 1)-th

investment, there is a race among the remaining active players to secure the last profitable

investment possibility. By rent equalization, the last investor (as well as all the predecessors)

must earn the same equilibrium payoff as the (N −M) players who do not invest, which is

zero. The last investment is thus brought forward to a time tM earlier than the stand-alone

time T ∗M . If tM < T ∗M−1, then there is cluster at tM−1 = tM . In the baseline model instead,

the last investment time tN is T ∗N , therefore it is always strictly later than T ∗N−1. Thus

allowing for endogenous entry, can generate a cluster at the end of the investment sequence.

4 Conclusions

We extended the preemption game introduced by Fudenberg and Tirole (1985) to the case

of N players, assuming players’ payoff before investing are constant (and normalized to

zero). We find that in this environment the rent equalization result of the two-player game

is preserved, but clusters of simultaneous investments are possible, even in the absence

of coordination failures, positive externalities, and informational spillovers, and given the

fact that investment by a player reduces the flow profit achievable by the remaining active
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players. If the preemption race among the last N − j firms is so intense that the (j + 1)-th

investment takes place when the investment cost still decreases at a rate higher than flow-

profits π (j), the j-th investment will not be brought forward any further and there will be

a cluster of the j-th and (j + 1)-th investments.

We characterize a necessary and sufficient condition on the model primitives for invest-

ments to be clustered. We also prove that the set of parameter values for which any two

investments are clustered is nonempty. Our results imply that the observation of cluster-

ing of market entry or adoption times need not reflect informational spillovers or positive

externalities.
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Appendix

Claim 1 The function fj (t) is strictly quasi-concave in t for any j ∈ {1, 2..., N} and admits

a unique global maximum in T ∗j , defined as the solution to

f ′j (t) = 0⇐⇒ −π (j) e−rt − c′ (t) = 0.

Moreover, fj

(
T ∗j

)
> 0 and T ∗j < T ∗j′ for j < j′.

Proof of Claim 1. First, we prove that the function is strictly quasiconcave, by showing

that in every critical point of the function the second derivative is strictly negative. The

first derivative f ′j (t) is equal to
[
−π (j) e−rt − c′ (t)

]
and the second derivative f ′′j (t) is equal

to
[
rπ (j) e−rt − c′′ (t)

]
. Using f ′j (t) = 0 we can rewrite f ′′j evaluated at any critical point as

f ′′j (t) = −c′ (t) r − c′′ (t) . (16)

By Assumption 2:

ert
[
c′ (t) + rc (t)

]
< 0

ert
[
2c′ (t) r + c (t) r2 + c′′ (t)

]
> 0

which together imply that expression (16) is negative.

Next, we prove that the first order condition f ′j (t) = 0 characterizes the unique global

maximum of the function. Assumption 3(ii) guarantees that f ′j (0) > 0 and assumption

3(iv) guarantees that f ′j (t) < 0 for t sufficiently large.

Next, assumptions 3(iii) and 2(i) imply that fN(t) is strictly positive for any t ≥ T ∗N .

Thus, Assumption 1(ii) implies that fj

(
T ∗j

)
> 0 for all j.

Finally, note that by the implicit function theorem

∂T ∗j

∂π(j)
= −

−e−rT
∗
j

f ′′j

(
T ∗j

) < 0,

where the inequality holds because T ∗j is a maximum, hence the denominator is negative.

Therefore, Assumption 1(ii) implies that T ∗1 < T ∗2 < ... < T ∗N .�

Proof of Lemma 1. Assumptions 3(i) and 1(ii) guarantee that there is no investment at
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time zero: the cost of investing immediately is higher than the maximum amount of profits

a firm can obtain in this game. This proves part (i).

For part (ii), we first show that in equilibrium, at any decision node with one active

firm and calendar time t, the firm plays WAIT if t < T ∗N and INVEST otherwise. Then, we

show that in any decision node with t ≥ T ∗N any number of active firms play INVEST.

If at time t there is only one active firm, its payoff from investing is fN(t) as defined in

equation (2). From Claim 1, fN(t) has a strict global maximum in T ∗N and its maximum

value is strictly positive. Therefore, a single active firm will optimally play WAIT if t < T ∗N

and INVEST otherwise.

Next, consider decision nodes with t ≥ T ∗N and two active firms. In equilibrium, at

least one of them must play INVEST. If this is the case, the game enters a subgame with

one active firm, who invests immediately, and both firms receive payoff fN(t). If both play

INVEST, and one of them deviates and plays WAIT, the payoff is unchanged. If only one

of them plays INVEST and the other plays WAIT, the latter has no incentive to deviate

because its payoff would be unchanged, and the former has no incentive to deviate because

it would then get either zero or fN(τ) for some τ > t and fN(·) is strictly decreasing in the

interval considered. By a similar argument, in equilibrium it cannot be the case that both

of them play WAIT because each of them would be better off by deviating.

Repeating the same argument for ℓ = 3, ..., N , it follows that in any SPNE, at any

decision node with t ≥ T ∗N and any number ℓ of active firms, at least one of them plays

INVEST, and the claim follows immediately. �

Proof of Proposition 1. Through a series of Lemmata we show that the game admits a

unique SPNE outcome, and characterize it. The proof is articulated in the following steps:

• Denote by tj the SPNE investment time of the j-th investor, for j ∈ {1, .., N}. In

Definition 2, we introduce three functions, Lj(t), Fj(t), and their difference Dj (t).

• In Lemma 2 and Lemma 3 we characterize their properties. Over a well-defined

subset of their domain, Lj(t) and Fj(t) can be interpreted as the payoff of the j-th investor

and the (j + 1)-th investor, respectively, if the j-th investment takes place at t and the

following investments take place at tj+1,..., tN respectively. In the definition, the existence

and uniqueness of the SPNE investment times is assumed. In the development of the proof,

they will be proved. The existence and uniqueness of tN = T ∗N was proved in Lemma 1.

• In Lemma 4 we establish that in any subgame with one active firm, it plays WAIT
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before T ∗N and INVEST from T ∗N on.

• In Lemma 5, we prove that there exists a time TN−1 < T ∗N in which LN−1(t) = FN−1(t)

and in Lemma 6 we prove that this is the unique (N − 1)-th equilibrium investment time.

Therefore, the equilibrium payoff of the last two investors is the same.

• Finally, in Lemmata 7,8 and 9 we identify the algorithm for the construction of the

equilibrium investment times tj for j ∈ {1, ..., N − 2} and prove that rent equalization

holds in equilibrium for all players. The argument is based on the induction principle.

Lemma 7 proves that there exists an algorithm to identify the unique tN−2, given tN−1

and tN , and that the equilibrium payoff of the last three investors is the same. Lemma 8

shows that if an analogous algorithm can be used to identify a unique value of tN−l, given

tN−l+1,...,tN , and rent equalization holds for the last l players, then the same algorithm

identifies a unique value for tN−l−1, given tN−l,...,tN , and rent equalization holds for the

last l+1 players. Lemma 9 applies the induction principle to prove that the algorithm can

be used to construct the SPNE investment times t1,..., tN−2 and rent equalization holds for

all players. This concludes the proof of the Proposition.

Definition 2 For each j ∈ {1, .., N − 1}, we define the following three functions over the

interval [0, T ∗N ]:

Lj(t) ≡ π(j)

∫ tj+1

t
e−rsds+

N∑

m=j+1

π(m)

∫ tm+1

tm

e−rsds− c(t)

Fj(t) ≡
N∑

m=j+1

π(m)

∫ tm+1

tm

e−rsds− c(tj+1)

Dj (t) ≡ Lj(t)− Fj(t) = π(j)

∫ tj+1

t
e−rsds− c(t) + c(tj+1)

where tN+1 ≡ +∞.

Notice that Fj(t) is constant with respect to t.

Lemma 2

(i) The function Dj (t) attains a unique global maximum in T ∗j , for j ∈ {1, .., N − 1}

(ii) Dj(T ∗j ) ≥ 0 for j ∈ {1, .., N − 1}.

Proof.
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Part (i). Notice that

Dj (t) = π(j)

∫ tj+1

t
e−rsds− c(t) + c(tj+1) (17)

and fj(t) as defined in equation (2) differ by a finite constant. By Claim 1, fj(t) attains a

unique global maximum in T ∗j , hence the same is true for Dj (t).

Part (ii). Since Dj (tj+1) = 0 and T ∗j is the unique global maximizer, it holds that

Dj(T ∗j ) ≥ 0. �

Lemma 3

(i) If T ∗j ≤ tj+1, then ∃Tj ∈ (0, T
∗
j ], such that Dj(Tj) = 0,

(ii) If T ∗j > tj+1, then Dj(t) < 0 and D′
j(t) > 0 ∀t < tj+1.

Proof. Since Dj(t) and fj(t) differ by a finite constant, Claim 1 implies that Dj(t) is

strictly quasi-concave. Also, Dj (0) < 0, since

Lj(0) = π(j)

∫ tj+1

0
e−rsds+

N∑

m=j+1

π(m)

∫ tm+1

tm

e−rsds− c(0) <
π(1)

r
− c(0) < 0

≤ V j+1(t1, ...tN) =
N∑

m=j+1

π(m)

∫ tm+1

tm

e−rsds− c(tj+1) = Fj(0)

Here the second inequality holds by assumption 3(i) and the third because no firm gets a

negative payoff in equilibrium as it could always delay investment indefinitely ensuring a

payoff of zero. Moreover, Dj (tj+1) = 0. Therefore, two cases are possible:

(i): T ∗j ≤ tj+1, in which case ∃Tj ∈ (0, T ∗j ], such that Dj(Tj) = 0, and Dj(t) > 0 in the

interval t ∈ (Tj, tj+1) ,

(ii) T ∗j > tj+1, in which case Dj(t) < 0 and D′
j(t) > 0 ∀t < tj+1. �

In the next Lemma, we analyze decision nodes with one active firm.

Lemma 4 In equilibrium, if at time t there is one active firm, it plays WAIT if t < T ∗N

and INVEST if t ≥ T ∗N .

Proof. The result follows immediately from the proof of Lemma 1. �

In the next Lemma, we show that for the case j = N − 1, case (i) of Lemma 3 applies.

Lemma 5 T ∗N−1 < tN = T ∗N and ∃TN−1 < T ∗N−1 < T ∗N such that DN−1 (TN−1) = 0.
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Proof. T ∗N−1 < T ∗N by Claim 1 and tN = T ∗N by Lemma 1. The rest of the statement

follows from Lemma 3. �

In the next Lemma we show that the (N − 1)-th equilibrium investment time is TN−1.

Lemma 6 In equilibrium, it holds that:

(i) At any time t ∈ [TN−1, T
∗
N), if there are n > 1 active firms, at least one investment takes

place at t.

(ii) At any time t ∈ [0, TN−1), if there are n = 2 active firms, each of them plays WAIT.

(iii) tN−1 = TN−1 and the equilibrium payoff of the last two investors is the same.

Proof.

Part (i). In the interval t ∈ [TN−1, T
∗
N), DN−1(t) ≥ 0 . It is an equilibrium for a subgame

starting in this interval for all active firms to play INVEST: all n active firms try to invest

immediately at t, until only one is left, which will then wait to invest until time T ∗N (see

Lemma 4). The associated payoff is a lottery between LN−1 (t) and FN−1 (t). Suppose

one firm deviates and plays WAIT at t. This deviation is not profitable, since it increases

the probability of receiving payoff FN−1 (t) and reduces the probability of receiving payoff

LN−1 (t). It is also an equilibrium for all firms to play WAIT at t and INVEST at any

τ > t, as the continuous time outcome of this profile is the same as the outcome of the

previous profile.

In the interval t ∈ (TN−1, T
∗
N), no other strategy profile constitutes an equilibrium.

First, suppose that at time t only some of the active firms play INVEST. Then, any of the

remaining firms receives payoff FN−1 (t) with probability one and can profitably deviate by

playing INVEST thus receiving a lottery between FN−1 (t) and LN−1 (t). Next, suppose

that all firms play WAIT in an interval starting at time t, and first investment takes place

at some time τ strictly larger than t. By Lemma 1 τ must be smaller or equal than T ∗N . If

all active firms play INVEST at τ , then each of them receives a lottery between FN−1 (τ)

and LN−1 (τ) and could profitably deviate by playing INVEST at τ − ε and receiving

LN−1 (τ − ε), since by continuity ∃ε > 0 small enough that this is profitable. If instead

some active firms play WAIT at τ , which by Lemma 1 can happen only if τ < T ∗N , then

each of them receives FN−1 (τ). It could deviate by playing INVEST at τ − ε and receive

LN−1 (τ − ε). By continuity ∃ε > 0 small enough that this is profitable.

For subgames starting at t = TN−1 , it is also an equilibrium that if n > 1 firms are

active, any positive number ν < n of firms play INVEST at t. The outcome is that all
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except one invest at TN−1, the last one invests at T ∗N , and all receive payoff LN−1 (TN−1) =

FN−1 (TN−1), hence no deviation is profitable.

Part (ii). Notice that in the interval t ∈ [0, TN−1) it holds that LN−1 (t) < FN−1 (t) and

that LN−1(t) is increasing. Given part (i) of this Lemma, and Lemma 4, if firms follow the

actions prescribed in part (ii) the expected payoff for each of them is

1

2
[LN−1(TN−1) + FN−1 (TN−1)] = LN−1(TN−1) = FN−1 (TN−1)

where the equality comes from the definition of TN−1. The deviation payoff from investing

at some τ before TN−1 is LN−1(τ) < LN−1(TN−1), hence this is an equilibrium.

Next, we show that there is no other action profile compatible with equilibrium. Suppose

that ν ≤ 2 firms play INVEST at τ. The equilibrium payoff for any of these early investors

is
1

ν
[LN−1(τ) + (ν − 1)FN−1 (τ)]

Each of them could profitably deviate by playing WAIT at τ, since FN−1 (τ) > LN−1 (τ).

This concludes the proof of part (ii).

Part (iii). The conclusion that tN−1 = TN−1 follows directly from parts (i) and (ii) and

from Lemma 4. By construction of TN−1, this implies rent equalization for the last two

investors. �

We now identify the algorithm for the construction of the equilibrium investment times

tj for j ∈ {1, ..., N − 1}. The argument is based on the induction principle. Lemma 7

contains a statement for j = N − 2. Lemma 8 shows that if the same statement holds for

j = N − l, then it holds for j = N − l − 1. Lemma 9 concludes that, by the induction

principle, the statement holds for a general j.

Lemma 7 Given tN = T ∗N and tN−1 = TN−1, tN−2 can be constructed as follows.

Part (a) Suppose T ∗N−2 < TN−1. In equilibrium it holds that:

(i) At any time t ∈ [TN−2, TN−1), if there are n > 2 active firms, at least one investment

takes place at t.

(ii)At any time t ∈ [0, TN−2), if there are 3 active firms, each of them plays WAIT

(iii) tN−2 = TN−2 and the payoff of the last 3 investors is equalized.

Part (b) Suppose T ∗N−2 ≥ TN−1. In equilibrium it holds that:
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(i) at any time t ∈ [0, TN−1), if there are n = 3 active firms, each of them plays WAIT

(ii) tN−2 = TN−1 and the payoff of the last 3 investors is equalized.

Proof.

Part (a): By Lemma 3 (i), ∃TN−2 ∈ (0 < T ∗N−2], such that DN−2(TN−2) = 0. The proofs

of parts (i) and (ii) follow from arguments similar to the proofs of parts (i) and (ii) of

Lemma 6, respectively.

The conclusion that tN−2 = TN−2 follows directly from parts (i) and (ii) and from

Lemmata 6 and 4. By construction of TN−2, this implies rent equalization for the last three

firms.

Part (b): By Lemma 3 (ii), LN−2 (t) < FN−2 (t) and L′N−2(t) > 0 ∀t < TN−1. The proof

of part (i) follows from arguments analogous to the proof of part (ii) of Lemma 6. The

conclusion that tN−2 = tN−1 = TN−1 follows directly from part (i) and from Lemmata 4

and 6. By construction of TN−1, this implies rent equalization for the last three firms. �

Lemma 8 If the following statement holds for j = N − l, with l ≥ 2, then it holds for

j = N − l − 1.

Given the last N − j equilibrium investment times (tj+1, ..., tN), and given rent equalization

for the last (N − j) investors, the j-th equilibrium investment time tj can be constructed as

follows:

Part (a) Suppose T ∗j < tj+1. In equilibrium it holds that:

(i) At any time t ∈ [Tj, tj+1), if there are n > N − j active firms, at least one investment

takes place at t.

(ii) At any time t ∈ [0, Tj), if there are n = N − j + 1 active firms, each of them plays

WAIT

(iii) tj = Tj and the payoff of the last N − j + 1 investors is equalized.

Part (b) Suppose T ∗j ≥ tj+1. In equilibrium it holds that:

(i)At any time t ∈ [0, tj+1], if there are n = N − j + 1 active firms, each of them plays

WAIT:

(ii) tj = tj+1 and the payoff of the last N − j + 1 investors is equalized.

Proof. Assume that the statement holds for j = N−l. This implies that either tN−l = TN−l

or tN−l = tN−l+1, and that in both cases payoffs of the last l + 1 investors are equalized.
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Now we need to prove that the statement holds for j = N − l − 1.

Part (a): By Lemma 3 (i), ∃TN−l−1 ∈ (0 < T ∗N−l−1], such that DN−l−1(TN−l−1) = 0.

The proofs of parts (i) and (ii) follow from arguments similar to the proofs of parts (i) and

(ii) of Lemma 6, respectively. For part (iii), the conclusion that tN−l−1 = TN−l−1 follows

directly from parts (i) and (ii) and from the assumptions. By construction of TN−l−1, this

implies rent equalization for the last l + 2 firms.

Part (b): By Lemma 3 (ii), DN−l−1(t) < 0 and D′
N−l−1(t) > 0 ∀t < tN−l. The proof

of part (i) follows from arguments analogous to the proof of part (ii) of Lemma 6. The

conclusion that tN−l−1 = TN−l follows directly from part (i) and from the assumptions.

By construction of TN−l, this implies rent equalization for the last l + 2 firms. �

Lemma 9 The statement in Lemma 8 holds for any j ≤ N − 2.

Proof. The result follows from Lemmata 7 and 8 by the induction principle. �

Proof of Corollary 1. From Proposition 1, tj = tj+1 if and only if T ∗j ≥ tj+1.

We prove that T ∗j ≥ tj+1 if and only if Lj+k(T
∗
j ) − Fj+k(T

∗
j ) ≥ 0. First, notice that by

Lemmata 1 and 2 Lj+k(t)−Fj+k(t) = Dj+k (t) is strictly quasiconcave and attains a unique

global maximum in T ∗j+k, which is larger than T ∗j by Claim 1. Moreover, by construction,

Lj+k(t)− Fj+k(t) is null in tj+k = tj+1. It follows that either tj+1 ≤ T ∗j < T ∗j+k, in which

case Lj+k(T
∗
j )−Fj+k(T

∗
j ) ≥ 0, or T ∗j < tj+1 < T ∗j+k, in which case Lj+k(T

∗
j )−Fj+k(T

∗
j ) < 0.

Proof of Proposition 2. Given equation (14), the first statement follows immediately

from the definition of T ∗j and from the observation that the recursive algorithm identified

in Proposition 1 is such that tj+k+1 is not a function of the profit flows (π (m))
j+k
m=1. The

second statement follows from Corollary 1.

Proof of Corollary 2. First, consider monotonicity with respect to π(j). Differenti-

ating yields:

∂hj

(
π (m)Nm=j

)

∂π(j)
=

∂hj

(
π (m)Nm=j

)

∂T ∗j

∂T ∗j

∂π(j)
=
[
−π(j + k)e−rT

∗
j − c′(T ∗j )

] ∂T ∗j

∂π(j)
< 0.

To see this, observe that [−π(j + k)e−rT
∗
j − c′(T ∗j )] > 0 because T ∗j < T ∗j+k, and that

∂T∗j
∂π(j) < 0 by the proof of Claim 1.

Second, consider monotonicity with respect to π (ℓ) for ℓ = j + 1, ., j + k − 1. The

algorithm in Proposition 1 implies that tj+k+1 is a function at most of all the profit flows
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(π (m))Nm=j+k+1. It follows that the derivative of hj (·) with respect to π (ℓ) is null.

Third, consider monotonicity with respect to π(j + k). Differentiating yields:

∂hj

(
π (m)Nm=j

)

∂π(j + k)
=

e−rT
∗
j − e−rtj+k+1

r
.

Notice that T ∗j+k < tj+k+1 by definition of k, because if T ∗j+k ≥ tj+k+1, the (j + k)-th and

the (j + k + 1)-th investment would be clustered. Because T ∗j < T ∗j+k by Claim 1, it follows

that T ∗j < tj+k+1. Hence, e−rT
∗
j − e−rtj+k+1 > 0 and this derivative is positive.

Finally, consider monotonicity with respect to π(ℓ) for ℓ = j+k+1, ., N . Differentiating

yields:

∂hj

(
π (m)Nm=j

)

∂π(ℓ)
=

∂hj

(
π (m)Nm=j

)

∂tj+k+1

∂tj+k+1

∂π(ℓ)

=
[
π(j + k)e−rtj+k+1 + c′(tj+k+1)

] ∂tj+k+1

∂π(ℓ)
.

Since T ∗j+k < tj+k+1, the term in square brackets is positive by definition of T ∗j+k. Hence,

the sign of the derivative coincides with the sign of the second term.

Suppose that in equilibrium all the investments from the (j + k + 1)-th to the last are

diffused. Then, the second term is nonzero for every ℓ = j+ k+1, ., N . We now prove that

for ℓ = j + k + 1, ..., N , ∂tℓ
∂π(ℓ) < 0. By construction, tℓ solves:

π (ℓ)

r

[
e−rtℓ − e−rtℓ+1

]
− [c (tℓ)− c (tℓ+1)] = 0.

Differentiating implicitly yields: ∂tℓ
∂π(ℓ) = −

[e−rtℓ−e−rtℓ+1]/r
−π(ℓ)e−rtℓ−c′(tℓ)

. The numerator is positive,

because tℓ < tℓ+1. The denominator is positive as well, because in equilibrium tℓ < T ∗ℓ .

Therefore, tℓ is decreasing in π (ℓ). In particular, this proves that
∂tj+k+1
∂π(j+k+1) < 0. Next,

consider ℓ > j + k + 1. By definition tj+k+1 solves:

π(j + k + 1)

r

[
e−rtj+k+1 − e−rtj+k+2

]
− [c(tj+k+1)− c(tj+k+2)] = 0.

Applying the chain rule and differentiating implicitly yields:

∂tj+k+1

∂π(ℓ)
=




ℓ−1∏

ℓ̃=j+k+1

∂t
ℓ̃

∂t
ℓ̃+1


 · ∂tℓ

∂π (ℓ)
.
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We proved above that the second term is negative. For the first term, differentiating implic-

itly yields:
∂t
ℓ̃

∂t
ℓ̃+1

= −
π(ℓ̃)e

−rt
ℓ̃
+1
+c′(tℓ̃+1)

−π(ℓ̃)e
−rt

ℓ̃−c′(tℓ̃)
. The denominator is positive because t

ℓ̃
< T ∗

ℓ̃
. The

numerator is also positive because t
ℓ̃+1

> T ∗
ℓ̃
. Therefore,

∏ℓ−1

ℓ̃=j+k+1

∂t
ℓ̃

∂t
ℓ̃+1

is strictly positive

for ℓ− k− j − 1 even and strictly negative for ℓ− k− j − 1 odd. This implies that
∂tj+k+1
∂π(ℓ) ,

and hence
∂hj(π(m)Nm=j)

∂π(ℓ) is strictly negative for ℓ − k − j − 1 even and strictly positive for

ℓ− k − j − 1 odd.

If instead for a given flow profit structure π some of the investments from the (j + k + 1)-

th to the last are clustered, then tj+k+1 is a function of a subset of the profit flows

(π (m))Nm=j+k+1. Arguments analogous to those presented above show that also in this

case tj+k+1 is monotone in each profit flow in this subset, and so is hj

(
π (m)Nm=j

)
.

Proof of Proposition 3. First, notice that investment times [tj+k+1, ..., tN ] are constant

in π(j) and π(j + k).

Part (i). For the profit structure π, let k ≥ 1 be the number of investments occurring

jointly in equilibrium at the beginning of the subgame played among the last N − j players,

so that tj+1 = ... = tj+k. Suppose k = 1. The proof of Corollary 2 shows that tj+1 decreases

in π (j + 1). Moreover, limπ(j+1)→π(j) T ∗j+1 = T ∗j . Since tj+1 < T ∗j+1, there exists a π̃ (j + 1)

large enough that tj+1 < T ∗j . Now suppose that k > 1. Since tj and tj+1 are diffused,

T ∗j < tj+1. Since T ∗j+1 is strictly decreasing in π (j + 1) and limπ(j+1)→π(j) T ∗j+1 = T ∗j < tj+2,

there exists a π̂ (j + 1) sufficiently close to π (j) such that tj+1 < tj+2. Then, the proof for

the case k = 1 implies that there exists a π̃ (j + 1) large enough such that tj+1 < T ∗j and tj

and tj+1 are clustered.

Part (ii). Observe that T ∗j is decreasing in π (j) and that limπ(j)→π(j+1) T ∗j = T ∗j+1.

Since tj+1 < tj+2, it must hold that T ∗j+1 > tj+1. Continuity implies that there exists a

π̃ (j) small enough that T ∗j > tj+1 and tj and tj+1 are clustered. �
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