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Abstract

This paper documents the role of inflows (new listings) and outflows (sales) in explaining

the volatility and co-movement of housing-market variables. An ‘ins versus outs’ decomposition

shows that both flows are quantitatively important for housing-market volatility. The correlations

between sales, prices, new listings, and time-to-sell are stable over time, while the signs of their

correlations with houses for sale are found to be time varying. A calibrated search-and-matching

model with endogenous inflows and outflows and shocks to housing demand matches many of

the stable correlations and predicts that the correlations with houses for sale depend on the source

and persistence of shocks.
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1 Introduction

The importance of search frictions in buying and selling houses is widely acknowledged, with buyers
and sellers spending considerable amounts of time searching. The essence of the search approach to
markets is to understand how the stocks of buyers and sellers evolve through inflows and outflows.
Applied to the labour market, this has been the subject of an extensive literature. However, for
the housing market, there has been little work that aims to understand inflows and outflows jointly,
especially with regard to cyclical fluctuations.

This paper assembles a collection of stylized facts about the cyclical properties of a broad set of
U.S. housing-market variables over the last three decades, including house prices and the key stocks
and flows, comprising houses for sale, sales transactions, new listings, and the average time taken for
houses to sell. A calibrated search-and-matching model with both endogenous inflows (new listings)
and outflows (sales) is used to explain the empirical findings.

One contribution of the paper is to document two novel facts. First, both inflows and outflows
are quantitatively important in understanding housing-market volatility. This is shown using an ‘ins
versus outs’ decomposition of the type that has been applied to the labour market. Here, the stock of
houses for sale is the equivalent of unemployment, the evolution of which depends on the difference
between new listings and sales. The second novel fact is that houses for sale does not have a stable
correlation with house prices, sales, or new listings, while correlations among all other pairs of
variables remain stable. The correlations among prices, sales, and new listings are all positive, while
the correlations of these with time-to-sell are all robustly negative (with the possible exception of
prices). In contrast, though the correlation of houses for sales with time-to-sell has been positive
throughout the period studied, the correlations of houses for sale with prices, sales, and new listings
have changed from positive to negative in recent times.

A second contribution of this paper is to demonstrate two new quantitative results using a stochas-
tic search-and-matching model with endogenous inflows and outflows. Central to the model is the
idea of idiosyncratic match quality between a house and its owner, and the dynamics of the distri-
bution of ongoing match quality. Decisions to buy houses are described by a cut-off rule whereby a
sale occurs when a draw of new match quality is above a certain threshold. Individual match quality
is a persistent variable, but is subject to occasional idiosyncratic shocks that degrade it. After such
shocks, homeowners decide whether to move house, and the moving decision is also described by a
cut-off rule for match quality. These decision processes give rise to an endogenous distribution of
match quality across all homeowners.

The first novel quantitative result is that housing-demand shocks coming from changes in interest
rates and expenditures complementary to housing can explain most of the patterns of co-movement
among housing-market variables. In the model, since moving house represents an investment in
match quality, interest rates affect the incentive to invest in better match quality by changing the rel-
ative importance of future payoffs compared to current costs. A fall in the real interest rate increases
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the total surplus from a transaction and raises the price paid by buyers. Hence, a lower interest rate
has a positive effect on house prices and new listings. A positive expenditure shock, associated with
an increase in the flow utility received from occupying a house, raises the total surplus from a trans-
action and thus increases house prices. This shock increases the rate at which transactions occur,
lowering time-to-sell. The positive expenditure shock also boosts homeowners’ incentives to invest
in better match quality by moving house, which leads to a rise in new listings, and these listings
ultimately result in more sales.

Match quality plays a crucial role in the workings of the model and its ability to explain the
stylized facts. The presence of a distribution of new match quality is central to generating a positive
correlation between sales and prices. Given the equilibrium distribution of match quality among
existing homeowners, a persistent housing-demand shock increases the incentive to invest in better
match quality, leading to more listings. This explains the positive correlation between new listings
and sales and prices.

The second quantitative result is that the model predicts different correlations between houses
for sale and other variables when there is a change to the source or persistence of housing-market
shocks. By simulating the model for two sub-sample periods, the lower measured persistence of the
empirical proxy for the housing-demand shock can explain the switch from positive to negative in
the correlations of houses for sale with sales, prices, and listings, as is seen empirically in recent
times. Therefore, the model can offer an explanation of why the signs of the correlations between
houses for sale and other variables have not been stable over time, while also being consistent with
most of the empirically stable correlations among other housing-market variables.

The relative importance of interest-rate and expenditure shocks also matters because positive
housing demand shocks from these two sources have opposite effects on time-to-sell. Lower interest
rates raise the return to searching and thus increase time-to-sell, leaving more houses on the market.
In contrast, positive expenditure shocks increase the desire to complete transactions and hence reduce
time-to-sell, depleting the stock of houses for sale.

The main reason for the switch in the sign of the correlations between houses for sale and sales,
prices, and new listings is a reduction in the measured persistence of the expenditure shock in the
second sub-sample. The key point is that new listings rise by more than sales with a more persistent
shock, which increases the stock of houses for sale. On the contrary, the less persistent shock
fails to induce enough moving to replenish the stock of houses for sale. This explanation comes
from understanding moving decisions as investments in match quality: a less persistent shock has a
smaller effect on the present value of future housing utility flows, so homeowners are less willing to
pay the upfront costs of moving.

The plan of the paper is as follows. Related literature is discussed below. Section 2 performs a de-
composition of housing-market volatility into inflow and outflow components, presents stylized facts
on housing-market cyclicality, and documents how the correlations among variables have changed
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over time. Section 3 presents the search-and-matching model with endogenous inflow and outflow
decisions. Section 4 performs simulations of the calibrated model subject to aggregate shocks and
assesses the model’s performance in accounting for the joint time-series behaviour of sales, prices,
new listings, time-to-sell, and houses for sale. Section 5 concludes.

Related literature There is a strand of literature starting from Wheaton (1990), and followed
by many others, including the current paper, that studies frictions in the housing market with a
search-and-matching model.1 Han and Strange (2015) is a recent survey of this literature. The key
contribution of this paper to the literature is in studying the role of new listings (inflows) alongside
that of sales (outflows) in understanding the cyclical patterns of volatility and co-movement among
housing-market variables.

Ngai and Sheedy (2020a) construct a time series for the inflow rate to the housing market using a
stock-flow accounting identity and show that it accounts for most of the long-run changes in the level
of sales. The current paper uncovers two new facts about housing-market cyclicality. First, inflows
are volatile and as important as outflows in accounting for housing-market fluctuations. Second,
inflows and outflows are positively correlated, and thus are associated with opposing effects on the
number of houses for sale. This observation is closely related to the fact that correlations between
houses for sale and other housing-market variables are not stable over time. In contrast, correlations
among other pairs of variables are stable. This paper uses a stochastic version of the model of
Ngai and Sheedy (2020a) to highlight how the source and persistence of shocks affect the predicted
responses of housing-market variables, which allows the model to replicate the changing correlations
between houses for sale and sales, prices, and new listings that are seen over time.2

Smith (2020) also documents and studies the patterns of volatility and co-movement among new
listings, sales, and houses for sale using data from the South Central Wisconsin Multiple Listing
Service (SCWMLS) for Dane County between January 1997 and December 2007. The data in the
current paper cover the whole of the U.S. and span three decades, and one contribution is in showing
that the correlations between houses for sale and other variables have been time varying. While
Smith (2020) focuses on generating hot and cold spells in sales in a stock-flow matching model with
endogenous entry of sellers, the model in the current paper explores how moving decisions respond
to aggregate shocks, generating endogenous entry of buyers and sellers to understand the cyclical

1See, for example, Albrecht, Anderson, Smith and Vroman (2007), Anenberg and Bayer (2020), Aruoba, Davis and
Wright (2016), Caplin and Leahy (2011), Coles and Smith (1998), Dı́az and Jerez (2013), Gabrovski and Ortego-Marti
(2019), Garriga and Hedlund (2020), Guren (2018), Han, Ngai and Sheedy (2022), Head, Lloyd-Ellis and Sun (2014),
Hedlund (2016a), Ioannides and Zabel (2019), Krainer (2001), Moen, Nenov and Sniekers (2021), Ngai and Tenreyro
(2014), Ngai and Sheedy (2020a), Novy-Marx (2009), Piazzesi and Schneider (2009), Piazzesi, Schneider and Stroebel
(2020), and Smith (2020).

2Davis and Heathcote (2005) is one of the first studies to look at housing and the business cycle, exploring the
role of residential investment. Another strand of the literature focuses on credit constraints, for example, see Fisher
and Gervais (2011), Iacoviello (2005), Ortalo-Magné and Rady (2005), Stein (1995), and Ungerer (2015). Davis and
Van Nieuwerburgh (2015) provide a survey of housing and business cycles.
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behaviour of the housing market.
In exploring fluctuations in the housing market, Dı́az and Jerez (2013) is the closest to the current

paper in terms of its goals of examining a range of important housing-market statistics and explaining
their cyclical patterns using a search-and-matching model. The main empirical contributions here
relative to theirs are to document new business-cycle facts related to new listings, and to show that
the correlations of houses for sale with sales, prices, and new listings have not been stable over time.3

Following Dı́az and Jerez (2013), this paper uses real expenditures on ‘furnishings and durable
household equipment’ to calibrate a housing-demand shock. In their model, this demand shock
on its own cannot generate the observed positive correlations between sales and prices, or between
houses for sale and prices.4 Here, this persistent demand shock alone successfully generates these
two positive correlations. In the model, the endogeneity of moving decisions means that a housing-
demand shock induces more moving, acting like a moving-rate shock, as well as increasing the
supply of houses on the market, acting like a housing-supply shock. Thus, one housing-demand
shock replicates the three correlated, reduced-form shocks needed in Dı́az and Jerez (2013).5

Motivated by the positive correlation between houses for sale and prices documented by Dı́az
and Jerez (2013) prior to 2010, Gabrovski and Ortego-Marti (2019) argue that the housing market
features an upward-sloping Beveridge curve, that is, a positive correlation between houses for sale
and the number of buyers. Using an exogenous-moving model, they show that endogenous entry of
houses and buyers can generate such a positive correlation. The current paper shows that the endoge-
nous moving decision of homeowners (related to ‘own-to-own’ moves) naturally implies a positive
correlation between houses for sale and the number of buyers in response to aggregate shocks. The
quantitative analysis demonstrates that persistent demand shocks can generate the observed positive
correlation between houses for sale and prices seen prior to 2010 by inducing plenty of moving by
homeowners. Furthermore, less persistent demand shocks in the period after 2010 induce smaller
increases in moving — not enough to replenish the stock of houses for sale, and thus generate the
observed post-2010 negative correlation between houses for sale and prices.

Anenberg and Bayer (2020) and Moen, Nenov and Sniekers (2021) also emphasize the role
of own-to-own moves in amplifying fundamental shocks. They focus on the decision to buy first
or sell first, while assuming an exogenous moving rate; here, the focus is on how the moving rate
responds to fundamental shocks. The main objective of Anenberg and Bayer (2020) is to demonstrate
own-to-own moves are very volatile and can amplify cyclical house-price volatility. The objective

3Hedlund (2016b) also documents cyclical facts about sales, time-to-sell, prices, and foreclosures. His focus is on
foreclosures, and he does not study houses for sale or new listings.

4See Garriga and Hedlund (2020), Hedlund (2016b), and Gabrovski and Ortego-Marti (2019) for the roles of en-
dogenous housing illiquidity and entry of buyers and sellers in generating a positive correlation between prices and
sales.

5To be precise, their Table 4 reports negative correlations between prices and sales when there are only demand
and/or supply shocks. They show a positive correlation is obtained only when they introduce a third correlated moving
shock (Table 5), or in a model with a match-quality distribution (Table 9). They cannot obtain a positive correlation
between houses for sale and prices in any of these cases.
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here is similar, but the current paper looks at how own-to-own moves can endogenously respond to
fundamental housing-demand shocks. Moen, Nenov and Sniekers (2021) present evidence on the
importance of the order of buying and selling houses, and show that strategic complementarity in the
order of transactions can give rise to multiple equilibria. Here, the current paper presents evidence
on the cyclical behaviour of listings, and explains the observed patterns of correlation by studying
homeowners’ moving decisions.

2 The cyclical behaviour of housing-market variables

This section presents new empirical facts about housing-market cyclicality. The data used cover the
U.S. from January 1991 to December 2019. The Federal Housing Finance Agency (FHFA) provides
a monthly repeat-sales house-price index for single-family homes. Here, the purchase-only index
is used, which excludes refinancing. Data on this variable begin in January 1991. The repeat-sales
index is the best available price index that controls for the quality of the housing stock because it is
designed to measure price changes of the same houses. Real house prices are obtained dividing by
the Personal Consumption Expenditure (PCE) price index.

The National Association of Realtors (NAR) provides monthly estimates of the number of sales
transactions and inventories of unsold houses at the end of each month, available for both single-
family homes and condominiums. The coverage of the NAR data is existing homes only, so newly
constructed houses are excluded. For consistency with the FHFA house-price index, NAR data for
single-family homes are used, which constitute about 90% of total sales of existing homes.6

Following Ngai and Sheedy (2020a), a time series for houses newly listed for sale during a month
is constructed using a stock-flow accounting identity. Sales during month t are denoted by St , and
the inventory of all houses listed for sale but unsold as of the end of month t by It . Using NAR data
on St and It , new listings Nt during month t are given by Nt = It − It−1 + St because the change in
inventory (the stock of all properties listed for sale) is equal to the difference between inflows (new
listings) and outflows (sales).

A measure of the average number of houses available for sale during a month can be obtained
assuming inflows Nt and outflows St occur uniformly within a month. The term ‘houses for sale’ is
used to distinguish carefully between the total stock of properties listed for sale and the flow (new
listings). Houses for sale Ut during month t are Ut = (It + It−1)/2, the average of the inventory levels
at the ends of two adjacent months.7 Using houses for sale Ut , ‘time-to-sell’ Tt is defined as the ratio
of the houses on the market Ut to sales St during a month, that is, Tt =Ut/St .8

6Methodology and data for FHFA data are available at http://www.fhfa.gov. Methodology and recent data for
NAR are available at https://www.nar.realtor/research-and-statistics.

7Since the time series for inventories has a high degree of serial correlation, the measure of houses for sale Ut turns
out to be very closely related to inventories It (the correlation coefficient is 0.99).

8This measure is highly correlated with the ‘months supply’ number reported by NAR, which is defined as inventories
of unsold houses at the end of the previous month divided by the number of houses sold in the current month. The mean
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The non-seasonally adjusted data on prices and sales, and the constructed new listings, houses
for sale, and time-to-sell series are deseasonalized by removing multiplicative month effects.9 To
smooth out excess volatility due to measurement errors in the data, quarterly time series are con-
structed from the monthly series.10 The series used here cover the period from 1991Q1 to 2019Q4.

2.1 The ins and outs of houses for sale

In studying the housing market as a market subject to search frictions, the stock of houses for sale
is analogous to unemployment in the labour market. As in the labour literature, it is possible to
understand fluctuations in houses for sale in terms of changes in the rates of inflow and outflow to and
from the housing market. A higher inflow rate (more new listings) increases houses for sale; a higher
outflow rate (more sales) decreases houses for sale. Methodologically, this section follows the ‘ins
versus outs’ decompositions of unemployment fluctuations (Petrongolo and Pissarides, 2008, Fujita
and Ramey, 2009, Elsby, Hobijn and Şahin, 2013) to investigate the source of cyclical fluctuations
in houses for sale using the same techniques that have been applied in research on labour markets.

The inflow and outflow rates in the housing market are respectively the rate at which houses are
listed for sale and the rate at which they are subsequently sold. The sales rate st = St/Ut is measured
as the ratio of sales transactions St to houses for sale Ut . This is the inverse of the time-to-sell
measure Tt =Ut/St introduced earlier. The listing rate nt is the ratio of the number of new listings Nt

to the number of houses not currently listed for sale, that is, the difference between the total housing
stock K and houses for sale Ut . The formula for the listing rate is nt = Nt/(K −Ut). In practice,
since the total housing stock K far exceeds the number of houses for sale, the listing rate nt is close
to being proportional to the number of new listings Nt .

The inflow and outflow rates nt and st are calculated from the NAR data on sales and inventories
described earlier. These data are used to construct series for new listings Nt using the stock-flow
accounting identity, and houses for sale Ut . A measure of the total housing stock K is also needed
in calculating the inflow rate nt , however, the main effect of K is on the average level of the inflow
rate nt , not the cyclical fluctuations that are the focus of this paper.11 It turns out to make little
difference to the following inflow-outflow decomposition exactly what value of K is used within a
reasonable range. For the purposes of this study, the total housing stock should measure all houses
that are either for sale or might be put up for sale, and the number should be consistent with the sales
and inventories data from NAR on existing single-family homes. Using information from the U.S.

of Tt is 6.4 months, compared to 6.6 for ‘months supply’, and the correlation coefficient is 0.99.
9In logarithms, the differences between the average for each month of the year and the overall average are subtracted

for each variable.
10Sales and new listings are summed for the months of a quarter; houses for sale are averaged over the months in a

quarter.
11The total housing stock K is treated as a constant here because high-frequency data are not available. The role of a

time trend in the housing stock in explaining long-run changes in sales volumes is explored in Ngai and Sheedy (2020a).
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Census Bureau American Housing Survey and New Residential Construction data, the total housing
stock K is set to be 50 million as an approximation.

Figure 1 plots the quarterly inflow and outflow rates. These are used to perform an inflow-outflow
decomposition of fluctuations in houses for sale ut = Ut/K as a fraction of the total housing stock.
Using the stock-flow accounting identity, the law of motion for ut is approximately

∆ut ≈ nt(1−ut)− stut , (1)

where nt(1−ut) is the inflow and stut is the outflow, both relative to the total stock of houses.12

Figure 1: Inflow and outflow rates in the housing market
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Notes: Quarterly time series from 1991Q1 to 2019Q4. The original monthly data are seasonally adjusted by
removing multiplicative month effects and then converted to a quarterly frequency.
Source: NAR.

Several commonly used methods for performing the decomposition are based on the time-varying

12A refinement of this equation uses estimates of the continuous-time inflow and outflow rates to account explicitly
for flows occurring within time periods, as is done, for example, in Petrongolo and Pissarides (2008). Note however
that houses for sale ut is calculated using an average of beginning-of-period and end-of-period inventory, which partially
addresses this issue. In practice, there is no significant impact on the results presented below if continuous-time rates nt
and st are calculated using the method of Petrongolo and Pissarides (2008).
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steady state u∗t of the fraction of houses for sale, that is, the value of ut such that ∆ut = 0 in (1):

u∗t =
nt

st +nt
. (2)

The argument for focusing on u∗t instead of the actual ut is that convergence to the steady state
is expected to be rapid: the rate of convergence is the sum of the inflow and outflow rates. It is
implicitly assumed that ut is close enough to u∗t to study the contributions of inflow and outflow
rates to fluctuations in ut through the effects of nt and st on u∗t in (2).

Fujita and Ramey (2009) note that changes in logu∗t over time are approximately given by

∆ logu∗t ≈ (1−u∗t )(∆ lognt −∆ logst), (3)

where ∆ lognt and ∆ logst are the changes in log inflow (listing) and outflow (sales) rates. From this
equation, the inflow-outflow decomposition is obtained by calculating the coefficients γn and γs:

γn =
Cov[∆ logu∗t ,(1−u∗t )∆ lognt ]

Var[∆ logu∗t ]
, and γs =

Cov[∆ logu∗t ,−(1−u∗t )∆ logst ]

Var[∆ logu∗t ]
. (4)

The method in Petrongolo and Pissarides (2008) is similar, but uses an exact decomposition of ∆u∗t
rather than the approximation of ∆ logu∗t in (3), though this difference between the methods does not
have a quantitatively significant effect on the results.13 More importantly, Petrongolo and Pissarides
(2008) calculate the decomposition coefficients γn and γs using only data points where the difference
between ∆ut and ∆u∗t is no more than 10% of ut , which excludes time periods where the steady-state
equation (2) does not accurately describe houses for sale ut . Another way to address this is to use
the decomposition method proposed by Elsby, Hobijn and Şahin (2013), which explicitly takes into
account the transitional dynamics of ut when it is not close to u∗t .14

The results of the three decomposition methods are shown in Table 1. From the size of the γn

coefficients, all methods indicate that changes in the inflow (listing) rate are quantitatively important
in explaining fluctuations in houses for sale. Those methods that account for deviations of ut from
u∗t , and thus the presence of transitional dynamics, also find that changes in outflow (sales) rates are
quantitatively important.

13The method is based on the exact decomposition of ∆u∗t = u∗t −u∗t−1 that follows from equation (2):

∆u∗t = (1−u∗t )u
∗
t−1

∆nt

nt−1
− (1−u∗t−1)u

∗
t

∆st

st−1
.

14This is based on the following approximation:

∆ logut = ρt

(
(1−u∗t )(∆ lognt −∆ logst)+

(1−ρt−1)

ρt−1
∆ logut−1

)
,

where ρt = 1− e−(nt+st ) is the fraction of the gap between ut and u∗t closed in one time period.
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Table 1: Inflow-outflow decompositions of fluctuations in houses for sale

Method New listings (γn) Sales (γs)

Fujita and Ramey (2009) 0.898 0.101
Petrongolo and Pissarides (2008) 0.576 0.424
Elsby, Hobijn and Şahin (2013) 0.467 0.525

Notes: With the Petrongolo and Pissarides (2008) method, γn + γs = 1, but with the Fujita and Ramey (2009) and
Elsby, Hobijn and Şahin (2013) methods, the coefficients γn and γs need not sum to one exactly. There are residual
terms coming from first-order approximations (see equation 3) of ∆ logu∗t (0.001 using the Fujita and Ramey method,
and 0.008 for the Elsby, Hobijn and Şahin method). For the Elsby, Hobijn and Şahin method, there is also an initial
component of the decomposition coming from a deviation from steady state at the start of the sample (which is
negligible here).

While the methods used in the labour literature can be carried over and applied to study fluctua-
tions in the housing market, one fundamental difference in the behaviour of inflow and outflow rates
should be noted. As Figure 1 clearly shows, listing and sales rates are positively correlated. This
means that the effects on ut of increases in both nt and st go in opposite directions (see equation 1 for
∆ut , or 2 for u∗t .). In contrast, while there is a debate in the labour literature about whether inflows or
outflows are more important in explaining unemployment fluctuations, both effects are reinforcing
because job-separation and job-finding rates are negatively correlated. Consequently, it is not obvi-
ous whether to expect a positive or negative correlation of houses for sale with other housing-market
variables. Moreover, these correlations may not be stable over time. For example, Figure 1 shows
the U.S. housing market experiences a boom with rising sales and listing rates up to 2006, followed
by a collapse and then a recovery. During the boom period, the inflow rate rises proportionately
more than the outflow rate. However, during the post-2010 recovery period, the outflow rate rises
proportionately more than the inflow rate.

2.2 Volatility and co-movement of housing-market variables

This section documents patterns of volatility and co-movement across housing-market variables.
Standard deviations and correlation coefficients of sales transactions, house prices, new listings,
time-to-sell, and houses for sale are shown in Table 2. The data have been transformed into natural
logarithms to make the magnitudes of the cyclical fluctuations comparable across variables, and the
standard deviations are reported as percentages. A linear time trend is removed from all series to
isolate the cyclical components of variables.

Dı́az and Jerez (2013) present business-cycle facts for the housing market using data up to
2010.15 The current paper builds on this earlier empirical work in two important ways. First of

15A results table directly comparable to Dı́az and Jerez (2013), where data are detrended using the Hodrick-Prescott
filter, and a table based on data without any detrending are provided in appendix A.1.
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Table 2: Cyclical properties of housing-market variables

Sales Prices New listings Time-to-sell Houses for sale

Standard deviations, %
16.8 10.3 24.3 27.3 20.5

Correlation coefficients
Sales 1
Prices 0.67 1
New listings 0.83 0.60 1
Time-to-sell −0.66 −0.13 −0.55 1
Houses for sale −0.06 0.37 −0.06 0.79 1

Notes: Calculated from linearly-detrended natural logarithms of quarterly time series from 1991Q1 to 2019Q4. The
original monthly data are seasonally adjusted by removing multiplicative month effects and then converted to a
quarterly frequency.
Sources: FHFA and NAR.

all, new listings is included as an additional variable, which the ins-and-outs decomposition has
shown to be quantitatively important in accounting for housing-market fluctuations. Second, this
paper assembles data on sales transactions, average time-to-sell, and the number of houses for sale
from the same source rather than the three different sources used by Dı́az and Jerez (2013). More
specifically, in Dı́az and Jerez (2013), sales data are taken from NAR as here, time-to-sell is mea-
sured only for newly constructed houses (‘New Residential Sales’ from the U.S. Census Bureau),
and data on houses for sale come from the ‘vacant for sale’ measure provided by the U.S. Census
Bureau Housing Vacancy Survey. Note that this ‘vacant for sale’ data include only a small fraction
of the houses that are actually for sale because houses that are occupied but available for sale are
excluded. Vacant houses are only around 11% of all single-family homes sold.16

Consistent with what is known in the literature, Table 2 shows house prices and sales positively
co-move with a correlation coefficient of 0.67, there is a negative correlation between time-to-sell
and sales with correlation coefficient −0.66, and the volume of sales transactions is highly volatile.
In addition to these familiar facts, Table 2 reveals that new listings are also volatile, like sales.17

New listings positively co-move with sales and prices with correlation coefficients of 0.83 and 0.60
respectively, and negatively co-move with time-to-sell with correlation coefficient −0.55. Finally,
houses for sale are uncorrelated with sales volume and new listings, but positively correlated with
prices and time-to-sell. These last two positive correlations are also documented by Dı́az and Jerez
(2013) using ‘vacant for sale’ as the measure of houses for sale.

16See Table 1 of NAR’s methodological documentation.
17This is consistent with Bachmann and Cooper (2014), who show that housing turnover is volatile using data obtained

from the Panel Study of Income Dynamics on flows within the owner-occupied segment of the housing market.
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2.3 Is there time variation in correlations among housing-market variables?

To investigate whether the overall patterns of co-movement documented in Table 2 are stable or not
over time, correlation coefficients in rolling ten-year windows are calculated for pairs of housing-
market variables. The top panel of Figure 2 shows correlations of houses for sale with sales, prices,
new listings, and time-to-sell plotted at the midpoints of ten-year windows over the sample period.
It reveals all these correlations, with the exception of that with time-to-sell, change sign during
the sample period, becoming negative in the last decade. The middle panel of Figure 2 displays
correlations of time-to-sell with sales, prices, and new listings. It demonstrates there are stable
negative correlations of time-to-sell with new listings and sales, but the correlation of time-to-sell
with prices is unstable. Finally, the bottom panel of Figure 2 shows that correlations of sales with
prices and new listings are both stable over time. These conclusions are robust to detrending the data
with the Hodrick-Prescott filter or performing no detrending at all, as is shown in appendix A.1.

The findings provide evidence that there is no invariant structural relationship between houses for
sale and prices, new listings, or sales, nor between time-to-sell and prices. As shown later in section 4
using a calibrated search-and-matching model, the changing sign of the correlation coefficients can
be explained through variation in the persistence and nature of the shocks affecting the housing
market.

2.4 Directly measured listings using data from Redfin

Since the earlier findings on the behaviour of new listings in Table 2 and Figure 2 were based on
numbers imputed from NAR data using a stock-flow accounting identity, directly measured data
on new listings from Redfin are used as a robustness check.18 Redfin data on new listings, sales
transactions, inventories, prices, and days on the market are available monthly from February 2012.

The Redfin house-price series is divided by the PCE price index to obtain the real price of hous-
ing, as was done earlier for the FHFA price data. The stock of houses for sale is calculated as the
average of beginning- and end-of-month inventory, as was done with the NAR data. Days on the
market is divided by 30 to obtain a direct monthly measure of time-to-sell, which is used instead of
the Tt =Ut/St variable derived from the sales and inventory data. The Redfin data are seasonally ad-
justed and converted to a quarterly frequency in the same way as was done for the NAR data earlier,
but given that there are only seven years of data, the cyclical properties reported here are computed
without any detrending. The results using linearly detrended data can be found in Table A.3.

Table 3 reports standard deviations and correlation coefficients of the variables from the Redfin
dataset (numbers in bold) shown alongside the equivalent statistics calculated using the NAR and
FHFA data only for the period 2012Q2–2019Q4 where Redfin data are available. As seen in the

18Redfin is a real-estate brokerage with direct access to data from local Multiple Listing Services (MLS). Methodology
and data can be found at http://www.redfin.com/news/data-center/.
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Figure 2: Rolling correlations of housing-market variables
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Notes: Correlation coefficients in ten-year windows are calculated using linearly detrended and seasonally
adjusted quarterly time series in logarithms. The date on the horizontal axis is the mid-point of each ten-year
window.
Sources: FHFA and NAR.
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Table 3: Comparison with Redfin data, 2012Q2–2019Q4

Sales Prices New Time- Houses
listings to-sell for sale

Standard deviations, %
9.5 5.8 11.6 9.8 7.2 10.2 19.1 14.0 9.9 9.4

Correlation coefficients
Sales 1
Prices 0.94 0.77 1
New listings 0.92 0.81 0.89 0.57 1
Time-to-sell −0.95 −0.87 −0.97 −0.90 −0.90 −0.68 1
Houses for sale −0.83 −0.67 −0.88 −0.87 −0.67 −0.50 0.90 0.95 1

Notes: Calculated from natural logarithms of quarterly time series from 2012Q2 to 2019Q4 with no detrending.
The original monthly data are seasonally adjusted by removing multiplicative month effects and then converted to a
quarterly frequency. Redfin statistics are in bold, adjacent to the equivalent NAR and FHFA statistics.
Sources: Redfin, NAR, and FHFA.

table, the direct measure of new listings is slightly less volatile than the measure imputed from NAR
data, but its correlations with other housing-market variables are similar. This confirms the patterns
discussed earlier where houses for sale becomes negatively correlated with sales and prices in the
later part of the sample period. New listings are strongly positively correlated with sales and prices,
and negatively correlated with time-to-sell.

3 A search model with endogenous inflows and outflows

This section presents a stochastic version in discrete time of the endogenous-moving model of Ngai
and Sheedy (2020a). The model studies the decisions to buy and sell houses, and the decision to
move house. The key message of the model is that moving house is like an investment decision. As
with the analysis of the data in section 2, the model focuses on the market for existing homes. This
abstracts from new entry of houses due to either new construction or houses that were previously
rented, and abstracts from the entry of first-time buyers into the market.19

Households and houses There is an economy with a unit continuum of households and a unit
continuum of houses. Each house is owned by one household. Each house is either occupied by its

19It is implicit in the model that households moving house might temporarily use the rental market in between selling
and buying. The flow utility of renting net of rent payments is normalized to zero. The rental market is treated as a
distinct segment of the housing market, a view supported by Glaeser and Gyourko (2007) and Bachmann and Cooper
(2014), especially where the focus is on fluctuations in housing turnover within the owner-occupied segment of the
market.
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owning household in the sense of yielding a stream of utility flow values, or is listed for sale on the
market while the household searches for a buyer. A household can occupy at most one house at any
time, and searches for a house to buy and occupy if the household does not own a house that is not
listed for sale.20

Time is indexed by t, and households make decisions at discrete time intervals of length τ > 0.
All units of time are measured in years throughout. During an interval of time [t, t + τ), house-
holds discount future payoffs beyond t + τ at an exogenous and stochastic rate rt using the discount
factor βt = e−τrt . Expectations conditional on information available at time t are denoted by Et [·].
Within each time interval, households first decide whether to move house following the realization
of shocks, which gives rise to new listings that are added to the existing stock of houses for sale.
Search and matching then occurs between buyers and sellers, which leads to transactions in the
housing market when successful.

3.1 Behaviour of buyers and sellers

Search frictions The housing market is subject to search frictions. First, it is time-consuming and
costly for buyers and sellers to arrange viewings of houses. Let ut denote the measure of houses
listed for sale and bt the measure of buyers. Each buyer and each house can have at most one
viewing in the time interval [t, t + τ).21 For houses, this event has Poisson arrival rate M(ut ,bt)/ut ,
where M(u,b) is a constant-returns-to-scale meeting function (noting that not all viewings will lead
to matches). For buyers, the corresponding arrival rate is M(ut ,bt)/bt . During this process of search,
buyers incur flow search costs τF per interval of time τ .

Given the unit measure of houses, there are 1− ut houses that are already matched in the sense
of being occupied by a household. As there is also a unit measure of households, there must be ut

households not matched with a house, and thus in the market to buy. This means the measures of
buyers and sellers are the same (bt = ut). Given that the function M(u,b) features constant returns
to scale, the arrival rates of viewings for buyers and sellers are then both equal to m = M(1,1). This
m summarizes all that needs to be known about the frictions in locating houses to view.

The second aspect of the search frictions in the housing market is heterogeneity in buyer tastes
and the extent to which any given house will conform to these. The idiosyncratic utility flow value of
an occupied house is match specific, that is, particular to both the house and the household occupying

20In principle, households can own multiple houses. The assumptions made here imply that utility flows from houses
and listing decisions do not depend on the number of houses owned.

21Later, the model is calibrated so that a discrete time period [t, t + τ) is one week (τ = 1/52).
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it.22 When a viewing takes place, match quality ε is drawn from the probability distribution

ε ∼ Pareto(1,λ ), where P[ε ≤ w] = 1−w−λ . (5)

The Pareto distribution is chosen for analytical tractability. The minimum value of ε is normalized
to one, and the parameter λ > 1 determines the shape of the distribution. The variance of new match
quality is inversely related to the shape parameter λ .

Transactions When a viewing occurs, ε is drawn and becomes common knowledge among the
buyer and the seller. The value to a household of occupying a house with match quality ε is denoted
Ht(ε). By purchasing and occupying this house, the buyer loses the option of continuing to search,
which has present value βtEtBt+τ , where Bt is the value of being a buyer at time t. If the seller agrees
to an offer to buy, the gain is the transaction price, and the loss is the option value of continuing to
search, namely βtEtVt+τ , where Vt is the value of owning a house for sale. The buyer and seller also
face a combined transaction cost C. The total surplus Σt(ε) resulting from a transaction with match
quality ε at time t is therefore

Σt(ε) = Ht(ε)−βtEtJt+τ −C, where Jt = Bt +Vt , (6)

with Jt denoting the combined value of being a buyer and having a house for sale. Since the value
function Ht(ε) is increasing in ε , transactions occur if match quality ε is no lower than a threshold
yt , defined by Σt(yt) = 0. Intuitively, given that ε is observable to both buyer and seller and the
surplus is transferable between the two, the transactions that occur are those with positive surplus.
The transaction threshold yt satisfies the following equation:

Ht(yt) = βtEtJt+τ +C. (7)

The proportion πt of viewings that lead to transactions implied by the Pareto distribution of ε in (5)
with transaction threshold yt is

πt = y−λ
t . (8)

22A measure of the importance of the second friction is the average number of viewings needed before a house is
sold (or equivalently, before a buyer makes a purchase). Ngai and Sheedy (2020a) report that viewings per transaction
range from 9 to 15 using U.S. data from Genesove and Han (2012) and UK data from the Hometrack ‘National Housing
Survey’. The data reveal that the number of viewings per transaction is far greater than one, indicating there is substantial
uncertainty about match quality prior to a viewing. Moreover, the data show that variation in time-to-sell is associated
with movements in viewings-per-transaction in the same direction, and not simply due to variation in the time taken to
meet buyers.
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Using the density function λε−(λ+1) of the Pareto distribution (5), the expected surplus Σt from a
viewing before the value of ε becomes known is

Σt =
∫

∞

ε=yt

λε
−(λ+1)

Σt(ε)dε. (9)

Given the viewing rate m in the interval [t, t + τ) for both buyers and sellers, there is a probability
µ = 1− e−mτ that a buyer or a seller will make or receive a viewing in one discrete time period.
Hence, the Bellman equation for the combined buyer and seller value Jt is

Jt =−τ(F +D)+µΣt +βtEtJt+τ , (10)

where D is the flow maintenance cost of owning a home, which is incurred irrespective of whether
the owner is trying to sell.23 Intuitively, the first two terms capture the flow costs and benefits of
being a buyer and a seller, while the final term is the continuation value.

Bargaining If a transaction occurs, the house price pt(ε) is agreed according to Nash bargaining.
The surpluses of the buyer and the seller, conditional on the match quality between the buyer and
the house being ε , are

ΣB,t(ε) = Ht(ε)−βtEtBt+τ − pt(ε)− (1−κ)C, and ΣV,t(ε) = pt(ε)−βtEtVt+τ −κC, (11)

where κ is the fraction of the total transaction cost C borne directly by the seller. The value functions
Bt of the buyer and Vt of the seller satisfy the Bellman equations

Bt =−τF +βtEtBt+τ +µ

∫
∞

ε=yt

λε
−(λ+1)

ΣB,t(ε)dε, and (12a)

Vt =−τD+βtEtVt+τ +µ

∫
∞

ε=yt

λε
−(λ+1)

ΣV,t(ε)dε. (12b)

The Nash bargaining solution with bargaining power ω of the seller implies the surplus-splitting
equation (1−ω)ΣV,t(ε) = ωΣB,t(ε), and hence ΣV,t(ε) = ωΣt(ε), noting Σt(ε) = ΣB,t(ε)+ΣV,t(ε)

using (6) and (11). This equation determines the transaction price for a house with match quality ε

to its buyer:

pt(ε) = κC+βtEtVt+τ +ωΣt(ε). (13)

23The flow cost D also enters the value of being a homeowner Ht(ε), which appears in the expected surplus Σt .
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Transactions occur if ε ≥ yt , and the distribution of ε conditional on ε ≥ yt is Pareto(yt ,λ ), which
has density function λyλ

t ε−(λ+1). The average price Pt of all houses sold at time t is therefore

Pt = κC+βtEtVt+τ +ω

∫
∞

ε=yt

λyλ
t ε

−(λ+1)
Σt(ε)dε. (14)

3.2 Behaviour of owner-occupiers

Match quality A homeowner with match quality ε at time t receives a utility flow value of τεθt

during the time period [t, t + τ), where θt is an exogenous and stochastic component of housing
utility common to all homeowners. A flow maintenance cost τD is also incurred during that period.

Individual match quality ε is a persistent variable. However, households are sometimes subject
to idiosyncratic shocks that degrade match quality. These shocks can be thought of as life events
that make a house less well suited to the household’s current circumstances. At most one such shock
occurs in the time interval [t, t+τ). The arrival of these shocks follows a Poisson process with arrival
rate a. If a shock arrives, match quality ε is scaled down by a parameter δ with δ < 1. If no shock
occurs, match quality remains unchanged. Given match quality ε at time t, the stochastic process for
match quality ε ′ at time t + τ is

ε
′ =

ε w.p. α

δε w.p. 1−α

, (15)

where α = e−aτ is the probability that no idiosyncratic shock is received during [t, t + τ).

Listing decisions Following the arrival of idiosyncratic shocks, homeowners decide whether or not
to list their home for sale on the market. The value function Ht(ε) for an owner-occupier satisfies
the Bellman equation

Ht(ε) = τεθt +αβtEt max{Ht+τ(ε)− τD,Jt+τ −ζ}

+(1−α)βtEt max{Ht+τ(δε)− τD,Jt+τ},

where ζ is an inconvenience cost of moving faced only by those who do not experience an idiosyn-
cratic shock. This cost represents the inertia of families to remain in the same house. It is assumed
the model parameters are such that ζ is large enough to deter moving if no idiosyncratic shock is
received, that is, ζ > Jt+τ −Ht+τ(ε)+ τD, which holds when the cost ζ is large relative to the size
of the aggregate shocks specified below. In this case, the Bellman equation simplifies to

Ht(ε) = τεθt +αβtEt [Ht+τ(ε)− τD]+ (1−α)βtEt max{Ht+τ(δε)− τD,Jt+τ}. (16)
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When a shock to match quality is received, a homeowner decides to move if the match quality ε is
now below a moving threshold xt defined by

Ht(xt) = Jt + τD. (17)

If no idiosyncratic shock is received, a homeowner chooses not to move given that the inconvenience
cost ζ is sufficiently large. For those receiving idiosyncratic shocks, the decision to move depends
on all relevant variables including their own idiosyncratic match quality, and current and expected
future conditions in the housing market.

Aggregate shocks Analogous to an investment decision, homeowners compare the upfront costs
of moving such as C to expected discounted flows of housing utility. The two exogenous random
variables θt and rt act as sources of aggregate housing-demand shocks by varying future utility flows
and how they are discounted. Since the degree of persistence affects expected future flows, housing
utility θt (in logarithms) and the discount rate rt are modelled as exogenous AR(1) processes

logθt = φθ logθt−τ +ηθ ,t , where ηθ ,t ∼ i.i.d.(0,σ2
θ ), and (18a)

rt = (1−φr)r+φrrt−τ +ηr,t , where ηr,t ∼ i.i.d.(0,σ2
r ), (18b)

and φθ and φr are the persistence parameters, and σθ and σr are the standard deviations of the
innovations ηθ ,t and ηr,t respectively. The unconditional expected values of logθt and rt are zero (a
normalization) and r > 0 respectively, where r is the steady-state discount rate.

3.3 Solving the model

In the case of no aggregate shocks (ηθ ,t = 0 and ηr,t = 0 for all t, so θt = 1 and rt = r in 18), the model
becomes a discrete-time version of Ngai and Sheedy (2020a). With aggregate shocks, the solution
of the model for aggregate variables is obtained approximately using a first-order perturbation (log
linearization) around the deterministic steady state (σθ = 0 and σr = 0). The well-known problem
of non-differentiability in models with endogenous ‘lumpy’ adjustments — here, the decision to list
a house for sale — is overcome given two parameter restrictions, while the Pareto distribution of
new match quality significantly reduces the size of the model’s state space.

Large idiosyncratic shocks First, idiosyncratic shocks are assumed to be large (in 15, δ is suffi-
ciently far below 1) relative to aggregate shocks (the standard deviations σθ and σr in 18 are suffi-
ciently small), and large relative to the difference between the transaction and moving thresholds yt

and xt , which depends mainly on the transaction cost C. Second, the inconvenience cost ζ faced by
those who do not receive an idiosyncratic shock is large relative to the size of the aggregate shocks.
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Intuitively, the role of relatively large idiosyncratic shocks is illustrated in Figure 3, which shows
the distribution of ε for existing matches, which has been previously truncated at some point w. The
left panel shows the case where no idiosyncratic shock occurs. Without the cost ζ , the endogenous
moving decision would imply a ‘kinked’ response of the overall number of homeowners who move:
if the moving threshold falls due to an aggregate shock then there is no change in the number of
homeowners who move, unlike the case where the moving threshold rises. The right panel shows the
case where there are idiosyncratic shocks that are large relative to changes in the moving threshold
due to aggregate shocks. In that case there is no problem of non-differentiability. Thus, when no
idiosyncratic shock is received, the non-differentiability problem is avoided by a sufficiently large
cost ζ .

Figure 3: Differentiability and idiosyncratic shocks

ε

No idiosyncratic shock

w wε

Density Density
Large idiosyncratic shock

(‘kink’) (‘no kink’)

Range of xt values due to aggregate shock

The magnitude of fluctuations in the transaction and moving thresholds yt and xt is small rel-
ative to the changes in ε brought about by idiosyncratic shocks when the standard deviations σθ

and σr from (18) are relatively low. This avoids the non-differentiability problem for matches that
have received multiple idiosyncratic shocks. For matches receiving their first shock, the problem is
avoided if δyt < xt ′ for all t and t ′. This condition implies homeowners with match quality close to
the transaction threshold always choose to move if an idiosyncratic shock is subsequently received,
but not necessarily owners with higher match qualities.

Under these assumptions, the equations describing the equilibrium values of the aggregate vari-
ables are differentiable, and thus a perturbation method is admissible. The model allows an endoge-
nous moving decision for those households most likely to consider moving, with a considerable gain
in computational tractability by ruling out moving for those not hit by idiosyncratic shocks.

Pareto distribution In principle, solving the model requires finding the value function Ht(ε) for
all values of match quality ε , and keeping track of the whole distribution of surviving match quality.
This means the model has an infinite-dimensional state space. However, with the assumption of a
Pareto distribution for new draws of ε , the Bellman equations required to characterize the behaviour
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of aggregate variables can be reduced to a finite number of variables. Furthermore, the laws of
motion for the stock of houses for sale and new listings can be written in terms of a finite and low
number of state variables, ensuring the model remains tractable.

3.4 Laws of motion

The measure of houses listed and available for viewings and transactions in the interval of time
[t, t + τ) is ut . The fraction st of these houses sold is the product of the probability µ of a viewing
and the probability πt of a transaction conditional on a viewing, which gives the sales rate st/τ per
unit of time. The reciprocal of the sales rate gives the average time Tt taken for houses to sell:

st = µπt , and Tt =
τ

st
. (19)

The volume of transactions St during the interval [t, t + τ) is the product of st and ut :

St = stut . (20)

The stock of houses listed for sale evolves in line with the difference between inflows and outflows:

ut −ut−τ = Nt −St−τ , (21)

where Nt denotes new listings occurring in the interval [t − τ, t). An equation for new listings Nt

is found by noting that these listings must come from the existing matches 1− ut−τ + St−τ at date
t − τ that receive an idiosyncratic shock (probability 1−α) during the interval [t − τ, t). It follows
that Nt is equal to (1−α)(1−ut−τ +St−τ) minus the measure of those homeowners who receive an
idiosyncratic shock but who decide not to move.

Aggregating listing decisions All matches begin as draws from the distribution of match quality
ε ∼ Pareto(1,λ ). Surviving matches that receive an idiosyncratic shock during the interval [t − τ, t)

can be characterized by their initial match quality ε , their vintage v, where v ∈ {1,2,3, . . .} denotes
the number of discrete time intervals τ since the match formed, and the number q ∈ {0,1, . . . ,v−1}
of previous idiosyncratic shocks that have occurred. At time t immediately after an idiosyncratic
shock, current match quality is now ε ′ = δ q+1ε given original match quality ε . A match survives
the current shock only if ε ′ ≥ xt , or equivalently, ε ≥ xt/δ q+1 in terms of its original match quality.

Matches with vintage v at time t originate from the measure µut−τv of past viewings. Depending
on the timing of the realizations of past idiosyncratic shocks, matches with vintage v by time t and
q previous shocks are those that remain after truncating the distribution of original match quality ε

to the left at various points. These truncations occur with the first transaction decision (ε ≥ yt−τv)
and subsequent moving decisions (ε ≥ xt−τi/δ j+1 for some i = 1, . . . ,v−1 and some j = 0, . . . ,q).
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Let Gt,v,q(w) denote the distribution function of the truncation points w of the distribution of original
match quality for the cohort of vintage v by time t with q previous idiosyncratic shocks.

The properties of Pareto distributions imply that the distribution of ε conditional on ε ≥ w is
Pareto(w,λ ) with the same shape parameter λ . If xt/δ q+1 ≥ w for all w in the distribution Gt,v,q(w),
that is, Gt,v,q(xt/δ q+1) = 1, then the probability of a match surviving the current shock conditional
on any particular w and the original match having ε ≥w isP[ε ≥ xt/δ q+1|ε ≥w] = (xt/(δ

q+1w))−λ .
Since the possible truncation points are w = yt−τv or w = xt−τi/δ j+1 for some i ∈ {1, . . . ,v−1} and
j ∈ {0, . . . ,q}, this formula is valid for a given range of fluctuations in the thresholds yt and xt if δ

is sufficiently far below 1 because it implies δxt < xt ′ and δyt < xt ′ for all t and t ′.
Conditional on vintage v, the independence of successive idiosyncratic shocks implies q ∼

Binomial(v− 1,1−α), where v− 1 is the maximum number of previous shocks and 1−α is the
probability of each shock. With the original match quality of the mass µut−τv of viewings previously
truncated to the left of ε = w, a fraction w−λ of the initial draws of ε survived as matches up to the
point where the current idiosyncratic shock occurs. Putting together these observations, the measure
of matches receiving and surviving an idiosyncratic shock in the interval [t − τ, t) is

(1−α)
∞

∑
v=1

µut−τv

v−1

∑
q=0

(v−1)!
q!(v−1−q)!

(1−α)q
α

v−1−q
∫

w

( xt

δ q+1w

)−λ

w−λ dGt,v,q(w)

= µ(1−α)δ λ x−λ
t

∞

∑
v=1

ut−τv

(
v−1

∑
q=0

(v−1)!
q!(v−1−q)!

(
(1−α)δ λ

)q
α

v−1−q
∫

w
dGt,v,q(w)

)

= µ(1−α)δ λ x−λ
t

∞

∑
v=1

(
α +(1−α)δ λ

)v−1
ut−τv.

The first line uses the probability v−1Cq(1−α)qαv−1−q of drawing q from the Binomial distribution,
the second line notes that the terms in w−λ cancel out, which comes from the properties of the
Pareto distribution of ε , and the third line makes use of

∫
w dGt,v,q(w) = 1 and the binomial theorem

to simplify the expression. It follows that aggregate listings Nt are given by

Nt = (1−α)(1−ut−τ +St−τ)−µ(1−α)δ λ x−λ
t

∞

∑
v=1

(
α +(1−α)δ λ

)v−1
ut−τv. (22)

The key result is that the exact history of the number and timings of past idiosyncratic shocks (the
distribution of q and the distribution Gt,v,q(w) of past truncation thresholds w) can be eliminated
from the formula for aggregate listings Nt . All that remains is the current moving threshold xt and a
weighted average of ut−τv over vintages v = 1,2, . . ..

21



4 Quantitative results

This section presents the results of simulating the model described in section 3 with aggregate shocks
to housing utility and discount rates. Both of these shocks can be seen as shifts in housing demand.
The aim is to study whether a model with endogenous inflows and outflows can jointly match the
cyclical behaviour of sales, prices, new listings, time-to-sell, and houses for sale documented in
section 2. The simulation results are obtained using a first-order perturbation around the model’s
equilibrium in the absence of aggregate shocks. The log-linearized equations of the model charac-
terizing aggregate variables are derived in appendix A.3.

4.1 Calibration

Steady state In the absence of aggregate shocks, the steady state of the model is equivalent to that
in Ngai and Sheedy (2020a), except for some small differences owing to the use of discrete time
here. The length of a discrete time period τ is set to one week (τ = 1/52) in the current paper.
The other parameters are set to be the discrete-time equivalents of the continuous-time calibration
of Ngai and Sheedy (2020a). This calibration strategy does not use any information derived from
fluctuations in the time series of housing-market variables, only their average values. Table 4 reports
the parameter values that are used.

Table 4: Calibrated parameters

Parameter description Notation Value Continuous-time rate

Length of a discrete time period τ 1/52
Discount factor (steady state) β 0.9989 r = 0.057
Probability of no idiosyncratic shock α 0.9978 a = 0.116
Size of shocks δ 0.903
Distribution of new match quality λ 17.6
Probability of a viewing µ 0.2994 m = 18.5
Total transaction costs C 0.611
Flow search costs F 0.153
Flow maintenance costs D 0.275
Share of total transaction costs directly borne by seller κ 1/3
Bargaining power of sellers ω 1/2

Notes: These parameters are taken from the calibrated continuous-time model in Ngai and Sheedy (2020a), with
discrete-time equivalents β = e−rτ , α = e−aτ , and µ = 1− e−mτ calculated given the weekly length of a discrete
time period (τ = 1/52).

The sources of information used in the calibration are discussed in detail in Ngai and Sheedy
(2020a). In brief, the annual discount rate is set to 5.7%, which determines β = e−rτ . Buyers and
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sellers are assumed to have equal bargaining power. The parameters F , D, C, and κ are calibrated
to match the costs of owning a house and the costs involved in buying and selling houses relative
to house prices, and how those costs are distributed across buyers and sellers. The hazard function
for moving house provides information about the idiosyncratic shocks, and hence the parameters α

and δ . Averages of time-to-sell and the number of viewings per sale provide information about the
arrival rate of viewings and the distribution of new match quality, and hence parameters µ and λ .

Aggregate shocks The model features aggregate shocks to housing utility θt and the discount rate
rt . The empirical counterparts to these variables are taken to be real expenditures on furnishings and
durable household equipment (as is also done by Dı́az and Jerez, 2013) and the real mortgage interest
rate. A formal justification is provided in Appendix A.13 of Ngai and Sheedy (2020a). Intuitively, θt

enters households’ utility multiplicatively with match quality ε , which reflects an underlying Cobb-
Douglas utility function in the quantity of housing services and expenditures complementary with
housing.24 Such a Cobb-Douglas specification is commonly employed in the literature on life-cycle
models of housing. For the discount rate rt , note that in a general-equilibrium setting, market interest
rates are linked to the rate at which future utility flows are discounted.

The stochastic properties of the shocks are calibrated using quarterly data on real expenditures
on ‘furnishings and durable household equipment’ from the BEA (Table 2.4.6), and the 30-year
conventional mortgage rate minus PCE inflation converted to a quarterly series. Data cover the same
1991Q1–2019Q4 period studied in section 2. The real expenditures series is converted into natural
logarithms and the real interest rate series is divided by 100. A linear time trend is removed from both
series to isolate the cyclical components. These cyclical components are modelled as independent
AR(1) processes in equation (18). The persistence parameters φθ and φr are set to be the weekly
equivalents of the first-order autocorrelation coefficients calculated from the quarterly data. This
yields φθ = 0.98731/13 and φr = 0.80331/13. The standard deviations σθ and σr of the innovations
to the AR(1) processes in (18) are set so that θt and rt have standard deviations matching those of the
cyclical components of the data. This yields σθ =

√
1−φ 2

θ
×0.0965 and σr =

√
1−φ 2

r ×0.0086.
Based on how they are measured, the two shocks are referred to respectively as ‘expenditure’ and
‘interest rate’ shocks.

4.2 Baseline results

This section compares the predictions of the calibrated model to the patterns of volatility and co-
movement of housing-market variables documented in section 2, and also to the correlations between
housing-market variables and the shocks themselves. Table 5 reports the model-implied standard

24Benmelech, Guren and Melzer (2023) provide evidence that expenditures on home-related durables and home im-
provement increase following home purchases. The model here does not need to take a stance on the exact cause of
such a shift in complementary housing demand and housing-related expenditures: it could be due to an increase in real
income or a change in preferences.
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deviations and correlation coefficients among housing-market variables, as well as correlations of
these with the shocks and the empirical counterparts of the latter. The predicted correlations between
the shocks and housing variables match most of those observed in the data fairly closely.

Table 5: Baseline results of the calibrated model

Expenditure Interest rate Sales Prices New listings Time-to-sell Houses for sale

Standard deviations, %
9.7 0.86 6.9 8.1 7.0 6.5 1.8

Correlations among housing-market variables
Sales 1
Prices 0.99 1

New listings 0.98 0.99 1
Time-to-sell −0.97 −0.98 −0.95 1

Houses for sale 0.35 0.24 0.34 −0.10 1

Correlations between housing variables and shocks
Expenditure (data) 0.78 0.93 0.68 −0.34 0.19

Expenditure (model) 0.98 0.99 0.97 −0.99 0.14
Interest rate (data) −0.03 −0.10 0.04 −0.13 −0.21

Interest rate (model) −0.16 −0.12 −0.25 −0.05 −0.83

Notes: Simulated moments of the theoretical model with φθ = 0.98731/13, φr = 0.80331/13, σθ =
√

1−φ 2
θ
×0.0965,

and σr =
√

1−φ 2
r ×0.0086.

When compared to the empirical volatilities reported in Table 2, the two measured aggregate
shocks produce a fair amount of model-implied volatility in all housing variables except houses for
sale. Perhaps not surprisingly, a simple model with two shocks does not account for the full extent
of volatility in the data.

Figure 2 shows that there are five stable correlations among housing-market variables: positive
between houses for sale and time-to-sell, negative between time-to-sell and both sales and new list-
ings, and positive between sales and both prices and new listings. The model matches four of these,
the exception being the one between houses for sale and time-to-sell. The model also matches the
correlations of prices with time-to-sell and houses for sale over the whole sample, but predicts mildly
positive correlations of houses for sale with sales and new listings, while the empirical correlations
are close to zero. But as seen in Figure 2, those correlations are not stable over time, and section 4.3
later examines whether the model can replicate this when the properties of the shocks themselves
vary over time. The remainder of this section explores the economics behind how the two shocks
successfully generate the stable correlations in the model.

24



Shocks to interest rates Figure 4 shows the impulse responses of sales, house prices, new listings,
average time-to-sell, and the number of houses for sale to a negative unit shock (one percentage
point) to the real interest rate rt . The responses are given as percentage deviations from the steady-
state values of variables. A fall in the real interest rate lowers the discount rate applied to future
housing utility flows, increasing the total surplus from a transaction and raising the price paid. A
lower interest rate increases homeowners’ incentive to invest in better match quality by moving house
because it raises the relative importance of future payoffs compared to current costs. Therefore, a
lower interest rate has a positive effect on prices and new listings. These effects persist during the
time taken for the interest rate to return to its steady-state level.

Figure 4: Impulse responses of variables to a lower interest rate
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Notes: The interest-rate shock has persistence given by φr = 0.80331/13.

While a lower interest rate stimulates listings, it also has the effect of lengthening time-to-sell.
Since the lower interest rate increases the relative importance of future payoffs, it raises the returns
to searching, leading to houses taking longer to sell. This initially reduces sales, and together with
there being more new listings, the stock of houses for sale rises. Hence, an interest-rate shock can
generate a positive co-movement between houses for sale and time-to-sell. Once the extra houses
for sale are subsequently sold, sales are higher, so there is a positive co-movement between sales,
prices, and new listings overall.25

25Note that the effects on sales, new listings, and houses for sale in Figure 4 become slightly negative after around four
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Shocks to expenditure The impulse responses of housing-market variables to a positive unit (1%)
expenditure shock are reported in Figure 5. A positive expenditure shock is associated with an
increase in the flow utility from all occupied houses, raising the total surplus from a transaction, and
thus increasing house prices as long as sellers have some positive bargaining power. The expenditure
shock also raises the rate at which transactions occur, lowering time-to-sell. Furthermore, the shock
increases homeowners’ incentives to invest in better match quality, which leads to an increase in new
listings.26 These listings ultimately result in more sales.

Figure 5: Impulse responses of variables to an expenditure shock
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Notes: The expenditure shock has persistence given by φθ = 0.98731/13.

As can be seen from the law of motion (21), the response of houses for sale depends on the
difference between the changes in listings and sales. In the case shown here, the demand shock
causes listings to rise by slightly more than sales initially, so houses for sale also increase slightly.
More generally, the persistence of demand shocks affects the relative size of the listings and sales
responses, and therefore the model does not make an unambiguous prediction about whether houses
for sale will rise or fall. Later in section 4.3, the model is simulated using the stochastic properties

years. This overshooting arises because the interest-rate shock pulls forward some moving decisions. As homeowners’
match quality is subsequently higher, new listings do not go back to zero even when interest rates return to steady state.

26The prediction of an increase in moving following a positive demand shock is consistent with the finding from Bach-
mann and Cooper (2014) that “changing residence appears to be something that happens in times of greater economic
activity”.
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of housing-demand shocks in two sub-samples to illustrate this point.

The distribution of match quality Match quality plays a crucial role in the workings of the model.
The presence of a distribution of new match quality is central to generating a positive co-movement
between sales and prices. When a house is viewed by a potential buyer, new match quality is drawn
from a probability distribution, and there is a transaction threshold at which the buyer is willing to
trade. A shock associated with higher utility from housing raises the total surplus from a transaction
and thus increases both the willingness to trade and the price paid, which gives rise to a positive
correlation between sales and prices.

On the other hand, the equilibrium distribution of match quality among existing homeowners
is key to explaining the positive correlation between sales and new listings. Homeowners’ match
quality is a persistent variable subject to occasional idiosyncratic shocks. At any point in time, there
is an endogenous distribution of match quality across existing homeowners, and a moving threshold
below which an owner will choose to move house, which can be seen as an investment in improving
match quality. Persistent housing-demand shocks (either to expenditures or interest rates) increase
the incentive to invest, leading to more listings. This explains the positive correlations between new
listings and sales and prices, and why new listings have a similar volatility to sales.

In the presence of both expenditure and interest-rate shocks, the model’s predictions for the cor-
relations of time-to-sell and houses for sale with other variables are generally ambiguous, depending
on the relative sizes of the two shocks. For example, time-to-sell co-moves positively with prices for
an interest-rate shock, but negatively for an expenditure shock. In the data, the sign of this correlation
does indeed vary over time (see Figure 2). For the whole sample, the overall correlation coefficient
is negative, which the calibrated model matches. The correlations between houses for sale and other
variables also vary over time. The following section shows how the model’s predictions depend on
the persistence of the shocks, and moreover, how changes in the observed serial correlation of shocks
can explain the time-varying signs of the correlation coefficients among housing variables.

4.3 Can the model explain changes in housing-market cyclicality?

Section 2.3 showed that the correlations of houses for sale with other housing-market variables have
changed sign over time, in contrast to the stability of correlations among other pairs of variables. It is
of interest to explore whether the theoretical model can generate predictions consistent with both the
stable and unstable correlations. This is studied by considering a shift from one regime of exogenous
shocks to another with a different mixture expenditure and interest rate shocks, and differences in
their degree of persistence.

Specifically, the full 1991Q1–2019Q4 sample is split at the beginning of 2007, dividing it into
approximately two halves. This split captures the end of the U.S. housing boom and the beginning of
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the subsequent financial crisis.27 The statistical properties of the measured expenditure and interest
rate shocks are calculated separately for the 1991Q1–2006Q4 and 2007Q1–2019Q4 sub-samples.28

The key difference found is in the persistence of the expenditure shock. The quarterly serial cor-
relation coefficient of this shock changes from 0.9918 to 0.9765 across the two sub-samples. This
is equivalent to an increase in the rate of reversion to the mean from 0.82% to 2.35% per quarter,
reflecting the more transitory fluctuations of expenditure in the second sub-sample.

Table 6: Model-predicted cyclicality in the two sub-sample periods

Sales Prices New Time- Houses
listings to-sell for sale

Standard deviations, %
7.7 4.7 9.9 5.0 7.8 4.8 6.3 6.2 2.6 2.3

Correlation coefficients
Sales 1
Prices 0.99 0.97 1
New listings 0.98 0.96 0.98 0.97 1
Time-to-sell −0.95 −0.94 −0.98 −0.97 −0.93 −0.91 1
Houses for sale 0.67 −0.46 0.56 −0.60 0.66 −0.46 −0.41 0.73 1

Notes: The results for the 1991Q1–2006Q4 and 2007Q1–2019Q4 sub-samples are on the left and right of each
column respectively, with the numbers for 2007–2019 given in bold. In the 1991–2006 sub-sample, the theoretical

model is simulated with φθ = 0.99181/13, φr = 0.84661/13, σθ =
√

1−φ 2
θ
× 0.0969, and σr =

√
1−φ 2

r × 0.0079.

In the 2007–2019 sub-sample, the theoretical model is simulated with φθ = 0.97651/13, φr = 0.76891/13, σθ =√
1−φ 2

θ
×0.084, and σr =

√
1−φ 2

r ×0.0096.

Using the measured properties of the shocks, the model-implied standard deviations and cor-
relation coefficients of housing-market variables in the two sub-samples are reported in Table 6.
Compared to Figure 2, the predicted correlations of sales with prices, new listings, and time-to-sell,
and correlations of prices with new listings and time-to-sell remain of the same sign, as is found
empirically. The model also predicts an increase in the correlation coefficient between houses for
sale and time-to-sell, turning it significantly positive as in the data. More importantly, the model
predicts the correlations of houses for sale with sales, prices, and new listings all turn from positive
to negative, consistent with what is observed in the data.

The main reason for the switch in the signs of the correlations between houses for sale and
sales, prices, and new listings is the reduction in the persistence of the expenditure shock in the

27Note that for the rolling correlations displayed in Figure 2, the date on the horizontal axis is the mid-point of the
ten-year window, so data from 2007 begins to enter the correlation coefficients from the point labelled 2002 onwards.

28The data are first detrended using observations over the whole sample period.
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second sub-sample.29 The impulse responses to expenditure shocks in the two sub-sample periods
are shown in Figure 6. The essential difference between the two cases is that new listings rise by
more than sales with the more persistent shock, which increases the stock of houses for sale. On the
contrary, the less persistent shock fails to induce enough moving to replenish the stock of houses for
sale. The explanation comes from understanding moving decisions as investments in match quality:
a less persistent shock has a smaller effect on the present value of future housing utility flows, so
homeowners are less willing to pay the upfront costs of moving.30

For the correlation between houses for sale and time-to-sell, observe that these variables pos-
itively co-move with the less persistent expenditure shock, which now reinforces the positive co-
movement coming from the interest-rate shock. Consequently, the predicted correlation coefficient
becomes positive, in line with the data.

Figure 6: Impulse responses to expenditure shocks in the two sub-sample periods
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Notes: The left panel is for the expenditure shock in the first sub-sample with φθ = 0.99181/13, and the right panel is for
the less persistent expenditure shock in the second sub-sample with φθ = 0.97651/13.

29The impulse responses to interest rate shocks in the two sub-sample periods are similar to those in Figure 4 for the
full sample.

30Recall from Figure 1 that the size of the movements in the inflow rate relative to the outflow rate changes in the
second part of the sample. The model-implied impulse response of the inflow rate is essentially identical to the impulse
response of new listings in Figure 6. The model-implied impulse response of the outflow rate is the negative of the
impulse response of time-to-sell in that figure. As can be seen, the model generates a smaller rise in the inflow rate
compared to the outflow rate in the second subsample owing to a less persistent change in expenditure.
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4.4 Housing-market inflows: a discussion

The main lesson from the quantitative model is that with endogenous inflows, persistent housing-
demand shocks naturally induce changes in the moving rate and housing supply (houses for sale)
that are positively correlated with changes in housing demand. Correlated shocks to these variables
are shown to be essential in understanding housing-market cyclicality by Dı́az and Jerez (2013).
As a point of comparison, appendix A.4 presents results from simulating the model with only the
expenditure shock (a shock to housing utility θt , matching the stochastic properties of equipment
expenditure), which is the same as the housing-demand shock used in their model. As seen by com-
paring Table A.4 to the empirical evidence presented in Table 2, the model with only an expenditure
shock can generate the positive correlations of sales with prices and new listings, the positive corre-
lations of prices with new listings and houses for sale, and the negative correlations of time-to-sell
with sales, prices, and new listings.31

The role of endogenous inflows is illustrated more starkly by considering a special case of the
model where moving is exogenous. As shown in appendix A.5, in the absence of an endogenous
response of moving, the model predicts very low volatility in new listings, a perfect negative cor-
relation between new listings and houses for sale, and more generally, the correlation coefficients
between new listings and other variables always being the negative of those between houses for
sale and other variables. This is because listings are proportional to the number of homeowners
who receive shocks that lead them automatically to sell irrespective of market conditions. An earlier
working-paper version of this paper (Ngai and Sheedy, 2020b) shows that adding an aggregate shock
to the moving rate itself results in similarly negative conclusions. The main intuition stems from the
fact that this version of the model features changes in the aggregate moving rate that are orthogonal
to the factors that matter for transactions. This conclusion is consistent with the findings of Dı́az
and Jerez (2013) that in a search model with exogenous moving, three correlated shocks (housing
demand, housing supply, and the moving rate) are needed to account for the cyclical behaviour of
housing-market variables.

A further reason to use a housing model with endogenous inflows is the direct finding from the
ins-and-outs decomposition of Table 1 that inflows account for a significant proportion of housing-
market volatility. Applying the same Fujita and Ramey (2009) decomposition to simulated data
generated by the calibrated model yields a contribution of 0.9 from inflows and 0.1 from outflows,
closely matching the empirical decomposition.32

Finally, it should be noted that the model falls short of explaining a number of facts. For example,
houses for sale is more volatile than the model can explain, and its correlation with time-to-sell is
robustly positive, in contrast to the model. Introducing other shocks offers one possible way forward.

31It is also worth noting that the model with endogenous inflows can generate a positive correlation between houses
for sale and prices, whereas this correlation remains negative in Dı́az and Jerez (2013), even with three correlated shocks
and an extended model where the timing of transactions is reversed and buyer valuations are heterogeneous.

32Sampling error in the estimator is minimized by simulating a 1000-year sample.
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Another limitation of the model is in abstracting from fluctuations in market tightness, for example
due to new construction, entry of first-time buyers, or the sequence of buying and selling.33

5 Conclusions

This paper has assembled a set of stylized facts about the cyclical behaviour of house prices, sales,
new listings, average time-to-sell, and houses for sale in terms of volatilities and patterns of co-
movement among these variables. It demonstrates that both inflows (new listings) and outflows
(sales) are quantitatively important in understanding housing-market fluctuations. Many of the pat-
terns of co-movement are found to be stable over a period of three decades, but importantly, the
correlations of houses for sale with prices, sales, and new listings change sign from positive to neg-
ative during the sample period.

This paper has presented a stochastic search-and-matching model of the housing market with
endogenous inflows and outflows. Simulations of the model were performed and compared to the
empirical evidence on cyclical fluctuations and patterns of co-movement among housing-market
variables. The model also demonstrates that the source and persistence of aggregate shocks matters
for understanding the empirical evidence, particularly the time-varying correlations of houses for
sale with other variables.
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A Appendices

A.1 Robustness of cyclical patterns in the data
Hodrick-Prescott filtered data (1991Q1–2019Q4) To compare the cyclical properties of the data with
the findings of Dı́az and Jerez (2013), the seasonally adjusted quarterly time series in natural logarithms are
detrended using the Hodrick-Prescott filter (with smoothing parameter 1600). The standard deviations and
correlation coefficients are shown in Table A.1.

Table A.1: Cyclical properties of HP-filtered housing-market variables

Sales Prices New listings Time-to-sell Houses for sale

Standard deviations, %
6.7 2.5 15.0 11.0 7.3

Correlation coefficients
Sales 1
Prices 0.40 1
New listings 0.46 0.29 1
Time-to-sell −0.76 −0.16 −0.36 1
Houses for sale −0.22 0.12 −0.12 0.80 1

Notes: Calculated from HP-filtered (smoothing parameter 1600) natural logarithms of quarterly time series from
1991Q1 to 2019Q4. The original monthly data are seasonally adjusted by removing multiplicative month effects and
then converted to a quarterly frequency.
Sources: FHFA and NAR.

The statistics related to sales, prices, time-to-sell, and houses for sale are similar to those reported in
Dı́az and Jerez (2013). In addition to the differences in the measurement of time-to-sell and houses for sale
discussed in section 2, note also that Table 1 of Dı́az and Jerez (2013) uses different time periods for different
variables, while the time series here all cover the period 1991Q1–2019Q4. For example, their measure of
sales starts from 1968, but the price series starts from either 1975 or 1990.

The overall cyclical patterns are broadly consistent with those presented in Table 2, though the levels of
the standard deviations are lower. To highlight a few differences in the correlation coefficients compared to
Table 2, the positive correlations between house prices and sales, new listings and sales, and new listings and
prices are all weaker. The negative correlation between time-to-sell and new listings is also weaker. Figure A.1
reports rolling correlations in ten-year windows for the HP-filtered data on housing-market variables. This
exhibits the same patterns seen in Figure 2.

Data with no detrending (1991Q1–2019Q4) Table A.2 and Figure A.2 report the cyclical properties
of the data without any detrending. The standard deviations and correlation coefficients are similar to Table 2
and the patterns of rolling correlations are the same as those in Figure 2.

Redfin data with linear detrending (2012Q2–2019Q4) Table A.3 reports cyclical properties of the
Redfin data with linear detrending in comparison with the NAR and FHFA data. The levels of standard
deviations and correlation coefficients are the same as those calculated using NAR and FHFA data for the
same period. They are both similar to those patterns seen in the raw data from Table 3, except for the mild
positive correlation between houses for sale and new listings in the linearly detrended Redfin data.
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Figure A.1: Rolling correlations of housing-market variables using HP-filtered data
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Notes: Correlation coefficients in ten-year windows are calculated using HP-filtered (smoothing parameter
1600) and seasonally adjusted quarterly time series in logarithms. The date on the horizontal axis is the mid-
point of each ten-year window.
Sources: FHFA and NAR.
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Table A.2: Cyclical properties of housing-market variables without detrending

Sales Prices New listings Time-to-sell Houses for sale

Standard deviations, %
18.7 16.3 25.4 28.6 20.5

Correlation coefficients
Sales 1
Prices 0.72 1
New listings 0.84 0.59 1
Time-to-sell −0.70 −0.31 −0.59 1
Houses for sale −0.06 0.22 −0.06 0.76 1

Notes: Calculated from natural logarithms of quarterly time series from 1991Q1 to 2019Q4. The original monthly
data are seasonally adjusted by removing multiplicative month effects and then converted to a quarterly frequency.
Sources: FHFA and NAR.

Table A.3: Comparison with linearly detrended Redfin data, 2012Q2–2019Q4

Sales Prices New Time- Houses
listings to-sell for sale

Standard deviations, %
4.1 3.9 2.2 8.0 4.0 8.6 6.4 6.4 4.6 4.7

Correlation coefficients
Sales 1
Prices 0.68 0.49 1
New listings 0.73 0.73 0.68 0.39 1
Time-to-sell −0.67 −0.67 −0.65 −0.42 −0.65 −0.51 1
Houses for sale −0.14 −0.08 −0.10 −0.16 0.25 −0.08 0.44 0.78 1

Notes: Calculated from linearly detrended natural logarithms of quarterly time series from 2012Q2 to 2019Q4. The
original monthly data are seasonally adjusted by removing multiplicative month effects and then converted to a
quarterly frequency. Redfin statistics are in bold, adjacent to the equivalent NAR and FHFA statistics.
Sources: Redfin, NAR, and FHFA.
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Figure A.2: Rolling correlations of housing-market variables without detrending
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Notes: Correlation coefficients in ten-year windows are calculated using the seasonally adjusted quarterly time
series in logarithms. The date on the horizontal axis is the mid-point of each ten-year window.
Sources: FHFA and NAR.
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A.2 Characterizing aggregate dynamics with a finite number of variables
This section derives a set of equations in a finite number of variables that characterizes the aggregate dynamics
of the housing market. Under the assumptions made in section 3.3, the idiosyncratic shock is sufficiently large
(δ is sufficiently far below 1) so that δxt < xt ′ and δyt < xt ′ for all t and t ′. Consequently, there exists a
threshold ξ , which lies above yt and xt for all t, such that δε < xt+τ for any ε ≤ ξ . Since Ht+τ(ε) is increasing
in ε , it follows using (17) that Ht+τ(δε)−τD < Jt+τ for all ε ≤ ξ and thus max{Ht+τ(δε)−τD,Jt+τ}= Jt+τ .
The Bellman equation (16) for ε ≤ ξ becomes

Ht(ε) = τεθt +αβtEt [Ht+τ(ε)− τD]+ (1−α)βtEtJt+τ . (A.1)

Differentiating with respect to ε gives H ′
t (ε) = τθt +αβtEtH ′

t+τ(ε), which can be iterated forwards to deduce:

H ′
t (ε) =Θt , where Θt = τEt

[
θt +αβtθt+1 +α

2
βtβt+1θt+2 + · · ·

]
.

The new variable Θt depends only on the exogenous variables θt and βt and satisfies the expectational differ-
ence equation

Θt = τθt +αβtEtΘt+τ . (A.2)

Since H ′
t (ε) is independent of ε for ε ≤ ξ , it follows that Ht(ε) is linear for ε ∈ [0,ξ ], that is:

Ht(ε) = Λt +Θtε, (A.3)

for some variable Λt independent of ε . Substituting back into (A.1) implies Λt +Θtε = τεθt +αβtEt [Λt+τ +
Θt+τε − τD]+ (1−α)βtEtJt+τ , and then replacing Θt using (A.2) yields

Λt = αβtEtΛt+τ −αβtτD+(1−α)βtEtJt+τ . (A.4)

Since xt < ξ , equation (A.3) can be evaluated at ε = xt , hence Ht(xt) = Λt +Θtxt . Using equation (17)
that defines the moving threshold xt , it follows that Λt = Jt + τD−Θtxt . Substituting into (A.4) implies

Jt + τD−Θtxt = βtEtJt+τ −αβtEt [Θt+τxt+τ ].

Combining this with the Bellman equation (10) to eliminate the joint value function Jt :

xtΘt + τF = αβtEt [xt+τΘt+τ ]+µΣt . (A.5)

This gives an expectational difference equation for the moving threshold xt in terms of the surplus Σt and the
exogenous variable Θt .

Using equations (7) and (17) defining the transaction and moving thresholds yt and xt , it follows that
Ht(yt)−Ht(xt) = βtEtJt+τ +C− Jt − τD. Substituting the Bellman equation (10) implies Ht(yt)−Ht(xt) =
τF +C − µΣt . Furthermore, since yt < ξ and xt < ξ , equation (A.3) yields Ht(yt)−Ht(xt) = Θt(yt − xt).
Putting these equations together leads to the following relationship between the thresholds yt and xt :

Θt(yt − xt) =C+ τF −µΣt .

The term in the surplus Σt can be eliminated using (A.5) to leave a simpler relationship between yt and xt+τ :

Θtyt =C+αβtEt [Θt+τxt+τ ], (A.6)

and this equation contains only the thresholds and the exogenous variable Θt .
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Now consider an arbitrary variable zt that always satisfies zt ≤ ξ . Given zt , define Ψt(zt) as follows:

Ψt(zt) =
∫

∞

ε=zt

λε
−(λ+1) (Ht(ε)−Ht(zt))dε. (A.7)

Since zt ≤ ξ , equation (A.1) applies and hence Ht(zt) = τztθt +αβtEt [Ht+τ(zt)− τD] + (1−α)βtEtJt+τ .
Subtracting this from (16) and using (17) yields

Ht(ε)−Ht(zt) = τθt(ε − zt)+(1−α)βt max{Ht+τ(δε)−Ht+τ(xt+τ),0}
+αβtEt [Ht+τ(ε)−Ht+τ(zt)] = τθt(ε − zt)+αβtEt [Ht+τ(zt+τ)−Ht+τ(zt)]

+αβtEt [Ht+τ(ε)−Ht+τ(zt+τ)]+ (1−α)βt max{Ht+τ(δε)−Ht+τ(xt+τ),0} , (A.8)

noting that max{Ht+τ(δε)− τD,Jt+τ} = Jt+τ +max{Ht+τ(δε)− τD− Jt+τ ,0} = Jt+τ +max{Ht+τ(δε)−
Ht+τ(xt+τ),0} because Ht+τ(xt+τ) = τD+Jt+τ . Considering the following integral and making the change of
variable ε ′ = δε , and noting δ zt < xt+τ because zt < ξ :∫

∞

ε=zt

λε
−(λ+1) max{Ht+τ(δε)−Ht+τ(xt+τ),0}dε

= δ
λ

∫
∞

ε ′=δ zt

λ (ε ′)−(λ+1) max
{

Ht+τ(ε
′)−Ht+τ(xt+τ),0

}
dε

′ = δ
λ

∫ xt+τ

ε ′=δ zt

λ (ε ′)−(λ+1)0dε
′

+δ
λ

∫
∞

ε ′=xt+τ

λ (ε ′)−(λ+1) (Ht+τ(ε
′)−Ht+τ(xt+τ)

)
dε

′ = δ
λ
Ψt+τ(xt+τ), (A.9)

which uses Ht+τ(ε
′)< Ht+τ(xt+τ) for ε ′ < xt+τ , and the definition of Ψt(zt) from (A.7). Note also:

∫
∞

ε=zt

λε
−(λ+1)dε = z−λ

t , and
∫

∞

ε=zt

λε
−(λ+1)(ε − zt)dε =

z1−λ
t

λ −1
. (A.10)

Since zt ≤ ξ and zt+τ ≤ ξ , it follows from (A.3) that Ht+τ(ε)−Ht+τ(zt+τ) =Θt+τ(ε − zt+τ) for all ε between
zt and zt+τ . Breaking up the range of integration in the following equations and using the definition of Ψt(zt)
from (A.7) leads to∫

∞

ε=zt

λε
−(λ+1) (Ht+τ(ε)−Ht+τ(zt+τ))dε =

∫ zt+τ

ε=zt

λε
−(λ+1) (Ht+τ(ε)−Ht+τ(zt+τ))dε

+
∫

∞

ε=zt+τ

λε
−(λ+1) (Ht+τ(ε)−Ht+τ(zt+τ))dε =Ψt+τ(zt+τ)+Θt+τ

∫ zt+τ

ε=zt

λε
−(λ+1)(ε − zt+τ)dε

=Ψt+τ(zt+τ)+Θt+τ

(
λ

λ −1

(
z1−λ

t − z1−λ
t+τ

)
+ zt+τ

(
z−λ

t+τ − z−λ
t

))
. (A.11)

Note also that Ht+τ(zt+τ)−Ht+τ(zt) = Θt+τ(zt+τ − zt) using (A.3). By combining equations (A.7), (A.8),
(A.9), (A.10), and (A.11), the following result holds for all zt ≤ ξ :

Ψt(zt) = τθt
z1−λ

t

λ −1
+αβtEtΨt+τ(zt+τ)+(1−α)δ λ

βtEtΨt+τ(xt+τ)

+αβtEt

[(
(zt+τ − zt)z−λ

t +
λ

λ −1

(
z1−λ

t − z1−λ
t+τ

)
+ zt+τ

(
z−λ

t+τ − z−λ
t

))
Θt+τ

]
= τθt

z1−λ
t

λ −1
+αβtEtΨt+τ(zt+τ)+(1−α)δ λ

βtEtΨt+τ(xt+τ)+αβtEt

[(
z1−λ

t − z1−λ
t+τ

λ −1

)
Θt+τ

]
.
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Grouping the terms in z1−λ
t and using equation (A.2) for Θt implies

Ψt(zt)−
Θtz1−λ

t

λ −1
= αβtEt

[
Ψt+τ(zt+τ)−

Θt+τz1−λ
t+τ

λ −1

]
+(1−α)δ λ

βtEtΨt+τ(xt+τ), (A.12)

which holds for any zt ≤ ξ and for all t.
Making the following definition of a variable χt , and noting the relationship between the unconditional

surplus Σt given in (9) and Ψt(zt) from (A.7):

χt =
∫

∞

ε=xt

λε
−(λ+1) (Ht(ε)−Ht(xt))dε =Ψt(xt), and Σt =Ψt(yt). (A.13)

With xt < ξ and yt < ξ , equation (A.12) can be evaluated at zt = xt and zt = yt and stated in terms of the
variables from (A.13):

χt −
Θtx1−λ

t

λ −1
= αβtEt

[
χt+τ −

Θt+τx1−λ
t+τ

λ −1

]
+(1−α)δ λ

βtEt χt+τ , and (A.14)

Σt −
Θty1−λ

t

λ −1
= αβtEt

[
Σt+τ −

Θt+τy1−λ
t+τ

λ −1

]
+(1−α)δ λ

βtEt χt+τ , (A.15)

which yields a pair of equations for χt and Σt in terms of the thresholds xt and yt and the exogenous variable
Θt . The solution for xt , yt , χt , and Σt is determined by (A.5), (A.6), (A.14), and (A.15), with the exogenous
variable Θt obtained from (A.2).

Given yt , the value of πt comes from equation (8), and st and Tt from (19). The laws of motion involve
equations (20) and (21) for St and ut . Considering equation (22) for new listings Nt , make the following
definitions of a new variable ϒt and a constant ψ:

ϒt = (1−ψ)
∞

∑
ℓ=0

ψ
ℓut−τℓ, where ψ = α +(1−α)δ λ . (A.16)

Using this new variable, equation (22) for listings becomes

Nt = (1−α)(1−ut−τ +St−τ)−
µ(1−α)δ λ

(1−ψ)
x−λ

t ϒt−τ . (A.17)

Equation (A.16) defining ϒt can be stated equivalently as follows:

ϒt = ψϒt−τ +(1−ψ)ut . (A.18)

Given xt and yt , the solution for πt , st , Tt , St , Nt , ut , and the auxiliary variable ϒt is determined by (8), (19),
(20), (21), (A.17), and (A.18).

Using the price equation (14), the equations for πt and Σt in (8) and (9), and the Bellman equation (12b)
for Vt , the average price paid is given by:

Pt = κC+βtEtVt+τ +ω
Σt

πt
= κC+ τD+Vt +ω(1−µπt)

Σt

πt
.

By subtracting βtEtPt+τ from Pt , it follows that:

Pt −βtEtPt+τ = (1−βt)(κC+ τD)+Vt −βtEtVt+τ +ω

(
(1−µπt)

Σt

πt
−βtEt

[
(1−µπt+τ)

Σt+τ

πt+τ

])
,
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and using the Bellman equation (12b) again to eliminate the value function Vt leads to:

Pt = βtEt [Pt+τ − τD]+ (1−βt)κC+ω
Σt

πt
−ωβtEt

[
(1−µπt+τ)

Σt+τ

πt+τ

]
. (A.19)

A.3 A log-linear approximation of the model
Deterministic steady state The deterministic steady state of the model is defined by the absence of
aggregate shocks, though individual households still face uncertainty about draws of match quality and the
occurrence of idiosyncratic shocks. With σθ = 0 and σr = 0 in (18), the innovations ηθ ,t and ηr,t are always
zero, and so θt = 1 and rt = r for all t, the latter implying βt = β . Using (A.2), this leads to

Θ =
τ

1−αβ
, (A.20)

where a variable without a time subscript denotes the steady-state value of that variable. Equation (A.5)
implies the steady-state moving threshold x and surplus Σ are related as follows:

x+F =
µ

τ
Σ . (A.21)

The steady-state thresholds y and x are linked in accordance with equation (A.6):

y = αβx+
(

1−αβ

τ

)
C. (A.22)

The steady-state value of χ can be deduced from equation (A.14):

χ =
x1−λ

(λ −1)

(
τ

1−ψβ

)
, (A.23)

where ψ = α +(1−α)δ λ is as defined in (A.16). A relationship between Σ and χ can be derived using
equations (A.14) and (A.15):

Σ − y1−λ

(λ −1)

(
τ

1−αβ

)
= χ − x1−λ

(λ −1)

(
τ

1−αβ

)
=

x1−λ

(λ −1)

(
β (1−α)δ λ

1−ψβ

)(
τ

1−αβ

)
,

where the second equality follows by substituting from (A.23) and noting ψ −α = (1−α)δ λ . The steady-
state value Σ follows immediately from this:

Σ =
1

(λ −1)

(
τ

1−αβ

)(
y1−λ +βδ

λ

(
1−α

1−ψβ

)
x1−λ

)
. (A.24)

Eliminating Σ from equations (A.21) and (A.24) implies another equation linking the steady-state thresholds
x and y:

x+F =
1

(λ −1)

(
µ

τ

)(
τ

1−αβ

)(
y1−λ +βδ

λ

(
1−α

1−ψβ

)
x1−λ

)
. (A.25)

The steady-state thresholds x and y are the solution of the simultaneous equations (A.22) and (A.25).
Equation (A.22) implies a positive relationship between x and y, while equation (A.25) implies a negative
relationship between x and y. If a solution exists, it must then be unique. Since (A.22) implies x is positive
when y = 0, and because (A.25) implies y → 0 as x → ∞, while x tends to a positive number when y → ∞, it
follows that a unique solution x > 0 and y > 0 exists. However, the equations are only meaningful if y > 1 and
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δy < x. The solution features y > 1 if and only if1−
(

1−αβ

τ

)
C

αβ

+F <
1

(λ −1)

(
µ

τ

)(
τ

1−αβ

)1+βδ
λ

(
1−α

1−ψβ

)1−
(

1−αβ

τ

)
C

αβ

1−λ
 ,

and it can also be verified whether δ is sufficiently far below 1 so that δy < x.
The steady-state acceptance probability is π = y−λ from (8), the steady-state selling probability s = µπ

and time-to-sell T = (1/π)(τ/µ) from (19). Equations (20) and (21) imply S = su and N = S, hence S = N =
µy−λ u. Noting that ϒ = u from (A.18), equation (A.17) in steady state implies

N = (1−α)(1−u+µy−λ u)− µ(1−α)δ λ

(1−ψ)
x−λ u.

Combined with N = µy−λ u, this can solved for the steady-state u:

u =
(1−α)

(1−α)+µ

(
αy−λ +δ λ x−λ (1−α)

(1−ψ)

) =
1

1+µ

(
α

1−α
y−λ + δ λ

1−ψ
x−λ

) . (A.26)

The steady state implied by the price equation (A.19) is:

P = κC−β

(
τ

1−β

)
D+ω

(
1−β (1−µπ)

1−β

)(
τ

µ

)(
x+F

π

)
, (A.27)

which uses (A.21) to substitute for Σ .

Log linearizations Log deviations of variables from their deterministic steady-state values are denoted
using sans serif letters, for example, xt = logxt − logx. The log linearization of equation (A.2) for Θt is

Θt = (1−αβ )θt +αββt +αβEtΘt+τ ,

which uses the steady-state values θ = 1 and Θ from (A.20). The discount factor is βt = e−τrt in terms of the
discount rate rt , and β = e−τr is its steady-state value. It follows that βt = logβt − logβ =−τ(rt − r) =−τrt ,
where rt = rt − r is the deviation of the discount rate from its steady-state level. The log-linearized equation
for Θt can then be written as

Θt = (1−αβ )θt −αβτrt +αβEtΘt+τ . (A.28)

Noting (A.20) and (A.21), the log linearization of the moving-threshold equation (A.5) is

xt = αβEtxt+τ +(1−αβ )
(x+F)

x
Σt − (1−αβ )θt . (A.29)

The transaction threshold equation (A.6) can be log linearized as follows:

yt =
x
y

αβ (EtΘt+τ +Etxt+τ − τrt)−Θt , (A.30)
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and this can be used to deduce that

yt −αβEtyt+τ =
x
y

αβ (Et [Θt+τ −αβEt+τΘt+2τ ]+Et [xt+τ −αβEt+τxt+2τ ]− τ(rt −αβEtrt+τ))

− (Θt −αβEtΘt+τ) =
x
y

αβEt

[
((1−αβ )θt+τ −αβτrt+τ)+(1−αβ )

(
(x+F)

x
Σt+τ −θt+τ

)]
+

x
y

αβτ(rt −αβEtrt+τ)− ((1−αβ )θt −αβτrt)

=
(x+F)

y
(1−αβ )αβEtΣt+τ − (1−αβ )θt +

(y− x)
y

αβτrt , (A.31)

where the subsequent expressions follow from substituting (A.28) and (A.29).
For equation (A.14) for χt , by using (A.20) and (A.23), the log linearization is

χt =
(

α +(1−α)δ λ

)
βEtχt+τ +

(
1−ψβ

1−αβ

)
((Θt −αβEtΘt+τ)+(1−λ )(xt −αβEtxt+τ))

−
((

α +(1−α)δ λ

)
−α

(
1−ψβ

1−αβ

))
βτrt ,

and with the definition of ψ = α +(1−α)δ λ from (A.16):

χt = ψβEtχt+τ +
(1−ψβ )

(1−αβ )
((Θt −αβEtΘt+τ)+(1−λ )(xt −αβEtxt+τ))−

(1−α)δ λ

(1−αβ )
βτrt .

Substituting from (A.28) and (A.29):

χt = ψβEtχt+τ +(1−ψβ )

(
θt −

α

1−αβ
βτrt +(1−λ )

(
(x+F)

x
Σt −θt

))
− (1−α)δ λ

(1−αβ )
βτrt ,

and by collecting terms and simplifying:

χt = ψβEtχt+τ +(1−λ )
(x+F)

x
(1−ψβ )Σt +λ (1−ψβ )θt −ψβτrt , (A.32)

which again uses the definition of ψ = α +(1−α)δ λ .
Taking equation (A.15) for Σt and log linearizing, making use of the steady-state equations (A.21), (A.23),

and (A.24):

Σt = αβEtΣt+τ +
µ

(λ −1)
x1−λ

(x+F)

(1−α)δ λ β

(1−ψβ )
Etχt+τ

+
1

(λ −1)
y1−λ

(x+F)

µ

(1−αβ )
((Θt −αβEtΘt+τ)+(1−λ )(yt −αβEtyt+τ))

−

(
α − 1

(λ −1)

(
y1−λ

(x+F)

µα

(1−αβ )
− x1−λ

(x+F)

µ(1−α)δ λ

(1−ψβ )

))
βτrt .
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Substituting (A.28) and (A.31) into this equation yields

Σt = αβEtΣt+τ +
µ

(λ −1)
x1−λ

(x+F)

(1−α)δ λ β

(1−ψβ )
Etχt+τ +

µ

(λ −1)
y1−λ

(x+F)

(
θt −

α

1−αβ
βτrt

)
−µ

y1−λ

(x+F)

(
(x+F)

y
αβEtΣt+τ −θt +

(y− x)
y

α

1−αβ
βτrt

)
−

(
α − 1

(λ −1)

(
y1−λ

(x+F)

µα

(1−αβ )
− x1−λ

(x+F)

µ(1−α)δ λ

(1−ψβ )

))
βτrt ,

and cancelling terms, simplifying, and writing the equation in terms of π = y−λ :

Σt = αβ (1−µπ)EtΣt+τ +µπ
(y/x)λ

(λ −1)
x

(x+F)

(1−α)δ λ β

(1−ψβ )
Etχt+τ +µπ

λ

(λ −1)
y

(x+F)
θt

−

(
α

(
1+

(y− x)
(x+F)

µπ

1−αβ

)
+µπ

(y/x)λ

(λ −1)
x

(x+F)

(1−α)δ λ

(1−ψβ )

)
βτrt . (A.33)

Log linearizations of the transaction probability, sales rate, and time-to-sell equations from (8) and (19)
are

πt =−λyt , st = πt , and Tt =−πt . (A.34)

Using (A.21) and (A.27), the price equation (A.19) is log linearized as follows:(
κC− βτD

(1−β )
+ω

(1−β (1−µπ))

(1−β )

τ

µ

(x+F)

π

)
(Pt −βEtPt+τ) = ω

τ

µ

(x+F)

π
(Σt −πt)

−
(

κC− βτD
(1−β )

+ω
(1−β (1−µπ))

(1−β )

τ

µ

(x+F)

π
− τD−κC−ω(1−µπ)

τ

µ

(x+F)

π

)
βτrt

−βω
τ

µ

(x+F)

π
Et [(1−µπ)(Σt+τ −πt+τ)−µππt+τ ] ,

and simplifying the coefficients in this equation leads to:

Pt = βEtPt+τ +

ωτ(x+F)
µπ

(Σt −β (1−µπ)EtΣt+τ −πt +βEtπt+τ)− τ(ω(x+F)−D)βτ

(1−β ) rt

κC− βτD
(1−β ) +

ωτ(1−β (1−µπ))(x+F)
(1−β )µπ

. (A.35)

Log-linearizations of the sales (20) and houses for sale (21) equations are

St = st +ut , and ut −ut−τ = µπ(Nt −St−τ), (A.36)

where π = y−λ and the steady-state equation N = S = su have been used. Equation (A.17) has the following
log-linearization:

Nt = λδ
λ

(y
x

)λ
(

1−α

1−ψ

)
xt +(1−α)St−τ −

(
1−α

µπ

)
ut−τ −δ

λ

(y
x

)λ
(

1−α

1−ψ

)
Υt−τ , (A.37)

which uses N = S = su, s = µπ , and π = y−λ . Finally, log-linearizing equation (A.18) for the auxiliary state
variable ϒt from (A.16):

Υt = ψΥt−τ +(1−ψ)ut , (A.38)
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which makes use of ϒ = u.
In summary, the system of equations (A.29), (A.30), (A.32), (A.33), (A.34), (A.35), (A.36), (A.37), and

(A.38) can be solved for xt , yt , χt , Σt , πt , st , Tt , Pt , St , Nt , ut , and ϒt . These equations are in recursive form
with only contemporaneous (t), one-period lagged (t −τ), and expected one-period ahead (t +τ) values of the
variables appearing.

The auxiliary variable χt can be eliminated as follows. Note that (A.33) implies

Σt −ψβEtΣt+τ = αβ (1−µπ)Et [Σt+τ −ψβΣt+2τ ]+µπ
λ

(λ −1)
y

(x+F)
(θt −ψβEtθt+τ)

−

(
α

(
1+

(y− x)
(x+F)

µπ

1−αβ

)
+µπ

(y/x)λ

(λ −1)
x

(x+F)

(1−α)δ λ

(1−ψβ )

)
βτ (rt −ψβEtrt+τ)

+ µπ
(y/x)λ

(λ −1)
x

(x+F)

(1−α)δ λ β

(1−ψβ )
Et [χt+τ −ψβχt+2τ ] ,

which makes use of the law of iterated expectations, and then by using equation (A.32):

µπ
(y/x)λ

(λ −1)
x

(x+F)

(1−α)δ λ β

(1−ψβ )
Et [χt+τ −ψβχt+2τ ] = µπ

λ

(λ −1)
x

(x+F)

(y
x

)λ

(1−α)δ λ
βEtθt+τ

−µπ(1−α)δ λ

(y
x

)λ

βEtΣt+τ −µπ
(y/x)λ

(λ −1)
x

(x+F)

(1−α)δ λ ψβ

(1−ψβ )
βτEtrt+τ .

Combining these two equations yields

Σt =

(
ψ +(1−µπ)α −µπ(1−α)δ λ

(y
x

)λ
)

βEtΣt+τ − (1−µπ)αψβ
2EtΣt+2τ

+µπ
λ

λ −1

(
y

(x+F)
(θt −ψβEtθt+τ)+

x
(x+F)

(y
x

)λ

(1−α)δ λ
βEtθt+τ

)
−α

(
1+

(y− x)
(x+F)

µπ

1−αβ

)
βτ (rt −ψβEtrt+τ)−µπ

(y/x)λ

(λ −1)
x

(x+F)

(1−α)δ λ

(1−ψβ )
βτrt .

The auxiliary variable ϒt can also be eliminated by using (A.37) to obtain an equation for Nt −ψNt−τ and
then substituting (A.38):

Nt = ψNt−τ +
λδ λ (y/x)λ (1−α)

(1−ψ)
(xt −ψxt−τ)+(1−α)(St−τ −ψSt−2τ)

− (1−α)

(
1

µπ
+δ

λ

(y
x

)λ
)
ut−τ +

(1−α)ψ

µπ
ut−2τ .

A.4 A single housing-demand shock
Table A.4 reports the standard deviations and correlation coefficients predicted by the model with only a single
housing-demand shock through changes in expenditure θt .
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Table A.4: Model-predicted correlations with only expenditure shocks

Sales Prices New listings Time-to-sell Houses for sale

Correlation coefficients among housing-market variables
Sales 1
Prices 0.99 1
New listings 1.00 0.99 1
Time-to-sell −0.99 −1.00 −0.99 1
Houses for sale 0.95 0.95 0.95 −0.90 1

Correlations between housing variables and shocks
Expenditure (data) 0.78 0.93 0.68 −0.34 0.19
Expenditure (model) 1.0 1.0 1.0 −1.0 0.95

Notes: Simulated moments of the theoretical model with φθ = 0.98731/13, σθ =
√

1−φ 2
θ
×0.0965, and σr = 0 so

that only the expenditure shock occurs.

A.5 The special case of exogenous moving decisions
A model with exogenous moving is a special case of the parameters of the model in section 3 for which
the moving decision effectively becomes exogenous. If the size of the idiosyncratic shock to match quality
becomes very large, that is, δ = 0, then moving occurs if and only if an exogenous idiosyncratic shock is
received. Adjusting the parameter α so that the average length of time between moving house remains the
same provides an otherwise identical model with exogeneity of the moving decision as the only difference.
The model-implied standard deviations and correlation coefficients subject to the same aggregate shocks are
displayed in Table A.5.

The model with exogenous moving predicts that new listings are perfectly negatively correlated with
houses for sale. This is because, irrespective of market conditions, listings are proportional to the previous
number of homeowners not trying to sell. Furthermore, given that houses for sale are small on average as
a fraction of all houses, the predicted volatility of new listings is tiny. Empirically, new listings are highly
volatile and have a correlation with houses for sale that changes between positive and negative over time (see
Table 2 and Figure 2). More generally, the exogenous-moving model predicts that correlations of houses for
sale with other variables are always the negative of correlations of new listings with those variables. Hence,
the model can only predict a change in the sign of the correlation between houses for sale and sales or prices
if the sign of the new listings correlation with prices or sales changes. According to Figure 2, the correlations
among sales, price, and new listings are stable.
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Table A.5: Predictions of the exogenous-moving special case of the model

Expenditure Interest rate Sales Prices New listings Time-to-sell Houses for sale

Standard deviations, %
9.7 0.86 0.41 8.20 0.06 2.32 2.23

Correlation coefficients
Sales 1
Prices 0.25 1

New listings 0.15 0.96 1
Time-to-sell −0.32 −0.97 −0.98 1

Houses for sale −0.15 −0.96 −1.00 0.98 1

Correlations with shocks
Expenditure (data) 0.78 0.93 0.68 −0.34 0.19

Expenditure (model) 0.29 0.99 0.98 −0.99 −0.98
Interest rate (data) −0.03 −0.10 0.04 −0.13 −0.21

Interest rate (model) 0.25 −0.12 0.10 −0.14 −0.10

Notes: Simulated moments of the δ = 0 special case of the theoretical model with φθ = 0.98731/13, φr = 0.80331/13,

σθ =
√

1−φ 2
θ
×0.0965, and σr =

√
1−φ 2

r ×0.0086.
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