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1 Introduction

It is widely accepted that there are large differences in the frequency of price adjustment between industries.1

This paper studies the implications of this phenomenon for the behaviour of inflation, and shows that
the assumption of a common degree of price stickiness frequently used in macroeconomic models is not
innocuous. Heterogeneity in price stickiness has the effect of reducing inflation persistence relative to what
would occur with homogeneity, holding constant the degree of persistence in variables affecting inflation.

This reduction in inflation persistence occurs because when there are differences in the frequency of
price adjustment between industries, the group of firms that responds to any macroeconomic shock with
a price change is not representative of all firms in the economy. Instead, it contains a disproportionately
large number of firms drawn from industries with more flexible prices. But these firms are then more likely
to reverse any price changes they have made once the shocks that gave rise to those price changes have
dissipated.

In the case where all industries have equally sticky prices, it is just as likely that prices which were left
fixed after a shock move at a later time in the direction of those prices that were initially adjusted, than
it is the latter subsequently moving in the direction of the former. With heterogeneity on the other hand,
there is a greater likelihood that prices which were initially changed gravitating back towards those that
remained fixed than vice versa. This increased tendency for prices to change direction once any shocks have
passed reduces inflation persistence, thus making it much harder for theoretical models to explain observed
inflation persistence once heterogeneity is accounted for. The extent of the inflation persistence puzzle is
therefore underestimated in theoretical work that makes the simplifying assumption of equally sticky prices
in all industries.

Recent discussions of inflation persistence have drawn a helpful distinction between intrinsic and ex-
trinsic sources of persistence.2 Intrinsic inflation inertia is the persistence in inflation that is generated
directly by whatever frictions or imperfections underlie the short-run Phillips curve, and does not depend
on there being any persistence in those variables which are the determinants of inflation. Intrinsic iner-
tia can arise from various sources, such as backwards-looking rules of thumb for price setting (Gaĺı and
Gertler, 1999), indexation of prices to past inflation (Christiano, Eichenbaum and Evans, 2005), relative
contracting models for wages (Fuhrer and Moore, 1995), or firms preferring to change older rather than
newer prices (Sheedy, 2007a). On the other hand, extrinsic inflation persistence is whatever persistence
is already present in the determinants of inflation (for example, in variables such as unemployment, the
output gap, unit labour costs, or the growth rate of the money supply), and which is not itself directly
explained by the ideas on which the Phillips curve is founded. This extrinsic persistence is inherited by
inflation and it feeds into overall inflation persistence along with any intrinsic inertia.

This paper takes an otherwise standard New Keynesian model of price setting, the Calvo (1983) model,
and adds heterogeneity in the frequency of price adjustment across a potentially large number of industries.
It is well known that the New Keynesian Phillips curve resulting from Calvo pricing with homogeneity
implies no intrinsic inflation inertia, and this aspect of the model has received much criticism.3 This paper
shows analytically that adding heterogeneity (an arbitrary non-degenerate distribution of price-adjustment
frequencies) to the model actually makes the problem worse because it always generates the opposite of
inflation inertia, that is, a tendency for above-average inflation to be followed by below-average inflation, a
feature that can be thought of as negative inflation inertia, Thus holding the level of extrinsic persistence

1This is attested in the survey evidence of Blinder, Canetti, Lebow and Rudd (1998), and in studies such as Bils and Klenow
(2004) and Dhyne, Álvarez, Le Bihan, Veronese, Dias, Hoffmann, Jonker, Lünnemann, Rumler and Vilmunen (2005) using
very large databases of prices of individual goods for the U.S. and the Euro area respectively.

2A similar taxonomy is employed by Fuhrer (2005), Altissimo, Ehrmann and Smets (2006) and Sheedy (2007a) among
others.

3See the detailed derivation and discussion of the New Keynesian Phillips curve in Woodford (2003).
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constant, heterogeneity diminishes overall inflation persistence.
The intuition for this result can best be understood by considering a transitory (serially uncorrelated)

shock to one of the determinants of inflation, for example, an increase in unit labour costs. The one-period
rise in costs induces some fraction of firms to increase their prices, but others keep theirs fixed. With
homogeneous Calvo pricing and the New Keynesian Phillips curve, there is a one-off jump in inflation in
response to the shock, which means that the price level rises and then immediately reaches a plateau. There
is no inflation persistence.

The equilibrium rate of inflation that occurs once the shock has dissipated can be understood in terms
of two countervailing effects.4 First there is the “catch-up” effect of firms that did not change their money
prices initially, but subsequently want price increases to bring them back into line with the now-higher
general price level. The second is the “roll-back” effect of firms that did initially raise their prices, but now
find they are too high relative to the general price level, and consequently want price cuts to bring themselves
into line with others.5 When the catch-up effect is larger than the roll-back effect, there continues to be
above-average inflation; and when the roll-back effect is dominant, inflation now falls below average. With
homogeneous Calvo pricing, the two effects always exactly cancel out for transitory shocks.

The addition of heterogeneity into the story upsets the precarious balance between the catch-up and
roll-back effects. Now the group of firms that want to catch up is disproportionately drawn from industries
with stickier prices; and the group that wants to roll back features a preponderance of firms from industries
with more flexible prices. This clearly strengthens the roll-back effect at the expense of the catch-up
effect. Because the roll-back effect now dominates, inflation actually falls below average after the shock.
A spell of higher-than-average inflation is thus followed by a spell of lower-than-average inflation. Since
positive inflation persistence is nothing other than higher-than-average inflation following higher-than-
average, and lower-than-average following lower-than-average, the swing from above to below average means
that inflation persistence is actually negative with heterogeneous price stickiness and transitory shocks.

Earlier work on incorporating heterogeneous price stickiness into New Keynesian models has focused on
the implications for optimal monetary policy (Aoki, 2001; Benigno, 2004). More recent studies by Cavalho
(2005) and Dixon and Kara (2005) have addressed the effects of such heterogeneity on short-run macroe-
conomic dynamics. In addition, de Walque, Smets and Wouters (2006) have argued that heterogeneity
in price stickiness combined with changes in industry-specific technology could be an additional source of
cost-push shocks at the aggregate level.

The current paper differs from these studies in a number of respects. First, the paper presents analytical
results on short-run dynamics, rather than relying on simulations of calibrated models.6 Second, unlike the
work by Cavalho and by Dixon and Kara, the focus here is on inflation persistence, instead of persistence
in real variables such as output and unemployment. Moreover, this paper looks specifically at intrinsic
inflation inertia as well as overall persistence. The advantage of this is that the effect of heterogeneity
on intrinsic inflation inertia may be a structural feature of the economy if there are inherent reasons for
the different price-adjustment frequencies prevailing across industries. On the other hand, the amount
of overall inflation persistence is sensitive to assumptions made about aggregate demand, the conduct of
monetary policy, the persistence of the shocks hitting the economy, among many other things. In addition,
when addressing certain issues such as the cost of disinflation, it is crucial to focus only on intrinsic inertia.

The analysis in the current paper has some connection to the work on heterogeneity by Álvarez, Burriel
and Hernando (2005). They show that estimates of the hazard function for price changes (the probability

4See (Sheedy, 2007a) for another application of this analysis.
5Note that whenever a fraction of firms changes price, the average percentage change in their prices alone must necessarily

exceed the overall inflation rate.
6Calibrations are used in this paper to assess the quantitative significance of heterogeneity, but the direction of its effect is

established analytically.
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of a price change as a function of the age of the current price) using microeconomic data are biased towards
detecting a negative slope when there is heterogeneity in the stickiness of the prices that make up the sample.
In a macroeconomic context, Sheedy (2007a) shows that upwards-sloping hazard functions generate positive
intrinsic inflation inertia and downwards-sloping ones negative intrinsic inertia. While there is no formal
equivalence between a model with heterogeneity and one with a downwards-sloping hazard function, there
is a close connection between the two which helps to explain the intuition for the results presented here.

It is important to contrast the analysis presented in this paper with that of Altissimo, Mojon and Zaf-
faroni (2007). They argue that heterogeneity can increase inflation persistence because the overall inflation
rate is an average of many industry-specific inflation rates, each with a different degree of persistence.7

However, such a claim depends on the shocks to industry-level inflation rates being independent across
sectors. This clearly does not apply when any macroeconomic shocks are present, such as monetary policy
shocks. Furthermore, even if this explanation does contribute to understanding the observed persistence of
economy-wide inflation, it could not automatically be used to draw conclusions about the dynamic effects
of macroeconomic shocks, which is one of the principal motivations for the study of inflation persistence.
The results presented below in this paper are directly applicable to analysing the effects of macroeconomic
shocks.

The plan of the paper is as follows. Section 2 sets out the model and studies firms’ profit-maximizing
price-setting decisions when prices are not changed continually. Section 3 then aggregates firms’ behaviour
across industries with different degrees of price stickiness to obtain a Phillips curve, and derives analytical
results on intrinsic inflation inertia and inflation dynamics. Section 4 then presents a calibration of the
model to assess the quantitative significance of the results, and also discusses how the analysis is connected
with other work on heterogeneity and hazard functions for price changes. Finally, section 5 draws some
conclusions.

2 The model

2.1 Assumptions

The economy contains a continuum of firms producing differentiated goods. Firms producing goods with
similar costs of production, similar degrees of substitutability to customers, and similar frequencies of price
adjustment are grouped together into industries. There are n ≥ 2 industries and each firm belongs to one
and only one industry. Industry i has size 0 < ωi < 1, as measured by the proportion of the economy’s
firms that are based within it. The industry sizes ωi must therefore sum to one. Firms in the economy are
distributed along the unit interval, which is partitioned into separate industries as follows,

n⋃
i=1

Ωi = [0, 1) , Ωi ≡

[
i−1∑
j=1

ωj ,
i∑

j=1

ωj

)
(2.1.1)

with Ωi denoting the set of firms in industry i.
Firms’ customers (households, government, other firms) allocate their spending between different prod-

ucts to minimize the cost of buying a given amount of a basket of goods. Baskets of goods at the industry
and economy level are defined using Dixit-Stiglitz aggregators,

Yit ≡
(

1
ωi

∫
Ωi

Yt(ı)
εf−1

εf dı

) εf
εf−1

, Yt ≡

(
n∑

i=1

ωiY
εs−1

εs
it

) εs
εs−1

(2.1.2)

7This conclusion is based on Granger’s (1980) aggregation theorem.
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where Yt(ı) is the output of firm ı ∈ [0, 1) at time t, Yit is industry i output, and Yt is aggregate output.
The parameters εf > 1 and εs ≥ 0 are respectively the elasticities of substitution between the products
of firms within one industry, and between the products of different sectors of the economy.8 Customers’
expenditure minimization for the basket of goods at the industry level implies that firms face the following
demand functions,

Yt(ı) =
(

Pt(ı)
Pit

)−εf

Yit , Pit ≡
(

1
ωi

∫
Ωi

Pt(ı)1−εfdı

) 1
1−εf

(2.1.3)

where Pt(ı) is the money price charged by firm ı and Pit is the industry i price index. Similarly, expenditure
minimization for the economy-wide basket of goods implies the following industry-level demand functions:

Yit =
(

Pit

Pt

)−εs

Yt , Pt ≡

(
n∑

i=1

ωiP
1−εs
it

) 1
1−εs

(2.1.4)

In the above, Pit is the industry i price level from (2.1.3) and Pt denotes the economy-wide price level. By
putting together the demand functions in (2.1.3) and (2.1.4), the following consolidated demand function
for firm ı in industry i (ı ∈ Ωi) is obtained:

Yt(ı) =
(

Pt(ı)
Pt

)−εf
(

Pit

Pt

)εf−εs

Yt (2.1.5)

Firm ı in industry i can produce output Yt(ı) at total real cost C (Yt(ı);Y ∗
t ,Zit),

C (Yt(ı);Y ∗
t ,Zit) ≡

Zit

1 + ηcy

Yt(ı)1+ηcy

Y ∗
t

ηcy
(2.1.6)

where Y ∗
t is the economy’s potential output, Zit represents any other exogenous factors influencing costs in

industry i, and ηcy ≥ 0 is the elasticity of real marginal cost CY (Yt(ı);Y ∗
t ,Zit) with respect to an individual

firm’s output Yt(ı). Potential output is defined as the level of output where real marginal cost is equal to
one in the absence of any exogenous shocks to costs, that is, CY (Y ∗

t ;Y ∗
t , 1) ≡ 1. Potential output Y ∗

t is
taken to be exogenous in this paper.

Since each good is produced by only one firm and is an imperfect substitute for rival products, all firms
have some market power and are price setters in the market for their own good. Prices are set in money
terms, with Pt(ı) being the money price at time t of the good produced by firm ı. Let %t(ı) ≡ Pt(ı)/Pt

and %it ≡ Pit/Pt be the implied relative prices of the products of firm ı and industry i respectively. Total
real profits at time t for firm ı in industry i are given by the profit function z(%t (ı); %it, Yt, Y

∗
t ,Zit), which

is obtained by subtracting total real cost C (Yt(ı);Y ∗
t ,Zit) from the level of total real revenue implied by

demand function (2.1.5):

z (%t(ı); %it, Yt, Y
∗
t ,Zit) ≡ %t(ı)1−εf%εf−εs

it Yt − C
(
%t(ı)−εf%εf−εs

it Yt;Y ∗
t ,Zit

)
(2.1.7)

By substituting in the functional form for the cost function (2.1.6), and defining the output gap Yt ≡ Yt/Y ∗
t ,

the profit function (2.1.7) can be written as:

z (%t(ı); %it, Yt, Y
∗
t ,Zit) =

{
%t(ı)1−εf%εf−εs

it − 1
1 + ηcy

%t(ı)−εf(1+ηcy)%
(εf−εs)(1+ηcy)
it Yηcy

t Zit

}
Yt (2.1.8)

Not all firms change their money prices in every time period. The frequency of price adjustment
8The most plausible case is where εf > εs so products from the same industry are more substitutable than the products of

different industries, though this assumption is not actually necessary for any of the results.
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is modelled using the assumption of Calvo (1983) price-setting, but allowing for heterogeneity between
industries. Every firm in industry i has a constant probability αi of changing price in any given time period.
Some industries have stickier prices than others so there is a dispersion of price-adjustment probabilities.
The precise nature of this distribution of probabilities over industries does not need to be specified, but
without loss of generality, it is convenient to number the industries in increasing order of price flexibility, so
industry 1 has the stickiest prices and industry n the most flexible prices. In addition to this, it is assumed
for simplicity that no industry has completely sticky or completely flexible prices, and no two industries
have exactly the same probabilities of price adjustment. These assumptions are not very restrictive since all
the results apply to economies arbitrarily close to any of these cases. The above statements are summarized
by the following chain of inequalities for the industry-specific probabilities of price adjustment {αi}n

i=1:

0 < α1 < α2 < · · · < αn−1 < αn < 1 (2.1.9)

Finally, when firms do change price, their prices are set to maximize the discounted value of the stream
of profits they generate. Future profits are discounted using the nominal interest rate.9

2.2 Profit-maximizing price setting

Firms anticipate that the prices they choose are likely to remain sticky for at least some period of time.
This means that they must take into account the effect on expected future profits when choosing a new
price. At time t, consider a firm in industry i that is deciding what price to set. Its choice of price in money
terms is denoted by Rit and is referred to as a reset price. The reset price is selected to maximize the
discounted value of the stream of future profits generated by the price. In addition to the discounting of
future profits by financial markets, it is necessary to contemplate the possibility that another new reset price
will have been chosen before some of these future profits are realized. Using the Calvo pricing assumption,
the probability that a firm in industry i which changes price at time t will still be using the same price
in period τ ≥ t is given by (1− αi)τ−t. The objective function for firms that incorporates both sources of
discounting is

max
Rit

∞∑
τ=t

(1− αi)τ−tEt

[(
τ∏

s=t+1

Πs

Is

)
z
(

Rit

Pτ
; %iτ , Yτ , Y

∗
τ ,Ziτ

)]
(2.2.1)

where Et[·] denotes the mathematical expectation conditional on all available information in period t,
Πt ≡ Pt/Pt−1 is the gross inflation rate between t − 1 and t, It is the gross nominal interest rate also
between periods t− 1 and t, and z(%t(ı); %it, Yt, Y

∗
t ,Zit) is the single-period real profit function defined in

(2.1.7). The first-order condition characterizing the profit-maximizing reset price Rit in (2.2.1) is:

∞∑
τ=t

(1− αi)τ−tEt

[(
τ∏

s=t+1

1
Is

)
z%

(
Rit

Pτ
; %iτ , Yτ , Y

∗
τ ,Ziτ

)]
= 0 (2.2.2)

The derivative of the single-period profit function z(%t(ı); %it, Yt, Y
∗
t ,Zit) in (2.1.8) with respect to a firm’s

own relative price %t(ı) is given by

z%(%t(ı); %it, Yt, Y
∗
t ,Zit) = (1− εf)

{
%t(ı)−εf%εf−εs

it

−
(

εf

εf − 1

)
%t(ı)εf(1+ηcy)−1%

(εf−εs)(1+ηcy)
it Yηcy

t ZitYt

} (2.2.3)

9The conclusions of this paper are not affected by making other assumptions about asset markets.
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where εf/(εf − 1) is firms’ desired (gross) markup of price on marginal cost if prices were fully flexible.
Since εf > 1 this markup is always well defined and greater than one. By defining Gt ≡ Yt/Yt−1 to be the
gross growth rate of aggregate output Yt, and rit ≡ Rit/Pt to be the reset price of industry i relative to all
other prices in the economy, an expression for industry i’s profit-maximizing reset price is obtained from
equations (2.2.2) and (2.2.3):

rit =


εf

εf−1

∑∞
τ=t(1− αi)τ−tEt

[(∏τ
s=t+1

GsΠ
εf+(1+εfηcy)
s
Is

)
%
(εf−εs)(1+ηcy)
iτ Yηcy

τ Ziτ

]
∑∞

τ=t(1− αi)τ−tEt

[(∏τ
s=t+1

GsΠ
εf
s

Is

)
%εf−εs

iτ

]


1
1+εfηcy

(2.2.4)

Since the cost and demand conditions faced by two firms in the same industry are identical, equation
(2.2.4) shows that all firms changing price at the same time in the same industry choose a common profit-
maximizing reset price.

Because of the Calvo pricing assumption that the probability of price adjustment in industry i is always
αi, the proportion of firms in that industry which are using a price set j periods ago will eventually converge
to αi(1 − αi)j . It is assumed that the economy has already reached this unique stationary distribution of
the duration of price stickiness. Since all firms in the same industry that change price at the same time
choose identical reset prices, the industry price index Pit from (2.1.3) can be written in terms of current
and past reset prices from that industry:

Pit =

 ∞∑
j=0

αi(1− αi)jR1−εf
i,t−j

 1
1−εf

(2.2.5)

The equations for the economy-wide price level Pt from (2.1.4) and the industry price levels from (2.2.5)
can be recast in terms of relative prices %it ≡ Pit/Pt, relative reset prices rit ≡ Rit/Pt and gross inflation
rates Πt ≡ Pt/Pt−1:

1 =
n∑

i=1

ωi%
1−εs
it , %1−εf

it =
∞∑

j=0

αi(1− αi)jr1−εf
i,t−j

(
j−1∏
k=0

Πεf−1
t−k

)
(2.2.6)

For given stochastic processes for the output gap {Yt}, real output growth {Gt}, nominal interest rates
{It}, and exogenous cost-push shocks {Zit}, equations (2.2.4) and (2.2.6) determine relative prices %it,
relative reset prices rit, and the overall gross rate of inflation Πt ≡ Pt/Pt−1, with the level of any money
price being indeterminate unless a nominal anchor is specified. However, it is impossible to find an exact
solution of these equations in most cases, so instead the equations are log-linearized around a steady state
in order to obtain a first-order accurate approximation to the solution.10 A steady state where inflation and
real output growth are zero is chosen for simplicity.11 Full details of the steady-state values of all variables
are given in appendix A.1.

In what follows, a bar over a variable denotes its steady-state value, and a sans serif letter denotes the log
deviation of the corresponding roman letter from its steady-state value. When a variable is indeterminate
in the steady state (such as any money price) the sans serif letter denotes just the logarithm of the variable.
Hence, Ḡ denotes the steady-state gross growth rate of aggregate output, and Gt ≡ log Gt − log Ḡ is the
log deviation of the growth rate from its steady-state value. On the other hand, Pt ≡ log Pt is just the log
of the general price level Pt. In addition to this convention, πt ≡ log Πt − log Π̄ denotes the log deviation
of the economy-wide inflation rate, ρit ≡ log %it − log %̄ the log deviation of industry i’s relative price,

10This is standard practice in many New Keynesian models. See Woodford (2003) for further details.
11These assumptions can be relaxed without substantially altering the results.
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yt ≡ logYt − log Ȳ the log deviation of the output gap, and zit ≡ logZit − log Z̄i the log deviation of the
industry-i cost-push shock.

Appendix A.1 shows how log-linearized versions of the economy-wide and industry-level price indices
in (2.1.4) and (2.2.5) can be derived from (2.2.6):

Pt =
n∑

i=1

ωiPit , Pit =
∞∑

j=0

αi(1− αi)jRi,t−j (2.2.7)

The aggregate price level is a weighted average of industry-specific price levels, which are in turn weighted
averages of current and past reset prices. When prices are sticky, the current price indices obviously depend
on past pricing decisions, with the weights on the past decaying more rapidly in industries with more flexible
prices (higher αi).

It is also demonstrated in appendix A.1 that the log-linearized version of the profit-maximizing reset
price equation (2.2.4) is

Rit = (1− β(1− αi))
∞∑

j=0

βj(1− α)jEt[Piτ − ηρρi,t+j + ηyyt+j + ηzzi,t+j ] (2.2.8)

where ηρ, ηy and ηz are positive constants defined in equation (A.1.6) of appendix A.1, and the parameter
0 < β < 1 is the steady-state real interest rate expressed as a discount factor. The industry-specific
profit-maximizing reset prices Rit depend on weighted averages of current and expected future price levels
Piτ , relative prices ρiτ , output gaps yτ , and exogenous cost-push shocks ziτ . They are increasing in the
industry-specific price levels, the output gap and cost-push shocks, and decreasing in the industry-specific
relative prices. When prices are sticky, profit-maximization clearly requires firms to take account of both
current and expected future conditions, with the weights attached to the future decaying more slowly in
industries with stickier prices (lower αi).

3 The Phillips curve and inflation persistence

3.1 Aggregation

The next step is to aggregate the profit-maximizing behaviour of firms derived in section 2.2 into a Phillips
curve determining economy-wide inflation. To set up a system of equations that determines the overall
inflation rate, it is convenient to use vector and matrix notation to represent as a block the pricing equations
for all industries. In what follows, boldface letters are used to denote the n×1 vectors of the corresponding
industry-specific variables. For example, Pt is the vector of industry-specific (log) price levels Pit, and Rt

is the vector of (log) reset prices Rit. The vector of relative prices ρit is given by ρt, and the vector of
inflation rates πit by πt.

If ω is the vector of industry sizes ωi, the aggregate price level equation in (2.2.7) can be written as
Pt = ω′Pt in vector notation. Relative prices can be expressed as ρt = Pt − ιPt, where ι is a n× 1 vector
of 1s, or equivalently, ρt can be obtained by premultiplying the price-level vector Pt by a n× n matrix R.
This matrix is defined by R ≡ I− ιω′, with I denoting the n× n identity matrix.

The following result shows how the set of equations for the profit-maximizing reset prices (2.2.8) and
for the price indices (2.2.7) can be combined to obtain a relationship between the vector of industry-specific
price levels Pt, the output gap yt, and cost-push shocks zt. This aggregate supply relationship can also be
stated in terms of a series of industry Phillips curves, relating the vectors of industry-specific inflation rates
πt and relative prices ρt to the output gap and cost-push shocks.
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Proposition 1 By combining equations (2.2.7) and (2.2.8) there exists a n×n positive definite and diagonal
matrix K, and a n× n positive definite matrix M, such that the aggregate supply relationship between the
vector of prices Pt and the output gap yt is given by:

Pt = M−1 (Pt−1 + βEtPt+1 + K(ηyιyt + ηzzt)) (3.1.1)

An equivalent system of industry Phillips curves involving industry-specific inflation rates πt and relative
prices ρt is:

πt = βEtπt+1 − ηρKρt + K(ηyιyt + ηzzt) (3.1.2)

The diagonal matrix K ≡ diag{κi}n
i=1 contains the industry-specific component of the short-run Phillips

curve slopes, denoted by κi for industry i. These satisfy the following chain of inequalities:

0 < κ1 < κ2 < · · · < κn−1 < κn < ∞ (3.1.3)

Industries with more flexible prices (larger αi) have steeper short-run Phillips curves.

Proof See appendix A.6. �

Equations (3.1.1) and (3.1.2) can be averaged over industries using the weights in the vector ω to obtain
the overall price level Pt = ω′Pt and economy-wide inflation rate πt = ω′πt.

According to equation (3.1.1), the current price level vector Pt depends positively on its past and
expected future values, and positively on the output gap yt and cost-push shocks zt. The lagged price
vector Pt−1 appears because some firms will continue to use past prices in the current time period. This
directly affects the period t price index, as well as the decisions of firms changing price at time t. Current
pricing decisions are also influenced by expectations of future prices EtPt+1 because firms anticipate that
their own prices may remain sticky for some time and thus overlap with prices that will be newly set in
the future.

When the relationship between nominal and real variables is recast as a set of industry Phillips curves
in (3.1.2), these take on a form with some similarities to that of the standard New Keynesian Phillips curve
(NKPC), which is itself given by:

πt = βEtπt+1 + κ(ηyyt + ηzzt) (3.1.4)

This is the economy-wide Phillips curve that would be obtained were all the price-adjustment probabilities
equal. In both (3.1.2) and (3.1.4), current inflation depends positively on expected future inflation because
when firms anticipate that their own prices are likely to remain sticky during a period in which others’
prices are rising, they want larger price increases today to keep pace. The key difference between (3.1.2)
and (3.1.4) is the presence of the vector of relative prices ρt when there is heterogeneity in the speed of
price adjustment between industries.

Like the NKPC in (3.1.4), the system of equations (3.1.2) for an economy with heterogeneity has no
explicit dependence on past inflation because of the assumption of Calvo price setting in each industry, and
at first glance, it might appear that there are no state variables at all. But this is not true because the
current vector of inflation rates πt and the current vector of relative prices ρt cannot move independently
of one another. Taking as given the past vector of relative prices ρt−1, current relative prices are necessarily
given by ρt = ρt−1 +Rπt since ρt = RPt and πt = Pt−Pt−1. Thus past relative prices should be counted
as a state variable in (3.1.2).

While past economy-wide inflation is not in itself a state variable, it should not be thought that it
exerts no influence on relative prices, with these being affected only by idiosyncratic factors. When there
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are differences in the speed of price adjustment, shocks affecting economy-wide inflation will call forth
different price responses across industries, which disturb the relative price vector. When this vector then
becomes a state variable for next period’s inflation, past economy-wide inflation can influence current
inflation through this channel.

A more precise examination of this mechanism requires that the determinants of prices and inflation be
decomposed into forwards- and backwards-looking components.

Proposition 2 For each non-degenerate distribution of price-adjustment frequencies {αi}n
i=1 there exists

a unique n × n matrix Λ with n distinct, real, and positive eigenvalues (n − 1 inside the unit circle, one
equal to unity) such that the equation for the vector of price levels Pt in (3.1.1) can be expressed as:

Pt = ΛPt−1 + Λ
∞∑

j=0

(βΛ)jKEt[ηyιyt+j + ηzzt+j ] (3.1.5)

The equation for the vector of inflation rates πt in (3.1.2) is equivalent to:

πt = −(I−Λ)ρt−1 + Λ
∞∑

j=0

(βΛ)jKEt[ηyιyt+j + ηzzt+j ] (3.1.6)

The forwards-looking components in (3.1.5) and (3.1.6) are the same for both prices and inflation, depending
on current and expected future values of the output gap yt and cost-push shocks zt. The backwards-looking
component for prices depends on the past vector of industry price levels Pt−1, whereas for inflation it is the
past vector of relative prices ρt−1 that matters.

Proof See appendix A.7. �

The forwards-looking components of equations (3.1.5) and (3.1.6) resemble the “solved forwards” version
of the New Keynesian Phillips curve given in (3.1.4):

πt =
∞∑

j=0

βjκEt[ηyyt+j + ηzzt+j ] (3.1.7)

But unlike the standard New Keynesian Phillips curve, the presence of heterogeneity across industries
implies that there is now a backwards-looking component of inflation in (3.1.6) as well. The nature of this
component is analysed in the following section.

3.2 Intrinsic inflation inertia

The intrinsic inertial component of the economy-wide inflation rate at time t is defined to be the backwards-
looking component of equation (3.1.6) averaged across all n industries. The current level of intrinsic inflation
inertia is denoted by xt:

xt ≡ ω′Λρt−1 (3.2.1)

At time t the inertial component xt is predetermined and depends on the vector of past relative prices ρt−1,
which are the state variables for current inflation. While it may seem surprising to define inflation inertia
using past relative prices rather than past inflation rates, the relative price vector ρt−1 is systematically
related to the history of past inflation rates {πt−1, πt−2, . . .} among other things. This dependence occurs
with heterogeneous price stickiness because shocks that affect the economy-wide inflation rate will call forth
a range of price responses across industries and thus perturb relative prices.

In order to understand the relationship between actual inflation and current inflation inertia, the
forwards-looking component of equation (3.1.6) is split into two parts, one depending on the output gap
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yt, the other on the exogenous cost-push shocks zt, which are then averaged across all n industries. The
values of these two components at time t are denoted by ut and zt respectively, and expressions for them
are obtained from (3.1.6):

ut ≡ ηyω
′Λ

∞∑
j=0

(βΛ)jκEtyt+j , zt ≡ ηzω
′Λ

∞∑
j=0

(βΛ)jKEtzt+j (3.2.2)

The cost-push component zt depends on current and expected future vectors of cost-push disturbances zt,
comprising both economy-wide and idiosyncratic shocks. Similarly, the aggregate demand component ut in
(3.2.2) is a sum involving current and expected future output gaps yt. The expression for ut can be written
as a linear combination of current and future output gaps, all of which have positive coefficients:

Proposition 3 The aggregate demand component ut defined in (3.1.6) can be expressed as follows

ut =
∞∑

j=0

µjEtyt+j (3.2.3)

using a sequence of weights {µj}∞j=0. For any non-degenerate distribution of price-adjustment frequencies
{αi}n

i=1, each of the weights µj is strictly positive and the sequence decays at a faster rate than β, that is,
0 < µj+1 < βµj for all j ≥ 0.

Proof See appendix A.8. �

Therefore ut is increasing in all current and expected future output gaps, and the weights on future output
gaps decay more rapidly with heterogeneous price stickiness than in the New Keynesian Phillips curve
(3.1.7) implied by homogeneous Calvo pricing. This means that with heterogeneity, expected future cost
movements in the near term become more important than longer-term developments.

The decomposition given in equation (3.1.6), together with the definitions in (3.2.1) and (3.2.2), implies
that the determinants of economy-wide inflation πt can be stated succinctly as:

πt = xt + ut + zt (3.2.4)

Actual inflation πt is the sum of current intrinsic inflation inertia xt, and the aggregate demand ut and
cost-push zt components. Thus one interpretation of intrinsic inflation inertia is that it gives the rate of
inflation that would occur purely as a result of the history of firms’ pricing decisions, independently of any
current or expected future fluctuations in aggregate economic activity or cost-push shocks.

A second interpretation is that intrinsic inflation inertia constitutes a constraint on what monetary
policy can achieve in the short run. The inertial component xt is predetermined, and the cost-push
component zt is exogenous and cannot be affected by monetary policy. The remaining variables in (3.2.4)
are the policymaker’s goals: current inflation πt, and the current and expected future levels of the output
gap yt in the component ut. Therefore (3.2.4) shows that the level of inertia xt dictates what inflation rate
is consistent with the complete elimination of current and future output gaps in the absence of cost-push
shocks, taking the history of firms’ pricing decisions as given. In other words, in the case where zt = 0, the
goal ut = 0 can be achieved if and only if πt = xt. Reducing inflation below the current level of intrinsic
inertia would require ut < 0, and since all the µj coefficients in (3.2.3) are strictly positive, this can only
happen if there is a currently a recession, or one is expected in the future. Hence there is a real cost of
reducing inflation below the current level of intrinsic inflation inertia.12

12Note that the cost referred to here is the sacrifice ratio: the cumulated loss of economic activity needed to achieve a
reduction in inflation. For a full analysis using a utility-based loss function which also takes into account price distortions, see
Aoki (2001) and Sheedy (2007b).

10



Equation (3.2.1) gives the definition of intrinsic inflation inertia xt at a point in time. It is then
important to know how the series {xt} evolves over time, because the time path of xt is the sequence of
inflation rates that must be accommodated if aggregate output is to be stabilized in all future periods,
assuming no further cost-push disturbances. The time path of intrinsic inflation inertia is found by solving
the system of difference equations that comprises πt = −(I−Λ)ρt−1 and ρt = ρt−1+Rπt (the first of these
being equation (3.1.6) with the aggregate output and cost-push terms set to zero), starting from a given
vector ρt0 of relative prices at time t0. The solution of these equations is denoted by πt0+j = X(j;ρt0),
and since ρt0+j−1 = ρt0 + R

∑j−1
k=1 πt0+k, it can be constructed recursively as follows,

X(j;ρ0) = −(I−Λ)

(
ρ0 + R

(
j−1∑
k=1

X(k;ρ0)

))
(3.2.5)

for j ≥ 1. The time path of intrinsic inflation inertia {X(j;ρ0)}∞j=1 is defined by taking the average of the
solution in (3.2.5) across the n industries, so X(j;ρ0) ≡ ω′X(j;ρ0). Hence, starting from any time period
t0 and taking ρt0 as given, the inertial component of inflation in period t0 + j is given by xt0+j = X(j;ρt0)
under the assumption that all intrinsic inertia has been accommodated in the interim periods and no further
cost-push shocks have occurred. This means that {X(j;ρt0)}∞j=1 has the interpretation of being the only
sequence of economy-wide inflation rates from time t0 + 1 onwards that is consistent with the complete
elimination of output gaps over the same horizon, assuming no further cost-push shocks occur after period
t0.

The nature of the time path of intrinsic inertia is of course sensitive to the initial relative price vector
ρt0−1, which can be affected by any number of economy-wide or industry-specific disturbances. But it is
possible to give a precise analytical characterization of this time path when the relative price vector is
initially at its steady-state value, but is then perturbed by some temporary aggregate disturbance such as a
cost-push shock that affects all industries or a change in the output gap brought about by monetary policy.
Suppose the economy starts from its steady state at time t0−1 and then an aggregate disturbance occurs in
period t0. If the disturbance lasts for only one period then it is clear from equation (3.1.6) that the vector
of inflation rates πt0 is proportional to Λκ, and economy-wide inflation at t0 is then a multiple of ω′Λκ.
Since the economy was in its steady state at t0 − 1, the relative price vector ρt0 must be proportional to
RΛκ. To construct a time path using equation (3.2.5) that is independent of the magnitude of the original
disturbance, the size of the temporary shock is normalized so that its initial impact is to raise economy-wide
inflation by 1%. The normalized time path p(j) is then obtained from (3.2.5) as follows,

p(j) ≡ (ω′Λκ)−1X(j;RΛκ) (3.2.6)

for j ≥ 1 and with p(0) ≡ 1. This time path is referred to as the intrinsic impulse response function for
inflation. Its construction makes it identical to the impulse response function of inflation to a white-noise
aggregate cost-push shock in an economy where monetary policy completely stabilizes the output gap.

The following result shows that the model of heterogeneous price stickiness always generates a negative
inertial component of inflation after a positive cost-push shock. More precisely, the intrinsic impulse
response function for inflation is always negative except in the very first period when the shock occurs.

Theorem 1 For any non-degenerate distribution of price-adjustment probabilities {αi}n
i=1, the intrinsic

impulse response function of inflation defined in (3.2.6) has the following properties,

p(j) < 0 , |p(j)| < |p(j − 1)| , lim
j→∞

p(j) = 0 (3.2.7)

for all j ≥ 1. While the intrinsic impulse response function is initially positive (it is normalized to 1%, so
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p(0) = 1), it becomes and stays negative in all future periods. It is everywhere decreasing in magnitude and
eventually tends to zero.

Proof See appendix A.10. �

Theorem 1 has some surprising implications. First, temporary cost-push shocks create a tendency for
inflation to switch from above-average to below-average (or vice versa) once a shock has dissipated. Thus the
only way for above-average inflation to follow above-average (and below-average to follow below-average)
in this model is to introduce some positive extrinsic persistence in either the cost-push shock or the output
gap to offset the negative intrinsic inertia.

A second unusual implication concerns the cost of disinflation, or rather the absence of such a cost.
One interpretation of the intrinsic impulse response function is that it is the time-path of inflation after a
temporary cost-push shock that is consistent with the complete stabilization of the output gap in all current
and future periods. While higher-than-average inflation must be tolerated in the period when the shock
occurs, once the shock has gone, inflation can fall without cost. Indeed, it can actually fall below average
immediately afterwards without any loss of output, and moreover if it merely returned to average, a boom
would occur. Therefore the presence of heterogeneity actually makes the task of disinflation even easier
than in an economy with a New Keynesian Phillips curve, which is itself widely believed to understate the
actual cost of lowering inflation.

In the special case where industries are not subject to idiosyncratic shocks, there is a more direct way
of seeing the presence of negative intrinsic inflation inertia:

Proposition 4 Suppose that there are no industry-specific cost-push shocks, so zt = ιzt. Then there exists
a sequence of coefficients {γj}∞j=1 such that current inflation inertia xt defined in (3.2.1) can be exactly
expressed in terms of the history of economy-wide inflation rates { πt−1 , πt−2 , . . . }:

xt =
∞∑

j=1

γjπt−j (3.2.8)

Now suppose the dynamics of the driving variables ηyyt + ηzzt from (3.1.6) can be modelled using any
stationary AR(1) process. For any non-degenerate distribution of price-adjustment probabilities {αi}n

i=1, it
follows that all the coefficients of lagged inflation in (3.2.8) must be negative, that is, γj < 0 for all j ≥ 1.

Proof See appendix A.9. �

This result shows that the effect of heterogeneity in price stickiness on inflation dynamics is similar to
that created by having lags of inflation in the Phillips curve with negative coefficients. This reinforces the
finding that heterogeneity implies negative intrinsic inflation inertia.

3.3 Inflation dynamics

The previous section has studied the effect of heterogeneity on intrinsic inflation inertia. But actual
inflation persistence also results from persistence that is already present in driving variables such as unit
labour costs or the output gap. This section generalizes the earlier results by showing that for a given
amount of extrinsic persistence, heterogeneity in the frequency of price adjustment reduces the overall
amount of inflation persistence. Thus while overall persistence may be positive or negative depending on
whether negative intrinsic inertia outweighs positive extrinsic persistence, it is always possible to conclude
that heterogeneity unambiguously reduces total inflation persistence, ceteris paribus.

In what follows, the output gap yt and the cost-push shocks zt are consolidated into the n × 1 vector
xt ≡ ηyιyt + ηzzt, which is the vector of real marginal costs for each industry. Furthermore, only shocks
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to the aggregate economy are considered, so that xt = ιxt. Consequently, the expression for the inflation
rates πt in equation (3.1.6) becomes:

πt = −(I−Λ)ρt−1 + Λ
∞∑

j=0

(βΛ)jκEtxt+j (3.3.1)

In this framework, extrinsic persistence is defined as any serial correlation in the driving variable {xt}, and
overall inflation persistence is serial correlation in the stochastic process for economy-wide inflation {πt}.
It is generally supposed that the driving variable will exhibit positive serial correlation.

A first step in understanding the effects of heterogeneity on overall inflation dynamics is obtained by
making a comparison with the standard New Keynesian Phillips curve. Taking the time-series properties of
{xt} as given, the rate of inflation implied by a New Keynesian Phillips curve with discount factor 0 < β < 1
and short-run slope κ > 0 is denoted by Πt(β, κ), and is obtained by solving:

Πt(β, κ) = βEtΠt+1(β, κ) + κxt (3.3.2)

It turns out that actual inflation πt in an economy with heterogeneity can be expressed in terms of a
combination of current and past inflation rates implied by n hypothetical New Keynesian Phillips curves
for economies without heterogeneity. This is proved in the following theorem.

Theorem 2 There exist a set of n hypothetical discount factors 0 < β̃i < 1 and short-run slopes κ̃i > 0
such that actual inflation {πt} is obtained from the current and past inflation rates calculated using the
corresponding hypothetical New Keynesian Phillips curves defined in equation (3.3.2):

πt = Πt(β, κ̃1) +
n∑

i=2

ci0Πt(β̃i, κ̃i)−
∞∑

j=1

cijΠt−j(β̃i, κ̃i)

 (3.3.3)

For each non-degenerate distribution of price-adjustment frequencies {αi}n
i=1, all the coefficients cij are

strictly positive. Hence all past inflation rates enter the equation (3.3.3) with negative coefficients.

Proof See appendix A.11. �

Each of the Πt(β̃i, κ̃i) is the inflation outcome in an economy with a New Keynesian Phillips curve,
which imparts no intrinsic inertia to inflation. Thus the variables {Πt(β̃i, κ̃i)} display the same amount of
overall persistence as the extrinsic persistence found in the driving variable {xt}. However, actual inflation
in the economy with heterogeneity is a linear combination of current and past values of these series, with all
the coefficients on past values being negative. This reduces overall (positive) inflation persistence relative
to what would occur were no heterogeneity present. It could even lead to negative persistence overall were
the positive persistence in the driving variable {xt} sufficiently weak.

A more precise illustration of this result can be given in the case where the stochastic process for the
driving variable {xt} is modelled as a stationary AR(1) process with positive autocorrelation:

xt = axt−1 + υt , υt ∼ IID(0, σ2
υ) (3.3.4)

The autoregressive coefficient satisfies 0 ≤ a < 1. Without heterogeneity, the evolution of inflation would
be determined by a New Keynesian Phillips curve of the form (3.1.4). It is straightforward to show that the
NKPC implies that the impulse response function of inflation to a cost-push shock is simply proportional
to the impulse response function of xt itself. Let J (j) denote the impulse response function for inflation in
the economy without heterogeneity after a cost-push shock that initially increases inflation by 1%, where j

13



is the number of periods that have elapsed since the shock occurred. For such an AR(1) process as (3.3.4),
this impulse response function is then given by J (j) = aj .

When heterogeneity is present, the stochastic process for inflation in terms of the shock υt, and thus
inflation’s impulse response function, can be obtained by substituting (3.3.4) into (3.3.1) to obtain a rep-
resentation for {πt} of the form,

πt = l
∞∑

j=0

I (j)υt−j (3.3.5)

where l is a constant introduced because the impulse response function I (j) is normalized so that I (0) =
1.

A comparison of inflation persistence with and without heterogeneity in price stickiness can be done by
studying the shape and relative rates of decay of the impulse response functions I (j) and J (j) for the
same cost-push shock.

Theorem 3 For any non-degenerate distribution of price-adjustment frequencies {αi}n
i=1, when the driving

variable {xt} is given by (3.3.4) for any 0 ≤ a < 1, the impulse response function I (j) for inflation with
heterogeneity necessarily decays more rapidly than the impulse response J (j) without heterogeneity,

I (j) < J (j) (3.3.6)

for all j ≥ 1. Furthermore, there are only two possible patterns for the impulse response function I (j) of
inflation in the case of heterogeneity:

(i) “Inverted hump-shaped” — I (j) starts positive; it then declines and becomes negative; it then declines
further and has a turning point; finally it increases, but remains negative, while it tends to zero.

(ii) “Fast monotonic decay” — I (j) starts and remains positive, declines monotonically to zero, but at
a faster rate than J (j).

There is a threshold for the extent of extrinsic persistence a below which the economy is in case (i), and
above which it is in case (ii).

Proof See appendix A.12 �

In all cases, the impulse response function of inflation exhibits less persistence with heterogeneity than
without it. This is manifested in the more rapid decay of the former relative to the latter. The faster decay
occurs because the negative intrinsic inertia implied by heterogeneity cancels out some of the positive
extrinsic persistence, leading to lower overall persistence. When the (positive) extrinsic persistence is
sufficiently weak, the negative intrinsic inertia dominates and the impulse response function switches from
positive to negative at some point, taking on an inverted hump shape. But when extrinsic persistence is
dominant, the impulse response function remains monotonic, but still decays more rapidly compared to the
case of homogeneity.

4 Discussion

4.1 Quantitative significance of the results

While the results of section 3 clearly establish the qualitative effects on inflation of introducing heterogeneity
in price stickiness, the quantitative importance of the results remains to be assessed. This is done by
calibrating a model with a range of industries that mimics the dispersion of price-adjustment frequencies
found for the U.S. by Bils and Klenow (2004). The calibrated model is then used to obtain both the
intrinsic impulse response function of inflation, and the overall impulse response function in the presence
of some extrinsic persistence.
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The Bils and Klenow dataset is derived from the U.S. Bureau of Labor Statistics (BLS) survey of
individual prices, which underlies the construction of the Consumer Price Index (CPI). They present
average monthly frequencies of price adjustment for 350 product categories (entry-level items, or ELIs),
for the years between 1995 and 1997. Each of these categories is treated as a separate “industry” for the
purposes of this paper. Hence n is set to 350, and the distribution {αi}n

i=1 is taken directly from Bils and
Klenow’s results.13 The distribution of industry sizes {ωi}n

i=1 is derived from the share of each ELI in the
Consumer Expenditure Survey (CEX). The ELIs in the Bils and Klenow dataset comprise 68.9% of the
total consumer expenditure according to the CEX. Here it is assumed that their results are representative
of the whole U.S. economy, so industry sizes ωi are set as proportional to the CEX weights.14 When this
distribution is used, the weighted average of the monthly frequency of price adjustment across industries is
0.261, and the standard deviation is 0.189. A histogram of the distribution of price-adjustment frequencies
is plotted in Figure 1.

Figure 1: Calibrated distribution of price-adjustment frequencies

Proportion of products by share of expenditure

Monthly frequency of price adjustment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Source: Bils and Klenow (2004).

The other parameters of the model are determined as follows. The discount factor β is set to 0.998 so
that it is consistent with a 2% annual real interest rate when one time period is equal to a month (since the
steady-state annual real interest rate is equal to (1/β)12 − 1). The intra-industry elasticity of substitution
εf is set to 6, yielding an average markup of price on marginal cost of 20% (recall that equation (2.2.3)
implies that the average (gross) markup is given by εf/(εf − 1), which is equal to 1.2 when εf = 6). The
inter-industry elasticity of substitution εs is 1, so that consumers are much more likely to substitute within
industries than across industries. The elasticity ηcy of a firm’s real marginal cost CY (Yt(ı);Y ∗

t ,Zit) with
respect to a change in its own output Yt(ı) is one of the determinants of real rigidity in the model (real
rigidity is decreasing in ηcy). In order to explain why firms keep their prices sticky when menu costs are
small, Ball and Romer (1990) argue that a high degree of real rigidity is needed. The parameter ηcy is set
to 0.1 here. Knowledge of ηcy together with εf and εs then allows the value of the coefficient ηρ appearing
in (2.2.8) and (3.1.2) to be obtained.15 Finally, to calculate the overall impulse response function (in
addition to just the intrinsic impulse response function) it is necessary to make an assumption about the
extent of extrinsic persistence. Extrinsic persistence is modelled by assuming the driving variable xt is an
AR(1) process, as in equation (3.3.4). The autoregressive parameter a is set to 0.75. The values of all the

13Column “Freq” of Table A1 in Bils and Klenow (2004).
14Column “Weight” of Table A1 in Bils and Klenow (2004), rescaled so that the weights sum to 100%.
15See equation (A.1.6) in appendix A.1 for details.
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Table 1: Calibrated parameter values

Description Parameter Value

Number of industries n 350
Mean price-adjustment frequency (monthly) ᾱ 0.261
Standard deviation of price-adjustment frequencies σα 0.189
Discount factor (monthly) β 0.998
Intra-industry elasticity of substitution εf 6
Inter-industry elasticity of substitution εs 1
Elasticity of marginal cost w.r.t. output (real rigidity) ηcy 0.1
Extrinsic persistence (monthly) a 0.75

parameters used in the calibration are listed in Table 1.
The impulse response function of inflation is calculated both with and without heterogeneity present

to isolate the impact of heterogeneity in price stickiness on inflation persistence. The model without
heterogeneity assumes that there is just one common probability of price adjustment that applies to all
firms (as in the standard Calvo model). This probability is taken to be the average ᾱ of the distribution
{αi}n

i=1 used in the case of heterogeneity, as given in Table 1.
First consider intrinsic inflation inertia alone. The intrinsic impulse response function is the only path

of inflation that is consistent with complete stabilization of the output gap after a (positive) white-noise
cost-push shock has occurred. Figure 2 plots the intrinsic impulse response function for the two cases of
homogeneous and heterogeneous price stickiness. To aid comparison, the impulse response functions are
scaled so that they both begin at 1%. This can be done because measures of persistence are independent
of scale. With homogeneity this impulse response function returns to zero in the period after the shock,
illustrating the lack of intrinsic inflation inertia generated by the standard Calvo model. With heterogeneity,
the effects of the shock do not die away immediately, but the subsequent effect is clearly negative because
the intrinsic impulse response function falls and stays below zero from one period after the shock onwards.
Immediately after this reversal, the negative effect on inflation is equivalent to more than 40% of the initial
positive impact when the shock occurred. Thus there is a noticeable and significant change from positive
to negative in the intrinsic impulse response function when heterogeneity is present, as compared to an
immediate return to zero without heterogeneity.

Figure 3 makes the comparison between the cases of homogeneity and heterogeneity in the presence of
some extrinsic persistence. As was the case with intrinsic persistence, the addition of heterogeneity makes
a substantial difference to overall inflation persistence. The impulse response function with heterogeneity
decays almost twice as fast than that with homogeneity, and switches from positive to negative before
returning to zero in the long run. It thus has the “inverted hump shape” referred to in Theorem 3, even
with a high degree of extrinsic persistence. For yet higher degrees of extrinsic persistence the pattern
would eventually switch to one of monotonic decay in both cases, but the decay under heterogeneity would
continue to be much more rapid. Therefore, Figures 2 and 3 together indicate that the qualitative features
identified in section 3 are also likely to be quantitatively important with a distribution of price-adjustment
frequencies that matches what was found by Bils and Klenow for the U.S. economy.

4.2 Hazard function analysis

The underlying logic behind why heterogeneity reduces inflation persistence can be understood in terms of
the hazard function for price adjustment. This hazard function gives the probability that a firm changes
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Figure 2: Intrinsic impulse response functions for inflation with and without heterogeneity
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Notes: The intrinsic impulse response function in the case of heterogeneity is obtained from equation (3.2.6)
using the method described in section 3.2. The calibrated parameters of the model are given in Table 1
and the distribution of price-adjustment frequencies {αi}n

i=1 is plotted in Figure 1. The intrinsic impulse
response function with homogeneity is obtained immediately from the properties of the New Keynesian
Phillips curve in (3.1.4) and (3.1.7). Both impulse response functions are normalized to 1% at time 0 to
aid comparison.

Figure 3: Overall impulse response functions for inflation with and without heterogeneity
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Notes: The impulse response function in the case of heterogeneity is obtained from equations (3.3.1) and
(3.3.4) using the calibrated parameters from Table 1 and the distribution of price-adjustment frequencies
{αi}n

i=1 plotted in Figure 1. The impulse response function with homogeneity is obtained by solving (3.1.7)
and (3.3.4). Both impulse response functions are normalized to 1% at time 0 to aid comparison.
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its price as a function of the time that has elapsed since its previous price change. Conditional on a firm
being in a particular industry, the hazard function used in this paper is flat because of the assumption of
Calvo price setting. But when the frequency of price adjustment differs across industries, the economy-wide
hazard function need not be flat even when each industry’s is. Indeed, the economy-wide hazard function
must be downwards sloping when there is such heterogeneity.16 The following discussion shows how this
result can be deduced as a simple consequence of Bayes’ theorem, and then goes on to analyse why a
downwards-sloping hazard function has the effect of reducing inflation persistence.

At any time, the set of all firms can be partitioned into those that make a price adjustment and those
whose prices remain sticky. At time t = 0, these sets are denoted by A0 and Ac

0 respectively, where c

indicates the complement of a set. The industry-i probability of price adjustment αi is by definition the
probability of the event A0 given Ωi, so αi ≡ P(A0|Ωi). The overall probability of price adjustment for all
firms in the economy is denoted by α ≡ P(A0), which can also be expressed as the average EI [P(A0|Ωi)],
where EI [·] denotes the expectation taken over all n industries in the economy using industry weights ωi.

Now consider the probability of price adjustment one period afterwards at time t = 1. In this time
period, let A1 denote the set of firms that change price, and Ac

1 the set that leave their prices fixed. To find
the hazard function of price changes for the whole economy it is necessary to evaluate the probability of A1

conditional on whether A0 or Ac
0 occurred at t = 0.17 Denote the former probability by αA ≡ P(A1|A0) and

the latter by αAc ≡ P(A1|Ac
0). Bayes’ theorem is now invoked to show that heterogeneity always implies

αA > αAc .
The Calvo pricing assumption means that, conditional on a firm being in a particular industry, the

probability of price adjustment is no different at time t = 1 than it was at time t = 0 irrespective of
whether a price change occurred at t = 0. Hence, P(A1|Ωi) = P(A0|Ωi) = αi. Because the industry a firm
is based in is the ultimate determinant of its price-adjustment probability, the probability of a firm from
an unknown industry making a price change one period after an earlier price change can be written as
αA = EA0 [P(A1|Ωi)], where EA0 [·] denotes the expectation taken only over the set A0 of firms that change
price at t = 0. Using the definition of conditional expectation, this can be rewritten as an expectation
taken over the set I of all industries as follows:

EA0 [P(A1|Ωi)] = EI

[
P(A1|Ωi)

P(Ωi|A0)
P(Ωi)

]
(4.2.1)

Bayes’ theorem is then applied to replace the probability of a firm being in industry i conditional on its
being observed to change price at t = 0 with a term involving instead the probability of observing a price
change conditional on a firm being in industry i:

P(Ωi|A0) =
P(A0|Ωi)P(Ωi)

P(A0)
(4.2.2)

By combining equations (4.2.1) and (4.2.2), and using the equivalent versions of these for the probability
αAc ≡ EAc

0
[P(A1|Ωi)] of a price change after a period of price stickiness, the following expression is obtained:

αA − αAc = EI

[
P(A1|Ωi)P(A0|Ωi)

P(A0)
− P(A1|Ωi)(1− P(A0|Ωi))

1− P(A0)

]
(4.2.3)

16A similar argument is made by Álvarez et al. (2005).
17This analysis distinguishes only the probability of changing a price which has been fixed for one period from that of

changing a price fixed for more than one period. Calculating the full hazard function requires conditioning on the precise
age of the price. To keep things simple, this analysis effectively calculates just the first point on the hazard function and a
weighted average of the points that come afterwards. It is possible to extend the results to cover the full hazard function, but
considering just these two points is enough to give the intuition.
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The above expression can be simplified to show that

αA − αAc =
VI [αi]

α(1− α)
(4.2.4)

where VI [·] denotes the inter-industry variance operator. Since the variance of the distribution {αi}n
i=1 is

always strictly positive whenever there is heterogeneity, the probability of a firm changing price given that
a price change has just been observed is higher than the probability of a price change conditional on none
having been observed in the previous period. Therefore the economy-wide hazard function is downwards
sloping if the industry-specific hazard functions are flat, but at levels that differ across industries.

The next step is to argue that a downwards-sloping hazard function implies negative intrinsic inflation
inertia (Sheedy, 2007a), and thus reduces overall inflation persistence for a given level of extrinsic persis-
tence. The analysis is clearest in the case where there is no extrinsic persistence, so consider again the
example of a temporary shock to one of the determinants of inflation. To simplify matters further, suppose
that the economy starts from a steady state in which inflation has reached zero prior to t = 0. At t = 0
the serially uncorrelated shock occurs, and suppose without loss of generality that its size is normalized so
that the initial effect on inflation is to raise it by 1% (π0 = 1). By t = 1 the shock itself has completely
dissipated and the aim is to find out what now happens to inflation.

Suppose firms believe there will be no inflation persistence, or in other words, that they think inflation
will return to its former level by t = 1 when the shock has gone (whether or not this expectation is rational
is assessed below). Without the anticipation of further disturbances, each firm will want to match any
changes in the average money prices of other firms to restore its original profit-maximizing relative price.
For the firms in group Ac

0 that left their prices fixed at time t = 0, this entails a 1% money price increase
(the “catch-up” effect) because the general price level has risen by 1% since t = 0 and no further change
is expected. Now consider the firms in group A0 that did choose new prices at time t = 0. Denote the
average inflation rate at t = 0 for these firms only by πA0 . Since their price changes alone created overall
inflation of 1%, and because these firms are a subset of all the firms in the economy (α < 1), firms in the
set A0 have prices with an average rate of change greater than 1%. In fact, this inflation rate must be
equal to πA0 = α−1 > 1. Therefore this group of firms desires a money price cut of (πA0 − 1)% on average
to bring their prices back into line with others (the “roll-back” effect).

In summary, at time t = 1 there is a set Ac
0 of firms of size 1−α with probability αAc of increasing their

money prices by 1% (“catch-up”). There is another set A0 of firms of size α with probability αA of cutting
their prices in money terms by (πA0 − 1)% on average (“roll-back”).18 The overall impact on inflation π1

at t = 1 is:
π1 = (1− α)αAc − ααA(πA0 − 1) (4.2.5)

Whether inflation is positive (above average) or negative (below average) depends on which of the “catch-
up” and “roll-back” effects is dominant. Because πA0 is equal to α−1 to be consistent with π0 = 1, the
expression for inflation π1 in (4.2.5) can be written in terms of the difference between the probabilities αA

and αAc :
π1 = −(1− α)(αA − αAc) (4.2.6)

Therefore, the catch-up effect dominates if the hazard function is upwards sloping (αAc > αA), leading
to above-average inflation in the period t = 1 after the initial shock has gone. A flat hazard function
(αAc = αA) implies that the two effects exactly cancel out and inflation returns to its average value; and a
downwards sloping hazard (αAc < αA) means a dominant roll-back effect and consequently below-average

18The possibility that there are differences in the probability of rolling back associated with differences in the size of the
desired roll-back within this group is analysed below.
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inflation at t = 1. As equations (4.2.4) and (4.2.6) demonstrate, an economy with heterogeneous Calvo
price setting necessarily falls within the latter category. Zero overall inflation persistence therefore cannot
be a rational expectations equilibrium when there is heterogeneity — even with no extrinsic persistence.
Moreover, there is a clear tendency towards negative persistence because the belief that inflation has no
persistence results in actual inflation displaying negative persistence. A formal confirmation that the unique
rational expectations equilibrium does indeed exhibit negative inflation persistence is provided by the results
of section 3.

While the link between heterogeneity and downwards-sloping hazard functions is instructive, there is no
formal equivalence between the two. In other words, a model where every firm shares the same downwards-
sloping hazard function — and one that is the same as that generated by the model of heterogeneous
Calvo pricing — does not have the same implications for inflation dynamics. In fact, the previous analysis
in this section has actually understated the tendency towards negative inflation persistence implied by
heterogeneity. The understatement has occurred because there is a positive correlation across industries
between the size of the desired roll-back of prices and the probability of a roll-back actually occurring. This
was neglected in the derivation of equations (4.2.5) and (4.2.6).

To incorporate this correlation into the analysis, let πi,A0 denote the percentage change in prices of those
firms from industry i that did choose new prices at time t = 0. The average percentage change over all
firms that change price is denoted by πA0 as before, and can be calculated from the industry-specific πi,A0

using πA0 = EA0 [πi,A0 ]. Firms from industry i that did change price at t = 0 would like to roll back their
prices by amount (πi,A0 − 1)% at t = 1, and have probability P[A1|Ωi] of doing so. Since the calculation
of the catch-up effect is unchanged from before, equation (4.2.5) giving the overall effect on inflation π1 at
t = 1 is replaced by:

π1 = (1− α)αAc − αEA0 [P(A1|Ωi)(πi,A0 − 1)] (4.2.7)

Using the definition of the covariance operator CA0 [·, ·] over the set of firms changing price at t = 0, equation
(4.2.7) can be restated as follows:

π1 = (1− α)αAc − αEA0 [P(A1|Ωi)]EA0 [πi,A0 − 1]− αCA0 [P(A1|Ωi), πi,A0 − 1] (4.2.8)

Using the fact that EA0 [P(A1|Ωi)] = αA and EA0 [πi,A0 ] = πA0 = α−1, an equivalent expression for π1 is:

π1 = −(1− α)(αA − αAc)− αCA0 [αi, πi,A0 ] (4.2.9)

Finally, the expression in (4.2.4) for the difference between the probabilities αA and αAc is substituted into
the above:

π1 = −α−1VI [αi]− αCA0 [αi, πi,A0 ] (4.2.10)

When there is a positive correlation between the probability of price adjustment and the size of the desired
roll-back of prices, the resulting inflation rate π1 from (4.2.9) or (4.2.10) is negative, and unambiguously
more so than the inflation rate implied by (4.2.6). Thus by ignoring this positive correlation, the magnitude
of the roll-back effect is biased downwards. And the correlation should be positive whenever there is
heterogeneity in the frequency of price adjustment across industries. This is because it is precisely those
firms from industries with more flexible prices that are willing to make larger temporary price increases
following macroeconomic shocks (and thus need larger roll-backs in the future) because these price increases
can be more quickly reversed. Therefore, the effect of heterogeneity on inflation persistence is actually more
negative than the analysis of the implied downwards-sloping hazard function alone would suggest.
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5 Conclusions

This paper has shown that differences in the frequency of price adjustment between industries unambigu-
ously reduce overall inflation persistence relative to what would occur if all industries shared the same
price-adjustment frequency. By viewing overall inflation persistence as deriving from two sources, intrinsic
inertia from the Phillips curve itself, and extrinsic persistence from serial correlation in variables that af-
fect inflation, the paper has shown that heterogeneity in price stickiness actually implies negative intrinsic
inertia. This explains why for the given level of extrinsic persistence, heterogeneity lowers overall inflation
persistence.

In addition to the analytical results establishing the direction of heterogeneity’s effect on persistence, this
paper also assesses its quantitative impact. A calibration of the model using U.S. microeconomic evidence on
the dispersion of price-adjustment frequencies shows that the effect of heterogeneity on inflation dynamics is
quantitatively important. The microeconomic evidence indicates a significant amount of negative intrinsic
inertia, and the paper shows that this translates into a substantial reduction in overall inflation persistence
relative to the case of no heterogeneity.

But while there is overwhelming microeconomic evidence supporting the model’s assumption of a range
of price-adjustment frequencies, much less support is found for the macroeconomic implications of this
heterogeneity. The nature of this puzzle can be understood by going back to some of the criticisms of
the New Keynesian Phillips curve posed by Mankiw (2001). If a non-degenerate distribution of price-
adjustment frequencies is added to an otherwise standard New Keynesian model, these criticisms of the
NKPC apply even more forcefully to the model with heterogeneity.

First, the New Keynesian Phillips curve is only consistent with a given amount of inflation persistence
if a similar degree of persistence is found in the determinants of inflation. With heterogeneity, the situation
is made worse because inflation is now less persistent than its determinants. Thus more serial correlation
in inflation’s driving variables must be explained to justify a given level of inflation persistence.

Second, the New Keynesian Phillips curve does not imply a cost of disinflation. When heterogeneity is
introduced, the cost of disinflation is even lower than it otherwise would be under the NKPC. This means
that a disinflation which is costless with the NKPC would actually stimulate economic activity in the model
with heterogeneity.

Third, the New Keynesian Phillips curve cannot explain why monetary policy has its greatest effect on
inflation with a longer lag than it does for real variables such as aggregate output.19 Once heterogeneity is
introduced, inflation’s impulse response function to a monetary policy shock decays more rapidly than it
would with the NKPC, and so the peak effect on inflation comes even sooner.

The intuition for these macroeconomic implications is straightforward. When inflation occurs as the
result of a macroeconomic shock, the underlying price changes come from a group of firms which is not
generally representative of all firms in the economy. Because some industries have more flexible prices than
others, the group of firms changing price is likely to be drawn disproportionately from those industries with
more flexible prices. But this means that the firms which did change their prices in response to a shock are
also the most nimble in reversing any price changes once the shock has dissipated. This makes inflation
less persistent and disinflation easier to achieve without cost than it otherwise would be.

The problem is that the basic New Keynesian model to which heterogeneity has been added contains
no source of (positive) intrinsic inflation inertia that can outweigh the negative intrinsic inertia implied
by heterogeneity. It is usually the case that at least some positive intrinsic inertia, such as that resulting
from backwards-looking rules of thumb for price setting or indexation, must be added to the standard New

19See Christiano, Eichenbaum and Evans (1999) for evidence on this from a structural VAR study of monetary policy shocks.
This stylized fact is also widely accepted by central banks.
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Keynesian Phillips curve to fit the macroeconomic evidence on inflation dynamics. The results of this paper
suggest that when heterogeneity is present, the need for these sources of intrinsic persistence is even greater
still. Thus, more research on sources of positive intrinsic inflation inertia is required if the microeconomic
evidence on price setting is to be reconciled with what is known about aggregate inflation dynamics.

References

Altissimo, F., Ehrmann, M. and Smets, F. (2006), “Inflation persistence and price setting behaviour
in the Euro area: A summary of the IPN evidence”, Occasional paper 46, European Central Bank. 1

Altissimo, F., Mojon, B. and Zaffaroni, P. (2007), “Fast micro and slow macro: Can aggregation
explain the persistence of inflation?”, Working paper 729, European Central Bank. 3
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A Technical appendix

A.1 Steady state and log linearizations

The steady state around which the first-order approximations of the model’s equations are taken is char-
acterized by a constant inflation rate, constant real output growth, a constant nominal interest rate, and
the absence of cost-push shocks:

Πt = Π̄ , Gt = Ḡ , It = Ī , Zit = Z̄i = 1 (A.1.1)

For simplicity it is assumed that the constant rates of inflation and real output growth are zero, so the
steady-state gross inflation rate is Π̄ = 1, and the steady-state gross real growth rate is Ḡ = 1. It is
assumed that the steady-state real interest rate is positive, which requires that the steady-state gross
nominal interest rate satisfies Ī > 1. It is more convenient to represent the interest rate as a discount
factor, so define β ≡ Ī−1, which must satisfy 0 < β < 1.

The aim is to find the steady-state values of rit = r̄i, %it = %̄i and Yt = Ȳ. Since Π̄ = 1, the second
part of (2.2.6) shows that r̄i = %̄i for all i. By evaluating (2.2.4) at the steady state (A.1.1) and using the
fact that r̄i = %̄i, it is seen that r̄i = r̄ and %̄i = %̄ for all i. Then by substituting %̄i = %̄ into the first part
of (2.2.6), it follows that %̄ = 1, and hence r̄ = 1. Finally by substituting these results back into (2.2.4),
the steady-state output gap is found. In summary, the steady state implied by the assumptions is:

r̄i = 1 , %̄i = 1 , Ȳ =
(

εf − 1
εf

) 1
ηcy

(A.1.2)
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The equations of the model are now log-linearized around the steady state defined by (A.1.1) and
(A.1.2). All second- and higher-order terms are suppressed in the following equations and throughout the
paper. By log-linearizing the price level equations in (2.2.6):

n∑
i=1

ωiρit = 0 , ρit =
∞∑

j=0

αi(1− αi)j

{
ri,t−j −

j−1∑
k=0

πt−k

}
(A.1.3)

Using the properties of the steady state in (A.1.1) and (A.1.2), and the definitions of %it ≡ Pit/Pt and
rit ≡ Rit/Pt, it follows that ρit = Pit − Pt, rit = Rit − Pt, and πt = Pt − Pt−1. Hence the results in (2.2.7)
can be deduced from equation (A.1.3).

Now consider a log linearization of the reset price equation (2.2.4),

rit =
1− β(1− αi)

1 + εfηcy

∞∑
τ=t

(β(1− αi))
τ−t Et

[
τ∑

s=t+1

{Gs + (εf + (1 + εfηcy))πs − is}

+ (εf − εs)(1 + ηcy)ρiτ + ηcyyτ + ziτ −
τ∑

s=t+1

{Gs + εfπs − is} − (εf − εs)ρiτ

] (A.1.4)

where it ≡ log It − log Ī denotes the log deviation of the gross nominal interest rate It. This expression
can be simplified as follows:

rit =
1− β(1− αi)

1 + εfηcy

∞∑
τ=t

(β(1− αi))
τ−t

(
(εf − εs)ηcyρiτ + ηcyyτ + ziτ + (1 + εfηcy)

τ∑
s=t+1

πs

)
(A.1.5)

By substituting rit = Rit −Pt and πt = Pt −Pt−1 into (A.1.5) and rearranging, the expression for Rit given
in (2.2.8) is obtained with the coefficients ηρ, ηy and ηz defined as follows:

ηρ ≡
1 + ηcyεs

1 + ηcyεf
, ηy ≡

ηcy

1 + ηcyεf
, ηz ≡

1
1 + ηcyεf

(A.1.6)

This completes the necessary log linearizations.

A.2 Proof of Lemma 1

Take the i-th eigenvalue ζS
i of S ≡ KR with corresponding eigenvector vi 6= 0. Since R ≡ I − ιω′, the

requirement Svi = ζS
i vi is equivalent to:

Kvi −Kι(ω′vi) = ζS
i vi (A.2.1)

Let vji denote the j-th element of the n × 1 eigenvector vi, and v̄i ≡ ω′vi the weighted average of the
elements of vi using the industry sizes ωj as weights. Because K ≡ diag{κi}n

i=1 and vi ≡ ( v1i , . . . , vni )′,
equation (A.2.1) can be stated as κj(vji− v̄i) = ζS

i vji for all j = 1, . . . , n. By collecting the terms involving
vji on the left-hand side, this becomes

(κj − ζS
i )vji = κj v̄i (A.2.2)

again for all j = 1, . . . , n.
Now consider the special case where the eigenvalue ζS

i is exactly equal to one of the Phillips curve
slopes, that is, ζS

i = κ` for some `. Since κ` > 0 from the inequalities in (A.7.1), equation (A.2.2) implies
that v̄i = 0. Because (A.7.1) shows that all the Phillips curve slopes κj are distinct, it must be the case that
κj 6= ζS

i for all j 6= `. It then follows from (A.2.2) that vji = 0 for all j 6= ` because v̄i = 0. Consequently,
the weighted average v̄i ≡ ω′vi is simply equal to ω`v`i. And moreover since ω` > 0, the fact that v̄i = 0
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means that v`i is also zero. Thus, all the elements of vi must be zero if ζS
i = κ` for some `. But this would

imply that vi is the zero vector and hence cannot be an eigenvector, contrary to the supposition. Therefore,
the case where the eigenvalue ζS

i is exactly equal to one of the Phillips curve slopes can be ruled out, so
ζS
i 6= κj for all j. Thus, an expression for the elements of the eigenvector vi can be obtained directly from

(A.2.2)
vji =

κj

κj − ζS
i

v̄i (A.2.3)

for all j and i. From this formula it is immediately apparent that were the weighted average v̄i equal to
zero then vi would be the zero vector, and again could not be an eigenvector. Thus v̄i 6= 0, and as the
eigenvalues are only determined up to a scalar multiple, v̄i can be set to 1 without loss of generality. This
ensures that all the eigenvectors can be normalized so that ω′vi = 1.

By taking a weighted sum using ωj of the elements vji in formula (A.2.3) and making use of the
normalization

∑n
j=1 ωjvji = 1, the following necessary condition is obtained that must be satisfied by any

eigenvalue ζS
i :

n∑
j=1

ωj
κj

κj − ζS
i

= 1 (A.2.4)

Because the industry sizes ωj sum to 1, (A.2.4) is equivalent to:

n∑
j=1

ωj
ζS
i

κj − ζS
i

= 0 (A.2.5)

It is clear that an eigenvalue of zero is always consistent with equation (A.2.5). Now consider any
non-zero eigenvalue ζS

i 6= 0. As the eigenvalue is non-zero and is known not to equal any of the Phillips
curve slopes κj exactly, an equivalent version of equation (A.2.5) can be obtained by multiplying both sides
by ζS

i
−1∏n

`=1(κ` − ζS
i ) to obtain:

n∑
j=1

ωj

 n∏
`=1
` 6=j

(κ` − ζS
i )

 = 0 (A.2.6)

Define the following scalar polynomials fj(z) and f(z) with reference to the expression in (A.2.6):

f(z) ≡
n∑

j=1

ωjfj(z) , fj(z) ≡
n∏

`=1
` 6=j

(κ` − z) (A.2.7)

It clear from the construction in (A.2.7) that equation (A.2.6) is equivalent to f(ζS
i ) = 0, making this a

necessary condition for any non-zero eigenvalue of S. It is also apparent that each fj(z) and hence f(z) is
a polynomial of degree n− 1, with a corresponding set of n− 1 roots. Because it is known that the n× n

matrix S has n eigenvalues, and that a zero eigenvalue is consistent with necessary condition (A.2.5), it
follows that zero must always be an eigenvalue of S and that the polynomial equation f(ζS

i ) = 0 is necessary
and sufficient for the remaining n− 1 eigenvalues.

Let the zero eigenvalue be ordered first so that ζS
1 = 0 without loss of generality. The other eigenvalues

ζS
i for i ≥ 2 are the roots of f(z) = 0. The definition of the polynomial fj(z) in (A.2.7) implies the following

expression when it is evaluated at the Phillips curve slopes κi:

fj(κi) =


∏n

`=1
` 6=j

(κ` − κj) if i = j

0 if i 6= j
(A.2.8)
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Therefore the polynomial fj(z) is zero when evaluated at any Phillips curve slope except that corresponding
to the j-th industry, and hence f(κi) = ωifi(κi). The sign of this expression can be obtained from (A.2.8)
using the chain of inequalities for the Phillips curve slopes in (A.6.6):

(−1)j−1fj(κj) =
j−1∏
`=1

(κj − κ`)
n∏

`=j+1

(κ` − κj) > 0 (A.2.9)

Since ωi > 0 it must be the case that (−1)i−1f(κi) > 0 for all i. Thus the function f(z) alternates in sign as
it is evaluated at each of the Phillips curve slopes κi in sequence. Because the function f(z) is a polynomial,
it is continuous and hence the intermediate value theorem can be applied to the intervals of the real line
in which f(z) changes sign. For each i = 2, . . . , n, there consequently exists a ζS

i ∈ R with κi−1 < ζS
i < κi

such that f(ζS
i ) = 0. This yields the set of n real eigenvalues, and the chain of inequalities (A.7.1) follows

from (A.6.6).
It is clear from (A.7.1) that all the eigenvalues are distinct, and because of this, the set of n eigenvectors

is linearly independent. That the elements of these eigenvectors are real numbers can be seen from the
formula in (A.2.3) and the fact that the eigenvalues themselves are real numbers. And since ζS

1 = 0, the
expression for the elements of the eigenvectors in (A.2.3) implies that vj1 = 1 for all j, so the vector of
1s is the eigenvector corresponding to the zero eigenvalue. Finally, note that v1 = ι is consistent with the
normalization ω′v1 = 1. This completes the proof of the lemma.

A.3 Proof of Lemma 2

Let D(z) ≡
∣∣Ψ(z−1)

∣∣ be the determinantal equation of the matrix polynomial Ψ(z). Using the definition
of Ψ(z) in (A.7.4), if z0 is a root of the determinantal polynomial, that is D(z0) = 0, then it is also true
that: ∣∣M−

(
z−1
0 + βz0

)
I
∣∣ = 0 (A.3.1)

Therefore, z0 is a root of D(z) = 0 if and only if ζM = z−1
0 + βz0 is an eigenvalue of M. When z 6= 0 the

equation z−1 + βz = ζM is equivalent to the following quadratic equation:

βz2 − ζMz + 1 = 0 (A.3.2)

For a given value of ζM , the quadratic equation (A.3.2) has two roots. The lower branch of the quadratic
root function is denoted by Q(ζ):

Q(ζ) =
ζ −

√
ζ2 − 4β

2β
(A.3.3)

If ζM ≥ 1 + β then it follows that ζM 2 − 4β ≥ (1 − β)2 > 0, and so the roots of the quadratic equation
(A.3.2) are both real numbers. It is also clear that Q(1 + β) = 1, and ζM ≥ 1 + β implies 0 < Q(ζM ) ≤ 1.
Thus, the lower branch (A.3.3) is chosen because the root is always on or inside the unit circle when the
inequalities in (A.7.7) are satisfied. The first derivative of the quadratic root function Q(ζ) in (A.3.3) is

Q′(ζ) =
1
2β

(
1− ζ√

ζ2 − 4β

)
(A.3.4)

and Q′(ζM ) is strictly negative whenever ζM ≥ 1 + β. By defining ζΛ
i ≡ Q(ζM

i ), these properties together
with the inequalities for ζM

i in (A.7.7) establish the corresponding chain of inequalities (A.7.9) for the real
numbers ζΛ

i .
Let DΛ ≡ diag{ζΛ

i }n
i=1 be the n × n diagonal matrix of the ζΛ

i values. The matrix Λ is constructed
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so that it has n eigenvalue–eigenvector pairs ζΛ
i and vi. This is done by defining Λ ≡ VDΛV−1. Because

(A.7.9) implies that Λ has no zero eigenvalue, Λ is certain to be invertible. The definition of the eigenvalues
ζΛ
i as roots of the quadratic equation in (A.3.2) also ensures that βζΛ

i
2−ζM

i ζΛ
i +1 = 0 for all i. Because DΛ

and DM are both diagonal matrices, this set of n scalar quadratic equations can be stated as the following
matrix quadratic equation:

βDΛ2 −DMDΛ + I = 0 (A.3.5)

The matrices Λ and M share the same set of eigenvectors vi, or in other words, they are simultaneously
diagonalizable. Premultiplication of (A.3.5) by V and postmultiplication by V−1 thus demonstrates that
the following matrix quadratic equation is always satisfied by M and Λ:

βΛ2 −MΛ + I = 0 (A.3.6)

Because Λ is non-singular, equation (A.3.6) implies that M = Λ−1 + βΛ.
Define the n× n linear matrix function Λ(z) ≡ I−Λz using the matrix Λ as constructed above. Then

the brackets of the matrix product Λ(βz−1)Λ−1Λ(z) in (A.7.8) are multiplied out as follows:

(I− βΛz−1)Λ−1(I−Λz) = (Λ−1 + βΛ)− Iz − βIz−1 (A.3.7)

By comparing the coefficients of each power of z in (A.3.7) with the those of the matrix function Ψ(z) in
(A.7.4), and using the expression for M in (A.3.6), it is clear that Ψ(z) and Λ(βz−1)Λ−1Λ(z) are the
same matrix function. Therefore, all the claims of the lemma are verified.

A.4 Proof of Lemma 3

The matrix of eigenvectors V is invertible according to Lemma 1, so there is a unique solution given by
κκκ = V−1κ. Since this κκκ satisfies Vκκκ = κ, the expression for the elements vji of matrix V given in (A.2.3)
can be used to write out the system of equations determining κκκ explicitly,

n∑
j=1

κiκj

κi − ζS
j

= κi (A.4.1)

where the above holds for all i = 1, . . . , n and recalling that the eigenvectors have been normalized in
accordance with Lemma 1 so that v̄i = 1. Because (A.6.6) implies that κi is strictly positive, nothing is
lost by cancelling it from both sides of (A.4.1):

n∑
j=1

κj

κi − ζS
j

= 1 (A.4.2)

The following identity is used to solve the system of equations in (A.4.2):

n∑
j=1

∏n
h=1
h 6=i

(κh − ζS
j )∏n

k=1
k 6=j

(ζS
k − ζS

j )
≡ 1 (A.4.3)

The above holds for all i = 1, . . . , n, and the first step is to verify this identity before using it to find an
explicit formula for κi. Since it is known from (A.7.1) that all the eigenvalues ζS

j of S are distinct, the
identity in (A.4.3) can be multiplied by the non-zero product

∏n
k=1

∏k−1
l=1 (ζS

k − ζS
l ) to obtain an equivalent
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expression (which is also required to hold for all i):

n∑
j=1

(−1)j−1
n∏

h=1
h 6=i

n∏
k=1
k 6=j

k−1∏
l=1
l 6=j

(κh − ζS
j )(ζS

k − ζS
l ) ≡

n∏
k=1

k−1∏
l=1

(ζS
k − ζS

l ) (A.4.4)

A special type of matrix known as a Vandermonde matrix is very useful in verifying the identity (A.4.4).
For a given sequence of n numbers {ζS

i }n
i=1, the n× n Vandermonde matrix V

(
{ζS

k }n
k=1

)
is defined as,

V
(
{ζS

k }n
k=1

)
≡


1 ζS

1 · · · ζS
1

n−1

1 ζS
2 · · · ζS

2
n−1

...
...

. . .
...

1 ζS
n · · · ζS

n
n−1

 (A.4.5)

where the i-th row of the matrix is a geometric progression in ζS
i . The determinant of the Vandermonde

matrix in (A.4.5) is equal to the following expression:20

∣∣V ({ζS
k }n

k=1}
)∣∣ = n∏

k=1

k−1∏
l=1

(ζS
k − ζS

l ) (A.4.6)

It is clear from this formula that the identity in (A.4.4) can be restated in terms of determinants of
Vandermonde matrices,

∣∣V ({ζS
k }n

k=1

)∣∣ ≡ n∑
j=1

(−1)j−1
∣∣V ({ζS

k }n
k=1\{ζS

j }
)∣∣ n∏

h=1
h 6=i

(κh − ζS
j ) (A.4.7)

where the above must hold for all i. Let Cj denote the cofactor of V
(
{ζS

k }n
k=1

)
in (A.4.5) corresponding

to the n-th column and the j-th row:

Cj ≡ (−1)n+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ζS
1 · · · ζS

1
n−2

...
...

...
1 ζS

j−1 · · · ζS
j−1

n−2

1 ζS
j+1 · · · ζS

j+1
n−2

...
...

...
1 ζS

n · · · ζS
n

n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.4.8)

It is immediately apparent from (A.4.5) and (A.4.8) that Cj is equal to (−1)n+j multiplied by the determi-
nant of the Vandermonde matrix V

(
{ζS

k }n
k=1\{ζS

j }
)
, which is generated from the sequence {ζS

k }n
k=1 with

the j-th element deleted:
Cj = (−1)n+j

∣∣V ({ζS
k }n

k=1\{ζS
j }
)∣∣ (A.4.9)

The cofactors Cj of the matrix V
(
{ζS

k }n
k=1

)
have the property that the determinant

∣∣V ({ζS
k }n

k=1

)∣∣ can
be obtained by multiplying each Cj by the j-th element in the n-th column of V

(
{ζS

k }n
k=1

)
and summing

along the n-th column. But when the cofactors are multiplied by elements from a different row, the sum is
20See Bellman (1960) for a proof.
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equal to zero:21

n∑
j=1

ζS
j

h
Cj =

0 if h = 0, 1, . . . , n− 2∣∣V ({ζS
k }n

k=1

)∣∣ if h = n− 1
(A.4.10)

To make use of this result, the product appearing in equation (A.4.7) is expanded as a sum of powers of
ζS
j ,

n∏
h=1,h 6=i

(κh − ζS
j ) =

n−1∑
h=0

(−1)hKi,hζS
j

h
(A.4.11)

where the coefficients Ki,h are given by sums of products of the Phillips curve slopes {κi}n
i=1:

Ki,h ≡
∑

∀(`1,...,`n−1−h)
`k∈{1,...,i−1,i+1,...,n}

n−1−h∏
k=1

κ`k
(A.4.12)

Note in particular that Ki,n−1 = 1 for all i. By substituting the expression for the product in (A.4.11) into
(A.4.7), that identity is now equivalent to:

∣∣V ({ζS
k }n

k=1}
)∣∣ = n−1∑

h=0

(−1)hKi,h

n∑
j=1

(−1)j−1ζS
j

h ∣∣V ({ζS
k }n

k=1}\{ζS
j }
)∣∣ (A.4.13)

Using equation (A.4.9), the determinants on the right-hand side of the identity (A.4.13) can be replaced
by terms involving the cofactors Cj :

∣∣V ({ζS
k }n

k=1}
)∣∣ ≡ n−1∑

h=0

(−1)h−(n−1)Ki,h

n∑
j=1

ζS
j

h
Cj (A.4.14)

Then the results for the sums of cofactors stated in (A.4.10) imply that the identity in (A.4.14) is equivalent
to: ∣∣V ({ζS

k }n
k=1}

)∣∣ ≡ Ki,n−1

∣∣V ({ζS
i }n

i=1}
)∣∣ (A.4.15)

But this statement is clearly true since the coefficient Ki,n−1 in (A.4.12) is known to equal one for all i.
Therefore, the original identity (A.4.3) must be true.

The identity (A.4.3) is now used to verify that the following proposed solution to the system of equations
in (A.4.2) is correct:

κj =

∏n
h=1(κh − ζS

j )∏n
k=1
k 6=j

(ζS
k − ζS

j )
(A.4.16)

By substituting this claim into equation (A.4.2) and cancelling the term (κh − ζS
i ) from both numerator

and denominator, the identity (A.4.3) is obtained. Thus the solution given in (A.4.16) must be correct for
all values of κi and ζS

i .
Finally, by using the chain of inequalities for the sequences {κi}n

i=1 and {ζS
i }n

i=1 in (A.7.1), it can be seen
that the numerator of (A.4.16) contains j − 1 negative terms and n− j + 1 positive, and the denominator
contains j − 1 negative and n− j positive. Hence, it is shown that κj > 0 for all j, completing the proof.

21See any text on linear algebra, for example, Anton (1994).
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A.5 Proof of Lemma 4

Define the n× 1 vector ht using the expected values of a scalar time-series {xt}:

ht =
∞∑

k=0

(βΛ)kκEtxt+k (A.5.1)

If xt = ιxt then equation (3.1.5) implies that the vector of price levels Pt can be expressed in terms of ht:

Pt = ΛPt−1 + Λht (A.5.2)

Repeated backwards substitution of (A.5.2) shows that Pt can be written in terms of a sum involving
current and past values of ht:

Pt =
∞∑

j=0

Λj+1ht−j (A.5.3)

The expression for ht is then substituted into (A.5.3) to obtain:

Pt =
∞∑

j=0

Λj+1
∞∑

k=0

(βΛ)kκEt−jxt−j+k (A.5.4)

It is shown in Lemma 2 that the matrix V diagonalizes Λ, which means that Λ = VDΛV−1, where DΛ

is the matrix of eigenvalues of Λ. The matrix V also diagonalizes all powers of Λ because Λk = VDΛk
V−1.

By using this fact and the definition κκκ ≡ V−1κ, equation (A.5.4) is seen to be equivalent to (A.9.1a).
Equation (A.9.1b) is then obtained by first-differencing (A.9.1a).

The equations for the aggregate price level Pt = ω′Pt and inflation rate πt = ω′πt are deduced from
their counterparts (A.9.1a) and (A.9.1b) by first noting that Lemma 1 implies that each of the columns vi

of V is normalized so that ω′vi = 1 and hence ω′V = ι′. This together with the fact that DΛ is a diagonal
matrix, and ζΛ

1 = 1, yields equations (A.9.2a) and (A.9.2b), completing the proof.

A.6 Proof of Proposition 1

The first step is to use the assumption of Calvo pricing for each industry to obtain recursive versions of
the price level and profit-maximizing reset price equations. As can be checked by repeated backwards
substitution, the following equation is equivalent to the expression for the industry i price level Pit given
in (2.2.7):

Pit = (1− αi)Pi,t−1 + αiRit (A.6.1)

Likewise, repeated forwards substitution shows that the following is a recursive version of the equation for
the reset price Rit in (2.2.8):

Rit = β(1− αi)EtRi,t+1 + (1− β(1− αi))(Pit − ηρρit + ηyyt + ηzzit) (A.6.2)

Substitute equation (A.6.1) into (A.6.2) to eliminate the terms involving the reset price Rit:

(1 + β)Pit = Pi,t−1 + βEtPi,t+1 +
αi(1− β(1− αi))

1− αi
(−ηρρit + ηyyt + ηzzit) (A.6.3)

The coefficient of the term in parentheses on the right-hand side of (A.6.3) is the industry-specific
component of the slope of the short-run Phillips curve. This depends on the steady-state discount factor β

and the probability of price adjustment αi in industry i. Hence define the following function K (α) giving
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the industry-specific slope in terms of a particular price-adjustment frequency α:

K (α) ≡ α(1− β(1− α))
1− α

(A.6.4)

This function has the property that if 0 < α < 1 then 0 < K (α) < ∞. It has derivative

K ′(α) =
1− β(1− α)2

(1− α)2
(A.6.5)

which satisfies K ′(α) > 0 for 0 < α < 1, implying that K (α) is a strictly increasing function. So if
κi ≡ K (αi) denotes the slope of the industry i Phillips curve then from the chain of inequalities for αi in
(2.1.9), a similar chain of inequalities for κi is obtained:

0 < κ1 < κ2 < · · · < κn−1 < κn < ∞ (A.6.6)

Let κ be the n × 1 vector containing these industry-specific slopes, and let K ≡ diag{κi}n
i=1 be the n × n

diagonal matrix containing these slopes along its principal diagonal.
Using the definition of the matrix K and the vectors of price levels Pt and reset prices Rt, the n equations

in (A.6.3) can be stated as

(1 + β)Pt + ηρKρt = Pt−1 + βEtPt+1 + K (ηyιyt + ηzzt) (A.6.7)

where ι is a n× 1 vector of 1s. Since the relative price vector ρt is given by ρt = RPt, the left-hand side
of (A.6.7) is equivalent to MPt, with M ≡ (1 + β)I + ηρKR being a n × n matrix. It is easily checked
that the matrix R ≡ I− ιω′ has the property that R2 = R. Hence R is idempotent and must therefore
also be positive semi-definite. Furthermore, the parameter ηρ is strictly positive and the matrix (1 + β)I
is positive definite, as is K from (A.6.6). By taking these facts together, the matrix M must be positive
definite. Multiplying both sides of (A.6.7) by M−1 yields equation (3.1.1).

To state the pricing equations in terms of inflation rates and relative prices, note that the coefficients of
the money price levels on both sides of equation (A.6.3) have the same sum. This means that by cancelling
a unit root in the money price level, the equation can be restated in terms of the industry-specific inflation
rate πit ≡ Pit − Pi,t−1 and the relative price ρit as follows:

πit = βEtπi,t+1 + κi(−ηρρit + ηyyt + ηzzit) (A.6.8)

Using the definitions of the matrix K and the vectors of inflation rates πt and relative prices ρt, equation
(3.1.2) is immediately obtained from (A.6.8). This establishes all the claims of the proposition.

A.7 Proof of Proposition 2

The first step in obtaining the forwards- and backwards-looking components of the Phillips curve is to
analyse the properties of the n × n matrix S ≡ KR, in particular, its eigenvalues and eigenvectors. A
scalar ζS ∈ C is said to be an eigenvalue of S if there exists a non-zero n × 1 vector v ∈ Cn such that
Sv = ζSv. The i-th eigenvalue and eigenvector are denoted by ζS

i and vi. The following result characterizes
the properties of these eigenvalues and eigenvectors.

Lemma 1 The matrix S has n distinct, real, and non-negative eigenvalues ζS
i ∈ R, which are without loss

of generality ordered to form an increasing sequence. Exactly one eigenvalue is zero and the others are
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interlaced with the sequence of Phillips curve slopes κi according to the following chain of inequalities:

0 = ζS
1 < κ1 < ζS

2 < κ2 < ζS
3 < · · · < κn−1 < ζS

n < κn < ∞ (A.7.1)

There also exists a corresponding set of n linearly independent and real-valued eigenvectors vi ∈ Rn, and
the eigenvector associated with the zero eigenvalue is a vector of 1s. The eigenvectors can be normalized so
that ω′vi = 1 for all i.

Proof See appendix A.2. �

The eigenvectors of S are collected into a n×n matrix V ≡ ( v1 , · · · , vn ). The linear independence of
the set of eigenvectors guaranteed by Lemma 1 ensures that V is non-singular. If DS ≡ diag{ζS

i }n
i=1 is the

diagonal matrix of eigenvalues of S, then eigenvalue-eigenvector relationship can be stated as SV = VDS .
Because V is invertible, this means that the matrix S can be diagonalized as follows:

V−1SV = DS (A.7.2)

The equations for the price level vector Pt in (3.1.1) are equivalent to the following expression since the
matrix M is non-singular:

MPt = Pt−1 + βEtPt+1 + K(ηyιyt + ηzzt) (A.7.3)

By introducing the lag operator L, the forward operator F (where F ≡ L−1), and the n×n matrix function
Ψ(z) defined by,

Ψ(z) ≡ M− Iz − βIz−1 (A.7.4)

the pricing equations in (A.7.3) can be expressed as follows:

Et[Ψ(L)Pt] = K(ηyιyt + ηzzt) (A.7.5)

The matrix function Ψ(z) is factorized using the diagonalization of the n × n matrix M. Since S ≡
KR, the definition of M given in Proposition 1 is equivalent to M = (1 + β)I + ηρS. This allows the
diagonalization of M to be obtained easily from that of S, which was found in Lemma 1. Note that (A.7.2)
implies that

V−1MV = (1 + β)I + ηρD
S (A.7.6)

and since the right-hand side is a diagonal matrix, the same matrix of eigenvectors V diagonalizes both S
and M. The matrix of eigenvalues of M is thus obtained from the right-hand side of (A.7.6), and is denoted
by the diagonal matrix DM ≡ (1+β)I+ ηρD

S . If ζM
i is the i-th eigenvalue of M then DM ≡ diag{ζM

i }n
i=1

and ζM
i = (1 + β) + ηρζ

S
i . Because ηρ is a positive constant, the inequalities for ζS

i in (A.7.1) imply the
corresponding chain of inequalities for the ζM

i :

1 + β = ζM
1 < ζM

2 < · · · < ζM
n−1 < ζM

n < ∞ (A.7.7)

The next result constructs a factorization of the matrix function Ψ(z) using this diagonalization.

Lemma 2 There exists a n×n non-singular matrix Λ such that the linear matrix function Λ(z) ≡ I−Λz

factorizes the matrix function Ψ(z) defined in (A.7.4) as follows

Ψ(z) = Λ(βz−1)Λ−1Λ(z) (A.7.8)
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for all z ∈ C\{0}. The matrix Λ has n distinct, real, and positive eigenvalues ζΛ
i ∈ R satisfying the

following chain of inequalities:

1 = ζΛ
1 > ζΛ

2 > · · · > ζΛ
n−1 > ζΛ

n > 0 (A.7.9)

There are n− 1 eigenvalues inside the unit circle and one eigenvalue equal to unity. The matrix Λ shares
the same eigenvectors as S and M.

Proof See appendix A.3. �

By substituting the factorization (A.7.8) of Ψ(z) into (A.7.5), the following expectational difference
equation is obtained:

Et

[
(I− βΛF)Λ−1(I−ΛL)Pt

]
= K(ηyιyt + ηzzt) (A.7.10)

Because Lemma 2 demonstrates that matrix Λ has no eigenvalues outside the unit circle and since 0 < β < 1,
the matrix βΛ has only eigenvalues strictly inside the unit circle. Thus the inverse of (I − βΛF) has the
following convergent Taylor series expansion:

(I− βΛF)−1 =
∞∑

j=0

βjΛjFj (A.7.11)

Hence, multiplication of both sides of (A.7.10) by (I − βΛF)−1Λ yields the following expression, which is
equivalent to the set of pricing equations in (3.1.5):

Pt = ΛPt−1 + Λ
∞∑

j=0

(βΛ)jKEt[ηyιyt+j + ηzzt+j ] (A.7.12)

Next, note that because S and Λ are simultaneously diagonalizable (sharing the same matrix of eigen-
vectors V), the results of Lemmas 1 and 2 imply that ι is an eigenvector of Λ corresponding to the eigenvalue
of unity. Finally, observe that the price level vector Pt can be decomposed into a relative price vector ρt

and an overall price level component as Pt = ρt + ιPt. It follows that (I − Λ)Pt−1 = (I − Λ)ρt−1, and
therefore

Pt −ΛPt−1 = πt + (I−Λ)ρt−1 (A.7.13)

where πt = Pt − Pt−1 has been used. By substituting (A.7.13) into (A.7.12), the set of pricing equations
(3.1.6) in terms of inflation rates and relative prices is obtained. This completes the proof.

A.8 Proof of Proposition 3

The aggregate demand component ut from (3.2.3) is constructed using (3.2.2). Since Lemma 2 shows that Λ

and S are simultaneously diagonalizable, the matrix V of eigenvectors of S can also be used to diagonalize
powers of Λ, and so Λj = VDΛj

V−1. By substituting this into the definition of ut from (3.2.2):

ut = ηyω
′V

∞∑
j=0

βjDΛj+1
V−1κEtyt+j (A.8.1)

Using the result of Lemma 1 that ω′V = ι′ and the definition κκκ ≡ V−1κ, equation (A.8.1) becomes:

ut = ηyι
′
∞∑

j=0

βjDΛj+1κκκEtyt+j (A.8.2)
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Since DΛ is a diagonal matrix, equation (A.8.2) can be written explicitly as follows:

ut = ηy

∞∑
j=0

βj

(
n∑

i=1

κiζ
Λ
i

j+1

)
Etyt+j (A.8.3)

By comparing this with (3.2.3), it is clear that µj is given by:

µj = ηyβ
j

n∑
i=1

κiζ
Λ
i

j+1
(A.8.4)

To establish the sign of this expression, the following result is needed:

Lemma 3 The system of equations Vκκκ = κ has a unique solution, and each element of the n× 1 solution
vector κκκ is strictly positive.

Proof See appendix A.4. �

Together, equation (A.8.4), the inequalities in (A.7.9), the result of Lemma 3, and the fact that 0 < β < 1
and ηy > 0 imply that µj > 0 for all j. To establish the claim about the rate of decay of the sequence
{µj}∞j=0, note that (A.8.4), (A.7.9) and Lemma 3 imply:

β − µj+1

µj
= β

(∑n
i=2 κi(1− ζΛ

i )ζΛ
i

j+1∑n
i=1 κiζΛ

i
j+1

)
> 0 (A.8.5)

This implies that 0 < µj+1 < βµj for all j ≥ 0, completing the proof of the proposition.

A.9 Proof of Proposition 4

Suppose that there are only aggregate cost-push shocks, that is, zt = ιzt, and that the overall set of
determinants of inflation xt ≡ ηyyt + ηzzt follows a stationary AR(1) process, so xt = axt−1 + υt. The
coefficient a satisfies |a| < 1 and {υt} is a white noise shock, υt ∼ IID(0, σ2

υ).
The following result is useful in proving this proposition:

Lemma 4 Suppose xt is the n× 1 vector defined by xt ≡ ηyιyt + ηzzt. If all elements of the vector xt are
identical and equal to xt so that xt = ιxt then the following expressions for the vectors of price levels Pt and
inflation rates πt can be obtained,

Pt = V
∞∑

j=0

DΛj+1
∞∑

k=0

(βDΛ)kκκκEt−jxt−j+k (A.9.1a)

πt = VDΛ
∞∑

k=0

(βDΛ)kκκκEtxt+k − V
∞∑

j=1

(I−DΛ)DΛj
∞∑

k=0

(βDΛ)kκκκEt−jxt−j+k (A.9.1b)

where the n × 1 vector κκκ ≡ V−1κ has been defined. Similarly, expressions for the aggregate price level Pt

and inflation rate πt can be deduced,

Pt =
n∑

i=1

κi

∞∑
j=0

ζΛ
i

j+1
∞∑

k=0

(βζΛ
i )kEt−jxt−j+k (A.9.2a)

πt =
n∑

i=1

κiζ
Λ
i

∞∑
k=0

(βζΛ
i )kEtxt+k −

n∑
i=2

κi

∞∑
j=1

(1− ζΛ
i )ζΛ

i
j
∞∑

k=0

(βζΛ
i )kEt−jxt−j+k (A.9.2b)

where κi is the i-th element of the vector κκκ.
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Proof See appendix A.5. �

Since {xt} is an AR(1) process, Etxt+k = akxt, and hence:

∞∑
k=0

(βζΛ
i )kEtxt+k = (1− βaζΛ

i )−1xt (A.9.3)

Note that since 0 < ζΛ
i ≤ 1, 0 < β < 1 and |a| < 1, the term (1 − βaζΛ

i )−1 is strictly positive. Using
(A.9.3), equation (A.9.2b) implies that the stochastic process for economy-wide inflation {πt} is given by:

πt =
n∑

i=1

κiζ
Λ
i (1− βaζΛ

i )−1xt −
n∑

i=2

κi

∞∑
j=1

(1− ζΛ
i )ζΛ

i
j
(1− βaζΛ

i )−1xt−j (A.9.4)

As ρt−1 is a relative price vector, it must be the case that ω′ρt−1 = 0, and so the definition of the current
level of intrinsic inertia xt in (3.2.1) is equivalent to xt = −ω′(I−Λ)ρt−1. Since Lemmas 1 and 2 show that
ι is an eigenvector of Λ with a corresponding eigenvalue of one, it follows that (I−Λ)ρt−1 = (I−Λ)Pt−1.
And because V diagonalizes Λ, the matrix I − Λ can be written as (I − Λ) = V(I − DΛ)V−1. Together
with the normalization of the eigenvectors ω′V = ι′, the definition κκκ ≡ V−1κ, and equation (A.9.1a), the
current inertial component of inflation xt is equal to:

xt = −
n∑

i=1

κi(1− ζΛ
i )

∞∑
j=0

ζΛ
i

j+1
∞∑

k=0

(βζΛ
i )kEt−1−jxt−1−j+k (A.9.5)

By substituting the expression for the sum from (A.9.3) into (A.9.5) and noting that ζΛ
1 = 1, intrinsic

inertia xt can be written as:

xt =
∞∑

j=1

{
−

n∑
i=2

κi(1− ζΛ
i )ζΛ

i
j
(1− βaζΛ

i )−1

}
xt−j (A.9.6)

The expression for inflation from (A.9.4) in terms of the history of {xt} is then substituted into the alter-
native definition of intrinsic inertia from (3.2.8) to give:

xt =
∞∑

j=1

{
γj

(
n∑

i=1

κiζ
Λ
i (1− βaζΛ

i )−1

)
−

j−1∑
k=1

γj−k

(
n∑

i=2

κi(1− ζΛ
i )ζΛ

i
k
(1− βaζΛ

i )−1

)}
xt−j (A.9.7)

The two expressions for xt in (A.9.6) and (A.9.7) are equivalent when all the coefficients of the history
{ xt−1 , xt−2 , . . . } are the same in both equations. A recursive formula for the sequence {γj}∞j=1 is
obtained by equating coefficients:

γj = −
∑n

i=2 κi(1− ζΛ
i )ζΛ

i
j(1− βaζΛ

i )−1∑n
i=1 κiζΛ

i (1− βaζΛ
i )−1

+
j−1∑
k=1

(∑n
i=2 κi(1− ζΛ

i )ζΛ
i

k(1− βaζΛ
i )−1∑n

i=1 κiζΛ
i (1− βaζΛ

i )−1

)
γj−k (A.9.8)

Since (1−βaζΛ
i )−1 > 0, κi > 0 and ζΛ

i > 0 for all i, and ζΛ
i < 1 for i ≥ 2 are obtained from the inequalities

in (A.7.9) and Lemma 3, the value of γ1 is negative, and by induction, so are all the other coefficients γj

for j ≥ 1. This completes the proof of the proposition.

A.10 Proof of Theorem 1

The intrinsic impulse response function for inflation can be obtained as the usual impulse response function
under the assumption of a common white-noise cost-push shock for all industries if the shock and any
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resulting intrinsic inflation inertia are fully accommodated, so that there are no output gap fluctuations.
Formally, this means that yt = 0 and zt = ινt, where νt ∼ IID(0, σ2

ν) is a white-noise shock. The intrinsic
impulse response function {p(j)}∞j=0 can then be obtained from the coefficients of the MA(∞) representation
of inflation πt in terms of the shock νt,

πt = l
∞∑

j=0

p(j)νt−j (A.10.1)

where the multiplicative factor l is introduced because the intrinsic impulse response function is normalized
so that p(0) = 1. The MA(∞) representation of inflation can be obtained by making use of the results in
Lemma 4.

The complete accommodation of the white-noise cost-push shock and of any resulting intrinsic inflation
inertia that characterizes the intrinsic impulse response function formally requires that πt = xt + zt at all
times. From (3.2.4) this is clearly equivalent to ut = 0 in all time periods, which in turn by using equation
(3.2.3) means that yt is always zero. Thus if xt ≡ ηyιyt + ηzzt then xt = ηzινt, and so Lemma 4 can be
applied with xt = ηzνt. Since {νt} is a white noise process, Etxt+k = 0 for all k ≥ 1. Hence equation
(A.9.2b) implies the following MA(∞) representation for inflation:

πt =

(
ηz

n∑
i=1

κiζ
Λ
i

)
νt −

∞∑
j=1

(
ηz

n∑
i=2

κi(1− ζΛ
j )ζΛ

i
j

)
νt−j (A.10.2)

By comparing the above with equation (A.10.1) and equating coefficients of νt, the intrinsic impulse response
function is given by:

p(j) =

1 if j = 0

−
∑n

i=2 κi(1−ζΛ
i )ζΛ

i
j∑n

i=1 κiζΛ
i

if j = 1, 2, . . .
(A.10.3)

The multiplicative constant in (A.10.1) is set to l = ηz
∑n

i=1 κiζ
Λ
i because the normalization p(0) = 1 has

been adopted. Since all the κi are strictly positive according to Lemma 3, and as (A.7.9) shows that ζΛ
i > 0

for all i and ζΛ
i < 1 for i ≥ 2, the fact that p(j) < 0 for all j ≥ 1 can be deduced from the expression for

the intrinsic impulse response function in (A.10.3). This completes the proof of the theorem.

A.11 Proof of Theorem 2

If the expression for the hypothetical New Keynesian Phillips curve in (3.3.2) with discount factor β and
short-run slope κ is iterated forwards, then the following equation for the inflation rate Πt(β, κ) is obtained:

Πt(β, κ) = κ
∞∑

j=0

βjEtxt+j (A.11.1)

By substituting equation (A.11.1) into the result (A.9.2b) from Lemma 4, the actual inflation rate can be
written in terms of the current and past inflation rates generated by n hypothetical New Keynesian Phillips
curves:

πt = Πt(β, κ1) +
n∑

i=2

ζΛ
i

Πt(βζΛ
i , κi)− (1− ζΛ

i )
∞∑

j=1

ζΛ
i

j−1
Πt−j(βζΛ

i , κi)

 (A.11.2)

To verify the claim in (3.3.3), the discount factors used in the hypothetical NKPCs are set to β̃i ≡ βζΛ
i , and

the slopes to κ̃i ≡ κi. The results from (A.7.9) and Lemma 3 ensure that the inequalities 0 < β̃i ≤ β < 1
and 0 < κ̃i < ∞ are satisfied. The coefficients cij from (3.3.3) are then given by ci0 ≡ ζΛ

i > 0, and
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cij ≡ (1− ζΛ
i )ζΛ

i
j−1

> 0 for j ≥ 1 and i ≥ 2. This completes the proof.

A.12 Proof of Theorem 3

All the results of this theorem are derived under the assumption that the aggregate forcing variable xt follows
a stationary AR(1) process, as given in equation (3.3.4), with non-negative serial correlation (0 ≤ a < 1).
By iterating (3.3.4) backwards, xt is expressed as a sum of current and past white-noise shocks υt:

xt =
∞∑
l=0

alυt−l (A.12.1)

Thus the impulse response function of xt to a shock υt is the geometric series {aj}∞j=0. The corresponding
impulse response function J (j) of inflation in the case of homogeneity is simply proportional to this. As
J (j) is normalized so that J (0) = 1, it follows from (A.12.1) that J (j) = aj . The analysis below derives
the corresponding impulse response function I (j) of inflation with heterogeneous price stickiness for the
same stochastic process (3.3.4) of the cost-push shock.

Equation (3.3.4) implies that the conditional expectation of future xt is given by Etxt+k = akxt for
all k ≥ 0. This formula for the conditional expectation can be used together with (A.12.1) and equation
(A.9.2a) from Lemma 4 to obtain an expression for the aggregate price level Pt in terms of the history of
white noise shocks {υt, υt−1, . . .}:

Pt =
n∑

i=1

κi

∞∑
j=0

ζΛ
i

j+1
∞∑

k=0

(βζΛ
i )k

∞∑
l=0

ak+lυt−j−l (A.12.2)

By changing the order of summation in the above, the following alternative formula for Pt is found:

Pt =
n∑

i=1

κi

( ∞∑
k=0

(βaζΛ
i )k

) ∞∑
j=0

(
ζΛ
i

j+1
j∑

l=0

(a/ζΛ
i )l

)
υt−j (A.12.3)

The geometric sums appearing in (A.12.3) can be eliminated from the expression for the price level as
follows:

Pt =
∞∑

j=0

(
n∑

i=1

κiζ
Λ
i

1− βaζΛ
i

(
ζΛ
i

j+1 − aj+1

ζΛ
i − a

))
υt−j (A.12.4)

The stochastic process for economy-wide inflation πt = Pt − Pt−1 is then obtained by first-differencing
(A.12.4):

πt =
∞∑

j=0

(
n∑

i=1

κiζ
Λ
i

1− βaζΛ
i

(
(1− a)aj − (1− ζΛ

i )ζΛ
i

j

ζΛ
i − a

))
υt−j (A.12.5)

In equation (3.3.5), the MA(∞) representation of inflation is denoted by πt = l
∑∞

j=0 I (j)υt−j , where the
positive constant l is introduced to ensure that I (0) = 1. By comparing this with (A.12.5), the coefficient
I (j) and the constant l are given by:

I (j) =
1
l

n∑
i=1

κiζ
Λ
i

1− βaζΛ
i

(
(1− a)aj − (1− ζΛ

i )ζΛ
i

j

ζΛ
i − a

)
, l ≡

n∑
i=1

κiζ
Λ
i

1− βaζΛ
i

(A.12.6)

The first claim to prove is that I (j) < J (j) for all j ≥ 1. Since J (j) = aj and ζΛ
1 = 1, the formula
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for I (j) in equation (A.12.6) can be used to show that this inequality holds if and only if:

n∑
i=2

κiζ
Λ
i (1− ζΛ

i )
1− βaζΛ

i

(
ζΛ
i

j − aj

ζΛ
i − a

)
> 0 (A.12.7)

This expression is indeed positive for all j ≥ 1 because 0 < β < 1 and 0 ≤ a < 1 hold by assumption,
the inequalities in (A.7.9) demonstrate that 0 < ζΛ

i < 1 for all i ≥ 2, and Lemma 3 shows that κi > 0 for
all i. Finally, ζΛ

i
j − aj and ζΛ

i − a must always have the same sign for j ≥ 1 because both ζΛ
i and a are

non-negative and less than one for i ≥ 2. This establishes that I (j) decays more rapidly than J (j).
The next part of the theorem concerns the shape of the impulse response function I (j) with hetero-

geneity. Define the following function f(τ ; ζ, a) of continuous time τ ≥ 0 with parameters 0 < ζ ≤ 1 and
0 ≤ a < 1:

f(τ ; ζ, a) ≡ (1− a)aτ − (1− ζ)ζτ

ζ − a
(A.12.8)

The coefficient I (j) from (A.12.6) can be written as a sum of terms involving f(j; ζΛ
i , a) for each eigenvalue

ζΛ
i of Λ,

I (τ) =
1
l

n∑
i=1

κiζ
Λ
i

1− βaζΛ
i

f(τ ; ζΛ
i , a) (A.12.9)

where I (τ) is treated as a function of continuous time for convenience, even though the results only involve
I (τ) evaluated at a discrete set of points. Note that the inequalities 0 < β < 1, 0 ≤ a < 1, together with
those in (A.7.9) and Lemma 3 imply that the coefficients of the functions f(τ ; ζΛ

i , a) in (A.12.9) are strictly
positive.

By repeatedly differentiating the function f(τ ; ζ, a) in (A.12.8) with respect to time τ , the following
expression is found for the k-th order derivative, denoted by f(k)(τ ; ζ, a):

f(k)(τ ; ζ, a) = (−1)k (log a−1)k(1− a)aτ − (log ζ−1)k(1− ζ)ζτ

ζ − a
(A.12.10)

Note that f(k)(τ ; ζ, a) and all its derivatives are continuous functions of time τ . It can be seen from (A.12.10)
that (−1)kf(k)(0) > 0 for all k, and limτ→∞ f(k)(τ) = 0, given the parameter restrictions 0 < ζ ≤ 1 and
0 ≤ a < 1. Equation (A.12.9) implies that the time derivatives of I (τ) can be obtained from those of
f(τ ; ζ, a), again with a sum involving the derivatives evaluated at all n eigenvalues ζΛ

i :

I (k)(τ) =
1
l

n∑
i=1

κiζ
Λ
i

1− βaζΛ
i

f(k)(τ ; ζΛ
i , a) (A.12.11)

Thus all the derivatives of I (τ) inherit continuity from f(τ ; ζ, a). And using the equivalent results for
f(k)(τ ; ζ, a) derived above, equation (A.12.11) implies that (−1)kI (k)(0) > 0 for all k and limτ→∞ I (k)(τ) =
0. By substituting (A.12.10) into (A.12.11) and rearranging:

I (k)(τ) = (−1)k(log a−1)k 1
l

n∑
i=1

κiζ
Λ
i

1− βaζΛ
i


(1− a)aτ −

(
log ζΛ

i
−1

log a−1

)k

(1− ζΛ)ζΛ
i

τ

ζΛ
i − a

 (A.12.12)

This expression for I (k)(τ) can be used to deduce the following inequalities involving the k-th and (k+1)-th
order derivatives of I (τ),

I (k+1)(τ)
(log a−1)k+1

< − I (k)(τ)
(log a−1)k (k even)

> − I (k)(τ)
(log a−1)k (k odd)

(A.12.13)
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where the direction of the inequality depends on whether k is odd or even.
Since I (0) is known to be positive, there are two mutually exclusive and exhaustive possibilities. First,

that I (τ) remains strictly positive for all τ ≥ 0. Second, that there is at least one point in finite time at
which I (τ) is non-positive.

First consider the case where I (τ) is everywhere positive. The inequality in (A.12.13) then implies that
I ′(τ) is negative for all τ , which in turn implies I ′′(τ) is positive everywhere, and so on. So in this case,
(−1)kI (k)(τ) > 0 for all τ ≥ 0 and all k. Thus all even-order derivatives of I (τ) are positive everywhere,
and all odd orders are negative everywhere. This means that I (τ) is everywhere positive and decreasing,
which corresponds to “case (ii)” in the statement of the theorem.

Now consider the case where I (τ) is non-positive somewhere. Since I (τ) is a continuous function,
there must exist a smallest τ0 > 0 where the function is first equal to zero. It can then be deduced that
I (τ) must be negative in a neighbourhood to the right of τ0, because inequality (A.12.13) implies that were
the function not to become negative immediately after passing τ0, then it would necessarily be decreasing
in this range, which is not possible since it has already reached zero at τ0.

Observe that once I (τ) has become negative after τ0, it cannot become positive again for larger
values of τ . Were this to happen, because I (τ) is a continuous function there would have to be a point
where I (τ) cuts the horizontal axis from below. However, the inequality (A.12.13) shows that as soon
as the function becomes positive, it would immediately become decreasing, which is not possible for a
continuously differentiable function. Thus I (τ) cutting the horizontal axis from below can be ruled out,
and hence I (τ) must remain negative for all τ > τ0. Finally, because I (τ) is negative after τ0, the fact
that it is a continuously differentiable function which tends to zero as τ →∞ means there must exist a first
turning point τ1 > τ0 where I ′(τ1) = 0. Hence, while I ′(τ) is initially negative, it must become positive
at some point.

These arguments are now generalized to apply to all the derivatives of I (τ). Start with the k-th
derivative I (k)(τ), where k is odd [even]. This derivative is known to be initially negative [positive], but
suppose that it becomes positive [negative] for the first time immediately after point τk > 0. Using a
version of the earlier argument, the inequalities in (A.12.13) imply that I (k)(τ) is increasing [decreasing]
in a neighbourhood to the right of τk, and must remain positive [negative] for all τ > τk. Because the
k-th derivative tends to zero as τ →∞, and since it is a continuous function, there must exist a first point
τk+1 > τk where I (k+1)(τk+1) = 0. Thus the (k + 1)-th derivative of I (τ) starts positive [negative], but
becomes negative [positive] for the first time after τk+1.

This argument can be applied inductively to deduce that there exists a sequence of points 0 < τ0 <

τ1 < τ2 < · · · < ∞ such that (−1)kI (k)(τ) > 0 if and only if τ < τk. Hence the function I (τ) is positive
and decreasing before τ0, negative and decreasing between τ0 and τ1, and negative and increasing after τ1.
This corresponds to “case (i)” in the statement of the theorem, and necessarily occurs whenever “case (ii)”
does not.

Finally, note that when a → 1, the function f(τ ; ζ, a) in (A.12.8) becomes:

lim
a→1

f(τ ; ζ, a) = ζτ (A.12.14)

This is positive for all τ , and since (A.12.9) shows that I (τ) is a linear combination of the functions
f(τ ; ζΛ

i , a) with positive coefficients, I (τ) must also be positive everywhere in this limiting case. Thus for
a sufficiently close to 1, the impulse response function I (j) is always in “case (ii)”. When a → 0, the
extrinsic persistence in the shock disappears, and the actual impulse response function I (j) tends to the
intrinsic impulse response function p(j). But the properties of p(j) derived in Theorem 1 demonstrate that
it falls within “case (i)”. Thus all the claims of the theorem are proved.
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