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A Appendices

A.1 Measurement of transactions and inventories

The transactions and inventories data from NAR include all existing single-family homes, so homes that are
rented out are counted in this data. An estimate of the fraction of single-family homes that are not rented
out can be computed from the AHS. This fraction is around 78% on average over the period 1989–2013.
If the fraction were constant over time, the counterfactuals presented in section 2.2 would be unaffected
and the only change would be to the average level of the listing rate. The effect on the average level of the
listing rate would change the implied average time between moves from 15 years to 19.4 years.

However, the data show some changes over time in the fraction of homes that are not rented out. The
fraction rises from 77% to 80% during the boom period, and then falls to 75% by 2013. A simple robustness
check is to scale the NAR data on transactions and inventories by the fraction of non-rented homes and
then recompute the counterfactuals. The results are shown in Figure 11, which are almost identical to
those in Figure 2.

Figure 11: Actual and counterfactual transactions (adjusted for rented homes)
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Notes: The series are reported as log differences relative to their initial values.

A.2 Withdrawals and relistings

Consider the framework introduced in section 2.3. Suppose that the net listing rate nt = Nt/(Kt − Ut) is
equal to a constant n. The sales rate is s, so St = sUt, and the total housing stock grows at rate g, that is,
K̇t/Kt = g. This implies that equation (1) will hold as in section 2.1 and that the fraction of houses for
sale ut = Ut/Kt will converge to its steady state u = n/(n+ s+ g).

Let lt = Lt/Kt denote the stock of houses that have failed to sell but might be relisted relative to the
stock of all houses. Using the formula for L̇t, the implied law of motion for lt is:

l̇t = wut − (ρ+ α+m+ g)lt.

Given that ut is equal to its steady-state value u, there is a steady state l for lt:

l =
wu

ρ+ α+m+ g
, [A.1]
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and convergence to this steady state takes place at rate ρ + α + m + g. Since this rate is strictly greater
than the sum of the relisting rate ρ and the rate α at which homeowners give up on attempting a future
sale, convergence to the steady state is presumed to be sufficiently fast that lt is set equal to l in what
follows, just as ut converges quickly enough to u to set ut = u.1

Dividing both sides of the accounting identity for net listings by Kt − Ut implies:

n = m− w ut
1− ut

+ ρ
lt

1− ut
.

If ut and lt have reached their steady-state values u and l then the net listing rate n is indeed constant as
supposed earlier:

n = m− w u

1− u + ρ
l

1− u,

and noting u/(1− u) = n/(s+ g) and using the expression for l from (A.1):

n = m− wn

s+ g

(
1− ρ

ρ+ α+m+ g

)
= m− n w

s+ g

(
α+m+ g

ρ+ α+m+ g

)
.

Divide numerator and denominator of the term in parentheses by ρ+α+m, and numerator and denominator
of its coefficient by s:

n = m− 1

1 + g
s

w

s

(
α+m
ρ+α+m + g

ρ+α+m

1 + g
ρ+α+m

)
n. [A.2]

The formulas for the eventual fraction of withdrawals φ and the eventual fraction of relistings β imply that:

φ

1− φ =
w

s
, and 1− β =

α+m

ρ+ α+m
.

These expressions can be substituted into (A.2) to deduce:

n = m−
(

φ

1− φ

)(
1− β + g

ρ+α+m

1 + g
ρ+α+m

)(
1

1 + g
s

)
n. [A.3]

This is the exact link between the moving rate m and the net listing rate n. In addition to φ and β, it
depends on the sales rate s, the growth rate g, the relisting rate ρ, and the abandonment rate α.

If the growth rate of the total housing stock g is small in relation to the sales rate s, and the sum of the
relisting, abandonment, and moving rates ρ+ α+m then the terms g/s and g/(ρ+ α+m) are negligible.
The equation (A.3) linking n and m can then be well approximated by:

n ≈ m− φ(1− β)

(1− φ)
n.

Collecting terms in n on one side, this equation simplifies to:

n ≈ m

1 + φ(1−β)
1−φ

,

which confirms equation (9) in section 2.3. Given knowledge of the eventual fraction of withdrawals φ and
the eventual fraction of relistings β, the moving rate m can be calculated from the net listing rate n, or
vice versa, the net listing rate can be calculated from the moving rate.

1Confirming this assumption would require an empirical measure of the abandonment rate α.
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A.3 Value functions and thresholds

Moving and transaction thresholds

The value functions Ht(ε) and Jt and the thresholds xt and yt satisfy the equations (14), (15), (17), and
(18). No other endogenous variables appear in these equations. Given constant parameters, there is a
time-invariant solution Ht(ε) = H(ε), Jt = J , xt = x, and yt = y. The time-invariant equations are:

rH(ε) = εξ −D + a (max{H(δε), J} −H(ε)) ; [A.4]

H(x) = J ; [A.5]

rJ = −F −D + v

∫
y
(H(ε)− J − C)dG(ε); [A.6]

H(y) = J + C. [A.7]

Attention is restricted to parameters where the solution will satisfy δy < x.
Evaluating (A.4) at ε = x, noting that δ < 1 and H(ε) is increasing in ε:

rH(x) = ξx−D + a(J −H(x)).

Since H(x) = J (equation A.5), it follows that:

J = H(x) =
ξx−D

r
. [A.8]

Next, evaluate (A.4) at ε = y. With the restriction δy < x, it follows that H(δy) < H(x) = J , and hence:

rH(y) = ξy −D + a(J −H(y)).

Collecting terms in H(y) on one side and substituting the expression for J from (A.8):

(r + a)H(y) = ξy −D +
a

r
(ξx−D) = ξ(y − x) +

(
1 +

a

r

)
(ξx−D),

and thus H(y) is given by:

H(y) =
ξx−D

r
+
ξ(y − x)

r + a
. [A.9]

Combining the equation above with (A.7) and (A.8), it can be seen that the thresholds y and x must be
related as follows:

y − x =
(r + a)C

ξ
. [A.10]

Using the expression for the Pareto distribution function (10) and using (A.7) to note H(ε)− J −C =
H(ε)−H(y), the Bellman equation (A.6) can be written as:

rJ = −F −D + vy−λ
∫ ∞
ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε, [A.11]

which assumes y > 1. In solving this equation it is helpful to define the following function Ψ(z) for all
z ≤ y:

Ψ(z) ≡
∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(H(ε)−H(z))dε. [A.12]

Since δy < x is assumed and z ≤ y, it follows that δz < x, and thus H(δz) < H(x) = J . Equation (A.4)
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evaluated at ε = z therefore implies:

rH(z) = ξz −D + a(J −H(z)).

Subtracting this equation from (A.4) evaluated at a general value of ε leads to:

r(H(ε)−H(z)) = ξ(ε− z) + a (max{H(δε), J} −H(ε))− a(J −H(z))

= ξ(ε − z) − a(H(ε) −H(z)) + amax{H(δε) − J, 0}.

Noting that J = H(x) and solving for H(ε)−H(z):

H(ε)−H(z) =
ξ

r + a
(ε− z) +

a

r + a
max{H(δε)−H(x), 0}. [A.13]

The equation above can be substituted into (A.12) to deduce:

Ψ(z) =
ξ

r + a

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(ε− z)dε+

a

r + a

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
max{H(δε)−H(x), 0}dε. [A.14]

First, observe that:∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(ε− z)dε =

z

λ− 1
. [A.15]

Next, make the change of variable ε′ = δε in the second integral in (A.14) to deduce:

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
max{H(δε)−H(x), 0}dε =

∫ ∞
ε′=δz

λ

δz

(
ε′

δz

)−(λ+1)

max{H(ε′)−H(x), 0}dε′

=

∫ x

ε′=δz

λ

δz

(
ε′

δz

)−(λ+1)

0dε′ +

∫ ∞
ε′=x

λ

δz

(
ε′

δz

)−(λ+1)

(H(ε′)−H(x))dε′

=

(
δz

x

)λ ∫ ∞
ε=x

λ

x

( ε
x

)−(λ+1)
(H(ε) −H(z))dε =

(
δz

x

)λ
Ψ(x),

where the second line uses δz < x (as z ≤ y and δy < x) and H(ε′) < H(x) for ε′ < x, and the final line
uses the definition (A.12). Putting the equation above together with (A.14) and (A.15) yields the following
for all z ≤ y:

Ψ(z) =
ξz

(r + a)(λ− 1)
+

a

r + a

(
δz

x

)λ
Ψ(x). [A.16]

Evaluating this expression at z = x (with x < y):

Ψ(x) =
ξx

(r + a)(λ− 1)
+

a

r + a
δλΨ(x),

and hence Ψ(x) is given by:

Ψ(x) =
ξx

(r + a(1− δλ))(λ− 1)
. [A.17]

Next, evaluating (A.16) at z = y and using (A.17) to substitute for Ψ(x):

Ψ(y) =
ξy

(r + a)(λ− 1)
+

a

r + a

(
δz

x

)λ( ξx

(r + a(1− δλ))(λ− 1)

)
,
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and simplifying this equation yields the following expression for Ψ(y):

Ψ(y) =
ξ

(r + a)(λ− 1)

(
y +

aδλyλx1−λ

r + a(1− δλ)

)
. [A.18]

Using the definition (A.12), equation (A.11) can be written in terms of Ψ(y):

rJ = −F −D + vy−λΨ(y),

and substituting from (A.8) and (A.18) yields:

ξx−D = −F −D + vy−λ
(

ξ

(r + a)(λ− 1)

(
y +

aδλyλx1−λ

r + a(1− δλ)

))
.

This equation can be simplified as follows:

x+
F

ξ
=

v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)
x1−λ

)
. [A.19]

The two equations (A.10) and (A.19) confirm (26) and (29) given in the main text. These can be solved
for the thresholds x and y.

Existence and uniqueness

By using equation (A.10) to replace x with a linear function of y, the equilibrium threshold y is the solution
of the equation:

I(y) ≡ v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)

(
y − (r + a)C

ξ

)1−λ
)
− y +

(r + a)C

ξ
− F

ξ
= 0. [A.20]

It can be seen immediately (since λ > 1) that I ′(y) < 0, so any solution that exists is unique. A valid
solution must satisfy x > 0, y > 1, and δy < x. Using equation (A.10), the inequality δy < x is equivalent
to:

δy < y − (r + a)C

ξ
,

which is in turn equivalent to:

y >
(r + a)C

(1− δ)ξ .

Thus, to satisfy y > 1 and δy < x, the equilibrium must feature:

y > max

{
1,

(r + a)C

(1− δ)ξ

}
. [A.21]

Observe that limy→∞ I(y) = −∞ (using A.20 and λ > 1), so an equilibrium satisfying (A.21) exists if and
only if:

I
(

max

{
1,

(r + a)C

(1− δ)ξ

})
> 0. [A.22]

If the condition (A.21) is satisfied then by using (A.10):

x > max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ
>

(r + a)C

(1− δ)ξ −
(r + a)C

ξ
=
δ(r + a)C

(1− δ)ξ > 0,
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confirming that x > 0 must hold. Therefore, (A.22) is necessary and sufficient for the existence of a unique
equilibrium satisfying all the required conditions. Using equation (A.20), (A.22) is equivalent to:

max

{
1,

(r + a)C

(1− δ)ξ

}1−λ
+

aδλ

r + a(1− δλ)

(
max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ

)1−λ

− (λ− 1)(r + a)

v

(
max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ
+
F

ξ

)
> 0. [A.23]

Surplus and selling rate

Given x and y, the value functions J , H(x), and H(y) can be obtained from (A.8) and (A.9). The average
surplus can be found by combining (A.8) and (A.11) to deduce:∫ ∞

ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε =
yλ

v
(ξx+ F ). [A.24]

Given x and y, the probability π that a viewing leads to a sale, and the expected number of viewings before
a sale Vs = 1/π are:

π = y−λ, and Vs = yλ. [A.25]

The selling rate s and the expected time-to-sell Ts = 1/s are given by:

s = vy−λ, and Ts =
yλ

v
. [A.26]

A.4 Prices

Nash bargaining

The price pt(ε) is determined by combining the Nash bargaining solution ωΣb,t(ε) = (1 − ω)Σu,t(ε) with
the expressions for the buyer and seller surpluses in (11):

ω(Ht(ε)− pt(ε)− Cb −Bt) = (1− ω)(pt(ε)− Cu − Ut),

from which it follows that:

pt(ε) = ωHt(ε) + (1− ω)Cu − ωCb + ((1− ω)Ut − ωBt). [A.27]

The surplus-splitting condition implies Σb,t(ε) = (1−ω)Σt(ε) and Σu,t(ε) = ωΣt(ε), with Σt(ε) = Σb,t(ε) +
Σu,t(ε) being the total surplus from (28). The Bellman equations in (12) can thus be written as:

rBt = −F + (1− ω)v

∫
yt

Σt(ε)dG(ε) + Ḃt, and rUt = −D + ωv

∫
yt

Σt(ε)dG(ε) + U̇t,

and a multiple ω of the first equation can be subtracted from a multiple 1 − ω of the second equation to
deduce:

r((1− ω)Ut − ωBt) = ωF − (1− ω)D + ((1− ω)U̇t − ωḂt).

The stationary solution of this equation is:

(1− ω)Ut − ωBt =
ωF − (1− ω)D

r
,
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and by substituting this into (A.27):

pt(ε) = ωHt(ε) + (1− ω)Cu − ωCb +
ωF − (1− ω)D

r
. [A.28]

Integrating this equation over the distribution of new match quality yields equation (16) for the average
transaction price.

Average transactions price

In an equilibrium where the moving and transaction thresholds xt and yt are constant over time, the value
function Ht(ε) is equal to the time-invariant function H(ε). This means that prices pt(ε) = p(ε) are also
time invariant. Using the Pareto distribution function (10) and equation (16), the average price is:

P = ω

∫
y

λ

y

(
ε

y

)−(λ+1)

H(ε)dε+ (1− ω)Cu − ωCb +
ωF − (1− ω)D

r
.

By using equation (14) and (A.8), the above can be written as:

P = ω

∫
y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε+ ω

(
ξx−D

r
+ C

)
+
ωF − (1− ω)D

r

+ (1 − ω)Cu − ωCb,

and substituting from (A.24) yields:

P = ω
yλ

v
(ξx+ F ) + ωC +

ωξx

r
+ (1− ω)Cu − ωCb +

ωF −D
r

.

Simplifying and using C = Cb + Cu, the following expression for the average price is obtained:

P = Cu −
D

r
+ ω

(
1

r
+
yλ

v

)
(ξx+ F ),

which confirms the formula in (34). With the definition of κ = Cu/C, this equation can also be written as:

P = κC − D

r
+ ω

(
1

r
+
yλ

v

)
(ξx+ F ). [A.29]

A.5 Stocks and flows

The moving rate

The formula (21) for the moving rate can also be given in terms of inflows Nt = nt(1− ut), where ut is the
stock of unsold houses:

Nt = a(1− ut)− aδλx−λt v

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ. [A.30]

The first term a(1−ut) is the quantity of existing matches that receive a shock (arrival rate a). The second
term is the quantity of existing matches that receive a shock now, but decide not to move. The difference
between these two numbers (under the assumption that only those who receive a shock make a moving
decision) gives inflows Nt.

Now consider the derivation of the second term in (A.30). The distribution of existing matches (measure
1 − ut) can be partitioned into vintages τ (when matches formed) and the number k of previous shocks
that have been received. At time τ , a quantity uτ of houses were for sale, and viewings arrived at rate
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v. Viewings were draws of match quality ε from a Pareto(1, λ) distribution, and those draws with ε ≥ yτ
formed new matches, truncating the distribution at yτ . In the interval between τ and t, those matches that
have received k shocks now have match quality δkε. Some of these matches will have been destroyed as a
result of these shocks, truncating the distribution of surviving match quality. Because the distribution of
initial match quality is a Pareto distribution, these truncations also result in Pareto distributions with the
same shape parameter λ.

Consider the matches of vintage τ . All of these were originally from a Pareto distribution truncated
at ε ≥ yτ . Subsequently, depending on the arrival of idiosyncratic shocks (both timing and number), this
distribution may have been truncated further. Let z denote the last truncation point in terms of the original
match quality ε (at the time of the viewing). This is z = yτ if no shocks have been received, or z = δ−kxT
if k shocks have been received and the last one occurred at time T when the moving threshold was xT .
Conditional on this last truncation point z, it is shown below that the measure of surviving matches
is z−λvuτ . Furthermore, the original match quality of these surviving matches must be a Pareto(z, λ)
distribution.

Now consider the distribution of the number of previous shocks j between τ and t. Given the Poisson
arrival rate a, k has a Poisson distribution, so the probability of j is e−a(t−τ)(a(t − τ))j/j!. If a shock
arrives at time t, matches of current quality greater than xt survive. If these have received j shocks earlier,
this means the truncation threshold in terms of original match quality ε is ε ≥ δ−(j+1)xt. Of these matches
that have accumulated j earlier shocks, suppose last relevant truncation threshold (in terms of original
match quality) was z (this will vary over those matches even with the same number of shocks because
the timing might be different), so the distribution of surviving matches in terms of their original match
quality is Pareto(z, λ). The probability that these matches then survive the shock at time t is given by
(δ−(j+1)xt/z)

−λ, and multiplying this by z−λvuτ gives the number that survive:

(δ−(j+1)xt/z)
−λz−λvuτ = (δλ)j+1x−λt vuτ ,

noting that the terms in z cancel out. This is conditional on z, j, and τ , but since z does not appear above,
the distribution of the past truncation thresholds is not needed. Averaging over the distribution of j yields:

∞∑
j=0

e−a(t−τ)
(a(t− τ))j

j!
(δλ)j+1x−λt vuτ = δλx−λt vuτe

−a(t−τ)
∞∑
j=0

(aδλ(t− τ))j

j!

= δλx−λt vuτe
−a(t−τ)eaδ

λ(t−τ) = δλx−λt vuτe
−a(1−δλ)(t−τ),

where the penultimate expression uses the Taylor series expansion of the exponential function ez =∑∞
j=0 z

j/j! (valid for all z). Next, integrating over all vintages τ before the current time t leads to:∫ t

τ→−∞
δλx−λt e−a(1−δ

λ)(t−τ)dτ = δλx−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)vuτdτ.

Multiplying this by the arrival rate a of the idiosyncratic shocks confirms the second term of the expression
for Nt in (A.30).

This leaves only the claim that the measure of vintage-τ surviving matches with truncation point z
(in terms of the original match quality distribution ε) is z−λvuτ . When these matches first form, they
have measure y−λτ vuτ and a Pareto(yt, λ) distribution, so the formula is correct if no shocks have occurred
and z = yτ . Now suppose the formula is valid for some z and truncation now occurs at a new point
w > z (in terms of original match quality). Since matches surviving truncation at z have distribution
Pareto(z, λ), the proportion of these that survive the new truncation is (w/z)−λ, and so the measure
becomes (w/z)−λz−λvuτ = w−λvuτ (with the term in z cancelling out), which confirms the claim.

The distribution of match quality

Now consider the derivation of the law of motion for average match quality Qt in (22). Let total match
quality across all families be denoted by Et (those not matched have match quality equal to zero), with
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Et = (1 − ut)Qt by definition. Total match quality Et changes over time as new matches form, when
matches are hit by shocks, and when moving decisions are made. With transaction threshold yt and new
match quality drawn from a Pareto(1;λ) distribution, new matches have average quality (λ/(λ − 1))yt.
The contribution to the rate of change of total match quality is that average multiplied by stut. Shocks to
existing matches arrive randomly at rate a. If no shock is received then there is no change to match quality
and no moving decision. For those who receive a shock, let E t denote the total match quality of those
matches that survive (with matches that dissolve counted as having zero match quality). The contribution
of the shocks and moving decisions to the rate of change of total match quality is to subtract a(Et − E t).
The differential equation for Et is therefore:

Ėt =
λ

λ− 1
ytstut − a(Et − E t). [A.31]

Using this formula requires an expression for E t.
Consider the distribution of all matches that formed before time t, survived until time t, and now

receive an idiosyncratic shock at time t, but one that is not sufficient to trigger moving. The distribution
of surviving matches can be partitioned into vintages τ (when the match formed) and the number of
shocks j that have been received previously (not counting the shock at time t). At time τ , a quantity uτ
of houses were for sale, and viewings arrived at rate v. Viewings were draws of match quality ε from a
Pareto(1;λ) distribution, and those draws with ε ≥ yτ formed new matches, truncating the distribution
at yτ . Subsequently, a number j of idiosyncratic shocks have occurred, with j having a Poisson(a(t − τ))
distribution, and these shocks resulting in the distribution of surviving match quality being truncated. With
a shock now occurring at time t after j earlier shocks, match quality is now δj+1ε, and the distribution is
truncated at xt. In terms of the original match quality ε, survival requires ε ≥ δ−(j+1)xt.

Consider matches of vintage τ that have previously accumulated k shocks for which the last truncation
threshold was z in terms of original match quality (this threshold will depend on when the previous shocks
occurred). Since the Pareto distribution is preserved after truncation with the same shape parameter, these
matches have a Pareto(z;λ) distribution in terms of their original match quality. It was shown above that
the measure of surviving vintage-τ matches with truncation point z is z−λvuτ (conditional on z, the number
of shocks j is irrelevant, though the number of shocks may be related to the value of z). The measure that
remain (ε ≥ δ−(j+1)xt) after moving decisions are made at time t is:(

δ−(j+1)xt/z
)−λ

z−λvuτ = (δλ)j+1x−λt vuτ ,

noting that the terms in z cancel out. The probability of drawing j shocks in the interval between τ and t
is e−a(t−τ)(a(t− τ))j/j!, and hence averaging over the distribution of j for vintage-τ matches implies that
the surviving measure is:

∞∑
j=0

e−a(t−τ)
(a(t− τ))j

j!
(δj+1)λx−λt vut = δλx−λt vuτe

−a(1−δλ)(t−τ),

which is confirmed by following the same steps as in the derivation of the moving rate above. Integrating
these surviving measures over all cohorts:∫ t

τ→−∞
δλx−λt vuτe

−a(1−δλ)dτ = vδλx−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ,

and since the average match quality among the survivors after the shock at time t is (λ/(λ− 1))xt for all
cohorts, it follows that:

E t =
vδλλ

λ− 1
x1−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ.
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Substituting this and equation (20) into (A.31) implies:

Ėt =
vλ

λ− 1
y1−λt ut − a

(
Et −

vδλλ

λ− 1
x1−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ

)
. [A.32]

The integral can be eliminated by defining an additional variable Υt:

Υt =

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ, [A.33]

and hence (A.32) can be written as follows:

Ėt =
vλ

λ− 1
y1−λt ut − aEt +

avδλλ

λ− 1
x1−λt Υt. [A.34]

The evolution of the state variable ut is determined by combining equations (19), (20), and (21):

u̇t = a(1− ut)− avδλx−λt
∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ − vy−λt ut,

where the integral can again be eliminated by writing the equation in terms of the new variable Υt from
(A.33):

u̇t = a(1− ut)− avδλx−λt Υt − vy−λt ut. [A.35]

Differentiating the integral in (A.33) shows that Υt must satisfy the differential equation:

Υ̇t = ut − a(1− δλ)Υt. [A.36]

These results can be used to obtain the differential equation for average match quality Qt in (22). Since
the definition implies Qt = Et/(1− ut), it follows that:

Q̇t =
Ėt

1− ut
+

Etu̇t
(1− ut)2

=
Ėt

1− ut
+Qt

u̇t
1− ut

.

Substituting from the differential equations (A.34) and (A.35) leads to:

Q̇t =

(
vλ

λ− 1
y1−λt

ut
1− ut

− aQt +
avδλλ

λ− 1
x1−λt

Υt
1− ut

)
+Qt

(
a− avδλx−λt

Υt
1− ut

− vy−λt
ut

1− ut

)
,

noting that the terms in Qt on the right-hand side cancel out, so Q̇t can be written as:

Q̇t = vy−λt

(
λ

λ− 1
yt −Qt

)
ut

1− ut
− avδλx−λt Υt

1− ut

(
Qt −

λ

λ− 1
xt

)
.

Comparison with equations (20), (21), and the definition of Υt in (A.33) confirms the differential equation
for Qt in (22).

Steady state

Given the moving rate n and the sales rate s, the steady-state stock of houses for sale is:

u =
n

s+ n
. [A.37]

10



The steady-state moving rate n can be derived from the formula (21):

n = a− aδλx−λv u

1− u

∫ ∞
τ=0

e−a(1−δ
λ)τdτ = a− aδλ

(y
x

)λ
vy−λ

n

s

1

a(1− δλ)
,

where the final equality uses u/(1 − u) = n/s, as implied by (A.37). Since s = vy−λ according to (A.26),
the equation above becomes:

n = a− δλ

1− δλ
(y
x

)λ
n.

Solving this equation for n yields:

n =
a

1 + δλ

1−δλ
( y
x

)λ , [A.38]

which confirms the claim in (32).

A.6 Efficiency

The social planner’s objective function from (30) can be written in terms of total match quality Et, the
transaction threshold yt, and houses for sale ut by substituting Et = (1− ut)Qt and using equation (20):

ΩT =

∫ ∞
t=T

e−r(t−T )
(
ξEt − Cvy−λt ut − Fut −D

)
dt. [A.39]

This is maximized by choosing xt, yt, Et, ut, and Υt subject to the differential equations for Et, ut, and Υt in
(A.34), (A.35), and (A.36) (the variable Υt defined in A.33 is introduced because the differential equations
A.34 and A.35 are written in terms of Υt). The problem is solved by introducing the (current-value)
Hamiltonian:

Jt = ξEt − Cvy−λt ut − Fut −D + ϕt

(
vλ

λ− 1
y1−λt ut − aEt +

avδλλ

λ− 1
x1−λt Υt

)
+ ϑt

(
a(1− ut)− avδλx−λt Υt − vy−λt ut

)
+ γt

(
ut − a(1− δλ)Υt

)
, [A.40]

where ϕt, ϑt, and γt are the co-state variables associated with Et, ut, and Υt. The first-order conditions
with respect to xt and yt are:

∂Jt
∂xt

= avδλλx−λ−1t Υtϑt − avδλλx−λt Υtϕt = 0; [A.41a]

∂Jt
∂yt

= vλCy−λ−1t ut − vλy−λt utϕt + vλy−λ−1t utϑt = 0, [A.41b]

and the first-order conditions with respect to the state variables Et, ut, and Υt are:

∂Jt
∂Et

= ξ − aϕt = rϕt − ϕ̇t; [A.41c]

∂Jt
∂ut

= −Cvy−λt − F +
vλ

λ− 1
y1−λt ϕt − (a+ vy−λt )ϑt + γt = rϑt − ϑ̇t; [A.41d]

∂Jt
∂Υt

=
avδλλ

λ− 1
x1−λt ϕt − avδλx−λt ϑt − a(1− δλ)γt = rγt − γ̇t. [A.41e]

By cancelling common terms from (A.41a), the following link between the moving threshold xt and the
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co-states ϕt and ϑt can be deduced:

ϕt =
ϑt
xt
. [A.42]

Similarly, cancelling common terms from (A.41b) implies a link between the transaction threshold yt and
ϕt and ϑt:

C

yt
+
ϑt
yt

= ϕt. [A.43]

The differential equation for ϕt in (A.41c) is:

ϕ̇t = (r + a)ϕt − ξ,

and since r + a > 0, the only solution satisfying the transversality condition is the following constant
solution:

ϕt =
ξ

r + a
. [A.44]

With this solution for ϕt, equation (A.43) implies that ϑt is proportional to the moving threshold xt:

ϑt =
ξ

r + a
xt. [A.45]

Eliminating both ϕt and ϑt from (A.43) by substituting from (A.44) and (A.45) implies that yt and xt must
satisfy:

yt − xt =
(r + a)C

ξ
. [A.46]

Using (A.41d) to write a differential equation for ϑt and substituting the solution for ϕt from (A.44):

ϑ̇t = (r + a+ vy−λt )ϑt − γt + F + Cvy−λt −
ξ

r + a

vλ

λ− 1
y1−λt . [A.47]

Similarly, (A.41e) implies a differential equation for γt, from which ϕt can be eliminated using (A.44):

γ̇t = (r + a(1− δλ))γt + avδλx−λt

(
ξ

r + a
xt

)
− avδλλ

λ− 1
x1−λt

(
ξ

r + a

)
,

which can be simplified as follows:

γ̇t = (r + a(1− δλ))γt −
ξ

r + a

avδλ

λ− 1
x1−λt . [A.48]

It is now shown that there is a solution of the constrained maximization problem where the co-states ϑt
and γt are constant over time. In this case, equations (A.45) and (A.46) require that xt and yt are constant
over time and related as follows:

y − x =
(r + a)C

ξ
. [A.49]
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With ϑ̇t = 0 and γ̇t = 0, (A.47) and (A.48) imply the following pair of equations:

(r + a+ vy−λ)ϑ− γ + F + Cvy−λ − ξ

r + a

vλ

λ− 1
y1−λ = 0; [A.50]

(r + a(1− δλ))γ − ξ

r + a

avδλ

λ− 1
x1−λ = 0. [A.51]

Equation (A.51) yields the following expression for γ in terms of x:

γ =
ξavδλ

(λ− 1)(r + a)(r + a(1− δλ))
x1−λ,

and substituting this and (A.45) into (A.50) leads to:

ξ(r + a+ vy−λ)

r + a
x− ξavδλ

(λ− 1)(r + a)(r + a(1− δλ))
x1−λ + F + Cvy−λ − ξvλ

(λ− 1)(r + a)
y1−λ = 0.

Since (r+ a)C = ξ(y − x) according to (A.49), multiplying the equation above by (r+ a) and substituting
for (r + a)C implies:

ξ(r + a+ vy−λ)x− ξavδλ

(λ− 1)(r + a(1− δλ))
x1−λ + (r + a)F + ξv(y − x)y−λ − ξvλ

(λ− 1)
y1−λ = 0.

Dividing both sides by ξ and grouping terms in (r + a) on the left-hand side:

(r + a)

(
x+

F

ξ

)
=

vλ

λ− 1
y1−λ − vy1−λ +

avδλ

(λ− 1)(r + a(1− δλ))
x1−λ,

and dividing both sides by r + a and simplifying the terms involving y1−λ leads to:

x+
F

ξ
=

v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)
x1−λ

)
. [A.52]

The pair of equations (A.49) and (A.52) for x and y are identical to the equations (26) and (29) character-
izing the equilibrium values of x and y. The equilibrium is therefore the same as the solution to the social
planner’s problem, establishing that it is efficient.

A.7 Transitional dynamics and overshooting

Transitional dynamics out of steady state

Equation (21) for the moving rate nt = Nt/(1− ut) implies that the quantity of new listings Nt is:

Nt = a(1− ut)− aδλx−λt v

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ, [A.53]

and equation (19) implies the differential equation for the stock of houses for sale ut is:

u̇t = Nt − St, where St = stut and st = vy−λt . [A.54]

In the equation above, St is the number of transactions and st is the sales rate, which is taken from (20).
Now suppose that the moving and transaction thresholds xt and yt are constant from some date T

onwards, that is, xt = x and yt = y for all t ≥ T . Using (A.54), the number of transactions St and the
sales rate st are given by:

St = sut, and st = s = vy−λ. [A.55]
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Equation (A.53) for new listings becomes:

Nt = a(1− ut)− aδλx−λv
∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ, [A.56]

where (A.55) and (A.56) are valid for all t ≥ T . By taking the derivative of both sides of (A.56) with
respect to time t:

Ṅt = −au̇t − aδλx−λvut + a(1− δλ)

(
aδλx−λv

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ

)
,

and using (A.56) to substitute for the integral above an expression involving the current levels of Nt and
ut:

Ṅt = −au̇t − aδλx−λvut + a(1− δλ) (a(1− ut)−Nt) .

This differential equation can be simplified as follows:

Ṅt = −au̇t − a
(

(1− δλ)Nt +

(
a(1− δλ) + δλ

(y
x

)λ
s

)
ut − a(1− δλ)

)
, [A.57]

where s is the constant sales rate from (A.55). Substituting equation (A.55) into (A.54):

u̇t = Nt − sut, [A.58a]

and in turn substituting this equation into (A.57) and simplifying:

Ṅt = −a
((

1 + (1− δλ)
)
Nt +

(
a(1− δλ) + δλ

(y
x

)λ
s− s

)
ut − a(1− δλ)

)
. [A.58b]

Equations (A.58a) and (A.58b) comprise a system of linear differential equations for the stock of houses
for sale ut and new listings Nt.

Now consider a steady state of the system (A.58), that is, a solution ut = u and Nt = N where u̇t = 0
and Ṅt = 0 for all t. Equation (A.58a) implies N = su, and substituting this into (A.58b):((

1 + (1− δλ)
)
s+

(
a(1− δλ) + δλ

(y
x

)λ
s− s

))
u = a(1− δλ),

which can be solved for a unique value of u:

u =

a

1+ δλ

1−δλ ( yx)
λ

s+ a

1+ δλ

1−δλ ( yx)
λ

=
n

s+ n
, where n =

a

1 + δλ

1−δλ
( y
x

)λ . [A.59]

This is of course the steady state found in section 4.3, where s is the steady-state sales rate from (20) and
n is the steady-state moving rate (21). Steady-state new listings are N = su = n(1− u).

Now define the percentage deviations of the variables ut and Nt from their unique steady-state values
u and N :

ũt =
ut − u
u

, and Ñt =
Nt −N
N

, or equivalently ut = u(1 + ũt), and Nt = N(1 + Ñt), [A.60]

and the time derivatives of ut and Nt and ũt and Ñt are related as follows:

˙̃ut =
u̇t
u
, and ˙̃Nt =

Ṅt

N
. [A.61]
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Using (A.60), (A.61), and N = su, the differential equation (A.58a) can be written in terms of ũt and Ñt

as follows:

˙̃ut = sÑt − sũt. [A.62a]

Likewise, (A.60), (A.61), and u/N = 1/s imply that the differential equation (A.58b) is equivalent to:

˙̃Nt = −a
((

1 + (1− δλ)
)
Ñt +

(
a(1− δλ)

s
+ δλ

(y
x

)λ
− 1

)
ũt

)
. [A.62b]

Make the following definition of a variable ñt:

ñt = Ñt +
n

s
ũt, and hence Ñt = ñt −

n

s
ũt and ˙̃nt = ˙̃Nt +

n

s
˙̃ut, [A.63]

where the final equation follows from taking the time derivative of the definition of ñt. The variable ñt
is also approximately the percentage deviation of the moving rate nt = Nt/(1 − ut) from its steady-state
value n, but here, ñt is simply taken as the definition of a new variable. The differential equation (A.62a)
can be written exactly in terms of ũt and ñt by using the second equation in (A.63):

˙̃ut = sñt − (s+ n)ũt. [A.64a]

Substituting (A.62b) and (A.64a) into the third equation from (A.63):

˙̃nt = −a
(

1 + (1− δλ)
)(

ñt −
n

s
ũt

)
− a

(
a(1− δλ)

s
+ δλ

(y
x

)λ
− 1

)
ũt +

n

s
(sñt − (s+ n)ũt)

= −
(

(a− n) + a(1− δλ)
)
ñt −

(
(a− n)

s
a(1− δλ) + aδλ

(y
x

)λ
− (a− n)− (a− n)

n

s

)
ũt.

Rearranging the equation for the steady-state moving rate n in (A.59) leads to:

aδλ
(y
x

)λ
=

(a− n)

n
a(1− δλ),

and substituting this into the equation for ˙̃nt above implies that the coefficient of ũt can be simplified:

˙̃nt = −
(

(a− n) + a(1− δλ)
)
ñt −

(a− n)(s+ n)

s

(
a(1− δλ)

n
− 1

)
ũt. [A.64b]

Equations (A.64a) and (A.64b) form a system of differential equations in the variables ũt and ñt. This
system can be written in matrix form as follows:(

˙̃ut
˙̃nt

)
=

( −(s+ n) s

−n(s+n)χu
s −nχn

)(
ũt
ñt

)
, [A.65]

where the coefficients χu and χn are defined by:

χu =
a− n
n

(
a(1− δλ)

n
− 1

)
, and χn =

a− n
n

+
a(1− δλ)

n
. [A.66]

The sum of the coefficients χu and χn is:

χu + χn = (1− δλ)
(a
n

)2
. [A.67]
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The expression for n in (A.59) implies:

a− n
n

=
δλ

1− δλ
(y
x

)λ
, and

a(1− δλ)

n
= (1− δλ) + δλ

(y
x

)λ
,

and hence the coefficients χu and χn from (A.66) are equal to the following:

χu =
δλ
(
δy
x

)λ (( y
x

)λ − 1
)

1− δλ , and χn =
(1− δλ)2 + (1− δλ)

(
δy
x

)λ
+
(
δy
x

)λ
1− δλ . [A.68]

The coefficient χn is strictly positive, as is χu because it is always the case that y > x. Since (δy/x)λ < 1
and (δy/x)λ − δλ < 1− δλ, it follows that χu < 1. As χn is larger than 1− δλ + δλ(y/x)λ, which is greater
than 1 because y > x, it must be the case that χn > 1.

The set of points where ˙̃ut = 0 is given by:

−(s+ n)ũt + sñt = 0, and hence ñt =
s+ n

s
ũt,

which is an upward-sloping straight line with gradient (s + n)/s in (ũt, ñt) space. To the left and above,
ũt is increasing over time, and to the right and below, ñt is decreasing. The set of points where ˙̃nt = 0 is
given by:

−n(s+ n)χu
s

ũt − nχnñt = 0, and hence ñt = −(s+ n)

s

χu
χn
ũt.

This is a downward-sloping straight line with gradient −(s+ n)χu/sχn, which is less than the gradient of
the ˙̃ut = 0 line in absolute value because χu < χn. Given that both χu and χn are positive, ñt is increasing
over time to the left and below the line, and decreasing to the right and above.

The characteristic equation for the eigenvalues ζ of the system of differential equations (A.65) is:

(ζ + (s+ n))(ζ + nχn) + n(s+ n)χu = 0, [A.69]

which is a quadratic equation in ζ:

ζ2 + ((s+ n) + nχn)ζ + n(s+ n)(χu + χn) = 0. [A.70]

The two eigenvalues ζ1 and ζ2 are the roots of this quadratic equation. The eigenvalues are either both
real numbers or a conjugate pair of complex numbers. The sum and product of the eigenvalues are:

ζ1 + ζ2 = − ((s+ n) + nχn) , and ζ1ζ2 = n(s+ n)(χu + χn).

Since χu and χn are both positive, the sum of the eigenvalues is negative and the product is positive. If
both are real numbers then both must be negative numbers. If both are complex numbers then the sum is
equal to twice the common real component of the eigenvalues, which must therefore be negative. Hence,
in all cases, the real parts of all eigenvalues are negative. This establishes that there is convergence to the
steady state in the long run starting from any initial conditions.

The condition for the quadratic equation (A.70) to have two real roots is:

((s+ n) + nχn)2 ≥ 4n(s+ n)(χu + χn), or equivalently
( s
n

+ 1 + χn

)2
≥ 4(χu + χn)

( s
n

+ 1
)
,

where the latter is derived by dividing both sides by the positive number n2. By expanding the brackets,
this condition can be expressed as a quadratic inequality in the ratio of the sales rate to the moving rate:( s

n

)2
+ 2(1 + χn)

s

n
+ (1 + χn)2 ≥ 4(χu + χn)

s

n
+ 4(χu + χn),
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which can be simplified as follows:( s
n

)2
+ 2 (1− (χu + χn)− χu)

s

n
+
(
1 + χ2

n − 2(χu + χn)− 2χu
)
≥ 0.

It can be verified directly that the inequality can be factorized:( s
n

+ 1−
(√
χu + χn −

√
χu
)2)( s

n
+ 1−

(√
χu + χn +

√
χu
)2) ≥ 0, [A.71]

which provides a test in terms of the ratio s/n for whether the eigenvalues of the system of differential
equations (A.65) are all real (if the test is not satisfied then they are a conjugate pair of complex numbers).

There are three cases. The first case is where the sales rate relative to the moving rate is above the
following threshold:

s

n
>
(√
χu + χn +

√
χu
)2 − 1, [A.72]

noting that the right-hand side is strictly positive because χn > 1. If this holds then the condition (A.71)
is satisfied and both eigenvalues ζ1 and ζ2 are real numbers. Since χu > 0, it follows that

√
χu + χn >

√
χn

and hence (A.72) implies s/n > χn−1. This means s+n > nχn, and as ζ1 and ζ2 are roots of the equation
(A.69), it must be the case that the negative eigenvalues satisfy ζ1 > −(s+n) and ζ2 > −(s+n), recalling
that χu is always positive.

In a model where the moving rate n is exogenous and constant, the only dynamics would come from the
differential equation ˙̃ut = −(s+ n)ũt (see A.64a), so s+ n would be the rate of convergence to the steady
state. In the general model, the speed of convergence is determined by the negative of the real components
of the eigenvalues. When (A.72) is satisfied, it follows that |ζ1| < s+ n and |ζ2| < s+ n, which means the
new dynamics coming from match quality dominate the usual dynamics coming from the evolution of the
stock of houses for sale. Convergence is therefore slower than it would be in an exogenous moving model
with the same moving rate. As (A.72) shows, this case corresponds to the sales rate being sufficiently large,
which will make it the empirically relevant one. Using

√
χu + χn +

√
χu < 2

√
χu + χn and the expression

for χu + χn in (A.67), a sufficient condition for (A.72) is:

s

n
> (1− δλ)

(a
n

)2
− 1,

which holds for the calibrated version of the model.
The second case is where the sales rate is relatively low, specifically s/n < (

√
χu + χn − √χu)2 − 1.

The condition in (A.71) will be satisfied, so both eigenvalues would be negative real numbers. In this case,
s/n < χn − 1 since

√
χu +

√
χn >

√
χu + χn, which means that s + n < nχn. Given that the eigenvalues

are roots of equation (A.69), it follows that ζ1 < −(s + n) and ζ2 < −(s + n) and hence |ζ1| > s + n and
|ζ2| > s+ n. Convergence to the steady state is actually faster than an exogenous moving model, and the
new dynamics of match quality do not play an important role compared to the usual dynamics coming
from the evolution of the stock of houses for sale. This case is not empirically relevant because the required
sales rate would need to be too low compared to the moving rate.

The third case is where the dynamics of match quality and the dynamics of the stock of houses for sale
are of similar importance, which occurs when s/n lies between (

√
χu + χn −√χu)2 − 1 and (

√
χu + χn +√

χu)2−1. In this case, condition (A.71) does not hold and both eigenvalues ζ1 and ζ2 are complex numbers.
This case features damped oscillations around the steady state, but is not empirically relevant because the
required sales rate is too low compared to the moving rate. In what follows, attention is restricted to the
empirically plausible case where the sales rate is sufficiently high that condition (A.72) holds.

There are two eigenvectors of the form (1, ν) associated with the two eigenvalues (as will be seen, the
first element can be normalized to 1). The values of ν in the eigenvectors are solutions of the following
equations:

(−(s+ n)− ζ) + sν = 1, and hence ν =
(s+ n) + ζ

s
. [A.73]
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This equation holds for ν1 when ζ = ζ1 and for ν2 when ζ = ζ2. Without loss of generality, let ζ1 denote
the eigenvalue with the greater absolute value. Consequently, as both are negative, ζ1 < ζ2. Since it has
been shown above that ζ1 > −(s+ n) and ζ2 > −(s+ n), equation (A.73) implies that both ν1 and ν2 are
positive, with ν1 < ν2. Geometrically in (ũt, ñt) space, both eigenvectors are upward-sloping straight lines,
and since both ζ1 and ζ2 are negative, their gradient is less than the ˙̃ut = 0 line. The eigenvector associated
with the dominant eigenvalue ζ2 has a steeper gradient than the eigenvector associated with ζ1.

Having found the eigenvalues and eigenvectors of the system of differential equations (A.65), the solution
can be stated as follows:

ũt = k1e
ζ1(t−T ) + k2e

ζ2t−T , and ñt = k1ν1e
ζ1(t−T ) + k2ν2e

ζ2(t−T ), [A.74]

where T is the date from which the moving and transaction thresholds will be constant at x and y respec-
tively, and k1 and k2 are coefficients to be determined. Since there is convergence to the steady state for
any initial conditions, the coefficients k1 and k2 are pinned down by knowing the values of ũT and ñT :

ũT = k1 + k2, and ñT = k1ν1 + k2ν2,

and these equations can be solved for k1 and k2:

k1 =
ν2ũT − ñT
ν2 − ν1

, and k2 =
ñT − ν1ũT
ν2 − ν1

.

Substituting these expressions into (A.74) yields the solution conditional on given initial conditions at date
T :

ũt = (ν2ũT − ñT )

(
1

ν2 − ν1

)
eζ1(t−T ) + (ñT − ν1ũT )

(
1

ν2 − ν1

)
eζ2t−T ; [A.75a]

ñt = (ν2ũT − ñT )

(
ν1

ν2 − ν1

)
eζ1(t−T ) + (ñT − ν1ũT )

(
ν2

ν2 − ν1

)
eζ2(t−T ). [A.75b]

As T tends to infinity, the vector (ũt, ñt) must approach the origin approximately along the eigenvector
associated with the dominant eigenvalue ζ2, that is, (1, ν2).

Given the initial values of ũT and ñt, (A.75) gives an exact solution of the system of differential equations
(A.65) for variables ũt and ñt defined in (A.60) and (A.63). Using the definition in (A.63), this implies
an exact solution for Ñt as well. The exact solution for the variables ut and Nt can then be recovered
using the definitions in (A.60). Once ut and Nt are known, the exact solution for the moving rate can be
computed using the definition nt = Nt/(1− ut). Finally, the sales rate st is simply equal to the constant s,
and transactions St = stut can be found given the solution for ut.

Overshooting

Next, consider how the initial values of ũT and ñT are determined following a change to the moving or
transaction thresholds xt and yt. Suppose that xt and yt were previously constant at x0 and y0, and then
move permanently to x and y from date T onwards. The previous sales rate was s0, and the steady-state
values of the moving rate and houses for sale were n0 and u0. After the change to x and y, there is a
new steady-state sales rate s that is reached immediately at date T . Houses for sale is a stock that cannot
instantaneously jump, so this variable remains equal to its old steady-state value initially, that is, uT = u0.
The new steady state for ut is u, and this can be used to compute ũT = (u0 − u)/u.

Using (32) and (33), an increase in the moving threshold x implies a higher moving rate n and a higher
u compared to u0, and thus a negative value of ũT . Using (31), (32), and (33), an increase in y implies
a lower ratio s/n, which means a higher value of u compared to u0, and thus a negative value of ũT .
Therefore, either an increase in x or an increase in y implies ũT < 0.

Now consider the moving rate at date T when the moving and transaction thresholds change. With
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houses for sale ut at its old steady-state value of u0 for t < T , equation (21) implies:

nT = a− aδλx−λT v0
1− uT

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)u0dτ = a− aδλx−λv0
1− u0

u0
a(1− δλ)

= a− δλ

1− δλ
u0

1− u0
v0x
−λ,

which uses xT = x and uT = u0, and where v0 denotes the old value of the parameter v (which may change
at date T ). Noting that u0 = n0/(s0 + n0), where s0 and n0 are the old sales and moving rates, it can be
seen that u0/(1− u0) = n0/s0, where s0 = v0y

−λ
0 . Substituting this into the equation above:

nT = a− δλ

1− δλ
(y0
x

)λ
n0, [A.76]

and substituting the expression for the old steady state n0 from (32):

nT = a−
a
(

δλ

1−δλ
(y0
x

)λ)
1 + δλ

1−δλ

(
y0
x0

)λ =

(
1 +

δλ

1− δλ y
λ
0

(
1

xλ0
− 1

xλ

))
n0. [A.77]

This implies that an increase in y has no impact on the initial value of nT , while an increase in x raises nT
above n0.

Next, the value of nT is compared to the new steady-state value n. When y increases, equation (32)
implies the steady-state value of n is lower. Therefore, n < nT = n0 following an increase in y, and thus
ñT > 0. Now suppose x increases with no change in y. As explained above, (A.77) implies nT > n0.
Combined with (A.76):

nT > a− δλ

1− δλ
(y0
x

)λ
nT , and therefore nT >

a

1 + δλ

1−δλ
(y0
x

)λ .
After the increase in x, the right-hand side is equal to the new steady-state moving rate n, so the inequality
above implies nT > n. This means the moving rate overshoots its new steady state in the short run.
Therefore, following either an increase in x or an increase in y, the initial deviation of the moving rate from
its new steady state is such that ñT > 0.

In summary, an increase in either x or y leads to ũT < 0 and ñT > 0, and a decrease in x or y leads to
ũT > 0 and ñT < 0. The transitional dynamics therefore follow the example paths illustrated in Figure 7.

A.8 Model with heterogeneous distributions of idiosyncratic shocks

The search process is the same as in the basic model. ut denotes the measure of houses for sale, bt denotes
the measure of buyers, and V(ut, bt) denotes the meeting function. The viewing rate for both buyers and
sellers is v = V(ut, bt)/ut given that ut = bt in equilibrium. Following a viewing, the buyer draws a match-
specific quality ε from the Pareto distribution G(ε) in (10). If the match quality is sufficiently high then a
transaction takes place with the price determined by Nash bargaining.

Value functions, thresholds, and prices

The new aspect of the model with heterogeneity emerges after a transaction occurs. After the buyer has
moved in, a type i ∈ {1, . . . , q} is drawn from a distribution with probabilities θi, where

∑q
i=1 θi = 1. The

number of types is q ≥ 1, and the special case q = 1 corresponds to the basic version of the model. A type-i
homeowner faces idiosyncratic shocks that scale down match quality ε by a factor δi, with these shocks
arriving at rate ai. The value of occupying a house with match quality ε for a type-i homeowner is Hi,t(ε).
The Bellman equations (the equivalent of 17) are:

rHi,t(ε) = εξ −D + ai (max{Hi,t(δiε), Jt} −Hi,t(ε)) + Ḣi,t(ε), for all i ∈ {1, . . . , q}. [A.78]
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The moving threshold xi,t for type-i households is the solution of the equation:

Hi,t(xi,t) = Jt = Bt + Ut, [A.79]

for each i = 1, . . . , q, which is the equivalent of (18), but now each threshold xi,t depends on a type-specific
value function Hi,t(ε). The value Jt is the sum of values from being a buyer Bt and a seller Vt as in the basic
version of the model. The Bellman equations for Bt and Vt are the same as the basic version of the model
(the equations in 12). The surpluses Σb,t(ε) and Σu,t(ε) are also as given in (11), but in the model with
heterogeneity, the value function Ht(ε) is a weighted average of the type-specific value functions Hi,t(ε):

Ht(ε) =

q∑
i=1

θiHi,t(ε). [A.80]

The total surplus Σt(ε) is also as given before in (13), with Ht(ε) specified by (A.80) here. Using (13), the
equation Σt(yt) = 0 for the transaction threshold is the same as the basic version of the model, namely
equation (14), which depends on the Ht(ε) given in (A.80). The Bellman equation (15) for Jt is also
unchanged. Assuming Nash bargaining over transaction prices, the same method in appendix A.4 can be
used to show the expression in (16) for the average price is unchanged.

Stocks and flows

The stock-flow accounting identity (19) for houses for sales ut is the same as in the basic version of the
model. The process by which transactions occur is also the same as in the basic model, so equation (20)
for the sales rate st holds as before. Let σi,t denote the measure of homeowners of type-i at time t. The
stock-flow accounting identity for σi,t and the link with houses for sale ut are:

σ̇i,t = θiSt −Ni,t, and

q∑
i=1

σi,t = 1− ut, [A.81]

where Ni,t denotes the number of type-i homeowners who put their houses up for sale at date t. The same
steps used in deriving equation (A.30) in appendix A.5 can be applied to show that the Ni,t are given by:

Ni,t = aiσi,t − θiaiδλi x−λi,t v
∫ t

τ→−∞
e−ai(1−δ

λ
i )(t−τ)uτdτ, [A.82]

which holds for i = 1, . . . , q. The aggregate number of houses newly put up for sale is Nt =
∑q

i=1Ni,t, and
by using equation (A.82), the moving rate nt = Nt/(1− ut) is:

nt =

∑q
i=1 aiσi,t
1− ut

−
v
∑q

i=1 θiaiδ
λ
i x
−λ
i,t

∫ t
τ→−∞ e

−ai(1−δλi )(t−τ)uτdτ

1− ut
. [A.83]

Equilibrium

As in section 4, if the parameters are constant over time, the equilibrium of the model has constant moving
and transaction thresholds, so time subscripts are dropped in what follows.

Using the definition of the moving threshold xi in (A.79) and evaluating the type-i homeowner’s value
function Hi(ε) at ε = xi:

(r + ai)Hi(xi) = ξxi −D + aiJ, [A.84]

which holds for all i = 1, . . . , q. Together with (A.79) this implies:

xi =
rJ +D

ξ
= x, [A.85]
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which means that all types of homeowners share a common moving threshold xi = x in equilibrium. The
value J can be written in terms of parameters and the common threshold x:

J =
ξx−D

r
. [A.86]

As in the basic model, idiosyncratic shocks are assumed large enough so that all marginal homebuyers
would move upon receiving a shock. This must be true for all types of homeowner, that is, δiy < x. It then
follows by evaluating the type-i homeowner’s value function (A.78) at ε = y that:

(r + ai)Hi(y) = ξy −D + aiJ.

Substituting J from (A.86) and rearranging yields:

(r + ai)Hi(y) = ξy −D + ai
ξx−D

r
= ξ(y − x) +

(
ai + r

r

)
(ξx−D),

and thus the type-i homeowner value function evaluated at the transaction threshold is:

Hi(y) =
ξ(y − x)

r + ai
+
ξx−D

r
.

Averaging across all types of homeowners:

H(y) = ξ(y − x)

q∑
i=1

θi
r + ai

+
ξx−D

r
. [A.87]

An equation linking the moving and transaction thresholds x and y can be derived from (14), (A.86),
and (A.87):

ξ(y − x)

q∑
i=1

θi
r + ai

+
ξx−D

r
=
ξx−D

r
+ C,

which can be rearranged as follows:

y − x =

(
1∑q

i=1
θi
r+ai

)
C

ξ
. [A.88]

This reduces to the equilibrium condition (26) of the basic model if there is only one type of homeowner
(q = 1). Another equilibrium condition linking x and y can be obtained by combining equation (14) for
the transaction threshold with the Bellman equation (15) for the value J :

rJ = −F −D + vy−λ
∫ ∞
ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y)) dε, [A.89]

which uses the Pareto distribution of new match quality ε from (10). Given the expression for H(ε) in
(A.80), this equation can be rewritten as follows:

rJ = −F −D + vy−λ
q∑
i=1

θiΨi(y), where Ψi(z) =

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(Hi(ε)−Hi(z))dε. [A.90]

Expressions for the functions Ψi(z) defined above when evaluated at z = y can be found explicitly using
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the same steps used to derive equation (A.18) in appendix A.3:

Ψi(y) =
ξ

(λ− 1)(r + ai)

(
y +

aiδ
λ
i y

λx1−λ

r + ai(1− δλi )

)
. [A.91]

By substituting (A.86) and (A.91) into the Bellman equation from (A.90):

ξx−D = −F −D + vy−λ
q∑
i=1

ξθi
(λ− 1)(r + ai)

(
y +

aiδ
λ
i y

λx1−λ

r + ai(1− δλi )

)
,

which simplifies to:

x =
v
∑q

i=1
θi

r+ai

(
y1−λ +

aiδ
λ
i

r+ai(1−δλi )
x1−λ

)
λ− 1

− F

ξ
. [A.92]

This is the second equilibrium condition involving x and y. It reduces to the equivalent condition (29) from
the basic model when q = 1.

The equilibrium thresholds x and y are solutions of the equations (A.88) and (A.92). By substituting
for x in (A.92) using (A.88), any equilibrium value of y is a solution of the equation I(y) = 0, where the
function I(y) is given below:

I(y) =
v

λ− 1

q∑
i=1

θi
r + ai

y1−λ +
aiδ

λ
i

r + ai(1− δλi )

y −
 1∑q

j=1
θj

r+aj

 C

ξ

1−λ


− y +

(
1∑q

i=1
θi

r+ai

)
C

ξ
− F

ξ
,

which is the equivalent of (A.20) when q = 1. This function is such that I ′(y) < 0 and limy→∞ I(y) = −∞
because λ > 1. Since I(y) is strictly decreasing in y, any solution (if it exists) must be unique. A solution
must satisfy x > 0, y > 1, and δiy < x for all i = 1, . . . , q. Generalizing the argument used to derive (A.21),
the inequalities involving y are equivalent to:

y > max

1,
C(

1−maxi∈{1,...,q} δi
)
ξ

 1∑q
j=1

θj
r+aj

 .

Thus, there exists a solution of the equation I(y) = 0 (which is unique) if and only if the function I(y) is
positive when evaluated at the right-hand side of the inequality above. The same argument following (A.22)
can be used to show that the inequality for y implies x > 0, so all the requirements for an equilibrium are
satisfied.

Average transaction price

Using the Pareto distribution from (10) and the definitions of C = Cb + Cu and κ = Cu/C, the average
transaction price in (16) can be written as:

P = ω

∫ ∞
ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε+ ωH(y) + (κ− ω)C +
ωF − (1− ω)D

r
.

Using the definition of the transaction threshold from (14) and equations (A.86) and (A.89):

P = ω
(ξx−D) + F +D

vy−λ
+ ω

(
C +

ξx−D
r

)
+ (κ− ω)C +

ωF − (1− ω)D

r
,
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which can be simplified to:

P = κC − D

r
+ ω

(
1

r
+
yλ

v

)
(ξx+ F ). [A.93]

Given a moving threshold x, this is the same equation for P as (34) in the basic model.

Average moving rate

Consider a steady state where ut = u, σi,t = σi, and Ni,t = Ni for all t. Using the result xi,t = xi = x from
(A.85), equation (A.82) for the number of houses put up for sale by type-i homeowners becomes:

Ni = aiσi − θiaiδλi x−λv
(

u

ai(1− δλi )

)
.

In steady state, equation (A.81) implies Ni = θiS = θisu, where S = su is the number of transactions.
Substituting into the equation above and dividing both sides by ai:

su
θi
ai

= σi − x−λvuθi
δλi

ai(1− δλi )
.

Sum over all i = 1, . . . , q and make use of the link between σi and u from (A.81):

su

q∑
i=1

θi
ai

= 1− u− x−λvu
q∑
i=1

θi
δλi

ai(1− δλi )
.

Dividing both sides by 1− u and noting that (33) implies u/(1− u) = n/s:

s
n

s

q∑
i=1

θi
ai

= 1− nx−λv

s

q∑
i=1

θi
δλi

ai(1− δλi )
,

and substituting the expression for the sales rate s from (31):

n

q∑
i=1

θi
ai

= 1− n
(y
x

)λ q∑
i=1

θi
δλi

ai(1− δλi )
.

This can be rearranged to give a formula for the steady-state moving rate n:

n =
1∑q

i=1
θi
ai

+
( y
x

)λ∑q
i=1 θi

δλi
ai(1−δλi )

. [A.94]

The basic model is a special case of this when q = 1.

A.9 The hazard function and the elasticity of the moving rate

The analysis here considers the general model with heterogeneity in the distributions of idiosyncratic shocks
across q types of homeowners. The results are applicable to the basic model by considering the special case
q = 1.

The distribution of time spent in a house

Consider an equilibrium where parameters are expected to remain constant. In this case, the moving and
transaction thresholds x and y are constant over time. Let ψi(T ) denote the survival function for new
matches of type-i homeowners, in the sense of the fraction of matches forming at time t that survive until
at least t+T . Each cohort starts with a match quality distribution ε ∼ Pareto(y;λ) at T = 0. Now consider
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some T > 0. Moving occurs only if the value of ε after shocks have occurred (ε′) is such that ε′ < x. Shocks
arrive at a Poisson rate ai, so the number k of shocks that would occur to a match over an interval of time
T has a Poisson(aiT ) distribution, which means the probability that j shocks occur is e−aiT (aiT )j/j!. If no
shocks occur, ε′ = ε, so no moving occurs. If j ≥ 1 shocks have occurred then ε′ = δji ε, where ε is the initial

draw of match quality. These matches survive only if ε′ ≥ x, that is, ε ≥ x/δji . Since the original values
of ε are drawn from a Pareto distribution truncated at ε = y with shape parameter λ, this probability is
((x/δji )/y)−λ (this expression is valid for all j ≥ 1 since δy < x). Therefore, the survival function ψi(T ) is
given by:

ψi(T ) = e−aiT +
∞∑
j=1

e−aiT
(aiT )j

j!

(
x/δji
y

)−λ

= e−aiT +
(y
x

)λ
e−aiT

∞∑
j=1

(aiδ
λ
i T )j

j!
= e−aiT +

(y
x

)λ
e−aiT eaiδ

λ
i T ,

where the final equality uses the (globally convergent) series expansion of the exponential function. Con-
ditional on each type i = 1, . . . , q, the survival function ψi(T ) is thus:

ψi(T ) =

(
1−

(y
x

)λ)
e−aiT +

(y
x

)λ
e−ai(1−δ

λ
i )T .

Given the random assignment of types with probabilities θ1, . . . , θq, the survival function ψ(T ) for all
members of a cohort of new homeowners is:

ψ(T ) =

q∑
i=1

θiψi(T ) =

(
1−

(y
x

)λ) q∑
i=1

θie
−aiT +

(y
x

)λ q∑
i=1

θie
−ai(1−δλi )T , [A.95]

observing that ψ(0) = 1.
For new matches, the distribution µ(T ) of the time T until the next move can also be obtained from

the survival function ψ(T ) using µ(T ) = −ψ′(T ). Hence, by taking the derivative of the survival function
ψ(T ) from (A.95) with respect to the duration T :

µ(T ) = −ψ′(T ) =

(
1−

(y
x

)λ) q∑
i=1

θiaie
−aiT +

(y
x

)λ q∑
i=1

θiai(1− δλi )e−ai(1−δ
λ
i )T . [A.96]

The definition of the hazard function h(T ) is the proportional decrease in the survival function for a small
change in duration, that is, h(T ) = −ψ′(T )/ψ(T ). Using (A.95) and (A.96):

h(T ) =

(
1−

( y
x

)λ)∑q
i=1 θiaie

−aiT +
( y
x

)λ∑q
i=1 θiai(1− δλi )e−ai(1−δ

λ
i )T(

1−
( y
x

)λ)∑q
i=1 θie

−aiT +
( y
x

)λ∑q
i=1 θie

−ai(1−δλi )T
, [A.97]

and by simplifying this expression, equation (35) is confirmed.
The expected time Tn between moves is the expected value of the probability distribution µ(T ):

Tn =

∫ ∞
T=0

Tµ(T )dT =

(
1−

(y
x

)λ) q∑
i=1

θi
ai

+
(y
x

)λ q∑
i=1

θi

ai(1− δλi )
, [A.98]

which can be simplified to derive the expression for Tn in (38). It is also the case that Tn is equal to the
reciprocal of the average moving rate n, as can be seen by comparing equations (A.94) and (A.98).

The elasticity of the moving rate

Imposing a common moving threshold xt = xi,t for all i = 1, . . . , q (as shown in appendix A.8) and
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differentiating the moving rate nt from (A.83) with respect to xt:

∂nt
∂xt

=
λx−λ−1t v

∑q
i=1 θiaiδ

λ
i

∫ t
τ→−∞ e

−ai(1−δλi )(t−τ)uτdτ

1− ut
.

Let η denote the elasticity of the moving rate nt with respect to xt evaluated at the steady state. The
partial derivative above implies:

η =
∂ log nt
∂ log xt

∣∣∣∣
ut=u,nt=n

=
λx−λvu

∑q
i=1 θiaiδ

λ
i

∫ t
τ→−∞ e

−ai(1−δλi )(t−τ)dτ

n(1− u)
. [A.99]

Note that the integrals appearing in the expression above are:∫ t

τ→−∞
e−ai(1−δ

λ
i )(t−τ)dτ =

1

ai(1− δλi )
,

and by substituting these into (A.99):

η =
λx−λv

∑q
i=1 θi

aiδ
λ
i

ai(1−δλi )

n(1− u)
= λx−λv

u

n(1− u)

q∑
i=1

θi
δλi

1− δλi
.

Equation (33) implies u/(1−u) = n/s, and by substituting this and the expression for s from (31) into the
above:

η = λ
vx−λn

nvy−λ

q∑
i=1

θi
δλi

1− δλi
= λ

(y
x

)λ q∑
i=1

θi
δλi

1− δλi
. [A.100]

This confirms the formula for η given in (37).

A.10 Estimates of time-to-sell

This section provides further discussion of alternative estimates of time-to-sell. Using the ‘Profile of Buyers
and Sellers’ survey collected by NAR, Genesove and Han (2012) report that for the time period 1987–2008,
the average time-to-sell is 7.6 weeks, the average time-to-buy is 8.1 weeks, and the average number of homes
visited by buyers is 9.9. They also discuss other surveys that have reported similar findings.

These numbers are significantly smaller than the 6 months estimate of time-to-sell derived from the
NAR data on sales and inventories. However, the estimates of time-to-sell and time-to-buy derived from
survey data are likely to be an underestimate of the actual time a new buyer or seller would expect to spend
in the housing market. The reason is that the survey data include only those buyers and sellers who have
successfully completed a house purchase or sale, while the proportion of buyers or sellers who withdraw
from the market (at least for some time) without a completed transaction is substantial.

To understand the impact withdrawals can have on estimates of time-to-sell, suppose houses on the
market have sales rate s and withdrawal rate w as in section 2.3. Let T̃s denote the average time taken to
sell among those houses that are successfully sold, measuring the time on the market from the start of the
most recent listing. Let Ts denote the average of the total time spent on the market by houses that are
successfully sold, ignoring the times between listings when houses are off the market. The two measures of
time-to-sell are:

T̃s =
1

s+ w
, Ts =

1

s
, and hence Ts =

T̃s
1− φ.

The final equation gives the relationship between the two measures in terms of the fraction φ of houses
eventually withdrawn from sale. Estimates of time-to-sell based on survey data are typically measuring T̃s.
On the other hand, the NAR data provide an estimate of the sales rate s, and taking the reciprocal yields
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a measure of Ts.
The studies by Anenberg and Laufer (2017) and Carrillo and Williams (2015) discussed in section 2.3

suggest that the fraction of properties eventually withdrawn from sale lies between 50% and 60%. Using
these numbers, the formula above suggests that estimates of Ts should be around 2 to 2.5 times higher
than estimates of T̃s. This simple observation goes a long way in reconciling the magnitudes of the different
estimates. Carrillo and Williams (2015) also show directly that controlling for withdrawals substantially
increases the estimated value of average time-to-sell. Similarly, in comparing the efficiency of different
platforms for selling properties, Hendel, Nevo and Ortalo-Magné (2009) explicitly control for withdrawals
and report a time-to-sell of 15 weeks (using the Multiple Listing Service for the city of Madison).

An alternative approach to estimating time-to-sell unaffected by withdrawals is to look at the average
duration for which a home is vacant using data from the American Housing Survey. In the years 2001–2005,
the mean duration of a vacancy was 7–8 months. However, that number is likely to be an overestimate of
the expected time-to-sell because it is based on houses that are ‘vacant for sale’. Houses that are for sale
but currently occupied would not be counted in this calculation of average duration. Another approach
that avoids the problem of withdrawals is to look at the average time taken to sell newly built houses. Dı́az
and Jerez (2013) use the Census Bureau ‘New Residential Sales’ report to find that the median number of
months taken to sell a newly built house is 5.9 (for the period 1991–2012). This is only slightly shorter than
the average of the time-to-sell number constructed using NAR data on existing single-family homes, but
there is reason to believe that newly built homes should sell faster than existing homes owing to greater
advertising expenditure and differences in the target groups of buyers.

A.11 Calibration of the model with heterogeneity

This section shows how the parameters of the model with heterogeneity can be set to give the best fit
to the empirical aggregate hazard function for moving house, as well as matching other empirical targets.
There are parameters q, {θi}, {ai}, and {δi} that describe the distributions of idiosyncratic shocks faced
by homeowners, and parameters λ, v, C, F , D, κ, ω, and r that are related to other aspects of the model.

The number of types q determines the dimension of the parameter space, and as discussed in section 5.2,
this can be chosen to be large enough to give a sufficiently good fit to the aggregate hazard function. Here,
q is taken as given. Three of the other parameters (κ, ω, and r) are also set directly. The remaining
parameters are chosen to minimize a weighted sum of squared deviations between the empirical hazard
function and the hazard function h(T ) implied by the model, and to match five empirical targets exactly:
time-to-sell Ts, viewings per sale Vs, the transaction cost to price ratio c, the flow search cost to price ratio
f , and the flow maintenance cost to price ratio d.

The calibration procedure has two stages. First, a numerical search over parameters θi, ai, and δλi to
find the solution to:2

min
{θi}qi=1,{ai}

q
i=1,{δ

λ
i }
q
i=1

s.t.
∑q
i=1 θi=1

∑
T

$(T )(ĥ(T )− h(T ))2, [A.101]

where T denotes a duration for which data on the hazard function is available, ĥ(T ) is the estimated
hazard rate described in section 5.2.1, h(T ) is the model-implied hazard function given in (35), and $(T )
is the weight assigned to duration T . The weights $(T ) are assumed to be proportional to the number of
data points available to calculate the empirical hazard rate ĥ(T ). An alternative weighting scheme makes
the weights proportional to the model-implied survival function ψ(T ) from (A.95) (initialized with the
parameters obtained from the first weighting scheme, and then iterating until convergence). There are
3q − 1 independent parameters given that

∑q
i=1 θi = 1, and the parameters must satisfy the restrictions

0 < θi ≤ 1, ai > 0, and 0 ≤ δλi < 1. The procedure specifies δλi rather than δi because this turns out to be
more convenient, and the admissible range of δλi is the same as that of δi.

2The numerical method used is to draw many initial conditions at random from the parameter space, and then
perform a search for the minimum using a simplex algorithm starting from each initial condition, before finally
choosing the parameter vector with the smallest value of the objective function from among all the searches.
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To compute the model-implied hazard function h(T ) using (35) it is necessary to know the value of
the parameter λ and the values of the endogenous variables x and y in addition to {θi}, {ai}, and {δλi }.
Conditional on the parameters given at the first stage, the values of λ, x, and y are pinned down by the
requirement of matching the other five empirical targets: Ts, Vs, c, f , and d. This is the second stage of
the calibration procedure.

By dividing the cost parameters C, F , and D (search, transactions, and maintenance) by the average
transaction price P from equation (A.93), the model’s predictions for the targets c, f , and d are:

c =

C
ξ

κCξ − D
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) ; [A.102a]

f =

F
ξ

κCξ − D
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) ; [A.102b]

d =

D
ξ

κCξ − D
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) . [A.102c]

Note that the model contains one other parameter ξ in addition to those listed earlier, but in all equa-
tions determining observables, ξ enters only as a ratio to other parameters. The parameter ξ is therefore
normalized to ξ = 1. Now take equation (A.93) for the average price and divide both sides by P :

κc− d

r
+ ω

(
1

r
+
yλ

v

)( x
P

+ f
)

= 1.

Using the expression for Ts in (A.26), the equation above can be solved for x/P as follows:

x

P
=

1− κc+ d
r

ω
(
1
r + Ts

) − f. [A.103]

Now take the linear equation (A.88) involving the thresholds x and y and divide both sides by P (recalling
that ξ = 1):

y

P
=
x

P
+

c∑q
i=1

θi
r+ai

=
1− κc+ d

r

ω
(
1
r + Ts

) +
c∑q

i=1
θi

r+ai

− f, [A.104]

and then dividing both sides by x/P and using (A.103):

y

x
=
y/P

x/P
= 1 +

c∑q
i=1

θi
r+ai

1−κc+ d
r

ω( 1
r
+Ts)

− f
. [A.105]

Dividing both sides of the second equation (A.92) for the thresholds x and y by P
∑

i=1 θi/(r + ai) and
rearranging leads to:∑q

i=1
θi

r+ai

(
1 +

aiδ
λ
i

r+ai(1−δλi )

( y
x

)λ−1)
(λ− 1)

∑q
i=1

θi
r+ai

=
yλ
(
x
P + f

)
v yP
∑q

i=1
θi

r+ai

.

Using Ts = yλ/v from (A.26) together with (A.103), (A.104), and (A.105), this equation can be written as
follows:

Φ(λ) =
1 + ℵδℵλ−1yx

λ− 1
− ℵ =

1 + ℵδe(logℵyx)(λ−1)
λ− 1

− ℵ = 0, [A.106]
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where the coefficients ℵ, ℵδ, and ℵyx can be derived from the calibration targets:

ℵ =

(1−κc+ d
r )Ts

ω( 1
r
+Ts)

c+

(
1−κc+ d

r

ω( 1
r
+Ts)

− f
)∑q

i=1
θi

r+ai

, ℵδ =

∑q
i=1

θiaiδ
λ
i

r+ai(1−δλi )∑q
i=1

θ
r+ai

, and ℵyx = 1 +

c∑q
i=1

θi
r+ai

1−κc+ d
r

ω( 1
r
+Ts)

− f
. [A.107]

Observe that the function Φ(λ) becomes an arbitrarily large positive number as λ tends to 1, and since
ℵyx > 1, it is also the case that Φ(λ) eventually becomes arbitrarily large as λ increases. Note that the
derivative of Φ(λ) is:

Φ′(λ) =

(
(λ− 1)2 − 1

)
ℵδe(logℵyx)(λ−1) − 1

(λ− 1)2
.

The denominator of this expression is always positive given that λ > 1. The sign of the numerator depends
only on ℵδ((λ− 1)2 − 1)− e−(logℵyx)(λ−1), which is strictly increasing in λ for all λ > 1. Since Φ′(1) < 0, it
follows that the function Φ(λ) is initially decreasing in λ and subsequently increasing in λ after passing a
threshold value of λ. For any λ > 1, it must be the case that e(logℵyx)(λ−1) > 1 + (logℵyx)(λ− 1) because
logℵyx > 0. This inequality implies the function Φ(λ) from (A.106) has the following lower bound:

Φ(λ) >
1 + ℵδ
λ− 1

− (ℵ − ℵδ logℵyx). [A.108]

As a solution for λ requires Φ(λ) = 0, a necessary condition for a solution to exist is ℵ > ℵδ logℵyx. When
this condition is satisfied, the inequality above implies a lower bound λ for a solution (if one exists):

λ > λ, where λ = 1 +
1 + ℵδ

ℵ − ℵδ logℵyx
,

which follows because the bound (A.108) on Φ(λ) is decreasing in λ. The parameter λ must also satisfy
an upper bound. It is required that δiy < x for all i = 1, . . . , q. This is equivalent to (y/x)λδλi < 1 for all
i, and hence ℵλyx max δλi < 1 since y/x = ℵyx. By taking logarithms of both sides, this implies an upper
bound for λ:

λ < λ, where λ =
− log max δλi

logℵyx
, [A.109]

with ℵyx > 1 taken from (A.107). Given the properties of the Φ(λ) function established above, the necessary
and sufficient conditions for the existence of a unique solution λ > 1 to the equation Φ(λ) = 0 with 1 < λ < λ
are that λ > 1 and Φ(λ) < 0. When these conditions are met, the solution for λ can be found by searching
the interval (λ, λ) because Φ(λ) > 0 and Φ(λ) < 0.

With the solution of (A.106) for λ, the transaction threshold y can be obtained from viewings per sale
Vs:

y = V
1
λ
s , [A.110]

and the moving threshold x can be derived from the above along with equation (A.105):

x =
V

1
λ
s

1 +

c∑q
i=1

θi
r+ai

1−κc+ dr
ω( 1

r+Ts)
−f

. [A.111]

With λ, x, and y, the hazard function h(T ) can be computed using the formula in (35) given the values
of {θi}, {ai}, and {δλi }. This allows the weighted sum of squared deviations (A.101) to be computed, and
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hence the calibration procedure can be implemented as described above.
Once θi, ai, and δλi have been chosen to minimize (A.101), the parameters {δi} can be obtained from

{δλi } using the value of λ that solves (A.106) and δi = (δλi )1/λ. The remaining parameters v, C, F , and D
can be obtained as follows. Using (A.25) and (A.26), the ratio of viewings per sale Vs and time to sell Ts
determines the meeting rate v:

v =
Vs
Ts
. [A.112]

Combining equations (A.104) and (A.110) leads to the following expression for P :

P =
V

1
λ
s

1−κc+ d
r

ω( 1
r
+Ts)

+ c∑q
i=1

θi
r+ai

− f
, [A.113]

and this can be used to obtain the parameters C, F , and D using C = cP , F = fP , and D = dP .

A.12 Calibration of the basic model without heterogeneity

This section shows how the 10 parameters a, δ, λ, v, C, F , D, κ, ω, and r can be determined in the basic
version of the model (with no heterogeneity in idiosyncratic shock distributions, that is, q = 1). When
q = 1, the general expressions for the elasticity of the moving rate η and time-to-move Tn from (37) and
(38) reduce to:

η = λ
δλ

1− δλ
(y
x

)λ
; [A.114]

Tn =
1 + δλ

1−δλ
( y
x

)λ
a

; . [A.115]

Three of the parameters (κ, ω, and r) are set directly. The other seven are obtained indirectly from five
calibration targets: time-to-sell Ts, viewings per sale Vs, the transaction cost to price ratio c, the flow search
cost to price ratio f , and the flow maintenance cost to price ratio d, together with the two targets derived
from information contained in the hazard function, namely the steady-state elasticity η of the moving rate
with respect to the moving threshold and time-to-move Tn.

The price equation (A.29) is identical to (A.93) in the model with heterogeneity, so the expressions
in (A.102a)–(A.102c) for the ratios of costs (search, transactions, and maintenance) to the average price
are also valid here. The model contains one other parameter ξ, but as in appendix A.11, in all equations
determining observables, ξ enters only as a ratio to other parameters, hence it can be normalized to ξ = 1.

The calibration method begins by setting κ, ω, and r directly. Next, consider a guess for Tδ, the
expected time until an idiosyncratic shock occurs. This conjecture determines the parameter a using:

a =
1

Tδ
. [A.116]

The admissible range for Tδ is 0 < Tδ < Tn.
Using equation (A.115) for time-to-move Tn and the expressions for η and Tδ from equations (A.114)

and (A.116):

Tn =
(

1 +
η

λ

)
Tδ. [A.117]

Rearranging equation (A.117) and using the calibration targets Tn and η and the conjecture for Tδ:

λ =
ηTδ

Tn − Tδ
. [A.118]
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This yields the value of the parameter λ.
Since the equation for the average price is the same as the model with heterogeneity, the same steps used

to derive the expression for x/P in (A.103) are valid here. Now take the linear equation (A.10) involving
the thresholds x and y and divide both sides by P , recalling that ξ = 1:

y

P
=
x

P
+ (r + a)c =

1− κc+ d
r

ω
(
1
r + Ts

) + (r + a)c− f, [A.119]

which uses the formula for x/P from (A.103). Dividing both sides by x/P and using (A.103) again:

y

x
=
y/P

x/P
= 1 +

(r + a)c
1−κc+ d

r

ω( 1
r
+Ts)

− f
. [A.120]

This gives the ratio y/x implied by the calibration targets. Equation (A.114) for η can be rearranged to
obtain an expression for δλ:

δλ =
η

η + λ
( y
x

)λ ,
and hence the value of the parameter δ is:

δ =

(
η

η + λ
( y
x

)λ
) 1

λ

. [A.121]

Given λ, the transaction threshold y must satisfy equation (A.110) in terms of viewings per sale Vs as
(A.25) holds for the model with and without heterogeneity. An expression for the moving threshold x can
be derived using (A.110) and (A.120):

x =
V

1
λ
s

1 + (r+a)c
1−κc+ dr
ω( 1

r+Ts)
−f

. [A.122]

The parameter v must satisfy (A.112) in terms of viewings per sale Vs and time to sell Ts given that
equations (A.25) and (A.26) are the same with and without heterogeneity. Combining equations (A.119)
and (A.110) leads to the following expression for P :

P =
V

1
λ
s

1−κc+ d
r

ω( 1
r
+Ts)

+ (r + a)c− f
,

and this can be used to obtain the parameters C, F , and D using C = cP , F = fP , and D = dP . Finally,
equation (A.19) must also hold, which requires:

x+
F

ξ
=

v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)
x1−λ

)
,

and this is used to verify the initial conjecture for Tδ.

A.13 Productivity and interest rates

Suppose that a family’s flow utility is C1−υt Hυt , where Ct denotes consumption and Ht denotes housing, and
where υ indicates the importance of housing in the utility function (0 < υ < 1). This adds non-housing
goods to the model and replaces the flow utility ξε assumed earlier. The form of the flow utility function
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assumes complementarity between consumption and housing services. The housing variable Ht that enters
the utility function is equal to the match quality ε of a family with its house, and the evolution of this
variable in response to idiosyncratic shocks and moving and transaction decisions is the same as before.
The discount rate for future utility flows is the rate of pure time preference %. The lifetime utility function
from time T onwards is therefore:

UT =

∫ ∞
t=T

e−%(t−T )C1−υt Hυt dt. [A.123]

Suppose there are complete financial markets for securities with consumption payoffs contingent on any
state of the world, and suppose all families receive the same real income (with no aggregate risk) and
initially all have equal financial wealth. Note that only state-contingent consumption, not housing services,
can be traded in these markets. With complete financial markets there is full consumption insurance
of idiosyncratic risk coming from shocks to match quality and the uncertainties in the search process,
implying that the marginal utility of consumption must be equalized across all families. The marginal
utility of consumption is X−υt , where Xt = Ct/Ht is the ratio of consumption to housing match quality. If
r is the real interest rate (in terms of consumption goods) then maximization of utility (A.123) subject to
the lifetime budget constraint requires that the following consumption Euler equation holds:

υ
Ẋt

Xt
= r − %. [A.124]

In equilibrium, the sum of consumption Ct across all families must be equal to aggregate real income
Yt, which is assumed to be an exogenous endowment growing at rate g over time. Given equalization of
Xt = Ct/Ht across all families at a point in time and given a stationary distribution of match quality Ht = ε
across all families, it follows that all families have a value of Xt proportional to aggregate real income Yt
at all times:

Xt = κYt, where κ =
1

(1− u)Q
. [A.125]

The constant κ is the reciprocal of total match quality (1 − u)Q in steady state (noting that unsatisfied
owners receive no housing utility flows). Substituting this into the consumption Euler equation (A.124)
implies that the equilibrium real interest rate is:

r = %+ υg. [A.126]

Since (A.125) implies Ct = κYtHt, it follows that lifetime utility (A.123) can be expressed as follows:

UT = κ1−υ
∫ ∞
t=T

e−%(t−T )Y 1−υ
t Htdt.

With Yt growing at rate g, income at time t can be written as Yt = eg(t−T )YT . By substituting this into
the lifetime utility function and using the expression for the real interest rate r in (A.126):

UT = κ1−υY 1−υ
T

∫ ∞
t=T

e−(r−g)(t−T )Htdt. [A.127]

Lifetime utility is therefore a discounted sum of match quality Ht = ε. The coefficient of match quality
(this is the parameter ξ in the main text) is increasing in the current level of real income, and the discount
rate (denoted r in the main text) is the difference between the market interest rate and the growth rate of
real income. This provides a justification for interpreting a rise in real incomes as an increase in ξ and a
fall in the market interest rate as a lower discount rate.
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A.14 The effects of credit availability

Table 8 reports the results for a one-quarter reduction in buyers’ transaction costs Cb. The effects are
shown in isolation and in combination with the other factors.

Table 8: Improvement in credit conditions

Transactions Listings Sales Moving Houses Prices
Factor rate rate for sale

Cb 15% 15% 12% 15% 3% −2%
Cb, productivity, & search 28% 28% 19% 28% 9% 32%
All factors 32% 32% 9% 33% 24% 69%

Data (1995–2003) 27% 34% 14% 34% 13% 31%

To study the role of credit availability during the boom-and-bust cycle considered in section 5.5, Table 9
also has buyers’ transaction costs Cb go down by one quarter during the boom and up by one quarter during
the bust in addition to the factors considered in Table 7.

Table 9: Boom and bust predictions with credit availability

Boom (1995–2006) Bust (2007-2009)
Model Data Model Data

Transactions 29% 30% −13% −13%
Price 38% 47% −6% −17%

A.15 Sensitivity analysis

Table 10 below conducts a sensitivity analysis in respect of some of the calibration targets to check the
robustness of the results and to identify the key mechanisms at work in the model.

The first exercise is to explore the relative importance of the two search frictions discussed in section 3.2
that are found in the model. The first friction relates to the time taken to find suitable houses to view. The
second friction relates to houses having a range of possible match qualities with different buyers that only
become known to a buyer once a house is viewed. The sensitivity analysis considers separately a reduction
in the first friction and a reduction in the second friction.

Lowering the first friction is equivalent to increasing the viewing rate v, while lowering the second
friction is equivalent to increasing the shape parameter λ of the Pareto distribution of match quality. To
increase v while keeping λ constant requires holding the time-to-sell Ts constant. This can only be done by
increasing viewings per sale Vs since v = Ts/Vs. To increase λ while keeping v constant essentially means
decreasing average viewing per sale Vs and lowering time-to-sell Ts in proportion to the reduction in Vs.
The effects of reducing the two frictions by half are reported in the ‘low first friction’ and ‘low second
friction’ rows. The second row clearly demonstrates the importance of the housing mismatch and the need
to inspect houses before purchasing.

The next exercise is to vary the size of transaction costs C. This has a large effect on the results,
with stronger effects of endogenous moving found when transaction costs are high relative to house prices.
To understand this, note that in the special case of zero transactions costs, the model has the surprising
feature that its steady-state equilibrium is isomorphic to an exogenous moving model with the parameter
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a redefined as a(1− δλ). The logic behind this is that equation (26) implies y = x when C = 0. From (32),
this means that n = a(1−δλ), so the moving rate is independent of the equilibrium moving and transaction
thresholds. Hence, only those parameters directly related to the shocks received by homeowners affect
the moving rate. The equilibrium value of y is determined by replacing x with y in equation (29) and
simplifying to:

vy1−λ

(r + a(1− δλ))(λ− 1)
= y +

F

ξ
.

This has the same form as (29) when δ = 0, that is, when moving is exogenous, so all steady-state predictions
of the two models would be the same if C = 0.

As can be seen in Table 10, the size of the flow cost of search F has a much smaller impact on the results
than transaction costs C. Finally, the extent of the seller’s bargaining power ω does make a difference to
the results, with higher seller’s bargaining power increasing the strength of the results. At first glance, this
is surprising because in the model, bargaining power should affect only prices, not quantities. However,
changes in bargaining power require changes in the other parameters to continue to match the calibration
targets. As can be seen from equation (34), an increase in ω raises average transaction prices, which requires
an increase in transaction costs C to match the calibration target for c = C/P . Following the discussion
above, it is the required increase in C after raising ω that has a large impact on the results for quantities.

Table 10: Sensitivity analysis

Transactions Listings Sales Moving Houses Prices
Target to vary rate rate for sale

Frictions in the search process
Low 1st fric.: Ts = 6.5/12, Vs = 20 17% 17% 11% 18% 6% 33%
Low 2nd fric.: Ts = 6.5/24, Vs = 5 2% 2% 2% 2% 0% 33%

Transaction costs
Low: c = 0.05 11% 11% 6% 11% 5% 33%
High: c = 0.15 23% 23% 15% 24% 8% 34%

Flow costs of search
Low: f = 0.0125 17% 17% 12% 17% 5% 35%
High: f = 0.05 18% 18% 9% 18% 9% 30%

Bargaining power of the seller
Low: ω = 0.25 11% 11% 8% 11% 3% 34%
High: ω = 0.75 23% 23% 14% 24% 9% 32%

Baseline 17% 17% 11% 18% 6% 33%

Data (1995–2003) 27% 34% 14% 34% 13% 31%

Notes: The table shows the long-run steady-state effects of the changes to productivity and internet search in
the basic version of the model.
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