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Empirical evidence suggests that inflation determination is not purely forward looking, but
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1 Introduction

Empirical evidence suggests that inflation determination is not purely forward-looking, in that recent

past inflation rates have a role in explaining inflation outcomes in addition to that of current and

expected future economic fundamentals.1 This is reflected in many current DSGE models using

Phillips curve equations that include past inflation rates (Smets and Wouters, 2003, Christiano,

Eichenbaum and Evans, 2005). In spite of the wide application of such Phillips curves, providing a

coherent theoretical rationale for intrinsic inflation persistence has proved challenging.2

The widely used Calvo (1983) pricing model assumes that firms are randomly selected to make

price changes, and this leads to a theory of inflation (the New Keynesian Phillips curve) in which

history is irrelevant once current and expected future fundamentals (such as real marginal cost or the

output gap) are known. It has been necessary to bolt on extra ad hoc assumptions to this theory in

order to obtain Phillips curves including past inflation. Smets and Wouters (2003) and Christiano,

Eichenbaum and Evans (2005) make use of a “dynamic indexation” assumption whereby all firms’

prices are continually adjusted according to a rule making use of past inflation data. Gaĺı and Gertler

(1999) suggest that some fraction of firms uses a “rule-of-thumb” to raise prices mechanically in line

with past inflation rates.

This paper argues that the role of past inflation can be rationalized instead simply by discarding

the assumption of random selection of those firms that change price. If prices are more likely to

be reviewed and changed after a prolonged spell of stickiness then this can immediately explain

the presence of lagged inflation in the Phillips curve with a positive coefficient. This alternative

is arguably less ad hoc since there is no reason to believe that all firms have equal incentives to

change price irrespective of the time since the previous adjustment, and good reasons to believe

those that have waited longer will have more to gain from adjustment, other things being equal.

This “selection effect” based on the duration of price stickiness thus provides a simple theory of how

optimizing, forward-looking behaviour by firms can explain the intrinsic persistence of inflation.3

The intuition for the consequences of the selection effect is straightforward. Consider a cost-

push shock, or an increase in demand pressure as measured by the output gap, lasting for just

one time period. With staggered price adjustment, some prices remain unchanged, while others

rise, increasing the aggregate price level. After the shock has dissipated there are two groups of

firms and two countervailing effects on aggregate inflation. The firms that did not initially respond

now find that although the original shock has gone, the aggregate price level has increased, so

they want to raise their prices in money terms. This is the “catch-up” effect. The firms that

did respond must necessarily have made price increases on average that exceeded the aggregate

1There is an extensive literature on this question, starting from Fuhrer and Moore (1995). Important contributions
include Gaĺı and Gertler (1999), Roberts (2005) and Rudd and Whelan (2005). The evidence on inflation persistence
in general, and intrinsic persistence in particular, is surveyed by Fuhrer (2010).

2It has been argued that deviations from rational expectations (Roberts, 1997, Paloviita, 2004) or adaptive learning
(Milani, 2005) could account for intrinsic inflation persistence. Furthermore, it might be the case that time-variation
in the average rate of inflation generates apparent inflation persistence (Cogley and Sbordone, 2005). There is further
discussion of these ideas in Woodford (2007).

3If the selection effect works in the opposite direction, in that prices set more recently are more likely to be reviewed
and changed again, then past inflation rates still appear in the Phillips curve, but now with negative coefficients.
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inflation rate. This means that once the shock has gone, their money prices are now too high and

they would like to reduce them. This is the “roll-back” effect. A selection effect whereby firms

whose prices have remained unchanged for longer are now more likely to change them increases

the importance of “catch-up” relative to “roll-back” when compared to the case of purely random

selection. When “catch-up” dominates “roll-back”, aggregate inflation remains positive even though

the original shock has gone. This gives rise to inflation persistence that cannot be explained in terms

of persistence in the fundamentals driving inflation, in other words, intrinsic inflation persistence.4

This paper makes three distinct contributions to the literature on inflation dynamics and price

setting. First, the paper makes a theoretical contribution in showing how the slope of the hazard

function (the relationship between the probability of price adjustment and the existing length of a

price spell) determines whether intrinsic inflation persistence is present. An upward-sloping hazard

function generates such intrinsic persistence; a downward-sloping hazard function does not (and

actually implies inflation displays less persistence than that present in the underlying fundamentals).

These findings can be understood in terms of a selection effect not present in a model with a flat

hazard function.

Second, the paper makes a methodological contribution. It derives simple “hybrid” Phillips

curves (that is, Phillips curves containing both lagged and expected future inflation) in cases where

the probability of price adjustment does depend on the existing length of a price spell. The represen-

tation of the Phillips curve obtained here for non-constant hazard functions is easier to analyse than

that used in the existing literature, to which it is observationally equivalent. The widely used New

Keynesian Phillips curve is a special case of this representation, though its advantage of simplicity

prized in many applications is shown here to be available in a much broader class of models. This

methodological innovation may have applications in applied DSGE analyses where hybrid Phillips

curves (based on backward-looking pricing rules) have proved popular. It also has applications in

optimal monetary policy analyses that relax the assumption of Calvo pricing (as has been done

by Khan, King and Wolman, 2003). The simple Phillips curve representation is used by Sheedy

(2007) to derive the implications for optimal monetary policy of the selection effect and the resulting

intrinsic inflation persistence (see also Woodford, 2010, for an exposition of the results).

Third, the paper makes an empirical contribution in estimating the hazard function consistent

with U.S. inflation dynamics. This is done by developing a method for identifying and estimating the

hazard function using only macroeconomic data and simple single-equation econometric techniques

— no individual price observations are required.5 The familiar method of obtaining an overall

frequency of price adjustment from estimation of the New Keynesian Phillips curve is a special case

4This intuition generalizes to the case of persistent shocks: with a positive shock, prices set further in the past
are on average lower than those set more recently, and thus will rise by more when they are changed. Therefore any
increase in the likelihood of changing older prices relative to newer prices leads to a higher rate of inflation in the
periods following the shock than would otherwise occur.

5Estimates of hazard functions using macroeconomic data are rare owing to the econometric difficulties these
entail. Jadresic (1999) provides estimates, but using an OLS method that is valid only when all expectations of
inflation or the output gap conditioned on different information sets are identical. This requires a strong perfect
foresight assumption. The techniques developed here require only the conventional rational expectations assumption.
Laforte (2007) estimates a version of the Wolman (1999) model, featuring a non-constant hazard function, as part of
a DSGE model estimated using Bayesian methods.
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of the procedure developed here. Using this approach, it is possible to test whether there exists a

well-defined hazard function consistent with observed inflation dynamics when firms set prices in

a purely forward-looking manner. Hazard functions are found to be largely upward sloping, albeit

with a dip and subsequent rise around a price-spell duration of one year. These estimated hazard

functions can be compared to those from the burgeoning microeconometric literature.6

This paper is of course not the first to consider a model of price adjustment with a non-constant

hazard function. The original Taylor (1980) contracting model features fixed-length price spells,

which is a special case of an increasing hazard. The implications of Taylor contracts for infla-

tion dynamics are analysed by Guerrieri (2001, 2002). A general hazard function is considered by

Goodfriend and King (1997), while Wolman (1999) argues for an increasing hazard function on

the grounds that this is an implication of models of state-dependent pricing (for example, Dot-

sey, King and Wolman, 1999). A mixed Calvo-Taylor specification is considered by Mash (2004).

Laforte (2007) performs a Bayesian estimation of a DSGE model with a range of competing pric-

ing assumptions: Calvo pricing with indexation, sticky information (Mankiw and Reis, 2002), and

the increasing-hazard specification of Wolman (1999), finding that the data favour the Wolman

model over the alternatives. These studies have concluded that upward-sloping hazard functions

are better able to match the empirical impulse response and autocorrelation functions of inflation.

However, the logic behind these findings has not been fully understood because none of these papers

analyses the consequences of downward-sloping hazards, where the opposite conclusion is found.

The success of the alternative models cannot be explained simply in terms of deviating from the

overly restrictive Calvo pricing assumption: it is necessary to move specifically in the direction of

an upward-sloping hazard. Moving toward a negatively sloped hazard function actually delivers an

even worse performance in matching inflation dynamics.

In spite of the better empirical performance of models with upward-sloping hazard functions,

a number of papers have questioned whether these are really consistent with intrinsic inflation

persistence. Whelan (2007) and Yao (2009) have derived Phillips curves purporting to show that

all hazard functions, whether upward- or downward-sloping, are inconsistent with lagged inflation

rates having positive coefficients (echoing the earlier findings of Fuhrer (1997) in the case of Taylor

contracts). The Phillips curves derived in these papers include moving averages of fundamentals

(real marginal cost or the output gap) and past expectations of inflation and the fundamentals (as

in “sticky information” models such as Mankiw and Reis, 2002), in addition to lags of inflation

themselves. These Phillips curves thus differ fundamentally from the usual “hybrid” Phillips curves

considered in the empirical literature. This paper shows that these extra terms are observationally

equivalent to lagged inflation having a positive coefficient if and only if the hazard function is

upward sloping. Such a finding is consistent with Dotsey (2002), who shows that data generated

6The extensive microeconometric literature is surveyed in Klenow and Malin (2010). Micro-data estimates of
the hazard function tend to be largely flat or downward sloping, with the exception of a spike at the one-year
duration (Nakamura and Steinsson, 2008). Some studies do find evidence of upward-sloping hazard functions, for
example, Cecchetti (1986), Götte, Minsch and Tyran (2005), Ikeda and Nishioka (2007), and Cavallo (2009). Álvarez,
Burriel and Hernando (2005) argue that the common finding of a downward-sloping hazard function may be due to
a heterogeneity bias in the microeconometric estimates. Eichenbaum, Jaimovich and Rebelo (2008) find mildly
upward-sloping hazards by excluding non-“reference prices”.
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by a model with Taylor contracts would lead to an estimated hybrid Phillips curve with positive

intrinsic inflation persistence. The finding is also in line with Bakhshi, Khan and Rudolf (2007),

who find a positive coefficient on lagged inflation in the context of a model with an upward-sloping

hazard function.

The plan of the paper is as follows. The model is set out in section 2 and the simple representation

of the Phillips curve is derived there. A parameterization of the hazard function capturing the

selection effect is developed in section 3. Section 4 shows how the selection effect determines the

sign of the coefficients of past and expected future inflation in the Phillips curve. Section 5 presents

the macro-data estimation strategy and the resulting hazard functions. Finally, section 6 draws

some conclusions.

2 Price setting and the Phillips curve

The economy contains a measure-one continuum Ω of firms producing differentiated goods. Pref-

erences over goods are given by a CES aggregator with elasticity of substitution ε (ε > 1). The

demand function faced by firm ı ∈ Ω is

yt(ı) = −ε(pt(ı)− pt) + yt, [2.1]

where yt(ı) is log output and pt(ı) the log price of the good produced by firm ı. Log aggregate

output is yt =
∫
Ω

yt(ı)dı, and the log general price level is pt =
∫
Ω

pt(ı)dı. The price elasticity of

demand is ε. All variables (except prices) are given as deviations from their steady-state values, and

all equations are given as log linearizations of the original non-linear equations where appropriate.7

The log real marginal cost of production for firm ı is

xt(ı) = ηfyt(ı) + ηyyt + zt, [2.2]

where ηf is the elasticity of marginal cost with respect to the firm’s own output (ηf ≥ 0), ηy is

the elasticity with respect to aggregate output (ηy > 0), and zt denotes any aggregate factors other

than output that affect costs.8 With the constant price-elasticity demand function implied by the

CES aggregator, the profit-maximizing (log) price p∗t (ı) for a firm with fully flexible prices is to set

a constant markup on its marginal cost, hence p∗t (ı) = pt + xt(ı). By combining this with equations

[2.1] and [2.2], it follows that the profit-maximizing flexible price is the same for all firms and is

given by

p∗t = pt + νxt, where ν ≡ 1

1 + εηf

, [2.3]

and xt =
∫
Ω

xt(ı)dı is real marginal cost averaged across all firms, which is xt = (ηf + ηy)yt + zt.

7These log linearizations are standard. For further details, see Wolman (1999) or Woodford (2003). The steady
state chosen here features zero real GDP growth and zero inflation for simplicity, though relaxing either of these
assumptions to allow for moderate growth or inflation would not significantly alter the results.

8For the purposes of this paper it is more convenient directly to specify the marginal cost function rather than
the production function from which it is derived.
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The coefficient ν (ν > 0) is inversely related to the extent of real rigidity in the sense of Ball and

Romer (1990), and is also negatively related to strategic complementarity in pricing decisions in

some contexts.

Price setting is modelled using the framework of time-dependent price adjustment. The key

ingredient is the hazard function {α`}∞`=1, where α` is the probability of a firm now changing a

price set ` periods ago. The hazard function implies a survival function {ψ`}∞`=0, where ψ` is the

probability a newly set price will still be in use in ` periods’ time. The survival function is calculated

from the hazard function using ψ` =
∏`

i=1(1 − αi). A price is used for at least one period, thus

ψ0 = 1.

This paper focuses on hazard functions implying some minimal degree of price stickiness, that

is, α1 < 1, but where all prices will eventually adjust, which is ensured by α∞ > 0 (with α∞ ≡
lim`→∞ α`). If a firm chooses a new price at time t (its reset price) and expects future probabilities

of changing price are determined by the hazard function {α`}∞`=1 then the profit-maximizing reset

price rt is a weighted average of current and expected future p∗t ’s:

rt =
∞∑
`=0

(
β`ψ`∑∞
i=0 β

iψi

)
Etp

∗
t+`, [2.4]

where β is the discount factor (satisfying 0 < β < 1). All firms changing price at the same time

choose the same reset price.

The general price level pt is an aggregate of current and past reset prices. If ω`,t denotes the

proportion of firms at time t using a price set ` periods ago then pt =
∑∞

`=0ω`,trt−`. The evolution

of the age distribution of prices {ω`,t}∞`=0 is calculated using the hazard function with equations

ω`,t = (1− α`)ω`−1,t−1 and ω0,t =
∑∞

`=1 α`ω`−1,t−1.

Proposition 1 There is a unique stationary age distribution of prices, that is, a distribution

{ω`}∞`=0 such that ω`,t = ω` for all t and all `. If the hazard function {α`}∞`=1 is bounded away

from zero, that is, α` ≥ α for all ` and some α > 0, then there is convergence to the stationary age

distribution (ω`,t → ω` as t→∞) starting from any initial age distribution {ω`,t0}∞`=0 at time t0.

Proof See appendix A.2. �

The stationary age distribution has the property that ω` = (1 − α`)ω`−1, so ω` = ψ`ω0. If the

economy is at the stationary age distribution {ω`}∞`=0 then the general price level pt is:

pt =
∞∑
`=0

ω`rt−`. [2.5]

In what follows, it is assumed that the economy is always at the stationary age distribution.

It is possible to derive a Phillips curve relationship between inflation πt ≡ pt − pt−1 and real

marginal cost xt (and hence aggregate output yt, or the output gap) by directly combining equations
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[2.3], [2.4] and [2.5]:

πt =
∞∑
`=1

a`πt−` +
∞∑
i=0

∞∑
`=1

bi`Et−iπt−i+` + ν
∞∑
i=0

∞∑
`=0

ci`Et−ixt−i+`, [2.6]

where the coefficients a`, bi` and ci` depend on the hazard function {α`}∞`=1 and the discount factor

β. A Phillips curve of this form has been derived and studied in a number of papers (Mash, 2004,

Whelan, 2007, Yao, 2009). The Phillips curve [2.6] contains terms in expected future inflation, past

inflation, and past expectations of current, future and past inflation, along with a similar set of

terms in past and expected future real marginal cost, and with a full set of past expectations of

real marginal cost as well. This representation of the Phillips curve is unnecessarily complicated for

both theoretical and empirical analysis, so an observationally equivalent simpler representation is

presented below.

Proposition 2 The Phillips curve [2.6] with any hazard functions for which there is convergence

to the stationary age distribution is observationally equivalent to a Phillips curve of the alternative

form:

πt =
∞∑
`=1

λiπt−` +
∞∑
`=1

ξiEtπt+` + νκxt, [2.7]

for some coefficient κ and sequences of coefficients {λ`}∞`=1 and {ξ`}∞`=1 with
∑

`=1 |λ`| < ∞ and∑∞
`=1 |ξ`| <∞.

Proof See appendix A.3. �

The alternative representation of the Phillips curve exists if and only if the hazard function

implies that there will always be convergence to the stationary age distribution. This rules out

hazard functions that are consistent with stable cycles in the age distribution, for example, when

firms synchronize on price adjustment in certain periods. A weak sufficient condition for the existence

of the alternative representation [2.7] is that the hazard function is never exactly equal to zero (as

can be seen from Proposition 1 in combination with Proposition 2). Microeconometric estimates

of hazard functions suggest this condition should hold in practice9, though it does rule out certain

theoretical special cases, including Taylor (1980) contracts. The difficulty here with Taylor contracts

is not that they imply a spike in the hazard function, nor that the hazard function rises to probability

one exactly, but that the hazard is exactly at zero until the end of the contract is reached. This zero

probability means that the hazard function is consistent with both staggering and synchronization

of price changes, hence there is no guarantee of convergence to the stationary age distribution.

However, there are always hazard functions that do imply convergence arbitrarily close to any hazard

function that does not, so the conditions required for the existence of Phillips curve representation

[2.7] are not very onerous.10

9See Nakamura and Steinsson (2008), for example.
10For example, a hazard function specifying a fixed number of periods with a very small probability of adjustment

per period, and then an adjustment probability equal to one afterwards, can be made arbitrarily close to a Taylor
contract, but which always implies convergence to the stationary age distribution.
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It should be noted the reason why convergence to the stationary distribution is required in

Proposition 2 is not to ensure the coefficients in the price-level equation [2.5] are time invariant.

It is always possible to contemplate starting from the stationary distribution even though there

is no guarantee of convergence, and this is exactly what was assumed in obtaining the standard

Phillips curve [2.6]. The substantive content of Proposition 2 is that when there is convergence to

the stationary age distribution, equations [2.4] and [2.5], which involve moving averages of future

and past variables, can be replaced by equivalent “autoregressive” (or recursive) equations. This

then allows the simpler Phillips curve representation [2.7] to be derived. The full proof of this claim

is in appendix A.3, with the key steps in the argument outlined below.

Sketch proof To obtain the Phillips curve [2.7] it will be necessary to replace the price-level

equation pt =
∑∞

`=0ω`rt−` with an equation of the form

pt =
∞∑
`=1

φ`pt−` +

(
1−

∞∑
`=1

φ`

)
rt, [2.8]

for some sequence of coefficients {φ`}∞`=1 (the expression for the coefficient of pt above is required

for consistency with
∑∞

`=0ω` = 1). An “autoregressive” equation of this form implying the same

relationship between rt and pt as the original equation will only be well defined if the sequence of

coefficients {φ`}∞`=1 is (absolutely) summable. The condition required for this is that the “moving-

average” equation [2.5] be invertible, that is, all the roots of the lag polynomial for the moving

average lie strictly outside the unit circle.11 Hence, any root z = ζ−1 of
∑∞

`=0ω`z
` = 0 must satisfy

|ζ| < 1.

It turns out this condition is essentially the same as that for there to be convergence to the

stationary age distribution. Note that since ω0,t = 1 −
∑∞

`=1ω`,t, it follows that the transition

equations for the age distribution can be written as

ω1,t = (1− α1)− (1− α1)
∞∑
`=1

ω`,t−1, and ω`,t = (1− α`)ω`−1,t−1 for ` = 2, 3, . . . .

Now consider any eigenvalue ζ of the linear mapping from the sequence {ω`,t−1}∞`=1 to {ω`,t}∞`=1.

This eigenvalue satisfies ζv1 = −(1− α1)
∑∞

`=1 v` and ζv` = (1− α`)v`−1 for ` = 2, 3, . . ., where the

sequence {v`}∞`=1 is a corresponding eigenvector. If ζ 6= 0 then these equations imply

v1 +
(1− α1)

ζ

∞∑
`=1

v` = 0, and v` =
(1− α`)
ζ

v`−1 for ` = 2, 3, . . . .

It follows that v` = v1

∏`
i=1((1− αi)/ζ), which allows v2, v3, . . . to be eliminated from the equation

above, yielding: {
∞∑
`=0

∏`
i=1(1− αi)
ζ`

}
v1 = 0.

11For a discussion of the concept of invertibility in the context of ARMA models, see Hamilton (1994).
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If it were the case that v1 = 0 then v` is necessarily equal to zero for all `, which would mean that

{v`}∞`=1 cannot be an eigenvector. This allows v1 6= 0 to be cancelled from the equation above.

Now note that the stationary age distribution {ω`}∞`=0 satisfies ω`/ω0 = ψ` with ω0 6= 0, and that

ψ` =
∏`

i=1(1− αi). Therefore, any eigenvalue ζ must satisfy
∑∞

`=0ω`(ζ
−1)` = 0.

This argument demonstrates there is an equivalence between (non-zero) eigenvalues of the tran-

sition equations for the age distribution and reciprocals of (finite) roots of the lag polynomial for

equation [2.5]. Since invertibility of the lag polynomial requires reciprocals of all these roots to have

modulus less than one, this is seen to be equivalent to requiring all eigenvalues to have modulus less

than one, which is in turn equivalent to there being convergence to the stationary age distribution.�

The observationally equivalent Phillips curve [2.7] contains only current real marginal cost, ex-

pected future inflation, and past inflation. Note that the representation [2.7] is contained within the

class [2.6], so it is simpler in general. The fact that all expectations in [2.7] are taken with respect to

the same time-t information set, together with the absence of lags and leads of real marginal cost,

makes equation [2.7] an easier representation of the Phillips curve to analyse and estimate.

The Calvo (1983) pricing model, which assumes the same constant probability of price adjustment

for all firms (α` = α), is well known to lead to the New Keynesian Phillips curve (NKPC) πt =

βEtπt+1 + νκxt (see Woodford, 2003, for further details). The NKPC is a special case of [2.7] with

ξ1 = β and all other ξ` and λ` coefficients being zero. This model of the Phillips curve is widely

used owing to its tractability. Calvo pricing also implies a Phillips curve of the form [2.6], but the

complexity of this equation means that it is never used in practice. This paper establishes that the

simpler form [2.7] of the Phillips curve is available for a very wide class of time-dependent pricing

models, namely all those where there is convergence to the stationary age distribution (a weak

sufficient condition for which is given in Proposition 1).

Equation [2.7] has a close resemblance to the hybrid Phillips curves obtained by adding ad hoc

persistence-generating mechanisms to the Calvo model, for example, “rule-of-thumb” firms (Gaĺı

and Gertler, 1999), or “dynamic indexation” (Christiano, Eichenbaum and Evans, 2005, Smets and

Wouters, 2003). It is important to note that the lags of inflation in [2.7] arise not because of such

features, but only as a result of deviations from the constant hazard rate imposed by Calvo pricing.

Non-Calvo models of time-dependent pricing have been studied before, but by using Phillips curves

of the more complicated form [2.6].

The simpler form [2.7] of the Phillips curve has important advantages in understanding the link

between inflation dynamics and features of the hazard function. This is because part of its simplicity

stems from it being a purely autoregressive equation in inflation, while the standard Phillips curve

[2.6] also includes moving averages of real marginal cost. Just as both autoregressive and moving-

average components of an ARMA stochastic process contribute to the implied patterns of serial

correlation, the dynamics of inflation implied by [2.6] depend on the leads and lags of real marginal

cost as well as the leads and lags of inflation.

In equation [2.6], the mapping from the coefficients to the implied inflation dynamics is made even

more complicated by the presence of lags of expectations, which also make a distinct contribution
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to inflation dynamics. For example, in the “sticky information” model of Mankiw and Reis (2002),

the dynamics of inflation are determined solely by these lagged expectations of inflation and real

marginal cost.

The new representation [2.7] of the Phillips curve avoids these problems of interpretation by

having no “moving average” component, and no lagged expectations. The argument of Proposi-

tion 2 is that convergence to the stationary age distribution is equivalent to the “moving average”

components of [2.6] being invertible in the sense that there is a purely autoregressive observationally

equivalent equation. Furthermore, the proposition shows that working with the purely autoregres-

sive form avoids having lagged expectations in the equation.12

The ability to deduce inflation dynamics easily from [2.7] has important advantages. Existing

theoretical studies have focused on the properties of the Phillips curve representation [2.6], but the

findings are hard to interpret for the reasons discussed above. For example, it is known that all

the coefficients of lagged inflation a` in [2.6] are negative, irrespective of the shape of the hazard

function. However, as will be seen below, this finding has no implications whatsoever for the signs

of lagged inflation in the observationally equivalent Phillips curve [2.7]. Furthermore, the empirical

literature on hybrid Phillips curves has estimated equations of the form [2.7], not [2.6], and estimated

coefficients in one equation reveal little in general about the coefficients of the corresponding terms

in the alternative equation.

3 Hazard functions and the duration selection effect

Having established that the Phillips curve can be represented as an equation of the form [2.7] for a

general hazard function {α`}∞`=1 implying convergence to the stationary age distribution, the next

step is to understand how the coefficients on lagged and future inflation are affected by features of

the hazard function. The case of Calvo pricing is useful as a benchmark here because its distinctive

assumption is of entirely random selection of the firms that change price. Calvo pricing also entails

a constant fraction of firms changing price at any time, but this feature is shared by all time-

dependent pricing models (at the stationary age distribution), and even by some state-dependent

pricing models (Danziger, 1999, Gertler and Leahy, 2008).

As argued by Golosov and Lucas (2007), the correspondence between price stickiness at the

microeconomic level and rigidity of the aggregate price level can be radically changed by the presence

of a “selection effect”, whereby those firms whose prices are far from what would maximize profits

are the ones that change price. Here, this paper studies a distinct, but related, selection effect:

whether the firms that change price are disproportionately drawn from among those that have not

made a price change for a long time, or from those that have changed very recently.13 In other

words, this selection effect works through the duration of a price spell and is thus linked to the

shape of the hazard function. A positive selection effect (positively sloped hazard function) means

12Since the autoregressive equations have a recursive form, the order of the lag operator and the expectations
operator will be reversed when compared to the derivation of the Phillips curve using the “moving-average” equations.

13In a model of (homogeneous) time-dependent pricing, this is the only possible type of selection effect.
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that the probability of changing price in a given period is higher for older prices than newer ones,

while a negative selection effect (negatively sloped hazard function) means that more recently set

prices are more likely to be changed again in a given time period. The absence of a selection effect

is equivalent to an entirely flat hazard function.

There is a natural reason for supposing the duration selection effect is positive. The average

gains from changing price are likely to be larger the longer a price has been left unadjusted. For

example, non-stationarity in the price (in money terms) that a firm considers desirable would give

rise to a positive selection effect (the argument works for both deterministic and stochastic trends).14

In contrast to the selection effect of Golosov and Lucas (2007), here the emphasis is not primarily

on the rigidity of the general price level, but instead on how the duration selection effect determines

the extent of intrinsic inflation persistence: the degree to which inflation depends on its own past,

independently of current and expected future fundamentals.

The consequences of the duration selection effect are studied by parameterizing the hazard func-

tion so that there are parameters specifically controlling the direction and strength of the selection

effect independently of the degree to which individual prices are flexible on average. A parameter

α will determine the overall frequency of price adjustment, while n parameters {ϕi}ni=1 will de-

termine the direction and strength of the selection effect (n ≥ 1). Equivalently, α will determine

the average level of the hazard function, while {ϕi}ni=1 will determine its slope. The number n of

selection-effect parameters may be increased to expand the range of possible hazard-function shapes

that can be accommodated, though attention will focus on parameterizations with a finite number

of parameters.

It will be seen that the parameters α and {ϕi}ni=1 have the interpretations given above when the

hazard function {α`}∞`=1 is defined recursively by

α` = α−
n∑
i=1

ϕi +

min{`−1,n}∑
i=1

ϕi

(
`−1∏
j=`−i

(1− αj)

)−1

. [3.1]

Since ψ` = (1 − α`)ψ`−1, this is equivalent to the following (linear) recursion for the survival

probabilities {ψ`}∞`=0:

ψ` =

(
1− α+

n∑
i=1

ϕi

)
ψ`−1 −

min{`−1,n}∑
i=1

ϕiψ`−1−i, [3.2]

starting from ψ0 ≡ 1. The stationary age distribution {ω`}∞`=0 is proportional to the sequence of

survival probabilities {ψ`}∞`=0, so [3.2] implies that this age distribution is generated by an identical

linear recursion, starting from ω0 = α:

ω` =

(
1− α+

n∑
i=1

ϕi

)
ω`−1 −

min{`−1,n}∑
i=1

ϕiω`−i−1. [3.3]

14The presence of transitory idiosyncratic shocks can change this conclusion, though.
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The formal justification for the interpretations of the parameters α and {ϕi}ni=1 is provided

below. The overall strength of the selection effect will be measured by the difference between the

average age of existing prices at the time of adjustment and the average age conditional on no

adjustment.

Proposition 3 Suppose the economy is at the unique stationary age distribution of prices {ω`}∞`=0.

(i) The average probability of price adjustment
∑∞

`=1 α`ω`−1 and the fraction of newly set prices

ω0 are both equal to α.

(ii) The expected duration of a newly set price (
∑∞

`=1 `α`ψ`−1)/(
∑∞

`=1 α`ψ`−1) is α−1.

(iii) The difference between the average age of existing prices that are adjusted and the average

age conditional on no adjustment is (
∑n

i=1 iϕi)α
−1(1− α)−1.

(iv) The average age of prices in use
∑∞

`=0 `ω` is equal to (1−
∑n

i=1 iϕi)α
−1 − 1.

(v) The probability α1 is strictly decreasing in all ϕi, and the probability α∞ ≡ lim`→∞ α` is

strictly increasing in all ϕi.

(vi) The hazard function is flat (α` = α for all `) if and only if ϕi = 0 for all i.

(vii) The hazard function is (weakly) upward sloping everywhere (α`+1 ≥ α` for all `) if ϕi ≥ 0 for

all i.

(viii) The hazard function is (weakly) downward sloping everywhere (α`+1 ≤ α` for all `) only if

ϕi ≤ 0 for all i.

Proof See appendix A.4. �

These results demonstrate how selection of the firms that get to change price is controlled by the

parameters {ϕi}ni=1, with α simply measuring the overall extent of price flexibility. An increase

in any ϕi raises the average age of existing prices in adjusting firms relative to non-adjusters.

Equivalently, a rise in any one of these parameters pivots the hazard function around a unchanging

average probability of price adjustment α by lowering the hazard function at short durations and

raising it at long durations. Lowering any ϕi has the opposite effect. Multiple selection-effect

parameters may be required because the hazard function need not be monotonic in general.

This ability to capture the direction and strength of the duration selection effect with a sequence

of parameters {ϕi}ni=1 is very general in that essentially all hazard functions can be generated by

a recursion of the form [3.1] as n → ∞. Even though an infinite-dimensional parameter space is

required to capture all possible hazard functions, the magnitude of parameter ϕi necessarily tends to

zero as i increases for any hazard function implying convergence to the stationary age distribution.

Proposition 4 A hazard function {α`}∞`=1 can be exactly generated by the recursion [3.1] for some

parameters α and {ϕi}ni=1 with n→∞ and
∑∞

i=1 |ϕi| <∞ if and only if it implies convergence to

the stationary age distribution {ω`}∞`=0.

Proof See appendix A.5. �

Hence, any hazard function implying convergence to the stationary age distribution can be arbitrarily

well approximated by [3.1] with a sufficiently large, but finite, number of parameters α and {ϕi}ni=1

because it is known that ϕi → 0 as i→∞.
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An arbitrary choice of parameters α and {ϕi}ni=1 does not necessarily yield a well-defined se-

quence of probabilities {α`}∞`=1 using [3.1]. The following result presents some restrictions on the

parameters that need to be satisfied.

Proposition 5 (i) Parameters consistent with a well-defined hazard function {α`}∞`=1 must sat-

isfy 0 ≤ α ≤ 1 and −(1− α) ≤
∑n

j=iϕj ≤ α for all i = 1, . . . , n.

(ii) In the case n = 1, the restrictions 0 ≤ α ≤ 1 and −
√
α(1−

√
α) ≤ ϕ ≤ min{α, (1−

√
α)2} on

α and ϕ ≡ ϕ1 are necessary and sufficient for the hazard function to be well defined.

Proof See appendix A.6. �

4 Inflation dynamics

Having established a parameterization of the hazard function that ties the selection effect to {ϕi}ni=1,

the next step is to understand how the selection effect changes inflation dynamics relative to the

New Keynesian Phillips curve, where no such selection effect is present. The analysis is facilitated

by the fact that the hazard function recursion [3.1] with a finite number of parameters generates a

“hybrid” Phillips curve of the kind [2.7] presented in section 2 with a finite number of leads and

lags of inflation.

To see this, note that equation [3.2] implies the reset price equation [2.4] can be written equiva-

lently as

rt = β

(
1− α+

n∑
i=1

ϕi

)
Etrt+1−

n∑
`=1

β`+1ϕ`Etrt+1+`+

(
1− β(1− α)− β

n∑
i=1

(1− βi)ϕi

)
p∗t . [4.1]

Similarly, given [3.3], the equation for the price level in [2.5] becomes

pt =

(
1− α+

n∑
i=1

ϕi

)
pt−1 −

n∑
`=1

ϕ`pt−1−` + αrt. [4.2]

The parameterization [3.1] of the hazard function thus justifies finite-order recursive equations for

the reset price rt and the price level pt if the number of parameters is finite. In essence, this

recursive structure is what gives the New Keynesian Phillips curve its simple form. But Calvo

pricing specifically requires first-order recursions in [4.1] and [4.2]. The presence of a selection effect

is equivalent to the recursions being of a higher order, but this does not mean the highly convenient

recursive structure cannot be exploited.

Equations [2.3], [4.1] and [4.2] are combined to derive the Phillips curve. The result below

presents its properties.

Proposition 6 (i) The Phillips curve relating inflation πt to real marginal cost xt is

πt =
n∑
`=1

λ`πt−` +
n+1∑
`=1

ξ`Etπt+` + νκxt. [4.3]
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(ii) The current inflation response to current real marginal cost is always positive (κ > 0).

(iii) Current inflation always depends positively on the expectation of next period’s inflation rate

(ξ1 > 0).

(iv) The coefficient λ` on lagged inflation ` periods ago is a weighted sum (with non-negative

weights) of the selection-effect parameters ϕ`, . . . ,ϕn.

(v) The coefficient ξ` on future inflation ` periods in the future is the negative of a weighted sum

(with non-negative weights) of the selection-effect parameters ϕ`−1, . . . ,ϕn for ` ≥ 2.

(vi) The coefficients on lagged and future inflation sum to unity when weighted by the discount

factor β:
∑n

`=1 β
`λ` +

∑n+1
`=1 β

−`ξ` = 1.

(vii) The following cross-coefficient restrictions are satisfied for all hazard functions: ξ1 = β+ (1−
β)
∑n

i=1 β
iλi and ξ` = −

{
β`λ`−1 − (1− β)

∑n
i=` β

iλi
}

for ` = 2, . . . , n + 1.

Proof See appendix A.7. �

First, the general Phillips curve [4.3] always shares two features of the NKPC: the positive depen-

dence of current inflation on current real marginal cost and on expectations of inflation one period

ahead. The existence of a selection effect shows up in the presence of lags of inflation and extra

leads of inflation. A positive selection effect (firms being more likely to adjust prices set long ago

than those set recently) implies a positive dependence of current inflation on past inflation, while

a negative selection effect (recently set prices being more likely to be changed than older prices)

implies a negative relationship between current and past inflation. A positive selection effect thus

provides a microfoundation for intrinsic inflation persistence.

To understand the intuition for this finding, suppose that at time t = 1, a temporary shock to

real marginal cost x1 occurs that raises the inflation rate π1 by 1%. Normalize the time t = 0 price

level to p0 = 0 and suppose there is no price dispersion at t = 0 for simplicity. Given that only a

fraction α (0 < α < 1) of firms changes price at time t, it follows that the reset price of those firms

that adjusted is r1 = α−1 > 1. Now consider the conjecture that the price level pt is expected to

remain 1% higher permanently. In the absence of further shocks to real marginal cost, this belief

implies that rt = 1 is the best reset price for any firm from period t = 2 onwards. This leads to two

effects on actual inflation: a “catch-up” effect of firms that did not initially respond to the shock

now increasing their prices by 1% in line with the now-higher general price level; and a “roll-back”

effect of those firms that did raise price initially now cutting back their prices by (α−1 − 1)% to

bring them into line with the general price level.

After period t = 1, the sizes of the groups of firms that want respectively to “catch up” or to

“roll back” are proportional to 1− α and α. When firms from the “catch-up” group change price,

their contribution to aggregate inflation (relative to their size) is (1−α)%. Price changes from firms

in the “roll-back” group contribute −α× (α−1−1) = −(1−α)% to inflation (again, relative to their

size). Thus, if firms in the “catch-up” group are as likely to change price as those in the “roll-back”

group then the overall effect on inflation is zero and the conjectured belief of no inflation persistence

is confirmed as the rational expectations equilibrium. If there is a positive selection effect then

“catch-up” is more likely than “roll-back”, so actual inflation would continue to be positive after
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t = 1, even though the shock is gone. This means that persistence is present in inflation even though

the fundamentals explaining inflation themselves exhibit no persistence.

The impact of the selection effect on the coefficients of future inflation in [4.3] is the reverse

of the finding for the lags of inflation. A positive selection effect implies negative coefficients of

expected inflation more than one period in the future, reducing the overall importance of expected

inflation in determining current inflation. These coefficients on the future inflation are essentially

the mirror images of those on lagged inflation, and it is possible to deduce the former from the latter

(together with knowledge of the discount factor). Note that inflation can never be entirely backward

looking: there is always a positive dependence on inflation expectations one period ahead. A positive

dependence on past inflation must come at the expense of the overall importance of future inflation

because the coefficients on all inflation terms past and future must sum to one (when weighted by

the discount factor).

These findings can be illustrated with a simple example where there is only one selection-effect

parameter ϕ ≡ ϕ1 (n = 1). In this case, the Phillips curve [4.3] reduces to

πt = λπt−1 + β(1 + (1− β)λ)Etπt+1 − β2λEtπt+2 + νκxt, [4.4]

using the link between the future and past inflation coefficients, and where λ and κ are given by

λ =
ϕ

1− α+ βϕ(1− α+ϕ)
, and κ =

α(1− β(1− α)− β(1− β)ϕ)

1− α+ βϕ(1− α+ϕ)
. [4.5]

The coefficient of lagged inflation λ has the same sign as that the selection effect parameter ϕ and

is strictly increasing in its magnitude.15 The absolute value of λ is strictly increasing in α; this is

because the impact of the selection effect in making current inflation depend on past inflation is

greater when prices are more flexible on average. Unsurprisingly, the component of the slope of the

Phillips curve due to nominal rigidities κ (with ν depending on real rigidities) is strictly increasing

in the average flexibility of prices α. The coefficient κ is also strictly decreasing in ϕ, so a positive

selection effect reduces the overall slope of the Phillips curve. The coefficient on expected future

inflation two periods ahead has the opposite sign to that of the selection effect parameter, though

the sum of all coefficients on future inflation is always positive.

5 Estimating the hazard function

This section shows how the hazard function consistent with aggregate inflation dynamics can be

estimated easily in a manner similar to how the average frequency of price adjustment is derived

from estimates of the New Keynesian Phillips curve (a procedure which is a special case of the

one developed in this paper). The method is implemented here using the simplest econometric

techniques that have been applied in empirical work on the New Keynesian Phillips curve, that

15These results of course restrict α and ϕ to the range consistent with a well-defined hazard function as characterized
by Proposition 5. The expressions for λ and κ are special cases of those derived in the proof of Proposition 6.
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is, single-equation estimates that do not embed the Phillips curve in a complete structural model.

The results are illustrative — recent work by Benati (2009) has estimated the model of this paper

using more advanced Bayesian methods. Here, the econometrics will follow Gaĺı and Gertler (1999)

wherever possible.

Suppose that the Phillips curve [4.3] holds up to an additive i.i.d. measurement error υt. As-

suming a Cobb-Douglas production function implies that the (log) labour share st is a proxy for the

otherwise unobservable (log) real marginal cost xt (both given as deviations from their steady-state

values), as shown by Gaĺı, Gertler and López-Salido (2001). Hence the Phillips curve can be written

as:

πt =
n∑
`=1

λ`πt−` +
n+1∑
`=1

ξ`Etπt+` + νκst + υt.

Now define the `-step ahead forecast errors of inflation Υ`,t ≡ πt − Et−`πt. Noting that Etπt+` =

πt+`−Υ`,t+`, and making use of the expressions for ξ` in terms of {λ`}n`=1 and β given in Proposition 6,

it follows that the Phillips curve equation above becomes:

{πt − βπt+1} −
n∑
`=1

λ`

{
πt−` + (1− β)β`

∑̀
i=1

πt+i − β`+1πt+`+1

}
− νκst = υt −

n+1∑
`=1

ξ`Υ`,t+`.

Now take a vector of variables zt−1 in the information set of firms at time t−1. Rational expectations

implies that these variables are uncorrelated with Υ`,t+` for all ` ≥ 0, and they must also be

uncorrelated with υt. Thus, taking the unconditional expectation of the equation above multiplied

by the vector zt−1 yields the following moment conditions:

E

[{
{πt − βπt+1} −

n∑
`=1

λ`

{
πt−` + (1− β)β`

∑̀
i=1

πt+i − β`+1πt+`+1

}
− νκst

}
zt−1

]
= 0. [5.1]

There are n + 3 parameters to estimate (β, ν, α, {ϕi}ni=1 — treating real rigidity ν from [2.3]

as a single parameter). Proposition 6 implies that the coefficients {λ`}n`=1 and κ are functions of β,

α and {ϕi}ni=1. However, it is clear from the form of the moment conditions in [5.1] that even with

more than n + 3 instruments in zt−1, at most n + 2 parameters can be identified. Thus, as in Gaĺı,

Gertler and López-Salido (2001), the real rigidity parameter ν must be calibrated.

Given a Cobb-Douglas production function and monopolistic competition modelled using a CES

aggregator, it follows that ν = ms/(1− s), where s is the average labour share and m is the average

net markup of price on marginal cost. Calibrating the former to 67% and the latter to 10% yields

ν = 0.2.16

With this calibration, all the remaining n + 2 parameters β, α and {ϕi}ni=1 can be estimated by

the Generalized Method of Moments (GMM) if at least n + 2 instruments can be found.17 Extra in-

16This calibration follows Gertler and Leahy (2008). The original study by Gaĺı and Gertler (1999) imposed a
linear production function, which implies ν = 1.

17In small samples, the normalization of the moment conditions [5.1] can affect the results. Following Gaĺı and
Gertler (1999), equation [5.1] is multiplied by a function of the parameters that ensures all the coefficients are bounded
when the underlying parameters are restricted to a bounded set. This requires multiplying [5.1] by the expression for
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struments provide over-identifying restrictions. The cross-coefficient restrictions from Proposition 6

are imposed, otherwise there would be multiple (and generally inconsistent) ways of recovering the

hazard function from different combinations of Phillips-curve coefficients.18 What is not imposed

are the restrictions on the parameters α and {ϕi}ni=1 ensuring the hazard function is well defined

(see Proposition 5). After estimation, it can be checked where there is any statistically significant

deviation from a well-defined hazard function.19

Quarterly U.S. data on inflation and the labour share from 1960:Q1 to 2003:Q4 are used to

estimate the hazard function. The GMM estimation procedure requires that instruments be found

for the current and future endogenous variables appearing in the Phillips curve. The lags of the

following variables were selected for this role in addition to lags of inflation and the labour share

themselves: the spread between ten-year Treasury Bond and the three-month Treasury Bill yields,

quadratically detrended log real GDP, wage inflation, and commodity-price inflation.20 These are

very similar to the instruments used in the original Gaĺı and Gertler (1999) study of the NKPC.21

It is necessary to choose the number n of hazard-function slope (selection effect) parameters to

estimate. Three cases are considered: the case of a flat hazard function (n = 0), equivalent to the

New Keynesian Phillips curve; hazard functions consistent with one lag of inflation in the Phillips

curve (n = 1); and hazard functions consistent with four lags of inflation (n = 4).22 The estimation

results are presented in Table 1.23 In all cases, the estimated quarterly frequency of price adjustment

α is approximately between 20% and 25%. The estimated discount factor β is less than one, but

not significantly so. The first hazard-function slope parameter ϕ1 is significantly positive in both

the n = 1 and n = 4 specifications. When n = 4, there is a mixture of (significantly) positive

and negative estimated slope parameters. The implied hazard functions are shown in Figure 1 and

Figure 2.

The hazard function in the case n = 1 is upward sloping everywhere, rising from around zero

for newly set prices to a probability of approximately 0.4 after one year, and remaining largely flat

after that. In the case of n = 4, the hazard function is no longer monotonic. It also starts close to

θ0 from appendix A.7.
18These restrictions could in principle be tested.
19The restrictions needed for this are equivalent to inequality constraints on the parameters, so are more difficult

to impose at the estimation stage.
20The source of the data is the Federal Reserve Economic Data (FRED) database, available online at http:

//research.stlouisfed.org/fred2. Inflation is measured by the annualized percentage change in the GDP deflator
between consecutive quarters. The labour share is given by unit labour costs in the business sector divided by the
GDP deflator. Wage inflation is the annualized percentage change in compensation per hour in the business sector.
Commodity-price inflation is measured by the percentage change between consecutive quarters of a commodities
futures-price index. All variables are expressed as deviations from their averages over the sample period.

21Based on their predictive power for future inflation, six lags of inflation and commodity-price inflation were
selected as instruments, together with two lags of each of the other variables.

22No extra parameters were found to be statistically significant for n > 4.
23The GMM estimator applied in this paper uses a four-lag Newey-West estimator of the optimal weighting matrix

for the moment conditions. For each weighting matrix, the numerical minimization algorithm for the criterion
function is iterated until convergence because the coefficients in the moment conditions are non-linear functions of
the parameters. The resulting estimates are then used to update the weighting matrix, and the process is repeated
until the weighting matrix converges itself. Robust standard errors of the parameter estimates are also obtained
using a four-lag Newey-West estimator of the variance-covariance matrix. Details of these procedures are provided
in Mátyás (1999).
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Table 1: Estimated parameter values

n α ϕ1 ϕ2 ϕ3 ϕ4 β J-stat†

0 0.259∗∗ 0.973∗∗ 16.093
(0.048) (0.026) [0.651]

1 0.245∗∗ 0.258∗∗ 0.920∗∗ 10.983
(0.049) (0.077) (0.069) [0.895]

4 0.195∗∗ 0.182∗∗ −0.026 −0.208∗∗ 0.214∗∗ 0.874∗∗ 5.932
(0.055) (0.081) (0.070) (0.087) (0.054) (0.074) [0.981]

Notes: Estimation of the parameters is by GMM using U.S. quarterly data
1960:Q1–2003:Q4 and moment conditions [5.1]. The estimators of the parame-
ters and the GMM weighting matrix are sequentially iterated until convergence.
A four-lag Newey-West estimator of the optimal weighting matrix and the stan-
dard errors is used. Standard errors are given in parentheses, and are calculated
using the delta method for non-linear functions of the estimated parameters.

* Statistically significant at the 10% level.
** Statistically significant at the 5% level.
† This is the Hansen test of over-identifying moment conditions. The p-value is

in brackets.

zero, rises during the first year, before diminishing toward the end of the year. It then rises sharply

after the first year is over, and repeats a similar pattern toward the end of the second year.24 The

hazard function finishes much higher (around 0.4) than it begins (around 0), so it is still upward

sloping overall. Note that the point estimate of the probability at the four-quarter duration is not

well defined, but this deviation is not statistically significant.

The coefficients of the implied Phillips curves are shown in Table 2. Inflation one quarter ago

has a significantly positive coefficient in both the n = 1 and n = 4 specifications, while for n = 4

there is also a significantly positive coefficient on inflation four quarters ago. This latter finding

reflects the dip and subsequent rise of the hazard function around durations of one year.

6 Conclusions

This paper has shown that it is not necessary to appeal to backward-looking pricing rules to explain

why inflation can display intrinsic persistence. Relaxing the commonly used Calvo (1983) assump-

tion of random selection of which prices are changed, and allowing for the probability of adjustment

to depend on the duration of price stickiness, implies that the Phillips curve takes on a “hybrid”

form, including both past and expected future inflation. In general, the sign of the coefficients

24The model is set up in discrete time and the data used for the estimation are quarterly, so the results cannot
reveal whether a change in the hazard function occurs at the beginning, middle, or end of any given quarter. This
means that it is hard to judge whether the rise in the hazard function after the first and second years is consistent
with the timing of the observed spikes in microeconometric hazard functions at 12-month intervals.
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Figure 1: Hazard function for first-order model

Hazard function (α`)

Quarters (`)
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

Notes: The hazard function is calculated from [3.1] using the estimated parameters from Table 1.
The crosses joined by the dotted lines are the point estimates, the darkly shaded thick bars are
one-standard-deviation confidence intervals; the lightly shaded thin bars are two-standard-deviation
confidence intervals. Confidence bands are calculated using the delta method.

on lagged inflation can be either positive or negative depending on whether the selection effect is

positive or negative, that is, whether the probability of adjustment increases or decreases with the

duration of a price spell. If the hazard function is upward sloping then lagged inflation rates receive

positive coefficients; if downward-sloping then the coefficients are negative. Empirical estimates

suggest that there is a well-defined hazard function consistent with U.S. inflation dynamics. This

hazard function is not monotonic, but is clearly upward sloping on average.

Figure 2: Hazard function for fourth-order model

Hazard function (α`)

Quarters (`)
0 1 2 3 4 5 6 7 8 9 10

0
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0.6

Notes: See notes to Figure 1.
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Table 2: Coefficients of Phillips curves

n πt−4 πt−3 πt−2 πt−1 Etπt+1 Etπt+2 Etπt+3 Etπt+4 Etπt+5 xt

0 0.973∗∗ 0.080∗∗

(0.026) (0.032)

1 0.259∗∗ 0.939∗∗ −0.219∗∗ 0.056∗∗

(0.052) (0.052) (0.040) (0.028)

4 0.220∗∗ −0.180∗∗ 0.005 0.182∗∗ 0.896∗∗ −0.137∗∗ −0.002 0.121∗∗ −0.113∗∗ 0.044
(0.058) (0.080) (0.065) (0.067) (0.062) (0.059) (0.047) (0.059) (0.049) (0.028)

Notes: This table reports the coefficients of the Phillips curve [4.3] implied by the parameter estimates in Table 1.
Standard errors are given in parentheses and are calculated using the delta method. See the notes to Table 1 for more
details about the estimation method.

* Statistically significant at the 10% level.
** Statistically significant at the 5% level.
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A Technical appendix

A.1 Lemmas

Lemma 1 Let Dρ ≡
{
z ∈ C

∣∣ |z| ≤ ρ} be the closed disc of radius ρ and let ψ(z) ≡
∑∞

`=0ψ`z
` denote the

z-transform of the sequence of survival probabilities {ψ`}∞`=0.
(i) The function ψ(z) is analytic on Dρ for some ρ > 1.
(ii) A stationary age distribution {ω`}∞`=0 consistent with the hazard function {α`}∞`=1 is stable if and

only if ψ(z) has no roots in Dρ for some ρ > 1.
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Proof (i) Let α∞ ≡ lim`→∞ α` be the limiting value of the hazard function {α`}∞`=1. It is assumed
that α∞ > 0. Let $ be a number lying strictly between (1 − α∞) and 1, which must satisfy 0 < $ < 1.
Given that α` → α∞ as ` → ∞, there must exist a value of  such that (1 − α`) < $ for all ` ≥ . Since
ψ` = (1− α`)ψ`−1, this implies that ψ`+1 ≤ $ψ` for all ` ≥  and hence ψ` ≤ $`−ψ.

Now let ρ be any number strictly between 1 and $−1, which implies 0 < $ρ < 1 and hence that∑∞
`=0$

`|z|` ≤
∑∞

`=0($ρ)` = (1 −$ρ)−1 < ∞ for all z ∈ Dρ. By applying the triangle inequality to the
power series ψ(z), it follows that∣∣∣∣∣

∞∑
`=0

ψ`z
`

∣∣∣∣∣ ≤
∞∑
`=0

ψ`|z|` ≤
−1∑
`=0

ψ`|z|` +ψ
∞∑
`=

$`−|z|` =
−1∑
`=0

ψ`|z|` +ψ|z|
∞∑
`=0

$`|z|`,

and hence |ψ(z)| <∞ if z ∈ Dρ. Therefore, the power series ψ(z) is analytic on Dρ for some ρ > 1.

(ii) Let {ω`}∞`=0 be a stationary age distribution satisfying
∑∞

`=0ω` = 1 and consistent with the
hazard function {α`}∞`=1 so that ω` = (1 − α`)ω`−1. Now let ∆`,t ≡ ω`,t − ω` denote the sequence of
deviations {∆`,t}∞`=0 from this stationary distribution at time t. As

∑∞
`=0ω`,t = 1, it must be the case

that
∑∞

`=0∆`,t = 0 and hence ∆0,t = −
∑∞

`=1∆`,t. Thus considering the sequence of deviations {∆`,t}∞`=1 is
sufficient to know the behaviour of the whole sequence {∆`,t}∞`=0.

The laws of motion for the age distribution {ω`,t}∞`=0 require that ω`,t = (1−α`)ω`−1,t−1 for all ` ≥ 1.
These imply laws of motion for the deviations ∆`,t:

∆1,t = −(1− α1)
∞∑
`=1

∆`,t−1, and ∆`,t = (1− α`)∆`−1,t−1 for ` = 2, 3, . . . , [A.1.1]

using the earlier formula for ∆0,t−1 in terms of the sequence {∆`,t−1}∞`=1.
The equations in [A.1.1] define a linear transformation of the sequence {∆`,t}∞`=1. Suppose ζ is an

eigenvalue of this linear transformation, with the sequence {v`}∞`=1 being the corresponding eigenvector.
The eigenvalue-eigenvector pair is characterized by

ζv1 = −(1− α1)
∞∑
`=1

v`, and ζv` = (1− α`)v`−1 for ` = 2, 3, . . . . [A.1.2]

The stability of the stationary age distribution {ω`}∞`=0 is equivalent to all eigenvalues of the linear trans-
formation having modulus less than one.

For a non-zero eigenvalue ζ, note that the equations in [A.1.2] imply v1 6= 0, otherwise all elements of
the sequence {v`}∞`=1 would be zero, which would mean that it could not be an eigenvector (which must be
non-zero). Applying [A.1.2] recursively yields

(1− α1)v` = ζ−(`−1)

∏̀
=1

(1− α)

 v1 for ` = 2, 3, . . . ,

and hence (1−α1)v` = ζ−(`−1)ψ`v1 using the definition of the survival probabilities {ψ`}∞`=0. Substitution
into the remaining equation from [A.1.2] implies{ ∞∑

`=0

ψ`ζ
−`

}
v1 = 0,

which together with v1 6= 0 requires that ψ(ζ−1) = 0. Thus, any eigenvalue ζ of the linear transformation
from {∆`,t}∞`=1 to {∆`,t+1}∞`=1 is either zero, or its reciprocal ζ−1 is a root of the equation ψ(z) = 0. Similarly,
the reciprocal of any root of ψ(z) = 0 will be an eigenvalue of the linear transformation.

If there is a ρ > 1 such that ψ(z) = 0 has no roots on Dρ then all eigenvalues ζ must have modulus
less than one. Conversely, note that Dρ is a compact set for any fixed ρ. If this ρ is no more than the
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threshold found in part (i) then ψ(z) is an analytic function on Dρ, so it has a finite number of roots in
this set. Hence if all eigenvalues ζ have modulus less than one then there exists a minimum value of |ζ−1|,
which is greater than one. It follows that there exists a ρ > 1 such that ψ(z) = 0 has no roots on Dρ. This
completes the proof. �

Lemma 2 Suppose ψ(z) ≡
∑∞

`=0ψ`z
` is a power series with coefficients satisfying ψ0 = 1 and 0 ≤ ψ`+1 ≤

(1−α)ψ` for all ` ≥ 0 and for some 0 < α ≤ 1. Then there exists a ρ > 1 such that the equation ψ(z) = 0
has no roots in the set Dρ ≡

{
z ∈ C

∣∣ |z| ≤ ρ}.

Proof Let $ be a number lying strictly between (1 − α) and 1, which must satisfy 0 < $ < 1. Since
ψ`+1 = (1 − α`+1)ψ`, the definition of $ then implies that ψ`+1 ≤ $ψ` for all ` ≥ 0. Now let ρ be any
number strictly between 1 and the minimum of $−1 and the radius of the disc on which ψ(z) is analytic
(greater than one), as established by Lemma 1.

Construct a new function F(z) ≡ (1 −$z)ψ(z), which inherits the property that it is analytic on Dρ

from ψ(z) using Lemma 1. Using the definition of ψ(z) and collecting terms in common powers of z:

F(z) = 1−
∞∑
`=1

($ψ`−1 −ψ`)z`.

The function can be written as F(z) = F0(z) + F1(z), where F0(z) ≡ 1 and F1(z) ≡ −
∑∞

`=1($ψ`−1−ψ`)z`
are defined. The modulus of F1(z) satisfies

|F1(z)| ≤
∞∑
`=1

|$ψ`−1 −ψ`||z|` =
∞∑
`=1

($ψ`−1 −ψ`)|z|`,

using the triangle inequality and the positivity of the coefficient of |z|`. Now take any z ∈ Dρ. Since
|z|` ≤ ρ`, it follows that

∞∑
`=1

($ψ`−1 −ψ`)|z|` ≤
∞∑
`=1

($ψ`−1 −ψ`)ρ` = $ρ− (1−$ρ)
∞∑
`=1

ψ`ρ
` ≤ $ρ,

by collecting common terms in ψ` and using the non-negativity of {ψ`}∞`=0 together with ψ0 = 1 and
0 < $ρ < 1. Combining the equations above yields |F1(z)| ≤ $ρ, and hence |F1(z)| < |F0(z)| for all
z ∈ Dρ, since |F0(z)| = 1.

As a constant function, F0(z) must be analytic, and consequently F1(z) inherits this property from
F(z). Since F(z) = F0(z) + F1(z), Rouché’s Theorem25 implies that F(z) and F0(z) have the same number
of zeros on Dρ. Since F0(z) clearly has no zeros on this set, neither has F(z). Because its definition ensures
that F(z) inherits any roots of ψ(z) = 0, this precludes ψ(z) having a zero in Dρ as well. This completes
the proof. �

Lemma 3 The sequence of recursive parameters {ϕi}∞i=1 generating the hazard function {α`}∞`=1 using
[3.1] can be written as

ϕi = (−1)i
∑

(1,...,i+1)∈Ci+1

i+1∏
`=1

σ` , [A.1.3]

where the sequence {σ`}∞`=1 is defined by σ1 ≡ −(1 − α1) and σ` ≡ α` − α`−1, and where {Ci}∞i=2 is a
sequence of sets Ci, with each Ci being a subset of the set of sequences

Pi ≡
{

(1, . . . , i) ∈ Ni
∣∣∣ 1 ≤ ` ≤ `

}
. [A.1.4]

25See any text on complex analysis, such as Gamelin (2001), for further details about the theorem.
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Proof Define a sequence {φi}∞i=1 with φ1 ≡ 1− α and φi ≡ −ϕi−1 for i ≥ 2. With these definitions, the
recursion [3.2] for the survival function {ψ`}∞`=0 reduces to:

ψ` =
∑̀
i=1

φiψ`−i,

with initial condition ψ0 = 1. Using the initial condition, the order of the recursion can be reversed to
yield

φi = ψi −
i−1∑
j=1

ψi−jφj . [A.1.5]

The definition of the survival probabilities means that ψi =
∏i
`=1(1−α`), and the definition of the sequence

{σ`}∞`=1 in the statement of the Lemma implies 1− α` =
∑`

j=1(−σj). It follows that

ψi =
i∏

`=1

∑̀
j=1

(−σj) = (−1)i
1∑

1=1

· · ·
i∑

i=1

i∏
`=1

σ` ,

where the order of summation and multiplication is reversed in the final expression for ψi. Note that
the definition of the set Pi of sequences (1, . . . , i) in [A.1.4] implies that ψi can be written as a sum of
products

∏i
`=1 σ` over all sequences in the set Pi:

ψi = (−1)i
∑

(1,...,i)∈Pi

i∏
`=1

σ` . [A.1.6]

Now let C1 ≡P1 ≡ { (1) }, where the expression for P1 comes from [A.1.4], and define the sets Ci in the
sequence {Ci}∞i=2 with the recursion

Ci ≡Pi\

i−1⋃
j=1

(Cj ×Pi−j)

 , [A.1.7]

in terms of the sequence {Pi}∞i=1 specified in [A.1.4]. Observe that Ci ⊆Pi is well defined if Cj ⊆Pj for
all j = 1, . . . , i− 1 because (1, . . . , i−j) ∈Pi−j implies ` ≤ `+ j. Since C1 ⊆P1 by definition, the claim
that Ci ⊆Pi for all i follows by induction.

Now consider the following claim about the sequence of sets {Ci}∞i=1 defined by [A.1.7]:

(Cj ×Pi−j) ∩ (Ck ×Pi−k) = ∅, for all i, j, k ∈ N with j, k < i , j 6= k. [A.1.8]

Suppose for contradiction that (Cj ×Pi−j) ∩ (Ck ×Pi−k) 6= ∅, and without loss of generality take j > k.
Hence there is a sequence (1, . . . , i) ∈ Ni such that (1, . . . , j) ∈ Cj , (1, . . . , k) ∈ Ck, and (k+1, . . . , i) ∈
Pi−k. This implies that (k+1, . . . , j) ∈ Pj−k because the first j − k terms of a sequence of length
i − k > j − k in Pi−k must necessarily belong to Pj−k given the definition in [A.1.4]. Thus it follows
that there exists a (1, . . . , j) ∈ Cj ∩ (Ck ×Pj−k) for some k < j. However, this directly contradicts the
definition of Cj in [A.1.7]. Therefore, [A.1.8] must be true.

Given the recursion for {φi}∞i=1 in [A.1.5] and the expression for ψi in [A.1.6], the following provides a
formula for φi:

φi =

(−1)i
∑

(1,...,i)∈Pi

i∏
`=1

σ`

−
i−1∑
j=1

φj

(−1)i−j
∑

(1,...,i−j)∈Pi−j

i−j∏
`=1

σ`

 . [A.1.9]

25



It is claimed that the following equation holds for all i = 1, 2, . . .:

φi = (−1)i
∑

(1,...,i)∈Ci

i∏
`=1

σ` , [A.1.10]

Suppose this statement has already been proved for j = 1, . . . , i− 1 and substitute it into [A.1.9] to obtain:

φi =

(−1)i
∑

(1,...,i)∈Pi

i∏
`=1

σ`

− i−1∑
j=1

(−1)i
∑

(1,...,i)∈(Cj×Pi−j)

i∏
`=1

σ`

 , [A.1.11]

where the following has been used:(−1)j
∑

(1,...,j)∈Cj

j∏
`=1

σ`


(−1)i−j

∑
(1,...,i−j)∈Pi−j

i−j∏
`=1

σ`

 = (−1)i
∑

(1,...,i)∈(Cj×Pi−j)

i∏
`=1

σ` .

It follows from [A.1.11] that [A.1.10] holds for i if the sets Cj×Pi−j and Ck×Pi−k are disjoint for all j 6= k,
which is the claim [A.1.8] established earlier. Now note that the definitions of C1, σ1 and φ1 imply that
[A.1.10] holds for i = 1. Therefore, the expression for φi in [A.1.10] is verified for all i by induction. Since
ϕi = (−1)φi+1 by definition, equation [A.1.3] is demonstrated for the particular sets {Ci}∞i=2 characterized
in [A.1.7]. This completes the proof. �

A.2 Proof of Proposition 1

Let ψ(z) ≡
∑∞

`=0ψ`z
` denote the z-transform of the survival probabilities {ψ`}∞`=0. Lemma 1 demonstrates

that ψ(z) is analytic on Dρ ≡
{
z ∈ C

∣∣ |z| ≤ ρ} for some ρ > 1. Since 1 ∈ Dρ, it follows that ψ(1) =
∑∞

`=0ψ`
is finite (and positive given that ψ0 = 1 and ψ` ≥ 0). Define ω0 = ψ(1)−1 and ω` = ω0ψ` for ` ≥ 1. By
construction, the sequence {ω`}∞`=0 satisfies

∑∞
`=0ω` = 1, and ω` = (1−α`)ω`−1 since ψ` = (1−α`)ψ`−1.

Note also that
∞∑
`=1

α`ω`−1 = ω0

∞∑
`=1

α`ψ`−1 = ω0

∞∑
`=1

(ψ`−1 −ψ`) = ω0,

as ψ` = (1− α`)ψ`−1 and ψ0 = 1. This confirms that {ω`}∞`=0 is a stationary age distribution. There can
be only one such distribution because {ω`}∞`=0 must satisfy ω` = (1 − α`)ω`−1 for all ` ≥ 1. This leaves
only ω0 to be determined, but this is pinned down by the requirement

∑∞
`=0ω` = 1.

Now suppose that α` ≥ α for all ` for some α satisfying 0 < α < 1. Since ψ`+1 = (1 − α`+1)ψ`, this
implies 0 ≤ ψ`+1 ≤ (1−α)ψ` for all `. Hence Lemma 2 implies that there exists a ρ > 1 such that ψ(z) = 0
has no roots on Dρ. Lemma 1 shows that this condition implies that the stationary age distribution is
stable, completing the proof.

A.3 Proof of Proposition 2

The first step is to derive the standard representation of the Phillips curve [2.6] from equations [2.3], [2.4]
and [2.5]. Let ψ(z) ≡

∑∞
`=0ψ`z

` and ω(z) ≡
∑∞

`=0ω`z
` be the z-transforms of the sequences of survival

probabilities {ψ`}∞`=0 and the age distribution {ω`}∞`=0. Written in terms of the lag and forward operators
L and F, equations [2.4] and [2.5] become:

rt = ψ(β)−1Et [ψ(βF)p∗t ] , and pt = ω(L)rt. [A.3.1]

Note that ω` = ψ`ω0, so ω0 = ψ(1)−1 since ω(1) = 1. This justifies the relationship ω(z) = ψ(1)−1ψ(z)
between ω(z) and ψ(z). By using this result, eliminating the reset price rt from [A.3.1], and substituting
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the expression for p∗t from [2.3]:{
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt = ν

{
ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
xt, [A.3.2]

where I denotes the identity operator.
The left-hand side of [A.3.2] is

{
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt = pt −

∑∞
=0ψ

∑∞
`=0 β

`ψ`Et−pt−+`∑∞
=0ψ

∑∞
`=0 β

`ψ`
. [A.3.3]

The definition of inflation πt = pt − pt−1 implies pt−+` = pt− + πt−+1 + · · ·+ πt−+`, so

{
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt =

∑∞
`=0ψ`(pt − pt−`)∑∞

`=0ψ`
−
∑∞

=0

∑∞
`=0ψ

(∑∞
i=` β

iψi
)
Et−πt−+`∑∞

=0

∑∞
`=0 β

`ψψ`
.

The definition of inflation also implies pt − pt−` = πt−`+1 + · · ·+ πt, thus

{
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt =

∑∞
`=1ψ`∑∞
`=0ψ`

πt +
∑∞

`=1

(∑∞
i=`+1ψi

)
πt−`∑∞

`=0ψ`

−
∑∞

=0

∑∞
`=0ψ

(∑∞
i=` β

iψi
)
Et−πt−+`∑∞

=0

∑∞
`=0 β

`ψψ`
. [A.3.4]

The right-hand side of [A.3.2] is

ν
{
ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
xt = ν

∑∞
=0

∑∞
`=0 β

`ψψ`Et−xt−+`∑∞
=0

∑∞
`=0 β

`ψψ`
. [A.3.5]

Using the expressions in [A.3.4] and [A.3.5], it is seen that [A.3.2] is equivalent to the standard Phillips
curve equation [2.6] with the coefficients:

a` = −
∑

i=`+1ψi∑∞
i=1ψi

, b` =
ψ
∑∞

i=`ψi∑∞
i=1

∑∞
h=0 β

hψiψh
, and c` =

β`ψψ`∑∞
i=1

∑∞
h=0 β

hψiψh
.

Now suppose the hazard function implies that the stationary age distribution of prices is stable. As
Lemma 1 shows, this is equivalent to there being a ρ > 1 such that ψ(z) has no roots in the set Dρ ≡{
z ∈ C

∣∣ |z| ≤ ρ}. Under this condition, the function φ(z) ≡ ψ(z)−1 is analytic on Dρ, which is equivalent
to φ(z) being equal to its Taylor expansion around z = 0 for all z ∈ Dρ. Thus, φ(z) ≡ 1 −

∑∞
`=1φ`z

` for
some sequence of numbers {φ`}∞`=1, with

∑∞
`=1 |φ`| < ∞ since Dρ encloses the unit circle. The first term

in the Taylor series of φ(z) is 1 because ψ(0) = ψ0 = 1.
Since φ(z)ψ(z) = 1 for all |z| ≤ 1, it follows that I = ψ(L)φ(L), which allows the left-hand side of

[A.3.2] to be expressed equivalently as follows:{
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt = ψ(1)−1ψ(β)−1ψ(L) {ψ(1)ψ(β)φ(L)− Etψ(βF)} pt. [A.3.6]

It also follows from φ(z)ψ(z) = 1 that I = ψ(βF)φ(βF), and thus φ(L) = Iφ(L) = ψ(βF)φ(βF)φ(L).
Furthermore, note that the power series φ(L) ≡

∑∞
`=0φ`L

` contains only non-negative powers of the lag
operator L, so φ(L)pt = Etφ(L)pt. Putting these two results together implies φ(L)pt = Etψ(βF)φ(βF)φ(L)pt.
Then observe that because the power series ψ(βF) ≡

∑∞
`=0 β

`ψ`F
` contains only non-negative powers of

F, the law of iterated expectations (from which it follows that the conditional expectation operator Et
commutes with all non-negative powers of the forward operator F) implies

φ(L)pt = Et [ψ(βF) {Etφ(βF)φ(L)} pt] .

This result, together with [A.3.6], and noting φ(βF)φ(L) = φ(L)φ(βF), ψ(1) = φ(1)−1 and ψ(β) = φ(β)−1,
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yields {
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt ={

ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)
}
Et
{
φ(1)−1φ(β)−1φ(L)φ(βF)− I

}
pt. [A.3.7]

Equating this expression to the right-hand side of [A.3.2] leads to the following equation that is exactly
equivalent to the Phillips curve [2.6]:{

ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)
} (
Et
[{
φ(1)−1φ(β)−1φ(L)φ(βF)− I

}
pt
]
− νxt

)
= 0. [A.3.8]

Now define the function χ(z) ≡ φ(1)−1φ(β)−1φ(z)φ(βz−1)− 1, which is analytic on the annulus Aρ ≡{
z ∈ C

∣∣ βρ−1 ≤ |z| ≤ ρ
}

given that φ(z) is analytic and has no roots on Dρ. Notice that χ(1) = 0, so it
follows that there is another function θ(z) analytic on Aρ such that χ(z) = (1− z)θ(z). The function θ(z)
is equal to its Laurent series expansion θ(z) =

∑∞
`→−∞ θ`z

` for all z ∈ Aρ. Since Aρ includes the unit
circle, it follows that

∑∞
`→−∞ |θ`| < ∞. Make the following definitions of sequences {λ`}∞`=1 and {ξ`}∞`=1,

and coefficient κ appearing in the new Phillips curve [2.7]:

λ` ≡ −
θ`

θ0
, ξ` ≡ −

θ−`
θ0

, and κ ≡ 1
θ0
.

With these definitions, the sequences clearly satisfy
∑∞

`=1 |λ`| < ∞ and
∑∞

`=1 |ξ`| < ∞ (it can be shown
that θ0 6= 0 using the argument presented in the proof of Proposition 6).

Now define

dt ≡ πt −
∞∑
`=1

λ`πt−` −
∞∑
`=1

ξ`Etπt+` − νκxt, [A.3.9]

and note that the definitions above imply dt = κ {Et [θ(L)πt]− νxt}. Since πt = (I− L)pt and χ(L) = (I−
L)θ(L), it follows that θ(L)πt = χ(L)pt and hence dt = κ {Et [χ(L)pt]− νxt}. Therefore, comparing this ex-
pression for dt to equation [A.3.8], the Phillips curve [2.6] is equivalent to

{
ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
dt =

0, and thus to
ψ(L)Et [ψ(βF)dt] = 0, [A.3.10]

holding in all time periods t. Let et ≡ Et [ψ(βF)dt], with equation [A.3.10] being equivalent to ψ(L)et = 0
for all t.

Note that by comparing [A.3.9] to [2.7], the new Phillips curve equation is equivalent to dt = 0 for all
t. Suppose the new Phillips curve equation [2.7] holds. Thus dt = 0 for all t and hence et = 0 for all t as
well. It follows that ψ(L)et = 0, so the original Phillips curve [2.6] must hold.

Conversely, suppose the original Phillips curve [2.6] holds, which implies ψ(L)et = 0 using [A.3.10].
Given the stability of the stationary age distribution, it has been shown that ψ(z) = 0 has no roots on
or inside the unit circle. Thus if et0 6= 0 for some t0, it follows from ψ(L)et = 0 that et is unbounded for
time periods before t0. Now given the location of the roots of ψ(z) = 0, it follows from 0 < β < 1 that
ψ(βz) = 0 has no roots on or inside the unit circle. Hence if et = 0 for all t, the only bounded solution
of et ≡ Et [ψ(βF)dt] is dt = 0 for all t. On the other hand, if et is unbounded over all time periods t,
then dt must also be unbounded. If dt is unbounded then equation [A.3.9] shows that either inflation πt
or real marginal cost xt must be unbounded. Consequently, if attention is restricted to bounded rational
expectations solutions (as is conventional), the original Phillips curve [2.6] implies et = 0 for all t, and
hence dt = 0 for all t. This then demonstrates that the new Phillips curve [2.7] must hold, completing the
proof.

A.4 Proof of Proposition 3

Let ψ(z) ≡
∑∞

`=0ψ`z
` denote the z-transform of the sequence of survival probabilities {ψ`}∞`=0 generated

by some hazard function {α`}∞`=1 from parameters α and {ϕi}ni=1 using the recursion [3.1]. Define the
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polynomial

φ(z) = 1−

(
1− α+

n∑
i=1

ϕi

)
z +

n∑
=1

ϕz
+1 [A.4.1]

using these parameters. Since the recursion in [3.1] is equivalent to [3.2], by multiplying the power series
φ(z) and ψ(z) and noting that ψ0 = 1, it follows that φ(z)ψ(z) = 1 for all z for which ψ(z) is analytic.

The hazard function implies a unique stationary age distribution {ω`}∞`=0, with its z-transform denoted
by ω(z) ≡

∑∞
`=0ω`z

`. Since ω` = (1− α`)ω`−1 and ψ` = (1− α`)ψ`−1, it follows that ω(z) is a multiple
of ψ(z). In particular, as ψ0 = 1, it must be the case that ω(z) = ω0ψ(z). As {ω`}∞`=0 is a probability
distribution, it follows that ω(1) = 1, and thus ω0 = ψ(1)−1 and ω(z) = ψ(1)−1ψ(z). Together with
φ(z)ψ(z) = 1, it is established that φ(z)ω(z) = ψ(1)−1. Since ψ(1)−1 = φ(1):

ω(z) = φ(1)φ(z)−1. [A.4.2]

(i) Let ᾱ denote the average probability of price adjustment, calculated with respect to the stationary
age distribution of prices at the beginning of any period. This distribution is given by {ω`−1}∞`=1, so
ᾱ =

∑∞
`=1ω`−1α`. Using the fact that ω` = (1− α`)ω`−1, it follows that ω`−1α` = ω`−1 −ω` and thus

ᾱ =
∞∑
`=1

(ω`−1 −ω`) =
∞∑
`=0

ω` −
∞∑
`=1

ω` = ω0. [A.4.3]

The fraction of newly set prices is ω0. Since ω0 = ω(0) and φ(0) = 1, it follows from [A.4.1] and [A.4.2]
that

ᾱ = ω0 = φ(1) = α, [A.4.4]

for all values of {ϕi}ni=1.

(ii) Now consider the expected duration of a newly set price. If ς` ≡ 1 − α` denotes the probability of
price stickiness in the current period if ` periods have elapsed since the last change then α`

∏`−1
=1 ς is the

probability that a price will survive for exactly ` periods after first being set before being changed. The
expected duration is denoted by }:

} ≡
∞∑
`=1

`α`

`−1∏
=1

ς.

The definition of the survival probabilities {ψ`}∞`=0 implies ψ`−1 =
∏`−1
=1 ς. Together with α`ψ`−1 =

ψ`−1 −ψ`, the expected duration is given by

} =
∞∑
`=1

`α`ψ`−1 =
∞∑
`=1

`(ψ`−1 −ψ`) =
∞∑
`=0

(`+ 1)ψ` −
∞∑
`=0

`ψ` =
∞∑
`=0

ψ` = ψ(1). [A.4.5]

As φ(z)ψ(z) = 1, it follows that ψ(1) = φ(1)−1. The result in [A.4.4] then implies that } = α−1.

(iii) Let ~α denote the average age of the prices that are changed. Using Bayes’ law, the probability that
a price has age ` conditional on being changed is the product of α` and ω`−1 divided by α = ω0. Since
ω`−1/ω0 = ψ`−1, it follows that ~α is given by

~α =
∞∑
`=1

`α`ψ`−1. [A.4.6]

The result in [A.4.5] then implies ~α = } = α−1.
Let ~ς denote the average age of the prices that are not changed. Again, using Bayes’ law, the probability

that a price has age ` conditional on not being changed is the product of ς` = 1− α` and ω`−1 divided by

29



1− α. Thus ~ς is given by

~ς =
∞∑
`=1

`
ς`ω`−1

1− α
.

Using ς` = 1− α` and ω`−1 = αψ`−1 since ω0 = α:

~ς =
1

1− α

( ∞∑
`=1

`ω`−1 − α
∞∑
`=1

`α`ψ`−1

)
=

1
1− α

( ∞∑
`=0

ω` +
∞∑
`=0

`ω` − α
∞∑
`=1

`α`ψ`−1

)
.

Note that
∑∞

`=0ω` = 1. From the definition of ω(z) it follows that ω′(z) =
∑∞

`=0 `ω`z
`−1 and thus

ω′(1) =
∑∞

`=0 `ω`. Substituting these results and using the expression for ~α from [A.4.6] together with
~α = α−1 to deduce:

~ς =
1

1− α
(
1 + ω′(1)− αα−1

)
=
ω′(1)
1− α

. [A.4.7]

Differentiation of both sides of [A.4.2] yields:

ω′(z) = −φ(1)φ′(z)
φ(z)2

,

and hence ω′(1) = −φ′(1)φ(1)−1. Differentiation of the polynomial φ(z) in [A.4.1] implies φ′(z) =
− (1− α+

∑n
i=1ϕi) +

∑n
=1( + 1)ϕz, from which it follows that φ′(1) = − (1− α−

∑n
i=1 iϕi). And

since φ(1) = α:

ω′(1) =

(
1− α−

n∑
i=1

iϕi

)
α−1. [A.4.8]

Therefore, using [A.4.7], the difference between the average ages of prices conditional on adjustment and
non-adjustment is

~α − ~ς = α−1 −

(
1− α−

n∑
i=1

iϕi

)
α−1(1− α)−1 =

(
n∑
i=1

iϕi

)
α−1(1− α)−1.

(iv) Let ~ ≡
∑∞

`=0 `ω` denote the average age of prices actually in use according to the stationary
distribution {ω`}∞`=0. Using the definition of ω(z) it follows that ~ = ω′(1). Hence, [A.4.8] implies

~ =

(
1− α−

n∑
i=1

iϕi

)
α−1 =

(
1−

n∑
i=1

iϕi

)
α−1 − 1. [A.4.9]

(v) The hazard function recursion [3.1] implies that the probability of adjusting the most recently set
price is

α1 = α−
n∑
i=1

ϕi.

So α1 is clearly strictly decreasing in each ϕi.
Let α∞ ≡ lim`→∞ α` be the limiting value of the hazard function for price spells of arbitrarily long

duration. The recursion for the hazard function is equivalent to the linear recursion for the survival
probabilities {ψ`}∞`=0 in [3.2]. The recursion [3.2] is a linear difference equation with φ(z−1) = 0 in [A.4.1]
being the characteristic polynomial (since φ(z)ψ(z) = 1).

Now consider parameter values α and {ϕi}ni=1 such that φ(z) = 0 has no repeated roots. This will be
without loss of generality because there is always a set of parameters implying no repeated roots arbitrarily
close to parameters for which there are repeated roots. With no repeated roots, the solution for the sequence
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of survival probabilities {ψ`}∞`=0 takes the following general form

ψ` =
n+1∑
=1

κζ`, [A.4.10]

for some sequence of coefficients {κ}n+1
=1 , and a sequence {ζ}n+1

=1 where each ζ is a reciprocal of one of
the n+ 1 distinct roots of φ(z) = 0, that is, φ(ζ−1

 ) = 0.
Without loss of generality, order the sequence {ζ}n+1

=1 so that |ζ1| ≥ |ζ2| ≥ · · · ≥ |ζn+1|. As ψ` =
(1− α`)ψ`−1, it follows that α` = 1− (ψ`/ψ`−1) and hence:

α` = 1−
∑n+1

=1 κζ`∑n+1
=1 κζ`−1



= 1−
ζ1 +

∑n+1
=2 ζ

κ

κ1

(
ζ

ζ1

)`−1

1 +
∑n+1

=2
κ

κ1

(
ζ

ζ1

)`−1
.

With no repeated roots, ζ1 6= ζ2, so a necessary condition for the limit lim`→∞ α` to exist is that |ζ1| > |ζ2|
(using the ordering of the roots), which also requires ζ1 to be a real number. Under this condition,
α∞ ≡ lim`→∞ α` = 1− ζ1. For this limit to be economically meaningful and ensure α∞ > 0, it is necessary
that 0 ≤ ζ1 < 1.

It is known that φ(z)ψ(z) = 1, so φ(1) = ψ(1)−1, which is necessarily positive since ψ0 = 1 and ψ` ≥ 0
for all `. As ζ1 is the largest of the reciprocals of the roots of φ(z) = 0, there must be no value of ζ between
ζ1 and 1 such that φ(ζ−1) = 0. Since φ(z) in [A.4.1] is a polynomial, it is a continuous function. Together
with φ(1) > 0 and the absence of any value of ζ between ζ1 and 1 such that φ(ζ−1) = 0, it must be the
case that φ′(ζ−1

1 ) < 0.
The value of ζ1 is characterized by φ(ζ−1

1 ) = 0, so the change in ζ1 resulting from a change in a
parameter ϕi is implicitly determined by the condition φ(ζ−1

1 ) = 0. Differentiating this condition yields

∂ζ−1
1

∂ϕi

∣∣∣∣
φ(ζ−1

1 )=0

= − 1
ζi+1
1 φ′(ζ−1

1 )
. [A.4.11]

As α∞ = 1− (ζ−1
1 )−1, it follows that ∂α∞/∂ζ−1

1 = ζ2
1, and thus using the chain rule with [A.4.11]:

∂α∞
∂ϕi

= − 1
ζi−1
1 φ′(ζ−1

1 )
> 0,

since φ′(ζ−1
1 ) < 0 as demonstrated above.

(vi) In what follows, suppose that n =∞ in the hazard function recursion [3.1]. This is without loss of
generality because any superfluous ϕi parameters can be set to zero. Equation [3.1] implies

α`+1 − α` =
∑̀
i=1

ϕi

 ∏̀
j=`+1−i

(1− αj)

−1

−
`−1∑
i=1

ϕi

 `−1∏
j=`−i

(1− αj)

−1

,

and by combining overlapping terms and extracting common factors:

α`+1 − α` = ϕ`

∏̀
j=1

(1− αj)

−1

+
`−1∑
i=1

ϕi

 ∏̀
j=`−i

(1− αj)

−1

{(1− α`−i)− (1− α`)} .

Therefore, the change in the hazard function is given by:

α`+1 − α` =
`−1∑
i=1

ϕi(α` − α`−i)

 ∏̀
j=`−i

(1− αj)

−1

+ϕ`

∏̀
j=1

(1− αj)

−1

. [A.4.12]
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It follows that ϕi = 0 for all i implies α` = α for all `. Similarly, suppose α` = α1 for all `. It follows from
[A.4.12] that ϕi = 0 for all i.

(vii) Suppose that ϕi ≥ 0 for all i. It follows immediately from [A.4.12] that α2 ≥ α1. Now suppose
that α1 ≤ α2 ≤ · · · ≤ αi−1 ≤ α` has already been established for some `. Given this supposition, it follows
that α` − α`−i ≥ 0 for all i = 1, . . . , ` − 1. Equation [A.4.12] then implies that α`+1 ≥ α`. This proves
α`+1 ≥ α` for all ` by induction.

(viii) Define the sequence {σ`}∞`=1 using σ1 = −(1− α1) and σ` = α` − α`−1 for ` ≥ 2. If α`+1 ≤ α` for
all ` then σ` ≤ 0 for all `. It follows from the expression for ϕi in equation [A.1.3] justified by Lemma 3
that ϕi is the product of (−1)i and i + 1 non-positive terms. Hence, ϕi ≤ 0 for all i is established. This
completes the proof.

A.5 Proof of Proposition 4

Let ψ(z) ≡
∑∞

`=0ψ`z
` denote the z-transform of the sequence of survival probabilities {ψ`}∞`=0 generated

by a hazard function {α`}∞`=1. If the hazard function implies the stationary age distribution is stable then
Lemma 1 shows there exists a ρ > 1 such that ψ(z) has no roots in Dρ ≡

{
z ∈ C

∣∣ |z| ≤ ρ}. Define the
function φ(z) ≡ ψ(z)−1 on Dρ, which is analytic because ψ(z) 6= 0 for all z ∈ Dρ.

Since φ(z) is an analytic function, it is equal to its Taylor series expansion around z = 0 (contained
in Dρ). Thus φ(z) ≡ 1 −

∑∞
i=1φiz

` for some sequence {φi}∞i=1 (the leading term of the Taylor series is 1
because ψ(0) = ψ0 = 1). As z = 1 belongs to Dρ, it follows that

∑∞
i=1 |φi| <∞.

The definition of φ(z) requires φ(z)ψ(z) = 1 for all z ∈ Dρ. Multiplying the power series for φ(z) and
ψ(z) yields

φ(z)ψ(z) = ψ0 +
∞∑
`=1

(
ψ` −

∑̀
i=1

φiψ`−i

)
z`.

Since ψ0 = 1 always, φ(z)ψ(z) = 1 holds for all z ∈ Dρ if and only if ψ` =
∑`

i=1φiψ`−i is true for all `.
Define α and {ϕi}∞i=1 according to α ≡ 1−

∑∞
i=1φi and ϕi ≡ −φi+1. With these definitions, the recursion

for {ψ`}∞`=0 in [3.2] holds with n =∞, which is equivalent to the original recursion for the hazard function
in [3.1]. Given the definitions, it has also been shown that

∑∞
i=1 |ϕi| <∞. This completes the proof.

A.6 Proof of Proposition 5

(i) Define the sequence of probabilities of price stickiness {ς`}∞`=1 as ς` ≡ 1 − α` using the hazard
function {α`}∞`=1. If the parameters α and {ϕi}ni=1 generate a well-defined hazard function then it follows
that 0 ≤ ς` ≤ 1 for all `.

Using the hazard function recursion [3.1], the sequence {ς`}∞`=1 satisfies

ς` =

(
1− α+

n∑
i=1

ϕi

)
−

min{`−1,n}∑
i=1

ϕi∏`−1
j=`−i ςj

, [A.6.1]

for all `.
Consider the claim

n∑
j=i

ϕj ≤ α. [A.6.2]

Since [A.6.1] implies ς1 = 1− α+
∑n

i=1ϕi, the requirement ς1 ≤ 1 implies that [A.6.2] is true for i = 1.
Now suppose that the claim [A.6.2] has been proved for all i = 1, . . . , k for some k. If ϕk ≥ 0 then the

result
∑n

j=k+1ϕj ≤ α follows automatically from
∑n

j=k ϕj ≤ α, proving the statement [A.6.2] for the case
i = k + 1 as well.
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Consider the case ϕk < 0. Using [A.6.1], the requirement ςk+1 ≤ 1 is equivalent to

−
k−1∑
i=1

ϕi∏k
j=k+1−i ςj

− ϕk∏k
j=1 ςj

≤ α−
n∑
i=1

ϕi. [A.6.3]

Since 0 ≤ ς1 ≤ 1 and ϕk < 0 in the case under consideration, it follows from [A.6.3] that

−
k−2∑
i=1

ϕi∏k
j=k+1−i ςj

− (ϕk−1 +ϕk)∏k
j=2 ςj

≤ α−
n∑
i=1

ϕi. [A.6.4]

Now if ϕk−1 + ϕk ≥ 0 then
∑n

j=k+1ϕj ≤ α would follow from
∑n

j=k−1ϕj ≤ α, proving the statement
[A.6.2] for i = k + 1. If not, then since 0 ≤ ς2 ≤ 1, inequality [A.6.4] together with ϕk−1 +ϕk < 0 implies
that

−
k−3∑
i=1

ϕi∏k
j=k+1−i ςj

− (ϕk−2 +ϕk−1 +ϕk)∏k
j=3 ςj

≤ α−
n∑
i=1

ϕi. [A.6.5]

By again considering the two cases for the sign of ϕk−2 +ϕk−1 +ϕk the claim [A.6.2] for i = k + 1 either
follows, or a new inequality is deduced alone the pattern of [A.6.3]–[A.6.5] above. This process terminates
either with [A.6.2] proved for i = k + 1 or the inequality

−
∑k

i=1ϕi

ςk
≤ α−

n∑
i=1

ϕi.

Since 0 ≤ ςk ≤ 1 and the claim [A.6.2] is known to be true for i = 1, it follows that

−
k∑
i=1

ϕi ≤ α−
n∑
i=1

ϕi,

which proves that [A.6.2] holds for i = k + 1. Thus, [A.6.2] is true for i = k + 1 in all cases, so it follows
for all i = 1, . . . , n by induction.

Next, consider the claim

−(1− α) ≤
n∑
j=i

ϕi. [A.6.6]

Noting that [A.6.1] implies ς1 = 1− α+
∑n

i=1ϕi, the requirement ς1 ≥ 0 means that [A.6.6] must hold for
i = 1.

Now suppose that the statement [A.6.6] has been proved for i = 1, . . . , k for some k. Given equation
[A.6.1], the inequality ςk+1 ≥ 0 holds if and only if

k∑
i=1

ϕi∏k
j=k+1−i ςj

≤

(
1− α+

n∑
i=1

ϕi

)
. [A.6.7]

Multiplying both sides by the non-negative term
∏k
j=1 ςj leads to an equivalent inequality:

k−1∑
i=1

k−i∏
j=1

ςj

ϕi +ϕk ≤

(
1− α+

n∑
i=1

ϕi

)
k∏
j=1

ςj . [A.6.8]

If ϕk < 0 then the inequality −(1 − α) ≤
∑n

j=k+1ϕj follows automatically from −(1 − α) ≤
∑n

j=k ϕj ,
proving the statement [A.6.6] for i = k + 1. On the other hand, if ϕk ≤ 0 then inequality [A.6.8] together
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with the requirement 0 ≤ ς1 ≤ 1 implies

k−2∑
i=1

k−i∏
j=1

ςj

ϕi + ς1(ϕk−1 +ϕk) ≤

(
1− α+

n∑
i=1

ϕi

)
k∏
j=1

ςj . [A.6.9]

If ϕk−1 +ϕk < 0 then −(1−α) ≤
∑n

j=k+1ϕj follows from knowing −(1−α) ≤
∑n

j=k−1ϕj , proving [A.6.6]
for i = k + 1. But if ϕk−1 +ϕk ≥ 0 then [A.6.9] and 0 ≤ ς2 ≤ 1 imply:

k−3∑
i=1

k−i∏
j=1

ςj

ϕi + ς1ς2(ϕk−2 +ϕk−1 +ϕk) ≤

(
1− α+

n∑
i=1

ϕi

)
k∏
j=1

ςj . [A.6.10]

Proceeding this way, the claim [A.6.6] either follows, or the following inequality is eventually deduced:k−1∏
j=1

ςj

( k∑
i=1

ϕi

)
≤

(
1− α+

n∑
i=1

ϕi

)
k∏
j=1

ςj .

Since [A.6.6] is known to be true for i = 1 and as 0 ≤ ςk ≤ 1, it follows that:k−1∏
j=1

ςj

( k∑
i=1

ϕi

)
≤

(
1− α+

n∑
i=1

ϕi

)k−1∏
j=1

ςj

 ,

from which the statement [A.6.6] is proved for i = k + 1. Thus [A.6.6] is demonstrated for all i = 1, . . . , n
by induction. Therefore −(1− α) ≤

∑n
j=iϕj ≤ α for all i = 1, . . . , n.

(ii) Suppose n = 1 and ϕ ≡ ϕ1. In the case ϕ = 0, the restriction 0 ≤ α ≤ 1 is clearly all that is
required for the hazard function to be well defined. Thus assume ϕ 6= 0 in what follows.

The hazard function recursion [3.1] in the case n = 1 reduces to

α` = (α−ϕ) +
ϕ

1− α`−1
, [A.6.11]

and the linear recursion for the survival probabilities [3.2] becomes:

ψ` = (1− α+ϕ)ψ`−1 −ϕψ`−2. [A.6.12]

Define the quadratic equation φ(z) = 1 − (1 − α + ϕ)z − ϕz2. Note that φ(z−1) = 0 is the characteristic
equation for the sequence of survival probabilities {ψ`}∞`=0. Let ζ1 and ζ2 denote the reciprocals of the two
roots of φ(z) = 0. The quadratic can thus be written as φ(z) = (1− ζ1z)(1− ζ2z). By equating coefficients
of powers of z, it follows that 1− α+ϕ = ζ1 + ζ2 and ϕ = ζ1ζ2. Note that α1 = α−ϕ, which must be a
well-defined probability, so ϕ ≤ α is always required.

The roots ζ1 and ζ2 are real numbers when the following condition is satisfied:

(1− α+ϕ)2 − 4ϕ = ϕ2 − 2(1 + α)ϕ+ (1− α)2 ≥ 0. [A.6.13]

Interpreted as a quadratic in ϕ, it is straightforward to see that it has two positive real roots. The condition
above is satisfied when ϕ is below the smaller of the two roots:

ϕ ≤ (1 + α)−
√

(1 + α)2 − (1− α)2 =
(
1−
√
α
)2
. [A.6.14]

The sum of the roots of the quadratic in [A.6.13] is 2(1 + α), so the larger root is greater than α, which is
in the range where ϕ ≤ α is violated.

Consider first the case where ϕ > 0. Suppose it is claimed that there is an upper bound ᾱ for the
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hazard function {α`}∞`=1. If α`−1 ≤ ᾱ then [A.6.11] implies

α` ≤ (α−ϕ) +
ϕ

1− ᾱ
.

Hence ᾱ is valid upper bound for {α`}∞`=1 (satisfying 0 < ᾱ < 1) if the following inequality holds:

(α−ϕ) +
ϕ

1− ᾱ
≤ ᾱ,

which is equivalent to:
1− (1− α+ϕ)(1− ᾱ)−1 +ϕ(1− ᾱ)−2 ≤ 0.

Since in the case ϕ > 0, [A.6.11] implies the hazard function is strictly increasing as long as it remains well
defined. Thus the hazard function is well defined if and only if ϕ ≤ α and there is some bound ᾱ satisfying
0 < ᾱ < 1 such that φ((1− ᾱ)−1) ≤ 0. This requires φ(z) = 0 to have real roots, which in turn requires the
inequality in [A.6.14] to be satisfied. Furthermore, one of the real roots must be strictly greater than one
to ensure 0 < ᾱ < 1. Note that φ(0) = 1 and φ(1) = α > 0, and that the product of the roots of φ(z) = 0
is ϕ−1. Under the condition [A.6.14], ϕ < 1, so the product of the roots is greater than one. The sum of
the roots is positive, so both must be positive. Thus, ϕ ≤ α and [A.6.14] are necessary and sufficient for
the hazard function to be well defined in the case ϕ > 0.

Now consider the case where ϕ < 0. Since α1 = α − ϕ, it is necessary to assume ϕ ≥ −(1 − α) to
ensure α1 is a well-defined probability. Note that any negative value of ϕ satisfies [A.6.13], so both ζ1 and
ζ2 are real numbers. As ζ1ζ2 = ϕ, one of these numbers must be positive and the other negative. Without
loss of generality, assume ζ1 > 0 and ζ2 < 0. Since ζ1 + ζ2 = 1− α+ϕ and as α1 = α−ϕ is well defined,
it follows that ζ1 > −ζ2. Noting that φ(0) = 1 and φ(1) = α, so as φ(ζ−1

1 ) = 0 and φ(ζ−1
2 ) = 0 it must be

the case that ζ1 < 1 (otherwise φ(z) would have to change sign twice between 0 and 1, implying that both
ζ1 and ζ2 would be positive).

Since ζ1 and ζ2 are distinct numbers in the case ϕ < 0, the survival probabilities {ψ`}∞`=0 can be
expressed as ψ` = κ1ζ

`
1 + κ2ζ

`
2, where κ1 and κ2 are real numbers. Consequently:

ψ` = κ1ζ
`
1

{
1 +

κ2

κ1

(
ζ2

ζ1

)`}
, and ψ` −ψ`+1 = κ1(1− ζ1)ζ`1

{
1 +

κ2(1− ζ2)
κ1(1− ζ1)

(
ζ2

ζ1

)`}
. [A.6.15]

The hazard function recursion [A.6.11] implies α1 = α−ϕ and α2 = (α−ϕ) +ϕ/(1− α+ϕ). Given the
restriction ϕ ≥ −(1−α) that ensures α1 is well defined in the case ϕ < 0, the probability α2 is well defined
if and only if ϕ ≥ −(α−ϕ)(1− α+ϕ). Rearranging this inequality shows that it is equivalent to

ϕ2 − 2αϕ− α(1− α) ≤ 0.

Interpreted as a quadratic in ϕ, the above inequality has one positive and one negative root. Given that
ϕ < 0 in the case under consideration, the relevant restriction is that

ϕ ≥ α−
√
α2 + α(1− α) = −

√
α(1−

√
α). [A.6.16]

Notice that
√
α(1−

√
α) ≤ 1−α, so the requirement ϕ ≥ −(1−α) is automatically satisfied when [A.6.16]

holds.
The condition [A.6.16] is thus seen to be equivalent to α1 and α2 being well defined in the case ϕ < 0.

This is itself equivalent to 0 ≤ ψ2 ≤ ψ1 ≤ ψ0 = 1 because ψ` = (1 − α`)ψ`−1. By using [A.6.15],
ψ0 −ψ1 = κ1(1− ζ1) + κ2(1− ζ2) ≥ 0 and ψ1 −ψ2 = κ1(1− ζ1)ζ1 + κ2(1− ζ2)ζ2 ≥ 0. Since 0 < ζ1 < 1
and ζ2 < 0, it follows from the first inequality that at least one of κ1 and κ2 must be non-negative, and
thus from the second inequality that κ1 ≥ 0.

Since ζ1 > −ζ2, the terms (κ2/κ1)(ζ2/ζ1)i and (κ2(1−ζ2)/κ1(1−ζ1))(ζ2/ζ1)i in [A.6.15] must alternate
in sign and decline in absolute value as ` increases. Because κ1, ζ1 and (1 − ζ1) are non-negative, the
inequalities 0 ≤ ψ2 ≤ ψ1 ≤ ψ0 imply 0 ≤ ψ` ≤ ψ`−1 for all `, which ensure the hazard function is well
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defined everywhere. Since this condition is equivalent to [A.6.16], the proof is complete.

A.7 Proof of Proposition 6

(i) Let ψ(z) ≡
∑∞

`=0ψ`z
` and ω(z) ≡

∑∞
`=0ω`z

` denote the z-transforms of the survival probabilities
{ψ`}∞`=0 and the stationary age distribution {ω`}∞`=0. Equations [2.4] and [2.5] for the reset price rt and
price level pt can be written in terms of the lag and forward operators L and F and the power series ψ(z)
and ω(z):

rt = ψ(β)−1Et [ψ(βF)p∗t ] , and pt = ω(L)rt. [A.7.1]

Suppose that the hazard function {α`}∞`=1 is generated by the recursion [3.1] using parameters α and
{ϕi}ni=1. Define the polynomial φ(z) ≡ 1− (1− α+

∑n
i=1ϕi) z +

∑n
=1ϕz

+1. Lemma 1 shows that ψ(z)
is analytic on the set Dρ ≡

{
z ∈ C

∣∣ |z| ≤ ρ} for some ρ > 1. Note that the equivalent recursion [3.2] for
the survival probabilities and ψ0 = 1 imply φ(z)ψ(z) = 1 for all z ∈ Dρ.

Now multiply both sides of the equation in [A.7.1] for the reset price rt by φ(βF) and take conditional
expectations at time t:

Et [φ(βF)rt] = Et
[
φ(βF)

{
ψ(β)−1Et [ψ(βF)p∗t ]

}]
= Et

[
ψ(β)−1Et [φ(βF)ψ(βL)p∗t ]

]
= ψ(β)−1p∗t . [A.7.2]

This result follows first because φ(βF) contains only non-negative powers of F, so it commutes with the
conditional expectation Et[·] operator inside another conditional expectation. Second, φ(z)ψ(z) = 1, hence
φ(βF)ψ(βF) = I, where I is the identity operator. Next, note that because ω` = (1 − α`)ω`−1 and
ψ` = (1 − α`)ψ`−1, the functions ω(z) and ψ(z) are proportional. Thus ω(z) = (ω(1)/ψ(1))ψ(z), and
ω(z) = φ(1)ψ(z), since ψ(1)−1 = φ(1), and ω(1) = 1 because {ω`}∞`=0 is a probability distribution. It
follows that φ(z)ω(z) = φ(1) for all z ∈ Dρ. Multiplying both sides of the equation for pt in [A.7.1] by φ(L)
yields

φ(L)pt = φ(L)ω(L)rt = φ(1)Irt = φ(1)rt. [A.7.3]

Now multiply both sides of equation [A.7.2] by φ(1) and note that ψ(β)−1 = φ(β), and then substitute the
expression for p∗t from [2.3]:

Et [φ(βF)φ(1)rt] = φ(1)φ(β)(pt + νxt).

Substitute the formula for φ(1)rt from [A.7.3] into the above and divide both sides by φ(1)φ(β):

Et

[{
φ(L)
φ(1)

φ(βF)
φ(β)

− 1
}

pt

]
= νxt. [A.7.4]

Define the Laurent polynomial χ(z) as follows:

χ(z) ≡ φ(z)
φ(1)

φ(βz−1)
φ(β)

− 1, [A.7.5]

so that equation [A.7.4] is equivalent to Et [χ(L)pt] = νxt, noting that F ≡ L
−1. For algebraic convenience,

define the sequence of coefficients {φ}n+1
=1 by φ1 ≡ (1− α+

∑n
i=1ϕi) and φ ≡ −ϕ−1 for  = 2, . . . , n+ 1

in terms of the parameters of the recursion [3.1]. With these definitions the polynomial φ(z) can be written
as φ(z) ≡ 1−

∑n+1
=1 φz

. The Laurent polynomial χ(z) can be written explicitly using this expression:

χ(z) = ϑ


1−

n+1∑
=1

φz


1−
n+1∑
=1

βφz
−

−
1−

n+1∑
=1

φ

1−
n+1∑
=1

βφ

 ,

where ϑ ≡ φ(1)−1φ(β)−1 is defined. Expanding the brackets to obtain an expression of the form χ(z) =
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∑n+1
`=−(n+1) χ`z

` and equating powers of z implies that χ(z) can be written as

χ(z) = χ0 +
n+1∑
`=1

χ`

{
z` + β`z−`

}
, where χ` = −ϑ

φ` −
n+1−`∑
=1

βφφ+`

 for ` ≥ 1, [A.7.6]

since χ−` = β`χ` for all `. As the definition in [A.7.5] implies χ(1) = 0, it follows that χ0 = −
∑n+1

`=1 (1 +
β`)χ`. Furthermore, χ(1) = 0 implies that there exists a Laurent polynomial θ(z) such that χ(z) =
(1− z)θ(z). Given the degree of χ(z), this Laurent polynomial must have the form θ(z) =

∑n
`=−(n+1) θ`z

`.
Multiplying θ(z) by 1− z and equating powers of z yields an expression for χ(z):

χ(z) = θ−(n+1)z
−(n+1) +

n∑
`=−n

(θ` − θ`−1)z` − θnzn+1.

Equating coefficients of powers of z with those in [A.7.6] implies χn+1 = −θn, βn+1χn+1 = θ−(n+1), and
χ` = θ` − θ`−1 for all ` = −n, . . . , n. Iterating these relationships then implies

θ` = −
n+1∑
=`+1

χ, and θ−` =
n+1∑
=`

βχ, [A.7.7]

for all ` = 1, . . . , n+ 1. Combining these expressions with those for χi in [A.7.6] yields

θ` = ϑ

n+1∑
i=`+1

φi −
n+1−i∑
j=1

βjφjφi+j

 = ϑ

n+1∑
i=`+1

φi

1−
i−`−1∑
j=1

βjφj

 , [A.7.8a]

where a change in the order of summation has been made in the final term. Similarly,

θ−` = −ϑ
n+1∑
i=`

βi

φi −
n+1−i∑
j=1

βjφjφi+j

 = −ϑ
n+1∑
i=`

βiφi

1−
i−∑̀
j=1

φj

 . [A.7.8b]

The original definitions of the terms of the sequence {φ}n+1
=1 are φ1 = 1 − α +

∑n
i=1ϕi and φ = −ϕ−1

for  = 2, . . . , n + 1. Substituting the original parameters α and {ϕ}n=1 back into [A.7.8a] and [A.7.8b]
yields

θ` = −ϑ

ϕ` +
n∑

i=`+1

ϕi

1− β(1− α1) +
i−`−1∑
j=1

βj+1ϕj

 , for ` = 1, . . . , n; [A.7.9a]

θ−(`+1) = ϑβ`+1

ϕ` +
n∑

i=`+1

βi−`ϕi

α1 +
i−`−1∑
j=1

ϕj

 , for ` = 1, . . . , n; [A.7.9b]

θ0 = ϑ

(1− α1)−
n∑
i=1

ϕi

1− β(1− α1) +
i−1∑
j=1

βj+1ϕj

 ; and [A.7.9c]

θ−1 = −ϑβ

(1− α1)−
n∑
i=1

βiϕi

α1 +
i−1∑
j=1

ϕj

 . [A.7.9d]

Since the definition of θ(z) requires χ(z) = (1 − z)θ(z), and as inflation is defined by πt = (I − L)pt,
it follows from equations [A.7.4] and [A.7.5] that Et [θ(L)πt] = νxt. Make the following definitions of the
coefficient κ and the sequences {λ`}n`=1 and {ξ`}n+1

`=1 in terms of the elements of the sequence {θ`}n`=−(n+1)
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from [A.7.9]:

λ` ≡ −
θ`

θ0
, ξ` ≡ −

θ−`
θ0

, and κ ≡ 1
θ0
, [A.7.10]

noting that θ0 > 0 ensures these definitions are valid. With these definition, the Laurent polynomial θ(z) is
given by θ(z) = κ−1

{
1−

∑n
`=1 λ`z

` −
∑n+1

`=1 ξ`z
−`
}

, and so Et [θ(L)πt] = νxt is equivalent to the Phillips
curve in [4.3].

(ii) First consider the expression for θ0 in [A.7.9c]. By expanding the bracket and changing the order of
summation:

θ0 = ϑ

(1− α1)− (1− β(1− α1))

(
n∑
i=1

ϕi

)
−
n−1∑
i=1

βi+1ϕi

 n∑
j=i+1

ϕj

 .

Adding and subtracting terms in the final summation to obtain an equivalent expression:

θ0 = ϑ

(1− α1)− (1− β(1− α1))

(
n∑
i=1

ϕi

)
−

(
n∑
i=1

βi+1ϕi

) n∑
j=1

ϕj

+
n∑
i=1

βi+1ϕi

 i∑
j=1

ϕj

 .

The definition of the polynomial φ(z) implies φ(1) = α1 +
∑n

i=1ϕi and φ(β) = 1−β(1−α1)+
∑n

i=1 β
i+1ϕi.

By defining the sums si ≡
∑i

j=1ϕj for i = 0, . . . , n (with s0 = 0) and noting that φ(1)− α1 =
∑n

i=1ϕi:

θ0 = ϑ

{
(1− α1)− (φ(1)− α1)φ(β) +

n∑
i=1

βi+1(si − si−1)si

}
.

Rearranging the first two terms leads to

θ0 = ϑ

{
(1− α1)(1− φ(β)) + (1− φ(1))φ(β) +

n∑
i=1

βi+1(si − si−1)si

}
. [A.7.11]

Note that (si − si−1)si = (1/2)
{

(s2
i − s2

i−1) + (si − si−1)2
}

, and thus

n∑
i=1

βi+1(si − si−1)si =
1
2

{
n∑
i=1

βi+1ϕ2
i + (1− β)

n−1∑
i=1

βi+1s2
i + βn+1s2

n − β2s2
0

}
,

since si − si−1 = ϕi. Using s0 = 0 and substituting this result into [A.7.11]:

θ0 = ϑ

{
(1− α1)(1− φ(β)) + (1− φ(1))φ(β) +

1
2

{
n∑
i=1

βi+1ϕ2
i + (1− β)

n−1∑
i=1

βi+1s2
i + βn+1s2

n

}}
.

[A.7.12]
Now observe that φ(1) = ψ(1)−1, and ψ(1) =

∑∞
`=0ψ`, so 0 < φ(1) < 1 because ψ0 ≡ 1, ψ` ≥ 0,∑∞

`=0ψ` <∞, and ψ1 > 0 under the assumption α1 < 1. Similarly, φ(β) = ψ(β)−1 and ψ(β) =
∑∞

`=0 β
`ψ`.

Since 0 < β < 1, it follows that 0 < φ(β) < 1. Together these results establish that ϑ > 0 since
ϑ ≡ φ(1)−1φ(β)−1. Given α1 < 1, the parameter α1 must satisfy 0 ≤ α1 < 1. Consequently, the first
two terms in the brackets in [A.7.12] are strictly positive and all other terms are non-negative. Thus, it is
shown that θ0 > 0. The proof of θ0 > 0 then automatically shows κ > 0.

(iii) Now consider the value of ξ1, which requires examining θ−1. Let si ≡ α1 +
∑i

j=1ϕj , and so
si − si−1 = ϕi for all i = 1, . . . , n, and s0 = α1. The expression for θ−1 in [A.7.9d] can be written as

−θ−1 = ϑ

{
β(1− α1)−

n∑
i=1

βi+1(si − si−1)si−1

}
. [A.7.13]
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Note that (si − si−1)si−1 = (1/2)
{

(s2
i − s2

i−1)− (si − si−1)2
}

, and hence

n∑
i=1

βi+1(si − si−1)si−1 =
1
2

{
(1− β)

n−1∑
i=1

βi+1s2
i + βn+1s2

n − β2s2
0 −

n∑
i=1

βi+1ϕ2
i

}
.

Also note that
∑n

i=1 β
i+1ϕi =

∑n
i=1 β

i+1(si− si−1) = (1−β)
∑n−1

i=1 β
i+1si +βn+1sn−β2s0. By adding and

subtracting a multiple of these equal terms to the equation above:

n∑
i=1

βi+1(si − si−1)si−1 =
1
2

n∑
i=1

βi+1ϕi −
1
2

{
(1− β)

n−1∑
i=1

βi+1si + βn+1sn −
1
2
β2α1

}

+
1
2

{
(1− β)

n−1∑
i=1

βi+1s2
i + βn+1s2

n − β2α2
1 −

n∑
i=1

βi+1ϕ2
i

}
,

recalling that s0 = α1. Since
∑∞

i=1 β
i+1ϕi = φ(β)− 1 + β(1− α1), the above equation can be rearranged

as follows:
n∑
i=1

βi+1(si − si−1)si−1 = −β
2
{
α2

1β− α1β+ α1 − 1
}

+
1
2

(1− φ(β))

+
1
2

{
(1− β)

n−1∑
i=1

βi+1si(1− si) + βn+1sn(1− sn) +
n∑
i=1

βi+1ϕ2
i

}
.

Substituting this result into equation [A.7.13] yields:

−θ−1 =
ϑ

2
{β(1− α1)(1− α1β) + (1− φ(β))}

+
ϑ

2

{
(1− β)

n−1∑
i=1

βi+1si(1− si) + βn+1sn(1− sn) +
n∑
i=1

βi+1ϕ2
i

}
.

Proposition 5 demonstrates that 0 ≤ si ≤ 1 for all i = 1, . . . , n is necessary for the hazard function {α`}∞`=1

to be well defined. Since 0 < α1 < 1, 0 < β < 1, and 0 < φ(β) < 1, ϑ > 0 and θ0 > 0 as shown earlier, it
follows that ξ1 = −θ−1/θ0 is strictly positive.

(iv) Next, note that

1− β(1− α1) +
i∑

j=1

βj+1ϕj = (1− β)

{
1 +

i−1∑
h=0

βh+1sh

}
+ βi+1si, where sj ≡ α1 +

j∑
h=1

ϕj .

Using equations [A.7.9a] and [A.7.10], the coefficients of lagged inflation {λ`}n`=1 can be expressed as

λ` =
(
ϑ

θ0

)
ϕ` +

n∑
i=`+1


(
ϑ

θ0

)(1− β)

1 +
i−`−2∑
j=0

βj+1sj

+ βi−`sj−i−1

ϕi.
Proposition 5 shows that 0 ≤ si ≤ 1 for all i = 0, 1, . . . , n. Since ϑ > 0 and θ0 > 0, it follows that λ` is a
weighted sum of ϕ`, . . . ,ϕn.

(v) Similarly, equations [A.7.9b] and [A.7.10] show that the coefficients on future inflation {ξ`}n+1
`=2 are:

ξ` = −

{(
ϑβ`

θ0

)
ϕ`−1 +

n∑
i=`

(
ϑβi+1si−`

θ0

)
ϕi

}
, for ` = 2, . . . , n+ 1,

where si is as defined above. Thus ξ` for ` ≥ 2 is the negative of a weighted sum of the parameters
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ϕ`−1, . . . ,ϕn.

(vi) Note that [A.7.5] implies χ(β) = 0. Since χ(z) = (1 − z)θ(z), it must be the case that θ(β) = 0
also. The definition of θ(z) then implies that

∑n
`→−(n+1) β

`θ` = 0. The result follows by using [A.7.10].

(vii) Finally, to derive the restrictions across the sequences of coefficients {λ`}n`=1 and {ξ`}n+1
`=1 , use the

definition in [A.7.10] and equation [A.7.7] to deduce:

(1− β)
n∑
i=`

βiλi = −(1− β)
θ0

n∑
i=`

βiθi =
(1− β)
θ0

n∑
i=`

n+1∑
j=i+1

βiχj =
(1− β)
θ0

n+1∑
i=`+1


i−1∑
j=`

βj

χi,
using a change in the order of summation to derive the final equality. Using the formula for the geometric
sum yields

(1− β)
n∑
i=`

βiλi =
1
θ0

n+1∑
i=`+1

(β` − βi)χi. [A.7.14]

Thus, adding β to the equation above in the case of ` = 1 and substituting for θ0 using [A.7.7]

β+ (1− β)
n∑
i=1

βiλi =
1
θ0

{
n+1∑
i=2

(β− βi)χi − β
n+1∑
i=1

χi

}
= − 1

θ0

n+1∑
i=1

βiχi = −θ−1

θ0
,

with the expression for θ−1 taken from [A.7.7]. Given the definition in [A.7.10], the equation for ξ1 is
confirmed. Now substract the expression in [A.7.14] for ` ≥ 2 from β`λ`−1:

β`λ`−1 − (1− β)
n∑
i=`

βiλi = −β
`θ`−1

θ0
− 1
θ0

n+1∑
i=`+1

(β` − βi)χi =
1
θ0

{
β`

n+1∑
i=`

χi −
n+1∑
i=`+1

(β` − βi)χi

}
,

making use of equations [A.7.7] and [A.7.10]. It follows that

β`λ`−1 − (1− β)
n∑
i=`

βiλi =
1
θ0

n+1∑
i=`

βiχi =
θ−`
θ0

,

using [A.7.7] again. Therefore the equation for ξ` is verified for ` ≥ 2. This completes the proof.
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