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Abstract

Financial markets are incomplete, thus for many households borrowing is possible only by

accepting a financial contract that specifies a fixed repayment. However, the future income that

will repay this debt is uncertain, so risk can be inefficiently distributed. This paper argues that a

monetary policy of nominal GDP targeting can improve the functioning of incomplete financial

markets when incomplete contracts are written in terms of money. By insulating households’

nominal incomes from aggregate real shocks, this policy effectively completes financial markets

by stabilizing the ratio of debt to income. The paper argues the objective of replicating

complete financial markets should receive substantial weight even in an environment with

other frictions that have been used to justify a policy of strict inflation targeting.
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1 Introduction

At the heart of any argument for a monetary policy strategy lies a view of what are the most

important frictions or market failures that monetary policy should seek to mitigate. The canonical

justification for inflation targeting as optimal monetary policy rests on the argument that pricing

frictions in goods markets are of particular concern (see, for example, Woodford, 2003). With

infrequent price adjustment owing to menu costs or other nominal rigidities, high or volatile inflation

leads to relative price distortions that impair the efficient operation of markets, and which directly

consumes time and resources in the process of setting prices. Inflation targeting is the appropriate

policy response to such frictions because it is able to move the economy closer to, or even replicate,

what the equilibrium would be if prices were flexible. In other words, inflation targeting is able to

undo or partially circumvent the frictions created by nominal price stickiness.1

This paper argues that nominal price stickiness may not be the most serious friction that mone-

tary policy has to contend with. While the use of money as a unit of account in setting infrequently

adjusted goods prices is well documented, money’s role as a unit of account in writing financial

contracts is equally pervasive. Moreover, just as price stickiness means that nominal prices fail to

be fully state contingent, financial contracts are typically not contingent on all possible future states

of the world, for example, debt contracts that specify fixed nominal repayments. Financial contracts

might not be fully contingent for a variety of reasons, but one explanation could be that transaction

costs make it prohibitively expensive to write and enforce complicated and lengthy contracts. Many

agents, such as households, would find it difficult to issue liabilities with state-contingent repay-

ments resembling equity or derivatives, and must instead rely on simple debt contracts if they are

to borrow. Thus, in a similar way to how menu costs can make prices sticky, transaction costs can

make financial markets incomplete.

This paper studies the implications for optimal monetary policy of such financial-market incom-

pleteness in the form of non-contingent nominal debt contracts.2 The argument can be understood

in terms of which monetary policy strategy is able to undo or mitigate the adverse consequences of

financial-market incompleteness, just as inflation targeting can be understood as a means of circum-

venting the problem of nominal price stickiness. For both non-contingent nominal financial contracts

and nominal price stickiness, it is money’s role as a unit of account that is crucial, and in both cases,

optimal monetary policy is essentially the choice of a particular nominal anchor that makes money

best perform its unit-of-account function. But in spite of this formal similarity, the optimal nominal

1In addition to the theoretical case, the more practical merits of implementing inflation targeting are discussed in
Bernanke, Laubach, Mishkin and Posen (1999).

2It is increasingly argued that monetary policy must take account of financial-market frictions such as collateral
constraints or spreads between internal and external finance. These are different from the financial frictions empha-
sized in this paper. Starting from Bernanke, Gertler and Gilchrist (1999), there is now a substantial body of work
that integrates credit frictions of the kind found in Bernanke and Gertler (1989) or Kiyotaki and Moore (1997) into
monetary DSGE models. Recent work in this area includes Christiano, Motto and Rostagno (2010). These frictions
can magnify the effects of both shocks and monetary policy actions and make these effects more persistent. But
the existence of a quantitatively important credit channel does not in and of itself imply that optimal monetary
policy is necessarily so different from inflation targeting unless new types of financial shocks are introduced (Faia and
Monacelli, 2007, Carlstrom, Fuerst and Paustian, 2010, De Fiore and Tristani, 2012).
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anchor turns out to be very different when the friction is financial-market incompleteness rather

than sticky prices.

One problem of non-contingent debt contracts for risk-averse households is that when borrowing

for long periods, there will be considerable uncertainty about the future income from which fixed

debt repayments must be made. The issue is not only idiosyncratic uncertainty — households do not

know the future course the economy will take, which will affect their labour income. Will there be a

productivity slowdown, a deep and long-lasting recession, or even a ‘lost decade’ of poor economic

performance to come? Or will unforeseen technological developments or terms-of-trade movements

boost future incomes, and good economic management successfully steer the economy on a path

of steady growth? Borrowers do not know what aggregate shocks are to come, but must fix their

contractual repayments prior to this information being revealed.

The simplicity of non-contingent debt contracts can be seen as coming at the price of bundling

together two fundamentally different transfers: a transfer of consumption from the future to the

present for borrowers, but also a transfer of aggregate risk to borrowers. The future consumption

of borrowers is paid for from the difference between their uncertain future incomes and their fixed

debt repayments. The more debt they have, the more their future income is effectively leveraged,

leading to greater consumption risk. The flip-side of borrowers’ leverage is that savers are able to

hold a risk-free asset, reducing their consumption risk.

To see the sense in which this bundling together of borrowing and a transfer of risk is inefficient,

consider what would happen in complete financial markets. Individuals would buy or sell state-

contingent bonds (Arrow-Debreu securities) that make payoffs conditional on particular states of

the world (or equivalently, write loan contracts with different repayments across all states of the

world). Risk-averse borrowers would want to sell relatively few bonds paying off in future states of

the world where GDP and thus incomes are low, and sell relatively more in good states of the world.

As a result, contingent bonds paying off in bad states would be relatively expensive and those paying

off in good states relatively cheap. These price differences would entice savers to shift away from

non-contingent bonds and take on more risk in their portfolios. Given that the economy has no risk-

free technology for transferring goods over time, and as aggregate risk cannot be diversified away,

the efficient outcome is for risk-averse households to share aggregate risk, and complete markets

allow this to be unbundled from decisions about how much to borrow or save.

The efficient financial contract between risk-averse borrowers and savers in an economy subject

to aggregate income risk (abstracting from idiosyncratic risk) turns out to have a close resemblance

to an ‘equity share’ in GDP. In other words, borrowers’ repayments should fall during recessions

and rise during booms. This means the ratio of debt liabilities to GDP should be more stable than

it would be in a world of incomplete financial markets where debt liabilities are fixed in value while

GDP fluctuates.

With incomplete financial markets, monetary policy has a role to play in mitigating inefficiencies

because private debt contracts are typically denominated in terms of money. Hence, the real degree

of state-contingency in financial contracts is endogenous to monetary policy. If incomplete markets

were the only source of inefficiency in the economy then the optimal monetary policy would aim
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to make nominally non-contingent debt contracts mimic through variation in the real value of the

monetary unit of account the efficient financial contract that would be chosen with complete financial

markets.

Given that the efficient financial contract between borrowers and savers resembles an equity

share in GDP, it follows that a goal of monetary policy should be to stabilize the ratio of debt

liabilities to GDP. With non-contingent nominal debt liabilities, this can be achieved by having a

non-contingent level of nominal income, in other words, a monetary policy that targets nominal

GDP. Nominal income thus replaces nominal goods prices as the optimal nominal anchor. The

intuition is that while the central bank cannot eliminate uncertainty about future real GDP, it can

in principle make the level of future nominal GDP (and hence the nominal income of an average

household) perfectly predictable. Removing uncertainty about future nominal income thus alleviates

the problem of nominal debt repayments being non-contingent.

A policy of nominal GDP targeting is generally in conflict with inflation targeting because any

fluctuations in real GDP would lead to fluctuations in inflation of the same size and in the opposite

direction. Recessions would feature higher inflation and booms would feature lower inflation, or

even deflation. These inflation fluctuations can be helpful because they induce variation in the real

value of the monetary unit of account, making it and the non-contingent debt contracts expressed

in terms of it behave more like equity. This promotes efficient risk sharing. A policy of strict

inflation targeting would fix the real value of the monetary unit of account, converting nominally

non-contingent debt into real non-contingent debt, which would imply an uneven and generally

inefficient distribution of risk.

The inflation fluctuations that occur with nominal GDP targeting would entail relative-price

distortions if goods prices were sticky, so the benefit of efficient risk sharing is most likely not

achieved without some cost.3 It is ultimately a quantitative question whether the inefficiency caused

by incomplete financial markets is more important than the inefficiency caused by relative-price

distortions, and thus whether nominal GDP targeting is preferable to inflation targeting.

This paper presents a model that allows optimal monetary policy to be studied analytically in

an incomplete-markets economy with heterogeneous households and aggregate risk, which can be

straightforwardly calibrated for quantitative analysis. The model contains two types of households,

relatively impatient households who will choose to become borrowers, and relatively patient house-

holds who will choose to become savers. Although households differ in their time preferences, they

are all risk averse, and are all exposed to the same labour income risk. Real GDP is uncertain

because of aggregate productivity shocks, but there are no idiosyncratic shocks. The economy is

3The model features both a trade-off between efficiency in goods markets and efficiency in financial markets, and a
trade-off between the volatility of inflation and the volatility of financial-market variables. Such trade-offs are implicit
in recent debates, though there is no widely accepted argument for why stabilizing prices in goods markets causes
financial markets to malfunction. White (2009b) and Christiano, Ilut, Motto and Rostagno (2010) argue that stable
inflation is no guarantee of financial stability, and may even create conditions for financial instability. Contrary
to these arguments, the conventional view that monetary policy should not react to asset prices is advocated in
Bernanke and Gertler (2001). Woodford (2011) makes the point that flexible inflation targeting can be adapted to
accommodate financial stability concerns, and that it would be unwise to discard inflation targeting’s role in providing
a clear nominal anchor.
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assumed to have no investment or storage technology, and is closed to international trade. There

are no government bonds and no fiat money, and no taxes or fiscal transfers. In this world, patient

households defer consumption by lending to impatient households, who can thus bring forwards

consumption by borrowing. It is assumed the only financial contract available is a non-contingent

nominal bond. The basic model contains no other frictions, initially assuming prices and wages are

fully flexible.

The concept of a ‘natural debt-to-GDP ratio’ provides a useful benchmark for monetary policy

analysis. This is defined as the ratio of (state-contingent) gross debt liabilities to GDP that would

prevail were financial markets complete. This object is independent of monetary policy. The actual

debt-to-GDP ratio in an economy with incomplete markets would coincide with the natural debt-

to-GDP ratio if forecasts of future GDP were always correct ex post, but will in general fluctuate

around it when the economy is hit by shocks. The natural debt-to-GDP ratio is thus analogous to

concepts such as the natural rate of unemployment and the natural rate of interest.

If all movements in real GDP growth rates are unpredictable then the natural debt-to-GDP ratio

turns out to be constant (or if utility functions are logarithmic, the ratio is constant irrespective

of the statistical properties of GDP growth). Even when the natural debt-to-GDP ratio is not

completely constant, plausible calibrations suggest it would have a low volatility relative to real

GDP itself.

Since the equilibrium of an economy with complete financial markets would be Pareto efficient in

the absence of other frictions, the natural debt-to-GDP ratio also has desirable welfare properties.

A goal of monetary policy in an incomplete-markets economy is therefore to close the ‘debt gap’,

defined as the difference between the actual and natural debt-to-GDP ratios. It is shown that doing

so effectively ‘completes the market’ in the sense that the equilibrium with incomplete markets would

then coincide with the hypothetical complete-markets equilibrium. Monetary policy can affect the

actual debt-to-GDP ratio and thus the debt gap because that ratio is equal to nominal debt liabilities

(which are non-contingent with incomplete markets) divided by nominal GDP, where the latter is

under the control of monetary policy.

When the natural debt-to-GDP ratio is constant, or when the maturity of debt contracts is

sufficiently long, closing the debt gap can be achieved by adopting a fixed target for the growth rate

(or level) of nominal GDP. With this logic, the central bank uses nominal GDP as an intermediate

target that achieves its ultimate goal of closing the debt gap. This turns out to be preferable to

targeting the debt-to-GDP ratio directly because a monetary policy that targets only a real financial

variable would leave the economy without a nominal anchor. Nominal GDP targeting uniquely pins

down the nominal value of real incomes and thus provides the economy with a well-defined nominal

anchor.

It is important to note that in an incomplete-markets economy hit by shocks, whatever action

a central bank takes or fails to take will have distributional consequences. Ex post, there will be

winners and losers from both the shocks themselves and the policy responses. Creditors lose out

when inflation is unexpectedly high, while debtors suffer when inflation is unexpectedly low. It might

then be thought surprising that inflation fluctuations would ever be desirable. However, the inflation
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fluctuations implied by a nominal GDP target are not arbitrary fluctuations — they are perfectly

correlated with the real GDP fluctuations that are the ultimate source of uncertainty in the economy,

and which themselves have distributional consequences when households are heterogeneous. For

households to share risk, it must be possible to make transfers ex post that act as insurance from

an ex-ante perspective. The result of the paper is that ex-ante efficient insurance requires inflation

fluctuations that are negatively correlated with real GDP (a countercyclical price level) to generate

the appropriate ex-post transfers between debtors and creditors.

It might be objected that there are infinitely many state-contingent consumption allocations

which would equally well satisfy the criterion of ex-ante efficiency. However, only one of these —

the hypothetical complete-markets equilibrium associated with the natural debt-to-GDP ratio —

could ever be implemented through monetary policy. Thus for a policymaker solely interested in

promoting efficiency, there is a unique optimal policy that does not require any explicit distributional

preferences to be introduced.

The model also makes predictions about how different monetary policies will affect the volatility

of financial-market variables such as the debt-to-GDP ratio. It is shown that policies implying an

inefficient distribution of risk, for example, inflation targeting, are associated with near-random

walk fluctuations in the debt-to-GDP ratio. On the other hand, with complete financial markets,

the persistence of fluctuations in the debt-to-GDP ratio would be bounded by the persistence of

shocks to real GDP growth. When a monetary policy is adopted that allows the economy to mimic

complete financial markets, the actual debt-to-GDP ratio inherits these less persistent dynamics.

In a model with both nominal price rigidities and incomplete financial markets, these findings

allow the tension between relative-price distortions and efficient risk sharing to be seen in more

familiar terms as a trade-off between price stability and financial stability. Determining which of

these objectives is the more important in practice can be done by studying a quantitative version

of the model. Nominal price rigidity is introduced using the standard Calvo model of staggered

price adjustment. With both incomplete financial markets and sticky prices, optimal monetary

policy is a convex combination of the optimal monetary policies that are appropriate for each of the

two frictions in isolation. After calibrating all the parameters of the model, the conclusion is that

replicating complete financial markets should receive approximately 88% of the weight.

This paper is related to a number of areas of the literature on monetary policy and financial

markets. First, there is the empirical work of Bach and Stephenson (1974), Cukierman, Lennan

and Papadia (1985), and more recently, Doepke and Schneider (2006), who document the effects of

inflation in redistributing wealth between debtors and creditors. The novelty here is in studying the

implications for optimal monetary policy in an environment where inflation fluctuations with such

distributional effects may actually be desirable precisely because of the incompleteness of financial

markets.

The basic idea of this paper (though not the modelling or quantitative analysis) has many

precedents in the literature. Selgin (1997) describes the ex-ante efficiency advantages of falling

prices in good times and rising prices in bad times when financial contracts are non-contingent,
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though there is no formal modelling of the argument.4 A survey reviewing the long history of

this idea in monetary economics is given in Selgin (1995). In recent work, Koenig (2013) advances

the risk-sharing argument for nominal GDP targeting in the context of a two-period model.5 An

earlier theoretical paper is Pescatori (2007), who studies optimal monetary policy in an economy

with rich and poor households, in the sense of there being an exogenously specified distribution

of assets among otherwise identical households. In that environment, both inflation and interest

rate fluctuations have redistributional effects on rich and poor households, and the central bank

optimally chooses the mix between them (there is a need to change interest rates because prices

are sticky, with deviations from the natural rate of interest leading to undesirable fluctuations in

output). A related paper is Lee (2010), who develops a model where heterogeneous households

choose less than complete consumption insurance because of the presence of convex transaction

costs in accessing financial markets. Inflation fluctuations expose households to idiosyncratic labour-

income risk because households work in specific sectors of the economy, and sectoral relative prices

are distorted by inflation when prices are sticky. This leads optimal monetary policy to put more

weight on stabilizing inflation. Differently from those two papers, the argument here is that inflation

fluctuations can actually play a positive role in completing otherwise incomplete financial markets.6

The idea that inflation fluctuations may have a positive role to play when financial markets are

incomplete is now long-established in the literature on government debt (and has also been recently

applied by Allen, Carletti and Gale (2011) in the context of the real value of the liquidity available

to the banking system). Bohn (1988) developed the theory that non-contingent nominal government

debt can be desirable because when combined with a suitable monetary policy, inflation can change

the real value of the debt in response to fiscal shocks that would otherwise require fluctuations in

distortionary tax rates.7

Quantitative analysis of optimal monetary policy of this kind was developed in Chari, Christiano

and Kehoe (1991) and expanded further in Chari and Kehoe (1999). One finding was that inflation

needs to be extremely volatile to complete financial markets. As a result, Schmitt-Grohé and

Uribe (2004) and Siu (2004) argued that once some nominal price rigidity is considered so that

4Persson and Svensson (1989) is an early example of a model — in the context of an international portfolio
allocation problem — where it is important how monetary policy affects the risk characteristics of nominal debt.

5Hoelle and Peiris (2013) study the efficiency properties of nominal GDP targeting in a large open economy
with flexible prices, and explore the question of implementability through the central bank’s balance sheet. Osorio-
Rodŕıguez (2013) examines whether there remains a role for monetary policy in completing financial markets when
nominal debt is denominated in terms of foreign currency.

6In other related work on incomplete markets and monetary policy, Akyol (2004) analyses optimal monetary policy
in an incomplete-markets economy where households hold fiat money for self insurance against idiosyncratic shocks.
Kryvtsov, Shukayev and Ueberfeldt (2011) study an overlapping generations model with fiat money where monetary
policy can improve upon the suboptimal level of saving by varying the expected inflation rate and thus the returns
to holding money.

7There is also a literature that emphasizes the impact of monetary policy on the financial positions of firms or
entrepreneurs in an economy with incomplete financial markets. De Fiore, Teles and Tristani (2011) study a flexible-
price economy where there is a costly state verification problem for entrepreneurs who issue short-term nominal bonds.
Andrés, Arce and Thomas (2010) consider entrepreneurs facing a binding collateral constraint who issue short-term
nominal bonds with an endogenously determined interest rate spread. Vlieghe (2010) also has entrepreneurs facing
a collateral constraint, and even though they issue real bonds, monetary policy still has real effects on the wealth
distribution because prices are sticky, so incomes are endogenous. In these papers, the wealth distribution matters
because of its effects on the ability of entrepreneurs to finance their operations.
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inflation fluctuations have a cost, the optimal policy becomes very close to strict inflation targeting.

This paper shares the focus of that literature on using inflation fluctuations to complete markets,

but comes to a different conclusion regarding the magnitude of the required inflation fluctuations

and whether the costs of those fluctuations outweigh the benefits. First, the benefits of completing

markets in this paper are linked to the degree of risk aversion and the degree of heterogeneity among

households, which are in general unrelated to the benefits of avoiding fluctuations in distortionary

tax rates, and which prove to be large in the calibrated model. Second, the earlier results assumed

government debt with a very short maturity. With longer maturity debt (household debt in this

paper), the costs of the inflation fluctuations needed to complete the market are much reduced.8

This paper is also related to the literature on household debt. Iacoviello (2005) examines the

consequences of household borrowing constraints in a DSGE model, while Guerrieri and Lorenzoni

(2011) and Eggertsson and Krugman (2012) study how a tightening of borrowing constraints for

indebted households can push the economy into a liquidity trap. Differently from those papers, the

focus here is on the implications of household debt for optimal monetary policy. Furthermore, the

finding here that the presence of household debt substantially changes optimal monetary policy does

not depend on there being borrowing constraints, or even the feedback effects from debt to aggregate

output stressed in those papers. Cúrdia and Woodford (2009) also study optimal monetary policy in

an economy with household borrowing and saving, but the focus there is on spreads between interest

rates for borrowers and savers, while their model assumes an insurance facility that rules out the

risk-sharing considerations studied here. Finally, the paper is related to the literature on nominal

GDP targeting (Meade, 1978, Bean, 1983, Hall and Mankiw, 1994, and more recently, Sumner, 2012)

but proposes a different argument in favour of that policy.

The plan of the paper is as follows. Section 2 sets out the basic model and derives the equi-

librium conditions. Optimal monetary policy is studied in section 3 alongside the consequences of

sub-optimal monetary policies. Section 4 introduces sticky prices and hence a trade-off between

mitigating the incompleteness of financial markets and avoiding relative-price distortions. Section 5

presents an extension where incomplete financial markets are embedded into a full New Keynesian

model in which monetary policy can also affect market incompleteness through ‘financial repression’,

that is, changes in ex-ante real interest rates rather than ex-post real returns through inflation. Sec-

tion 6 shows how the full model can be calibrated and presents a quantitative analysis of optimal

monetary policy. Finally, section 7 draws some conclusions.

2 A model of a pure credit economy

There is an economy containing a measure-one population of households. Time is discrete and

households are infinitely lived. There are equal numbers of two types of households, referred to as

‘borrowers’ and ‘savers’ and indexed by type τ ∈ {b, s}.
8This point is made by Lustig, Sleet and Yeltekin (2008) in the context of government debt.
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2.1 Preferences

A representative household of type τ has preferences given by the following utility function

Uτ,t =
∞∑
`=0

Et

[{
`−1∏
=0

δτ,t+

}
C1−α
τ,t+`

1− α

]
, [2.1]

where Cτ,t is per-household consumption of a composite good by type-τ households at time t. The

two types are distinguished by their subjective discount factors, with δτ,t being the discount factor

of type-τ households between time t and t + 1. Both types have a constant coefficient of relative

risk aversion given by α (0 < α <∞), and a constant elasticity of intertemporal substitution given

by α−1.9

Each household of type τ receives real income Yτ,t at time t, to be specified below. The discount

factor δτ,t of type-τ households is assumed to be the following:

δτ,t = δτ

(
Cτ,t
Yτ,t

)
, where δτ (c) = ∆τc

−(1−λ)α, [2.2]

and where the parameters ∆b, ∆s, and λ are such that 0 < ∆b < ∆s < ∞ and 0 < λ < 1. It is

assumed individual households of type τ take δτ,t as given, that is, they do not internalize the effect

of their own consumption on the discount factor.

There are two differences compared to a representative-household model with a standard time-

separable utility function. First, there is heterogeneity in discount factors because ‘borrowers’

are more impatient than ‘savers’ (∆b < ∆s), all else equal. This is the key assumption that will

give rise to borrowing and saving in equilibrium by the households that have been referred to as

‘borrowers’ and ‘savers’. Second, discount factors display the marginal increasing impatience (λ < 1)

property of Uzawa (1968), in that the discount factor is lower when consumption is higher (relative

to income), all else equal. This assumption is invoked for technical reasons because it ensures the

wealth distribution will be stationary around a well-defined non-stochastic steady state.10 That

households take discount factors as given is assumed for simplicity and is analogous to models of

‘external’ habits (see for example, Abel, 1990).11

2.2 Incomes

To begin with, real GDP Yt is modelled as an exogenous endowment. The case of a production

economy is developed later, but the main results do not depend on real GDP being endogenous, nor

on any feedback from financial markets to real GDP. The real GDP growth rate gt = (Yt−Yt−1)/Yt−1

9Risk aversion can be separated from intertemporal substitution with the utility function of Epstein and Zin (1989)
and Weil (1989). The consequences of this extension were explored in an earlier working paper (Sheedy, 2013).

10None of the qualitative results depends on λ being significantly below one (λ = 1 is the standard case of fixed
discount factors), and moreover, the quantitative importance of the results does not vanish when λ is arbitrarily close
to one. The assumption is analogous to those employed in small open-economy models to ensure a stationary net
foreign asset position (see Schmitt-Grohé and Uribe, 2003). An alternative is to work with an overlapping generations
model where the utility function is entirely standard, which automatically has a stationary wealth distribution because
households have finite lives. This avenue was explored in an earlier working paper (Sheedy, 2013).

11The assumption can be relaxed at the cost of more complicated algebra, but there is little impact on the results
when λ is close to one. The changes to the results are described in appendix A.17.
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is given by:

gt = ḡ + ςzt, where zt ∈ [z, z], Ezt = 0, and Ez2
t = 1, [2.3]

with zt being a stationary stochastic process with bounded support. The real GDP growth rate has

mean ḡ and standard deviation ς. The parameters α, ∆s, and ḡ are assumed to satisfy the restriction

∆s(1 + ḡ)1−α < 1, which ensures that the utility of all households remains finite.

It is assumed for simplicity that the only difference between ‘borrowers’ and ‘savers’ is in their

patience.12 Both types are thus assumed to receive the same income:

Yτ,t = Yt. [2.4]

2.3 Money

The economy is ‘cash-less’ in that money is not required for transactions, but money is used as a

unit of account in writing financial contracts and in pricing goods. One unit of the composite good

costs Pt units of money at time t, and πt = (Pt − Pt−1)/Pt−1 denotes the inflation rate of goods

prices between t−1 and t. In the model, money is synonymous with interest-bearing reserves issued

by the central bank. Reserves held between period t and t+ 1 pay a known nominal interest rate it.

2.4 Incomplete financial markets

Financial markets are incomplete. Households cannot sell state-contingent bonds, and in equi-

librium, no such securities will be available to buy. The only liability that can be issued is a

non-contingent nominal bond. Households can take positive or negative positions in this bond (save

or borrow), and there is no limit on borrowing other than being able to repay in all states of the

world given non-negativity constraints on consumption. With this restriction, no default will oc-

cur, and thus bonds are risk-free in nominal terms.13 Furthermore, given the finite support of the

income growth stochastic process [2.3] and the desire for borrowing as determined by the patience

parameters ∆τ , by ensuring that the standard deviation ς of real GDP growth is not too large, the

natural borrowing limit will not be binding in equilibrium.14

The nominal bond has the following structure. One newly issued bond at time t makes a stream

of coupon payments in subsequent time periods, paying 1 unit of money (a normalization) at time

t + 1, then γ units at t + 2, γ2 at t + 3, and so on (0 ≤ γ < ∞). The geometric structure of

the coupon payments means that a bond issued at time t − ` is after its time-t coupon payment

equivalent to a quantity γ` of new date-t bonds. If Qt denotes the price in terms of money at time

t of one new bond then the absence of arbitrage opportunities requires that bonds issued at date

12It is possible to derive similar results in the case where borrowing occurs because of differences in income over
the life cycle, with no differences in the degree of impatience. This version of the model was studied in an earlier
working paper (Sheedy, 2013).

13The model abstracts from the choice of default when repayment is feasible.
14It is common to assume that borrowers are subject to a tighter constraint than the natural borrowing limit, and

furthermore, in many models, this tighter borrowing constraint is always binding (Iacoviello, 2005). To focus carefully
on the implications of the lack of state-contingent forms of borrowing per se, this paper abstracts from additional
restrictions on the ability of households to smooth consumption over time.
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t− ` have price γ`Qt at time t. It therefore suffices to track the overall quantity of bonds in terms

of new-bond equivalents, rather than the quantities of each vintage separately.15

The flow budget identity at time t of households of type τ is:

Cτ,t +
QtBτ,t

Pt
+
Mτ,t

Pt
= Yτ,t +

(1 + γQt)Bτ,t−1

Pt
+ (1 + it−1)

Mτ,t−1

Pt
, [2.5]

where Bτ,t denotes the outstanding quantity of bonds (in terms of new-bond equivalents) held (or

issued, if negative) by type-τ households at the end of period t. The term 1 + γQt refers to the

coupon payment plus the resale value of bonds acquired or issued in the past. Holdings of money

(interest-bearing reserves) are denoted by Mτ,t, which are subject to the non-negativity constraint

Mτ,t ≥ 0 because reserves cannot be issued by households.

The Euler equation for maximizing the utility [2.1] of type-τ ∈ {b, s} households with respect

to bond holdings Bτ,t subject to the flow budget identity [2.5] is:

C−ατ,t = δτ,tEt

[
(1 + γQt+1)Pt

QtPt+1

C−ατ,t+1

]
. [2.6]

The Euler equation with respect to money holdings Mτ,t is:

C−ατ,t ≥ δτ,t(1 + it)Et

[
Pt
Pt+1

C−ατ,t+1

]
, with equality if Mτ,t > 0. [2.7]

If Bτ,t+` remains positive as ` → ∞ for some τ ∈ {b, s} then (since Mτ,t ≥ 0) the following

transversality condition must hold in all those states of the world:

lim
`→∞

{
`−1∏
=0

δτ,t+

}
C−ατ,t+`Qt+`Bτ,t+`

Pt+`
= 0. [2.8]

This condition rules out accumulating financial wealth that will not ultimately be spent. Finally, it

is assumed that bond prices are ‘bubble-free’ in the sense of satisfying the transversality condition:

lim
`→∞

γ`Et

[{
`−1∏
=0

δτ,t+

}
C−ατ,t+`Qt+`

Pt+`

]
= 0. [2.9]

2.5 Monetary policy

Specific monetary policies will be analysed subsequently, but first some restrictions are placed on

the class of policies under consideration. Only conventional monetary policies are studied, namely

those where the central bank aims to influence a nominal variable such as bond prices Qt or goods

prices Pt using as an instrument the short-term nominal interest rate it paid on reserves. The

central bank does not engage in intermediation of private-sector credit and does not hold privately

issued securities on its balance sheet (in equilibrium). Furthermore, it is assumed there is no fiscal

authority in the economy, so the central bank does not hold government bonds. The analysis thus

excludes the use of the central bank’s balance sheet as a separate policy instrument. Letting Mt

denote the supply of reserves and Bt central-bank net bond purchases, all monetary policies must

15Woodford (2001) uses this modelling device to study long-term government debt. See Garriga, Kydland and
S̆ustek (2013) for a richer model of mortgage contracts.

10



feature the following balance sheet in equilibrium:16

Mt = 0, and Bt = 0. [2.10]

Monetary policy is also assumed to be conducted so that households holding bonds are indifferent

between those bonds and interest-bearing reserves.17 Thus, for τ with Bτ,t > 0, the Euler equation

for reserves [2.7] is:

C−ατ,t = δτ,tEt

[(
1 + it

1 + πt+1

)
C−ατ,t+1

]
, [2.11]

where the definition of inflation πt has been used. Monetary policy is also assumed to satisfy the

restrictions that the interest rate it paid on reserves is a stationary stochastic process in equilibrium,

and γ < 1 + ī, where ī is the value of it in the absence of shocks.

2.6 Equilibrium

It is assumed that consumption is the only source of final demand (no investment, government

spending, or international trade). Goods-market clearing thus requires:

Ct = Yt, where Ct =
1

2
Cb,t +

1

2
Cs,t, [2.12]

with Ct denoting average per-household consumption across the measure 1/2 of each type of house-

hold. With the central-bank balance sheet given by [2.10], bond- and money-market clearing require:

1

2
Bb,t +

1

2
Bs,t = 0; and [2.13]

1

2
Mb,t +

1

2
Ms,t = 0, hence Mτ,t = 0, [2.14]

where the second part of the second line follows because of the non-negativity constraints Mτ,t ≥ 0.

Now define the following variables Dt (‘debt’), Lt (‘loans’), and rt (‘real return’):

Dt = −1

2

(1 + γQt)Bb,t−1

Pt
, Lt = −1

2

QtBb,t

Pt
, and 1 + rt =

(1 + γQt)Pt−1

Qt−1Pt
. [2.15]

Assuming, as will be confirmed in equilibrium, that Bb,t < 0, the variable Dt represents the real

value of gross debt liabilities per household (borrowers make up 1/2 of the population) outstanding

at the beginning of period t, and Lt represents the real value of ongoing loans (per household) at

the end of period t. The variable rt is defined as the ex-post real holding-period return on these

loans between t− 1 and t. The definitions in [2.15] imply the following accounting identity for debt

dynamics:

Dt = (1 + rt)Lt−1. [2.16]

The flow budget identities [2.5] together with the assumptions on incomes in [2.4], the definitions

16Off the equilibrium path, the central bank may issue reserves and buy or sell securities if, for example, the bond
price Qt differed from its target, but the model abstracts from such implementation issues.

17This condition places no actual restrictions on what policy can achieve because the central bank can always choose
to operate entirely in the market for long-term bonds if no households were willing to hold reserves. It is imposed
simply because it is conventional to think of central banks as operating by setting short-term nominal interest rates.
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of debt and loans in [2.15], the bond-market equilibrium condition [2.13] (hence Bs,t = −Bb,t), and

the money-market equilibrium condition [2.14] imply:

Cb,t = Yt − 2(Dt − Lt), and Cs,t = Yt + 2(Dt − Lt). [2.17]

The Euler equations [2.6] can be stated in terms of expectations of the real return rt using [2.15]:

C−ατ,t = δτ,tEt
[
(1 + rt+1)C−ατ,t+1

]
. [2.18]

With the definition of loans Lt in [2.15] and the bond-market clearing condition [2.13], the transver-

sality condition [2.8] can be stated as:

lim
`→∞

{
`−1∏
=0

δτ,t+

}
C−ατ,t+`Lt+` = 0, [2.19]

which must hold for both types τ and in all states of the world.

Rather than consider levels of consumption and debt directly, it is convenient to analyse these

variables relative to real GDP Yt. The debt-to-GDP ratio dt, the loans-to-GDP ratio lt, and the

consumption-to-income ratios cτ,t are defined as follows:

dt =
Dt

Yt
, lt =

Lt
Yt
, and cτ,t =

Cτ,t
Yt

. [2.20]

Similarly, rather than consider the bond price Qt directly, it is convenient to work with the yield-

to-maturity jt. For any finite Qt, the bond yield jt is the solution of the following equation:

Qt =
∞∑
`=1

γ`−1

(1 + jt)`
, implying jt =

1

Qt

− 1 + γ. [2.21]

With these definitions in hand, the full set of equilibrium conditions is collected below:

ρt = Etrt+1; [2.22a]

dt =

(
1 + rt
1 + gt

)
lt−1; [2.22b]

cb,t = 1− 2(dt − lt), and cs,t = 1 + 2(dt − lt); [2.22c]

1 = δτ,tEt

[
(1 + rt+1)(1 + gt+1)−α

(
cτ,t+1

cτ,t

)−α]
; [2.22d]

δτ,t = ∆τc
−(1−λ)α
τ,t ; [2.22e]

lim
`→∞

{
`−1∏
=0

δτ,t+(1 + gt+1+)
1−α

}
c−ατ,t+`lt+` = 0. [2.22f]

Equation [2.22a] is the definition of the real interest rate ρt (the ex-ante expected real return on

bonds between t and t+ 1). Equation [2.22b] is the accounting identity for the debt-to-GDP ratio,

which follows from [2.16], [2.20], and the definition of gt. Equations [2.22c], [2.22d], [2.22e], and

[2.22f] give the budget identities [2.17], the Euler equations [2.18], the discount factors [2.2], and the

transversality condition [2.19] in terms of the variables defined in [2.20]. Finally, there is

1

2
cb,t +

1

2
cs,t = 1, [2.23]
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which is the goods-market clearing condition [2.12] (redundant by Walras’ law, see [2.22c]).

Monetary policy is described by an as-yet-unspecified policy rule for the short-term nominal

interest rate it and equation [2.11] requiring indifference between holding bonds or reserves:

1 = δτ,tEt

[(
1 + it

1 + πt+1

)
(1 + gt+1)−α

(
cs,t+1

cs,t

)−α]
. [2.24]

The remaining equilibrium conditions relate to the nominal bonds traded in the economy:

1 + rt =

(
1 + jt
1 + πt

)(
1− γ+ jt−1

1− γ+ jt

)
; [2.25a]

lim
`→∞

γ`Et

[{∏̀
=1

δτ,t+−1
(1 + gt+)

−α

(1 + πt+)

(
cτ,t+
cτ,t+−1

)−α}
(1− γ+ jt+`)

−1

]
= 0. [2.25b]

Equation [2.25a] is derived from [2.15] using the price-yield relationship [2.21] and the definition of

inflation πt, and [2.25b] expresses the ‘no-bubbles’ transversality condition [2.9] in terms of the bond

yield.18 The asset-pricing equation that determines the bond yield jt is implied by the consumption

Euler equations [2.22d] together with [2.25a]:

(1− γ+ jt)
−1 = Et

[
δτ,t(1 + gt+1)−α

(
cτ,t+1

cτ,t

)−α(
1

1 + πt+1

)(
1 + γ(1− γ+ jt+1)−1

)]
.

The equilibrium jt is obtained by iterating forwards and using the transversality condition [2.25b]:

jt =

(
Et

[
∞∑
`=1

γ`−1

{∏̀
=1

δτ,t+−1
(1 + gt+)

−α

(1 + πt+)

(
cτ,t+
cτ,t+−1

)−α}])−1

+ γ− 1. [2.26]

Before proceeding to the analysis of the economy with aggregate uncertainty, first consider the

non-stochastic steady state (which corresponds to standard deviation ς = 0 of real GDP growth

[2.3] and the absence of any monetary policy shocks).

Proposition 1 Suppose the economy faces no exogenous shocks (gt = ḡ, it = ī).

(i) There is a unique non-stochastic steady state of the system of equations [2.22a]–[2.22f]:

c̄b = 1− θ, c̄s = 1 + θ, where θ =
1− (∆b/∆s)

(1−λ)α

1 + (∆b/∆s)(1−λ)α (0 < θ < 1); [2.27a]

δ̄b = δ̄s = δ, where δ =

((
∆

1
(1−λ)α
b + ∆

1
(1−λ)α
s

)/
2

)(1−λ)α

; ρ̄ = r̄ =
1 + ḡ

β
− 1, [2.27b]

d̄ =
θ

2(1− β)
, l̄ =

βθ

2(1− β)
, where β = δ(1 + ḡ)1−α (0 < β < 1). [2.27c]

18This is generally independent of the transversality condition [2.22f] for financial wealth. However, the bond yield
transversality condition [2.25b] can be derived from [2.22f] under the assumption that there is a minimum transaction
size for bonds. Observe that [2.25b] is equivalent to

2cατ,tPtYt lim
`→∞

Et

[({∏̀
=1

δτ,t+−1(1 + gt+)
1−α

}
c−ατ,t+`lt+`

)(
γ`

Bs,t+`

)]
= 0.

Thus, if |Bτ,t| > Bt for some Bt satisfying γt/Bt <∞ as t→∞ when Bτ,t 6= 0, then equation [2.22f] implies [2.25b].
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(ii) The steady state for real variables is independent of monetary policy. Given the steady-state

nominal interest rate ī, equation [2.24] implies that inflation is π̄ = (1 + ī)/(1 + ρ̄) − 1. The

steady-state bond yield consistent with [2.25a] and [2.26] is j̄ = ī.

Proof See appendix A.1. �

In the steady state, households’ consumption relative to income is determined as a function of

θ, which depends on the relative patience ∆b/∆s of the two household types and the utility-function

parameters α and λ. In equilibrium, the discount factors of the two types are aligned at δ, which

is effectively an average of the patience parameters ∆b and ∆s. The solutions for debt, loans, and

interest rates depend on θ and a term β that represents the growth-adjusted market discount factor.

The model can be parameterized directly with β and θ rather than the two patience parameters

∆b and ∆s (leaving α, λ, and ḡ to be chosen separately). The term β plays the usual role of the

discount factor in a representative-household economy given its relationship with the real interest

rate (with an adjustment for steady-state real GDP growth). The term θ quantifies the extent of

heterogeneity between borrower and saver households, which is related to the amount of borrowing

and saving that occurs in equilibrium, and hence to the debt-to-GDP ratio in [2.27c]. Given equation

[2.27a], θ can be interpreted as the ‘debt service ratio’ because it is the net fraction of income

transferred by borrowers to savers.19 As will be seen, θ is a sufficient statistic for the extent of

heterogeneity in the economy, with θ → 0 being the limiting case of a representative-household

economy (∆b → ∆s).

Monetary policy has no effect on real variables in the steady state, but does determine nomi-

nal bond yields and inflation through the usual Fisher relationship and the indifference condition

between bonds and reserves. Given Proposition 1 and equations [2.15] and [2.20], the steady-state

fraction of total debt that is newly issued is 1 − µ with µ = γ/((1 + π̄)(1 + ḡ)), so the coupon

parameter γ is positively related to debt maturity and negatively related to the rate of refinancing.

3 Monetary policy in a pure credit economy

3.1 Complete financial markets and the natural debt-to-GDP ratio

As a benchmark for subsequent monetary policy analysis, first consider the hypothetical case where

households have access to a complete set of state-contingent bonds (traded sequentially, period by

period). All other assumptions of the model are unchanged. These bonds are denominated in real

terms without loss of generality. Let F ∗τ,t+1 denote the net portfolio of contingent bonds held between

period t and t+1 by households of type τ (an asterisk is used to signify complete financial markets).

The prices of these securities at time t relative to the conditional probabilities of the states and in

real terms are denoted by Kt+1, so Et[Kt+1F
∗
τ,t+1] is the date-t cost of the date t+ 1 portfolio F ∗τ,t+1.

The flow budget identities [2.5] are thus replaced by:

Cτ,t + Et[Kt+1F
∗
τ,t+1] +

Mτ,t

Pt
= Yt + F ∗τ,t + (1 + it−1)

Mτ,t−1

Pt
. [3.1]

19Strictly speaking, when real GDP growth is different from zero, θ is the debt service ratio net of new borrowing.
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Maximizing utility [2.1] with respect to F ∗τ,t+1 subject to [3.1] implies the Euler equations and

transversality conditions:

δb,t

(
C∗b,t+1

C∗b,t

)−α
= Kt+1 = δs,t

(
C∗s,t+1

C∗s,t

)−α
, and lim

`→∞

{
`−1∏
=0

δτ,t+

}
Kt+`+1F

∗
τ,t+`+1

C∗ατ,t+`
= 0, [3.2]

where these equations hold in all states of the world. The Euler equation [2.7] for reserves is the

same, and making the same assumptions on monetary policy, the equilibrium conditions [2.11] and

[2.14] are unchanged. The market-clearing condition for nominal bonds [2.13] is replaced by a set

of clearing conditions for all contingent bond markets:

1

2
F ∗b,t +

1

2
F ∗s,t = 0. [3.3]

The goods-market clearing condition [2.12] holds as in the incomplete-markets model.

To relate the economy with complete markets to its incomplete-markets equivalent, consider the

following definitions of variables D∗t , L
∗
t , and r∗t that will be seen to be the equivalents of debt Dt,

loans Lt, and the ex-post real return rt in the incomplete-markets economy:

D∗t = −1

2
F ∗b,t, L∗t = −1

2
Et[Kt+1F

∗
b,t+1], and 1 + r∗t =

F ∗b,t
Et−1[KtF ∗b,t]

. [3.4]

Debt in an economy with complete financial markets refers to the total gross value of the contingent

bonds repayable in the realized state of the world. Loans refers to the value of the whole portfolio

of contingent bonds issued by borrowers, and the (gross) ex-post real return is the state-contingent

value of the bonds repayable relative to the value of all the bonds previously issued.

With definitions [3.4], it is immediately apparent that the accounting identity [2.16] holds for

D∗t , L
∗
t , and r∗t . Similarly, using [2.14] and [3.3], the definitions from [3.4] substituted into [3.1]

imply that [2.17] holds in terms of C∗b,t, C
∗
s,t, D

∗
t , and L∗t . The definitions in [3.4] also directly imply

1 = Et[(1 + r∗t+1)Kt+1] and hence using [3.2], the Euler equations [2.18] hold with C∗τ,t, and r∗t .

Similarly, the transversality condition [2.19] also holds with C∗τ,t and L∗t . Therefore, by following

exactly the same steps as for the incomplete-markets economy with the definitions from [2.20], the

set of equilibrium conditions [2.22a]–[2.22f] and equations [2.23] and [2.24] must hold, together with

an equation for it describing monetary policy.

The difference between the equilibrium conditions with complete and incomplete financial mar-

kets is that r∗t need not satisfy equation [2.25a].20 This equation is replaced by a new equilibrium

condition that follows from [3.2], which has no equivalent in the incomplete-markets economy:

δb,t−1

(
c∗b,t
c∗b,t−1

)−α
= δs,t−1

(
c∗s,t
c∗s,t−1

)−α
. [3.5]

Proposition 2 The complete-markets equilibrium is characterized by [2.22a]–[2.22f] and [3.5].

(i) The equilibrium (which is independent of monetary policy) can be written in terms of the

20Equations [2.25a] and [2.25b] still hold in the sense that nominal bonds can be traded in a complete-markets
economy, but there is no necessity for the real return r∗t on the actual portfolio of contingent bonds to be tied to the
ex-post real return rt on nominal bonds, unlike in the incomplete-markets economy where other securities are not
available.
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stochastic process for real GDP growth gt and δ and θ defined in [2.27a] and [2.27b]:

c∗b,t = 1− θ, c∗s,t = 1 + θ, and δ∗b,t = δ∗s,t = δ; [3.6a]

d∗t =
θ

2
Et

[
∞∑
`=0

δ`
∏̀
=1

(1 + gt+)
1−α

]
, and l∗t = d∗t −

θ

2
; [3.6b]

r∗t =
(1 + gt)d

∗
t

d∗t−1 − θ
2

− 1, and ρ∗t =
1

δEt

[
(1 + gt+1)−α

{
(1+gt+1)d∗t+1

Et[(1+gt+1)d∗t+1]

}] − 1. [3.6c]

(ii) In the special cases where α = 1 or {gt} is i.i.d., equations [3.6b] and [3.6c] simplify to:

d∗t =
θ

2(1− β∗)
, l∗t =

β∗θ

2(1− β∗)
, r∗t =

1 + gt
β∗

− 1, and ρ∗t =
1 + Etgt+1

β∗
− 1, [3.7]

where β∗ = δE[(1 + gt)
1−α].

(iii) With a representative household (∆b = ∆s, and hence θ = 0) in the incomplete-markets

economy, the equilibrium levels of debt, loans, and consumption always coincide with those of

the complete-markets economy.

Proof See appendix A.2. �

The proposition gives an explicit solution for the equilibrium with complete financial markets.

The equilibrium features full risk sharing between borrowers and savers, meaning that all households’

consumption levels perfectly co-move in response to shocks. Complete financial markets therefore

allocate consumption efficiently across states of the world, as well as over time. The equilibrium

consumption-to-income ratios and discount factors are identical to their non-stochastic steady-state

values given in Proposition 1. The equilibrium features a generally time-varying debt-to-GDP ratio

d∗t with associated values of l∗t , r
∗
t , and ρ∗t , all of which are determined by utility-function parameters

and the stochastic process for real GDP growth gt. If the utility function is logarithmic or real GDP

follows a random walk then d∗t and l∗t are constant over time.

The complete-markets debt-to-GDP ratio d∗t is referred to as the ‘natural debt-to-GDP ratio’.

This terminology is motivated by analogy with such concepts as the natural rate of interest, the

natural rate of unemployment, and the natural level of output. It shares many of the features of

those concepts as will be seen in the analysis below. It represents an economic outcome that would

be achieved in the absence of a particular friction (here, the friction is the inability to issue state-

contingent bonds, in contrast to the frictions of imperfect information or nominal rigidities that

affect the supply of output or labour in many models). It is independent of monetary policy. It is a

desirable outcome in the sense that deviations of the actual debt-to-GDP ratio from its natural level

are inefficient.21 Finally, it is what the economy would eventually reach in the absence of shocks.

21In New Keynesian models of nominal rigidities, the ‘natural’ value of a variable is generally not optimal because
of the presence of imperfect competition. Here, although financial markets are incomplete, they are modelled as
perfectly competitive, so there is no equivalent of that distortion.
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3.2 Replicating complete financial markets

The only difference between the equilibrium conditions with incomplete and complete markets is that

the incomplete-markets economy includes [2.25a] instead of [3.5] in the complete-markets economy.

Since there is one degree of freedom from monetary policy, the complete-markets equilibrium can

be replicated in the incomplete-markets economy by choosing a monetary policy rule that makes

equation [2.25a] equivalent to [3.5], in other words, a policy that ensures the actual and natural debt-

to-GDP ratios coincide.22 A characterization of such policies is given below in terms of nominal

GDP Nt = PtYt, with the nominal GDP growth rate denoted by nt = (Nt −Nt−1)/Nt−1.

Proposition 3 There exist paths for nominal GDP Nt that imply the equilibrium of the hypothet-

ical complete-markets economy is also an equilibrium of the incomplete-markets economy:

(i) For logarithmic utility (α = 1) or real GDP following a random walk (gt is i.i.d.), any constant

growth rate of nominal GDP (nt = n).

(ii) For γ > 0, a constant growth rate of nominal GDP (nt = n) given by n = γ− 1.

(iii) A state-contingent path for nominal GDP given by Nt = (1 + n)
(
d∗t−1−θ/2
βd∗t

)
Nt−1 for any n.

Proof See appendix A.3. �

There are many possible ways of describing the monetary policy that replicates complete financial

markets. However, it is natural to think of it as a nominal GDP target. First, if it is desirable to

maintain a constant debt-to-GDP ratio, any constant level or growth path of nominal GDP is able

to implement the complete-markets equilibrium. Intuitively, if the numerator of the debt-to-GDP

ratio is fixed because nominal debt liabilities are not state contingent, the ratio can be stabilized by

targeting the denominator. If the underlying target for the debt-to-GDP ratio is not constant then

there exist time-varying paths for nominal GDP that replicate complete markets. These policies

can operate with any average rate of nominal GDP growth. Even in the case where the natural

debt-to-GDP ratio is time varying, if debt contracts have a sufficiently long term then it is possible

to replicate complete financial markets with a particular constant growth rate of nominal GDP set

low enough to avoid the need to refinance existing debt.23 For example, with perpetuities (γ = 1),

a zero nominal GDP growth rate would achieve this.

3.3 Equilibrium with incomplete financial markets

In cases where monetary policy follows one of the prescriptions from Proposition 3, the equilibrium

of the incomplete-markets economy is the same as that of the equivalent complete-markets economy

characterized in Proposition 2. This section characterizes the equilibrium of the economy when

22That monetary policy is able exactly to replicate complete financial markets is owing to the model having a
‘representative borrower’ and a ‘representative saver’. With heterogeneity within these groups as well as between
them, exact replication will generally not be possible.

23For low values of γ, the required declining path of nominal GDP may not be feasible if the nominal interest rate
must be non-negative.
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monetary policy fails to replicate complete markets, which can be used to compare the policies con-

sidered in Proposition 3 to other monetary policies such as inflation targeting. An exact analytical

solution is not available in general, so this section resorts to finding the log-linear approximation to

the equilibrium (the first-order perturbation around the non-stochastic steady state), which can be

found analytically.

It is helpful to present the solution in terms of two variables vt and et defined below:

vt =
1

Yt

∞∑
`=0

Et

[
Yt+`∏`−1

=0(1 + ρt+`)

]
, and et =

1

Yt

∞∑
`=0

(
γ

1 + n̄

)`
Et

[
Yt+`∏`−1

=0(1 + ρt+`)

]
, [3.8]

where n̄ is the steady-state growth rate of nominal GDP given by 1 + n̄ = (1 + π̄)(1 + ḡ). The

variable vt is the discounted value of future real GDP relative to current real GDP, effectively

a ‘price-earnings’ ratio for the whole economy. The variable et is similar to vt, but additionally

discounts future real GDP to the extent that existing debt is refinanced (µ = γ/(1 + n̄) is the

steady-state fraction of debt that is not newly issued).

The log linearization of the equilibrium is presented below. The notational convention is that

variables in a sans serif font denote log deviations of the equivalent variables in roman letters from

their steady-state values as given in Proposition 1 (log deviations of interest rates, inflation rates, and

growth rates are log deviations of the corresponding gross rates; for variables that have no steady

state, the sans serif letter simply denotes the logarithm of that variable). It is also convenient

to define ‘gaps’ relative to the complete-markets equilibrium, which are denoted by d̃t = dt/d
∗
t ,

r̃t = (1 + rt)/(1 + r∗t ), and so on.

Proposition 4 (i) A solution of the system of equations [2.22a]–[2.22f] and [3.8] must satisfy:

ρt = αEtgt+1, and vt = (1− α)
∞∑
`=1

β`Etgt+`; [3.9a]

dt = λdt−1 + (Et−1vt − λvt−1) + υt, for some υt with Et−1υt = 0; [3.9b]

lt = λdt +

(
1− βλ
β

)
vt, and rt = gt + (α− 1)Et−1gt + (dt − Et−1dt). [3.9c]

(ii) Equation [2.24] implies that the policy rate it must satisfy:

it = ρt + Etπt+1. [3.10]

(iii) If equation [3.5] holds (complete financial markets) then the equilibrium is [3.9a] and:

d∗t = vt, l∗t = β−1vt, and r∗t = gt + (vt − β−1vt−1), [3.11]

which is equivalent to equations [3.9b]–[3.9c] with υt = υ∗t = vt − Et−1vt. Any solution of

[2.22a]–[2.22f] can be expressed in the form of gaps relative to the solution [3.11] as follows:

Etd̃t+1 = λd̃t, l̃t = λd̃t, and r̃t = d̃t − Et−1d̃t; with [3.12a]

c̃b,t = cb,t = −
(

θ

1− θ

)(
1− βλ
1− β

)
d̃t, and c̃s,t = cs,t =

(
θ

1 + θ

)(
1− βλ
1− β

)
d̃t.

[3.12b]
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(iv) If equations [2.25a] and [2.25b] hold (incomplete financial markets) then the bond yield jt

must satisfy the transversality condition lim`→∞(βµ)`Etjt+` = 0, with µ = γ/(1 + n̄) and

0 ≤ µ < β−1, and the ex-post real return rt is given by the following:

rt =
1

1− βµ
(jt−1 − βµjt)− πt, where jt = (1− βµ)

∞∑
`=0

(βµ)`Et[ρt+` + πt+1+`]. [3.13]

The implied innovation to the debt-to-GDP gap d̃t can be expressed in terms of the surprise

component of an average Nt of current and expected future nominal GDP together with the

variables vt and et from [3.8]:

d̃t − Et−1d̃t = ((et − vt)− Et−1[et − vt])− (Nt − Et−1Nt); where [3.14a]

Nt = (1− βµ)
∞∑
`=0

(βµ)`EtNt+`, and et = (1− α)
∞∑
`=1

(βµ)`Etgt+`. [3.14b]

Proof See appendix A.4. �

The first two parts of the proposition study the implications of the equilibrium conditions [2.22a]–

[2.22f] and [2.24] common to the incomplete- and complete-markets economies. These equations

imply the ex-ante real interest rate is determined entirely by expectations of future real GDP growth,

and is thus the same (to a first-order approximation) irrespective of the completeness of financial

markets.24 The policy rate it and inflation πt can be determined by [3.10] given a description of

monetary policy and the equilibrium real interest rate ρt from [3.9a].

The common block of equations leaves one degree of freedom in determining the debt-to-GDP

ratio dt, the loans-to-GDP ratio lt, and the ex-post real return rt. These variables depend on the

‘price-earnings’ ratio vt (which is independent of the completeness of financial markets and depends

only on expectations of future real GDP growth) and a serially uncorrelated sequence υt that must

be determined by some equation outside of the block [2.22a]–[2.22f]. Once υt is known, the debt-to-

GDP ratio dt is determined, and with that, all other real variables such as lt and rt.

Since both the incomplete- and complete-markets economies satisfy [2.22a]–[2.22f], the difference

between them must reduce to the sequence υt = dt−Et−1dt, which is the unpredictable component

of the debt-to-GDP ratio dt. On the other hand, the predictable component Et−1dt of the debt-

to-GDP ratio is the same irrespective of the completeness of financial markets. Given the single

degree of freedom allowed by the block of equilibrium conditions [2.22a]–[2.22f], all of the ‘gaps’

between the incomplete- and complete-markets economies are proportional to a single gap: that for

the debt-to-GDP ratio. Furthermore, the expected future debt-to-GDP gap is equal to a multiple of

the current gap, where the parameter λ controls the persistence of this gap over time. This means

that with no shocks at any time, the economy would be at the natural debt-to-GDP ratio. Even

when shocks occur, since 0 < λ < 1, the economy is expected to converge in the long run to the

natural debt-to-GDP ratio in the absence of further shocks.

24This is because the model’s simplifying assumptions imply the marginal propensities to consume from financial
wealth are (locally) identical for borrowers and savers. Note that the equation for ρt in [3.9a] is the same as the
log-linearized Euler equation Yt = EtYt+1 − α−1ρt in a representative-household economy.
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With complete financial markets, the system [2.22a]–[2.22f] is closed by the addition of the risk-

sharing condition [3.5]. This determines a particular value of the innovation to the debt-to-GDP

ratio, denoted by υ∗t = d∗t −Et−1d
∗
t . It turns out that the debt-to-GDP ratio is then proportional to

the economy’s ‘price-earnings’ ratio vt. On the other hand, with incomplete markets, the system of

equations is closed with [2.25a] and [2.25b]. The implied ex-post real return rt depends on inflation

πt and the bond yield jt, with equations for both rj and jt given in [3.13], where µ = γ/(1 + n̄) is the

coupon parameter γ scaled by steady-state gross nominal GDP growth 1+ n̄ (the rate of refinancing

is 1 − µ). Note that [3.13] reduces to the standard ex-post Fisher equation in the special case of

short-term debt, µ = 0.

The nominal bond yield jt satisfies the expectations theory equation jt = (1−βµ)
∑∞

`=0(βµ)`Etit+`

in the sense of being equal to a weighted average of current and expected future policy rates, where

the discount factor β and the maturity parameter µ determine the weights. Since jt and πt depend

on monetary policy, the ex-post real return rt is endogenous to policy. The implications of different

monetary policies for the evolution of the debt-to-GDP gap d̃t depend on the properties of Nt, a

weighted average of current and expected future levels of nominal GDP Nt. The other determinants

of the debt-to-GDP gap d̃t are the ‘price-earnings’ ratio variables vt and et, which are independent

of monetary policy.25

3.4 Consequences of optimal monetary policy for inflation

Optimal monetary policies that replicate complete financial markets have been characterized as

nominal GDP targets in Proposition 3. By definition, stabilizing nominal GDP when there are

fluctuations in real GDP entails fluctuations in inflation. That inflation fluctuates is not in itself

the desirable feature of these policies, but rather that inflation displays a negative correlation with

real GDP growth. In other words, there is an optimal degree of countercyclicality of the price level.

The following proposition shows that there is a time-invariant target for the relationship be-

tween the price level and real GDP that replicates complete financial markets (up to a first-order

approximation). That is, even if optimal monetary policy cannot be described as a completely time-

invariant target for nominal GDP (see part (iii) of Proposition 3), there is a time-invariant target

for weighted nominal GDP Pt +ωYt which is optimal.

Proposition 5 If real GDP growth gt follows a stationary and invertible stochastic process then the

complete-markets consumption allocation can be implemented (up to a first-order approximation)

by a target for a fixed level or a constant growth rate of weighted nominal GDP Pt +ω∗Yt:

ω∗ = 1 + (α− 1)

(
1− Θ(β)

Θ(βµ)

)
, where gt = Θ(L)(Yt − Et−1Yt), [3.15]

and Θ(·) is a function of the lag operator L.

25If there are no fluctuations in the difference between the ‘price-earnings’ ratios vt and et then a policy of completely
stabilizing nominal GDP around a deterministic path ensures the debt gap is always zero. The term et − vt is zero
whenever α = 1, Etgt+1 = 0, or γ = 1 + n̄ (µ = 1), which correspond to the cases analysed in parts (i) and (ii)
of Proposition 3. When the ‘price-earnings’ term is not always zero, the nominal GDP target must be adjusted in
response to shocks, as in part (iii) of Proposition 3.
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Proof See appendix A.5. �

The weighted nominal GDP target implies Pt = −ω∗Yt, so ω∗ can be interpreted as how much

the price level (or inflation) should respond to fluctuations in real GDP (or real GDP growth). The

cases from Proposition 3 where a time-invariant target for (unweighted) nominal GDP is optimal

correspond here to cases where ω∗ = 1.

As an example, consider the stochastic process ∆Yt = φ∆Yt−1 + εt− (φ+ (1−φ)ϑ)εt−1, where

the parameter ϑ can be interpreted as the percentage difference between the short-run and long-run

effects of a shock to real GDP (0 ≤ ϑ ≤ 1), and the parameter φ determines the speed of convergence

to the long-run level of real GDP (0 ≤ φ < 1). Using [3.15], the optimal weight is

ω∗ = 1 +
βϑ(1− µ)(1− φ)(α− 1)

(1− βφ)(1− βµ(φ+ (1− φ)ϑ))
.

Under the assumptions that α > 1 and µ < 1, the optimal weight is increasing in ϑ, so to the extent

that real GDP partially recovers following an initial shock, ω∗ exceeds one.

Given Proposition 5, especially in the case where ω∗ 6= 1, it might be tempting to interpret

the weighted nominal GDP target as simply a relabelling of so-called ‘flexible inflation targeting’.

But aside from the rationale being very different from that invoked to justify flexible inflation

targeting, there is a fundamental difference between the two policies. Flexible inflation targeting

can be formalized as a target criterion in both inflation and the output gap, whereas here, the target

criterion includes the level of output, not the output gap. Monetary policy is effective in completing

financial markets precisely because the level of output that appears in the target is not adjusted for

any unexpected changes in potential output, even though these have consequences for inflation.

3.5 Consequences of sub-optimal monetary policy for financial markets

Following a monetary policy that replicates complete financial markets has consequences for fluc-

tuations in inflation. Similarly, following a monetary policy that stabilizes inflation has observable

implications for fluctuations in financial markets in addition to failing to replicate the risk sharing

of complete financial markets. This is because the behaviour of variables such as the debt-to-GDP

ratio is very different in a complete-markets economy than in an economy with incomplete markets

and a sub-optimal monetary policy.

In the hypothetical complete-markets economy, the equilibrium debt-to-GDP ratio has some

striking properties. Intuitively, the stock of outstanding debt relative to GDP ought to behave

like a state variable because debt liabilities are predetermined. However, with access to complete

financial markets, households’ optimizing behaviour leads them to choose a portfolio of contingent

securities such that the implied debt-to-GDP ratio is actually a purely forward-looking variable.

In particular, the debt-to-GDP ratio moves in line with the ‘price-earnings’ ratio for a claim to a

sequence of payments proportional to current and future GDP (see Proposition 4).26 The intuition

26This result also reveals the type of security required in this simple economy to span complete financial markets in
the absence of a suitable monetary policy to replicate those markets. For households to achieve this outcome directly,
borrowers must issue GDP-linked perpetual bonds. This type of security differs from conventional debt contracts not
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for this surprising result is that given the budget identities of households, full risk sharing requires

the financial wealth of savers and the financial liabilities of borrowers to move in line with the value

of the stream of current and future labour income. The debt-to-GDP ratio must therefore behave

like an asset price rather than a state variable: it must reflect a forecast of the economy’s future

prospects rather than a record of past choices and shocks. It follows that in the complete-markets

economy, past realizations of shocks would have no correlation with the current debt-to-GDP ratio

except to the extent that these have predictive power for the economy’s future fundamentals.

When monetary policy is used to replicate complete financial markets in an incomplete-markets

economy, fluctuations of inflation are used to affect the real value of nominal debt so as to mimic

the behaviour of the complete-markets debt-to-GDP ratio. But if monetary policy does not repli-

cate complete financial markets then the debt-to-GDP behaves in line with what simple intuition

suggests: it is intrinsically serially correlated, so past shocks have a persistent effect on the subse-

quent evolution of the level of debt. With incomplete financial markets, optimizing behaviour by

households leads to consumption smoothing over time, but not generally across different states of

the world. Thus, following a shock, households’ financial wealth may diverge from the present dis-

counted value of labour income. Moreover, when this divergence occurs, because households spread

out the adjustment of consumption over time, the consequences of the shock for financial wealth

and consumption are long lasting. While the model does not feature full consumption smoothing

because of the endogenous discount factors in [2.2], when λ is close to one, the debt-to-GDP ratio

displays near random-walk persistence.27 These claims are confirmed in the proposition below.

Proposition 6 (i) If real GDP growth gt follows an MA(q) process then the natural debt-to-

GDP ratio dt follows an MA(q − 1) process. If gt follows an ARMA(p, q) process then the

debt-to-GDP ratio is an ARMA(p,max{p − 1, q − 1}) process with identical autoregressive

roots to those of gt.

(ii) With incomplete financial markets and a monetary policy that does not replicate complete

markets, the debt-to-GDP ratio possesses an autoregressive root λ irrespective of the stochastic

process for real GDP. This root is such that λ = 1 − ((1 + ρ̄)/(1 + ḡ))(MPC − (ρ̄ − ḡ)/(1 +

ρ̄)), where MPC is the marginal propensity to consume (of both borrowers and savers) from

financial wealth.

only in requiring contingent repayments but also in having a sufficiently long maturity to remove all refinancing risk.
27The stark difference compared to complete financial markets is analogous to some well-known results from the

literature on optimal fiscal policy under different assumptions about the completeness of the financial markets a
government has access to. That literature considers an environment where the government aims to find the least
distortionary means of financing a stochastic sequence of government spending, given that available fiscal instruments
entail distortions which are convex in tax rates. With incomplete financial markets (in the sense that the government
can issue only non-contingent bonds), Barro (1979) finds the government should aim to smooth tax rates, which
implies the stock of government debt follows a random walk. On the other hand, Lucas and Stokey (1983) assume
the government can issue a full set of contingent bonds. In that case, the government now smooths taxes across
states-of-the-world as well as time, and this means the value of outstanding government liabilities is now a purely
forward-looking variable depending on expectations of future fiscal fundamentals. These findings for the behaviour
of government debt mimic the findings for household debt here, with consumption smoothing (whether across time
or also across states of the world) playing the role of tax smoothing in the analysis of optimal fiscal policy.
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(iii) The difference between the average real interest rates under complete and incomplete financial

markets is given by:

Eρt − Eρ∗t
1 + ρ̄

= αECt−1[gt, d̃t]−
αθ2(1− βλ)2

2(1− θ2)(1− β)2
(α+ (1 + λ)−1)EVt−1[d̃t] + O3, [3.16]

where Vt−1[·] and Ct−1[·, ·] denote variances and covariances conditional on time t − 1 infor-

mation, and O3 denotes terms third-order or higher in the standard deviation ς of real GDP

growth.

Proof See appendix A.6. �

The third part of the proposition shows that the completeness of financial markets also has

implications for the average real interest rate. In equation [3.16] there are two terms that give the

difference between the average real interest rate with complete financial markets (or a monetary pol-

icy that replicates those markets in an incomplete-markets economy) and with incomplete financial

markets (and sub-optimal monetary policy). As will be confirmed (see Proposition 8 below), the

first term is the negative of a risk premium that must be paid to savers for agreeing to the risk shar-

ing found with complete markets (and is thus likely to be negative). The second term is due to the

general-equilibrium effects of differences in precautionary saving between the two cases, which is un-

ambiguously negative.28 Sub-optimal monetary policy in an incomplete-markets economy therefore

results in average real interest rates being inefficiently low.

3.6 Consequences of inflation indexation of bonds

Given that savers holding nominal bonds are exposed to the risk of inflation fluctuations, it might be

thought desirable that bonds be indexed to inflation. Consider an otherwise identical economy with

incomplete markets but where all bonds have coupons indexed to the price level Pt. Newly issued

bonds at time t make a sequence of coupon payments from t + 1 onwards of Pt+1/Pt, γ
†Pt+2/Pt,

γ†
2
Pt+3/Pt, . . . , where γ† parameterizes the geometric sequence of real coupons (the superscript †

signifies inflation indexation). Let Q†t denote the nominal price of newly issued indexed bonds at

time t, with bonds issued at time t − ` being equivalent to γ†
`
Pt/Pt−` units of new bonds at time

t. Let B†τ,t denote the net bond position of type-τ households (expressed in terms of new-bond

equivalents). If non-indexed bonds are not available, the budget identities in [2.5] are replaced by:

Cτ,t +
Q†tB

†
τ,t

Pt
+
Mτ,t

Pt
= Yτ,t +

(1 + γ†Q†t)B
†
τ,t−1

Pt−1

+ (1 + it−1)
Mτ,t−1

Pt
, [3.17]

28Lower real interest rates in incomplete-markets economies is a widely obtained result (see, for example, Aiyagari,
1994), which follows from the incentive for precautionary saving to provide some self-insurance against shocks. This
result is typically obtained in cases where risk is idiosyncratic to households and thus can be completely diversified
away in the economy with complete markets, removing all incentives for precautionary saving. Here, the argument is
somewhat different because the source of risk is aggregate shocks that cannot be diversified away even with complete
markets. When risk is shared, incentives for precautionary saving decrease for some (borrowers), but increase for
others (savers). It turns out that the effect on borrowers is the dominant one here, so the net effect goes in the same
direction as in models with only idiosyncratic shocks.
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and the bond-market clearing condition [2.13] by

1

2
B†b,t +

1

2
B†s,t = 0. [3.18]

Now consider definitions of debt D†t , loans L†t , and the real return r†t analogous to those in [2.15]:

D†t = −1

2

(1 + γ†Q†t)B
†
b,t−1

Pt−1

, L†t = −1

2

Q†tB
†
b,t

Pt
, and 1 + r†t =

1 + γ†Q†t

Q†t−1

. [3.19]

The ex-post real return r†t can be written in terms of bond yields rather than bond prices by defining

the notional real yield-to-maturity yt on the indexed bond:

Q†t =
∞∑
`=1

γ†
`−1

(1 + yt)`
=

1

1− γ† + yt
, and hence 1 + r†t = (1 + yt)

(
1− γ† + yt−1

1− γ† + yt

)
. [3.20]

Substituting the expression for r†t into the Euler equations [2.22d] and solving forwards (imposing

a transversality condition analogous to [2.25b]) leads to an expression for yt:

yt =

(
Et

[
∞∑
`=1

γ†
`−1

{∏̀
=1

δτ,t+−1(1 + gt+)
−α
(

cτ,t+
cτ,t+−1

)−α}])−1

+ γ† − 1. [3.21]

Maximizing utility [2.1] subject to [3.17], using the definitions in [3.19], and imposing the market-

clearing condition [3.18] and all other equilibrium conditions leads to a set of equations [2.22a]–

[2.22f], and [2.24] as before, with [3.20] and the transversality condition used to derive [3.21] replacing

equations [2.25a] and [2.25b], and the real yield yt replacing the nominal yield jt as a variable.

Proposition 7 The equilibrium of the economy with indexed bonds has the following properties:

(i) The equilibrium values of all real variables are independent of monetary policy.

(ii) The equilibrium is identical to that of an incomplete-markets economy with nominal bonds

where the central bank follows a policy of strict inflation targeting (πt = π) if γ = (1 + π)γ†,

that is, the nominal bonds have the same maturity as the indexed bonds (new debt is the

same fraction of total debt for both types of bonds in the steady state).

Proof See appendix A.7. �

This result shows that moving to an economy with indexed bonds is generally worse if monetary

policy aims to replicate complete financial markets. Now, whatever the central bank tries to do

has no real effects, so there is no monetary policy intervention that can complete financial markets.

All that happens is indexation locks in the generally sub-optimal outcome that would prevail with

strict inflation targeting. This is in spite of the fact that savers are now protected from inflation

fluctuations. The intuition for these findings is best understood by considering an economy in which

both nominal and indexed bonds are available.

3.7 Portfolio choice with both nominal and indexed bonds

The analysis so far has assumed only a single type of bond is available. While the general case

of many different assets is beyond the scope of this paper, it is helpful to explore the robustness
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of the results to the presence of both nominal and indexed bonds that can be bought or issued

by households. Using the assumptions on the coupon structures of these bonds and the notation

introduced earlier, the equations specific to this variant of the model are:

Cτ,t +
QtBτ,t

Pt
+
Q†tB

†
τ,t

Pt
+
Mτ,t

Pt
= Yt +

(1 + γQt)Bτ,t−1

Pt
+

(1 + γ†Q†t)B
†
τ,t−1

Pt−1

+ (1 + it−1)
Mτ,t−1

Pt
;

[3.22a]

D‡t = −1

2

(1 + γQt)Bb,t−1

Pt
− 1

2

(1 + γ†Q†t)B
†
b,t−1

Pt−1

, L‡t = −1

2

QtBb,t +Q†tB
†
b,t

Pt
; and [3.22b]

r‡t = (1− st−1)rt + st−1r
†
t , where st =

Q†tB
†
s,t

QtBs,t +Q†tB
†
s,t

. [3.22c]

Equation [3.22a] replaces the flow budget identities [2.5]. Equation [3.22b] gives the definitions of

debt D‡t and loans L‡t in the two-bond economy (signified by the superscript ‡), which replace those

in [2.15]. The ex-post real return r‡t on the combined portfolio in [3.22c] is a weighted average of

the real returns rt and r†t on the two bonds in [2.15] and [3.19], with st denoting the portfolio share

in indexed bonds.

The set of equilibrium conditions is as follows. In place of equation [2.22a], there are now two real

interest rates, ρt = Etrt+1 for nominal bonds and ρ†t = Etr
†
t+1 for indexed bonds, with $t = ρt − ρ†t

denoting the inflation risk premium. Using the bond-market clearing conditions [2.13] and [3.18]

together with [3.22b] and [3.22c], equations [2.22b], [2.22c], and [2.22f] hold in terms of d‡t , l
‡
t , and

r‡t . The Euler equations [2.22d] must hold separately for the real returns rt and r†t on both types of

bonds. Equations [2.22e] and [2.24] are unchanged. The nominal bond yield jt and the real return

must satisfy [2.25a] and [2.25b], and the real yield yt and real return r†t must satisfy [3.20] and the

transversality condition used to derive [3.21]. The system of equations also includes [3.22c] and the

portfolio share st as an additional variable.29

Proposition 8 (i) With strict inflation targeting (πt = π), when the two bonds have the same

maturity (γ = (1 + π)γ†), the equilibrium is identical (with any portfolio share st being

consistent with equilibrium) to that where the same monetary policy is followed in an economy

with only nominal bonds.

(ii) Any monetary policy that replicates complete financial markets in the economy with only

nominal bonds also replicates complete financial markets in the two-bond economy, and the

resulting equilibrium is identical (the equilibrium portfolio share being st = 0).

(iii) With strict inflation targeting and bonds that have the same maturity (γ = (1 + π)γ†), the

inflation risk premium is $t = 0. With a monetary policy that replicates complete financial

markets, the average inflation risk premium is (with no restriction on γ and γ†):

E$t = (1 + ρ̄)α
∞∑
`=0

β`
(

1− α
(

1− µ†`
))
ECt−1[gt,Etgt+`] + O3, [3.23]

29In equilibrium, the portfolio shares of savers and borrowers in indexed bonds must be equal.
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where µ† = γ†/(1 + ḡ), Ct−1[·, ·] denotes a conditional covariance, and O3 denotes terms

third-order or higher in the standard deviation ς of real GDP growth.

(iv) Suppose nominal and indexed bonds have the same maturity (γ = (1 + π̄)γ†).

If monetary policy is strict inflation targeting then the term ECt−1[gt, d̃t] from the difference

between the average real interest rates under incomplete and complete markets in [3.16] is

negatively related to the average inflation risk premium [3.23] (associated with a monetary

policy that replicates complete markets) according to E$t = −(1 + ρ̄)αECt−1[gt, d̃t] + O3.

Under the conditions of Proposition 5, the average inflation risk premium [3.23] is also posi-

tively related to the optimal countercyclicality of the price level ω∗ from [3.15] according to

E$t = (1 + ρ̄)αΘ(βµ)ω∗EVt−1[gt] + O3.

Proof See appendix A.8. �

These results show that for both strict inflation targeting and a nominal GDP target that

replicates complete financial markets, the equilibrium outcomes with both types of bonds are the

same as those of an economy with only nominal bonds. For strict inflation targeting, assuming debt

in the form of both bonds is refinanced at the same rate (so the bonds have the same maturity), this

is simply because the absence of inflation fluctuations makes both types of bond equivalent, thus any

portfolio share can be an equilibrium. Perhaps more surprisingly, the ability to hold indexed bonds

does not change the equilibrium when monetary policy pursues a policy that replicates complete

financial markets, which does entail fluctuations in inflation. The equilibrium portfolio share of

indexed bonds is zero in this case, so savers do not attempt to protect themselves from inflation

risk. The reason is the existence of an inflation risk premium, which means that savers earn higher

average returns by holding nominal bonds, which compensate them for the risk they bear.

This perhaps shifts the question to why borrowers continue to issue nominal bonds when lower

real interest rates are available on indexed bonds. However, for borrowers, it is the indexed bond

that is riskier and the nominal bond that is safer because the former obliges the borrower to make

the same real repayments irrespective of real income. When monetary policy replicates complete

financial markets, the countercyclical price level makes nominal bonds behave like equity, so coupons

have a lower real value when real incomes are low, providing insurance to borrowers, for which they

are willing to pay a higher average real interest rate. The higher average real interest rate on nominal

bonds can thus equally well be seen as an ‘insurance premium’ for borrowers as a ‘risk premium’

for savers, and this inflation risk premium is actually a desirable feature of monetary policy. The

inflation fluctuations with nominal GDP targeting are not simply generating risk for savers; inflation

is a hedge for borrowers against the underlying real risk in the economy.30

30It would also be possible to replicate complete financial markets in the two-bond economy with a lower variance
of inflation as long as monetary policy deviates from strict inflation targeting, ensuring there is some correlation
between inflation and real GDP growth. The reduction of the covariance of inflation and real GDP growth would
require all households to hold a positive or negative position in both nominal and indexed bonds, with the size of the
gross positions increasing as the covariance between inflation and real GDP growth shrinks. However, since the gross
positions are larger, monetary policy errors (not generating exactly the covariance between inflation and real growth
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3.8 Objectives, targets, and instruments

The argument for a nominal GDP target in this paper is that it replicates the debt-to-GDP ratio

that would be found if the economy had complete financial markets. Thus, the debt-to-GDP ratio

(and finally the implied consumption allocation) is the ultimate objective of policy. Nominal GDP is

simply an intermediate target which helps achieve that goal. It might then be thought preferable to

target the debt-to-GDP ratio directly if this is what monetary policy is actually seeking to influence.

An obvious pitfall of a policy of this kind is that it fails to provide the economy with a nominal

anchor because the debt-to-GDP ratio is a real variable.

Proposition 9 Suppose monetary policy is conducted with a targeting rule for the debt-to-GDP

ratio dt = d∗t . If N∗t is a path of nominal GDP that is consistent with dt = d∗t then so is

N′t = zt−1 − βµzt +
∞∑
`=0

(βµ)`(EtN
∗
t+` − Et−1N

∗
t+`), [3.24]

for any random variable zt that belongs to the date-t information set.

Proof See appendix A.9. �

Having adopted nominal GDP as an intermediate target, there is the further question of how this

intermediate target is achieved using the short-term nominal interest rate as a policy instrument.

The practicalities of implementation are beyond the scope of this paper, but it is worth noting how a

nominal GDP target can in principle be implemented using an interest-rate feedback rule analogous

to the Taylor rule.

Proposition 10 Consider any (potentially state-contingent) path of nominal GDP {N∗t} that is

consistent with dt = d∗t , and suppose the interest rate it is set according to the following rule:

it = (α− 1)Etgt+1 + EtN
∗
t+1 − N∗t + ζ(Nt − N∗t ). [3.25]

(i) If ζ > 0 then Nt = N∗t and dt = d∗t is the only equilibrium of the economy in which nominal

GDP growth remains bounded.

(ii) If ζ = 0 then Nt = N∗t +(Nt−1−N∗t−1)+εt and d̃t = λd̃t−1−εt is an equilibrium of the economy

in which nominal GDP growth remains bounded for any martingale difference process εt

(Et−1εt = 0).

Proof See appendix A.10. �

The proposition shows that just as Taylor rules can be seen as a means of implementing inflation

targeting, the nominal GDP target can be implemented as the unique equilibrium (with bounded

inflation and nominal GDP growth) by having the policy rate it react to deviations of actual nominal

GDP from its target level.31 But simply setting a policy rate that is consistent with the target fails

to rule out multiple (bounded) equilibria, which have real consequences.

that households were expecting) lead to larger deviations from complete financial markets than when households only
need to buy or sell one type of bond. These issues are left for future research.

31The use of interest-rate feedback rules to determine inflation and the price level is studied by Woodford (2003).
The determinacy properties of Taylor rules have been criticized by Cochrane (2011).
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3.9 Welfare analysis

The earlier analysis took it for granted that replicating complete financial markets ought to be

an objective of monetary policy. The implicit justification for this is the efficiency properties of

the complete-markets equilibrium, which is Pareto efficient in the absence of any other distortions.

Thus, in spite of policy having distributional effects, the optimal policy can be viewed as supporting

(ex-ante) Pareto efficiency in much the same way that analyses of optimal monetary policy have

pointed to other inefficiencies that policy might correct. However, this justification is incomplete in

one important respect: while the complete-markets equilibrium is Pareto efficient, there are infinitely

many other consumption allocations that would equally well satisfy the criterion of Pareto efficiency.

What might support singling out one particular Pareto-efficient allocation as the target for policy

when the choice among this set necessarily entails taking a stance on distributional questions?

Consider first a hypothetical social planner who has access to a full set of state-contingent

transfers among households. With this complete set of instruments, the social planner would be

able to implement any Pareto-efficient (first-best) allocation. The social planner’s problem can

be represented as maximizing a utilitarian social welfare function Wt0 from some time t0 onwards,

assigning Pareto weight Ωτ |t0 to each household of type τ :

Wt0 =
Ωb|t0

2
Ub,t0 +

Ωs|t0

2
Us,t0 , [3.26]

where the utility function Uτ,t0 is given in [2.1]. The full set of instruments allows the social planner

to make a direct choice of state-contingent consumption allocations subject only to the economy’s

resource constraint, which follows from [2.12]:

1

2
Cb,t +

1

2
Cs,t = Yt. [3.27]

A first-best allocation refers to a state-contingent consumption allocation Cτ,t for t ≥ t0 that max-

imizes the welfare function [3.26] subject to the resource constraint [3.27] for some Pareto weights

Ωτ |t0 , taking the discount factors δτ,t as given (as households do), but with δτ,t evaluated at the

consumption allocation in accordance with [2.2].32 Different choices of Pareto weights correspond to

different first-best allocations. To focus on ex-ante efficiency, the set of admissible Pareto weights

is restricted so that the weight assigned to borrowers relative to savers at time t0 is not a random

variable given information available immediately before time t0.33 Formally, Ωb|t0/Ωs|t0 must be

t0 − 1-measurable, that is, Ωb|t0/Ωs|t0 = Et0−1[Ωb|t0/Ωs|t0 ].

In contrast to the hypothetical social planner, the central bank does not have access to fiscal

instruments allowing direct transfers between households. This means the central bank is generally

not able to implement any particular first-best allocation. A second-best allocation refers to a state-

contingent consumption allocation that maximizes the welfare function [3.26] from t0 onwards for

32Since the endogenous discount factors [2.2] are introduced only for technical reasons, and as the assumption that
households take them as given is a simplification, it is helpful to have a benchmark where the social planner makes
no attempt to correct for the fact that households themselves take the discount factors as given. The case where
both households and the social planner internalize the discount factors is considered in appendix A.17.

33This is to avoid a vacuous notion of ex-post efficiency where arbitrary random redistributions can be labelled as
efficient by introducing exogenous shocks to the Pareto weights assigned at time t0.
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some weights Ωτ |t0 (the ratio of the Pareto weights must be t0 − 1-measurable, and the discount

factors are taken as given, as in the social planner’s problem) subject not only to the resource

constraint [3.27], but also to a set of implementability constraints that reflect the constraints faced

by households in a market economy and their optimizing decisions. First, there is the resource

constraint [3.27], which represents goods-market equilibrium. Given this equation, only one of the

budget identities [2.17] needs to be imposed. A single equation is obtained by subtracting one

budget identity from the other, and the accounting identity [2.16] is imposed to eliminate the level

of debt Dt, leaving the consumption difference Cs,t − Cb,t, loans Lt, and the real return rt:

Cs,t

2
− Cb,t

2
= 2 ((1 + rt)Lt−1 − Lt) . [3.28]

The other implementability constraints are the pair of Euler equations in [2.18]. Given the limited

set of instruments, a second-best allocation generally entails a trade-off between efficiency and a

notion of ‘fairness’ associated with the particular Pareto weights that are assigned.

Since the maximization of the welfare function is considered from a specific starting date t0,

for comparison, it is helpful to define an equilibrium where complete financial markets are only

open from a particular date onwards. Supposing that complete markets are available for trading

securities paying off from date t0 onwards, the set of equilibrium conditions comprises equations

[2.22a]–[2.22f] at all times and equation [3.5] for all t ≥ t0. The levels of debt, loans, the real

return, and the consumption ratios in this equilibrium are denoted by d∗t|t0 , l
∗
t|t0 , r

∗
t|t0 , and c∗τ,t|t0 ,

where the subscript t0 indicates dependence on the initial conditions before t0 (for t < t0, these

variables are equal to the actual values of dt, lt, rt, and cτ,t realized prior to date t0). The gaps

between this equilibrium and the incomplete-markets equilibrium are denoted by d̃t|t0 = dt/d
∗
t|t0 ,

r̃t|t0 = (1 + rt)/(1 + r∗t|t0), and so on.

The following proposition characterizes the connections between the sets of first- and second-best

allocations and the complete-markets equilibrium.

Proposition 11 Consider the problem of maximizing the welfare function Wt0 from [3.26].

(i) An allocation is first best if and only if it satisfies [3.27] for all t ≥ t0, Cb,t0/Cs,t0 is t0 − 1-

measurable, and the following risk-sharing condition holds for all t ≥ t0 + 1:

δb,t−1

(
Cb,t

Cb,t−1

)−α
= δs,t−1

(
Cs,t

Cs,t−1

)−α
. [3.29]

(ii) The equilibrium with complete markets open from t0 onwards is first best, but there are

infinitely many other first-best allocations.

(iii) The equilibrium with complete markets open from t0 onwards is implementable through mon-

etary policy for any initial conditions at t0 − 1. This is the only first-best allocation that also

belongs to the set of second-best allocations implementable through monetary policy.

(iv) The optimal policy problem with Pareto weights that support the complete-markets equilib-

rium has a solution that is time consistent, unlike the second-best problem for a general choice

of Pareto weights.
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(v) A log-linear approximation of the equilibrium with complete markets open from t0 onwards

is:

d∗t|t0 = d∗t + λt−t0+1(dt0−1 − d∗t0−1), l∗t|t0 = l∗t + λt−t0+2(dt0−1 − d∗t0−1), r∗t|t0 = r∗t , [3.30a]

with d∗t , l∗t , and r∗t as given in [3.11]. The consumption ratios c∗τ,t|t0 are non-stochastic, de-

pending only on predetermined variables at date t0, and can be written approximately as

c∗τ,t|t0 = λt−t0+1cτ,t0−1. The gaps relative to this equilibrium are:

Etd̃t+1|t0 = λd̃t|t0 , l̃t|t0 = λd̃t|t0 , and r̃t|t0 = r̃t = d̃t|t0 − Et−1d̃t|t0 ; [3.30b]

c̃b,t|t0 = −
(

θ

1− θ

)(
1− βλ
1− β

)
d̃t|t0 , and c̃s,t|t0 =

(
θ

1 + θ

)(
1− βλ
1− β

)
d̃t|t0 .

(vi) The Pareto weights (normalized so that units of the welfare function are equivalent to per-

centages of initial real GDP) supporting the complete-markets equilibrium (from t0) are

Ω∗τ |t0 = c∗ατ,t0|t0/Y
1−α
t0 . The welfare function (given the discount factors δ∗τ,t|t0 associated with

c∗τ,t|t0) can be written as

Wt0 = −1

2

αθ2(1− βλ)2

(1− θ2)(1− β)2

∞∑
t=t0

βt−t0Et0 d̃
2
t|t0 + It0 + O3, [3.31]

where It0 denotes terms that are independent of monetary policy from t0 onwards, and O3

denotes third- and higher-order terms in the standard deviation ς of real GDP growth.

Proof See appendix A.11. �

The intersection between the sets of first-best allocations (Pareto efficient) and second-best

allocations (welfare maximizing subject to the implementability constraints) is simply the complete-

markets equilibrium. The intuition for this result is that the risk-sharing condition [3.29] is necessary

for any allocation to be first best. It is also the only equation [3.5] that distinguishes the equilibrium

conditions with complete markets from the equilibrium conditions with incomplete markets, with

the latter being the implementability constraints on monetary policy in the second-best problem.

In what follows, it is assumed the policymaker has a lexicographic preference for efficiency over

any explicit distributional concerns. Such a policymaker prefers any first-best allocation over one

not in that set, and since there is only one implementable first-best allocation, the policymaker

always adopts the Pareto weights associated with the complete-markets equilibrium (with markets

open from the current date of welfare maximization). Proposition 11 also shows this is generally

the only procedure for selecting Pareto weights that results in a time-consistent plan for policy.

Finally, Proposition 11 provides the log-linearization of the equilibrium with complete markets

open from t0 onwards, generalizing the results of Proposition 4. A second-order approximation of

the welfare function is also derived, which quantifies the welfare losses (in terms of percentages

of output) of deviating from the complete-markets equilibrium, for which the debt gap d̃t|t0 is a

sufficient statistic. It can be seen from [3.31] that these losses are increasing in risk aversion α and

the degree of heterogeneity between borrower and saver households as measured by θ. Intuitively,

greater risk aversion increases the importance of the risk sharing found in complete financial markets,
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while greater heterogeneity between households leads to larger financial positions of borrowers and

savers, so a given percentage change in financial wealth has a larger impact on consumption.

3.10 Discussion

The importance of the arguments for nominal GDP targeting in this paper obviously depends on

the plausibility of the incomplete-markets assumption in the context of household borrowing and

saving. It seems reasonable to suppose that households will not find it easy to borrow by issuing

Arrow-Debreu state-contingent bonds, but might there be other ways of reaching the same goal?

Issuance of state-contingent bonds is equivalent to households agreeing loan contracts with financial

intermediaries that specify a complete menu of state-contingent repayments. But such contracts

would be much more time consuming to write, harder to understand, and more complicated to en-

force than conventional non-contingent loan contracts, as well as making monitoring and assessment

of default risk a more elaborate exercise.34 Moreover, unlike firms, households cannot issue securities

such as equity that feature state-contingent payments but do not require a complete description of

the schedule of payments in advance.35

Another possibility is that even if households are restricted to non-contingent borrowing, they can

hedge their exposure to future income risk by purchasing an asset with returns that are negatively

correlated with GDP. But there are several pitfalls to this. First, it may not be clear which asset

reliably has a negative correlation with GDP (even if ‘GDP securities’ of the type proposed by

Shiller (1993) were available, borrowers would need a short position in these). Second, the required

gross positions for hedging may be very large. Third, a household already intending to borrow will

need to borrow even more to buy the asset for hedging purposes, and the amount of borrowing may

be limited by an initial down-payment constraint and subsequent margin calls. In practice, a typical

borrower does not have a significant portfolio of assets except for a house, and housing returns most

likely lack the negative correlation with GDP required for hedging the relevant risks.

In spite of these difficulties, it might be argued the case for the incomplete markets assumption

is overstated because the possibilities of renegotiation, default, and bankruptcy introduce some

contingency into apparently non-contingent debt contracts. However, default and bankruptcy allow

for only a crude form of contingency in extreme circumstances, and these options are not without

their costs. Renegotiation is also not costless, and evidence from consumer mortgages in both the

recent U.S. housing bust and the Great Depression suggests that the extent of renegotiation may be

34For examples of theoretical work on endogenizing the incompleteness of markets through limited enforcement of
contracts or asymmetric information, see Kehoe and Levine (1993) and Cole and Kocherlakota (2001).

35Consider an individual owner of a business that generates a stream of risky profits. If the firm’s only external
finance is non-contingent debt then the individual bears all the risk (except in the case of default). If the individual
wanted to share risk with other investors then one possibility would be to replace the non-contingent debt with
state-contingent bonds where the payoffs on these bonds are positively related to the firm’s profits. However, what
is commonly observed is not issuance of state-contingent bonds but equity financing. Issuing equity also allows for
risk sharing, but unlike state-contingent bonds does not need to spell out a schedule of payments in all states of the
world. There is no right to any specific payment in any specific state at any specific time, only the right of being
residual claimant. The lack of specific claims is balanced by control rights over the firm. However, there is no obvious
way to be ‘residual claimant’ on or have ‘control rights’ over a household.
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inefficiently low (White, 2009a, Piskorski, Seru and Vig, 2010, Ghent, 2011). Furthermore, even ex-

post efficient renegotiation of a contract with no contingencies written in ex ante need not actually

provide for efficient sharing of risk from an ex-ante perspective.

It is also possible to assess the completeness of markets indirectly through tests of the efficient

risk-sharing condition, which is equivalent to perfect correlation between consumption growth rates

of different households. These tests are the subject of a large literature (Cochrane, 1991, Nelson,

1994, Attanasio and Davis, 1996, Hayashi, Altonji and Kotlikoff, 1996), which has generally rejected

the hypothesis of full risk sharing.

Finally, even if financial markets are incomplete, the assumption that contracts are written in

terms of specifically nominal non-contingent payments is important for the analysis. The evidence

presented in Doepke and Schneider (2006) indicates that household balance sheets contain significant

quantities of nominal liabilities and assets (for assets, it is important to account for indirect exposure

via households’ ownership of firms and financial intermediaries). Furthermore, as pointed out by

Shiller (1997), indexation of private debt contracts is extremely rare. This suggests the model’s

assumptions are not unrealistic.

The workings of nominal GDP targeting can also be seen from its implications for inflation and

the real value of nominal liabilities. Indeed, nominal GDP targeting can be equivalently described

as a policy of inducing a perfect negative correlation between the price level and real GDP, and

ensuring these variables have the same volatility. When real GDP falls, inflation increases, which

reduces the real value of fixed nominal liabilities in proportion to the fall in real income, and vice

versa when real GDP rises. Thus the extent to which financial markets with non-contingent nominal

assets are sufficiently complete to allow for efficient risk sharing is endogenous to the monetary policy

regime: monetary policy can make the real value of fixed nominal repayments contingent on the

realization of shocks. A strict policy of inflation targeting would be inefficient because it converts

non-contingent nominal liabilities into non-contingent real liabilities. This points to an inherent

tension between price stability and the efficient operation of financial markets.36

That optimal monetary policy in a non-representative-agent model should feature inflation fluc-

tuations is perhaps surprising given the long tradition of regarding inflation-induced unpredictability

in the real values of contractual payments as one of the most important of all inflation’s costs. As

discussed in Clarida, Gaĺı and Gertler (1999), there is a widely held view that the difficulties this

induces in long-term financial planning ought to be regarded as the most significant cost of infla-

tion, above the relative price distortions, menu costs, and deviations from the Friedman rule that

have been stressed in representative-agent models. The view that unanticipated inflation leads to

inefficient or inequitable redistributions between debtors and creditors clearly presupposes a world

of incomplete markets, otherwise inflation would not have these effects. How then to reconcile this

argument with the result that the incompleteness of financial markets suggests nominal GDP target-

ing is desirable because it supports efficient risk sharing? (again, were markets complete, monetary

36In a more general setting where the incompleteness of financial markets is endogenized, inflation fluctuations
induced by nominal GDP targeting may play a role in minimizing the costs of contract renegotiation or default when
the economy is hit by an aggregate shock.
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policy would be irrelevant to risk sharing because all opportunities would already be exploited)

While nominal GDP targeting does imply unpredictable inflation fluctuations, the resulting real

transfers between debtors and creditors are not an arbitrary redistribution — they are perfectly cor-

related with the relevant fundamental shock: unpredictable movements in aggregate real incomes.

Since future consumption uncertainty is affected by income risk as well as risk from fluctuations in

the real value of nominal contracts, it is not necessarily the case that long-term financial planning

is compromised by inflation fluctuations that have known correlations with the economy’s funda-

mentals. An efficient distribution of risk requires just such fluctuations because the provision of

insurance is impossible without the possibility of ex-post transfers that cannot be predicted ex ante.

Unpredictable movements in inflation orthogonal to the economy’s fundamentals (such as would

occur in the presence of monetary-policy shocks) are inefficient from a risk-sharing perspective, but

there is no contradiction with nominal GDP targeting because such movements would only occur if

policy failed to stabilize nominal GDP.37

It might be objected that if debtors and creditors really wanted such contingent transfers then

they would write them into the contracts they agree, and it would be wrong for the central bank to try

to second-guess their intentions. But the absence of such contingencies from observed contracts may

simply reflect market incompleteness rather than what would be rationally chosen in a frictionless

world. Reconciling the non-contingent nature of financial contracts with complete markets is not

impossible, but it would require both substantial differences in risk tolerance across households

and a high correlation of risk tolerance with whether a household is a saver or a borrower. With

assumptions on preferences that make borrowers risk neutral or savers extremely risk averse, it

would not be efficient to share risk, even if no frictions prevented households writing contracts that

implement it.

There are a number of problems with this alternative interpretation of the observed prevalence of

non-contingent contracts. First, there is no compelling evidence to suggest that borrowers really are

risk neutral or savers are extremely risk averse relative to borrowers. Second, while there is evidence

suggesting considerable heterogeneity in individuals’ risk tolerance (Barsky, Juster, Kimball and

Shapiro, 1997, Cohen and Einav, 2007), most of this heterogeneity is not explained by observable

characteristics such as age and net worth (even though many characteristics such as these have

some correlation with risk tolerance). The dispersion in risk tolerance among individuals with

similar observed characteristics also suggests there should be a wide range of types of financial

contract with different degrees of contingency. Risk neutral borrowers would agree non-contingent

contracts with risk-averse savers, but contingent contracts would be offered to risk-averse borrowers.

Another problem with the complete markets but different risk preferences interpretation relates

to the behaviour of the price level over time. While nominal GDP has never been an explicit target

of monetary policy, nominal GDP targeting’s implication of a countercyclical price level has been

largely true in the U.S. during the post-war period (Cooley and Ohanian, 1991), albeit with a

correlation coefficient much smaller than one in absolute value, and a lower volatility relative to

37The loss function derived in Proposition 11 can be applied to study quantitatively the welfare costs of the arbitrary
redistributions caused by inflation resulting from monetary-policy shocks.
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real GDP. Whether by accident or design, U.S. monetary policy has had to a partial extent the

features of nominal GDP targeting, resulting in the real values of fixed nominal payments positively

co-moving with real GDP (but by less) on average. In a world of complete markets with extreme

differences in risk tolerance between savers and borrowers, efficient contracts would undo the real

contingency of payments brought about by the countercyclicality of the price level, for example,

through indexation clauses. But as discussed in Shiller (1997), private nominal debt contracts have

survived in this environment without any noticeable shift towards indexation. Furthermore, both

the volatility of inflation and correlation of the price level with real GDP have changed significantly

over time (the high volatility 1970s versus the ‘Great Moderation’, and the countercyclicality of

the post-war price level versus its procyclicality during the inter-war period). The basic form of

non-contingent nominal contracts has remained constant in spite of this change.38

Finally, while the policy recommendation of this paper goes against the long tradition of citing

the avoidance of redistribution between debtors and creditors as an argument for price stability,

it is worth noting that there is a similarly ancient tradition in monetary economics (which can be

traced back at least to Bailey, 1837) of arguing that money prices should co-move inversely with

productivity to promote ‘fairness’ between debtors and creditors. The idea is that if money prices

fall when productivity rises, those savers who receive fixed nominal incomes are able to share in

the gains, while the rise in prices at a time of falling productivity helps to ameliorate the burden

of repayment for borrowers. This is equivalent to stabilizing the money value of incomes, in other

words, nominal GDP targeting. The intellectual history of this idea (the ‘productivity norm’) is

thoroughly surveyed in Selgin (1995). Like the older literature, this paper places distributional

questions at the heart of monetary policy analysis, but studies policy through the lens of mitigating

inefficiencies in incomplete financial markets, rather than with looser notions of fairness.

4 Policy trade-offs

The analysis thus far has been done using a model in which none of the usual welfare costs of inflation

are present. This section adds sticky prices to the model to analyse the trade-off between monetary

policies that mitigate incomplete financial markets and those that seek to minimize relative-price

distortions.

4.1 Households

The utility functions of households remain as given in [2.1], but now Cτ,t is interpreted explicitly

as a consumption aggregator of a measure-one continuum of differentiated goods. Consumption of

good ı ∈ [0, 1] by households of type τ is denoted by Cτ,t(ı), and the nominal price of this good

is Pt(ı). Households allocate spending between goods to minimize the expenditure PtCτ,t required

to obtain Cτ,t units of the consumption aggregator. The aggregator is the same for both types of

38It could be argued that part of the reluctance to adopt indexation is a desire to avoid eliminating the risk-sharing
offered by nominal contracts when the price level is countercyclical.
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households and features a constant elasticity of substitution ε between goods (ε > 1):

PtCτ,t = min
{Cτ,t(ı)}

∫
[0,1]

Pt(ı)Cτ,t(ı)dı s.t. Cτ,t =

(∫
[0,1]

Cτ,t(ı)
ε−1
ε dı

) ε
ε−1

. [4.1]

The optimality conditions for this expenditure minimization problem are:

Cτ,t(ı) =

(
Pt(ı)

Pt

)−ε
Cτ,t, where Pt =

(∫
[0,1]

Pt(ı)
1−εdı

) 1
1−ε

. [4.2]

The real income Yτ,t of type-τ households now derives from two sources. First, each household

supplies inelastically one homogeneous unit of labour, which earns real wage wt.
39 Second, house-

holds have equal shareholdings in each of a measure-one continuum of firms, indexed by ı ∈ [0, 1].

Firm ı pays real dividend Jt(ı), and total real dividends are Jt. The assumptions on financial markets

from section 2 are maintained, with the additional restriction that shares in firms are not tradable.40

The maturity of bonds µ = γ/(1 + n̄) is now taken to be a parameter rather than γ, and µ < 1 is

assumed so that some debt is refinanced each period (the rate of refinancing is 1 − µ).41 With Ht

denoting hours of labour supplied, real income Yτ,t is given by:

Yτ,t = wtHt + Jt, where Ht = 1, and Jt =

∫
[0,1]

Jt(ı)dı. [4.3]

4.2 Firms

Firm ı ∈ [0, 1] is the monopoly producer of differentiated good ı. Goods are produced using hours

of a homogeneous labour input. Production of good ı is denoted by Yt(ı), and firm ı’s employment

by Ht(ı). The firm pays out all real profits at time t as dividends Jt(ı):

Jt(ı) =
Pt(ı)

Pt
Yt(ı)− wtHt(ı), where Yt(ı) = AtHt(ı)

1
1+ξ , and Yt(ı) =

(
Pt(ı)

Pt

)−ε
Ct. [4.4]

The first equation following the definition of profits is the production function, with At denoting

the common exogenous productivity level, and where the parameter ξ determines the extent of

diminishing returns to labour (ξ ≥ 0). The stochastic process for the growth rate of exogenous TFP

At is assumed to have the same properties as that of the growth rate of the exogenous endowment in

the model of section 2. The final equation in [4.4] is derived from the requirement that the quantity

produced is the same as the quantity sold, given a measure one half of each type of household,

equation [2.12], and the household demand functions in [4.2]. These two equations are constraints

on the profits of firm ı, and by substituting them into the definition of Jt(ı), profits can be written

as a function of the price Pt(ı) of good ı, the price level Pt, aggregate demand Ct, and a variable xt

denoting the level of real marginal cost for a hypothetical firm setting price equal to Pt:

Jt(ı) =

((
Pt(ı)

Pt

)1−ε

− xt
1 + ξ

(
Pt(ı)

Pt

)−ε(1+ξ)
)
Ct, where xt = (1 + ξ)

wt
At

(
Ct
At

)ξ
. [4.5]

39The assumption of inelastic labour supply is relaxed in section 5.
40This is to avoid any interaction with the assumption that financial markets are incomplete.
41That is, given the fixed parameter µ and steady-state nominal GDP growth n̄, a value of γ = (1 + n̄)µ is used.
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4.3 Sticky prices

Price adjustment is assumed to be staggered according to the Calvo (1983) pricing model. In each

time period, there is a probability σ (0 ≤ σ < 1) that firm ı must continue to use its previous

nominal price Pt−1(ı) independent of other firms. If at time t a firm does receive an opportunity to

change price, it sets a reset price denoted by P̂t (all firms changing price at the same time choose

the same reset price because the occurrence of opportunities for changing price is random and this is

the only heterogeneity between firms). The reset price is set to maximize the current and expected

future stream of profits. Future profits conditional on continuing to charge P̂t are multiplied by the

probability σ` that the reset price will actually remain in use ` periods ahead, and are discounted

using the real interest rate ρt.
42 Using [4.5], P̂t is determined by:

max
P̂t

∞∑
`=0

Et

{ σ`∏`−1
=0(1 + ρt+)

}( P̂t
Pt+`

)1−ε

− xt+`
1 + ξ

(
P̂t
Pt+`

)−ε(1+ξ)
Ct+`

 . [4.6]

The first-order condition for this maximization problem is:

∞∑
`=0

Et

{ σ`Ct+`∏`−1
=0(1 + ρt+)

}(
P̂t
Pt+`

)−ε P̂t
Pt+`

− ε

ε− 1

(
P̂t
Pt+`

)−εξ
xt+`

 = 0. [4.7]

4.4 Equilibrium

In equilibrium, the total demand for each good ı must add up to production Yt(ı), and the total

demand for the homogeneous labour input must add up to its supply Ht:

1

2
Cb,t(ı) +

1

2
Cs,t(ı) = Yt(ı), and

∫
[0,1]

Ht(ı)dı = Ht. [4.8]

Using the definition of total profits Jt from [4.3], by summing over profits Jt(ı) from [4.4] and using

the definition of total consumption [2.12] and the market clearing conditions in [2.12] and [4.8], it

follows that Jt = Yt − wtHt. Together with [4.3], this means the distribution of total income given

in [2.4] continues to hold.

Using the inelastic labour supply assumption from [4.3], the production functions and demand

functions in [4.4], and the overall goods-market clearing condition [2.12] and labour-market clearing

condition from [4.8], aggregate output Yt is given by:

Yt =
At
∆t

, where ∆t =

(∫
[0,1]

(
Pt(ı)

Pt

)−ε(1+ξ)

dı

) 1
1+ξ

. [4.9]

This is the economy’s aggregate production function taking account of the fixed supply of labour and

the distribution of relative prices. The term ∆t represents the inefficiency caused by relative-price

distortions (∆t ≥ 1, using equation [4.2]).

42The choice of discount factor has no consequences in this version of the model with inelastic labour supply. In
the case of elastic labour supply, with a zero-inflation steady state, it turns out that only the steady-state value of the
discount factor matters for a first-order accurate approximation to the equilibrium and to optimal policy. Given the
results of Proposition 1, this means the choice of the ex-ante real interest rate to discount future profits as opposed
to some combination of the stochastic discount factors of the households is of no consequence.
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Given Calvo pricing, there is a stationary distribution of the ages of the reset prices used by

firms. A fraction (1 − σ)σ` uses a reset price set ` periods ago, and from equation [4.2], the price

level Pt and the reset price P̂t are related as follows:

Pt =
(
σP 1−ε

t−1 + (1− σ)P̂ 1−ε
t

) 1
1−ε

, hence p̂t =
P̂t
Pt

=

(
1− σ(1 + πt)

ε−1

1− σ

) 1
1−ε

. [4.10]

The second equation gives the implied relationship between the relative reset price p̂t and the

inflation rate πt. Similarly, the geometric age distribution of reset prices and the formula for ∆t

from [4.9] imply:

(P−εt ∆t)
1+ξ =

∞∑
`=0

(1− σ)σ`P̂
−ε(1+ξ)
t−` , or (P−εt ∆t)

1+ξ = σ(P−εt−1∆t−1)1+ξ + (1− σ)P̂
−ε(1+ξ)
t ,

and by using [4.10], relative-price distortions ∆t and inflation πt are related as follows:

∆t =

σ(1 + πt)
ε(1+ξ)∆1+ξ

t−1 + (1− σ)

(
1− σ(1 + πt)

ε−1

1− σ

) ε(1+ξ)
ε−1

 1
1+ξ

. [4.11]

Finally, using [4.7] and [4.10], inflation πt and real marginal cost xt must satisfy:

∞∑
`=0

Et

{σ`∏`
=1(1 + gt+)∏`−1

=0(1 + ρt+)

}
(

1−σ(1+πt)ε−1

1−σ

) 1+εξ
1−ε∏`

=1(1 + πt+)1−ε
−

ε
ε−1

xt+`∏`
=1(1 + πt+)−ε(1+ξ)


 = 0. [4.12]

4.5 Policy analysis

Consider first the special case of fully flexible prices (σ = 0) in an economy with incomplete financial

markets and θ > 0. It follows from [4.11] that ∆̂t = 1, and from [4.9] that Ŷt = At (Ŷt denotes

the equilibrium value of Yt when prices are fully flexible, and similarly for other variables). The

flexible-price level of output Ŷt is here equal to the first-best level of output and is independent of

monetary policy. Thus, in this case, the only distortion in the economy is the incompleteness of

financial markets, for which the optimal policy of nominal GDP targeting (or a countercyclical price

level) has been characterized earlier (Proposition 3), conditional on the behaviour of the exogenous

real GDP growth rate ĝt.

Second, consider the special case of complete financial markets (the modification of the assump-

tions in section 3.1) or a representative-household economy (θ = 0). In this case, the presence

of sticky prices (σ > 0) is the only distortion. It can be seen from [4.11] that a policy of strict

inflation targeting with zero inflation implies ∆t = 1 (assuming no initial relative-price distortions,

∆t0−1 = 1), which given [4.9] achieves the first-best level of output Yt = Ŷt. Therefore, strict inflation

targeting is the optimal monetary policy.

In the general case there is a trade-off between addressing the problems of incomplete financial

markets and sticky prices. The optimal trade-off is determined by maximizing the welfare function

subject to the equilibrium conditions of the economy. The Pareto weights are set to those that

support the equilibrium with complete markets open from t0 onwards, assuming flexible prices.
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This choice is motivated by the result from Proposition 11 that choosing other Pareto weights

would lead to an additional trade-off between efficiency and fairness.

Proposition 12 The Pareto weights in the welfare function [3.26] are set to Ω̂∗τ |t0 = c∗ατ,t0|t0/Ŷ
1−α
t0

where c∗τ,t|t0 is the consumption allocation in the complete-markets equilibrium from t0 onwards and

Ŷt is output with flexible prices. The loss function

Lt0 =
1

2

∞∑
t=t0

βt−t0Et0

[
αθ2(1− βλ)2

(1− θ2)(1− β)2
d̃2
t|t0 +

ε(1 + εξ)σ

(1− σ)(1− βσ)
π2
t

]
, [4.13]

is a second-order accurate approximation of the welfare function [3.26] around the non-stochastic

steady state with zero inflation (π̄ = 0) in that Wt0 = −Lt0 + It0 + O3, where It0 denotes terms

that are independent of monetary policy from t0 onwards, and O3 terms that are third-order or

higher in the standard deviation ς of real GDP growth. First-order accurate approximations of the

constraints that monetary policy must satisfy are:

Etd̃t+1|t0 = λd̃t|t0 ,
jt−1 − βµjt

1− βµ
− πt − d̃t|t0 + λd̃t−1|t0 = r̂∗t , and lim

`→∞
(βµ)`Etjt+` = 0, [4.14]

with gt = ĝt (since ∆t = O2), up to terms of order O2, and where µ = γ/(1 + ḡ).

Proof See appendix A.12. �

The loss function includes the squared debt-to-GDP gap d̃t|t0 , which is a sufficient statistic for

the welfare loss due to deviations from complete markets (the coefficient is the same as for the

flexible-price economy). The second term is the squared inflation rate, which is a sufficient statistic

for the welfare loss due to relative-price distortions. This is a well-known property of Calvo pricing,

and the coefficient in the loss function is the same as in standard models (see Woodford, 2003).

The coefficient of inflation is increasing in the price elasticity of demand ε because a higher

price sensitivity implies that a given amount of price dispersion now leads to greater dispersion of

the quantities produced of different goods for which preferences and production technologies are

identical. The coefficient is increasing in price stickiness σ because longer price spells imply that a

given amount of inflation leads to greater relative-price distortions. The coefficient is also increasing

in the parameter ξ (the output elasticity of marginal cost from [4.5]), which will be seen to determine

the degree of real rigidity in the economy. Both nominal and real rigidity increase the welfare costs

of inflation. Finally, note that a zero steady-state inflation rate is assumed. Given the presence of

sticky prices, this is the optimal steady-state inflation rate.43

Since the steady state of the economy is not distorted (there are no linear terms in the loss

function [4.13]), a first-order accurate approximation of optimal monetary policy can be obtained

by minimizing the loss function subject to first-order accurate approximations of the economy’s

equilibrium conditions. These constraints are given in [4.14]. The first equation determines the

43With debt maturity µ = γ/(1 + n̄) being a fixed parameter, the average rate of inflation π̄ has no consequences
for the incompleteness of financial markets. If the coupon parameter γ were fixed then the average rate of inflation
would affect the constraints in [4.14] through n̄ and hence µ, so it is not obvious what average inflation rate is optimal
(the effect is absent in the special case of one-period debt contracts, γ = 0). This issue is left for future research.
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predictable component of the debt-to-GDP gap d̃t|t0 , and the second equation links inflation πt and

nominal bond yields jt to the unexpected component of the debt-to-GDP gap. The term r̂∗t denotes

the ex-post real return with both complete markets and flexible prices (that is, when the real GDP

growth rate is gt = ĝt). Since ĝt is exogenous, r̂∗t can be determined as in Proposition 4, and this

term plays the role of the exogenous shock in the system of equations [4.14]. The bond yield jt is

determined by equation [3.13], but this is not added as an additional constraint because it is implied

by the second equation in [4.14] together with the third constraint, the transversality condition.

Finally, the policy rate it is linked to inflation via the Fisher equation it = ρt + Etπt+1 from

[3.10], and to bond yields via the expectations theory equation jt = (1−βµ)
∑∞

`=0(βµ)`Etit+` given

[3.13]. Since the policy rate does not appear directly in the loss function [4.13] nor in the constraints

[4.14], the optimal policy problem has the central bank directly choosing d̃t|t0 , πt, and jt subject to

the constraints, with the required policy rate path then determined using the Fisher equation or the

expectations equation it = (jt − βµEtjt+1)/(1− βµ) in recursive form.

Proposition 13 Optimal monetary policy with commitment from date t0 onwards minimizes the

loss function [4.13] subject to the constraints in [4.14].

(i) The optimal policy features fluctuations in the debt-to-GDP gap:

d̃t|t0 = λd̃t−1|t0 − (1− χ)℘t, with ℘t =
∞∑
`=0

β`
(
1− α(1− µ`)

)
(Etĝt+` − Et−1ĝt+`) ,

[4.15a]

and χ =

(
1 +

ε(1 + εξ)σ(1− θ2)(1− β)2(1− βλ2)(1− βµ2)

αθ2(1− σ)(1− βσ)(1− βλ)2

)−1

. [4.15b]

(ii) The optimal policy features inflation fluctuations, with optimal inflation persistence deter-

mined by the maturity of debt contracts (the parameter µ):

πt =

µπt−1 − (1− βµ2)χ℘t if t ≥ t0 + 1

−(1− βµ2)χ℘t if t = t0
. [4.16]

(iii) If the growth rate of TFP At − At−1 is a stationary and invertible stochastic process then

optimal monetary policy can be characterized as an inflation smoothing rule Etπt+1 = µπt

together with either a long-run or a short-run target for weighted nominal GDP:

Long run : Pt + ~ωYt stationary, with ~ω = χ
(1− βµ2)

(1− µ)

Θ(βµ)

Θ(1)
ω∗; [4.17a]

Short run : Pt + ω̇Yt = Et−1[Pt + ω̇Yt], with ω̇ = χ(1− βµ2)
Θ(βµ)

Θ(0)
ω∗, [4.17b]

where Θ(L) is such that gt = Θ(L)(gt − Et−1gt) and ω∗ is from [3.15] of Proposition 5.

Proof See appendix A.13. �

Fluctuations in the growth rate ĝt of flexible-price output (due to shocks to TFP) lead to changes

in the ex-post real return r̂∗t on the complete-markets portfolio. To replicate complete financial
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markets, the central bank needs to vary inflation and nominal bond yields so as to mimic this real

return. Overall, what matters are unexpected changes in the discounted sum of current and future

growth rates, adjusted for any mitigating (or aggravating) changes in real interest rates. This is

the shock ℘t given in [4.15a]. The term α(1 − µ`) is the adjustment for changes in real interest

rates caused by revised expectations of the economy’s future growth prospects. The parameter α is

the elasticity of the real interest rate with respect to expected real GDP growth (see [3.9a]). Since

changes in (ex-ante) real interest rates only matter to the extent that debt is refinanced, for growth

expectations ` periods ahead, the interest-rate effect is proportional to the fraction 1−µ` of existing

debt that will be refinanced by then.

With sticky prices, replicating complete financial markets through variation in inflation is now

costly, so the central bank tolerates some deviation from complete markets.44 To the extent that

χ in [4.15b] is less than one, a shock ℘t leads to fluctuations in the debt-to-GDP gap d̃t. These

fluctuations are persistent because of the first constraint in [4.14]: the serial correlation of the debt-

to-GDP gap is λ. Once a non-zero debt gap arises at time t, there is no predictable future policy

action that can undo its future consequences.

If χ were equal to 1, equation [4.15a] shows that the debt-to-GDP gap would be completely

stabilized, and if χ were 0, equation [4.16] shows that inflation would be completely stabilized.

Since 0 < χ < 1, optimal monetary policy can be interpreted as a convex combination of strict

inflation targeting and a policy that replicates complete financial markets. As the responses of d̃t|t0
and πt to the shock ℘t are linearly related to χ, the terms χ and 1−χ can be interpreted respectively

as the weights on completing financial markets and avoiding relative-price distortions. Comparing

equations [4.13] and [4.15b], it can be seen that χ is positively related to the ratio of the coefficients

of d̃2
t|t0 and π2

t in the loss function divided by (1− βλ2) and (1− βµ2).

Greater risk aversion (α) or more heterogeneity and hence more borrowing (θ) increase the

coefficient of d̃2
t|t0 and thus χ; a larger price elasticity of demand (ε), stickier prices (σ), or more real

rigidities (ξ) increase the coefficient of π2
t and thus reduce χ. The optimal trade-off is also affected

by the constraints in [4.14], which explains the presence of the terms (1−βλ2) and (1−βµ2) in the

formula for χ. A greater value of λ increases the persistence of the debt-to-GDP gap, which makes

fluctuations in d̃t|t0 more costly than suggested by the loss function coefficient alone. The parameter

µ affects the link between bond yields and the debt-to-GDP gap. It is seen that an increase in µ

leads to a higher value of χ, the intuition for which is related to the optimal behaviour of inflation.

Finally, note that while the optimal policy responses depend on the stochastic process for real GDP

growth, the optimal weight χ does not.

Equation [4.16] shows that optimal monetary policy features inflation persistence with serial

correlation given by the debt maturity parameter µ = γ/(1 + ḡ). The steady-state fractions of

existing and newly issued debt are µ and 1 − µ respectively, so the result is that inflation should

return to its average value at the same rate at which debt is refinanced. At the extremes, one-period

44If the nominal rigidity were sticky wages rather than sticky prices, the central bank would care about nominal
wage inflation rather than price inflation (Erceg, Henderson and Levin, 2000). In that case, the tension with the goal
of replicating complete financial markets is reduced because targeting nominal income growth is less likely to be in
conflict with stabilizing nominal wage inflation than stabilizing price inflation.
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debt (γ = 0 and µ = 0) corresponds to serially uncorrelated inflation, while perpetuities (γ = 1, for

which µ ≈ 1) correspond to near random-walk persistence of inflation.

To understand this, note that with one-period debt, the current bond yield jt disappears from

the constraints [4.14] (because [3.13] reduces to the standard ex-post Fisher equation in this case),

thus the only way that policy can affect d̃t|t0 is through an unexpected change in current inflation.

With longer maturity debt, the range of policy options increases. Changes in current bond yields

jt are also relevant in addition to current inflation, and it can be seen from [3.13] that the bond

yield is affected by expectations of future inflation. The three constraints in [4.14] imply d̃t|t0 =

λd̃t−1|t0 − ℘t −
∑∞

`=0(βµ)`(Etπt+` − Et−1πt+`), where µ` indicates the fraction of existing debt that

will not have been refinanced after ` time periods. This shows it is now possible to use inflation

that is spread out over time to influence the debt-to-GDP gap d̃t|t0 , not only inflation surprises.

Furthermore, this ‘inflation smoothing’ is optimal because the welfare costs of inflation are convex

(inflation appears in the loss function [4.13] as π2
t ), so the costs of a given cumulated amount of

inflation are smaller when spread out over a number of quarters or years than when all the inflation

occurs in just one quarter. This is analogous to the ‘tax smoothing’ argument of Barro (1979).

Interestingly, the argument shows that high degrees of inflation persistence need not be interpreted

as a failure of policy. Differently from the ‘tax smoothing’ argument, it is generally not optimal for

inflation to display random walk or near-random walk persistence unless debt contracts are close

to perpetuities. Equation [3.13] shows that as the maturity parameter µ is reduced and thus βµ

falls significantly below one, expectations of inflation far in the future have a smaller effect on bond

yields than inflation in the near future. The further in the future inflation is expected to occur, the

less effective it is at influencing real returns and thus the debt-to-GDP ratio.

Even if optimal monetary policy places a substantial weight χ on the problem of incomplete

markets compared to relative-price distortions, in what sense does monetary policy still resemble

a nominal GDP target? Optimal inflation smoothing Etπt+1 = µπt (from [4.16]) pins down the

predictable component of the inflation rate, but this in itself is not a complete description of pol-

icy because it leaves unspecified the unexpected component of inflation. Together with inflation

smoothing, specifying how much inflation reacts to a shock on impact, or equivalently, how much

cumulated inflation will follow a shock, completely characterizes the path of all nominal variables.

It turns out that optimal monetary policy retains the essential feature of nominal GDP targeting

in generating a negative comovement between prices and output. However, because of the desire to

smooth inflation, the central bank should not aim to stabilize nominal GDP (or a weighted measure

of nominal GDP) exactly on a quarter-by-quarter basis. Instead, optimal policy can be formulated

as a long-run target for weighted nominal GDP. When real GDP is non-stationary because TFP

follows a non-stationary process, optimal monetary policy features cointegration between the price

level and output. This cointegrating relationship can be interpreted a long-run target for weighted

nominal GDP because there is some linear combination of prices and real output that is eventually

returned to a constant or a deterministic trend following a shock to output.

The optimal monetary policy implications for inflation in [4.16] have one other noteworthy

feature: time inconsistency in the case where µ > 0. Starting from date t0, optimal monetary policy
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commits to smooth out any inflation over future time periods, but chooses an inflation rate at date

t0 which is statistically independent of any past variables. In other words, it is optimal ex ante to

commit to inflation smoothing, but optimal ex post to renege on those plans. The existence of this

time-inconsistency problem depends on both sticky prices and debt maturities longer than one time

period (time consistency with flexible prices is shown in Proposition 11, while time consistency with

µ = 0 is immediately apparent from [4.16]).

The intuition for time inconsistency comes from the timing of the benefits and costs of inflation

fluctuations. As can be seen from the constraints [4.14], to close the gap with the complete-markets

consumption allocation from time t onwards, policy (whether current actions or expectations of

future actions) must affect the debt-to-GDP gap d̃t|t0 at the time t. This reflects the forward-

looking nature of household consumption and saving decisions and thus the forward-looking nature

of financial markets. Accordingly, any future policy commitments announced in response to a shock

affect bond yields, the debt-to-GDP ratio, and consumption immediately. When that commitment

takes the form of inflation smoothing, some of the welfare costs of inflation are deferred until the

future (with long-term debt, this is what allows overall welfare costs to be reduced). There is then

an incentive to renege on the commitment once the benefits have been obtained and only the costs

remain. In the absence of an ability to commit, the (Markovian) discretionary policy equilibrium is

characterized below.

Proposition 14 The Markovian discretionary policy equilibrium (reoptimization at all dates, with

expectations of future policy actions restricted to depend on fundamental state variables only) is:

d̃t|t0 = λd̃t−1|t0 − (1− χ′)℘t, and πt = −χ′℘t, where [4.18a]

χ′ =

(
1 +

ε(1 + εξ)σ(1− θ2)(1− β)2(1− βλ2)

αθ2(1− σ)(1− βσ)(1− βλ)2

)−1

. [4.18b]

for arbitrary t0 and all t ≥ t0, with ℘t as given in [4.15a]. The coefficient χ′ is such that χ′ < χ,

where χ in [4.15b] corresponds to the case of commitment. When debt contracts have a maturity

greater than one period (µ > 0), the debt gap d̃t|t0 has a higher standard deviation under discretion

than commitment, but the same serial correlation in both cases. Inflation is serially uncorrelated

under discretion, and hence less serially correlated than under commitment.

Proof See appendix A.14. �

This result might be described as the ‘financial instability bias’ of discretionary monetary policy.

At a given point in time, the lowest-cost means of replicating the complete-markets consumption

allocation is through affecting forward-looking financial variables such as bond yields, which depend

on expectations of future policy (the longer the maturity of the bond, the more forward looking

its yield is). However, commitments to change future inflation to affect those expectations are not

credible. On the other hand, the welfare costs of inflation at that point in time depend on the

actual rate of inflation, not expected future inflation.45 Thus, the inability to commit makes it

45Note that even though price adjustment is staggered, the absence of an elastic labour supply decision means
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difficult for monetary policy to affect current financial variables, but does not impede monetary

policy controlling current inflation.

Discretion therefore leads monetary policy to focus too much on keeping inflation close to its

optimal average rate and not enough on stabilizing variables such as the debt-to-GDP ratio that

are best influenced through long-term bond yields. In equilibrium, the debt-to-GDP ratio is too

volatile, while the central bank is always expected to return inflation to its average rate next period.

Since how much the central bank cares about the debt-to-GDP ratio has not changed, inflation

may actually end up being more volatile, though less serially correlated than under policy with

commitment.

5 The ex-ante real interest rate and the output gap

By extending the model of section 4 to allow for a labour supply decision, monetary policy can

affect two additional variables: the ex-ante real interest rate and the output gap. This turns out to

add a number of interesting dimensions to the optimal monetary policy problem.

5.1 Households

The utility function [2.1] for households of type τ is replaced by the following, which now depends

on hours Hτ,t of labour supplied in addition to consumption Cτ,t:

Uτ,t =
∞∑
`=0

Et

{`−1∏
=1

δτ,t+

}C1−α
τ,t+`

1− α
−
H

1+ 1
ητ

τ,t+`

1 + 1
ητ

 . [5.1]

Households supply different types of labour, and ητ is the potentially household-specific Frisch

elasticity of labour supply (0 < ητ < ∞). The discount factors δτ,t are as specified in [2.2] and are

taken as given by individual households. The real wage received by type-τ households is wτ,t, all

households own equal (non-tradable) shareholdings in each firm, and all households are assumed to

face a common lump-sum tax Tt in real terms. Households of type τ thus have real income

Yτ,t = wτ,tHτ,t + Jt − Tt, [5.2]

where Jt is as defined in [4.3]. Since utility [5.1] is additively separable between consumption and

hours, the Euler equations [2.6] and [2.7] are unchanged. Maximizing utility [5.1] with respect to

hours Hτ,t subject to [2.5] and [5.2] implies the optimal labour supply condition:

Cατ,tH
1
ητ
τ,t = wτ,t. [5.3]

there are no output gap fluctuations, and thus no New Keynesian Phillips curve as a constraint on monetary policy.
The ‘stabilization bias’ analysed in Clarida, Gaĺı and Gertler (1999) depends on the expectations of future inflation
in the Phillips curve. It is shown in Proposition 16 below that the ‘financial instability bias’ remains even in a model
with elastic labour supply where the standard New Keynesian Phillips curve is present as a constraint.
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5.2 Firms

As before, there is a measure-one continuum of firms, each producing one of a continuum of dif-

ferentiated goods. Two changes are introduced here: the labour input Ht(ı) of firm ı is now an

aggregator of labour supplied by the two types of households, and firms now receive a proportional

wage-bill subsidy at rate ε−1. Firms choose labour inputs Hτ,t(ı) to minimize the post-subsidy cost

wtHt(ı) of obtaining a unit of the aggregate labour input Ht(ı):

wtHt(ı) = min
Hτ,t(ı)

(1− ε−1) (wb,tHb,t + ws,tHs,t) s.t. Ht(ı) = 2Hb,t(ı)
1
2Hs,t(ı)

1
2 . [5.4]

The labour aggregator has a Cobb-Douglas functional form, implying a unit elasticity of substitution

between different labour types.46 The cost-minimizing demand functions for individual labour inputs

and the overall level of wage costs are:

Hτ,t(ı) =
1

2

wtHt(ı)

(1− ε−1)wτ,t
, where wt = (1− ε−1)w

1
2
b,tw

1
2
s,t. [5.5]

Apart from the reinterpretation of Ht(ı) and wt, the production function, profit function, and the

expression for real marginal cost xt are the same as in [4.4] and [4.5].

5.3 Fiscal policy

The only role of fiscal policy here is to provide the wage-bill subsidy to firms by collecting equal

amounts of a lump-sum tax from all households. It is assumed the fiscal budget is in balance, so

taxes Tt are set at the level required to fund the current subsidy:47

Tt = ε−1

∫
[0,1]

(wb,tHb,t(ı) + ws,tHs,t(ı)) dı. [5.6]

5.4 Equilibrium

There is now a separate market-clearing condition for each type of labour in addition to the equi-

librium conditions introduced earlier in [4.8]:∫
[0,1]

Hτ,t(ı)dı =
1

2
Hτ,t, for all τ ∈ {b, s}. [5.7]

Using the labour demand functions and wage index from [5.5] together with the market-clearing

condition [5.7] and letting Ht be defined in accordance with [4.8] leads to:

Hτ,t =
wtHt

(1− ε−1)wτ,t
, where Ht = H

1
2
b,tH

1
2
s,t, and Yt =

AtH
1

1+ξ

t

∆t

, [5.8]

46The use of an aggregator of different labour types is the standard approach to studying the welfare costs of sticky
wages (Erceg, Henderson and Levin, 2000). Here, a unit elasticity of substitution is the most analytically convenient
assumption, though a priori it is not clear whether the labour of different household types is more substitutable or
more complementary than this. In the model, being a borrower is simply a matter of being more impatient than
savers, but empirically, the average borrower is likely to differ from the average saver in respects such as age that
might mean their labour is not perfectly substitutable.

47The wage-bill subsidy is a standard assumption which ensures the economy’s steady state is not distorted (Wood-
ford, 2003). A balanced-budget rule is assumed to avoid any interactions between fiscal policy and financial markets.
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where the final equation is derived using the same steps as [4.9].

With the same argument as before, the equilibrium conditions imply that per-household profits

are Jt = Yt − wtHt. Using equations [5.4] and [5.7], total taxes must be Tt = ε−1wtHt/(1 − ε−1).

Noting that [5.8] implies wτ,tHτ,t = wtHt/(1 − ε−1), it follows from [5.2] that the distribution of

total income in [2.4] continues to hold.

The equilibrium of each of the labour markets can be derived conditional on aggregate variables

and the consumption allocation by using equations [5.3] and [5.8]:

Hτ,t =

(
wtHt

(1− ε−1)Cατ,t

) ητ
1+ητ

, and wτ,t =

(
wtHtC

αητ
τ,t

1− ε−1

) 1
1+ητ

, [5.9]

and by substituting the expression for wages wτ,t into equation [5.5], overall wage costs are:

wt = (1− ε−1)Y αt H
1
η

t

(
c
ηb

1+ηb
b,t c

ηs
1+ηs
s,t

) α
ηb

1+ηb
+

ηs
1+ηs , where η =

ηb
1+ηb

+ ηs
1+ηs

1
1+ηb

+ 1
1+ηs

. [5.10]

The term η denotes an average of the Frisch elasticities of the two household types. By combining

equations [4.5], [5.8], and [5.10], real marginal cost xt (for a firm that has set a price equal to the

price level Pt) is given by:

xt = (1− ε−1)(1 + ξ)
∆

1+ξ
η

t Y νt

A
1+ξ+ 1+ξ

η

t

(
c
ηb

1+ηb
b,t c

ηs
1+ηs
s,t

) α
ηb

1+ηb
+

ηs
1+ηs , with ν = α+ ξ+

1 + ξ

η
, [5.11]

where ν denotes the elasticity of real marginal cost with respect to aggregate output Yt.

5.5 First-best benchmark

Now consider an economy with flexible prices and complete financial markets open from some date

t0 onwards. The equilibrium of this economy represents (one) first-best allocation. With complete

financial markets, the risk-sharing condition [3.5] must hold from t0 onwards (it is unaffected by the

labour supply decision because utility [5.1] is additively separable). As shown in Proposition 11,

the risk-sharing condition and the resource constraint determine the consumption-income ratios

c∗τ,t|t0 independently of the level of aggregate output (these ratios depend only on the initial wealth

distribution at t0−1). With flexible prices (σ = 0), it can be seen from [4.11] and [4.12] that ∆̂t = 1

and x̂t = 1 − ε−1. Hence, equation [5.11] can be used to obtain the level of output in this case,

referred to as the natural level of output and denoted by Ŷ ∗t|t0 :

Ŷ ∗t|t0 =

(
1

1 + ξ

(
c∗

ηb
1+ηb

b,t|t0 c
∗
ηs

1+ηs

s,t|t0

) −α
ηb

1+ηb
+

ηs
1+ηs A

1+ξ+ 1+ξ
η

t

) 1

α+ξ+1+ξ
η

. [5.12]

This depends on the complete-markets consumption ratios c∗τ,t|t0 because these reflect the initial

(t0 − 1) wealth distribution, which has implications for labour supply decisions through wealth

effects. Exogenous TFP is assumed to be such that the growth rate of the natural level of output

satisfies the same restrictions as those on real GDP growth in the endowment economy of section 2.

Using the natural level of output [5.12], equation [5.11] for real marginal cost xt can be refor-
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mulated in terms of the output gap Ỹt|t0 = Yt/Ŷ
∗
t|t0 , relative-price distortions ∆t, and a wedge Ψt|t0

that represents the effects on different households’ labour supplies of deviations from the complete-

markets wealth distribution (written in terms of the consumption gaps c̃τ,t|t0 = cτ,t/c
∗
τ,t|t0 defined

relative to consumption with complete financial markets open from t0 onwards):

xt = (1− ε−1)Ψt|t0∆
1+ξ
η

t Ỹ νt|t0 , where Ψt|t0 =

(
c̃
ηb

1+ηb

b,t|t0 c̃
ηs

1+ηs

s,t|t0

) α
ηb

1+ηb
+

ηs
1+ηs . [5.13]

5.6 Policy analysis

It is instructive to consider again the special cases of flexible prices or complete financial markets.

First suppose financial markets are incomplete but prices are fully flexible. With σ = 0, equations

[4.11] and [4.12] imply ∆t = 1 and xt = 1− ε−1, and it then follows from [5.13] that the output gap

is given by Ỹt|t0 = Ψ
− 1
ν

t|t0 . Using monetary policy to complete financial markets (from t0 onwards, as

in Proposition 11, assuming a real GDP growth rate of ĝ∗t|t0) results in c̃τ,t|t0 = 1, and from [5.13],

Ψt|t0 = 1, which implies Ỹt|t0 = 1. Thus, the complete-markets consumption allocation is achieved,

the output gap is closed, and there are no relative price distortions, so the equilibrium is first best.48

Therefore, all the policies considered in section 3 remain optimal when an elastic labour supply

decision is added to an incomplete-markets model with flexible prices.

It is perhaps surprising at first that optimal monetary policy continues to replicate complete

financial markets exactly as in the endowment economy. Since households can vary labour supply

in response to shocks, it might be thought the need for the insurance provided by complete financial

markets is reduced accordingly. However, if households had access to those insurance markets, they

would prefer to use them to cushion their consumption following shocks, rather than to adjust their

labour supply to achieve the same end. Intuitively, the utility function [5.1] has curvature in labour

hours, so the desire for risk-sharing applies also to hours as well as consumption. Hence, if monetary

policy can replicate insurance markets without cost (as it can in the economy with flexible prices),

it remains optimal to do so.

The second special case is that of complete financial markets (the assumptions from section 3.1)

or a representative household (θ = 0), but where prices are sticky. Because financial markets

are complete, there are no consumption gaps (c̃τ,t|t0 = 1), and hence from [5.13], Ψt|t0 = 1 holds

automatically. With no initial relative-price distortions (∆t0−1 = 1), strict inflation targeting (with

a zero inflation target, πt = 0) implies ∆t = 1 for all t ≥ t0 using equation [4.11]. Furthermore, with

πt = 0 the solution of [4.12] is xt = 1 − ε−1, and hence Ỹt|t0 = 1 from [5.13]. Therefore, output is

at its first-best level, there are no relative-price distortions, and the complete-markets consumption

allocation is achieved, confirming that strict inflation targeting is optimal in this case.

In summary, with flexible prices, there is no trade-off between a policy that supports risk sharing

and achieving the optimal level of aggregate output. With complete financial markets, there is no

trade-off between avoiding relative-price distortions and achieving the optimal level of aggregate

output. However, with both incomplete financial markets and sticky prices, all three objectives of

48As in the endowment economy, there are many first-best allocations, but only the complete-markets equilibrium
can be implemented using monetary policy. This remains true in the production economy.
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risk sharing, avoiding relative-price distortions, and closing the output gap are in conflict (in fact,

any two of these three objectives are generally in conflict). The remainder of this section studies

these trade-offs by deriving a loss function to approximate the welfare function, and approximations

of the equilibrium conditions that represent the constraints on monetary policy.

Proposition 15 The debt gap d̃t|t0 , inflation πt, the output gap Ỹt|t0 , and the bond yield jt must

satisfy the following constraints (a Phillips curve and the equivalents of the constraints in [4.14]

associated with incomplete financial markets) up to errors of order O2:

κ(πt − βEtπt+1) = νỸt|t0 −ψd̃t|t0 , where κ =
σ(1 + εξ)

(1− σ)(1− σβ)
; [5.14a]

Etd̃t+1|t0 = λd̃t|t0 ,
jt−1 − βµjt

1− βµ
− d̃t|t0 + λd̃t−1|t0 −

(1− α)(1− β)ψ

(1− βλ)ν
(d̃t|t0 − λd̃t−1|t0)− αỸt|t0

+αỸt−1|t0 − πt −
(1− α)(1− β)κ

ν
(πt − Et−1πt) = r̂∗t|t0 , and lim

`→∞
(βµ)`Etjt+` = 0, [5.14b]

where the coefficient ψ is defined below, and r̂∗t|t0 is the flexible-prices and complete-markets ex-

post real return (that is, with real GDP growth equal to ĝ∗t|t0). Using Pareto weights Ω̂∗τ |t0 =

c∗ατ,t0|t0/Ŷ
∗1−α
t0

, the welfare function [3.26] is equal to Wt0 = −Lt0 + It0 + O3, where It0 denotes

terms independent of policy from t0 onwards, O3 is a term third-order or higher in the standard

deviation ς of real GDP growth, and the loss function Lt0 is given by

Lt0 =
1

2

∞∑
t=t0

βt−t0Et0

[
ℵdd̃

2
t|t0 + ℵππ2

t + ℵYỸ
2
t|t0

]
, where ℵπ = εκ and ℵY = ν. [5.15]

If all households have the same Frisch elasticity of labour supply η then ℵd and ψ are:

ℵd =
αθ2(1− βλ)2

(1− θ2)(1− β)2

(
1 +

αη

(1− θ2)(1 + ξ)(1 + η)

)
, and ψ =

αθ2(1− βλ)

(1− θ2)(1− β)
, [5.16a]

while if the Frisch elasticities are ηb = (1−θ)η/(1 +θη) and ηs = (1 +θ)η/(1−θη) (for η < θ−1):

ℵd =
αθ2(1− βλ)2

(1− θ2)(1− β)2

(
1 +

αη

(1 + ξ)(1 + η)

)
, and ψ = 0. [5.16b]

Proof See appendix A.15. �

Inflation and the output gap are connected by an equation [5.14a] similar to the New Keynesian

Phillips curve. The coefficient κ captures the extent of both nominal and real rigidities, and ν

(defined in [5.11]) is the elasticity of costs with respect to the output gap, both of which are as in

the standard New Keynesian model (Woodford, 2003). With incomplete financial markets, the debt-

to-GDP gap d̃t|t0 also generally appears in the Phillips curve. The reason is that shocks affecting the

wealth distribution have implications for labour supply through wealth effects. An increase in the

debt-to-GDP ratio represents a negative wealth effect for borrowers, leading them to supply more

labour, and a positive wealth effect for savers, leading them to supply less labour. These changes in

labour supply then affect wages and thus costs for firms. The presence of this term in the Phillips

curve means there is no longer an equivalence between stabilizing inflation and stabilizing the output

gap.
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The direction of the overall effect of debt on costs depends on whether the response of borrowers’

or savers’ labour supply is larger. If both borrowers and savers have the same Frisch elasticity of

labour supply (ητ = η), the effect on borrowers is the dominant one and so an increase in the

debt-to-GDP ratio reduces costs (the coefficient ψ of the debt gap in the Phillips curve [5.14a] is

given in [5.16a], which is positive). However, if borrowers’ and savers’ Frisch elasticities differ then

this might not be true. Proposition 15 provides an example where the wealth effects of changes in

the debt-to-GDP ratio cancel out at the aggregate level, in which case the Phillips curve [5.14a]

reduces to the standard New Keynesian Phillips curve (ψ = 0).

The assumption of elastic labour supply implies there can be first-order fluctuations in aggregate

output, which creates a desire to stabilize the output gap Ỹt|t0 . The squared output gap now

appears in the loss function [5.15] with the same coefficient as in the standard New Keynesian

model (Woodford, 2003). Elastic labour supply also leads to an increase in the coefficient on the

debt gap d̃t|t0 (compared to equations [3.31] and [4.13]). This may appear counterintuitive because

the ability to vary labour supply can be used to insulate consumption from shocks, which would

reduce the welfare losses from financial markets providing less than perfect insurance. This effect is

indeed present, but three forces work to offset it.

First, since shocks are aggregate shocks that affect many households simultaneously, labour sup-

ply cannot be increased without a reduction in wages in equilibrium, which reduces the efficacy of

varying hours to provide consumption insurance (in the model, wage changes occur at the level of

different labour types). Second, the curvature of the utility function in hours means households dis-

like variability in hours in the same way they dislike variability in consumption, and so the potential

benefits of risk sharing in complete financial markets apply also to hours as well as consumption.

Third, shocks affecting the wealth distribution change the relative supplies of labour of different

households, and to the extent that labour inputs are imperfect substitutes, this represents a loss

of productive efficiency compared to what could be achieved with complete financial markets (the

argument is analogous to why fluctuations in wage inflation are undesirable in a model with sticky

wages and imperfectly substitutable labour types, see Erceg, Henderson and Levin, 2000).

The other constraints on monetary policy in addition to the Phillips curve are given in [5.14b].

These are the elastic labour supply equivalents of those from [4.14]. The equations for the pre-

dictable component of the debt-to-GDP gap and the transversality condition for the bond yield are

unchanged. However, with elastic labour supply, the surprise component of the debt-to-GDP gap

is also affected by the output gap. The main reason for this is the connection between the output

gap and the ex-ante real interest rate ρt. Using equation [3.9a], the real interest rate is given by

ρt = αEtỸt+1|t0−αỸt|t0 + ρ̂∗t|t0 , where ρ̂∗t|t0 = αEt[Ŷ
∗
t+1|t0− Ŷ∗t|t0 ] is the real interest rate at the natural

level of output. This is the source of the coefficient α of Ỹt|t0 in [5.14b]. Optimal monetary policy

subject to these constraints is characterized below.

Proposition 16 (i) The problem of minimizing the loss function [5.15] subject to the constraints

in [5.14a] and [5.14b] (with commitment at some distant past date t0 → −∞) has a solution

with the following properties: the debt gap d̃t is an AR(1) process with an innovation propor-

tional to ℘t =
∑∞

`=0 β
`(1−α(1−µ`))(Etĝ∗t+`−Et−1ĝ

∗
t+`) and an autoregressive root λ; inflation

48



πt is an ARMA(3,2) process with an innovation proportional to ℘t and autoregressive roots

λ, µ, and κ (0 < κ < 1) given by:

κ =
2

1 + β+ εν
κ

+
√(

1 + β+ εν
κ

)2 − 4β
. [5.17]

(ii) With strict inflation targeting, the debt gap d̃t is an AR(1) process with an innovation propor-

tional to ℘t and an autoregressive root λ, The solution for the debt gap is therefore a multiple

of the debt gap under the optimal policy, and the optimal policy weight χ on incomplete

financial markets is defined so that the debt gap under the optimal policy is equal to the debt

gap under strict inflation targeting multiplied by 1− χ.

(iii) In the special case of short-term debt (µ = 0) and where aggregate wealth effects on labour

supply cancel out (with Frisch elasticities given in Proposition 15, so that ψ = 0 and the

Phillips curve [5.14a] reduces to the standard New Keynesian Phillips curve), the solution of

the optimal monetary policy problem is as follows. The debt gap is d̃t = λd̃t−1 − (1 − χ)℘t,

where the optimal policy weight χ on incomplete financial markets is

χ =

1 +

(1−θ2)(1−β)2(1−βλ2)(1−βκ)

αθ2(1−βλ)2(1+ αη
(1+ξ)(1+η))

κ
ν

((
ν
κ

+ (1− β) + αβ(1− κ)
)2

+ α2β(1− βκ)
)

−1

. [5.18a]

The solutions for inflation, the output gap, and the real interest rate gap are the following

ARMA(1,1) processes:

πt = κπt−1 −
ν
κ

(
ν
κ

+ (1− β) + αβ(1− κ)
)
χ
(
℘t − α(1−βκ)

ν
κ

+(1−β)+αβ(1−κ)
℘t−1

)
(
ν
κ

+ (1− β) + αβ(1− κ)
)2

+ α2β(1− βκ)
; [5.18b]

Ỹt = κỸt−1 −
(1− βκ)χ

((
ν
κ

+ (1− β) + αβ(2− κ)
)
℘t − α℘t−1

)(
ν
κ

+ (1− β) + αβ(1− κ)
)2

+ α2β(1− βκ)
; [5.18c]

ρ̃t = κρ̃t−1 +
α(1− βκ)χ

((
α+ (1− κ)

(
ν
κ

+ (1− β) + αβ(2− κ)
))
℘t − α℘t−1

)(
ν
κ

+ (1− β) + αβ(1− κ)
)2

+ α2β(1− βκ)
.

[5.18d]

(iv) For the parameters µ = 0 and ψ = 0 considered in (iii), the (Markovian) discretionary policy

equilibrium is d̃t = λd̃t− (1−χ′)℘t, where χ′ < χ (generically). Inflation, the output gap, and

the real interest rate gap are all serially uncorrelated processes proportional to ℘t.

Proof See appendix A.16. �

The proof of the proposition derives a closed-form solution for the stochastic processes of the debt

gap d̃t, inflation πt, and the output gap Ỹt under the optimal monetary policy with commitment.

The initial date t0 of the commitment is set far in the past (t0 → −∞) to abstract from time-

consistency issues, so the t0 subscript is dropped in what follows. The solution has the property

that the optimal response of the debt gap to a shock ℘t is proportional to the response of the debt gap
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to ℘t under a policy of strict inflation targeting. This allows an equivalent of χ from Proposition 13

to be calculated that measures the weight optimal monetary policy places on stabilizing the debt

gap relative to stabilizing inflation. The optimal response of the debt gap is 1−χ multiplied by what

it would be given strict inflation targeting, so χ = 0 represents complete stabilization of inflation

and χ = 1 represents complete stabilization of the debt gap.

To understand the new aspects of the optimal monetary policy problem with elastic labour

supply, note that policy can now influence three variables which have implications for the debt gap

and thus the extent to which complete financial markets are replicated: inflation, real GDP, and the

ex-ante real interest rate. Inflation affects the ex-post real return on nominal bonds and thus the

value of existing debt (as before). Real GDP (and hence the output gap) affects the denominator

of the debt-to-GDP ratio. The ex-ante real interest rate affects the ongoing costs of servicing debt

relative to the stream of current and future labour income (formally, the ex-ante real interest rate

influences the debt gap by changing the level of the debt-to-GDP ratio consistent with risk sharing).

By combining the four constraints in [5.14a] and [5.14b], the evolution of the debt gap depends

on the shock ℘t and three terms related respectively to inflation, the output gap, and the ex-

ante real interest rate.49 The impact of shocks on the debt gap and potential policy responses

through these three variables are scaled down to the extent that ψ > 0, so fluctuations in the

debt gap are dampened when borrowers’ labour supply response dominates that of savers. This is

the effect discussed earlier where the ability to vary labour supply mitigates the impact of shocks

when complete financial markets are not available. The effect of inflation on debt is related to the

unexpected change in the term Et[πt + (βµ)πt+1 + (βµ)2πt+2 + · · · ] as before, where µ` represents

the stock of debt issued in the past that has not been refinanced ` periods after the shock.

An increase in the output gap Ỹt has the effect of directly boosting real GDP growth at time

t and thus reducing the debt-to-GDP ratio, but the impact on the debt gap is more subtle. Since

monetary policy has only a temporary influence on real GDP, extra growth now reduces overall

growth in the future by exactly the same amount. Given the link between growth expectations and

the debt-to-GDP ratio consistent with risk sharing (see equations [3.9a] and [3.11]), the effect of the

output gap on the debt gap actually depends on Ỹt +Et[β(Ỹt+1 − Ỹt) +β2(Ỹt+2 − Ỹt+1) + · · · ], not

just Ỹt. With the New Keynesian Phillips curve ([5.14a], setting ψ = 0 for now), it is seen that this

term is equal to (1 − β)(κ/ν)πt, the reciprocal of the long-run Phillips curve slope multiplied by

current inflation. Since it is reasonable to set the discount factor β close to one (in which case the

long-run Phillips curve is close to vertical), this term is negligible for all practical purposes (it is not

exactly zero because future growth is discounted relative to current growth, so by bringing growth

49Using equations [5.14a] and [5.14b], the precise expression for the evolution of the debt-to-GDP gap d̃t is:

d̃t = λd̃t−1 −
(

1 +

(
1− β
1− βλ

+
αβ(1− λ)(1− µ)

(1− βλ)(1− βλµ)

)
ψ

ν

)−1(
℘t + (Et − Et−1)

∞∑
`=0

(βµ)`πt+`

+ (1 − β)
κ

ν
(Et − Et−1)πt + αβ(1 − µ)

κ

ν
(Et − Et−1)

∞∑
`=0

(βµ)`(πt+` − πt+1+`)

)
.
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forwards, there is still a small positive effect). Monetary policy therefore cannot have a sustainable

impact on the burden of debt simply through its temporary effect on the level of real GDP.

It does not follow however that expansionary or contractionary monetary policy has no effect on

the debt burden beyond its implications for ex-post real returns through inflation. There remains

the option of changing ex-ante real interest rates. Intuitively, expansionary monetary policy that

reduces the ex-ante real interest rate is effectively a transfer from savers to borrowers, what might

be labelled ‘financial repression’ (even though the transmission mechanism of monetary policy ).

While monetary policy cannot permanently affect real interest rates, there is no reason why cutting

the real interest rates now means real interest rates in the future must be higher than they would

otherwise have been (unlike real GDP growth, as discussed above).

Changing ex-ante real interest rates thus provides monetary policy with an alternative to influ-

encing the debt gap through the effect of inflation on ex-post real returns. In contrast to the latter,

which is effective only while debt contracts are not refinanced, the former is effective only when

refinancing does take place. For debt refinanced ` periods after a shock at time t, the impact of

monetary policy on the date-t debt burden is determined by the discounted sum of real interest gaps

Et[β
`+1ρ̃t+` +β`+2ρ̃t+`+1 +β`+3ρ̃t+`+2 + · · · ] from t+ ` onwards. Given the New Keynesian Phillips

curve [5.14a] (with ψ = 0 for now) and the equation ρ̃t = αEt[Ỹt+1 − Ỹt] linking the real interest

rate and output gaps, these terms reduce to (ακ/ν)β`+1Et[πt+`+1−πt+`], meaning that the slope of

the inflation path over time is an indicator of financial repression through ex-ante real interest rates.

With a (steady-state) fraction (1− µ)µ` of debt issued prior to date t being refinanced at t+ `, the

overall effect of changes in ex-ante real interest rates on the debt burden is given by the unexpected

change in (ακ/ν)(1 − µ)β
∑∞

`=0(βµ)`Et[πt+`+1 − πt+`]. Thus, the more the inflation trajectory is

smoothed, the smaller is the effect of monetary policy on the ex-ante real interest rate.

As the maturity of debt increases, successful financial repression requires an inflation trajectory

with a non-zero slope further in the future. Given the Phillips curve, the required inflation path

entails output gap fluctuations over a longer horizon, increasing the losses from following such

a policy. Financial repression is therefore not well suited to stabilizing the debt gap when debt

contracts have a long maturity, in which case a policy of influencing ex-post real returns through

inflation smoothly spread out over time is effective at a much lower cost in terms of the implied

inflation and output gap fluctuations. But for short-maturity debt where only immediate inflation

surprises can affect ex-post real returns, financial repression provides an additional tool for stabilizing

the debt gap, with the losses from following this policy being small when the short-run Phillips curve

is relatively flat.

For illustration, Proposition 16 gives an explicit solution of the optimal monetary policy problem

with short-term debt (µ = 0) and the standard New Keynesian Phillips curve (ψ = 0). Shocks that

increase the debt gap now bring forth a monetary policy response that cuts real interest rates and

increases the output gap.50 Since expectations are important when using these tools, discretionary

policy features too little stabilization of the debt gap relative to a policy with commitment.

50The autoregressive root κ from [5.17] in [5.18b]–[5.18d] is the same as the autoregressive root of the solution of
the standard optimal monetary policy problem with cost-push shocks (see, Woodford, 2003).
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6 Quantitative analysis of optimal monetary policy

This section presents a quantitative analysis of the nature of optimal monetary policy taking into

account all the features of the full model from section 5.

6.1 Calibration

Let T denote the length in years of one discrete time period in the model. The numerical results

presented here assume a quarterly frequency (T = 1/4), but the choice of frequency does not

significantly affect the results. The parameters of the model are β, θ, α, λ, η, µ, ε, ξ, and σ. As

far as possible, these parameters are set to match features of U.S. data.51 The baseline calibration

targets and the implied parameter values are given in Table 1 and justified below.

Table 1: Baseline calibration

Calibration targets Implied parameter values

Real GDP growth g 1.7%
Real interest rate r 5% Discount factor β 0.992
Debt-to-GDP ratio D 130% Debt service ratio θ 8.6%
Coefficient of relative risk aversion α 5
Marginal propensity to consume m 6% Discount factor elasticity λ 0.993
Frisch elasticity of labour supply η 2
Average duration of debt Tm 5 Debt maturity parameter µ 0.967
Price elasticity of demand ε 3
Marginal cost elasticity w.r.t. output ξ 0.5
Average duration of price stickiness Tp 8/12 Calvo pricing parameter σ 0.625

Notes: The parameters are derived from the calibration targets using equations [6.1]–[6.5]. The calibration
targets are specified in annual time units; the parameter values assume a quarterly model (T = 1/4).
Sources: See discussion in section 6.1.

Consider first the parameters β and θ (the choice of these parameters is equivalent to specifying

the patience parameters ∆b and ∆s, as seen in Proposition 1). These are calibrated to match

evidence on the average price and quantity of household debt. The ‘price’ of debt is the average

annual continuously compounded real interest rate r paid by households for loans. As seen in

[2.27b], the steady-state growth-adjusted real interest rate is related to β. Let g denote the average

annual real growth rate of the economy. Given the length of the discrete time period in the model,

1 + ρ̄ = erT and 1 + ḡ = egT . Hence, using [2.27b], β can be set to:

β = e−(r−g)T . [6.1]

From 1972 through to 2011 there was an average annual nominal interest rate of 8.8% on 30-year

mortgages, 10% on 4-year auto loans, and 13.7% on two-year personal loans, while the average annual

51The source for all data referred to below is Federal Reserve Economic Data (http://research.stlouisfed.
org/fred2).
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change in the personal consumption expenditure (PCE) price index over the same time period was

3.8%. The average credit-card interest rate between 1995 and 2011 was 14%. For comparison, 30-

year Treasury bonds had an average yield of 7.7% over the periods 1977–2001 and 2006–2011. The

implied real interest rates are 4.2% on Treasury bonds, 5% on mortgages, 6.2% on auto loans, 9.9%

on personal loans, and 12% on credit cards.52 The baseline real interest rate is set to the 5% rate on

mortgages as these constitute the bulk of household debt.53 The sensitivity analysis considers values

of r from 4% up to 7%. Over the period 1972–2011 used to calibrate the interest rate, the average

annual growth rate of real GDP per capita was 1.7%. Together with the baseline real interest rate

of 5%, this implies that β ≈ 0.992 using [6.1]. Since many models used for monetary policy analysis

are typically calibrated assuming zero real trend growth, for comparison the sensitivity analysis also

considers values of g between 0% and 2%.

The relevant quantity variable for debt is the ratio of gross household debt to annual household

income, denoted by D.54 This corresponds to what is defined as the loans-to-GDP ratio l̄ in the

model (the empirical debt ratio being based on the amount borrowed rather than the subsequent

value of loans at maturity) after adjusting for the length of one time period (T years), hence D = l̄T .

Using the expression for l̄ in equation [2.27c] and given a value of β, the equation can be solved for

the implied value of the debt service ratio θ:

θ =
2(1− β)D

βT
. [6.2]

Note that in the model, all GDP is consumed, so for consistency between the data and the model’s

prediction for the debt-to-GDP ratio, either the numerator of the ratio should be total gross debt

(not only household debt), or the denominator should be disposable personal income or private

consumption. Since the model is designed to represent household borrowing, and because the

implications of corporate and government debt may be different, the latter approach is taken.

In the U.S., like a number of other countries, the ratio of household debt to income has grown

significantly in recent decades. To focus on the implications of levels of debt recently experienced,

the model is calibrated to match average debt ratios during the five years from 2006 to 2010. The

sensitivity analysis considers a wide range of possible debt ratios from 0% up to 200%. Over the

period 2006–2010, the average ratio of gross household debt to disposable personal income was

52Average PCE inflation over the periods 1977–2001 and 2006–2011 was 3.5%, and 2% over the period 1995–2011.
53Mortgage debt was around 77% of all household debt on average during 2006–2010. The baseline real interest

rate is close to the conventional calibration used in many real business cycle models (King and Rebelo, 1999). The
mortgage rate implies a spread of 0.8% between the interest rates on loans to households and Treasury bonds of the
same maturity. Cúrdia and Woodford (2009) consider a somewhat larger spread of 2% between interest rates for
borrowers and savers.

54Given the heterogeneity between borrower and saver households, it would not make sense to net the financial
assets of savers against the liabilities of borrowers. However, it might be thought appropriate to net assets and
liabilities at the level of individual households, especially since a large fraction of household borrowing is to buy
assets (houses). If the assets held by households had the same non-contingent return as their debt liabilities then this
netting would be valid, but that is highly unlikely for assets such as housing, which experience significant fluctuations
in value. In the model, non-contingent debt is repaid only from future income, not from the sale of assets, so
the assumptions used in the calibration would be approximately correct if the value of the assets actually held by
households were positively correlated with the value of GDP and had a similar volatility. If asset returns were more
procyclical, the calibration would understate the problem of household leverage; if returns were less procyclical or
countercyclical, the calibration would overstate leverage.
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approximately 124%, while the ratio of debt to private consumption was approximately 135%.

Taking the average of these numbers, the target chosen is a model-consistent debt-to-income ratio

of 130%, which implies using [6.2] a debt service ratio of θ ≈ 8.6%.55

In estimating the coefficient of relative risk aversion α, one possibility would be to choose values

consistent with household portfolios of risky and safe assets. But since Mehra and Prescott (1985)

it has been known that matching the equity risk premium may require a risk aversion coefficient

above 30, while values in excess of 10 are considered by many to be highly implausible.56 Subsequent

analysis of the ‘equity risk premium puzzle’ has attempted to build models consistent with the large

risk premium but with much more modest degrees of risk aversion.57

Alternative approaches to estimating risk aversion have made use of laboratory experiments,

observed behaviour on game shows, and in a recent study, the choice of deductible for car insurance

policies (Cohen and Einav, 2007).58 The survey evidence presented by Barsky, Juster, Kimball and

Shapiro (1997) potentially provides a way to measure risk aversion over stakes that are large as a

fraction of lifetime income and wealth.59 The results suggest considerable risk aversion, but most

likely not in the high double-digit range for the majority of individuals. Overall, the weight of

evidence from studies suggests a coefficient of relative risk aversion above one, but not significantly

more than 10. A conservative baseline value of 5 is adopted, and the sensitivity analysis considers

55Empirically, a direct measure of the ratio of household debt payments to disposable personal income is available,
though this is not directly comparable to the debt service ratio in the model. Between 2006 and 2010, the average
debt service ratio was 12.7%. This measure includes both interest and amortization. For conventional Tf -year fixed-
rate mortgages (where the borrower makes a sequence of equal repayments over the life of the loan) the share of
amortization in total repayments (over the life of the loan, or over all cohorts of borrowers at a point in time) is
approximately (1 − e−rTf )/(rTf), where r is the annual real interest rate. Taking r ≈ 5% and Tf = 30 years, this
formula implies that interest payments are approximately 48% of total debt service costs, yielding an estimate of the
interest-only debt-service ratio of around 6.1%. In the model, the debt service ratio θ is calculated only for borrowers,
not for all households as in the data, and is net of new borrowing (which is positive when there is positive income
growth). Using [2.27b], the model implies the interest-only debt service ratio over all households (including the 50%
of savers with a zero debt service ratio) is given by ρ̄d̄/(1+ ρ̄), which is comparable to the interest-only adjustment of
the empirical measure. The baseline calibration yields a debt service ratio of approximately 6.5%, close to the 6.1%
in the data.

56Large values of α are also needed to generate a significant inflation risk premium. For illustration, suppose real
GDP follows a random walk, and the standard deviation of annual real GDP growth is set to 2.1% as found in the
data for the period 1972–2011. Under the flexible-price optimal policy of nominal GDP targeting (Proposition 3),
the inflation risk premium would be approximately 0.044α% (at an annual rate) using Proposition 8. For α < 10,
the inflation risk premium can be no more than 0.44%, even though in this example inflation would be perfectly
negatively correlated with real GDP growth and have the same standard deviation (of 2.1%, not too far below the
actual standard deviation of PCE inflation of approximately 2.5% between 1972 and 2011).

57For example, Bansal and Yaron (2004) assume a relative risk aversion coefficient of 10, while Barro (2006) chooses
a more conservative value of 4.

58Converting the estimates of absolute risk aversion into coefficients of relative risk aversion (using average annual
after-tax income as a proxy for the relevant level of wealth) leads to a mean of 82 and a median of 0.4. The stakes
are relatively small and many individuals are not far from being risk neutral, though a minority are extremely risk
averse. As discussed in Cohen and Einav (2007), the estimated level of mean risk aversion is above that found in
other studies, which are generally consistent with single-digit coefficients of relative risk aversion.

59Respondents to the U.S. Health and Retirement Study survey are asked a series of questions about whether they
would be willing to leave a job bringing in a secure income for another job with a chance of either a 50% increase
in income or a 50% fall. By asking a series of questions that vary the probabilities of these outcomes, the answers
can in principle be used to elicit risk preferences. One finding is that approximately 65% of individuals’ answers fall
in a category for which the theoretically consistent coefficient of relative risk aversion is at least 3.8. The arithmetic
mean coefficient is approximately 12, while the harmonic mean is 4.
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values from zero up to 10.60

One approach to calibrating the discount factor elasticity parameter λ (from [2.2]) is to select a

value on the basis of its implications for the marginal propensity to consume from financial wealth.

Let m denote the increase in per-household (annual) consumption of savers from a marginal increase

in their financial wealth.61 Using the formula for λ from Proposition 6 and the expression for β in

[2.27b], λ is given by:

λ =
1− mT
β

. [6.3]

Parker (1999) presents evidence to suggest that the marginal propensity to consume from wealth lies

between 4% and 5% (for a survey of the literature on wealth and consumption, see Poterba, 2000).

However, it is argued by Juster, Lupton, Smith and Stafford (2006) that the marginal propensity to

consume varies between different forms of wealth. They find the marginal propensity to consume

is lowest for housing wealth and larger for financial wealth. Given the focus on financial wealth in

this paper, the baseline calibration assumes m ≈ 6%, which using [6.3] implies λ ≈ 0.993.62 The

sensitivity analysis considers marginal propensities to consume from 4% to 8%.63

The range of available evidence on the Frisch elasticity of labour supply η is discussed by Hall

(2009), who concludes that a value of approximately 2/3 is reasonable. However, both real business

cycle and New Keynesian models have typically assumed Frisch elasticities significantly larger than

this, often as high as 4 (see, King and Rebelo, 1999, Rotemberg and Woodford, 1997). The baseline

calibration adopted here uses a Frisch elasticity of 2, and the sensitivity analysis considers a range

of values for η from completely inelastic labour supply (as in the model of section 4) up to 4.64

The debt maturity parameter µ (which stands in for the parameter γ specifying the sequence

60The parameter α is also related to the elasticity of intertemporal substitution α−1. Early estimates of intertem-
poral substitution suggested an elasticity somewhere between 1 and 2, such as those from the instrumental variables
method applied by Hansen and Singleton (1982). Those estimates have been criticized for bias due to time aggre-
gation by Hall (1988), who finds elasticities as low as 0.1 and often insignificantly different from zero. Using cohort
data, Attanasio and Weber (1993) obtain values for the elasticity of intertemporal substitution in the range 0.7–0.8,
while Beaudry and van Wincoop (1996) find an elasticity close to one using a panel of data from U.S. states. Contrary
to these larger estimates, the survey evidence of Barsky, Juster, Kimball and Shapiro (1997) produces an estimate
of 0.18. An earlier version of the model presented here (Sheedy, 2013) has separate parameters for risk aversion and
intertemporal substitution, but quantitatively, the intertemporal substitution paramater is found to matter little for
the results. For this reason, the calibration of α here focuses on its implications for risk aversion.

61A simplifying feature of the model is that borrowers have the same marginal propensity to consume from financial
wealth as savers in the neighbourhood of the steady state.

62Together with the baseline calibration of β, λ, and α, the original patience parameters are ∆b ≈ 1.006 and
∆s ≈ 1.012, and the implied value of δ is 1.009. Thus, the exogenous difference between the annual rates of time
preference of borrowers and savers is approximately 2.4%.

63A potential alternative approach to calibrating λ is to use its implications for the persistence of shocks to
the wealth distribution. In the model, Proposition 4 shows that the impulse response of the debt-to-GDP gap is
proportional to λ` after ` time periods have elapsed. The expected duration (in years) of the effects of shocks on the
wealth distribution is thus Td = T

∑∞
`=1 `(1− λ)λ`−1 = T/(1− λ), which can be used to obtain λ given an estimate

of Td. The baseline calibration is equivalent to Td ≈ 36 years. The sensitivity analysis for the marginal propensity
to consume implies a range of λ values from 0.988 to 0.998, which is equivalent to considering values of Td from
approximately 21 to 139 years.

64The special case of different Frisch elasticities between borrowers and savers where aggregate wealth effects
on labour supply cancel out is also considered (see Proposition 15). Using the baseline calibration, the required
household-specific Frisch elasticities are ηb ≈ 1.6 for borrowers and ηs ≈ 2.6 for savers.
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of coupon payments, given µ = γ/(1 + n̄)) is set to match the average maturity of household debt

contracts. In the model, the average maturity of household debt is related to the duration of the

bond that is traded in incomplete financial markets. Formally, duration Tm refers to the average

of the maturities (in years) of each payment made by the bond weighted by its contribution to the

present value of the bond. Given the geometric sequence of nominal coupon payments parameterized

by γ, the bond duration (in steady state) is

Tm =
∞∑
`=1

`T

Q̄

γ`−1

(1 + j̄)`
=

T

1− γ
1+j̄

,

using the steady-state bond price (present value of the coupon payments) Q̄ = (1 − γ + j̄)−1

from [2.21].65 Let j denote the average annualized nominal interest rate on household debt, with

1 + j̄ = ejT . In the optimal policy analysis, the steady-state rate of inflation will be zero (π̄ = 0),

hence nominal GDP growth is n̄ = ḡ, and so µ = γ/(1 + ḡ). It follows that γ and µ can be

determined by:

γ = ejT
(

1− T

Tm

)
, and µ = e−gTγ. [6.4]

Doepke and Schneider (2006) present evidence on the average duration of household nominal debt

liabilities. Their analysis takes account of refinancing and prepayment of loans. For the most recent

year in their data (2004), the duration lies between 5 and 6 years, while the duration has not been

less than 4 years over the entire period covered by the study (1952–2004). This suggests a baseline

duration of Tm ≈ 5 years, which using [6.4] implies µ ≈ 0.967.66 The sensitivity analysis considers

the effects of having durations as short as one quarter (one-period debt), and longer durations up

to 10 years.67

There are two main strategies for calibrating the price elasticity of demand ε. The direct ap-

proach draws on studies estimating consumer responses to price differences within narrow consump-

tion categories. A price elasticity of approximately three is typical of estimates at the retail level

(see, for example, Nevo, 2001), while estimates of consumer substitution across broad consump-

tion categories suggest much lower price elasticities, typically lower than one (Blundell, Pashardes

and Weber, 1993). Indirect approaches estimate the price elasticity based on the implied markup

65Duration is equal to the percentage reduction in the real value of a nominal asset following a one percentage point
(annualized) permanent rise in inflation. Since µ = γ/(1 + n̄), j̄ = ī, 1 + ī = (1 + ρ̄)(1 + ḡ), 1 + n̄ = (1 + π̄)(1 + ḡ),
and β = (1 + ḡ)/(1 + ρ̄), it follows that Tm = T/(1 − βµ). A permanent rise in inflation by one percentage point
at an annualized rate is equivalent to increasing πt by T in all time periods from some date onwards, and equation
[3.13] shows that this reduces the ex-post real return on nominal bonds by T/(1−βµ), confirming the interpretation
of Tm.

66A conventional Tf -year fixed-rate mortgage has a duration of (erTf −1− rTf)/(r (erTf −1)), which is approximately
11 years with Tf = 30 and r ≈ 5%. The calibrated duration may seem short given the high share of mortgage debt
in total household debt and the prevalence of 30-year fixed-rate mortgages, but refinancing shortens the duration of
debt. In the model, the frequency of refinancing is determined by 1− µ. The baseline calibration implies that 12.6%
of the total stock of debt is refinanced or newly issued each year.

67The baseline value of γ is 0.971. The calibration method implicitly assumes γ is a structural parameter that
will remain invariant to changes in policy, including the change in the average rate of inflation. An alternative is to
assume µ is the structural parameter, in which case µ is calibrated by dividing γ from [6.4] by 1 + n̄, where n̄ is the
average of actual nominal GDP growth. This method leads to µ ≈ 0.958, which is well within the range of values of
µ considered in the sensitivity analysis.
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1/(ε − 1), or as part of the estimation of a DSGE model. Rotemberg and Woodford (1997) esti-

mate an elasticity of approximately 7.9 and point out this is consistent with the markups in the

range of 10%–20%. Since it is the price elasticity of demand that directly matters for the welfare

consequences of inflation rather than its implications for markups as such, the direct approach is

preferred here and the baseline value of ε is set to 3. A range of values from the theoretical minimum

elasticity of 1 up to 10 is considered in the sensitivity analysis.

The aggregate production function is given in equation [5.8]. If e denotes the elasticity of

aggregate output with respect to hours then the elasticity ξ of real marginal cost with respect to

output can be obtained from e using:

ξ =
1− e

e
.

A conventional value of e ≈ 2/3 is adopted for the baseline calibration (this would be the labour

share in a model with perfect competition), which implies ξ ≈ 0.5. As discussed in Rotemberg

and Woodford (1999), there may be reasons to expect an elasticity of marginal cost with respect

to output higher than this (for example, if the elasticity of substitution between labour and other

factors is less than one), so the sensitivity analysis examines the effects of higher values of ξ. An

important implication of ξ is the strength of real rigidities (related to the term 1 + εξ appearing

in the formula for κ in the Phillips curve [5.14a]), which are absent in the special case of a linear

production function (ξ = 0).68 The sensitivity analysis considers values of ξ between 0 and 1.

In the model, σ is the probability of not changing price in a given time period. The probability

distribution of survival times for newly set prices is (1−σ)σ`, and hence the expected duration of a

price spell Tp (in years) is Tp = T
∑∞

`=1 `(1− σ)σ`−1 = T/(1− σ). With data on Tp, the parameter

σ can be inferred from:

σ = 1− T

Tp

. [6.5]

There is now an extensive literature measuring the frequency of price adjustment across a represen-

tative sample of goods. Using the dataset underlying the U.S. CPI index, Nakamura and Steinsson

(2008) find the median duration of a price spell is 7–9 months, excluding sales but including product

substitutions. Klenow and Malin (2010) survey a wide range of studies reporting median durations

in a range from 3–4 months to one year. The baseline duration is taken to be 8 months (Tp ≈ 8/12),

implying σ ≈ 0.625. The sensitivity analysis considers average durations from 3 to 15 months.69

68It is conventional to assume a source of real rigidities in New Keynesian models, though Bils, Klenow and Malin
(2012) present some critical evidence.

69An alternative approach to calibrating the parameters σ, ε, and ξ related to nominal and real rigidities would be
to choose values consistent with estimates of the slope of the Phillips curve. The recent literature on estimating the
New Keynesian Phillips curve studies the relationship πt = βEtπt+1 + (1/κ)xt between inflation πt and real marginal
cost xt, where the latter is proxied by the labour share. The baseline calibration implies 1/κ ≈ 0.091. Gaĺı and
Gertler (1999) present a range of estimates of 1/κ lying between 0.02 and 0.04. Gaĺı, Gertler and López-Salido (2001)
estimate 1/κ to be in the range 0.03–0.04, while Sbordone (2002) obtains an estimate of 0.055. The Phillips curve
implied by the baseline calibration is steeper than these estimates, but the sensitivity analysis for σ, ε, and ξ does
allow for Phillips curve slopes in the range of econometric estimates. The maximum value of σ considered implies
1/κ ≈ 0.021, the maximum value of ε implies 1/κ ≈ 0.038, and the maximum value of ξ implies 1/κ ≈ 0.057.
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6.2 Results

Consider an economy hit by an unexpected permanent fall in potential output. How should monetary

policy react? In the basic New Keynesian model with sticky prices but either complete financial

markets or a representative household, the optimal monetary policy response to a TFP shock is to

keep inflation on target and allow actual output to fall in line with the loss of potential output.

Using the baseline calibration from Table 1 and the solution to the optimal monetary policy problem

given in Proposition 16, Figure 1 shows the impulse responses of the debt-to-GDP gap d̃t, inflation

πt, the output gap Ỹt, and the bond yield jt under the optimal monetary policy and under a policy

of strict inflation targeting for the 30 years following a 10% fall in potential output.

Figure 1: Responses to a TFP shock, optimal monetary policy and strict inflation targeting
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Notes: The shock is an unexpected permanent TFP shock that reduces the natural level of output by 10%
relative to its trend. The debt-to-GDP gap and the output gap are reported as percentage deviations,
and inflation and bond yields are reported as annualized percentage rates. The parameters are set in
accordance with the baseline calibration from Table 1.

With strict inflation targeting, the debt-to-GDP gap rises in line with the fall in output (10%)

because the denominator of the debt-to-GDP ratio falls, while the numerator is unchanged. The
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effects of this shock on the wealth distribution and hence on consumption are long lasting (the

half-life of the debt-to-GDP impulse response is around 25 years). The output gap is not completely

stabilized because the disturbance to the wealth distribution leads to wealth effects on aggregate

labour supply that insurance markets would eliminate, though this effect is found to be quantitatively

small. Bond yields are almost completely stable because inflation is constant and the effects of the

incompleteness of financial markets on ex-ante real interest rates are small.

The optimal monetary policy response is in complete contrast to strict inflation targeting. Op-

timal policy allows inflation to rise, which stabilizes nominal GDP over time in spite of the fall in

real GDP. This helps to stabilize the debt-to-GDP ratio, moving the economy closer to the outcome

with complete financial markets where borrowers would be insured against the shock and the value

of debt liabilities would automatically move in line with income. The rise in the debt-to-GDP gap

is very small (around 1%) compared to strict inflation targeting (10%). The rise in inflation is

very persistent, lasting around two decades. The higher inflation called for is significant, but not

dramatic: for the first two years, around 2–3% higher, for the next decade around 1–2% higher,

and for the decade after that, around 0–1% higher. Inflation that is spread out over time is still

effective in reducing the debt-to-GDP ratio because debt liabilities have a long average maturity. It

is also significantly less costly in terms of relative-price distortions to have inflation spread out over

a longer time than the typical durations of stickiness of individual prices.

The rise in inflation does lead to a disturbance to the output gap for the first one or two years,

but this is short lived because the duration of the real effects of monetary policy through the

traditional price-stickiness channel is brief compared to the relevant time scale of decades for the

other variables. The effect is also quantitatively small because inflation is highly persistent, the

rise in expected inflation closely matching the rise in actual inflation, so the Phillips curve implies

little impact on the output gap. Over a longer horizon, the optimal policy actually performs better

at stabilizing the output gap because it reduces the shock to the wealth distribution that distorts

labour supply decisions in the case of strict inflation targeting. Finally, nominal bond yields show a

persistent increase. It might seem surprising that yields do not fall as monetary policy is loosened,

but the bonds in question are long-term bonds, and the effect on inflation expectations is dominant

(there is a fall in real interest rates because the rise in bond yields is less than what would be implied

by higher expected inflation alone).

As shown in Proposition 16, the impulse response function of the debt-to-GDP gap under the

optimal policy is proportional to the impulse response under strict inflation targeting. Since the debt-

to-GDP gap would be zero if incomplete financial markets were the only concern of the policymaker,

this provides a measure of the weights attached by optimal policy to stabilizing the debt gap and to

stabilizing inflation. The response of the debt gap under the optimal policy is approximately 11.6%

of the response under strict inflation targeting, so the policy weight χ on debt gap stabilization is

88.4% and the policy weight 1−χ on inflation stabilization is 11.6% (similarly, the inflation response

under the optimal policy is around 88.4% of what would keep the debt gap exactly at zero).70

70There is a variant of the model where aggregate wealth effects on labour supply cancel out (ψ = 0, in which
case the Phillips curve [5.14a] reduces to the standard New Keynesian Phillips curve). This entails setting different
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The baseline calibration implies that addressing the problem of incomplete financial markets

is quantitatively the main focus of optimal monetary policy rather than other objectives such as

inflation stabilization. What explains this, and how sensitive is this conclusion to the particular

calibration targets? Consider the exercise of varying each calibration target individually over the

ranges discussed in section 6.1, holding all other targets constant. For each new target, the implied

parameters are recalculated and the new policy weight χ is obtained using Proposition 16. Figure 2

plots the values of χ (the optimal policy weight on the debt-to-GDP gap) obtained for each target.

As can be seen in Figure 2, over the range of reasonable average real GDP growth rates there is

almost no effect on the optimal policy weight. The range of real interest rates is somewhat larger

(because there is less certainty about the appropriate real interest rate to assume for household

borrowing) but the optimal policy weight on incomplete financial markets changes little. Both

average real growth and average real interest rates affect the discount factor β, which enters the

equations of the model in many places, but there is no intuitively obvious reason to expect it to

have a large impact on the relative benefits and costs of achieving the various objectives of policy.

The results are most sensitive to the calibration targets for the average debt-to-GDP ratio and

the coefficient of relative risk aversion. The average debt-to-GDP ratio proxies for the parameter θ,

which is related to the difference in patience between borrowers and savers. It is not surprising that

an economy with less debt in relation to income has less of a concern with the incompleteness of

financial markets because it means the impact of shocks is felt more evenly by borrowers and savers.

In the limiting case of a representative-household economy, the average debt-to-GDP ratio tends to

zero, and the degree of completeness of financial markets becomes irrelevant. The debt gap receives

more than half the weight in the optimal policy as long as the calibration target for the average

debt-to-GDP ratio is not below 50%. It seems unlikely the U.S. would return to such low levels of

household debt in the foreseeable future if the levels of borrowing experienced since the 1990s do

indeed reflect the preferences and income profiles of borrowers and savers.

It is also not surprising that the results are sensitive to the coefficient of relative risk aversion.

Since the only use for complete financial markets in the model is risk sharing, if households were

risk neutral then there would be no loss from these markets being absent, as long as saving and

borrowing incomplete financial markets remained possible. The baseline coefficient of relative risk

aversion is higher than the typical value of 2 found in many macroeconomic models (though that

number is usually relevant for intertemporal substitution in those models, not for attitudes to risk),

but it is low compared to the values often assumed in finance models that seek to match risk premia

(even the maximum value of 10 considered here would be insufficient to generate realistic risk premia

without adding other features to the model). The optimal policy weight on the debt gap exceeds

one half if the coefficient of relative risk aversion exceeds 1.3, so lower degrees of risk aversion do

not necessarily overturn the conclusions of this paper.

The next most important calibration target is the price elasticity of demand. A higher price

Frisch elasticities for borrowers and savers with η being the average elasticity, as explained in Proposition 15. Using
this version of the model and the baseline calibration, the optimal policy weight on the debt gap is 88.8%. Since the
difference with the standard model is so small, this variant of the model is ignored in subsequent analysis.
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Figure 2: Sensitivity analysis for optimal policy weight χ on incomplete financial markets

Real GDP growth rate (g , annual %) Real interest rate (r , annual %)

Debt-to-GDP ratio (D, % of annual GDP) Coefficient of relative risk aversion (α)

Marginal propensity to consume (m , annual %) Frisch elasticity of labour supply (η)

Duration of debt (Tm, years) Price elasticity of demand (ε)

Marginal cost elasticity w.r.t. output (ξ) Duration of price stickiness (Tp, years)
0.4 0.6 0.8 1 1.20 0.2 0.4 0.6 0.8

2 4 6 8 102 4 6 8 10

0 1 2 3 44 5 6 7 8

0 2 4 6 80 50 100 150 200

4 5 6 70 0.5 1 1.5 2

0.25

0.5

0.75

1

0.25

0.5

0.75

1

0.25

0.5

0.75

1

0.25

0.5

0.75

1

0.25

0.5

0.75

1

0.25

0.5

0.75

1

0.25

0.5

0.75

1

0.25

0.5

0.75

1

0.25

0.5

0.75

1

0.25

0.5

0.75

1

Notes: The response of the debt gap under the optimal policy is 1− χ multiplied by its response under
strict inflation targeting. Each of the calibration targets in Table 1 is varied individually, holding all
others at their baseline values. The baseline value of χ is 0.884.

elasticity increases the welfare costs of inflation. Welfare ultimately depends on quantities not

prices, but the price elasticity determines how much quantities are distorted by dispersion of relative

prices. To reduce the optimal policy weight on the debt gap below one half it is necessary to
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assume price elasticities in excess of 10. Such values would be outside the range typical in IO and

microeconomic studies of demand, with 10 itself being at the high end of the range of values used

in most macroeconomic models. The typical value of 6 often found in New Keynesian models only

reduces χ to approximately 71%.

The results are largely insensitive to the marginal propensity to consume from financial wealth,

which is used to determine the parameter λ in the specification of the endogenous discount factors.

Since this feature of the model was introduced only for technical reasons, it is reassuring that it does

not have a significant effect on the results within a wide range of reasonable parameter values. The

Frisch elasticity of labour supply has a fairly small but not insignificant effect on the results, with

the optimal policy weight on the debt gap increasing with the Frisch elasticity. A higher elasticity

increases the welfare costs of shocks to wealth distribution by distorting the labour supply decisions

of different households, as well as making it easier for monetary policy to influence the real value of

debt by changing the ex-ante real interest rate in addition to inflation. An elastic labour supply does

mean that inflation fluctuations lead to output gap fluctuations, which increases the importance of

targeting inflation, but the first two effects turn out to be more important quantitatively.

The results are somewhat more sensitive to the average duration of a price spell and the elasticity

of real marginal cost with respect to output. The first of these determines the importance of nominal

price rigidities. Greater nominal rigidity leads to more dispersion of relative prices from a given

amount of inflation, and thus reduces the optimal policy weight on the debt gap. A higher output

elasticity of marginal cost implies that the production function has greater curvature, so a given

dispersion of output levels across firms represents a more inefficient allocation of resources. However,

the range of reasonable values for the duration of price stickiness does not reduce χ below 65%, and

the range of marginal cost elasticities does not lead to any χ value below 80%.

Finally, there is the average duration of household debt, where the effects of this calibration

target are more subtle. It might be expected that the longer the maturity of household debt, the

higher is the optimal policy weight on the debt gap. This is because longer-term debt allows inflation

to be spread out further over time, reducing the welfare costs of the inflation, yet still having an

effect on the real value of debt. However, the sensitivity analysis shows the optimal policy weight is

a non-monotonic function of debt maturity: either very short-term or long-term debt maturities lead

to high values of χ, while debt of around 1.5 years maturity has the lowest value of χ (approximately

75%).

This puzzle is resolved by recalling there are two ways monetary policy can affect the real value

of debt: inflation to change the ex-post real return on nominal debt, and changes in the ex-ante real

interest rate (‘financial repression’). As has been discussed, the first method is effective at a lower

cost for long debt maturities. When labour supply is inelastic, the second method is not available,

and the value of χ is then indeed a strictly increasing function of debt maturity (with the value of

χ falling to 15% for the shortest-maturity debt).

When the ex-ante real interest rate method is available, it is most effective (taking account of the

costs of using it in terms of inflation and output gap fluctuations) when debt maturities are short.

This is because monetary policy can only affect ex-ante real interest rates for a few years at most
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(in line with reasonable calibrations of nominal and real rigidities). If debt is continually refinanced

each quarter or comprises floating-rate instruments, monetary policy has significant power to affect

its real value because nominal rigidities allow it to change the current real interest rate. However,

if fixed-rate debt is rarely refinanced then, holding inflation constant (that is, ignoring the first

method for affecting the real value of the debt), the real return is largely predetermined and thus

insensitive to current monetary policy. Therefore, intermediate debt maturities correspond to the

lowest optimal policy weights on stabilizing the debt gap because the maturity is too short for the

inflation method to be effective at low cost, but too long for the ex-ante real interest rate method

to work.

7 Conclusions

This paper has shown how a monetary policy of nominal GDP targeting facilitates efficient risk

sharing in incomplete financial markets where contracts are denominated in terms of money. In an

environment where risk derives from uncertainty about future real GDP, strict inflation targeting

would lead to a very uneven distribution of risk, with leveraged borrowers’ consumption highly

exposed to any unexpected change in their incomes when monetary policy prevents any adjustment

of the real value of their liabilities. Strict inflation targeting does provide savers with a risk-free real

return, but fundamentally, the economy lacks any technology that delivers risk-free real returns, so

the safety of savers’ portfolios is simply the flip-side of borrowers’ leverage and high levels of risk.

Absent any changes in the physical investment technology available to the economy, aggregate risk

cannot be annihilated, only redistributed.

That leaves the question of whether the distribution of risk is efficient. The combination of

incomplete markets and strict inflation targeting implies a particularly inefficient distribution of

risk when households are risk averse. If complete financial markets were available, borrowers would

issue state-contingent debt where the contractual repayment is lower in a recession and higher in

a boom. These securities would resemble equity shares in GDP, and they would have the effect

of reducing the leverage of borrowers and hence distributing risk more evenly. In the absence of

such financial markets, in particular because of the inability of households to sell such securities,

a monetary policy of nominal GDP targeting can effectively complete financial markets even when

only non-contingent nominal debt is available. Nominal GDP targeting operates by stabilizing the

debt-to-GDP ratio. With financial contracts specifying liabilities fixed in terms of money, a policy

that stabilizes the monetary value of real incomes ensures that borrowers are not forced to bear too

much aggregate risk, converting nominal debt into real equity.

While the model is far too simple to apply to the recent financial crises and deep recessions

experienced by a number of economies, one policy implication does resonate with the predicament of

several economies faced with high levels of debt combined with stagnant or falling GDPs. Nominal

GDP targeting is equivalent to a countercyclical price level, so the model suggests that higher

inflation can be optimal in recessions. In other words, while each of the ‘stagnation’ and ‘inflation’

that make up the word ‘stagflation’ is bad in itself, if stagnation cannot immediately be remedied,
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some inflation might be a good idea to compensate for the inefficiency of incomplete financial

markets. And even if policymakers were reluctant to abandon inflation targeting, the model does

suggest that they have the strongest incentives to avoid deflation during recessions (a procyclical

price level). Deflation would raise the real value of debt, which combined with falling real incomes

would be the very opposite of the risk sharing stressed in this paper, and even worse than an

unchanging inflation rate.

It is important to stress that the policy implications of the model in recessions are matched by

equal and opposite prescriptions during an expansion. Thus, it is not just that optimal monetary

policy tolerates higher inflation in a recession — it also requires lower inflation or even deflation

during a period of high growth. Pursuing higher inflation in recessions without following a symmetric

policy during an expansion is both inefficient and jeopardizes an environment of low inflation on

average. Therefore the model also argues that more should be done by central banks to ‘take away

the punch bowl’ during a boom even were inflation to be stable.
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A Appendices

A.1 Proof of Proposition 1

(i) Consider the system of equations [2.22a]–[2.22f]. Suppose there are no shocks to real GDP (gt = ḡ,
that is, ς = 0 in [2.3], where ḡ is an exogenous variable) and no uncertainty created by monetary policy
(it = ī). A steady-state solution of the system of equations must be such that ex-ante and ex-post real
returns are the same, that is, ρ̄ = r̄, using [2.22a]. With c̄τ being time invariant, the Euler equations in
[2.22d] imply that the following must hold:

δ̄b(1 + ρ̄)(1 + ḡ)−α = δ̄s(1 + ρ̄)(1 + ḡ)−α = 1, [A.1.1]

and hence δ̄b = δ̄s. Using equation [2.22e], this requires

∆bc̄
−(1−λ)α
b = ∆sc̄

−(1−λ)α
s . [A.1.2]

The budget identities [2.22c] imply that equation [2.23] holds, and hence c̄b and c̄s must also satisfy:

1

2
c̄b +

1

2
c̄s = 1. [A.1.3]

Rearranging equation [A.1.2] yields

c̄b

c̄s
=

(
∆b

∆s

) 1
(1−λ)α

,

which can be used to substitute for c̄b in terms of c̄s in equation [A.1.3] and thus solve for c̄s:

c̄s =
2

1 +
(
∆b
∆s

) 1
(1−λ)α

. [A.1.4]

This solution can be written as

c̄s = 1 + θ, where θ =
1−

(
∆b
∆s

) 1
(1−λ)α

1 +
(
∆b
∆s

) 1
(1−λ)α

,

noting that the term θ satisfies 0 < θ < 1 because 0 < ∆b < ∆s <∞ and 0 < λ < 1. Equation [A.1.3] then
immediately implies c̄b = 1− θ, confirming [2.27a].

Let δ denote the common steady-state discount factor δ̄τ . Using equation [2.22e] and the solution [A.1.4]
it follows that

δ = ∆s

 2

1 +
(
∆b
∆s

) 1
(1−λ)α


−(1−λ)α

=

∆ 1
(1−λ)α
b + ∆

1
(1−λ)α
s

2

(1−λ)α

, [A.1.5]

where the latter expression is obtained by moving ∆s inside the parentheses and simplifying. Together
with [A.1.2], this shows that δ̄b = δ̄s = δ. Observe that δ is a generalized average of ∆b and ∆s, and since
∆b < ∆s, it follows that ∆b < δ < ∆s. Using the common steady-state discount factor, equation [A.1.1] can
be used to obtain the steady-state real interest rate:

1 + ρ̄ =
(1 + ḡ)α

δ
=

(1 + ḡ)

β
, where β = δ(1 + ḡ)1−α. [A.1.6]

Since r̄ = ρ̄, this expression also gives the steady-state ex-post real return, and it can be seen that the
Euler equations [2.22d] are satisfied at this rate of return, so equation [2.27b] is confirmed.

Using [A.1.6], the accounting identity [2.22b] provides a link between the debt-to-GDP d̄ and loans-to-
GDP l̄ ratios in the steady state:

l̄ = βd̄. [A.1.7]
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Using equation [2.27a] together with the budget identities in [2.22c] implies

θ

2
= d̄− l̄,

and using [A.1.7] to substitute for l̄, the expression for d̄ in [2.27c] is obtained, and the expression for l̄
follows immediately from [A.1.7]. Hence, in summary, the values of c̄b, c̄s, ρ̄, r̄, d̄, and l̄ satisfy [2.22a]–
[2.22e]. Finally, note that the parameter restriction ∆s(1 + ḡ)1−α < 1 implies δ(1 + ḡ)1−α < 1 since δ
in [A.1.5] is such that δ < ∆s. Thus, β defined in [A.1.6] satisfies 0 < β < 1. Now observe that the
transversality condition [2.22f] requires

lim
`→∞

(
δ(1 + ḡ)1−α)` c̄−ατ l̄ = 0, which is equivalent to lim

`→∞
β` = 0,

with the definition of β in [A.1.6] and given that c̄τ 6= 0, l̄ 6= 0. Since 0 < β < 1, the second statement
above holds, which shows that [2.22f] is satisfied.

The solution is given in terms of θ, β, and ḡ, which satisfy 0 < θ < 1 and 0 < β < 1. Note that for
any values of θ and β satisfying 0 < θ < 1 and 0 < β < 1, there exist (given α, λ, and ḡ) values of the
parameters ∆b and ∆s that satisfy 0 < ∆b < ∆s <∞ and generate an equilibrium consistent with θ and β.
It follows from [2.22e] together with [2.27a]–[2.27c] that:

∆b(1− θ)−(1−λ)α = ∆s(1 + θ)−(1−λ)α =
β

(1 + ḡ)1−α ,

which can be rearranged to obtain values of ∆b and ∆s:

∆b =
β(1− θ)(1−λ)α

(1 + ḡ)1−α , and ∆s =
β(1 + θ)(1−λ)α

(1 + ḡ)1−α . [A.1.8]

Since 0 < θ < 1 and 0 < θ < 1, these parameters satisfy 0 < ∆b < ∆s <∞.

(ii) The steady-state solution for c̄b, c̄s, δ̄b, δ̄s, ρ̄, r̄, d̄, and l̄ depends only on ∆b, ∆s, α, λ, and ḡ, and is
thus independent of monetary policy. Given steady-state monetary policy it = ī, equation [2.24] requires
that:

1 = δ(1 + ḡ)−α
(

1 + ī

1 + π̄

)
,

and by using [A.1.6], the formula for π̄ is obtained. Next, equation [2.25a] and r̄ = ρ̄ imply:

1 + ρ̄ =
1 + j̄

1 + π̄
,

and given that 1 + ī = (1 + ρ̄)(1 + π̄), this confirms j̄ = ī. With the parameter restriction γ < 1 + ī, it
follows that 1− γ+ j̄ > 0, so with equation [A.1.6], the transversality condition [2.25b] reduces to:

lim
`→∞

γ`

((1 + ρ̄)(1 + π̄))`
= lim

`→∞

(
γ

1 + j̄

)`
= 0.

The parameter restriction γ < 1 + ī together with j̄ = ī implies 0 ≤ γ/(1 + j̄) < 1, so the limit above holds.
This completes the proof.

A.2 Proof of Proposition 2

(i) With complete financial markets, the risk-sharing condition [3.5] must hold at all times, where the
discount factors δτ,t are given in [2.22e]. The budget identities in [2.22c] imply equation [2.23] holds, so the
consumption-income ratios c∗b,t and c∗s,t must satisfy the following pair of equations at all times and in all
states of the world:

∆bc
∗−(1−λ)α

b,t−1

(
c∗b,t
c∗b,t−1

)−α
= ∆sc

∗−(1−λ)α
s,t−1

(
c∗s,t
c∗s,t−1

)−α
, and

1

2
c∗b,t +

1

2
c∗s,t = 1. [A.2.1]

No exogenous variables appear in these equations, which are identical at all dates, so the solution will be
time invariant. With c∗b,t = c∗b and c∗s,t = c∗s , the pair of equations in [A.2.1] becomes identical to the
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pair of equations [A.1.2]–[A.1.3] characterizing the steady-state consumption ratios in Proposition 1. Since
those equations have a unique solution, the complete-markets consumption ratios must be the same as
those in the non-stochastic steady state. Hence, c∗b,t = c̄b = 1 − θ and c∗s,t = c̄s = 1 + θ, where θ is as
given in equation [2.27a]. With the same consumption ratios as the non-stochastic steady state, it follows
from [2.22e] that the complete-markets discount factors δ∗b,t and δ∗s,t are equal to the steady-state discount
factors, which are the same for both types of household and given by the expression for δ in [2.27b]. This
confirms the results in [3.6a].

The accounting identity [2.22b] implies that the complete-markets debt and loans ratios d∗t and l∗t and
ex-post real return r∗t must satisfy:

1 + r∗t = (1 + gt)
d∗t
l∗t−1

. [A.2.2]

Substituting the consumption ratios from [3.6a] into the budget identities [2.22c] implies the following
relationship between the debt and loans ratios d∗t and l∗t :

d∗t − l∗t =
θ

2
. [A.2.3]

Since the consumption ratios and discount factors from [3.6a] are time invariant, the Euler equations [2.22d]
reduce to:

δEt
[
(1 + r∗t+1)(1 + gt+1)−α

]
= 1. [A.2.4]

Now substitute equation [A.2.2] into [A.2.4] to obtain:

l∗t = δEt
[
(1 + gt+1)1−αd∗t+1

]
, [A.2.5]

which together with equation [A.2.3] implies an expectational difference equation for the debt ratio d∗t :

d∗t =
θ

2
+ δEt

[
(1 + gt+1)1−αd∗t+1

]
. [A.2.6]

Given the constant consumption ratios and discount factors from [3.6a], the transversality condition [2.22f]
is equivalent to:

c̄−ατ lim
`→∞


`−1∏
=0

δ(1 + gt+1+)
1−α

 l∗t+` = 0,

and by cancelling c̄−ατ 6= 0, substituting for l∗t+` using [A.2.5], and taking expectations conditional on period
t information it becomes:

lim
`→∞

δ`Et

∏̀
=1

(1 + gt+)
1−α

 d∗t+`

 = 0. [A.2.7]

To solve for d∗t , iterate equation [A.2.6] forwards to obtain:

d∗t =
θ

2
Et

 ∞∑
`=0

δ`
∏̀
=1

(1 + gt+)
1−α

+ lim
`→∞

δ`Et

∏̀
=1

(1 + gt+)
1−α

 d∗t+`

 , [A.2.8]

and since the final term must be zero to satisfy [A.2.7], the expression for d∗t in [3.6b] is obtained. Given
that the parameters are such that δ(1 + ḡ)1−α < 1, the bounded support for the stochastic process [2.3]
implies that the expression for d∗t in [3.6b] is always finite for sufficiently small ς > 0, and that the limit in
[A.2.7] does indeed hold.

Given d∗t , the solution for l∗t in [3.6b] is confirmed immediately by rearranging equation [A.2.3]. The
expression for r∗t in [3.6c] is obtained by substituting l∗t from [3.6b] into [A.2.2]. To solve for the real interest
rate ρ∗t = Etr

∗
t+1 (given [2.22a]), note that the expectation of equation [A.2.2] at time t+ 1 conditional on

date-t information is:

Et
[
(1 + gt+1)d∗t+1

]
= (1 + ρ∗t )l

∗
t . [A.2.9]
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Substituting the solution for d∗t from [3.6b] into [A.2.5] leads to an explicit expression for l∗t :

l∗t =
θ

2
Et

 ∞∑
`=1

δ`
∏̀
=1

(1 + gt+)
1−α

 ,
from which one term can be factored out to write the formula as follows:

l∗t = Et

δ(1 + gt+1)1−α

θ
2
Et+1

 ∞∑
`=0

δ`
∏̀
=1

(1 + gt+1+`)
1−α

 .
Using the expression for d∗t in [3.6b], the equation above becomes:

l∗t = δEt
[
(1 + gt+1)−α

(
(1 + gt+1)d∗t+1

)]
,

and by using this to substitute for l∗t in [A.2.9]:

Et
[
(1 + gt+1)d∗t+1

]
= (1 + ρ∗t )δEt

[
(1 + gt+1)−α

(
(1 + gt+1)d∗t+1

)]
.

Rearranging this equation yields the expression for ρ∗t in [3.6c].
The solution for c∗b,t, c

∗
s,t, d

∗
t , l
∗
t , r
∗
t , and ρ∗t is seen to be independent of monetary policy. The equilibrium

condition [2.24] involving it and πt reduces to:

1 = δEt

[
(1 + gt+1)−α

(
1 + it

1 + πt+1

)]
,

and this together with the equation for monetary policy determines inflation and nominal interest rates.

(ii) Now consider the special cases where either α = 1 or {gt} is an i.i.d. stochastic process. First, in
the case α = 1, it is seen immediately that the expression for d∗t in [3.6b] reduces to:

d∗t =
θ

2

∞∑
`=0

δ` =
θ

2

1

1− δ
, [A.2.10a]

where the infinite sum is well defined because δ = β in the case α = 1 (see [2.27c]) and 0 < β < 1.
Next, consider the case where {gt} is i.i.d., hence functions of real GDP growth rates at different dates are
statistically independent, and conditional expectations of these are equal to the unconditional expectation.
This means that the expression for d∗t in [3.6b] becomes

d∗t =
θ

2

∞∑
`=0

δ`
∞∏
=1

Et
[
(1 + gt+)

1−α] =
θ

2

∞∑
`=0

δ`
(
E
[
(1 + gt)

1−α])` =
θ

2

1

1− δE [(1 + gt)1−α]
, [A.2.10b]

where the infinite sum is well defined for sufficiently small ς > 0 given the parameter restriction ∆s(1 +
ḡ)1−α < 1 and δ < ∆s. In either case, define the term β∗ as follows:

β∗ = δE
[
(1 + gt)

1−α] , [A.2.11]

noting that β∗ = δ in the case where α = 1 and the right-hand side is time invariant in the case where gt is
independent over time. For each of the cases [A.2.10a] and [A.2.10b] it is seen that the expression for d∗t is
the one given in [3.7], and the expression for l∗t follows immediately from [3.6b] using d∗t . The solutions for
d∗t and l∗t imply l∗t−1 = β∗d∗t , and hence from [A.2.2] that (1+r∗t ) = (1+gt)/β

∗. Together with ρ∗t = Etr
∗
t+1,

the expressions for r∗t and ρ∗t in [3.7] are confirmed.

(iii) As can be seen from [2.27a], the case of a representative-household economy (∆b = ∆s) is equivalent
to θ = 0 (given that α > 0 and 0 < λ < 1). With complete financial markets, the equilibrium levels of
debt, loans, and the consumption ratios given in [3.6b] are d∗t = 0, l∗t = 0, c∗b,t = 1, and c∗s,t = 1. These
values satisfy equations [2.22b], [2.22c], and [2.22f]. Since ∆b = ∆s, the discount factors consistent with
equation [2.22e] are δ∗τ,t = δ = ∆b = ∆s.

With incomplete financial markets in the case ∆b = ∆s, if cτ,t = 1 and δτ,t = δ for both types τ ∈ {b, s}
then the Euler equations in [2.22d] reduce to a single equation 1 = δEt [(1 + rt+1)(1 + gt+1)−α]. Given
a real return rt that satisfies this equation, and ρt = Etrt+1 as the implied real interest rate, all of the
equilibrium conditions [2.22a]–[2.22f] hold with dt = 0 and lt = 0. This confirms that the equilibrium of
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the incomplete-markets economy is cτ,t = 1, dt = 0, and lt = 0 when ∆b = ∆s, completing the proof.

A.3 Proof of Proposition 3

The equilibrium conditions [2.22a]–[2.22f] and [2.24]–[2.25a] that hold in the incomplete-markets economy
differ from those of the hypothetical complete-markets economy only by the absence of equation [3.5],
which holds under complete markets, and by the presence of [2.25a] (and [2.25b]), which is absent from
the complete-markets equilibrium conditions. The hypothetical complete-markets equilibrium determines
a path {r∗t } for the ex-post real return, as shown in Proposition 2. In the incomplete-markets economy,
since equation [2.25a] expresses rt as a function of πt and jt, variables that do not appear in the other
equilibrium conditions [2.22a]–[2.22f], it follows that if monetary policy can be used to influence πt or jt to
ensure that rt = r∗t then the consumption allocation in the incomplete-markets economy will coincide with
the complete-markets equilibrium.

Here, it is assumed the monetary policy instrument can be used to determine a state-contingent path
for the price level Pt, or equivalently, a path for nominal GDP Nt = PtYt. The ex-post real return in
equation [2.25a] can be expressed equivalently in terms of nominal GDP growth nt = (Nt − Nt−1)/Nt−1,
real GDP growth gt, and bond yields jt:

1 + rt = (1 + gt)

(
1 + jt
1 + nt

)(
1 + jt−1 − γ
1 + jt − γ

)
. [A.3.1]

Similarly, the equilibrium bond yield jt from [2.26] (given [2.25b]) can be expressed in terms of real variables
and nominal GDP growth as follows:

jt =

Et
 ∞∑
`=1

γ`−1

∏̀
=1

δτ,t+−1
(1 + gt+)

1−α

(1 + nt+)

(
cτ,t+
cτ,t+−1

)−α
−1

+ γ− 1. [A.3.2]

If the complete-markets equilibrium is implemented then δτ,t = δ and cτ,t = c̄τ for all t according to
Proposition 2. The expression in [A.3.2] for the equilibrium bond yield in this case then simplifies to:

jt =

Et
 ∞∑
`=1

γ`−1δ`

∏̀
=1

(1 + gt+)
1−α

(1 + nt+)


−1

+ γ− 1. [A.3.3]

(i) One of two special cases is considered: α = 1 or {gt} is an i.i.d. stochastic process. With constant
nominal GDP growth of nt = n, equation [A.3.3] becomes:

jt =

 1

1 + n

∞∑
`=1

(
γ

1 + n

)`−1

Et

∏̀
=1

{
δ(1 + gt+)

1−α}−1

+ γ− 1. [A.3.4]

In the case α = 1, (1 + gt)
1−α is a constant; in the case where {gt} is i.i.d., the conditional expectation of a

product of functions of growth rates at different dates is simply equal to the product of the unconditional
expectations. Thus:

Et

∏̀
=1

(
δ(1 + gt+)

1−α) = β∗`, where β∗ = δE
[
(1 + gt)

1−α] ,
and using equation [A.3.4], the equilibrium bond yield is:

jt =

(
β∗

1 + n

∞∑
`=1

(
γβ∗

1 + n

)`−1
)−1

+ γ− 1 =

(
β∗

1+n

1− γβ∗

1+n

)−1

+ γ− 1 =
1 + n

β∗
− 1, [A.3.5]

under the assumption that γβ∗ < 1+n. For sufficiently small ς in [2.3], this follows from γβ < 1+n, which
in turn follows from the parameter restriction γ < 1 + ī because β = (1 + ρ̄)/(1 + ḡ), 1 +n = (1 + ḡ)(1 + π̄),
and 1 + ī = (1 + ρ̄)(1 + π̄). Equation [A.3.5] implies (1 + jt)/(1 + n) = 1/β∗, and substituting this into
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[A.3.1] leads to the following ex-post real return rt:

1 + rt =
1 + gt
β∗

.

According to Proposition 2, this is the ex-post real return in the complete-markets economy for either of
the special cases, hence rt = r∗t , which confirms that any constant nominal GDP growth rate succeeds in
replicating the complete-markets equilibrium.

(ii) Now consider the general case with no restriction on the parameter α or the stationary stochastic
process gt, but where the parameter γ is strictly positive. Suppose monetary policy sets a constant rate of
nominal GDP growth equal to n = γ− 1, which is such that n > −1. Since γ/(1 + nt) = 1, the expression
for the bond yield in [A.3.3] becomes:

jt =

 1

γ
Et

 ∞∑
`=1

δ`
∏̀
=1

(1 + gt+)
1−α

−1

+ γ− 1. [A.3.6]

Note that [3.6b] in Proposition 2 implies the complete-markets loans-to-GDP ratio l∗t can be written as:

l∗t =
θ

2
Et

 ∞∑
`=1

δ`
∏̀
=1

(1 + gt+)
1−α

 ,
and hence the expression for jt from [A.3.6] is related to l∗t as follows:

jt = γ

(
1 +

θ

2l∗t

)
− 1. [A.3.7]

Since equation [3.6b] implies that d∗t = (θ/2) + l∗t , the bond yield jt above can also be written as:

jt =
γ

l∗t

(
θ

2
+ l∗t

)
− 1 =

γd∗t
l∗t
− 1.

Together with equation [A.3.7], which implies 1+jt−γ = (γθ)/(2l∗t ), this expression for jt can be substituted
into [A.3.1] (with 1 + nt = γ) to obtain:

1 + rt = (1 + gt)

 γd∗t
l∗t

γ

 γθ
2l∗t−1

γθ
2l∗t

 = (1 + gt)
d∗t
l∗t−1

= (1 + gt)

(
1 + r∗t
1 + gt

)
= 1 + r∗t ,

where the penultimate equality uses [2.22b]. This establishes rt = r∗t , and hence that the nominal GDP
target succeeds in replicating the complete-markets equilibrium.

(iii) The state-contingent path for nominal GDP specified in this part is equivalent to the following
nominal GDP growth rate:

nt = (1 + n)

(
d∗t−1 − θ

2

βd∗t

)
− 1,

where d∗t is the natural debt-to-GDP ratio characterized in Proposition 2. Using the steady-state results
from Proposition 1, this specification of monetary policy can be seen to imply that nominal GDP growth
fluctuates around a rate n in the non-stochastic steady state. By using equation [3.6b] to substitute for
d∗t−1 in terms of l∗t−1, and then by using the link between d∗t , l

∗
t−1, and r∗t in [2.22b]:

1 + nt = (1 + n)

(
l∗t−1

βd∗t

)
=

(
1 + n

β

)(
1 + gt
1 + r∗t

)
. [A.3.8]

The bond yield is obtained by substituting this nominal GDP growth rate into equation [A.3.3]:

jt =

 β

1 + n

∞∑
`=1

(
γβ

1 + n

)`−1

Et

∏̀
=1

{
δ(1 + gt+)

−α(1 + r∗t+)
}−1

+ γ− 1. [A.3.9]

At the complete-markets equilibrium, δ∗τ,t = δ and c∗τ,t = c̄τ , in which case the Euler equations in [2.22d]
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reduce to:

δEt
[
(1 + gt+1)−α(1 + r∗t )

]
= 1,

and application of the law of iterated expectations shows that this implies for all ` ≥ 1:

Et

∏̀
=1

{
δ(1 + gt+)

−α(1 + r∗t+)
} = 1.

Substituting this result into [A.3.9] shows that the bond yield jt is given by:

jt =

(
β

1 + n

∞∑
`=1

(
γβ

1 + n

)`−1
)−1

+ γ− 1 =

(
β

1+n

1− γβ
1+n

)−1

+ γ− 1 =
1 + n

β
− 1.

Convergence of the infinite sum requires γβ < 1+n, which follows from the parameter restriction γ < 1+ ī
as in part (i) above. Since the equilibrium bond yield is constant over time with 1 + jt = (1 + n)/β,
substitution of this and equation [A.3.8] into [A.3.1] implies that the ex-post real return is:

1 + rt = (1 + gt)

(
1 + n

β

)((
1 + n

β

)(
1 + gt
1 + r∗t

))−1

= 1 + r∗t .

With rt = r∗t , the specified nominal GDP path replicates the complete-markets equilibrium. This completes
the proof.

A.4 Proof of Proposition 4

(i) Let Fτ,t denote beginning-of-period t per-household real financial wealth (in bonds) of type τ house-
holds and let fτ,t denote this wealth relative to current real income:

Fτ,t =
(1 + γQt)Bτ,t−1

Pt
, and fτ,t =

Fτ,t
Yτ,t

. [A.4.1]

Given the definition of rt in [2.15], the assumption on incomes in [2.4], and the equilibrium condition
Mτ,t = 0 from [2.14], the flow budget identities [2.5] for each type of household can be stated as follows:

Cτ,t +
Fτ,t+1

1 + rt+1
= Yt + Fτ,t,

which can be expressed in terms of the ratios cτ,t = Cτ,t/Yt and fτ,t = Fτ,t/Yt and real GDP growth gt:

cτ,t +

(
1 + gt+1

1 + rt+1

)
fτ,t+1 = 1 + fτ,t.

Writing this as an equation for fτ,t+1 and then multiplying both sides by δτ,t(1 + gt+1)1−α(cτ,t+1/cτ,t)
−α

yields:

δτ,t(1 + gt+1)1−α
(
cτ,t+1

cτ,t

)−α
fτ,t+1 =

(
δτ,t(1 + rt+1)(1 + gt+1)−α

(
cτ,t+1

cτ,t

)−α)
(fτ,t + 1− cτ,t).

Taking expectations of the above equation conditional on date-t information, using the Euler equation in
[2.22d], and rearranging leads to:

fτ,t = (cτ,t − 1) + Et

[
δτ,t(1 + gt+1)1−α

(
cτ,t+1

cτ,t

)−α
fτ,t+1

]
,
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which can be iterated forwards to obtain:

fτ,t = Et

 ∞∑
`=0

∏̀
=1

δτ,t+−1(1 + gt+)
1−α


(
cτ,t+`
cτ,t

)−α
(cτ,t+` − 1)


+ lim

`→∞
Et

∏̀
=1

δτ,t+−1(1 + gt+)
1−α


(
cτ,t+`
cτ,t

)−α
fτ,t+`

 . [A.4.2]

The accounting identity [2.22b] and the law of iterated expectations can be used to deduce the following
for any ` ≥ 1:

Et

∏̀
=1

δτ,t+−1(1 + gt+)
1−α

 c−ατ,t+`dt+`


= Et


`−1∏
=1

δτ,t+−1(1 + gt+)
1−α

 c−ατ,t+`−1lt+`−1Et+`−1

[
δτ,t+`−1(1 + gt+`)

−α
(

cτ,t+`
cτ,t+`−1

)−α] .
By using the Euler equations in [2.22d] and taking the limit of the above equation as ` → ∞, and then
taking expectations of the transversality condition [2.22f] conditional on date-t information:

lim
`→∞

Et

∏̀
=1

δτ,t+−1(1 + gt+)
1−α

 c−ατ,t+`dt+`

 = 0. [A.4.3]

Comparison of the definitions in [2.15] and [A.4.1] reveals fb,t = −2dt and fs,t = 2dt, hence by using [A.4.3]
it must be the case that:

lim
`→∞

Et

∏̀
=1

δτ,t+−1(1 + gt+)
1−α


(
cτ,t+`
cτ,t

)−α
ft+`

 = 0, [A.4.4]

which implies the final term in equation [A.4.2] is zero, therefore:

fτ,t = Et

 ∞∑
`=0

∏̀
=1

δτ,t+−1(1 + gt+)
1−α


(
cτ,t+`
cτ,t

)−α
(cτ,t+` − 1)

 . [A.4.5]

Now make the following definitions of variables vτ,t and mτ,t for each τ ∈ {b, s}:

vτ,t = Et

 ∞∑
`=0

∏̀
=1

δτ,t+−1(1 + gt+)
1−α


(
cτ,t+`
cτ,t

)−α ; and [A.4.6a]

mτ,t =

Et
 ∞∑
`=0

∏̀
=1

δτ,t+−1(1 + gt+)
1−α


(
cτ,t+`
cτ,t

)1−α
−1

. [A.4.6b]

With these definitions, equation [A.4.5] can be expressed concisely as

cτ,t = mτ,t(vt + fτ,t), [A.4.7]

which implicitly defines a consumption function for households of each type τ .
Now consider the log-linear approximation of the consumption functions [A.4.7]. First, take the log

linearization of the Euler equations in [2.22d]:

δτ,t + Et[rt+1 − αgt+1 − α(cτ,t+1 − cτ,t)] = 0, [A.4.8]

where δτ,t is the log deviation of the discount factor δτ,t. The definition of the real interest rate in [2.22a]
implies

ρt = Etrt+1. [A.4.9]
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Together with this, equation [A.4.8] can be rearranged as follows:

δτ,t + (1− α)Etgt+1 − α(Etcτ,t+1 − cτ,t) = −(ρt − Etgt+1). [A.4.10]

Next, note that the formula for vt in [3.8] can be written in terms of real GDP growth:

vt =
∞∑
`=0

Et

∏̀
=1

(
1 + gt+

1 + ρt+−1

) .
Using Proposition 1, the steady-state value of this variable is v̄ =

∑∞
`=0 β

` = (1−β)−1, where β is as given
in [2.27c], satisfying 0 < β < 1. The expression for vt above can then be log linearized as follows:

vt = (1− β)
∞∑
`=0

β`+1
∑̀
=0

Et[gt++1 − ρt+]. [A.4.11]

Now, using again the non-stochastic steady state characterized in Proposition 1, the steady-state value of
vτ,t in [A.4.6a] is v̄τ = (1− β)−1 for all τ ∈ {b, s}, and hence vτ,t has the following log linearization:

vτ,t = (1− β)

∞∑
`=1

β`
∑̀
=1

Et [δτ,t+−1 + (1− α)gt+ − α(ct+ − cτ,t+−1)] ,

which can be expressed as below by substituting from equation [A.4.10]:

vτ,t = −(1− β)

∞∑
`=0

β`+1
∑̀
=0

Et[ρt+ − gt++1]. [A.4.12]

Note that the log-linear approximation is the same for all τ ∈ {b, s}, and furthermore, is equal to the
expression for vt given in [A.4.11]. That formula can be simplified by changing the order of summation to
obtain:

vt = vτ,t = −
∞∑
`=0

β`+1Et[ρt+` − gt+`+1]. [A.4.13]

Now consider the variable mτ,t defined in [A.4.6b]. Using Proposition 1, its value in the non-stochastic
steady state is m̄τ = 1− β for all τ ∈ {b, s}. Equation [A.4.6b] can then be log-linearized as follows:

mτ,t = −(1− β)
∞∑
`=1

β`
∑̀
=1

Et[δτ,t+−1 + (1− α)gt+ + (1− α)(cτ,t+ − cτ,t+−1)],

and by using [A.4.10], this can be written as:

mτ,t = −(1− β)

∞∑
`=1

β`
∑̀
=1

Et[cτ,t+ − cτ,t+−1] + (1− β)

∞∑
`=1

β`
∑̀
=1

Et[ρt+−1 − gt+].

By simplifying the first term and using equation [A.4.11]:

mτ,t = cτ,t − (1− β)
∞∑
`=0

β`Etcτ,t+` − vt. [A.4.14]

Next, note that the equation for the discount factors δτ,t in [2.22e] has the following log-linear form:

δτ,t = −(1− λ)αcτ,t.

Substituting this into the log-linearized Euler equations in [A.4.8], then simplifying and dividing both sides
by α leads to:

Etcτ,t+1 = λcτ,t + α−1ρt − Etgt+1.

This expectational difference equation can be iterated ` periods ahead to deduce:

Etcτ,t+` = λ`cτ,t +
`−1∑
=0

λ`−1−Et[α
−1ρt+ − gt++1],
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and by using this equation, an expression for the following infinite sum can be obtained:

(1− β)
∞∑
`=0

β`Etcτ,t+` = (1− β)
∞∑
`=0

β`

λ`cτ,t +
`−1∑
=0

λ`−1−Et[α
−1ρt+ − gt++1]


=

(
1− β
1− βλ

)(
cτ,t +

∞∑
`=0

β`+1Et[α
−1ρt+` − gt+`+1]

)
,

where the second equality follows by changing the order of summation. Substituting this result into equation
[A.4.14] and simplifying leads to:

mτ,t =
β(1− λ)

(1− βλ)
cτ,t − vt −

(
1− β
1− βλ

) ∞∑
`=0

β`+1Et[α
−1ρt+` − gt+`+1]. [A.4.15]

To complete the derivation of the consumption function, note from [2.15] and [A.4.1] that fb,t = −2dt
and fs,t = 2dt, and hence the equations in [A.4.7] can be written as follows:

cb,t = mb,t(vb,t − 2dt), and cs,t = ms,t(vs,t + 2dt).

Using m̄τ = 1− β, v̄τ = (1− β)−1, the steady-state values of cτ,t and dt from Proposition 1, and equation
[A.4.13], the log-linearizations of the equations above are:

cb,t = mb,t +
1

1− θ
(vt − θdt), and cs,t = ms,t +

1

1 + θ
(vt + θdt). [A.4.16]

Substituting the expressions for mτ,t from [A.4.15] and rearranging and simplifying leads to the following
consumption functions:

cb,t = −
(

1− βλ
1− β

)(
θ

1− θ

)
(dt − vt)− β

∞∑
`=0

β`Et[α
−1ρt+` − gt+`+1]; and [A.4.17a]

cs,t =

(
1− βλ
1− β

)(
θ

1 + θ

)
(dt − vt)− β

∞∑
`=0

β`Et[α
−1ρt+` − gt+`+1]. [A.4.17b]

Having derived the consumption functions, the equilibrium of the economy is found using the following
steps. First, consider the budget identities in [2.22c]. Using the steady state characterized in Proposition 1,
the log linearizations of those equations are:

cb,t = −
(

θ

1− θ

)(
1

1− β

)
(dt − βlt), and cs,t =

(
θ

1 + θ

)(
1

1− β

)
(dt − βlt). [A.4.18]

Note that these equations imply

(1− θ)cb,t + (1 + θ)cs,t = 0, [A.4.19]

which, given Proposition 1, is the log-linearized goods-market clearing condition [2.23]. By substituting
the consumption functions from [A.4.17], equation [A.4.19] is satisfied if and only if the following holds for
all t:

∞∑
`=0

β`Et[α
−1ρt+` − gt+`+1] = 0.

Since this equation must hold at any two consecutive dates, it follows that

0 =

( ∞∑
`=0

β`Et[α
−1ρt+` − gt+`+1]

)
− βEt

[ ∞∑
`=0

β`Et+1[α−1ρt+1+` − gt+1+`+1]

]
= α−1ρt − Etgt+1,

where the law of iterated expectations is used, and hence the equilibrium real interest rate is ρt = αEtgt+1,
confirming the expression given in [3.9a]. Using equation [A.4.13], the equilibrium value of vt is also that
in [3.9a], confirming the results in that equation.

The equilibrium consumption ratios can be found in terms of vt and the debt-to-GDP ratio dt by
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substituting the equilibrium real interest rate from [3.9a] into the consumption functions from [A.4.17]:

cb,t = −
(

θ

1− θ

)(
1− βλ
1− β

)
(dt − vt), and cs,t =

(
θ

1 + θ

)(
1− βλ
1− β

)
(dt − vt). [A.4.20]

By equating either cb,t or cs,t as they appear in [A.4.20] to the equivalent expression in [A.4.18], an equation
for the loans-to-GDP ratio lt is obtained (the same equation is obtained for both τ ∈ {b, s} because the
expressions in [A.4.20] satisfy equation [A.4.19]):

(1− βλ)(dt − vt) = dt − βlt.
Rearranging this equation leads to the expression for lt given in [3.9c].

The accounting identity [2.22b] has the following log linear form:

dt = (rt − gt) + lt−1. [A.4.21]

Taking expectations conditional on date-t − 1 information implies that lt−1 = Et−1dt + Et−1gt − Et−1rt,
and by using [3.9a] and [A.4.9], it follows that lt−1 = (1− α)Et−1gt +Et−1dt. Substituting this result into
[A.4.21] yields the expression for the ex-post real return rt in [3.9c].

The expectation of equation [A.4.21] at date t + 1 conditional on date-t information and equations
[A.4.9] and [3.9a] imply that:

Etdt+1 = (α− 1)Etgt+1 + lt. [A.4.22]

Observe that the solution for vt in [3.9a] implies the following equation must hold:

vt − βEtvt+1

β
= (1− α)Etgt+1.

By substituting this and the expression for lt from [3.9c] into [A.4.22]:

Etdt+1 = λdt +

(
1− βλ
β

)
vt −

(
vt − βEtvt+1

β

)
,

and collecting terms and simplifying leads to the following expectational difference equation for the debt-
to-GDP ratio:

Etdt+1 = λdt + Etvt+1 − λvt. [A.4.23]

Now take any martingale difference sequence {υt} that satisfies Et−1υt = 0, and given the conditional
expectation Et−1dt, let the actual debt-to-GDP ratio be such that dt = Et−1dt + υt. Together with
equation [A.4.23] at date t − 1 this implies [3.9b] holds, and this construction is valid for any υt with
Et−1υt = 0. Thus, all the equilibrium conditions [2.22a]–[2.22f] are satisfied by the solution [3.9a]–[3.9c]
for any martingale difference sequence {υt}.

(ii) The equilibrium condition [2.24] can be log-linearized as follows:

(it − Etπt+1) + (δs,t − αEtgt+1 − α(Etcs,t+1 − cs,t)) = 0,

and by using the Euler equations [A.4.8] and the ex-ante real interest rate [A.4.9], this leads to the Fisher
equation [3.10].

(iii) The non-stochastic steady state of the economy with complete financial markets is identical to
that in Proposition 1 because the relevant set of equilibrium conditions [2.22a]–[2.22f] overlaps with the
equilibrium conditions of the incomplete-markets economy. The expression in [3.6b] from Proposition 2 for
the complete-markets debt-to-GDP ratio can then be log linearized as follows:

d∗t = (1− α)(1− β)

∞∑
`=1

β`
∑̀
=1

Etgt+ = (1− α)

∞∑
`=1

β`Etgt+`,

where the second equality is obtained by changing the order of summation. This expression is identical to
the formula for vt in [3.9a], confirming the equation for d∗t in [3.11]. The log-linearized loans-to-GDP ratio
l∗t given in [3.11] can be obtained immediately from [3.6b] with reference to the steady state characterized
in Proposition 1. Similarly, the expression for r∗t is obtained from [3.6c] using the expression for l∗t in [3.6b]
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with reference again to the steady state and the formulas for d∗t and l∗t in [3.11]. The expression for the real
interest rate in [3.6c] can be log linearized as follows

ρ∗t = αEtgt+1 − Et
[
gt+1 + d∗t+1 − Et[gt+1 + d∗t+1]

]
= αEtgt+1,

which shows that ρ∗t is identical to the equilibrium value of ρt in [3.9a]. With identical ex-ante real interest
rates, equation [A.4.13] implies that the equilibrium value of vt is also the same as that in [3.9a]. This
confirms the log linearization of the complete-markets equilibrium in [3.11].

The next claim is that these equilibrium values are identical to what would be obtained from equations
[3.9b] and [3.9c] with υt = υ∗t = vt − Et−1vt. Since Et−1υ

∗
t = 0, {υ∗t } is a valid martingale difference

sequence. With υt = υ∗t , equation [3.9b] becomes:

dt = λdt−1 + (vt − λvt−1),

and as this holds for all t, elimination of the common factor from the difference equation implies dt = vt.
Since vt = d∗t , it follows that dt = d∗t . Substituting dt = vt into the expression for lt in [3.9c] implies
lt = β−1vt, and hence lt = l∗t . Similarly, substituting dt = vt into the formula for rt from [3.9c] and using
the equilibrium value of vt in [3.9a]:

rt = gt + vt + (α− 1)Et−1gt − (1− α)
∞∑
`=1

β`Et−1gt+` = gt + vt − β−1(1− α)
∞∑
`=1

β`Et−1gt−1+`.

This shows that rt = gt + vt − β−1vt−1, which by comparison with [3.11] confirms that rt = r∗t .
Now consider again the incomplete-markets economy and take any values of dt, lt, and rt consistent

with [3.9b]–[3.9c]. Equation [3.9b] implies Etdt+1 = λdt + (Etvt+1 − λvt), and hence by using d∗t = vt:

Et[dt+1 − d∗t+1] = λ(dt − d∗t ).

This confirms the expectational difference equation for the debt gap d̃t = dt− d∗t in [3.12a]. Again by using
d∗t = vt the equation for lt in [3.9c] becomes:

lt = β−1d∗t + λ(dt − d∗t ),

which leads to the equation for l̃t = lt − l∗t in [3.12a] by using l∗t = β−1d∗t from [3.11]. For the ex-post real
return gap r̃t = rt − r∗t , note that by using [A.4.9], rt = ρt−1 + (rt − Et−1rt) and r∗t = ρ∗t−1 + (r∗t − Et−1r

∗
t ),

and since ρt = ρ∗t it follows that Et−1r̃t = 0. Equations [3.9c] and [3.11] imply

rt − Et−1rt = (gt − Et−1gt) + (dt − Et−1dt), and r∗t − Et−1r
∗
t = (gt − Et−1gt) + (d∗t − Et−1d

∗
t ),

and by putting these results together, the expression for r̃t in [3.12a] is obtained. For the consumption
gaps c̃τ,t = cτ,t − c∗τ,t, first note that since c∗b,t = 1− θ and c∗s,t = 1 + θ according to Proposition 2, the log
linearization is c∗τ,t = 0, and hence c̃τ,t = cτ,t. The expressions for the consumption gaps in equation [3.12b]
then follow immediately from [A.4.20] using vt = d∗t .

(iv) Using 1+ n̄ = (1+ π̄)(1+ ḡ) (from the definition of nominal GDP growth), 1+ ī = (1+ ρ̄)(1+ π̄) from
Proposition 1, and the formula for β from [2.27c], the definition of µ in the proposition can be rewritten
as:

µ =
γ

1 + n̄
=

γ

(1 + π̄)(1 + ḡ)
=

(
1 + ρ̄

1 + ḡ

)(
γ

1 + ī

)
, and hence βµ =

γ

1 + ī
. [A.4.24]

Given the parameter restriction γ < 1+ ī, it follows that βµ < 1. Now consider the transversality condition
[2.25b] for the bond yield. Noting that γ/(1 + j̄) = βµ using [A.4.24] and j̄ = ī from Proposition 1, and
γδ(1 + ḡ)−α/(1 + π̄) = δ(1 + ḡ)1−αγ/(1 + n̄) = βµ using the definition of the nominal GDP growth rate
and the expression for β from [2.27c], the transversality condition can be log linearized as follows:

lim
`→∞

(βµ)`Et

∑̀
=1

(δτ,t+−1 − αgt+ − πt+ − α(cτ,t+ − cτ,t+−1))− 1

(1− βµ)2
jt+`

 = 0.

Using the log-linearized Euler equation [A.4.8], equations [2.24] and [A.4.9], and the law of iterated expec-
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tations, the transversality condition is equivalent to:

lim
`→∞

(βµ)`Etjt+` = −(1− βµ)2 lim
`→∞

(βµ)`
`−1∑
=0

Etit+.

Since 0 < βµ < 1, given the restriction to monetary policies where the nominal interest rate it is sta-
tionary, the right-hand side of the equation above is zero, so the log-linearized transversality condition is
lim`→∞(βµ)`Etjt+` = 0 as claimed. The equation for the ex-post real return in [2.25a] can be log linearized
as follows:

rt = (jt − πt) +
1

1− γ/(1 + j̄)
(jt−1 − jt), [A.4.25]

and the expression for rt in [3.13] is obtained by collecting terms above and using the formula for βµ in
[A.4.24] with j̄ = ī from Proposition 1. The equilibrium bond yield in [2.26] can also be log linearized as
follows:

jt = −
(

1− γ

1 + j̄

)2 ∞∑
`=1

(
γ

1 + j̄

)`−1∑̀
=1

Et [δτ,t+−1 − αgt+ − α(cτ,t+ − cτ,t+−1)− πt+] .

By using the Euler equation [A.4.8], [A.4.9], j̄ = ī, and the formula for βµ in [A.4.24], the above equation
can be written as:

jt = (1− βµ)2
∞∑
`=1

(βµ)`−1
`−1∑
=0

Et [ρt+ + πt++1] ,

and changing the order of summation leads to the expression for jt in [3.13] (the infinite sums converge
because 0 < βµ < 1).

Now consider the variable et defined in equation [3.8]. Using Proposition 1 and the expressions for
β and µ from [2.27c] and [A.4.24], the steady-state value of this variable is ē = (1 − βµ)−1, and the log
linearization is:

et = (1− βµ)

∞∑
`=0

(βµ)`+1
∑̀
=0

Et[gt++1 − ρt+] = −
∞∑
`=0

(βµ)`+1Et[ρt+` − gt+`+1], [A.4.26]

where the second equality is obtained by changing the order of summation (with convergence because
0 < βµ < 1). By using the equilibrium real interest rate in [3.9a], the equilibrium value of et in [3.14b] is
deduced. Next, observe that the expression for jt in [3.13] implies:

βµ

1− βµ
jt =

∞∑
`=0

(βµ)`+1Et[ρt+` − gt+`+1] +
∞∑
`=0

(βµ)`+1Et[πt+`+1 + gt+`+1]. [A.4.27]

Using the definitions of inflation πt = Pt−Pt−1 and real GDP growth gt = Yt−Yt−1, the following infinite
sums can be obtained by collecting terms in the levels of prices and real GDP:

∞∑
`=0

(βµ)`+1Etπt+`+1 = (1− βµ)

∞∑
`=0

(βµ)`EtPt+` − Pt; and

∞∑
`=0

(βµ)`+1Etgt+`+1 = (1− βµ)

∞∑
`=0

(βµ)`EtYt+` − Yt.

Since nominal GDP is Nt = Pt+Yt, using the equations above together with the definition of Nt in [3.14b],
and then substituting into equation [A.4.27] leads to:

βµ

1− βµ
jt = Nt − Nt − et. [A.4.28]

Equation [3.11] implies that the innovation to the complete-markets ex-post real return is

r∗t − Et−1r
∗
t = (gt − Et−1gt) + (vt − Et−1vt). [A.4.29]
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The innovation to the ex-post real return with incomplete markets is obtained by using equation [3.13]:

rt − Et−1rt = −(πt − Et−1πt)−
βµ

1− βµ
(jt − Et−1jt).

Using the equation above, and [A.4.28] and [A.4.29] together with the definition of the ex-post return gap
r̃t = rt − r∗t , it follows that:

r̃t − Et−1r̃t = −(πt − Et−1πt)− (gt − Et−1gt)− (vt − Et−1vt) + (et − Et−1et)

− (Nt − Et−1Nt) + (Nt − Et−1Nt). [A.4.30]

Note that the following holds by definition

(πt − Et−1πt) + (gt − Et−1gt) = (Nt − Nt−1)− Et−1[Nt − Nt−1] = Nt − Et−1Nt,

and by substituting this into [A.4.30] and using [3.12a], the expression for d̃t−Et−1d̃t in [3.14a] is obtained.
This completes the proof.

A.5 Proof of Proposition 5

Let εt = gt − Et−1gt = Yt − Et−1Yt denote the innovation to real GDP growth and the level of real GDP
(with gt = Yt − Yt−1). If real GDP growth gt is stationary and invertible then it can be expressed as
gt =

∑∞
`=0 ϑ`εt−` for a sequence {ϑ`} with ϑ0 = 1 and where the innovations εt−` belong to the time-t

information set for all ` ≥ 0. It follows that Etgt+` =
∑∞

=0 ϑ`+εt−, and by substituting this into the
expression for vt in [3.9a]:

vt = (1− α)
∞∑
`=1

β`

 ∞∑
=0

ϑ`+εt−

 , and hence vt − Et−1vt = (1− α)

( ∞∑
`=1

β`ϑ`

)
εt.

Let Θ(z) =
∑∞

`=0 ϑ`z
` denote the z-transform of the sequence {ϑ`}, using which the stochastic process for

real GDP growth can be written as gt = Θ(L)εt, where L is the lag operator. The equation above can then
be expressed in terms of the function Θ(z) as follows:

vt − Et−1vt = (1− α)(Θ(β)−Θ(0))εt. [A.5.1]

For the variable et from [3.14b], following exactly the same method used to derive [A.5.1], the innovation
to et is given by:

et − Et−1et = (1− α)(Θ(βµ)−Θ(0))εt,

and together with equation [A.5.1] this implies:

(et − vt)− Et−1[et − vt] = (1− α)(Θ(βµ)−Θ(β))εt. [A.5.2]

Using the identity gt = Yt − Yt−1, note the following result which is obtained by changing the order of
summation:

(1− βµ)

∞∑
`=0

(βµ)`EtYt+` = (1− βµ)

∞∑
`=0

(βµ)`Et

Yt−1 +
∑̀
=0

gt+

 = Yt−1 +

∞∑
`=0

(βµ)`Etgt+`. [A.5.3]

Following again the same method used to derive equation [A.5.1], the innovation to a sum of expected
growth rates can be expressed as

∞∑
`=0

(βµ)`Etgt+` − Et−1

[ ∞∑
`=0

(βµ)`Etgt+`

]
= Θ(βµ)εt,

and combining this equation with [A.5.3] yields:

(1− βµ)

∞∑
`=0

(βµ)` (EtYt+` − Et−1Yt) = Θ(βµ)εt. [A.5.4]

Now suppose that monetary policy implements the weighted nominal GDP target Nω,t = 0 at all times for
some ω, where Nω,t = Pt + ωYt. Under this policy, unweighted nominal GDP Nt = Pt + Yt is given by
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Nt = (1−ω)Yt, and thus Nt defined in [3.14b] satisfies

Nt = (1−ω)(1− βµ)
∞∑
`=0

(βµ)`EtYt+`, and hence Nt − Et−1Nt = (1−ω)Θ(βµ)εt, [A.5.5]

where the second equation follows from [A.5.4]. To achieve d̃t = 0 (meaning that dt = d∗t ), equation [3.12a]
shows that this is equivalent to achieving d̃t −Et−1d̃t = 0 at all times. Using [3.14a] and equations [A.5.2]
and [A.5.5], in the presence of uncertainty about real GDP this is achieved by the target Nω∗,t = 0 if and
only if ω∗ satisfies:

(1−ω∗)Θ(βµ) = (1− α)(Θ(βµ)−Θ(β)).

Solving the equation forω∗ yields the expression in [3.15]. The invertibility of the stochastic process ensures
Θ(βµ) 6= 0 given that 0 < βµ < 1 because Θ(z) cannot have any roots with modulus less than one. This
completes the proof.

A.6 Proof of Proposition 6

(i) Suppose real GDP growth gt is a stationary stochastic process with gt =
∑∞

`=0 ϑ`εt−` for some
sequence of independent random variables {εt}, where εt−` belongs to the time-t information set for all
` ≥ 0. Since Etgt+` =

∑∞
=0 ϑ`+εt−, equations [3.9a] and [3.11] can be used to deduce the following

expression for the natural debt-to-GDP ratio:

d∗t = (1− α)

∞∑
`=1

β`

 ∞∑
=0

ϑ`+εt−

 = (1− α)

∞∑
`=0

 ∞∑
=1

βϑ`+

 εt−`, [A.6.1]

where the second equality follows by changing the order of summation. If real GDP growth gt is an MA(q)
process then ϑ = 0 for all  > q. It can be seen from [A.6.1] that the expression for d∗t then has zero
coefficients of εt−` for all ` ≥ q, implying d∗t is an MA(q− 1) process.

Now suppose real GDP growth gt follows a stationary ARMA(p, q) process, that is, gt−
∑p

`=1φ`gt−` =∑q
`=0 ϑ`εt−`. Stationarity means the process can also be written in MA(∞) form as gt =

∑∞
`=0 ϑ

′
`εt−` for

some sequence {ϑ′`}. Observe that

d∗t −
p∑
`=1

φ`d
∗
t−` = Et−p

[
d∗t −

p∑
`=1

φ`d
∗
t−`

]

+

p−1∑
=0

(
Et−

[
d∗t −

∑
`=1

φ`d
∗
t−`

]
− Et−−1

[
d∗t −

∑
`=1

φ`d
∗
t−`

])
, [A.6.2]

where the second term is a moving-average process of order p− 1 because the terms in the summation are
multiples of εt, . . . , εt−p+1 (as can be seen from equation [A.6.1]). Using equations [3.9a] and [3.11] and
the law of iterated expectations, the first term on the right-hand side is given by:

Et−p

[
d∗t −

p∑
`=1

φ`d
∗
t−`

]
= Et−p

(1− α)
∞∑
=1

βEtgt+ −
p∑
`=1

φ`(1− α)
∞∑
=1

βEtgt−`+


= (1− α)

∞∑
=1

βEt−p

[
gt+ −

p∑
`=1

φpgt+−`

]
= (1− α)

∞∑
=1

βEt−p

[
q∑
`=0

ϑ`εt+−`

]
. [A.6.3]

Since Et−pεt+−` = εt+−` when  ≤ `−p and equals zero otherwise, the final expression contains multiples
of εt−p, . . . , εt−q+1 if p < q, an MA(q − 1) process, and no terms if p ≥ q. Equations [A.6.2] and [A.6.3]
together show that d∗t −

∑p
`=1φ`d

∗
t−` is a moving-average process of order max{p − 1, q − 1}. Thus, the

natural debt-to-GDP ratio d∗t is an ARMA(p,max{p−1, q−1}) process. Since the autoregressive coefficients
φ` are the same as those of the real GDP process, the autoregressive roots of d∗t are the same as those of
gt.

(ii) With incomplete financial markets, the debt-to-GDP ratio dt must satisfy equation [3.9b] for some
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martingale difference sequence {υt} (with Et−1υt = 0), that is:

dt − λdt−1 = υt + Et−1d
∗
t − λd∗t−1,

which uses the result vt = d∗t from [3.11]. This equation can be written as:

dt − d∗t = λ(dt−1 − d∗t−1) + (υt − (d∗t − Et−1d
∗
t )),

and since Et−1[υt − (d∗t − Et−1d
∗
t )] = 0 using the martingale difference property of υt, the sequence υt −

(d∗t − Et−1d
∗
t ) is serially uncorrelated. This shows that dt − d∗t is an autoregressive process with root λ

whenever υt 6= d∗t − Et−1d
∗
t , that is, whenever the incomplete-markets equilibrium does not coincide with

the complete-markets equilibrium. Since part (i) shows that the autoregressive roots of d∗t are the same as
those of the exogenous stochastic process gt, it follows that dt must have an autoregressive root of λ.

For the interpretation of λ, note that [A.4.17] in the proof of Proposition 4 implies:

∂ log cb,t

∂ log dt
= −

(
1− βλ
1− β

)(
θ

1− θ

)
, and

∂ log cs,t

∂ log dt
=

(
1− βλ
1− β

)(
θ

1 + θ

)
,

where the partial derivatives are evaluated at the steady state characterized in Proposition 1, holding real
GDP and interest rates constant. If Fτ,t denotes per-household financial wealth of a type-τ household (as in
[A.4.1]) then Fb,t = −2dtYt and Fs,t = 2dtYt (by comparison with [2.15] and [2.20]). Using the steady-state
values c̄b = 1−θ, c̄s = 1+θ, and d̄ = θ/2(1−β) from Proposition 1, it follows that the marginal propensity
to consume (MPC) from financial wealth is:

MPC =
∂Cb,t

∂Fb,t
=
∂Cs,t

∂Fs,t
= 1− βλ,

where the partial derivatives hold income and interest rates constant and are evaluated at the steady state.
This can be rearranged to write λ as a function of β and MPC:

1− λ =
MPC− (1− β)

β
,

and the expression for λ in the proposition can be obtained using the formula for β from [2.27b].

(iii) Substituting the discount factors from [2.22e] into the Euler equations [2.22d] leads to

1 = ∆τEt

[
(1 + rt+1)(1 + gt+1)−α

(
cτ,t+1

cλτ,t

)−α]
,

and second-order accurate approximations of these equations around the non-stochastic steady state given
in Proposition 1 are:

Et [rt+1 − αgt+1 − α(cτ,t+1 − λcτ,t)] +
1

2
Et

[
(rt+1 − αgt+1 − α(cτ,t+1 − λcτ,t))2

]
= O3,

where O3 denotes terms third-order or higher in the standard deviation ς of the real GDP stochastic process
[2.3]. Expanding the brackets and simplifying yields the following equations:

Et

[
rt+1 +

1

2
r2t+1

]
= Et

[
αgt+1 −

α2

2
g2
t+1 + αgt+1rt+1 −

α2

2
(cτ,t+1 − λcτ,t)2

+ α(cτ,t+1 − λcτ,t) + α(rt+1 − αgt+1)(cτ,t+1 − λcτ,t)
]

+ O3. [A.6.4]

Using the expressions for steady-state consumption from Proposition 1, the second-order approximation of
the goods-market clearing condition [2.23] is

(1− θ)

2
cb,t +

(1 + θ)

2
cs,t = −1

2

(
(1− θ)

2
c2

b,t +
(1 + θ)

2
c2

s,t

)
+ O3. [A.6.5]

Multiplying equation [A.6.4] by (1 − θ)/2 for τ = b and (1 + θ)/2 for τ = s, summing the equations, and
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using [A.6.5] implies:

Et

[
rt+1 +

1

2
r2t+1

]
= Et

[
αgt+1 −

α2

2
g2
t+1 + αgt+1rt+1 −

α2

2

(1− θ)

2
(cb,t+1 − λcb,t)

2

− α
2

2

(1 + θ)

2
(cs,t+1 − λcs,t)

2 − α
2

(
(1− θ)

2
(c2

b,t+1 − λc2
b,t) +

(1 + θ)

2
(c2

s,t+1 − λc2
s,t)

)]
+ O3. [A.6.6]

The equations in [3.12b] imply that cb,t and cs,t are proportional to d̃t up to an error of order O2. By
noting the following algebra

(1− θ)

(
θ

1− θ
(1− βλ)

(1− β)

)2

+ (1 + θ)

(
θ

1 + θ

(1− βλ)

(1− β)

)2

=
θ2(1− βλ)2

(1− θ2)(1− β)2
,

equation [3.12b] implies that [A.6.6] can be written as:

Et

[
rt+1 +

1

2
r2t+1

]
= Et

[
αgt+1 −

α2

2
g2
t+1 + αgt+1rt+1 −

α2

2

θ2

(1− θ2)

(1− βλ)2

(1− β)2
(d̃t+1 − λd̃t)2

− α
2

θ2

(1− θ2)

(1− βλ)2

(1− β)2
(d̃2
t+1 − λd̃2

t )

]
+ O3. [A.6.7]

The first equation in [3.12a] (which holds up to an error of order O2) can be used to deduce the following:

Et[(d̃t+1 − λd̃t)2] = Et[(d̃t+1 − Etd̃t+1)2] + O3, and

Et[d̃
2
t+1 − λd̃2

t ] = Et[((d̃t+1 − Etd̃t+1) + λd̃t)
2]− λd̃2

t + O3 = Et[(d̃t+1 − Etd̃t+1)2]− λ(1− λ)d̃2
t + O3,

where the second equality uses the law of iterated expectations, and by substituting these into [A.6.7]:

Et

[
rt+1 +

1

2
r2t+1

]
= Et

[
αgt+1 −

α2

2
g2
t+1 + αgt+1rt+1 −

α(α+ 1)

2

θ2

(1− θ2)

(1− βλ)2

(1− β)2
(d̃t+1 − Etd̃t+1)2

+
α

2

θ2

1− θ2

(1− βλ)2

(1− β)2
λ(1 − λ)d̃2

t

]
+ O3. [A.6.8]

The Euler equations [2.22d] must also hold with the ex-post real return r∗t for the complete-markets
equilibrium with consumption ratios c∗τ,t = c̄τ and discount factors δτ,t = δ from Proposition 2, hence:

1 = δEt
[
(1 + r∗t+1)(1 + gt+1)−α

]
,

which has the following second-order approximation around the non-stochastic steady state:

Et

[
r∗t+1 +

1

2
r∗2t+1

]
= Et

[
αgt+1 −

α2

2
g2
t+1 + αgt+1r

∗
t+1

]
+ O3. [A.6.9]

The definitions of the real interest rates ρt and ρ∗t from [2.22a] and the definitions of the log deviations rt
and r∗t imply

ρt − ρ∗t = (1 + ρ̄)Et

[(
rt+1 +

1

2
r2t+1

)
−
(
r∗t+1 +

1

2
r∗2t+1

)]
+ O3,

and by substituting from equations [A.6.8] and [A.6.9], it follows that:

ρt − ρ∗t
1 + ρ̄

= Et

[
αgt+1r̃t+1 −

αθ2(1− βλ)2

2(1− θ2)(1− β)2
((α+ 1)(d̃t+1 − Etd̃t+1)2 − λ(1− λ)d̃2

t )

]
+ O3, [A.6.10]

where the definition r̃t = rt − r∗t has been used. The third result in [3.12a] (which holds up to an error of
order O2) can be used to deduce:

Et[gt+1r̃t+1] = Et[gt+1(d̃t+1 − Etd̃t+1 + O2)] = Et[(gt+1 − Etgt+1)(d̃t+1 − Etd̃t+1)] + O3, [A.6.11]

where the second equality uses the law of iterated expectations. By iterating equation [3.12a] backwards,
the debt gap d̃t is given by:

d̃t =
∞∑
`=0

λ`(d̃t−` − Et−`−1d̃t−`) + O2, and hence E[d̃2
t ] =

E[(d̃t − Et−1d̃t)
2]

1− λ2
+ O3, [A.6.12]
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which follows because the terms of the summation are serially uncorrelated, and their unconditional expecta-
tions do not depend on time as gt is stationary. Equation [3.16] can be deduced by taking the unconditional
expectation of equation [A.6.10] and substituting from [A.6.11] and [A.6.12], noting the definitions of the
conditional moments Vt−1[d̃t] = Et−1[(d̃t − Et−1d̃t)

2] and Ct−1[gt, d̃t] = Et−1[(gt − Et−1gt)(d̃t − Et−1d̃t)].
This completes the proof.

A.7 Proof of Proposition 7

(i) Observe that the system of equations [2.22a]–[2.22f] and [3.20] (and the implied equation [3.21])
includes no nominal variables, and hence no variables that can be directly influenced by monetary policy.
Since the equations characterizing the real variables form a closed system, the resulting real equilibrium is
independent of monetary policy.

(ii) Consider the equilibrium of an economy with nominal bonds in which monetary policy is strict
inflation targeting, that is, πt = π, and where the coupon parameter is such that γ = (1 + π)γ†. The
equilibrium nominal bond yield jt in such an economy is given by equation [2.26]. Now consider the economy
with only inflation-indexed bonds (coupon parameter γ†). Using equation [3.21] and γ† = γ/(1 + π), the
yield on the inflation-indexed bonds is:

yt =

(1 + π)Et

 ∞∑
`=1

γ`−1

∏̀
=1

δτ,t+−1
(1 + gt+)

−α

(1 + π)

(
cτ,t+
cτ,t+−1

)−α
−1

+
γ

1 + π
− 1.

Conjecturing that the equilibrium of the economy with indexed bonds features the same consumption
allocation as the economy with nominal bonds, a comparison of the equation above to [2.26] with πt = π
implies:

yt =
(
(1 + π)(1 + jt − γ)−1

)−1
+

γ

1 + π
− 1 =

1 + jt
1 + π

− 1, [A.7.1]

where jt is the equilibrium bond yield in the nominal-bond economy. Now note that the ex-post real return
[2.25a] in the nominal-bond economy under strict inflation targeting πt = π can be written as:

1 + rt =

(
1 + jt−1

1 + πt

)(1− γ
1+jt−1

1− γ
1+jt

)
, [A.7.2]

and similarly, the ex-post real return [3.20] of the inflation-indexed bond can also be reformulated as:

1 + r†t = (1 + yt−1)

1− γ†

1+yt−1

1− γ†

1+yt

 .

With the coupon parameters γ and γ† being related by γ† = γ/(1 + π), the equation above becomes:

1 + r†t =

(
(1 + π)(1 + yt)

1 + π

)(1− γ
(1+π)(1+yt−1)

1− 1
(1+π)(1+yt)

)
. [A.7.3]

Under the supposition that the two economies have the same consumption allocation, the bond yields are
related according to [A.7.1], and hence 1 + jt = (1 + π)(1 + yt) for all t. A comparison of equations [A.7.2]

and [A.7.3] then shows that rt = r†t . The equilibrium of the incomplete-markets economy with nominal
bonds under a policy of strict inflation targeting is characterized by equations [2.22a]–[2.22f] together with
[A.7.2]. The equilibrium of the incomplete-markets economy with inflation-indexed bonds with coupon
parameter γ† = γ/(1 + π) is characterized by equations [2.22a]–[2.22f] together with [A.7.3]. Note that yt
and jt do not appear directly in [2.22a]–[2.22f], and [A.7.2] and [A.7.3] contain no other variables apart from

r†t and rt. Thus, since rt = r†t , the resulting equilibrium is the same for both economies. This completes
the proof.
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A.8 Proof of Proposition 8

(i) Suppose monetary policy is strict inflation targeting, namely πt = π at all times, and that nominal
and inflation-indexed bonds have the same maturity, that is, γ = (1 + π)γ†. Supposing that the equilib-
rium consumption allocation of the economy with both bonds is the same as that of the economy with
only nominal bonds under the same monetary policy, it follows that since both economies have the same
consumption levels and the same inflation rate, they must have the same nominal bond yield jt.

With γ† = γ/(1+π), the argument in the proof of Proposition 7 that led to equation [A.7.1] applies, and
the inflation-indexed bond yield yt is related to the nominal bond yield jt in the economy with both bonds
according to 1 + jt = (1 + π)(1 + yt). Again following the argument of Proposition 7 and using equations

[A.7.2] and [A.7.3], this means that rt = r†t . From equation [3.22c] it then follows that r‡t = rt for any

choice of st. With r‡t = rt, the system of equations [2.22a]–[2.22f] and [3.20] is identical that characterizing
the equilibrium of the economy with only nominal bonds if monetary policy is strict inflation targeting.
Hence, that equilibrium is also the equilibrium of the economy with both types of bonds. Any portfolio
share st is consistent with the equilibrium conditions.

(ii) Consider a monetary policy that replicates the complete-markets equilibrium in the economy with
only nominal bonds (coupon parameter γ). The existence of such monetary policies was demonstrated in
Proposition 3. Such a monetary policy must imply a path for inflation πt for which, together with the
equilibrium nominal bond yield given by [2.26], the ex-post real return in [2.25a] is rt = r∗t . The complete-
markets ex-post real return r∗t is characterized in terms of exogenous variables by Proposition 2. Now
suppose a monetary policy that generates the same path for inflation is implemented in the economy with
both nominal and inflation-indexed bonds (the latter with coupon parameter γ†).

It is conjectured this monetary policy leads to the same consumption allocation as in the economy with
only nominal bonds. If so, since the path for inflation is the same, the equilibrium nominal bond yield jt
from [2.26] would be the same, and thus the ex-post real return rt from [2.25a] would then satisfy rt = r∗t ,
namely what the monetary policy achieves in the economy with only nominal bonds. Now suppose there
is an equilibrium with st = 0, in which case, from equation [3.22c], the ex-post real return on the overall

portfolio of bonds is r‡t = rt = r∗t . It then follows immediately that the complete-markets consumption
allocation, discount factors, debt and loan ratios, and real interest rate satisfy equations [2.22a]–[2.22f].

Since [3.22c] is satisfied with st = 0 and r‡t = rt, the remaining equilibrium conditions are related to the

ex-post real return r†t on inflation-indexed bonds and the associated real interest rate ρ†t = Etr
†
t+1. This

definition of ρ†t is in accordance with [2.22a]. There are then the two Euler equations in [2.22d] that must

be satisfied by r†t+1. As Proposition 2 establishes, the complete-markets allocation features consumption
ratios c∗τ,t = c̄τ that are constant over time and discount factors δ∗τ,t = δ that are equal across both types
of households. This means the two Euler equations in [2.22d] collapse to a single equilibrium condition for

r†t+1:

1 = δEt

[
(1 + r†t+1)(1 + gt+1)−α

]
, [A.8.1]

and by using [3.20], the equilibrium yield [3.21] on inflation-indexed bonds simplifies to:

yt =

Et
 ∞∑
`=1

γ†
`−1
δ`
∏̀
=1

(1 + gt+)
−α

−1

+ γ† − 1. [A.8.2]

With this bond yield yt, the ex-post real return r†t on inflation-indexed bonds is determined by [3.20], which

then satisfies [A.8.1], and determines the real interest rate ρ†t = Etr
†
t+1. This confirms that all equilibrium

conditions are satisfied at the conjectured consumption allocation, which is supported by r‡t = r∗t . Thus,
the equilibrium of the economy with both types of bonds coincides with the equilibrium of the economy
with only nominal bonds (for any coupon parameters γ and γ†). In equilibrium, the portfolio share of
inflation-indexed bonds is zero (st = 0).

(iii) First consider the economy with strict inflation targeting (πt = π) and γ = (1 + π)γ†. As shown in

part (i), rt = r†t , and hence ρt = ρ†t . The inflation risk premium is thus $t = 0.
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Now consider an economy where monetary policy replicates the complete-markets equilibrium. This
means that the equilibrium is given by Proposition 2, and hence the consumption-income ratios and discount
factors are c∗τ,t = c̄τ and δ∗τ,t = δ. The Euler equations [2.22d] associated with holdings of nominal bonds
then reduce to:

1 = δEt
[
(1 + rt+1)(1 + gt+1)−α

]
.

In the non-stochastic steady state characterized in Proposition 1, equation [3.21] implies ȳ = ρ̄, equation

[3.20] implies r̄† = ȳ, and ρ†t = Etr
†
t+1 implies ρ̄† = r̄†. Second-order accurate approximations around this

non-stochastic steady state of the equation above and the Euler equation [A.8.1] for inflation-indexed bonds
are:

Et

[
rt+1 +

1

2
r2t+1

]
= αEt

[
gt+1 −

α

2
g2
t+1 + gt+1rt+1

]
+ O3, and [A.8.3a]

Et

[
r†t+1 +

1

2
r†

2
t+1

]
= αEt

[
gt+1 −

α

2
g2
t+1 + gt+1r

†
t+1

]
+ O3. [A.8.3b]

The definitions of the inflation risk premium $t and the real interest rates ρt and ρ†t imply $t = Etrt+1 −
Etr
†
t+1, and hence a second-order accurate approximation of $t in terms of the log deviations rt+1 and r†t+1

is:

$t = (1 + ρ̄)

(
Et

[
rt+1 +

1

2
r2t+1

]
− Et

[
r†t+1 +

1

2
r†

2
t+1

])
+ O3.

Substituting from equation [A.8.3] implies the second-order approximation reduces to:

$t = (1 + ρ̄)αEt[gt+1(rt+1 − r†t+1)] + O3. [A.8.4]

With monetary policy conducted to replicate complete financial markets, it must be the case that
rt = r∗t and hence rt = r∗t . Using the equations for vt and rt in [3.9a] and [3.11] (which hold up to an error
of order O2), it follows that:

rt = gt + (1− α)
∞∑
`=1

β`Etgt+` − (1− α)
∞∑
`=1

β`−1Et−1gt−1+` + O2,

which can be rearranged to obtain:

rt = αgt + (1− α)
∞∑
`=0

β`(Etgt+` − Et−1gt+`) + O2. [A.8.5]

Since the complete-markets consumption allocation is achieved, the equilibrium real bond yield yt is given
by equation [A.8.2]. Using ȳ = ρ̄ in the non-stochastic steady state and noting the definition µ† = γ†/(1+ḡ),
equation [A.8.2] can be log linearized as follows:

1

(1− βµ†)2
yt = α

∞∑
`=1

(βµ†)`−1
∑̀
=1

Etgt+ + O2,

using the expression for β given in [2.27c]. Changing the order of summation and simplifying leads to:

yt = α(1− βµ†)
∞∑
`=0

(βµ†)`Etgt+1+` + O2. [A.8.6]

Since r̄† = ρ̄ in the non-stochastic steady state, equation [3.20] for the ex-post real return r†t on the indexed
bond has the following log-linear approximation:

r†t =
1

1− βµ†
yt−1 −

βµ†

1− βµ†
yt + O2.

Substituting the equilibrium bond yield yt from [A.8.6] into the equation above leads to:

r†t = α

∞∑
`=0

(βµ†)`Et−1gt+` − α
∞∑
`=1

(βµ†)`Etgt+` + O2 = αgt − α
∞∑
`=0

(βµ†)`(Etgt+` − Et−1gt+`) + O2,
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where the second equality is obtained by grouping terms in real GDP growth at the same date. Using this
equation together with [A.8.4] and [A.8.5], the average inflation risk premium E$t is given by:

E$t = (1 + ρ̄)αE

[
Et−1

[
gt

{ ∞∑
`=0

β`
(

1− α
(

1− µ†`
))

(Etgt+` − Et−1gt+`)

}]]
+ O3. [A.8.7]

Using the law of iterated expectations and the definition of the conditional moments Ct−1[gt,Etgt+`] =
Et−1[(gt − Et−1gt)(Etgt+` − Et−1gt+`)], this confirms the expression given in equation [3.23].

(iv) Consider the case where nominal bonds and inflation-indexed bonds have the same maturity, that
is, γ = (1 + π̄)γ†. Given the definitions µ = γ/(1 + n̄), µ† = γ†/(1 + ḡ), and 1 + n̄ = (1 + π̄)(1 + ḡ), this
means that µ = µ†.

Now suppose that monetary policy is strict inflation targeting (πt = π at all times). Consider either the
economy with only nominal bonds or the economy with both types of bonds (given the result in part (i),
the equilibrium is the same in both cases). Using the expressions for vt and r∗t in equations [3.9a] and [3.11]
(which hold up to an error of order O2), it follows that r∗t − Et−1r

∗
t = (gt − Et−1gt) + (vt − Et−1vt) + O2

and hence:

r∗t − Et−1r
∗
t =

∞∑
`=0

β`(Etgt+` − Et−1gt+`)− α
∞∑
`=1

β`(Etgt+` − Et−1gt+`) + O2. [A.8.8]

With strict inflation targeting (πt = 0), equations [3.9a] and [3.13] imply that the equilibrium nominal
bond yield is given by:

jt = α(1− βµ)

∞∑
`=0

(βµ)`Etgt+`+1 + O2.

Using this equation, πt = 0, and the expression for the ex-post real return on nominal bonds in [3.13] leads
to:

rt − Et−1rt = − βµ

1− βµ
(jt − Et−1jt) + O2 = −α

∞∑
`=1

(βµ)`(Etgt+` − Et−1gt+`) + O2. [A.8.9]

Equations [A.8.8] and [A.8.9] together with the definition of the ex-post real return gap r̃t = rt− r∗t imply:

r̃t − Et−1r̃t = −
∞∑
`=0

β`
(

1− α
(

1− µ`
))

(Etgt+` − Et−1gt+`) + O2. [A.8.10]

Since r̃t = d̃t − Et−1d̃t + O2 from equation [3.12a], it follows that Ct−1[gt, d̃t] = Et−1[gt(̃rt − Et−1r̃t)] + O3.
Hence, given µ = µ† and equation [A.8.10]:

ECt−1[gt, d̃t] = −E

[
Et−1

[
gt

{ ∞∑
`=0

β`
(

1− α
(

1− µ†`
))

(Etgt+` − Et−1gt+`)

}]]
+ O3,

and comparison with equation [A.8.7] shows that E$t = −(1 + ρ̄)αECt−1[gt, d̃t] + O3.
Now consider an economy where monetary policy replicates complete financial markets. Under the

conditions assumed in Proposition 5, there is an optimal degree of countercyclicality of the price level,
namely the term ω∗ given in equation [3.15]. This is expressed in terms of the function Θ(z) =

∑∞
`=0 ϑ`z

`

such that the stochastic process for real GDP growth is gt =
∑`

`=0 ϑ`εt−`, and where the innovation
εt = gt−Et−1gt is such that εt−` belongs to the date-t information set for all ` ≥ 0, and {ϑ`} is a sequence
with ϑ0 = 1.

Since Etgt+` − Et−1gt+` = ϑ`εt for all ` ≥ 0, using the definition of εt it follows that:

ECt−1[gt,Etgt+`] = EEt−1 [(gt − Et−1gt)(Etgt+` − Et−1gt+`)] = ϑ`Eε
2
t = ϑ`EVt−1[gt].

Substituting this into the expression for the average inflation risk premium in [3.23] and using µ† = µ leads
to:

E$t = (1 + ρ̄)α

( ∞∑
`=0

β`
(

1− α(1− µ`)
)
ϑ`

)
EVt−1[gt] + O3.
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Using the definition of the z-transform Θ(z) of the sequence {ϑ`}, the equation above can be written as:

E$t = (1 + ρ̄)α ((1− α)Θ(β) + αΘ(βµ))EVt−1[gt] + O3,

and comparison with the expression for ω∗ in [3.15] yields the equation for E$t given in the proposition
(invertibility of the stochastic process for gt ensuring Θ(βµ) 6= 0 since 0 < βµ < 1). This completes the
proof.

A.9 Proof of Proposition 9

Suppose N∗t is a path for nominal GDP that achieves the target dt = d∗t . Since this path is consistent with
d̃t = 0, it follows from equations [3.14a] and [3.14b] that

(1− βµ)

∞∑
`=0

(βµ)`(EtN
∗
t+` − Et−1N

∗
t+`) = (et − vt)− Et−1[et − vt]. [A.9.1]

Now observe from [3.24] that EtN
′
t+` = Et[zt−1+` − βµzt+`] for all ` ≥ 1, and note that:

∞∑
`=0

(βµ)`Et[zt−1+` − βµzt+`] = zt−1.

These observations imply
∞∑
`=0

(βµ)`EtN
′
t+` = zt−1 +

∞∑
`=0

(βµ)`(EtN
∗
t+` − Et−1N

∗
t+`),

and hence using [A.9.1] that N ′t = (1−βµ)
∑∞

`=0(βµ)`EtN
′
t+` satisfies N ′t−Et−1N ′t = (et−vt)−Et−1[et−vt].

Therefore, given [3.14a], the path of nominal GDP N′t is also consistent with d̃t − Et−1d̃t = 0, and hence
by using [3.12a] with dt = d∗t for all t. This completes the proof.

A.10 Proof of Proposition 10

Suppose the nominal interest rate it is set according to the rule [3.25]. In equilibrium, the nominal interest
rate must satisfy the Fisher equation [3.10], and the real interest rate must be as given in [3.9a]. Hence,
the following equation must hold:

(α− 1)Etgt+1 + EtN
∗
t+1 − N∗t + ζ(Nt − N∗t ) = αEtgt+1 + Etπt+1. [A.10.1]

Using the definition of nominal GDP Nt = Pt + Yt:

Etπt+1 = Et[Nt+1 − Nt]− Etgt+1,

and by substituting this into equation [A.10.1]:

EtN
∗
t+1 − N∗t + ζ(Nt − N∗t ) = Et[Nt+1 − Nt].

Using the nominal GDP path N∗t , define the gap Ñt = Nt − N∗t between the actual and the desired path,
and note that the equation above can be written as:

EtÑt+1 = (1 + ζ)Ñt.

Now define a martingale difference sequence εt = Ñt − Et−1Ñt, noting that the expectational difference
equation above can be written equivalently as:

Ñt = (1 + ζ)Ñt−1 + εt, [A.10.2]

and iterating this equation ` periods forward leads to:

Ñt+` = (1 + ζ)`Ñt +
∑̀
=1

(1 + ζ)`−εt+. [A.10.3]
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The variable Nt is as defined in [3.14b], and let N ∗t denote the equivalent variable defined in terms of N∗t ,
and Ñt = Nt −N ∗t . With these definitions, equation [3.14b] implies that:

Ñt = (1− βµ)

∞∑
`=0

(βµ)`EtÑt. [A.10.4]

Given equation [3.14a], the characteristic of the path N∗t that ensures dt = d∗t is Nt −Et−1Nt = (et − vt)−
Et−1[et − vt]. Therefore, d̃t and Ñt are related as follows

d̃t − Et−1d̃t = −(Ñt − Et−1Ñt), [A.10.5]

which again uses equation [3.14a].

(i) Assuming ζ > 0, it is clear from [A.10.3] (given Etεt+` = 0 for all ` ≥ 1) that |Ñt+`| → ∞ with
probability one as ` → ∞ unless Ñt = 0 for all t. Since [A.10.2] implies that nominal GDP growth
nt = Nt−Nt−1 is nt = n∗t +ζÑt−1 +εt, any Ñt 6= 0 would imply an unbounded path of nominal GDP growth
(and inflation). Ruling out such cases as possible equilibria leaves only Ñt = 0 as an equilibrium. It follows
from [A.10.4] that this equilibrium must feature Ñt = 0, and hence from [A.10.5] that d̃t = 0. Thus, there
is a unique (bounded) equilibrium with Nt = N∗t and dt = d∗t .

(ii) Assuming ζ = 0, the equilibrium condition [A.10.2] reduces to Ñt = Ñt−1 + εt, which implies that
nominal GDP growth nt = Nt − Nt−1 is given by nt = n∗t + εt. Since εt is bounded, the implied rate of
nominal GDP growth is also bounded, so any martingale difference sequence εt satisfying Et−1εt = 0 is
consistent with equilibrium. Since Ñt follows a random walk, its expected future value is EtÑt+` = Ñt
for any ` ≥ 0. Therefore, by substituting this into equation [A.10.4], it follows that Ñt = Ñt, and hence
Ñt −Et−1Ñt = εt. By using equation [A.10.5] it is seen that d̃t −Et−1d̃t = −εt, and together with [3.12a],
the difference equation for d̃t is obtained. This completes the proof.

A.11 Proof of Proposition 11

Taking the utility functions of each household type from equation [2.1], the welfare function from [3.26] can
be written explicitly as:

Wt0 = Et0

[
Ωb|t0

2

∞∑
t=t0

{
t−t0∏
`=1

δb,t−`

}
C1−α

b,t

1− α
+
Ωs|t0

2

∞∑
t=t0

{
t−t0∏
`=1

δs,t−`

}
C1−α

s,t

1− α

]
. [A.11.1]

(i) Start from particular Pareto weights Ωτ |t0 , where the ratio Ωb|t0/Ωs|t0 is measurable with respect to
t0−1 information. The corresponding first-best allocation is the one that maximizes [A.11.1] subject to the
resource constraint [3.27], taking the discount factors δτ,t as given (as individual households do), with the
given values of the discount factors equal to [2.2] evaluated at the first-best consumption allocation. This
social planner’s problem assumes that a full set of state-contingent transfers are available. The Lagrangian
for the constrained maximization problem is:

Lt0 = Wt0 + Et0

[ ∞∑
t=t0

Φt|t0

{
Yt −

Cb,t

2
− Cs,t

2

}]
, [A.11.2]

where Wt0 is the welfare function from [A.11.1] and Φt|t0 is the sequence of state-contingent Lagrangian
multipliers on the resource constraints [3.27] starting from t = t0 onwards. The first-order conditions with
respect to Cτ,t for t ≥ t0 are:

Ωτ |t0

{
t−t0∏
`=1

δ?τ,t−`

}
C?−ατ,t = Φ?t|t0 , [A.11.3]

where δ?τ,t denotes the discount factor [2.2] evaluated at C?τ,t. For households of type τ , taking the ratio of
the first-order condition at time t ≥ t0 + 1 and the first-order condition at time t− 1 yields:

δ?τ,t−1

(
C?τ,t
C?τ,t−1

)−α
=

Φ?t|t0
Φ?t−1|t0

.
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Since this equation must hold for all τ ∈ {b, s}, the following risk-sharing condition is obtained for all
t ≥ t0 + 1:

δ?b,t−1

(
C?b,t
C?b,t−1

)−α
= δ?s,t−1

(
C?s,t
C?s,t−1

)−α
, [A.11.4]

which confirms equation [3.29]. Now take the ratio of the first-order conditions [A.11.3] at time t = t0 for
borrowers and savers:

Ωb|t0C
?−α

b,t0

Ωs|t0C
?−α

s,t0

= 1, and hence
C?b,t0
C?s,t0

=

(
Ωb|t0
Ωs|t0

) 1
α

. [A.11.5]

Since Ωb|t0/Ωs|t0 is measurable with respect to t0− 1 information, it follows that C?b,t0/C
?
s,t0 is also measur-

able at t0 − 1. As this result and [A.11.4] are obtained for any admissible Pareto weights Ωτ |t0 , it follows
that [3.27] for all t ≥ t0, [3.29] for all t ≥ t0 + 1, and C?b,t0/C

?
s,t0 being t0 − 1 measurable are necessary

conditions for C?τ,t to be a first-best consumption allocation.
Now consider the converse. Take a state-contingent consumption allocation C?τ,t satisfying [3.27] for all

t ≥ t0, [3.29] for all t ≥ t0 + 1, and where the ratio C?b,t0/C
?
s,t0 is measurable at time t0− 1. It is now shown

that this is a first-best allocation in the sense of solving the planner’s problem for some Pareto weights
Ω?
τ |t0 , where Ω?

b|t0/Ω
?
s|t0 is t0 − 1 measurable. Set the weights Ω?

τ |t0 as follows:

Ω?
τ |t0 = C?ατ,t0 , [A.11.6]

where this choice of weights implies that:

Ω?
b|t0

Ω?
s|t0

=

(
C?b,t0
C?s,t0

)−α
,

and hence the measurability restriction on the Pareto weights follows from the measurability condition
satisfied by the consumption allocation at t0. Now the sequence of supporting Lagrangian multipliers Φ?t|t0
is constructed recursively. Start from a normalization Φ?t0|t0 = 1. For t ≥ t0 + 1, the next iteration of the
sequence is determined by:

Φ?t|t0 = δ?b,t−1

(
C?b,t
C?b,t−1

)−α
Φ?t−1|t0 = δ?s,t−1

(
C?s,t
C?s,t−1

)−α
Φ?t−1|t0 ,

where δ?τ,t is set according to [2.2] evaluated at the consumption allocation C?τ,t. The two expressions above
return the same value because the allocation satisfies equation [A.11.4] for all t ≥ t0 + 1. Iterating this
equation forwards yields two valid expressions for Φ?t|t0 :

Φ?t|t0 = C?αb,t0

{
t−t0∏
`=1

δ?b,t−`

}
C?−αb,t = C?αs,t0

{
t−t0∏
`=1

δ?s,t−`

}
C?−αs,t ,

and by using equation [A.11.6] it follows immediately that the first-order condition [A.11.3] is satisfied for all
τ and all t ≥ t0. Since the allocation also satisfies the resource constraint [3.27] for all t ≥ t0, it follows that
it is the solution to the planner’s problem for some weights [A.11.6] that satisfy the measurability restriction.
This establishes that the resource constraint [2.23] for all t ≥ t0, the risk-sharing condition [3.29] for all
t ≥ t0 + 1, and the measurability restriction on C?b,t0/C

?
s,t0 are necessary and sufficient conditions that

characterize the set of first-best consumption allocations.

(ii) The consumption allocation corresponding to the equilibrium with complete financial markets open
for securities paying off from time t0 onwards is such that the consumption ratios c∗τ,t|t0 satisfy the goods-

market clearing condition [2.23] for all t ≥ t0 and the risk-sharing condition [3.5] for all t ≥ t0. Given the
definition cτ,t = Cτ,t/Yt, this is equivalent to C∗τ,t|t0 satisfying [3.27] for all t ≥ t0 and [3.29] for all t ≥ t0 +1.

Note that the risk-sharing condition [3.5] at time t = t0 implies:

C∗b,t0|t0
C∗s,t0|t0

=
c∗b,t0|t0
c∗s,t0|t0

=

(
δb,t0−1

δs,t0−1

) 1
α
(
cb,t0−1

cs,t0−1

)
,
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and hence the measurability restriction on C∗b,t0|t0/C
∗
s,t0|t0 is satisfied. This allocation thus belongs to the

set of first-best allocations. However, the measurability restriction does not imply that [3.5] holds for
t = t0, so the converse is not true. There are infinitely many first-best consumption allocations. Any
allocation starting with a non-stochastic ratio C?b,t0/C

?
s,t0 will be among the first-best allocations subject

to the overall consumption levels satisfying the resource constraint [3.27] and the subsequent evolution of
the consumption paths for t ≥ t0 + 1 being consistent with the risk-sharing condition [3.29].

(iii) Given the complete-markets equilibrium d∗t|t0 and l∗t|t0 from t0 onwards, consider the path for the

nominal GDP growth rate nt = (Nt −Nt−1)/Nt−1 specified below that is to be followed from time t0:

nt = (1 + n)

(
l∗t−1|t0
βd∗t|t0

)
− 1, [A.11.7]

where n is any steady-state rate of nominal GDP growth consistent with the parameter restriction γ <
1 + ī. The consumption ratios and implied discount factors in the complete-market equilibrium from t0
are denoted by c∗τ,t|t0 and δ∗τ,t|t0 . Using the definition of nominal GDP growth nt, inflation is given by

1 + πt = (1 + nt)/(1 + gt). Hence, if the complete-markets consumption allocation is implemented, the
equilibrium bond yield jt from [2.26] can be written as:

jt =

Et
 ∞∑
`=1

γ`−1

∏̀
=1

δ∗τ,t+−1|t0
(1 + gt+)

1−α

(1 + nt+)

(
c∗τ,t+|t0
c∗τ,t+−1|t0

)−α
−1

+ γ− 1. [A.11.8]

Using equation [2.22b], the path for the nominal GDP growth rate in [A.11.7] implies

1 + nt =

(
1 + n

β

)(
1 + gt

1 + r∗t|t0

)
, [A.11.9]

where r∗t|t0 is the complete-markets (from t0 onwards) ex-post real return, and substituting this equation

into [A.11.8] leads to:

jt =

 β

1 + n

∞∑
`=1

(
γβ

1 + n

)`−1

Et

∏̀
=1

δ∗τ,t+−1|t0(1 + r∗t|t0)(1 + gt+)
−α

(
c∗τ,t+|t0
c∗τ,t+−1|t0

)−α−1

+ γ− 1.

[A.11.10]

The complete-markets equilibrium must satisfy the Euler equations [2.22d], thus the following equation
must hold for all ` ≥ 1:

Et

∏̀
=1

δ∗τ,t+−1|t0(1 + r∗t|t0)(1 + gt+)
−α

(
c∗τ,t+|t0
c∗τ,t+−1|t0

)−α = 1,

which implies 1+jt = (1+n)/β when substituted into [A.11.10] (as explained in the proof of Proposition 3,
the infinite sum converges because the parameter restriction γ < 1 + ī implies γβ < 1 + n). Using the
definition of nominal GDP growth 1 + nt = (1 + πt)(1 + gt), equation [2.25a], the description of policy in
[A.11.9], and the constant bond yield jt, the ex-post real return with incomplete financial markets must be
such that rt = r∗t|t0 . This demonstrates that the equilibrium with complete markets open from t0 can be
replicating using monetary policy in the incomplete-markets economy starting from any initial conditions
at t0 − 1.

To show that the equilibrium with complete markets open from t0 onwards is the only first-best al-
location implementable using monetary policy starting from date t0, consider the welfare maximization
problem of the policymaker at the central bank who does not have access to the full set of instruments
implicit in the social planner’s problem. In an economy with nominal bonds, the central bank can use its
policy instrument to determine the state-contingent path of the price level, and is thus able to affect the
ex-post real return rt on bonds. The central bank then maximizes the welfare function [A.11.1] for some
Pareto weights Ωτ |t0 (with Ωb|t0/Ωs|t0 being t0 − 1 measurable) starting from t0 onwards. The constraints
comprise the equilibrium conditions of the incomplete-markets economy. These can be reduced to the re-
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source constraint [3.27] of the social planner’s problem, a single equation [3.28] that represents the budget
identities of the households (given the resource constraint, one budget identity is redundant), and the Euler
equations [2.18] for each household type. Starting at time t0, these equations are constraints on the central
bank that must hold for all t ≥ t0. The endogenous variables are the consumption allocation Cτ,t, the
end-of-period wealth distribution as captured by the real value of loans Lt, and the ex-post real return on
bonds rt.

The Lagrangian for the policymaker’s constrained maximization problem is

Lt0 = Wt0 +
∞∑
t=t0

Et0

[
Φt|t0

{
Yt −

Cb,t

2
− Cs,t

2

}
+ =t|t0

{
2((1 + rt)Lt−1 − Lt) +

Cb,t

2
− Cs,t

2

}]

+

∞∑
t=t0

Et0

[<b,t|t0
2

{
C−αb,t − δb,t(1 + rt+1)C−αb,t+1

}
+
<s,t|t0

2

{
C−αs,t − δs,t(1 + rt+1)C−αs,t+1

}]
, [A.11.11]

where Φt|t0 is the Lagrangian multiplier on the resource constraint [3.27], =t|t0 is the multiplier on the
budget identity [3.28], and <τ,t|t0 are the multipliers on the Euler equations. The first-order conditions
with respect to Cb,t, Cs,t, Lt, and rt are:

Ωb|t0

{
t−t0∏
`=1

δ?b,t−`

}
C?−αb,t = Φ?t|t0 −=

?
t|t0 + α

(
<?b,t|t0 − δ

?
b,t−1(1 + r?t )<?b,t−1|t0

)
C?−α−1

b,t ; [A.11.12a]

Ωs|t0

{
t−t0∏
`=1

δ?s,t−`

}
C?−αs,t = Φ?t|t0 + =?t|t0 + α

(
<?s,t|t0 − δ

?
s,t−1(1 + r?t )<?s,t−1|t0

)
C?−α−1

s,t ; [A.11.12b]

=?t|t0 = Et

[
(1 + r?t+1)=?t+1|t0

]
; and [A.11.12c]

2L?t−1=?t|t0 = α

(
δ?b,t−1<?b,t−1|t0C

?−α−1
b,t

2
+
δ?s,t−1<?s,t−1|t0C

?−α−1
s,t

2

)
, [A.11.12d]

which must hold for all t ≥ t0, with the notational convention that <τ,t|t0 = 0 if t < t0, indicating
that equilibrium conditions prior to t0 are not taken as constraints. If a consumption allocation is a
solution of this constrained maximization problem for some admissible Pareto weights (ones satisfying the
measurability restriction) then it is referred to as a second-best allocation.

Now take any second-best allocation C?τ,t (associated with Pareto weights Ω?
τ |t0) that also belongs to

the set of first-best allocations. Since it is second-best, it must satisfy the equilibrium conditions of the
incomplete-markets economy, with associated real loans L?t and ex-post real return r?t . The allocation must
satisfy both the social planner’s first-order conditions [A.11.3] and the policymaker’s first-order conditions
in [A.11.12]. A comparison of these sets of equations reveals that the Lagrangian multipliers on the extra
implementability constraints must be zero at all times, that is, =?t|t0 = 0 and <?τ,t|t0 = 0, meaning that
given the Pareto weights Ω?

τ |t0 , the chosen allocation would respect the implementability constraints even
if these were not imposed explicitly.

Since the allocation satisfies [A.11.3], equation [A.11.5] must hold at time t0, and this equation can be
multiplied by (1 + r?t0)C?s,t0 to obtain:

Ω?
b|t0

Ω?
s|t0

(1 + r?t0)C?−αb,t0
= (1 + r?t0)C?−αs,t0 .

The restriction on the Pareto weights requires Ω?
b|t0/Ω

?
s|t0 to be measurable with respect to period t0 − 1

information, so by taking expectations of both sides of the above equation conditional on date-t0 − 1
information, it follows that:

Ω?
b|t0

Ω?
s|t0

=
Et0−1

[
(1 + r?t0)C?−αs,t0

]
Et0−1

[
(1 + r?t0)C?−αb,t0

] . [A.11.13]

In equilibrium, the Euler equations [2.18] must hold at time t0 − 1 (though these are not a constraint in
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the policymaker’s problem at time t0), hence by using the Euler equations of both household types:

δb,t0−1Et0−1

[
(1 + r?t0)

(
C?b,t0
Cb,t0−1

)−α]
= δs,t0−1Et0−1

[
(1 + r?t0)

(
C?s,t0
Cs,t0−1

)−α]
,

and extracting terms dated t0 − 1 from the conditional expectations leads to:

Et0−1

[
(1 + r?t0)C?−αs,t0

]
Et0−1

[
(1 + r?t0)C?−αb,t0

] =
δb,t0−1

δs,t0−1

(
Cb,t0−1

Cs,t0−1

)α
.

By combining this with equation [A.11.13], the Pareto weights for this consumption allocation must be
such that

Ω?
b|t0

Ω?
s|t0

=
δb,t0−1

δs,t0−1

(
Cb,t0−1

Cs,t0−1

)α
, [A.11.14]

and substituting this expression for the ratio of weights back into [A.11.5] implies:

δb,t0−1

(
C?b,t0
Cb,t0−1

)−α
= δs,t0−1

(
C?s,t0
Cs,t0−1

)−α
.

This is the risk-sharing condition [A.11.4] at time t = t0. In summary, since the allocation is second
best, all the market clearing and budget identities must hold. As the allocation is also first best, the
risk-sharing condition must hold for all t ≥ t0 +1. Finally, as shown above, since the allocation is first best,
implementable, and has Pareto weights satisfying the measurability restriction, the risk-sharing condition
must also hold at time t0. Thus, all the equilibrium conditions hold for the economy where complete
financial markets are open from time t0 onwards. The consumption allocation must then coincide with
the equilibrium of that economy. This demonstrates that this equilibrium is the only first-best allocation
implementable by the policymaker at the central bank.

(iv) Now suppose that whenever a new state-contingent plan for monetary policy from some time
t0 onwards is made, the policymaker solves the constrained maximization problem with Pareto weights
that support the one implementable first-best allocation. This entails using Pareto weights with the ratio
Ω∗b|t0/Ω

∗
s|t0 as given in equation [A.11.14]. As shown in part (iii), the consumption allocation implied by

this plan coincides with the equilibrium of the economy with complete markets open for securities paying
off from t0 onwards.

Suppose that monetary policy successfully replicates this consumption allocation between dates t0 and
t′0 − 1 for some t′0 > t0. Taking the initial conditions now prevailing at date t′0 − 1 as predetermined, the
equilibrium with complete markets open from t′0 features the same consumption allocation for all t ≥ t′0 as
does the complete-markets equilibrium from t0 onwards. Thus, if in the future there is a choice of a new
plan selected on the same principles then the ongoing consumption allocation would coincide with that
specified by the earlier plan, assuming the earlier plan had been followed up to that point (the relative
Pareto weight Ω∗b|t′0

/Ω∗s|t′0
remains unchanged at any reoptimization date t′0). This implies the policymaker’s

plan is time consistent when the Pareto weights are chosen to support the one implementable first-best
allocation.

Now suppose that whenever a new state-contingent plan for monetary policy is chosen, the ratio of the
Pareto weights is set differently from that described above, so it does not support the complete-markets
equilibrium consumption allocation. Using the results of part (iii), the consumption allocation resulting
from the plan does not belong to the set of first-best allocations. It is the solution of the constrained maxi-
mization problem represented by the Lagrangian [A.11.11] for some Lagrangian multipliers with <τ,t|t0 6= 0
(if <τ,t|t0 = 0 for all τ and t then [A.11.12d] implies =t|t0 = 0 for all t, in which case the allocation would be
a solution of the social planner’s problem and thus first best). However, since any reoptimization at time
t′0 > t0 sets the Lagrangian multipliers on constraints prior to t′0 to zero, non-zero terms in <τ,t′0−1|t0 in
the original problem that appear in the first-order conditions [A.11.12a], [A.11.12b], and [A.11.12d] would
be replaced by zero terms <τ,t′0−1|t′0 after the reoptimization. This implies that second-best allocations are
generally time inconsistent even if the relative Pareto weights of households do not change.
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(v) With complete financial markets open for securities paying off from t0 onwards, equations [2.22e],
[2.23], and [3.5] hold for all t ≥ t0. These equations form a closed system in the consumption ratios cτ,t
and the discount factors δτ,t. Taking the past consumption ratios cτ,t0−1 as state variables, these equations
determine a path for c∗τ,t|t0 and δ∗τ,t|t0 . Given that no exogenous shocks appear in this set of equations, the
resulting paths are non-stochastic, predetermined by the initial conditions at t0 − 1.

The log-linear approximation of the equilibrium can be derived by first noting that all the log linearized
equilibrium conditions from part (i) of Proposition 4 must hold, as must those from part (iii) of that
proposition characterizing the gaps relative to the equilibrium with complete markets open at all dates. In
addition, complete markets being open from t ≥ t0 onwards implies the risk-sharing condition [3.5] holds
for all t ≥ t0. That equation can be log linearized as follows

δb,t−1 − α(cb,t − cb,t−1) = δs,t−1 − α(cs,t − cs,t−1),

and by subtracting the equation derived by taking expectations of both sides conditional on period-t − 1
information, the following must hold for all t ≥ t0:

c∗b,t|t0 − Et−1c
∗
b,t|t0 = c∗s,t|t0 − Et−1c

∗
s,t|t0 .

Using [3.12b] with cτ,t = c̃∗τ,t|t0 , the above equation implies:{(
θ

1 + θ

)(
1− βλ
1− β

)
+

(
θ

1− θ

)(
1− βλ
1− β

)}(
(d∗t|t0 − d∗t )− Et−1[d∗t|t0 − d∗t ]

)
= 0,

and since the coefficient is strictly positive, the condition below must hold for all t ≥ t0:

d∗t|t0 − Et−1d
∗
t|t0 = dt − Et−1dt.

With dt = d∗t|t0 , combining the equation above with [3.9b] and using the result vt = d∗t from [3.11]:

d∗t|t0 = λd∗t−1|t0 + (Et−1d
∗
t − λd∗t−1) + (d∗t − Et−1d

∗
t ),

which simplifies to:

d∗t|t0 = d∗t + λ(d∗t−1|t0 − d∗t−1).

The notational convention d∗t0−1|t0 = dt0−1 is adopted for variables that are predetermined at date t0.

Iterating the equation above backwards yields the solution for d∗t|t0 in [3.30a], which is valid for all t ≥ t0.
This is given in terms of d∗t , a function of exogenous variables from Proposition 4, and dt0−1− d∗t0−1, which
is predetermined from t0 onwards. Now use lt = l∗t|t0 in [3.9c] together with vt = d∗t and l∗t = β−1d∗t from

[3.11] to deduce:

l∗t|t0 = l∗t + λ(d∗t|t0 − d∗t ),

and substituting the solution for d∗t|t0 from [3.30a] yields the solution for l∗t|t0 in [3.30a]. Since the solution

is such that d∗t|t0 −Et−1d
∗
t|t0 = d∗t −Et−1d

∗
t for all t ≥ t0, it follows from [3.9c] that r∗t|t0 = r∗t , confirming the

result in [3.30a]. Substituting the solution for d∗t|t0 from [3.30a] into [3.12b] shows that the consumption
ratios c∗τ,t|t0 are given by:

c∗b,t|t0 = −
(

θ

1− θ

)(
1− βλ
1− β

)
λt−t0+1(dt0−1 − d∗t0−1); and

c∗s,t|t0 =

(
θ

1 + θ

)(
1− βλ
1− β

)
λt−t0+1(dt0−1 − d∗t−t0+1).

Since cb,t0−1 and cs,t0−1 also satisfy [3.12b], it follows from the equations above that c∗τ,t|t0 = λt−t0+1cτ,t0−1,
confirming the claim in the proposition.

Finally, because equations [3.9b] and [3.9c] are satisfied by dt and d∗t|t0 , lt and l∗t|t0 , and rt and r∗t|t0 , the

equation for the gaps d̃t|t0 , l̃t|t0 , and r̃t|t0 in [3.30b] follow immediately. The equations for the consumption
gaps in [3.30b] also follow from [3.12b].

(vi) The welfare function [3.26] starting from time t0 is evaluated using the Pareto weights that support
the only implementable first-best consumption allocation from that date. From part (iii), this is the
equilibrium with complete financial markets open from t0 onwards. Let c∗τ,t|t0 denote the consumption
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ratios in the complete-markets equilibrium from t0 onwards, and δ∗τ,|t0 the associated discount factors that
are taken as given by the policymaker, but are consistent with the consumption allocation c∗τ,t|t0 . The

required Pareto weights Ω∗τ |t0 satisfy [A.11.3] with an associated sequence of Lagrangian multipliers Φ∗t|t0
on the resource constraint. This equation can be written in terms of the consumption ratios as follows:

Ω∗τ |t0

{
t−t0∏
`=1

δ∗τ,t−`|t0

}
= c∗ατ,t|t0Φ

∗
t|t0Y

α
t . [A.11.15]

Since all these equations are homogeneous in the Pareto weights and the Lagrangian multipliers, the values
that support the complete-markets equilibrium are determined only up to scale. This degree of freedom is
used to determine the units of the welfare function. By the envelope theorem, the Lagrangian multiplier
Φt0|t0 represents the increment to the period-t0 welfare function from a marginal relaxation of the period-t0
resource constraint. By setting Φt0|t0 = 1/Yt0 , this means that one unit of the welfare measure is equivalent
to a 1% increase in the initial level of output. Therefore, the following normalization is adopted:

Φ∗t0|t0 =
1

Yt0
, and hence Ω∗τ |t0 =

c∗ατ,t0|t0

Y 1−α
t0

, [A.11.16]

where the second equation follows from [A.11.15] at t = t0, and which confirms the Pareto weights specified
in the proposition.

In what follows, the variable ϕt|t0 is defined as a transformation of the sequence of Lagrangian multipliers
Φt|t0 :

ϕ∗t|t0 =
YtΦ

∗
t|t0

βt−t0
, which satisfies Ω∗τ |t0

{
t−t0∏
`=1

δ∗τ,t−`|t0

}
= βt−t0

ϕ∗t|t0c
∗α
τ,t|t0

Y 1−α
t

, [A.11.17]

where the latter equation follows from [A.11.15]. Using that equation, with Pareto weights [A.11.16] and
given discount factors δ∗τ,t|t0 , the welfare function [A.11.1] can be expressed as follows:

Wt0 =

∞∑
t=t0

βt−t0Et0

[
ϕ∗t|t0

{
1

2

c∗αb,t|t0c
1−α
b,t

1− α
+

1

2

c∗αs,t|t0c
1−α
s,t

1− α

}]
.

The welfare function is now written in terms of a variable Υt|t0 that depends on the actual consumption
ratios cτ,t and their values c∗τ,t|t0 if financial markets were complete from date t0 onwards:

Wt0 =

∞∑
t=t0

βt−t0Et0

ϕ∗t|t0 Υ−(1−α)
t|t0
1− α

 , where Υt|t0 =

(
1

2
c∗αb,t|t0c

1−α
b,t +

1

2
c∗αs,t|t0c

1−α
s,t

)− 1
1−α

. [A.11.18]

Now consider a second-order accurate approximation of the welfare function in [A.11.18] around the
non-stochastic steady state characterized in Proposition 1. First, combining equation [A.11.17] for the
transformed Lagrangian multipliers ϕ∗t|t0 and the normalization in [A.11.16] implies:

ϕ∗t|t0 =

(
c∗τ,t0|t0
c∗τ,t|t0

)α ∏t−t0
`=1 δ

∗
τ,t−`|t0(1 + gt−`)

1−α

βt−t0
. [A.11.19]

Given that β is defined in [2.27c] such that β = δ(1 + ḡ)1−α, and given the steady state from Proposition 1,
it is clear that the transformed Lagrangian multipliers ϕ∗t|t0 have a well defined value ϕ̄ = 1 in the non-

stochastic steady state. With the result from part (v), the consumption ratios c∗τ,t|t0 with complete financial

markets open from t0 onwards depend only on variables that are predetermined at time t0 (and so do the
discount factors δ∗τ,t|t0 given that these are evaluated at the complete-markets equilibrium). Therefore, the
transformed multipliers ϕ∗t|t0 are independent of policy decisions from t0 onwards.

Using the definition of Υt|t0 in [A.11.18] and the non-stochastic steady state characterized in Proposi-
tion 1 (which is the same in the case of complete markets) with c̄b = c̄∗b = 1 − θ and c̄s = c̄∗s = 1 + θ, it
can be seen that Υt|t0 has a well defined non-stochastic steady-state value Ῡ = 1. Taking each component
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of Υt|t0 from [A.11.18] in turn, note the following second-order accurate approximation:

c∗ατ,t|t0c
1−α
τ,t = c̄τ

(
1 + (1− α)cτ,t + αc∗τ,t|t0 +

1

2
(1− α)2c2

τ,t + α(1− α)c∗τ,t|t0cτ,t +
1

2
α2c∗2τ,t|t0

)
+ O3,

which can be written as follows by rearranging terms:

c∗ατ,t|t0c
1−α
τ,t = c̄τ

(
1 + (1− α)

(
cτ,t +

1

2
c2
τ,t

)
− α(1− α)

2

(
cτ,t − c∗τ,t|t0

)2
+ αc∗τ,t|t0

+
α2

2
c∗2τ,t|t0 +

α(1− α)

2
c∗2τ,t|t0

)
+ O3.

This expression can be simplified by stating it in terms of the consumption gaps c̃τ,t|t0 = cτ,t − c∗τ,t|t0 :

c∗ατ,tc
1−α
τ,t = c̄τ

(
1− α(1− α)

2
c̃2
τ,t|t0 + (1− α)

(
cτ,t +

1

2
c2
τ,t

)
+ α

(
c∗τ,t|t0 +

1

2
c∗2τ,t|t0

))
+ O3.

Therefore, the second-order accurate approximation of equation [A.11.18] for Υt|t0 is:

Υt|t0 =
α

2

(
(1− θ)

2
c̃2

b,t|t0 +
(1 + θ)

2
c̃2

s,t|t0

)
−
(

(1− θ)

(
cb,t +

1

2
c2

b,t

)
+ (1 + θ)

(
cs,t +

1

2
c2

s,t

))
− α

1− α

(
(1− θ)

(
c∗b,t|t0 +

1

2
c∗2b,t|t0

)
+ (1 + θ)

(
c∗s,t +

1

2
c∗2s,t|t0

))
+

1− α
2

Υ2
t|t0 + O3. [A.11.20]

The consumption ratios of the actual economy and the hypothetical complete-markets economy must both
satisfy [2.23], where a second-order accurate approximation of that equation is:

(1− θ)

(
cb,t +

1

2
c2

b,t

)
+ (1 + θ)

(
cs,t +

1

2
c2

s,t

)
= O3,

and by substituting this into [A.11.20], all first-order terms are eliminated from the right-hand side. This
implies that Υt|t0 = O2, and hence the term in Υ2

t|t0 can be included among the O3 (third-order or higher)
terms. Therefore, the second-order accurate approximation is:

Υt|t0 =
α

2

(
(1− θ)

2
c̃2

b,t|t0 +
(1 + θ)

2
c̃2

s,t|t0

)
+ O3.

Substituting the equations for the consumption gaps from [3.30b] (which hold up to an error of order O2),
the equation above can be written solely in terms of the debt gap d̃t|t0 :

Υt|t0 =
α

2

1

2

(
1− βλ
1− β

)2((1− θ)θ2

(1− θ)2
+

(1 + θ)θ2

(1 + θ)2

)
d̃2
t + O3,

and by simplifying the coefficient:

Υt|t0 =
ℵd

2
d̃2
t + O3, where ℵd = α

(
θ2

1− θ2

)(
1− βλ
1− β

)2

. [A.11.21]

A second-order accurate approximation of equation [A.11.18] for the welfare function in terms of the
log deviations ϕ∗t|t0 and Υt|t0 is

Wt0 =

∞∑
t=t0

βt−t0Et0

[
1

1− α

(
1 +ϕ∗t|t0 +

1

2
ϕ∗2t|t0

)
− Υt|t0 −ϕ

∗
t|t0Υt|t0 +

(1− α)

2
Υ2
t|t0

]
+ O3. [A.11.22]

Given the parameter restrictions, Proposition 1 shows that 0 < β < 1. Equation [A.11.21] shows that Υt|t0
depends only on the stationary variable d̃t|t0 . Using equation [A.11.19], ϕ∗t|t0 is given by:

ϕ∗t|t0 = α(c∗τ,t0|t0 − c∗τ,t|t0) +

t−t0∑
`=1

(
δ∗τ,t−`|t0 + (1− α)gt−`

)
,

which is a sum of stationary variables. The variance may increase with t, but since all terms dated t in
[A.11.22] are multiplied by βt−t0 , and as 0 < β < 1, the value of the welfare function is well defined. With
Υt|t0 = O2 and ϕ∗t|t0 being independent of policy from t0 onwards (denoted by It0), equation [A.11.22]
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reduces to:

Wt0 = −
∞∑
t=t0

βt−t0Et0Υt|t0 + It0 + O3.

Hence, the welfare function can be written as Wt0 = −Lt0 + It0 + O3, where the loss function Lt0 is as
defined in [3.31]. The coefficient of the debt gap is taken from [A.11.21]. This completes the proof.

A.12 Proof of Proposition 12

The welfare function [3.26] is evaluated at the Pareto weights associated with the first-best level of output
Ŷt and complete financial markets open for securities paying off from t0 onwards. Given the first-best level
of output, part (iii) of Proposition 11 shows that the complete-markets equilibrium is the only first-best
consumption allocation that can be implemented using monetary policy. Following the proof of part (vi)
of Proposition 11, these Pareto weights Ω̂∗τ |t0 must satisfy the equivalent of equation [A.11.15]:

Ω̂∗τ |t0

{
t−t0∏
`=1

δ∗τ,t−`|t0

}
= c∗ατ,t|t0Φ̂

∗
t|t0 Ŷ

α
t , with normalization Φ̂∗t0|t0 =

1

Ŷt0
, [A.12.1]

where Φ̂∗t|t0 is the sequence of Lagrangian multipliers on the resource constraint in the social planner’s
problem. Since the Pareto weights and Lagrangian multipliers are determined only up to scale, the nor-
malization in [A.12.1] is imposed, which means that one unit of the welfare function is equivalent to a 1%
increase in the initial first-best level of output (see Proposition 11).

Equation [A.12.1] makes use of the result from part (v) of Proposition 11 that the consumption ratios
c∗τ,t|t0 in the equilibrium with complete markets open from t0 onwards depend only on variables that are
predetermined at date t0, not on the stochastic process for real GDP. This means that these ratios are
the same irrespective of whether actual real GDP Yt is equal to the first-best level of output Ŷt, formally
ĉ∗τ,t|t0 = c∗τ,t|t0 . The discount factors δ∗τ,t|t0 in [A.12.1] are taken as given by the policymaker, but are
evaluated at the consumption allocation c∗τ,t|t0 . These too are independent of the actual value of real GDP

because of the same property of c∗τ,t|t0 , hence δ̂∗τ,t|t0 = δ∗τ,t|t0 . Using equation [A.12.1] at t = t0, the required

Pareto weights are seen to be Ω̂∗τ |t0 = c∗ατ,t0|t0/Ŷ
1−α
t0

, confirming the statement in the proposition.

Following the proof of part (vi) of Proposition 11, define a transformation ϕ̂∗t|t0 of the Lagrangian

multipliers Φ̂∗t|t0 , the equivalent of equation [A.11.17]:

ϕ̂∗t|t0 =
ŶtΦ̂

∗
t|t0

βt−t0
, and hence Ω̂∗τ |t0

{
t−t0∏
`=1

δ∗τ,t−`|t0

}
= βt−t0

ϕ̂∗t|t0c
∗α
τ,t|t0

Ŷ 1−α
t

, [A.12.2]

where the latter equation uses [A.12.1]. That equation implies ϕ̂∗t|t0 is given by:

ϕ̂∗t|t0 =

(
c∗τ,t0|t0
c∗τ,t|t0

)α ∏t−t0
`=1 δ

∗
τ,t−`|t0(1 + ĝt−`)

1−α

βt−t0
, [A.12.3]

where ĝt is the growth rate of the first-best level of output Ŷt (equal to output with flexible prices). Since
none of the complete-markets consumption ratios c∗τ,t|t0 , discount factors δ∗τ,t|t0 , nor ĝt depend on policy
from t0 onwards, neither does ϕ̂∗t|t0 .

Substituting [A.12.2] into the welfare function [3.26] and using the utility function in [2.1] leads to:

Wt0 =
∞∑
t=t0

βt−t0Et0

[
ϕ̂∗t|t0

Ŷ 1−α
t

{
1

2

c∗αb,t|t0C
1−α
b,t

1− α
+

1

2

c∗αs,t|t0C
1−α
s,t

1− α

}]
.

Since flexible-price output is Ŷt = At, it follows from [4.9] that ∆t = Ŷt/Yt. Using this and the definition
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of Υt|t0 in equation [A.11.18] of the proof of Proposition 11, the welfare function can be written as follows:

Wt0 =

∞∑
t=t0

βt−t0Et0

 ϕ̂∗t|t0∆−(1−α)
t Υ

−(1−α)
t|t0

1− α

 . [A.12.4]

The link between ∆t and inflation πt is given in [4.11]. With a zero-inflation non-stochastic steady
state (π̄ = 0), the steady-state value of ∆t is ∆̄ = 1, which implies ĝt and gt have the same steady-state
value. This means the non-stochastic steady state of Proposition 1 is the same in this version of the model,
and the log linearizations of part (v) of Proposition 11 continue to hold. The term Υt|t0 is identical to
that appearing in the proof of Proposition 11, and as there is no change to the non-stochastic steady state
here, it has steady-state value Ῡ = 1 and its second-order approximation is as given in [A.11.21]. With
the same steady state as before, equation [A.12.3] confirms that ϕ̄ = 1, as in Proposition 11. The second-
order approximation of the welfare function in [A.12.4] in terms of log deviations of variables from their
non-stochastic steady-state values is therefore:

Wt0 =
∞∑
t=t0

βt−t0Et0

[
1

1− α

(
1 + ϕ̂∗t|t0 +

1

2
ϕ̂∗

2
t|t0

)
− (∆t + Υt|t0)

− ϕ̂∗t|t0(∆t + Υt|t0) +
(1− α)

2
(∆t + Υt|t0)2

]
+ O3. [A.12.5]

A second-order accurate approximation of equation [4.11] around the zero-inflation steady state leads to
the following recursion for ∆t:

∆t = σ∆t−1 +
ε(1 + εξ)

2

σ

(1− σ)
π2
t + O3. [A.12.6]

This implies that ∆t = σ∆t−1 + O2, and hence ∆t = O2 under the assumption that initial relative price
distortions are second order (∆t0−1 = O2). Without introducing first-order relative-price distortions ex-
ogenously, equation [A.12.6] implies these would never emerge endogenously. It is known from [A.11.21] in
Proposition 11 that Υt|t0 = O2, and equation [A.12.3] confirms ϕ̂∗t|t0 is independent of policy choices from

t0 onwards. Thus, the second-order approximation in [A.12.5] reduces to:

Wt0 = −
∞∑
t=t0

βt−t0Et0 [Υt|t0 + ∆t] + It0 + O3, [A.12.7]

where It0 denotes terms independent of policy choices from t0 onwards.
The recursion for ∆t in [A.12.6] can be iterated backwards to obtain:

∆t =
ε

2

σ

(1− σ)

t−t0∑
`=0

σ`π2
t−` + It0 + O3,

where the term σt−t0+1∆t0−1 is independent of policy from t0 onwards (this depends only on predetermined
variables). Hence, the expected discounted sum of current and future relative-price distortions is:

∞∑
t=t0

βt−t0Et0∆t =
ε(1 + εξ)

2

σ

(1− σ)

∞∑
t=t0

βt−t0
t−t0∑
`=0

σ`Et0π
2
t−` + It0 + O3,

and by changing the order of summation this can be written as:
∞∑
t=t0

βt−t0Et0∆t =
εκ

2

∞∑
t=t0

βt−t0Et0π
2
t + It0 + O3, where κ =

σ(1 + εξ)

(1− σ)(1− βσ)
. [A.12.8]

Substituting this result and equation [A.11.21] into [A.12.7] confirms the expression for the loss function
Lt0 , where Wt0 = −Lt0 + It0 + O3.

Since the log-linearizations of Proposition 4 and Proposition 11 continue to hold, the first constraint
in [4.14] follows immediately from [3.30b], and the transversality condition on jt follows from part (iii) of
Proposition 4. Relative-price distortions ∆t = Ŷt/Yt are such that ∆t = O2, hence gt = ĝt + O2. Since
[3.9a] and [3.11] imply that r∗t depends only on the stochastic process for real GDP, it must be the case that
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r∗t = r̂∗t . Equation [3.30a] also implies r̂∗t = r̂∗t|t0 . Together with the equation for r̃t|t0 = rt − r∗t|t0 in [3.30b],

the second constraint in [4.14] is deduced. This completes the proof.

A.13 Proof of Proposition 13

(i) Optimal monetary policy with commitment starting from date t0 minimizes the loss function [4.13]
subject to the constraints in [4.14], which must hold for all t ≥ t0. The endogenous variables are the
debt gap d̃t|t0 , inflation πt, and the bond yield jt. The exogenous variable is the natural real GDP growth
rate ĝt (with flexible prices), which determines (using [3.11]) the complete-markets ex-post real return r̂∗t
associated with this sequence of real GDP growth rates.

The Lagrangian for the constrained minimization problem is

Lt0 =
1

2

∞∑
t=t0

βt−t0Et0

[
ℵdd̃

2
t|t0 + ℵππ2

t

]
+
∞∑
t=t0

βt−t0Et0

[
kt|t0

{
λd̃t|t0 − d̃t+1|t0

}]
+
∞∑
t=t0

βt−t0Et0

[
it|t0

{
1

1− βµ
jt−1 −

βµ

1− βµ
jt − πt − d̃t|t0 + λd̃t−1|t0 − r̂∗t

}]
+ Γt0 lim

t→∞
(βµ)t−t0Et0 jt, [A.13.1]

with the coefficients of the debt gap and inflation in the loss function [4.13] denoted by ℵd and ℵπ, and
where the Lagrangian multipliers kt|t0 and it|t0 are for convenience expressed in current-value terms by

scaling by βt−t0 . The first-order conditions with respect to d̃t|t0 , πt, and jt are:

ℵdd̃t|t0 + λkt|t0 − β
−1kt−1|t0 − it|t0 + βλEtit+1|t0 = 0; [A.13.2a]

ℵππt − it|t0 = 0; [A.13.2b]

βEtit+1|t0 − βµit|t0 = 0, [A.13.2c]

where the notational convention is adopted that kt|t0 = 0 for all t < t0 (the policymaker does not consider
constraints prior to t0). Furthermore, the transversality conditions of the constrained minimization problem
[A.13.1] that must be satisfied by the multipliers kt|t0 and Γt0 are:

lim
t→∞

βt−t0kt|t0 = 0, and Γt0 =
βµ

1− βµ
lim
t→∞

Et0it|t0
µt−t0

. [A.13.3]

Equation [A.13.2c] implies Etit+1|t0 = µit|t0 for all t ≥ t0, and equation [A.13.2b] implies it|t0 = ℵππt
for all t ≥ t0. With ℵπ > 0 because σ > 0 (from [4.13]), combining these equations implies for all t ≥ t0:

Etπt+1 = µπt. [A.13.4]

This establishes that optimal monetary policy must feature inflation persistence with autoregressive coef-
ficient µ.

Iterating forwards the first constraint in [4.14] and the optimality condition [A.13.4], the expected future
paths of d̃t|t0 and πt for any t ≥ t0 must be as follows for all ` ≥ 0:

Etd̃t+`|t0 = λ`d̃t|t0 , and Etπt+` = µ`πt. [A.13.5]

Using [A.13.2b], [A.13.2c], and [A.13.3], the Lagrangian multipliers it|t0 and Γt0 can be expressed in terms
of inflation:

it|t0 = ℵππt, and Γt0 =
βµ

1− βµ
ℵππt0 .

Now consider the first-order condition [A.13.2a]. Multiplying both sides by β > 0 and substituting
terms in inflation πt for those in it|t0 using [A.13.2b] yields the following equation that holds for all t ≥ t0:

kt−1|t0 = βλkt|t0 + βℵdd̃t|t0 − βℵππt + β2λℵπEtπt+1.

Using [A.13.5], the expectations of future inflation can be replaced by terms in current inflation:

kt−1|t0 = βλkt|t0 + βℵdd̃t|t0 − β(1− βµλ)ℵππt.
Taking expectations of this equation at time t + 1 conditional on date-t information and making use of
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[A.13.5] implies that the following must hold for all t ≥ t0:

kt|t0 = βλEtkt+1|t0 + βλℵdd̃t|t0 − βµ(1− βµλ)ℵππt.
This equation can be iterated forwards to deduce:

kt|t0 =
∞∑
`=0

(βλ)`Et

[
βλℵdd̃t+`|t0 − βµ(1− βµλ)ℵππt+`

]
+ lim
`→∞

(βλ)`Etkt+`|t0 ,

and by taking expectations of the transversality condition [A.13.3] and noting that 0 < λ < 1, the final
term must be zero. Thus, kt|t0 is given by

kt|t0 = βλℵd

∞∑
`=0

(βλ)`Etd̃t+`|t0 − βµ(1− βµλ)ℵπ
∞∑
`=0

(βλ)`Etπt+`.

By using the results in [A.13.5], this yields the following expression which holds for all t ≥ t0:

kt|t0 = βλℵd

( ∞∑
`=0

(βλ2)`

)
d̃t|t0 − βµ(1− βµλ)ℵπ

( ∞∑
`=0

(βµλ)`

)
πt

= ℵd
βλ

1− βλ2
d̃t|t0 − ℵπβµπt. [A.13.6]

With the expression for kt|t0 in [A.13.6] and noting the initial condition kt0−1|t0 = 0, the first-order
condition [A.13.2a] at date t = t0 is:

0 = βλ

(
ℵd

βλ

1− βλ2
d̃t0|t0 − ℵπβµπt0

)
+ βℵdd̃t0|t0 − β(1− βµλ)ℵππt0 ,

which simplifies to:

ℵd

(1− βλ2)
d̃t0|t0 = ℵππt0 , or

ℵd

(1− βλ2)
(d̃t0|t0 − λd̃t0−1|t0) = ℵππt0 , [A.13.7]

where the latter holds because of the initial condition d̃t0−1|t0 = 0 (gaps are zero for any t before t0). Now
consider any t ≥ t0 + 1. The first-order condition [A.13.2a] together with equation [A.13.6] implies:

ℵd
βλ

1− βλ2
d̃t−1|t0 − ℵπβµπt−1 = βℵdd̃t|t0 − β(1− βµλ)ℵππt + βλ

(
ℵd

βλ

1− βλ2
d̃t|t0 − ℵπβµπt

)
,

which simplifies to the following, which holds for all t ≥ t0 + 1:

ℵd

(1− βλ2)
(d̃t|t0 − λd̃t−1|t0) = ℵπ(πt − µπt−1). [A.13.8]

Taking the differences between equations [A.13.7] and [A.13.8] and their expectations conditional on infor-
mation available one period earlier, the following optimality condition is obtained that must hold for all
t ≥ t0:

ℵd

(1− βλ2)
(d̃t|t0 − Et−1d̃t|t0) = ℵπ(πt − Et−1πt). [A.13.9]

For any t ≥ t0, by taking expectations of the second constraint in [4.14] at time t + 1 conditional on
date-t information and using the first constraint in [4.14] to cancel terms from the equation, the bond yield
jt must satisfy:

jt = βµEtjt+1 + (1− βµ)(Etπt+1 + Etr̂
∗
t+1).

Iterating this equation forwards implies

jt = (1− βµ)

∞∑
`=0

(βµ)`Et[πt+1+` + r̂∗t+`] + lim
`→∞

(βµ)`Etjt+`,

and since the final term is zero given the transversality condition for jt in [4.14], the bond yield jt for any
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t ≥ t0 is:

jt = (1− βµ)

∞∑
`=0

(βµ)`Et[πt+1+` + r̂∗t+1+`]. [A.13.10]

Taking the difference between the second constraint in [4.14] and its expectation conditional on information
available at date t− 1, the innovation to the debt gap for any t ≥ t0 must satisfy

d̃t|t0 − Et−1d̃t|t0 = −(πt − Et−1πt)−
1

1− βµ
(jt − Et−1jt)− (̂r∗t − Et−1r̂

∗
t ). [A.13.11]

Using equation [A.13.10], the innovation to the bond yield jt is:

jt − Et−1jt = (1− βµ)

∞∑
`=0

(βµ)`
(
Et[πt+1+` + r̂∗t+1+`]− Et−1[πt+1+` + r̂∗t+1+`]

)
,

and by substituting this into [A.13.11], the following must hold for all t ≥ t0:

d̃t|t0 − Et−1d̃t|t0 = −
∞∑
`=0

(βµ)`
(
Et[πt+` + r̂∗t+`]− Et−1[πt+` + r̂∗t+`]

)
. [A.13.12]

In what follows, define a variable ℘t:

℘t =
∞∑
`=0

(βµ)`
(
Etr̂
∗
t+` − Et−1r̂

∗
t+`

)
, [A.13.13]

where this variable is an exogenous martingale difference sequence (Et−1℘t = 0) by construction. Using
the formula for expectations of future inflation in [A.13.5], the discounted sum of future inflation is given
by

∞∑
`=0

(βµ)`Etπt+` =

( ∞∑
`=0

(
βµ2

)`)
πt =

1

1− βµ2
πt,

which is valid for all t ≥ t0. This equation in conjunction with [A.13.12] and the definition of ℘t in [A.13.13]
implies that the innovation to the debt gap satisfies the following for all t ≥ t0:

d̃t|t0 − Et−1d̃t|t0 = − 1

1− βµ2
(πt − Et−1πt)− ℘t. [A.13.14]

Combining this equation with the optimality condition [A.13.9] implies the following equation for the
unexpected component of inflation

(1− βλ2)
ℵπ
ℵd

(πt − Et−1πt) = − 1

1− βµ2
(πt − Et−1πt)− ℘t,

which has the solution below for all t ≥ t0:

πt − Et−1πt = −(1− βµ2)χ℘t, where χ =

(
1 + (1− βµ2)(1− βλ2)

ℵπ
ℵd

)−1

. [A.13.15a]

Substituting this into [A.13.14] yields the solution for the unexpected component of the debt gap:

d̃t|t0 − Et−1d̃t|t0 = −(1− χ)℘t. [A.13.15b]

Combining this with the first constraint from [4.14] confirms the solution for the optimal evolution of the
debt gap in [4.15a]. By using equations [3.9a] and [3.11], the complete-markets real return r̂∗t with flexible
prices (that is, when gt = ĝt) is given by

r̂∗t = αĝt + (1− α)
∞∑
`=0

β` (Etĝt+` − Et−1ĝt+`) ,

and by substituting this into [A.13.13], ℘t can be expressed as:

℘t = (1− α)
∞∑
`=0

β` (Etĝt+` − Et−1ĝt+`) + α
∞∑
`=0

(βµ)` (Etĝt+` − Et−1ĝt+`) . [A.13.16]
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This confirms the expression for ℘t in [4.15a]. The formula for χ in [4.15b] is verified by substituting for
the loss function coefficients ℵd and ℵπ in [A.13.15a] using [4.13].

(ii) Substituting the solution [4.15a] for the debt gap into equations [A.13.7] and [A.13.8] and using the
formula for χ from [A.13.15a] leads to the solution for inflation given in [4.16].

(iii) With Ŷt = At, it follows that ĝt = At − At−1, and hence ĝt is a stationary and invertible stochastic
process under the assumptions in the proposition. The stochastic process for ĝt can be expressed in the
form:

ĝt = Θ(L)εt, where Θ(z) =

∞∑
`=0

ϑ`z
` and εt = ĝt − Et−1ĝt, [A.13.17]

for some sequence {ϑ`} with ϑ0 = 1. The innovation εt is such that εt−` belongs to the date-t information
set for all ` ≥ 0. The expectation of ĝt+` conditional on information available at time t is:

Etĝt+` =
∞∑
=0

ϑ`+εt−,

and hence using [A.13.16], [A.13.17], and the definition of the z-transform Θ(z), the term ℘t is given by:

℘t = (αΘ(βµ) + (1− α)Θ(β)) εt. [A.13.18]

Now consider the level of weighted nominal GDP Nω,t = Pt + ωYt. Noting that Nω,t − Et−1Nω,t =
(πt−Et−1πt)+ω(gt−Et−1gt), by using the solution [A.13.15a] and [A.13.17], the condition Nω,t = Et−1Nω,t
is equivalent to

ωΘ(0)εt − (1− βµ2)χ℘t = 0.

Substituting the expression for ℘t from [A.13.18] it can be seen there is a weight on real output (denoted
by ω̇) such that weighted nominal GDP is insulated from shocks on impact (though not subsequently).
This weight satisfies the following equation:

Θ(0)ω̇ = χ(1− βµ2) (αΘ(βµ) + (1− α)Θ(β)) . [A.13.19]

The weight ω∗ from equation [3.15] of Proposition 5 satisfies the following equation

Θ(βµ)ω∗ = αΘ(βµ) + (1− α)Θ(β), [A.13.20]

and hence the solution of [A.13.19] is as given in [4.17b] (Θ(0) 6= 0 due to the invertibility of the real GDP
growth stochastic process). As this argument shows, [4.17b] is equivalent to the surprise component of
inflation in [A.13.15a], and together with Etπt+1 = µπt for all t > t0, the implied solution for inflation is
identical to that given in [4.16].

Consider now a weight such that weighted nominal GDP is insulated from shocks in the long run, or in
other words, where it is a stationary variable (or equivalently, the price level Pt and the level of real GDP
Yt are cointegrated). First, note that the solution for inflation in [4.16] can be written explicitly as follows:

πt = −(1− βµ2)χ

t−t0∑
`=0

µ`℘t−`,

or equivalently in terms of an initial condition represented by the variable zt0 :

πt = −(1− βµ2)χ

∞∑
`=0

µ`℘t−` − µt−t0zt0−1, where zt0−1 = −(1− βµ2)χ

∞∑
`=1

µ`℘t0−`. [A.13.21]

Using equation [A.13.18], inflation is thus

πt = −χ(1− βµ2) (αΘ(βµ) + (1− α)Θ(β)) (I− µL)−1εt − µt−t0zt0−1,

where L is the lag operator and I is the identity operator. Together with [A.13.17], the change in weighted
nominal GDP is ∆Nω,t = πt +ωgt is:

∆Nω,t =
(
ωΘ(L)− χ(1− βµ2) (αΘ(βµ) + (1− α)Θ(β)) (I− µL)−1

)
εt − µt−t0zt0−1.
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Since 0 < µ < 1 and given the definition in [A.13.21], the term µt−t0zt0−1 tends to zero as t→∞ for fixed
t0. Weighted nominal GDP is therefore stationary if the function of the lag operator in the equation above
has a root at unity. This occurs when ω = ~ω, which satisfies:

Θ(1)~ω =
χ(1− βµ2) (αΘ(βµ) + (1− α)Θ(β))

1− µ
,

and by using equation [A.13.20] that is satisfied by ω∗ from [3.15], the solution is as given in [4.17a]. The
term Θ(1) in the denominator is non-zero because of the invertibility of the real GDP growth stochastic
process. This completes the proof.

A.14 Proof of Proposition 14

In each time period t, the policymaker chooses inflation πt, unconstrained by any past announcements, and
at all future dates the policymaker will have the same freedom. The objective at each date t is to minimize
the continuation value of the loss function [4.13]:

Lt =
1

2

∞∑
`=0

β`Et

[
ℵdd̃

2
t+`|t + ℵππ2

t+`

]
, [A.14.1]

where ℵd and ℵπ denote the coefficients of the debt gap and inflation in [4.13]. Policy decisions at time t
must be consistent with the constraints [4.14] from t onwards, taking variables determined before time t as
given. The constraints are:

Etd̃t+1|t = λd̃t|t,
1

1− βµ
jt−1 −

βµ

1− βµ
jt − πt − d̃t|t = r̂∗t , and lim

`→∞
(βµ)`Etjt+` = 0, [A.14.2]

where the definition d̃t−1|t = 0 has been used. The debt gap d̃t+`|t = dt+` − d∗t+`|t is defined relative

to the debt-to-GDP ratio d∗t+`|t with complete markets open from t onwards. Using equation [3.30a] of
Proposition 11 at t+ ` with t0 = t, for each ` ≥ 0, d∗t+`|t is given by:

d∗t+`|t = d∗t + λ`+1(dt−1 − d∗t−1),

with d∗t from [3.11]. Repeated use of this equation together with the definition of the debt gap allows the
following to be deduced for any ` ≥ 0:

d̃t+`|t = dt+` − d∗t+`|t = (dt+` − d∗t+`|t+`) + (d∗t+`|t+` − d∗t+`|t) = d̃t+`|t+`

+
(
d∗t+` + λ(dt+`−1 − d∗t+`−1)

)
−
(
d∗t+` + λ`+1(dt−1 − d∗t−1)

)
= d̃t+`|t+`

+ λ
(
dt+`−1 −

(
d∗t+`−1 + λ`(dt−1 − d∗t−1)

))
= d̃t+`|t+` + λd̃t+`−1|t. [A.14.3]

Taking expectations of this equation in the case of ` = 1 conditional on date-t information implies
Etd̃t+1|t+1 = Etd̃t+1|t − λd̃t|t = 0, using the first constraint in [A.14.2]. The law of iterated expectations
then implies for all ` ≥ 1:

Etd̃t+`|t+` = 0. [A.14.4]

Equation [A.14.3] can be iterated backwards until d̃t−1|t = 0 is reached to obtain the following:

d̃t+`|t =
∑̀
=0

λ`−d̃t+|t+. [A.14.5]
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This equation can be used to convert the sum of terms in d̃t+`|t in the continuation loss function [A.14.6]

into a sum of terms in d̃t+`|t+`:

∞∑
`=0

β`Etd̃
2
t+`|t =

∞∑
`=0

β`Et

∑̀
=0

λ`−d̃t+|t+

2
=
∞∑
`=0

β`Et

∑̀
=0

(λ2)`−d̃2
t+|t+ + 2

∑̀
=1

−1∑
ı=0

λ`−λ`−ıd̃t+ı|t+ıd̃t+|t+

 =

 ∞∑
=0

(βλ2)

 ∞∑
`=0

β`Etd̃
2
t+`|t+`,

where the second line uses the law of iterated expectations together with Et+ıd̃t+|t+ = 0 for 0 ≤ ı <  (from
[A.14.4]), and then the order of summation is changed for the remaining terms. Therefore, the continuation
loss function [A.14.6] at time t can be expressed as:

Lt =
1

2

∞∑
`=0

β`Et

[
ℵd

1− βλ2
d̃2
t+`|t+` + ℵππ2

t+`

]
. [A.14.6]

Taking expectations of the second constraint in [A.14.2] at t+ 1 conditional on date-t information, and
using the result from [A.14.4], all bond yields from t onwards must satisfy

jt = βµEtjt+1 + (1− βµ)Et[πt+1 + r̂∗t+1].

By iterating this equation forwards and using the transversality condition from [A.14.2], the policymaker
faces the following constraint on the determination of bond yields:

jt = (1− βµ)
∞∑
`=1

(βµ)`−1Et[πt+` + r̂∗t+`]. [A.14.7]

The implied value of d̃t|t can be deduced by substituting this constraint on the bond yield into the second
equation from [A.14.2] and using the definition of ℘t from [A.13.13]:

d̃t|t = −(πt − Et−1πt)−
∞∑
`=1

(βµ)`(Etπt+` − Et−1πt+`)− ℘t. [A.14.8]

Given a sequence of inflation rates, if the debt gap d̃t|t is determined by the equation above at all dates
then all the constraints in [A.14.2] are satisfied. Together with the continuation loss function in [A.14.6],
equation [A.14.8] allows the discretionary policy problem to be reduced to a choice of two endogenous
variables d̃t|t and πt subject to a single constraint [A.14.8] at each date with ℘t as an exogenous variable.
The definition in [A.13.13] implies ℘t is a martingale difference sequence (Et−1℘t = 0) that depends on
revisions to forecasts of the exogenous variable r̂∗t .

As can be seen from equation [A.14.8], d̃t is not a state variable. It depends only on the surprise
component of inflation and any forecast revisions to future inflation, together with the exogenous variable
℘t. Since there is no policy action at time t that can affect future inflation surprises or future forecast
revisions of inflation, current policy has no effect on the sequences of future debt gaps d̃t+`|t+` and inflation
rates πt+` that satisfy the constraints from t+ ` onwards for any ` ≥ 1. With the continuation loss function
Lt+` (from [A.14.6]) independent of policy actions at time t for ` ≥ 1, it follows that in a Markovian
discretionary policy equilibrium, current policy actions have no effect on date-t expectations of d̃t+`|t+` or
πt+` for any ` ≥ 1. These expectations can be taken as given when the date-t policy decision is made.

The loss function Lt is thus separated into a component Lt that depends on current policy choices and
a component depending on future expectations that are taken as given:

Lt = Lt +
1

2

∞∑
`=1

β`Et

[
ℵd

1− βλ2
d̃2
t+`|t+` + ℵππ2

t+`

]
, where Lt =

1

2

(
ℵd

1− βλ2
d̃2
t|t + ℵππ2

t

)
. [A.14.9]

Discretionary policy at date t therefore minimizes the period loss function Lt subject to the constraint
[A.14.8] at date t, taking all expectations of future variables as given. Using [A.14.8] to substitute for d̃t|t
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in Lt from [A.14.9]:

Lt =
1

2

 ℵd

1− βλ2

(
−(πt − Et−1πt)−

∞∑
`=1

(βµ)`(Etπt+` − Et−1πt+`)− ℘t

)2

+ ℵππ2
t

 .

Taking expectations of inflation as given, the first-order condition with respect to current inflation πt is:

ℵd

1− βλ2

(
−(πt − Et−1πt)−

∞∑
`=1

(βµ)`(Etπt+` − Et−1πt+`)− ℘t

)
= ℵππt,

and this implies the following using the constraint [A.14.8] again:

d̃t|t = (1− βλ2)
ℵπ
ℵd
πt. [A.14.10]

The Markovian discretionary policy equilibrium is characterized by the constraint [A.14.8] and the first-
order condition [A.14.10]. Using the law of iterated expectations and Et−1℘t = 0, equation [A.14.8] implies
Et−1d̃t|t = 0. Together with [A.14.10], it follows that Et−1πt = 0 for all t, and hence inflation πt must be
a martingale difference sequence in equilibrium (and therefore serially uncorrelated). The law of iterated
expectations then implies Etπt+` = 0 for all ` ≥ 1, and so equation [A.14.7] reduces to:

d̃t|t = −πt − ℘t.
Combining this equation with the first-order condition [A.14.10], the Markovian discretionary policy equi-
librium is:

d̃t|t = −(1− χ′)℘t, and πt = −χ′℘t, where χ′ =

(
1 + (1− βλ2)

ℵπ
ℵd

)−1

. [A.14.11]

This confirms the solution for inflation in [4.18a]. The solution for d̃t|t above can be converted into a solution

for d̃t|t0 for any arbitrarily fixed date t0 (even though reoptimization occurs at all dates with discretion).

Using equation [A.14.3] and [A.14.11], the stochastic process for d̃t|t0 in [4.18a] is obtained. Substituting the
loss function coefficients ℵd and ℵπ from [4.13] into the formula for χ′ in [A.14.11] confirms the expression
for χ′ in [4.18b].

By comparing χ and χ′ in [4.15b] and [4.18b] it can be seen that χ′ < χ whenever µ > 0. The
solutions in [4.15a] and [4.18a] show that the debt gap d̃t|t0 has serial correlation coefficient λ under both

commitment and discretion. Since χ′ < χ, it follows that the standard deviation of d̃t|t0 is higher under
discretion than under commitment. The solutions in [4.16] and [4.18a] show that optimal monetary policy
with commitment implies inflation has serial correlation coefficient µ, while the Markovian discretionary
policy equilibrium [A.14.11] features serially uncorrelated inflation. Thus, inflation is less persistent with
discretion whenever µ > 0. This completes the proof.

A.15 Proof of Proposition 15

With a zero-inflation non-stochastic steady state (π̄ = 0), it can be seen from equation [4.12] that the
implied steady-state value of xt is x̄ = 1 − ε−1. Making use of this, equation [4.12] can be log linearized
around the steady state as follows:

∞∑
`=0

(σβ)`Et

(1 + εξ)

(
σ

1− σ

)
πt − (1− ε)

∑̀
=1

πt+

−
xt+` + ε(1 + ξ)

∑̀
=1

πt+

 = 0,

which simplifies to the following equation:

∞∑
`=0

(σβ)`Et

(1 + εξ)

 σ

1− σ
πt −

∑̀
=1

πt+

− xt+`

 = 0.
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By changing the order of summation, the equation is equivalent to:

(1 + εξ)

(
σ

(1− σ)(1− σβ)
πt −

σβ

1− σβ

∞∑
`=0

(σβ)`Etπt+1+`

)
−
∞∑
`=0

(σβ)`Etxt+` = 0,

and since this must hold for all t, subtracting from the above σβ multiplied by the expectation of the
equation at time t+ 1 conditional on date-t information leads to:

σ(1 + εξ)

(1− σ)(1− σβ)
((πt − σβEtπt+1)− β(1− σ)Etπt+1)− xt = 0.

Therefore, the following Phillips curve is obtained:

κ(πt − βEtπt+1) = xt, where κ =
σ(1 + εξ)

(1− σ)(1− σβ)
. [A.15.1]

Now consider the expression for real marginal cost in [5.13]. This has the following log-linear form

xt = Ψt|t0 +

(
1 + ξ

η

)
∆t + νỸt|t0 , [A.15.2]

as does the wedge Ψt|t0 also defined in [5.13]:

Ψt|t0 =
α

ηb
1+ηb

+ ηs
1+ηs

(
ηb

1 + ηb
c̃b,t|t0 +

ηs

1 + ηs
c̃s,t|t0

)
. [A.15.3]

Suppose the Frisch elasticities are the same for both types of household (ητ = η), in which case equation
[A.15.3] reduces to:

Ψt|t0 = α

(
1

2
c̃b,t|t0 +

1

2
c̃s,t|t0

)
.

The log linearizations derived in Proposition 11 remain valid here, and substituting the equations for the
consumption gaps from [3.30b] allows the above to be stated in terms of the debt gap d̃t|t0 :

Ψt|t0 = α

(
1

2

(
θ

1 + θ

)
− 1

2

(
θ

1− θ

))(
1− βλ
1− β

)
d̃t|t0 = −α

(
θ2

1− θ2

)(
1− βλ
1− β

)
d̃t|t0 . [A.15.4]

Now consider the case where the Frisch elasticities are heterogeneous, in particular:

ηb =
(1− θ)η

1 + θη
, and ηs =

(1 + θ)η

1− θη
, [A.15.5]

which are well defined if η < θ−1. These formulas imply

ηb

1 + ηb
=
η(1− θ)

1 + η
, and

ηs

1 + ηs
=
η(1 + θ)

1 + η
, [A.15.6]

and by substituting the above into equation [A.15.3]:

Ψt|t0 =
α
2η

1+η

(
η(1− θ)

1 + η
c̃b,t|t0 +

η(1 + θ)

1 + η
c̃s,t|t0

)
= α

(
(1− θ)

2
c̃b,t|t0 +

(1 + θ)

2
c̃s,t|t0

)
= 0. [A.15.7]

In summary, the log linearization of Ψt|t0 is:

Ψt|t0 = −ψd̃t|t0 , where ψ =

{
α
(

θ2

1−θ2

)(
1−βλ
1−β

)
if ητ = η

0 if ητ as given in [A.15.5]
. [A.15.8]

Hence, using this equation and the result ∆t = O2 from Proposition 12, equation [A.15.2] becomes:

xt = νỸt|t0 −ψd̃t|t0 . [A.15.9]

The Phillips curve [5.14a] is then obtained by combining equations [A.15.1] and [A.15.9], with the expres-
sions in [5.16a] and [5.16b] for ψ confirmed using [A.15.8].

Using the results from Proposition 4, the real return r∗t = r∗t|t0 in the hypothetical case of complete
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markets given the actual real GDP growth rate gt is:

r∗t = αgt + (1− α)
∞∑
`=0

β` (Etgt+` − Et−1gt+`) . [A.15.10]

Using the definition of the growth rate gt = Yt − Yt−1 and the output gap Ỹt|t0 = Yt − Y∗t|t0 it follows that

gt = Ỹt − Ỹt−1 + ĝ∗t|t0 , and hence:

∞∑
`=0

β`Etgt+` =

∞∑
`=0

β`Et

[
Ỹt+`|t0 − Ỹt+`−1|t0

]
+
∞∑
`=0

β`Etĝ
∗
t+`|t0

= (1 − β)

( ∞∑
`=0

β`EtỸt+`|t0

)
− Ỹt−1|t0 +

∞∑
`=0

β`Etĝ
∗
t+`|t0 , [A.15.11]

where the second line is obtained by collecting terms in Ỹt|t0 . Iterating forwards the Phillips curve equation
[5.14a] leads to:

κ

ν

(
πt − lim

`→∞
β`Etπt+`

)
=
∞∑
`=0

β`EtỸt+`|t0 −
ψ

ν

∞∑
`=0

β`Etd̃t+`|t0 .

Given that it = ρt + Etπt+1 and ρt = αEtgt+1 from [3.9a] and [3.10], since real GDP growth gt is sta-
tionary, the restriction that it is stationary can only be satisfied if inflation πt is stationary. This requires
lim`→∞ β

`Etπt+` = 0. The stationarity restriction is seen below to be without loss of generality in the op-
timal monetary policy problem. Using the limit together with Etd̃t+`|t0 = λ`d̃t|t0 from [3.30b], the equation
above becomes:

(1− β)

∞∑
`=0

β`EtỸt+`|t0 =
(1− β)κ

ν
πt +

ψ

ν
(1− β)

( ∞∑
`=0

(βλ)`

)
d̃t|t0 =

(1− β)κ

ν
πt +

ψ(1− β)

ν(1− βλ)
d̃t|t0 ,

and substituting this result into [A.15.11] leads to:
∞∑
`=0

β`Etgt+` =
(1− β)κ

ν
πt +

ψ(1− β)

ν(1− βλ)
d̃t|t0 − Ỹt−1|t0 +

∞∑
`=0

β`Etĝ
∗
t+`|t0 . [A.15.12]

Now let r̂∗t|t0 denote the value of r∗t from [A.15.10] in the hypothetical case where gt is equal to ĝ∗t|t0 for all
t ≥ t0:

r̂∗t|t0 = αĝ∗t|t0 + (1− α)
∞∑
`=0

β`
(
Etĝ

∗
t+`|t0 − Et−1ĝ

∗
t+`|t0

)
.

Combining this with equations [A.15.10] and [A.15.12] it follows that r∗t is:

r∗t = α(Ỹt|t0 − Ỹt−1|t0) +
(1− α)(1− β)κ

ν
(πt − Et−1πt) +

(1− α)(1− β)ψ

ν(1− βλ)
(d̃t − Et−1d̃t) + r̂∗t|t0 ,

and by substituting this into [3.13], the second equation of [5.14b] is obtained. The first and third equations
follow respectively from the results in Proposition 11 and Proposition 4.

The welfare function [3.26] is evaluated at Pareto weights Ω̂∗τ |t0 = c∗ατ,t|t0/Ŷ
∗1−α
t|t0 associated with the

consumption allocation c∗τ,t|t0 with complete financial markets from t0 onwards (which depends only on

variables that are predetermined at date t0, as shown in Proposition 11), and the level of real GDP Ŷ ∗t|t0
with flexible prices and complete markets from [5.12]. With δ∗τ,t|t0 denoting the given discount factors
associated with the complete-markets consumption allocation, these variables must satisfy:

Ω̂∗τ |t0

{
t−t0∏
`=1

δ∗τ,t−`|t0

}
= c∗ατ,t|t0Φ̂

∗
t|t0 Ŷ

∗α
t|t0 ,

where Φ̂∗t|t0 denotes the sequence of Lagrangian multipliers on the resource constraint in the social planner’s

problem. Following the same steps as in Proposition 12, with the normalization Φ̂∗t0|t0 = 1/Ŷ ∗t0|t0 and the
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definition of the transformed multipliers ϕ̂∗t|t0 = Ŷ ∗t|t0Φ̂
∗
t|t0/β

t−t0 , by substituting the utility function [5.1]

into [3.26], the welfare function is:

Wt0 =
∞∑
t=t0

βt−t0Et0

 ϕ̂∗t|t0

Ŷ ∗
1−α
t|t0

c
∗α

b,t|t0
2

C1−α
b,t

1− α
−
H

1+ 1
ηb

b,t

1 + 1
ηb

+
c∗αs,t|t0

2

C1−α
s,t

1− α
−
H

1+ 1
ηs

s,t

1 + 1
ηs



 . [A.15.13]

The transformed Lagrangian multipliers ϕ̂∗t|t0 have a well-defined steady-state value and are independent
of policy from t0 onwards following the argument in Proposition 11 and Proposition 12.

Using the definition of the variable Υt|t0 in equation [A.11.18], the terms in consumption from [A.15.13]
can be written as

c∗αb,t|t0
2

C1−α
b,t

1− α
+
c∗αs,t|t0

2

C1−α
s,t

1− α
=
Y 1−α
t|t0

1− α

(
c∗αb,t|t0c

1−α
b,t + c∗αs,t|t0c

1−α
s,t

2

)
=
Υ
−(1−α)
t|t0 Y 1−α

t|t0
1− α

. [A.15.14]

The terms in hours from [A.15.13] can be analysed using the labour supply and demand equations in [5.3]
and [5.8] as follows:

wtHt

1− ε−1
= wτ,tHτ,t = Cατ,tH

1+ 1
ητ

τ,t , and hence H
1+ 1

ητ
τ,t = c−ατ,t

wtHtY
−α
t

1− ε−1
. [A.15.15]

The terms in aggregate variables on the right-hand side of the second equation can be rewritten using the
aggregate production function from [5.8] and the expression for wages in [5.10]:

wtHtY
−α
t

1− ε−1
=

(
∆tYt
At

)(1+ξ)
(

1+ 1
η

)(
c
ηb

1+ηb
b,t c

ηs
1+ηs
s,t

) α
ηb

1+ηb
+

ηs
1+ηs ,

and by using equation [5.12], At can be replaced by a term in the first-best level of output Ŷ ∗t|t0 :

wtHtY
−α
t

1− ε−1
=

1

1 + ξ

(
c̃
ηb

1+ηb

b,t|t0 c̃
ηs

1+ηs

s,t|t0

) α
ηb

1+ηb
+

ηs
1+ηs

∆
(1+ξ)

(
1+ 1

η

)
t Y

(1+ξ)
(

1+ 1
η

)
t

Ŷ ∗
α+ξ+ 1+ξ

η

t|t0

,

where c̃τ,t|t0 = cτ,t/c
∗
τ,t|t0 . Noting the definitions of the output gap Ỹt|t0 = Yt/Ŷ

∗
t|t0 and the variable Ψt|t0 in

[5.13], the equation above implies:

wtHtY
−α
t

(1− ε−1)Ŷ ∗
1−α
t|t0

=
1

1 + ξ
Ψt|t0∆

(1+ξ)
(

1+ 1
η

)
t Ỹ

(1+ξ)
(

1+ 1
η

)
t|t0 . [A.15.16]

Combining equations [A.15.14], [A.15.15], and [A.15.16] and using the definitions of c̃τ,t|t0 and Ỹτ,t|t0 again:

1

Ŷ ∗
1−α
t|t0

c
∗α

b,t|t0
2

C1−α
b,t

1− α
−
H

1+ 1
ηb

b,t

1 + 1
ηb

+
c∗αs,t|t0

2

C1−α
s,t

1− α
−
H

1+ 1
ηs

s,t

1 + 1
ηs




=
Υ
−(1−α)
t|t0 Ỹ 1−α

t|t0
1− α

−
(

1

2

ηb

1 + ηb
c̃−αb,t|t0 +

1

2

ηs

1 + ηs
c̃−αs,t|t0

) Ψt|t0∆
(1+ξ)

(
1+ 1

η

)
t Ỹ

(1+ξ)
(

1+ 1
η

)
t|t0

1 + ξ
. [A.15.17]

Define as follows a variable Ξt|t0 in terms of the consumption gaps c̃τ,t|t0 :

Ξt|t0 =

(
c̃
ηb

1+ηb

b,t|t0 c̃
ηs

1+ηs

s,t|t0

) α
ηb

1+ηb
+

ηs
1+ηs

( ηb
1+ηb

c̃−αb,t|t0 + ηs
1+ηs

c̃−αs,t|t0
ηb

1+ηb
+ ηs

1+ηs

)
, [A.15.18]

and with this definition, the definition of Ψt|t0 in [5.13], and equation [A.15.17], the welfare function [A.15.13]
can be written as:

Wt0 =
∞∑
t=t0

βt−t0Et0

ϕ̂∗t|t0

Υ
−(1−α)
t|t0 Ỹ 1−α

t|t0
1− α

−
Ξt|t0∆

(1+ξ)
(

1+ 1
η

)
t Ỹ

(1+ξ)
(

1+ 1
η

)
t|t0

(1 + ξ)
(

1 + 1
η

)

 . [A.15.19]

111



Now consider the variable Ξt|t0 defined in [A.15.18]. Using Proposition 1, this variable has a well-defined
steady-state value given by Ξ̄ = 1 whatever assumptions are made on ητ . In the case that ητ = η, the
formula for Ξt|t0 simplifies to:

Ξt|t0 =

(
c̃
1
2

b,t|t0 c̃
1
2

s,t|t0

)α(1

2
c̃−αb,t|t0 +

1

2
c̃−αs,t|t0

)
.

A second-order accurate approximation of this equation around the non-stochastic steady state is:

Ξt|t0 +
Ξ2
t|t0
2

=
α

2
(c̃b,t|t0 + c̃s,t|t0) +

α2

8
(c̃b,t|t0 + c̃s,t|t0)2 − α

2
(c̃b,t|t0 + c̃s,t|t0) +

α2

4
(c̃2

b,t|t0 + c̃2
s,t|t0) + O3,

and since the first-order terms cancel out on the right-hand side, it follows that Ξt|t0 = O2, which implies
the term in Ξ2

t|t0 can be subsumed into O3. Expanding the brackets of the remaining terms and simplifying
leads to:

Ξt|t0 =
α2

2

(
c̃s,t|t0 − c̃b,t|t0

2

)2

+ O3,

and then substituting the equations for the consumption gaps from [3.30b] (which hold up to an error of
order O2) and simplifying the resulting expression:

Ξt|t0 =
α2

2

θ2

(1− θ2)2

(
1− βλ
1− β

)2

d̃2
t|t0 + O3. [A.15.20]

In the case where the Frisch elasticities ητ differ as specified in [A.15.5], the expression for Ξt|t0 in [A.15.18]
becomes:

Ξt|t0 =

(
c̃
1−θ
2

b,t|t0 c̃
1+θ
2

s,t|t0

)α(1− θ
2

c̃−αb,t|t0 +
1 + θ

2
c̃−αs,t|t0

)
,

where the formulas in [A.15.6] have been used. Since [3.30b] implies (1 − θ)c̃b,t|t0 + (1 + θ)c̃s,t|t0 = O2, a
second-order accurate approximation of Ξt|t0 is:

Ξt|t0 =
α2

2

(
1− θ

2
c̃2

b,t|t0 +
1 + θ

2
c̃2

s,t|t0

)
+ O3.

which can be written in terms of the debt gap as follows

Ξt|t0 =
α2

2

θ2

1− θ2

(
1− βλ
1− β

)2

d̃2
t|t0 + O3, [A.15.21]

where the formula makes use of [3.30b] again.
Taking a second-order accurate approximation of the terms in brackets in the welfare function [A.15.19]:

Υ
−(1−α)
t|t0 Ỹ 1−α

t|t0
1− α

−
Ξt|t0∆

(1+ξ)
(

1+ 1
η

)
t Ỹ

(1+ξ)
(

1+ 1
η

)
t|t0

(1 + ξ)
(

1 + 1
η

) =

 1

1− α
− 1

(1 + ξ)
(

1 + 1
η

)
+ (Ỹt|t0 − Υt|t0)

+
(1− α)

2
(Ỹt|t0−Υt|t0)2−

Ξt|t0 + 1
2Ξ

2
t|t0

(1 + ξ)
(

1 + 1
η

)−(∆t+Ỹt|t0)−
(1 + ξ)

(
1 + 1

η

)
2

(∆t+Ỹt|t0)2−Ξt|t0(∆t+Ỹt|t0)

+ O3 =

 1

1− α
− 1

(1 + ξ)
(

1 + 1
η

)
− Υt|t0 − Ξt|t0

(1 + ξ)
(

1 + 1
η

) − ∆t − ν
2
Ỹ2
t|t0 + O3,

where the second equality is obtained by grouping terms, using the definition of the coefficient ν in [5.11],
and noting that Υt|t0 = O2 ([A.11.21] in the proof of Proposition 11), Ξt|t0 = O2 (equations [A.15.20] and
[A.15.21]), and ∆t = O2 (Proposition 12). Since the variable ϕ̂∗t|t0 is independent of policy from t0 onwards

(denoted It0) and the terms on the right-hand side of the equation above comprise a constant plus second-
order terms, it immediately follows that the second-order approximation of the welfare function [A.15.19]
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is:

Wt0 = −
∞∑
t=t0

βt−t0Et0

Υt|t0 +
Ξt|t0

(1 + ξ)
(

1 + 1
η

)
+ ∆t +

ν

2
Ỹ2
t|t0

+ It0 + O3. [A.15.22]

Using the second-order approximation of Υt|t0 in [A.11.21] and equation [A.15.20] or [A.15.21] as appropriate
depending on the assumptions about the Frisch elasticities ητ :

Υt|t0 +
Ξt|t0

(1 + ξ)
(

1 + 1
η

) =
ℵd

2
d̃2
t|t0 + O3, where ℵd =


(

1 + αη
(1+ξ)(1+η)(1−θ2)

)
ℵd,c if ητ = η(

1 + αη
(1+ξ)(1+η)

)
ℵd,c if [A.15.5]

,

with ℵd,c denoting the coefficient ℵd in the case of inelastic labour supply from [A.11.21]. Using the equation
above and by substituting the expression for the summation of ∆t from the proof of Proposition 12 in
[A.12.8] into [A.15.22], the formulas for the second-order approximation of the welfare function [5.15] and
the coefficients in [5.16a] and [5.16b] are obtained. Given that this loss function cannot have a finite value
if lim`→∞ β

`Etπt+` 6= 0 (since 0 < β < 1), the earlier restriction lim`→∞ β
`Etπt+` = 0 is without loss of

generality here. This completes the proof.

A.16 Proof of Proposition 16

(i) Optimal monetary policy with commitment starting from date t0 minimizes the loss function [5.15]
subject to the constraints in [5.14a] and [5.14b] for all t ≥ t0. The endogenous variables are d̃t|t0 , πt, Ỹt|t0 ,
and jt, and the exogenous variable is r̂∗t|t0 , which depends on the growth rate ĝ∗t|t0 of the first-best level of
real GDP. The Lagrangian for the constrained minimization problem is:

Lt0 =
1

2

∞∑
t=t0

βt−t0Et0

[
ℵdd̃

2
t|t0 + ℵππ2

t + ℵYỸ
2
t|t0

]
+
∞∑
t=t0

βt−t0Et0

[
kt|t0

{
λd̃t|t0 − d̃t+1|t0

}]
+

∞∑
t=t0

βt−t0Et0

[
it|t0

{
1

1− βµ
jt−1 −

βµ

1− βµ
jt − d̃t|t0 + λd̃t−1|t0 − πt − αỸt|t0 + αỸt−1|t0

− (1− α)(1− β)κ

ν
(πt − Et−1πt)−

(1− α)(1− β)ψ

(1− βλ)ν
(d̃t|t0 − Et−1d̃t|t0)− r̂∗t|t0

}]
+
∞∑
t=t0

βt−t0Et0

[
t|t0ג

{
κ(πt − βπt+1)− νỸt|t0 +ψd̃t|t0

}]
+ Γt0 lim

t→∞
(βµ)t−t0Et0 jt, [A.16.1]

where the Lagrangian multipliers kt|t0 , it|t0 , and t|t0ג are expressed as current values by scaling by βt−t0 .

The first-order conditions with respect to d̃t|t0 , πt, Ỹt|t0 , and jt are:

ℵdd̃t|t0 + λkt|t0 − β
−1kt−1|t0 − it|t0 + βλEtit+1|t0 −

(1− α)(1− β)ψ

(1− βλ)ν
(it|t0 − Et−1it|t0) +ψגt|t0 = 0;

[A.16.2a]

ℵππt − it|t0 −
(1− α)(1− β)κ

ν
(it|t0 − Et−1it|t0) + κגt|t0 − κגt−1|t0 = 0; [A.16.2b]

ℵYỸt|t0 − αit|t0 + βαEtit+1|t0 − νגt|t0 = 0; [A.16.2c]

βEtit+1|t0 − βµit|t0 = 0, [A.16.2d]

with the notational convention that kt|t0 = 0 and t|t0ג = 0 for all t < t0. The constrained minimization
problem [A.16.1] also has the following transversality conditions:

lim
t→∞

βt−t0kt|t0 = 0, lim
t→∞

βt−t0גt|t0 = 0, and Γt0 =
βµ

1− βµ
lim
t→∞

Et0it|t0
µt−t0

. [A.16.3]

Since [A.16.2d] implies Etit+1|t0 = µit|t0 for all t ≥ t0, and hence Et0it|t0 = µt−t0it0|t0 , it follows that the
condition for Γt0 in [A.16.3] is always satisfied by Γt0 = (βµ/(1− βµ))it0|t0 .

Optimal monetary policy is now characterized, assuming an initial commitment date t0 arbitrarily far
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in the past (t0 → −∞). The t0 subscripts are dropped from the debt gap d̃t, the output gap Ỹt, the
first-best real GDP growth rate ĝ∗t and ex-post real return r̂∗t , and the Lagrangian multipliers kt, it, and
.tג The transversality conditions in [A.16.3] reduce to verifying β`kt+` → 0 and β`גt+` → 0 as `→∞.

The first-order condition [A.16.2d] and the constraint from [5.14b] on the predictable component Etd̃t+1

of the debt gap imply that expected future values of d̃t and it are as follows for all ` ≥ 0:

Etd̃t+` = λ`d̃t, and Etit+` = µ`it. [A.16.4]

The first-order condition [A.16.2a] with respect to the debt gap can be simplified using [A.16.4]:

kt−1 = βλkt + βℵdd̃t − β(1− βλµ)it −
(1− α)(1− β)βψ

(1− βλ)ν
(it − µit−1) + βψגt. [A.16.5]

The first-order condition [A.16.2b] with respect to inflation can be simplified using [A.16.4] and the formula
for ℵπ from [5.15]:

επt −
1

κ
it −

(1− α)(1− β)

ν
(it − µit−1) + tג) − (t−1ג = 0. [A.16.6]

Similarly, the first-order condition [A.16.2c] with respect to the output gap can be simplified using [A.16.4]
and the expression for ℵY from [5.15]:

tג = Ỹt −
(1− βµ)α

ν
it, and hence tג − t−1ג = (Ỹt − Ỹt−1)− (1− βµ)α

ν
(it − it−1). [A.16.7]

The Phillips curve [5.14a] implies the following expression for the change in the output gap:

Ỹt − Ỹt−1 =
κ

ν
((πt − βEtπt+1)− (πt−1 − βEt−1πt)) +

ψ

ν
(d̃t − d̃t−1),

and by putting this together with [A.16.7], rearranging terms, and multiplying both sides by ν/κ:

ν

κ
tג) − (t−1ג = ((1 + β)πt − πt−1 − βπt+1) + β(πt+1 − Etπt+1)− β(πt − Et−1πt)

+
ψ

κ
(d̃t − d̃t−1) − (1− βµ)α

κ
(it − it−1).

Multiplying both sides of equation [A.16.2b] by ν/κ and using this together with the equation above to
eliminate terms in tג leads to:(

1 + β+
εν

κ

)
πt − πt−1 − βπt+1 + β(πt+1 − Etπt+1)− β(πt − Et−1πt)

=
ν

κ2
it +

(1− α)(1− β)

κ
(it − µit−1) +

(1− βµ)α

κ
(it − it−1)− ψ

κ
(d̃t − d̃t−1). [A.16.8]

This is an expectational difference equation in πt that can be solved given values of it and d̃t. Observe
that for any κ 6= 0:

κ−1 ((πt − κπt−1)− βκ (πt+1 − κπt)) =
(
κ−1 + βκ

)
πt − πt−1 − βπt+1, [A.16.9]

and define the following quadratic function Q(κ):

Q(κ) = βκ2 −
(

1 + β+
εν

κ

)
κ + 1. [A.16.10]

If κ 6= 0 is any number such that Q(κ) = 0 then a comparison of [A.16.8] with [A.16.9] using [A.16.10]
shows that inflation must satisfy

κ−1(πt − κπt−1)− β(πt+1 − κπt)− β(εt+1 − εt) = zt, where εt = πt − Et−1πt, [A.16.11]

and with zt defined by:

zt =
ν

κ2
it +

(1− α)(1− β)

κ
(it − µit−1) +

(1− βµ)α

κ
(it − it−1)− ψ

κ
(d̃t − d̃t−1). [A.16.12]

It can be seen from [A.16.10] that Q(0) = 1, Q(1) = −ενκ−1, and Q((1 +β+ εν/κ)/β) = 1. Since Q(κ) is
a quadratic function of κ, this demonstrates the existence of a κ satisfying 0 < κ < 1 such that Q(κ) = 0,
and where this is the smaller of the two roots of the quadratic Q(κ). The larger root must be β−1κ−1

using [A.16.10]. Making use of the quadratic root formula for the larger root, the value of κ is as reported
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in [5.17].
Given the innovation εt to inflation and zt from [A.16.12], equation [A.16.11] implies that inflation is

the solution of the second-order difference equation:

(πt − κπt−1)− (βκ)−1(πt−1 − κπt−2) = εt − εt−1 − β−1zt−1. [A.16.13]

Now define variables Zt and ut as follows in terms of zt and εt from [A.16.11] and [A.16.12]:

Zt = κ
∞∑
`=0

(βκ)`Etzt+`, and ut = εt −
1

1− βκ
(Zt − Et−1Zt). [A.16.14]

Noting the results in [A.16.4], observe that:

∞∑
`=0

(βκ)`Et [it+` − µit+`−1] = it − µit−1,
∞∑
`=0

(βκ)`Etit+` =

( ∞∑
`=0

(βµκ)`

)
it =

1

1− βµκ
it;

∞∑
`=0

(βκ)`Et[it+` − it+`−1] =

(
1− βκ

1− βµκ

)
(it − µit−1)−

(
1− µ

1− βµκ

)
it−1; and

∞∑
`=0

(βκ)`Et[d̃t+` − d̃t+`−1] =

(
1− βκ
1− βλκ

)
(d̃t − λd̃t−1)−

(
1− λ

1− βλκ

)
d̃t−1.

Using [A.16.12] and substituting these results into equation [A.16.14] shows that the infinite sum Zt is well
defined and given by:

Zt =
1

κ(1− βµκ)

(
(1− κ)(1− βκ)

ε
it − ακ(1− µ)(1− βµ)it−1

)
+

κψ(1− λ)

κ(1− βλκ)
d̃t−1

+
κ
κ

(
(1− α)(1− β) +

α(1− βµ)(1− βκ)

(1− βµκ)

)
(it − µit−1)− κψ(1− βκ)

κ(1− βλκ)
(d̃t − λd̃t−1), [A.16.15]

where equation [A.16.10] is used to deduce κν/κ = (1− κ)(1− βκ)/ε.
Note that the definition of Zt in [A.16.14] implies Zt = βκEtZt+1 + κzt, and hence β−1zt−1 =

(βκ)−1Zt−1 − Et−1Zt. It follows that:

Zt − Et−1Zt
1− βκ

− Zt−1 − Et−2Zt−1

1− βκ
− β−1zt−1 =

(
Zt − βκEt−1Zt

1− βκ

)
− (βκ)−1

(
Zt−1 − βκEt−2Zt−1

1− βκ

)
,

and thus by using the definition of ut in [A.16.14]:

εt − εt−1 − β−1zt−1 =

(
Zt − βκEt−1Zt

1− βκ

)
− (βκ)−1

(
Zt−1 − βκEt−2Zt−1

1− βκ

)
+ ut − ut−1.

Putting this together with [A.16.13] implies that inflation must satisfy:

(πt − κπt−1)− (βκ)−1(πt−1 − κπt−2)

=
Zt − βκEt−1Zt

1− βκ
− (βκ)−1Zt−1 − βκEt−2Zt−1

1− βκ
+ ut − ut−1. [A.16.16]

Now define a variable Πt in terms of Zt as follows:

Πt =
∞∑
`=0

κ`
(
Zt−` − βκEt−`−1Zt−`

1− βκ

)
, and hence Πt = κΠt−1 +

Zt − βκEt−1Zt
1− βκ

. [A.16.17]

As 0 < κ < 1, this definition can be used in conjunction with equation [A.16.16] to deduce inflation must
satisfy:

(πt − Πt) = (βκ)−1(πt−1 − Πt−1) + ut − Ut−1, where Ut = (1− κ)

∞∑
`=0

κ`ut−`. [A.16.18]

Since εt in [A.16.11] is an innovation (Et−1εt = 0), ut from [A.16.14] must be a martingale difference
sequence (Et−1ut = 0). Note that the definition of Ut in [A.16.18] implies Ut = κUt−1 + (1 − κ)ut, and
hence EtUt+` = κ`Ut using the martingale difference property of ut. Taking the expectation of equation
[A.16.18] at time t+ 1 conditional on period-t information implies Et[πt+1−Πt+1] = (βκ)−1(πt−Πt)−Ut,
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and by iterating this equation ` periods forward:

Et[πt+` − Πt+`] = (βκ)−`(πt − Πt)−
`−1∑
=0

(βκ)−`++1EtUt+` = (βκ)−`(πt − Πt)

− (βκ)−`+1

`−1∑
=0

(βκ2)

Ut =
βκ

1− βκ2
κ`Ut + (βκ)−`

(
πt − Πt −

βκ
1− βκ2

Ut

)
. [A.16.19]

Equation [A.16.17] implies that EtΠt+1 = κΠt + EtZt+1, and hence an expression for EtΠt+1 can be
obtained by using [A.16.4] and [A.16.15]:

EtΠt+1 = κΠt +

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)
it

κ(1− βµκ)
+

κψ(1− λ)

κ(1− βλκ)
d̃t. [A.16.20]

The following results are derived from equation [A.16.4]:

`−1∑
=0

κ`−1−Etd̃t+ =

`−1∑
=0

κ`−1−λ

 d̃t =

(
λ` − κ`

λ− κ

)
d̃t, and

`−1∑
=0

κ`−1−Etit+ =

(
µ` − κ`

µ− κ

)
it,

and with these, equation [A.16.20] can be iterated ` periods forward:

EtΠt+` =
1

κ(1− βµκ)

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)(
µ` − κ`

µ− κ

)
it

+
κψ(1− λ)

κ(1− βλκ)

(
λ` − κ`

λ− κ

)
d̃t + κ`Πt. [A.16.21]

Together with [A.16.19], expectations of inflation ` periods ahead must therefore satisfy:

Etπt+` =
1

κ(1− βµκ)

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)(
µ` − κ`

µ− κ

)
it

+
κψ(1− λ)

κ(1− βλκ)

(
λ` − κ`

λ− κ

)
d̃t + κ`

(
Πt +

βκ
1− βκ2

Ut

)
+ (βκ)−`

(
πt − Πt −

βκ
1− βκ2

Ut

)
.

[A.16.22]

By using the Phillips curve in [5.14a] and equation [A.16.7], the expected value ` periods ahead of the
Lagrangian multiplier tג is:

β`Etגt+` =
κ

ν
β`(Etπt+` − βEtπt+`+1) +

ψ

ν
(βλ)`d̃t −

(1− βµ)α

ν
(βµ)`it,

and by substituting from equation [A.16.22]:

β`Etגt+` =
β`

ν(1− βµκ)

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)(
µ` − κ`

µ− κ
− βµ

`+1 − κ`+1

µ− κ

)
it

+
κψ(1− λ)

ν(1− βλκ)

(
λ` − κ`

λ− κ
− βλ

`+1 − κ`+1

λ− κ

)
β`d̃t + (1− βκ)κ`

(
Πt +

βκ
1− βκ2

Ut

)
+
ψ

ν
(βλ)`d̃t

− (1− βµ)α

ν
(βµ)`it + (1 − κ)κ−(`+1)

(
πt − Πt −

βκ
1− βκ2

Ut

)
.

The transversality condition [A.16.3] on the Lagrangian multiplier tג can be satisfied only if β`Etגt+` → 0
as ` → ∞. Since 0 < β < 1, 0 < λ < 1, 0 < µ < 1, and 0 < κ < 1, the equation above shows that this is
possible only if:

πt − Πt =
βκ

1− βκ2
Ut, and πt − Πt − Et−1[πt − Πt] =

βκ(Ut − Et−1Ut)

1− βκ2
=
βκ(1− κ)

1− βκ2
ut, [A.16.23]
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where the final equality uses the expression for Ut in [A.16.18]. The first equation in [A.16.18] implies:

(πt − Πt)− Et−1[πt − Πt] = ut, and therefore

(
1− βκ(1− κ)

1− βκ2

)
ut = 0,

in combination with [A.16.23]. Given that 0 < κ < 1, the coefficient of ut above is always non-zero, hence
ut = 0 is the unique solution of the equation. With ut = 0 for all t, it follows from [A.16.18] that Ut = 0 for
all t, and hence inflation must satisfy πt = Πt. The predictable component of inflation is therefore given in
equation [A.16.20], and the surprise component can be obtained from [A.16.15] and [A.16.17]:

πt − Et−1πt =

(
(1− κ)

ε(1− βµκ)
+

κ(1− β)(1− α)

(1− βκ)
+

κ(1− βµ)α

(1− βµκ)

)
(it − Et−1it)

κ
− κψ(d̃t − Et−1d̃t)

κ(1− βλκ)
.

[A.16.24]

The output gap Ỹt can be obtained by using πt = Πt and [A.16.20] to substitute for the inflation expectations
term appearing in the Phillips curve [5.14a]:

Ỹt =
κ(1− βκ)

ν
πt +

ψ(1− βκ)

ν(1− βλκ)
d̃t +

β

ν(1− βµκ)

(
ακ(1− µ)(1− βµ)− (1− κ)(1− βκ)µ

ε

)
it.

[A.16.25]

Substituting this expression for the output gap into equation [A.16.7], grouping terms, simplifying, and
solving for the Lagrangian multiplier :tג

tג =
(1− βκ)

ν

(
κπt +

ψ

(1− βλκ)
d̃t −

1

(1− βµκ)

(
α(1− βµ) +

βµ(1− κ)

ε

)
it
)
. [A.16.26]

Now define zt to be the following expected discount sum of current and future values of :tג

zt =
∞∑
`=0

(βλ)`Etגt+`. [A.16.27]

Substituting the expression [A.16.26] for tג into the above, using the formulas for expectations of d̃t and it
from [A.16.4], and summing and simplifying terms leads to:

zt =
(1− βκ)κ

ν

∞∑
`=0

(βλ)`Etπt+` +
(1− βκ)ψ

(1− βλκ)(1− βλ2)ν
d̃t

− (1− βκ)

(1− βµκ)(1− βλµ)ν

(
α(1− βµ) +

βµ(1− κ)

ε

)
it. [A.16.28]

With πt = Πt and equation [A.16.21], the terms in inflation can be summed as follows:

∞∑
`=0

(βλ)`Etπt+` =
βλ

κ(1− βµκ)(1− βλµ)(1− βλκ)

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)
it

+
βλκψ(1− λ)

κ(1− βλ2)(1− βλκ)2
d̃t +

1

(1− βλκ)
πt,

and substituting these into [A.16.28] yields an expression for zt:

zt =
(1− βκ)κ

(1− βλκ)ν
πt +

(1− βκ)(1− βλ2κ)ψ

(1− βλ2)(1− βλκ)2ν
d̃t

− (1− βκ)

(1− βλµ)(1− βλκ)(1− βµκ)ν

(
α(1− βµ)(1− βλµκ) +

βµ(1− κ)(1− λ)

ε

)
it. [A.16.29]

Next, taking expectations of equation [A.16.5] at time t + 1 conditional on period-t information and
using [A.16.4] implies:

kt = βλEtkt+1 + βλℵdd̃t − βµ(1− βλµ)it + βψEtגt+1,
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which can be iterated forwards to deduce:

kt =
∞∑
`=0

(βλ)`Et

[
βλℵdd̃t+` − βµ(1− βλµ)it+` + βψגt+1+`

]
+ lim
`→∞

(βλ)`Etkt+`.

The transversality condition [A.16.3] for the Lagrangian multiplier kt implies that (βλ)`Etkt+` → 0 as
`→∞ because 0 < λ < 1. Using this together with the formulas in [A.16.4] for expectations of d̃t and it
and the definition of zt from [A.16.27], the equation above becomes:

kt =
βλℵd

1− βλ2
d̃t − βµit + βψEtzt+1.

This equation can be substituted back into [A.16.5] to replace terms in kt:

βλℵd

1− βλ2
d̃t−1 − βµit−1 + βψEt−1zt = βλ

(
βλℵd

1− βλ2
d̃t − βµit + βψEtzt+1

)
+ βℵdd̃t

− β(1 − βλµ)it −
(1− α)(1− β)βψ

(1− βλ)ν
(it − µit−1) + βψגt,

and since the definition [A.16.27] implies tג + βλEtzt+1 = zt, the equation above can be simplified and
written as follows using [A.16.4]:

ℵd

(1− βλ2)
(d̃t − Et−1d̃t) +ψ(zt − Et−1zt) =

(
1 +

(1− α)(1− β)ψ

(1− βλ)ν

)
(it − Et−1it).

Using equation [A.16.29] to obtain the surprise component of zt and substituting into the equation above:(
ℵd

1− βλ2
+

(1− βκ)(1− βλ2κ)ψ2

(1− βλ2)(1− βλκ)2ν

)
(d̃t−Et−1d̃t)+

(1− βκ)κψ

(1− βλν)ν
(πt−Et−1πt) =

(
1+

(1− α)(1− β)ψ

(1− βλ)ν

+
(1− βκ)ψ

(1− βλµ)(1− βλκ)(1− βµκ)ν

(
α(1− βµ)(1− βλµκ) +

βµ(1− κ)(1− λ)

ε

))
(it − Et−1it).

[A.16.30]

Note that:

(1− α)(1− β)

(1− βκ)
+
α(1− βµ)

(1− βµκ)
=

1− β
1− βκ

+
αβ(1− µ)(1− κ)

(1− βκ)(1− βµκ)
,

and hence the coefficient of it − Et−1it in equation [A.16.24] is non-zero, so that equation can be solved
for the surprise component of it:

it − Et−1it =
κ(πt − Et−1πt) + κψ

(1−βλκ)(d̃t − Et−1d̃t)

(1−κ)
ε(1−βµκ) + κ(1−β)(1−α)

(1−βκ) + κ(1−βµ)α
(1−βµκ)

. [A.16.31]

Using this equation to eliminate it from [A.16.30] implies that optimal monetary policy must satisfy the
following first-order condition in terms of the debt gap and inflation:

fd(d̃t − Et−1d̃t) = fπ(πt − Et−1πt), where fd =
ℵd

1− βλ2
+

(1− βκ)(1− βλ2κ)ψ2

(1− βλ2)(1− βλκ)2ν
[A.16.32a]

−
κψ

(
1 + (1−α)(1−β)ψ

(1−βλ)ν + (1−βκ)ψ
(1−βλµ)(1−βλκ)(1−βµκ)ν

(
α(1− βµ)(1− βλµκ) + βµ(1−κ)(1−λ)

ε

))
(1− βλκ)

(
(1−κ)

(1−βµκ)ε + κ(1−β)(1−α)
(1−βκ) + κ(1−βµ)α

(1−βµκ)

) ;

[A.16.32b]

and fπ =
κ
(

1 + (1−α)(1−β)ψ
(1−βλ)ν + (1−βκ)ψ

(1−βλµ)(1−βλκ)(1−βµκ)ν

(
α(1− βµ)(1− βλµκ) + βµ(1−κ)(1−λ)

ε

))
(1−κ)

(1−βµκ)ε + κ(1−β)(1−α)
(1−βκ) + κ(1−βµ)α

(1−βµκ)

−(1− βκ)κψ

(1− βλκ)ν
. [A.16.32c]

Now consider the second constraint in [5.14b] at time t+1 and take expectations conditional on period-t
information. Using the law of iterated expectations and the first constraint in [5.14b], this equation reduces
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to:

jt = βµEtjt+1 + (1− βµ)Et

[
πt+1 + α(Ỹt+1 − Ỹt) + r̂∗t+1

]
.

Iterating this equation forwards and using the third constraint from [5.14b] (the transversality condition)
implies that the bond yield jt must satisfy:

jt = (1− βµ)
∞∑
`=1

(βµ)`−1Et

[
πt+` + α(Ỹt+` − Ỹt+`−1) + r̂∗t+`

]
,

which can be used to substitute for jt in the second constraint from [5.14b]:

1

1− βµ
jt−1 − d̃t + λd̃t−1 −

(1− α)(1− β)κ

ν
(πt − Et−1πt)−

(1− α)(1− β)ψ

(1− βλ)ν
(d̃t − Et−1d̃t)

−
∞∑
`=0

(βµ)`Etπt+` − α
∞∑
`=0

(βµ)`Et[Ỹt+` − Ỹt+`−1] =

∞∑
`=0

(βµ)`Etr̂
∗
t+`. [A.16.33]

Note that by collecting terms with the same date, the expected discounted sum of changes in the output
gap Ỹt can be written as follows:

∞∑
`=0

(βµ)`Et[Ỹt+` − Ỹt+`−1] = (1− βµ)
∞∑
`=0

(βµ)`EtỸt+` − Ỹt−1. [A.16.34]

Next, by substituting the expression for the output gap Ỹt from [A.16.25] and using the conditional ex-
pectations from [A.16.4], the following sum of terms in inflation and the level of the output gap can be
derived:

∞∑
`=0

(βµ)`Et

[
πt+` + α(1− βµ)Ỹt+`

]
=

(
1 +

(1− βκ)(1− βµ)ακ

ν

) ∞∑
`=0

(βµ)`Etπt+`

+
(1− βκ)(1− βµ)αψ

(1− βλκ)(1− βλµ)ν
d̃t +

(1− βµ)βα

(1− βµ2)(1− βµκ)ν

(
ακ(1− µ)(1− βµ)− (1− κ)(1− βκ)µ

ε

)
it.

[A.16.35]

An expression for the sum of the terms in inflation can be obtained using πt = Πt and the formula from
[A.16.21]:

∞∑
`=0

(βµ)`Etπt+` =
βµ

κ(1− βµ2)(1− βµκ)2

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)
it

+
βµκψ(1− λ)

κ(1− βλµ)(1− βλκ)(1− βµκ)
d̃t +

1

(1− βµκ)
πt. [A.16.36]

Equations [A.16.34], [A.16.35], and [A.16.36] can be combined to deduce:

∞∑
`=0

(βµ)`Et

[
πt+` + α(1− βµ)Ỹt+`

]
=

1

(1− βµκ)

(
1 +

(1− βκ)(1− βµ)ακ

ν

)
πt

+
β

(1− βµ2)(1− βµκ)2

(
µ

κ
− (1− µ)(1− βµ)α

ν

)(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)
it

+
ψ

(1− βλµ)(1− βλκ)(1− βµκ)

(
βµκ(1− λ)

κ
+
α(1− βκ)(1− βµ)(1− βλµκ)

ν

)
d̃t,

and by substituting this into [A.16.33] and subtracting the expectation of the same equation conditional
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on period t− 1 information:(
1

1− βµκ
+

(1− α)(1− β)κ

ν
+

(1− βκ)(1− βµ)ακ

(1− βµκ)ν

)
(πt − Et−1πt) +

(
1 +

(1− α)(1− β)ψ

(1− βλ)ν

+
ψ

(1− βλµ)(1− βλκ)(1− βµκ)

(
βµκ(1− λ)

κ
+
α(1− βκ)(1− βµ)(1− βλµκ)

ν

))
(d̃t − Et−1d̃t)

+
β

(1− βµ2)(1− βµκ)2

(
µ

κ
− (1− µ)(1− βµ)α

ν

)(
(1− κ)(1− βκ)µ

ε

− ακ(1− µ)(1− βµ)

)
(it − Et−1it) = −℘t, where ℘t =

∞∑
`=0

(βµ)`
(
Etr̂
∗
t+` − Et−1r̂

∗
t+`

)
.

[A.16.37]

By following the same steps as in the proof of Proposition 13, the definition of ℘t is equivalent to that given
in the proposition. Substituting equation [A.16.31] into [A.16.37] shows that optimal monetary policy must
satisfy:

cd(d̃t − Et−1d̃t) + cπ(πt − Et−1πt) = −℘t, where [A.16.38a]

cd = 1 +
ψ

(1− βλµ)(1− βλκ)(1− βµκ)

(
βµκ(1− λ)

κ
+
α(1− βκ)(1− βµ)(1− βλµκ)

ν

)

+
(1− α)(1− β)ψ

(1− βλ)ν
+

βκψ
(
µ
κ −

(1−µ)(1−βµ)α
ν

)(
(1−κ)(1−βκ)µ

ε − ακ(1− µ)(1− βµ)
)

(1− βµ2)(1− βµκ)2(1− βλκ)
(

(1−κ)
(1−βµκ)ε + κ(1−β)(1−α)

(1−βκ) + κ(1−βµ)α
(1−βµκ)

) ;

[A.16.38b]

and cπ =
1

1− βµκ
+

(1− α)(1− β)κ

ν
+

(1− βκ)(1− βµ)ακ

(1− βµκ)ν

+
βκ
(
µ
κ −

(1−µ)(1−βµ)α
ν

)(
(1−κ)(1−βκ)µ

ε − ακ(1− µ)(1− βµ)
)

(1− βµ2)(1− βµκ)2
(

(1−κ)
(1−βµκ)ε + κ(1−β)(1−α)

(1−βκ) + κ(1−βµ)α
(1−βµκ)

) . [A.16.38c]

Solving the simultaneous equations [A.16.32a] and [A.16.38a] yields expressions for the surprise components
of the debt gap and inflation:

d̃t − Et−1d̃t = −bd℘t, and πt − Et−1πt = −bπ℘t, where bd =
fπ

cdfπ + cπfd
and bπ =

fd
cdfπ + cπfd

,

[A.16.39]

where the solution is given in terms of the coefficients defined in [A.16.32b]–[A.16.32c] and [A.16.38b]–
[A.16.38c]. Note that since the equations are linear, and a solution is known to exist for general ℘t 6= 0, it
must be the case that cdfπ + cπfd 6= 0. Given the first constraint in [5.14b], it follows that the solution for
the debt gap is:

d̃t = λd̃t−1 − bd℘t. [A.16.40]

To write the solution for inflation, combine equations [A.16.20] (with πt = Πt) and [A.16.39] to obtain:

πt = κπt−1 +

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)
it−1

κ(1− βµκ)
+

κψ(1− λ)

κ(1− βλκ)
d̃t−1 − bπ℘t.

[A.16.41]

Next, combine [A.16.4] and [A.16.39] to derive the solution for the Lagrangian multiplier it:

it = µit−1 − bi℘t, where bi =

κψ
1−βλκbd + κbπ

(1−κ)
(1−βµκ)ε + κ(1−β)(1−α)

(1−βκ) + κ(1−βµ)α
(1−βµκ)

. [A.16.42]
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Using equations [A.16.40], [A.16.41], and [A.16.42], an explicit solution for inflation is:

πt = aπ,1πt−1 + aπ,2πt−2 + aπ,3πt−3 − bπ,0℘t − bπ,1℘t−1 − bπ,2℘t−2, where [A.16.43a]

aπ,1 = λ+ µ+ κ, aπ,2 = −(λµ+ λκ + µκ), aπ,3 = λµκ, bπ,0 = bπ, [A.16.43b]

bπ,1 =
κψ(1− λ)

κ(1− βλκ)
bd +

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)
bi

κ(1− βλκ)
− (λ+ µ)bπ, and

bπ,2 = λµbπ −
κψ(1− λ)µ

κ(1− βλκ)
bd −

(
(1− κ)(1− βκ)µ

ε
− ακ(1− µ)(1− βµ)

)
λbi

κ(1− βλκ)
− (λ+ µ)bπ.

The solution for the output gap Ỹt can be obtained by first solving for d̃t, it, and πt using [A.16.40]–
[A.16.42], and substituting these into equation [A.16.25].

(ii) With strict inflation targeting (πt = 0 for all t), the Phillip curve [5.14a] implies the output gap is
given by:

Ỹt =
ψ

ν
d̃t, [A.16.44]

where the t0 subscript is dropped (assuming t0 → −∞). The bond yield jt is obtained by taking expectations
of the second equation in [5.14b] at date t+1 conditional on date-t information, and using the law of iterated
expectations, πt = 0, and the first equation from [5.14b]:

jt = βµEtjt+1 + (1− βµ)Et

[
α(Ỹt+1 − Ỹt) + r̂∗t+1

]
.

Substituting for Ỹt from [A.16.44] and using the first equation in [5.14b] to write expectations of the future
debt gap in terms of the current gap:

jt = βµEtjt+1 −
(1− βµ)(1− λ)αψ

ν
d̃t + (1− βµ)Etr̂

∗
t+1.

Iterating this equation forwards and using the transversality condition from [5.14b] and Etd̃t+` = λ`d̃t from
[A.16.4]:

jt = −(1− βµ)(1− λ)αψ

ν

∞∑
`=0

(βµ)`Etd̃t+` + (1− βµ)

∞∑
`=0

(βµ)`Etr̂
∗
t+`+1 + lim

`→∞
(βµ)`Etjt+`

= −(1− βµ)(1− λ)αψ

(1− βλµ)ν
d̃t + (1 − βµ)

∞∑
`=0

(βµ)`Etr̂
∗
t+`+1. [A.16.45]

Subtracting the expectation of the second equation in [5.14b] conditional on date t − 1 information from
that equation and using πt = 0 implies:(

1 +
(1− α)(1− β)ψ

(1− βλ)ν

)
(d̃t − Et−1d̃t) + α(Ỹt − Et−1Ỹt) +

βµ

1− βµ
(jt − Et−1jt) = −(̂r∗t − Et−1r̂

∗
t ).

Substituting the expressions for Ỹt and jt from [A.16.44] and [A.16.45] leads to:(
1 +

(1− α)(1− β)ψ

(1− βλ)ν
+
α(1− βµ)ψ

(1− βλµ)ν

)
(d̃t − Et−1d̃t) = −

∞∑
`=0

(βµ)`(Etr̂
∗
t+` − Et−1r̂

∗
t+`).

Rearranging the (non-zero) coefficient of d̃t −Et−1d̃t, using equation [A.16.4] and the definition of ℘t from
[A.16.37], the solution for the debt gap under strict inflation targeting is:

d̃t = λd̃t−1 −
1

1 +
(

(1−β)
(1−βλ) + αβ(1−λ)(1−µ)

(1−βµ)(1−βλµ)

)
ψ
ν

℘t. [A.16.46]

The solution for the debt gap under the optimal policy in [A.16.40] is proportional to the above, so the
definition of the optimal policy weight χ is such that:

1− χ

1 +
(

(1−β)
(1−βλ) + αβ(1−λ)(1−µ)

(1−βµ)(1−βλµ)

)
ψ
ν

= bd,
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and hence χ is equal to the following (with bd from [A.16.39]):

χ =

1 +
bd

(1− bd) +
(

(1−β)
(1−βλ) + αβ(1−λ)(1−µ)

(1−βµ)(1−βλµ)

)
ψ
ν

−1

. [A.16.47]

(iii) This special case assumes µ = 0 and ψ = 0. With µ = 0, equation [A.16.4] implies that the
Lagrangian multiplier it is a martingale difference sequence (Et−1it = 0). Equation [A.16.24] reduces to:

πt − Et−1πt =
1

κ

(
(1− κ)

ε
+

κ(1− β)(1− α)

(1− βκ)
+ ακ

)
it. [A.16.48]

Observe that

(1− κ)

ε
+

κ(1− β)(1− α)

(1− βκ)
+ ακ =

(1− κ)

ε
+

κ
(1− βκ)

((1− β) + αβ(1− κ)) ,

and by using (1− κ)/ε = κν/(κ(1− βκ)) from [A.16.10], equation [A.16.48] can be written as:

πt − Et−1πt =
κ

κ(1− βκ)

(ν
κ

+ (1− β) + αβ(1− κ)
)
it. [A.16.49]

In the special case, equation [A.16.37] reduces to:

(d̃t − Et−1d̃t) +

(
1 +

(1− α)(1− β)κ

ν
+
α(1− βκ)κ

ν

)
(πt − Et−1πt) +

α2βκ
ν

it = −℘t.

Rearranging the terms of the coefficient of πt − Et−1πt and substituting for πt − Et−1πt from [A.16.49]
yields:

(d̃t − Et−1d̃t) +
κ

(1− βκ)ν

((ν
κ

+ (1− β) + αβ(1− κ)
)2

+ α2β(1− βκ)

)
it = −℘t. [A.16.50]

Next, in the special case, equation [A.16.30] reduces to the following, with the loss function coefficient ℵd

taken from [5.16b]:

ℵd

1− βλ2
(d̃t − Et−1d̃t) = it, where ℵd =

αθ2(1− βλ)2
(

1 + αη
(1+ξ)(1+η)

)
(1− θ2)(1− β)2

.

Substituting into equation [A.16.50] and solving for d̃t − Et−1d̃t leads to:

d̃t − Et−1d̃t = − 1

1 +
αθ2(1−βλ)2

(
1+ αη

(1+ξ)(1+η)

)
(1−θ2)(1−β)2(1−βλ2)(1−βκ)

κ
ν

((
ν
κ + (1− β) + αβ(1− κ)

)2
+ α2β(1− βκ)

)℘t.
Using equation [A.16.4], the solution can be written in the form d̃t = λd̃t−1 − (1− χ)℘t, where comparison
with the above equation confirms the expression for χ in [5.18a]. The expression for χ is consistent with
[A.16.47] given that bd = 1− χ and ψ = 0.

With d̃t − Et−1d̃t = −(1− χ)℘t, equation [A.16.50] implies:

it = −
(1− βκ) νκχ(

ν
κ + (1− β) + αβ(1− κ)

)2
+ α2β(1− βκ)

℘t. [A.16.51]

In the special case, equation [A.16.20] (with πt = Πt) reduces to:

Etπt+1 = κπt −
ακ
κ

it,

and with [A.16.49], this implies that inflation is given by:

πt = κπt−1 +
κ

κ(1− βκ)

(ν
κ

+ (1− β) + αβ(1− κ)
)
it −

ακ
κ

it−1. [A.16.52]

Substituting equation [A.16.51] into the above confirms the solution for inflation in [5.18b]. Equation
[A.16.25] for the output gap Ỹt reduces to the following in the special case:

Ỹt =
(1− βκ)κ

ν
πt +

αβκ
ν

it,
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and hence:

Ỹt = κỸt−1 +
(1− βκ)κ

ν
(πt − κπt−1) +

αβκ
ν

(it − κit−1).

Substituting from equation [A.16.52], collecting terms, and simplifying leads to:

Ỹt = κỸt−1 +
κ
ν

((ν
κ

+ (1− β) + αβ(2− κ)
)
it − αit−1

)
,

and using [A.16.51] to replace terms in it confirms the solution for the output gap given in equation [5.18c].
The real interest rate gap is ρ̃t = ρt−ρ̂∗t , which is related to the output gap according to ρ̃t = α(EtỸt+1−Ỹt)
given equation [3.9a] and ρ̂∗t = αEtĝ

∗
t+1. Using the solution for the output gap in [5.18c]:

EtỸt+1 = κỸt +
α(1− βκ)χ(

ν
κ + (1− β) + αβ(1− κ)

)2
+ α2β(1− βκ)

℘t.

It follows that the real interest rate gap is given by:

ρ̃t = −α(1− κ)Ỹt +
α2(1− βκ)χ(

ν
κ + (1− β) + αβ(1− κ)

)2
+ α2β(1− βκ)

℘t,

and hence:

ρ̃t = κρ̃t−1 − α(1− κ)(Ỹt − κỸt−1) +
α2(1− βκ)χ(

ν
κ + (1− β) + αβ(1− κ)

)2
+ α2β(1− βκ)

(℘t − κ℘t−1).

Substituting from the solution for Ỹt in [5.18c] then collecting terms and simplifying confirms the expression
for ρ̃t in [5.18d].

(iv) With the assumptions on the type-specific Frisch elasticities from Proposition 15 that lead to ψ = 0,
the log-linearized equation for the growth rate of first-best output Ŷ ∗t|t0 from [5.12] is

ĝ∗t|t0 =

(
1 + ξ+ 1+ξ

η

α+ ξ+ 1+ξ
η

)
(At − At−1),

where the terms in the consumption ratios cancel out because of equation [A.15.6]. It follows that ĝ∗t|t0 = ĝt,

which is independent of t0. Similarly, the output gap Ỹt|t0 is such that Ỹt|t0 = Ỹt, independent of t0 up to
a first-order approximation. Since expectations of real GDP growth ĝt determine r̂∗t|t0 , it is also the case

that r̂∗t|t0 = r̂∗t . With ψ = 0, the Phillips curve constraint in [5.14a] reduces to:

Ỹt =
κ

ν
(πt − βEtπt+1). [A.16.53]

The transversality condition in [5.14b] is satisfied automatically when µ = 0. With µ = 0 and ψ = 0,
the second constraint in [5.14b] at t = t0 becomes:

jt−1 − d̃t|t − πt −
(1− α)(1− β)κ

ν
(πt − Et−1πt)− αỸt + αỸt−1 = r̂∗t , [A.16.54]

using the definition d̃t−1|t = 0. The first constraint in [5.14b] then requires Et−1d̃t|t = 0, and using this

in conjunction with [A.16.54] implies jt−1 = Et−1r̂
∗
t + αEt−1Ỹt − αỸt−1 + Et−1πt. Substituting this into

equation [A.16.54] to replace jt−1 leads to:

d̃t|t = −
(

1 +
(1− α)(1− β)κ

ν

)
(πt − Et−1πt)− α(Ỹt − Et−1Ỹt)− ℘t, [A.16.55]

where ℘t = r̂∗t − Et−1r̂
∗
t coincides with the definition given in [A.16.37] when µ = 0 and r̂∗t|t0 = r̂∗t . The

variable ℘t is a martingale difference sequence (Et−1℘t = 0).
Following the same steps as in the proof of Proposition 14, the loss function [5.15] at t = t0 can be

expressed in terms of d̃t|t, πt, and Ỹt (with Ỹt|t0 = Ỹt) as follows:

Lt =
1

2

∞∑
`=0

β`Et

[
ℵd

1− βλ2
d̃2
t+`|t+` + ℵππ2

t+` + ℵYỸ
2
t+`

]
. [A.16.56]
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The constraints on monetary policy in [5.14a] and [5.14b] are equivalent to [A.16.53] and [A.16.55]. In
minimizing the loss function [A.16.56] subject to [A.16.53] and [A.16.55], observe that starting from any time
t, the constraints from that date onwards and the continuation value of the loss function are independent
of all variables realized prior to t. Thus, in a Markovian discretionary policy equilibrium, expectations of
future values of d̃t|t, πt, and Ỹt are taken as independent of current policy actions.

The discretionary policy can be found by minimizing the period loss function Lt below subject to the
constraints [A.16.53] and [A.16.55], taking expectations as given:

Lt =
1

2

(
ℵd

1− βλ2
d̃2
t+`|t+` + ℵππ2

t+` + ℵYỸ
2
t+`

)
. [A.16.57]

By substituting the Phillips curve [A.16.53] into the constraint [A.16.55]:

d̃t|t = −
(

1 +
(1− α)(1− β)κ

ν

)
(πt −Et−1πt)−

ακ

ν
((πt − Et−1πt)− β(Etπt+1 − Et−1πt+1))− ℘t,

[A.16.58]

which is then substituted into the period loss function [A.16.57] along with the Phillips curve [A.16.53] to
write the debt gap d̃t|t and output gap Ỹt in terms of inflation πt:

Lt =
ℵd

2(1− βλ2)

(
−
(

1 +
(1− α)(1− β)κ

ν
+
ακ

ν

)
(πt − Et−1πt) +

αβκ

ν
(Etπt+1 − Et−1πt+1)− ℘t

)2

+
ℵπ
2
π2
t +
ℵY

2

(κ
ν

(πt − βEtπt+1)
)2
. [A.16.59]

The first-order condition for minimizing Lt with respect to inflation πt is:(
1 +

(1− α)(1− β)κ

ν
+
ακ

ν

)
ℵd

1− βλ2
d̃t|t = ℵππt +

κ

ν
ℵYỸt,

and by using the expressions for ℵπ and ℵY in [5.15] and simplifying:(
1 + (1− β+ αβ)

κ

ν

) ℵd

1− βλ2
d̃t|t = κ(επt + Ỹt). [A.16.60]

The discretionary policy equilibrium is found by substituting the first-order condition [A.16.60] into the
constraints [A.16.53] and [A.16.55]. Using [A.16.60] to substitute for Ỹt in the Phillips curve [A.16.53]:(

1 +
εν

κ

)
πt = βEtπt+1 +

1

κ

(
1− β+ αβ+

ν

κ

) ℵd

1− βλ2
d̃t|t.

Since 0 < β < 1 and ε, ν, and κ are all positive, the unique stationary equilibrium for inflation (requiring
lim`→∞ β

`Etπt+` = 0) is found by iterating this equation forwards:

πt =
ℵd

(
1− β+ αβ+ ν

κ

)
(1− βλ2)(κ+ εν)

∞∑
`=0

(
β
(

1 +
εν

κ

)−1
)`
Etd̃t+`|t+` =

ℵd

(
1− β+ αβ+ ν

κ

)
(1− βλ2)(κ+ εν)

d̃t|t, [A.16.61]

using Etd̃t+`|t+` = 0 for all ` ≥ 1, which follows from Etd̃t+1|t+1 = 0 by the law of iterated expectations.

With Et−1d̃t|t = 0 it follows that Et−1πt = 0, in which case the constraint [A.16.58] becomes:

d̃t|t = −κ
ν

(
1− β+ αβ+

ν

κ

)
πt − ℘t. [A.16.62]

Combining this equation with [A.16.61] leads to the solution for d̃t|t:

d̃t|t = −

(
1 +
ℵd

(
1− β+ αβ+ ν

κ

)2
ν(1− βλ2)

(
1 + εν

κ

) )−1

℘t,

which can be written as follows using the expression for ℵd in [5.16b]:

d̃t|t = −(1− χ′)℘t, where χ′ =

1 +

ν
(1−θ2)(1−β)2(1−βλ2)

αθ2(1−βλ)2
(

1+ αη
(1+ξ)(1+η)

) (1 + εν
κ

)
(
1− β+ αβ+ ν

κ

)2

−1

. [A.16.63]
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For any arbitrary t0, by following the proof of Proposition 14 (equation [A.14.3]), d̃t|t0 = d̃t|t+λd̃t−1|t0 , and

hence d̃t|t0 = λd̃t−1|t0 − (1 − χ′)℘t. Taking the case of t0 → −∞ for comparison with the optimal policy

under commitment leads to the (Markovian) discretionary policy equilibrium d̃t = λd̃t−1 − (1− χ′)℘t. The
solution for inflation is obtained by substituting [A.16.63] into [A.16.62]. With Et−1πt = 0, the Phillips
curve [A.16.53] reduces to Ỹt = (κ/ν)πt, so the solution for the output gap Ỹt is obtained immediately from
the inflation solution. Finally, the real interest rate gap ρ̃t = αEt[Ỹt+1 − Ỹt] solution is obtained from the
output gap solution noting Et−1Ỹt = 0. In summary, the (Markovian) discretionary policy equilibrium is:

πt = −
ν
κχ
′

1− β+ αβ+ ν
κ

℘t, Ỹt = − χ′

1− β+ αβ+ ν
κ

℘t, and ρ̃t =
αχ′

1− β+ αβ+ ν
κ

℘t. [A.16.64]

Since Et−1℘t = 0, inflation, the output gap, and the real interest rate gap are all serially uncorrelated.
Comparing the expressions for χ and χ′ in [5.18a] and [A.16.63], the inequality χ ≥ χ′ is equivalent to:

κ
((

1− β+ αβ+ ν
κ − αβκ

)2
+ α2β(1− βκ)

)
ν(1− βκ)

≥
(
1− β+ αβ+ ν

κ

)2
ν
(
1 + εν

κ

) .

Using [A.16.10], it follows that εν/κ = (1− κ)(1− βκ)/κ, so the inequality above is equivalent to:

(1− βκ + βκ2)

((
1− β+ αβ+

ν

κ
− αβκ

)2
+ α2β(1− βκ)

)
− (1− βκ)

(
1− β+ αβ+

ν

κ

)2
≥ 0.

[A.16.65]

By expanding the bracket of the first term below, observe that:(
1− β+ αβ+

ν

κ
− αβκ

)2
+ α2β(1− βκ) =

(
1− β+ αβ+

ν

κ

)2

− 2αβκ
(

1− β+ αβ+
ν

κ

)
+ α2β(1 − βκ + βκ2),

and substituting this into [A.16.65] shows that inequality is equivalent to:

βκ2
(

1− β+ αβ+
ν

κ

)2
− 2αβκ

(
1− β+ αβ+

ν

κ

)
(1− βκ + βκ2) + α2β(1− βκ + βκ2)2 ≥ 0.

Cancelling β from the expression and grouping terms:(
α(1− βκ + βκ2)

)2 − 2
(
α(1− βκ + βκ2)

) (
κ
(

1− β+ αβ+
ν

κ

))
+
(
κ
(

1− β+ αβ+
ν

κ

))2
≥ 0,

which is exactly equal to a squared term, thus χ ≥ χ′ is equivalent to:(
α(1− βκ + βκ2)− κ

(
1− β+ αβ+

ν

κ

))2
≥ 0. [A.16.66]

Noting that 1−βκ+βκ2 = κ+(1−κ)(1−βκ) and (1−κ)(1−βκ) = ενκ/κ from [A.16.10], the inequality
[A.16.66] implies that χ = χ′ holds only when:

ακ
(

1 +
εν

κ

)
− κ

(
1− β+ αβ+

ν

κ

)
= 0, or equivalently (α− 1)(1− β) + (ε− 1)

ν

κ
= 0,

since κ > 0. For any other parameters, [A.16.66] implies χ > χ′, so this holds generically, completing the
proof.

A.17 Results for the model where discount factors are internalized

In this version of the model, both individual households and the policymaker internalize the effects of their
actions on the discount factors in [2.2]. To ensure that both types of households continue to have the same
marginal propensities to consume in the neighbourhood of the non-stochastic steady state, a type-specific
constant is subtracted from the period utility functions so that the steady-state value of utility is the same
for both household types. The changes to the results are summarized below.

The term λ appearing in the coefficients of the log-linearized equations from Proposition 4 is replaced by
λ′, the solution of the quadratic equation βλ(λ′)2− (1−β+2βλ)λ′+λ = 0 in the unit interval (0 < λ′ < 1).
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The formula for the root is:

λ′ =
2λ

1− β+ 2βλ+
√

(1− β+ 2βλ)2 − 4β
,

and it can be seen that this root satisfies λ < λ′ < 1. The coefficient ℵd of the debt gap in the loss function
from Proposition 12 is replaced by:

ℵ′d =
αθ2(1− βλ′)(1 + βλ′ − 2βλλ′)

(1− θ2)(1− β)2
.

In the tradeoff between fluctuations in the debt gap and fluctuations in inflation, the optimal policy weight
χ on the debt gap from Proposition 13 is replaced by:

χ′ =

(
1 +

ε(1 + εξ)σ(1− θ2)(1− β)2(1− β(λ′)2)(1− βµ2)

αθ2(1− σ)(1− βσ)(1− βλ′)(1 + βλ′ − 2βλλ′)

)−1

.

It can be shown that χ′ ≥ χ for all parameter values.
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