Appendix to "Intrinsic Inflation Persistence"

Kevin D. Sheedy London School of Economics

 $7^{\rm th}$ October 2010

A Proofs of propositions

A.1 Lemmas

Lemma 1 Let $\mathscr{D}_{\rho} \equiv \{z \in \mathbb{C} \mid |z| \leq \rho\}$ be the closed disc of radius ρ and let $\psi(z) \equiv \sum_{\ell=0}^{\infty} \psi_{\ell} z^{\ell}$ denote the z-transform of the sequence of survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$.

- (i) The function $\psi(z)$ is analytic on \mathscr{D}_{ρ} for some $\rho > 1$.
- (ii) A stationary age distribution $\{\omega_{\ell}\}_{\ell=0}^{\infty}$ consistent with the hazard function $\{\alpha_{\ell}\}_{\ell=1}^{\infty}$ is stable if and only if $\psi(z)$ has no roots in \mathscr{D}_{ρ} for some $\rho > 1$.

PROOF (i) Let $\alpha_{\infty} \equiv \lim_{\ell \to \infty} \alpha_{\ell}$ be the limiting value of the hazard function $\{\alpha_{\ell}\}_{\ell=1}^{\infty}$. It is assumed that $\alpha_{\infty} > 0$. Let ϖ be a number lying strictly between $(1 - \alpha_{\infty})$ and 1, which must satisfy $0 < \varpi < 1$. Given that $\alpha_{\ell} \to \alpha_{\infty}$ as $\ell \to \infty$, there must exist a value of j such that $(1 - \alpha_{\ell}) < \varpi$ for all $\ell \geq j$. Since $\psi_{\ell} = (1 - \alpha_{\ell})\psi_{\ell-1}$, this implies that $\psi_{\ell+1} \leq \varpi \psi_{\ell}$ for all $\ell \geq j$ and hence $\psi_{\ell} \leq \varpi^{\ell-j}\psi_{j}$. Now let ρ be any number strictly between 1 and ϖ^{-1} , which implies $0 < \varpi \rho < 1$ and hence that

Now let ρ be any number strictly between 1 and ϖ^{-1} , which implies $0 < \varpi \rho < 1$ and hence that $\sum_{\ell=0}^{\infty} \varpi^{\ell} |z|^{\ell} \leq \sum_{\ell=0}^{\infty} (\varpi \rho)^{\ell} = (1 - \varpi \rho)^{-1} < \infty$ for all $z \in \mathscr{D}_{\rho}$. By applying the triangle inequality to the power series $\psi(z)$, it follows that

$$\left|\sum_{\ell=0}^{\infty}\psi_{\ell}z^{\ell}\right| \leq \sum_{\ell=0}^{\infty}\psi_{\ell}|z|^{\ell} \leq \sum_{\ell=0}^{j-1}\psi_{\ell}|z|^{\ell} + \psi_{j}\sum_{\ell=j}^{\infty}\varpi^{\ell-j}|z|^{\ell} = \sum_{\ell=0}^{j-1}\psi_{\ell}|z|^{\ell} + \psi_{j}|z|^{j}\sum_{\ell=0}^{\infty}\varpi^{\ell}|z|^{\ell},$$

and hence $|\psi(z)| < \infty$ if $z \in \mathscr{D}_{\rho}$. Therefore, the power series $\psi(z)$ is analytic on \mathscr{D}_{ρ} for some $\rho > 1$.

(ii) Let $\{\omega_{\ell}\}_{\ell=0}^{\infty}$ be a stationary age distribution satisfying $\sum_{\ell=0}^{\infty} \omega_{\ell} = 1$ and consistent with the hazard function $\{\alpha_{\ell}\}_{\ell=1}^{\infty}$ so that $\omega_{\ell} = (1 - \alpha_{\ell})\omega_{\ell-1}$. Now let $\Delta_{\ell,t} \equiv \omega_{\ell,t} - \omega_{\ell}$ denote the sequence of deviations $\{\Delta_{\ell,t}\}_{\ell=0}^{\infty}$ from this stationary distribution at time t. As $\sum_{\ell=0}^{\infty} \omega_{\ell,t} = 1$, it must be the case that $\sum_{\ell=0}^{\infty} \Delta_{\ell,t} = 0$ and hence $\Delta_{0,t} = -\sum_{\ell=1}^{\infty} \Delta_{\ell,t}$. Thus considering the sequence of deviations $\{\Delta_{\ell,t}\}_{\ell=1}^{\infty}$ is sufficient to know the behaviour of the whole sequence $\{\Delta_{\ell,t}\}_{\ell=0}^{\infty}$.

The laws of motion for the age distribution $\{\omega_{\ell,t}\}_{\ell=0}^{\infty}$ require that $\omega_{\ell,t} = (1 - \alpha_{\ell})\omega_{\ell-1,t-1}$ for all $\ell \geq 1$. These imply laws of motion for the deviations $\Delta_{\ell,t}$:

$$\Delta_{1,t} = -(1 - \alpha_1) \sum_{\ell=1}^{\infty} \Delta_{\ell,t-1}, \quad \text{and} \ \Delta_{\ell,t} = (1 - \alpha_\ell) \Delta_{\ell-1,t-1} \ \text{for} \ \ell = 2, 3, \dots,$$
 [A.1.1]

using the earlier formula for $\Delta_{0,t-1}$ in terms of the sequence $\{\Delta_{\ell,t-1}\}_{\ell=1}^{\infty}$.

The equations in [A.1.1] define a linear transformation of the sequence $\{\Delta_{\ell,t}\}_{\ell=1}^{\infty}$. Suppose ζ is an eigenvalue of this linear transformation, with the sequence $\{v_{\ell}\}_{\ell=1}^{\infty}$ being the corresponding eigenvector. The eigenvalue-eigenvector pair is characterized by

$$\zeta v_1 = -(1 - \alpha_1) \sum_{\ell=1}^{\infty} v_\ell$$
, and $\zeta v_\ell = (1 - \alpha_\ell) v_{\ell-1}$ for $\ell = 2, 3, \dots$ [A.1.2]

The stability of the stationary age distribution $\{\omega_{\ell}\}_{\ell=0}^{\infty}$ is equivalent to all eigenvalues of the linear transformation having modulus less than one.

For a non-zero eigenvalue ζ , note that the equations in [A.1.2] imply $v_1 \neq 0$, otherwise all elements of the sequence $\{v_\ell\}_{\ell=1}^{\infty}$ would be zero, which would mean that it could not be an eigenvector (which must be non-zero). Applying [A.1.2] recursively yields

$$(1 - \alpha_1) v_{\ell} = \zeta^{-(\ell-1)} \left\{ \prod_{j=1}^{\ell} (1 - \alpha_j) \right\} v_1 \text{ for } \ell = 2, 3, \dots$$

and hence $(1 - \alpha_1)v_{\ell} = \zeta^{-(\ell-1)}\psi_{\ell}v_1$ using the definition of the survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$. Substitution into the remaining equation from [A.1.2] implies

$$\left\{\sum_{\ell=0}^{\infty}\psi_{\ell}\zeta^{-\ell}\right\}v_{1}=0,$$

which together with $v_1 \neq 0$ requires that $\psi(\zeta^{-1}) = 0$. Thus, any eigenvalue ζ of the linear transformation from $\{\Delta_{\ell,t}\}_{\ell=1}^{\infty}$ to $\{\Delta_{\ell,t+1}\}_{\ell=1}^{\infty}$ is either zero, or its reciprocal ζ^{-1} is a root of the equation $\psi(z) = 0$. Similarly, the reciprocal of any root of $\psi(z) = 0$ will be an eigenvalue of the linear transformation.

If there is a $\rho > 1$ such that $\psi(z) = 0$ has no roots on \mathscr{D}_{ρ} then all eigenvalues ζ must have modulus less than one. Conversely, note that \mathscr{D}_{ρ} is a compact set for any fixed ρ . If this ρ is no more than the threshold found in part (i) then $\psi(z)$ is an analytic function on \mathscr{D}_{ρ} , so it has a finite number of roots in this set. Hence if all eigenvalues ζ have modulus less than one then there exists a minimum value of $|\zeta^{-1}|$, which is greater than one. It follows that there exists a $\rho > 1$ such that $\psi(z) = 0$ has no roots on \mathscr{D}_{ρ} . This completes the proof.

Lemma 2 Suppose $\psi(z) \equiv \sum_{\ell=0}^{\infty} \psi_{\ell} z^{\ell}$ is a power series with coefficients satisfying $\psi_0 = 1$ and $0 \leq \psi_{\ell+1} \leq (1 - \underline{\alpha})\psi_{\ell}$ for all $\ell \geq 0$ and for some $0 < \underline{\alpha} \leq 1$. Then there exists a $\rho > 1$ such that the equation $\psi(z) = 0$ has no roots in the set $\mathscr{D}_{\rho} \equiv \{z \in \mathbb{C} \mid |z| \leq \rho\}.$

PROOF Let ϖ be a number lying strictly between $(1 - \underline{\alpha})$ and 1, which must satisfy $0 < \varpi < 1$. Since $\psi_{\ell+1} = (1 - \alpha_{\ell+1})\psi_{\ell}$, the definition of ϖ then implies that $\psi_{\ell+1} \leq \varpi \psi_{\ell}$ for all $\ell \geq 0$. Now let ρ be any number strictly between 1 and the minimum of ϖ^{-1} and the radius of the disc on which $\psi(z)$ is analytic (greater than one), as established by Lemma 1.

Construct a new function $\mathfrak{F}(z) \equiv (1 - \varpi z)\psi(z)$, which inherits the property that it is analytic on \mathscr{D}_{ρ} from $\psi(z)$ using Lemma 1. Using the definition of $\psi(z)$ and collecting terms in common powers of z:

$$\mathfrak{F}(z) = 1 - \sum_{\ell=1}^{\infty} (\mathfrak{a} \psi_{\ell-1} - \psi_{\ell}) z^{\ell}.$$

The function can be written as $\mathfrak{F}(z) = \mathfrak{F}_0(z) + \mathfrak{F}_1(z)$, where $\mathfrak{F}_0(z) \equiv 1$ and $\mathfrak{F}_1(z) \equiv -\sum_{\ell=1}^{\infty} (\varpi \psi_{\ell-1} - 1) = 0$

 $\psi_{\ell} z^{\ell}$ are defined. The modulus of $\mathfrak{F}_1(z)$ satisfies

$$|\mathfrak{F}_1(z)| \leq \sum_{\ell=1}^{\infty} |\mathfrak{a}\psi_{\ell-1} - \psi_{\ell}| |z|^{\ell} = \sum_{\ell=1}^{\infty} (\mathfrak{a}\psi_{\ell-1} - \psi_{\ell}) |z|^{\ell},$$

using the triangle inequality and the positivity of the coefficient of $|z|^{\ell}$. Now take any $z \in \mathscr{D}_{\rho}$. Since $|z|^{\ell} \leq \rho^{\ell}$, it follows that

$$\sum_{\ell=1}^{\infty} (\varpi \psi_{\ell-1} - \psi_{\ell}) |z|^{\ell} \leq \sum_{\ell=1}^{\infty} (\varpi \psi_{\ell-1} - \psi_{\ell}) \rho^{\ell} = \varpi \rho - (1 - \varpi \rho) \sum_{\ell=1}^{\infty} \psi_{\ell} \rho^{\ell} \leq \varpi \rho$$

by collecting common terms in ψ_{ℓ} and using the non-negativity of $\{\psi_{\ell}\}_{\ell=0}^{\infty}$ together with $\psi_0 = 1$ and $0 < \varpi \rho < 1$. Combining the equations above yields $|\mathfrak{F}_1(z)| \leq \varpi \rho$, and hence $|\mathfrak{F}_1(z)| < |\mathfrak{F}_0(z)|$ for all $z \in \mathscr{D}_{\rho}$, since $|\mathfrak{F}_0(z)| = 1$.

As a constant function, $\mathfrak{F}_0(z)$ must be analytic, and consequently $\mathfrak{F}_1(z)$ inherits this property from $\mathfrak{F}(z)$. Since $\mathfrak{F}(z) = \mathfrak{F}_0(z) + \mathfrak{F}_1(z)$, Rouché's Theorem¹ implies that $\mathfrak{F}(z)$ and $\mathfrak{F}_0(z)$ have the same number of zeros on \mathscr{D}_{ρ} . Since $\mathfrak{F}_0(z)$ clearly has no zeros on this set, neither has $\mathfrak{F}(z)$. Because its definition ensures that $\mathfrak{F}(z)$ inherits any roots of $\psi(z) = 0$, this precludes $\psi(z)$ having a zero in \mathscr{D}_{ρ} as well. This completes the proof.

Lemma 3 The sequence of recursive parameters $\{\varphi_i\}_{i=1}^{\infty}$ generating the hazard function $\{\alpha_\ell\}_{\ell=1}^{\infty}$ using [3.1] can be written as

$$\varphi_i = (-1)^i \sum_{(j_1, \dots, j_{i+1}) \in \mathscr{C}_{i+1}} \prod_{\ell=1}^{i+1} \sigma_{j_\ell}, \qquad [A.1.3]$$

where the sequence $\{\sigma_{\ell}\}_{\ell=1}^{\infty}$ is defined by $\sigma_1 \equiv -(1 - \alpha_1)$ and $\sigma_{\ell} \equiv \alpha_{\ell} - \alpha_{\ell-1}$, and where $\{\mathscr{C}_i\}_{i=2}^{\infty}$ is a sequence of sets \mathscr{C}_i , with each \mathscr{C}_i being a subset of the set of sequences

$$\mathscr{P}_{i} \equiv \left\{ \left(\mathfrak{g}_{1}, \dots, \mathfrak{g}_{i} \right) \in \mathbb{N}^{i} \mid 1 \leq \mathfrak{g}_{\ell} \leq \ell \right\}.$$
 [A.1.4]

PROOF Define a sequence $\{\phi_i\}_{i=1}^{\infty}$ with $\phi_1 \equiv 1 - \alpha$ and $\phi_i \equiv -\phi_{i-1}$ for $i \geq 2$. With these definitions, the recursion [3.2] for the survival function $\{\psi_\ell\}_{\ell=0}^{\infty}$ reduces to:

$$\psi_{\ell} = \sum_{i=1}^{\ell} \phi_i \psi_{\ell-i},$$

with initial condition $\psi_0 = 1$. Using the initial condition, the order of the recursion can be reversed to yield

$$\phi_{i} = \psi_{i} - \sum_{j=1}^{i-1} \psi_{i-j} \phi_{j}.$$
 [A.1.5]

The definition of the survival probabilities means that $\psi_i = \prod_{\ell=1}^i (1 - \alpha_\ell)$, and the definition of the sequence $\{\sigma_\ell\}_{\ell=1}^{\infty}$ in the statement of the Lemma implies $1 - \alpha_\ell = \sum_{j=1}^{\ell} (-\sigma_j)$. It follows that

$$\psi_i = \prod_{\ell=1}^{i} \sum_{j=1}^{\ell} (-\sigma_j) = (-1)^i \sum_{j_1=1}^{1} \cdots \sum_{j_\ell=1}^{i} \prod_{\ell=1}^{i} \sigma_{j_\ell},$$

¹See any text on complex analysis, such as Gamelin (2001), for further details about the theorem.

where the order of summation and multiplication is reversed in the final expression for ψ_i . Note that the definition of the set \mathscr{P}_i of sequences (j_1, \ldots, j_i) in [A.1.4] implies that ψ_i can be written as a sum of products $\prod_{\ell=1}^i \sigma_{j_\ell}$ over all sequences in the set \mathscr{P}_i :

$$\psi_i = (-1)^i \sum_{(j_1,\dots,j_i) \in \mathscr{P}_i} \prod_{\ell=1}^i \sigma_{j_\ell}.$$
[A.1.6]

Now let $\mathscr{C}_1 \equiv \mathscr{P}_1 \equiv \{(1)\}$, where the expression for \mathscr{P}_1 comes from [A.1.4], and define the sets \mathscr{C}_i in the sequence $\{\mathscr{C}_i\}_{i=2}^{\infty}$ with the recursion

$$\mathscr{C}_{i} \equiv \mathscr{P}_{i} \setminus \left(\bigcup_{j=1}^{i-1} \left(\mathscr{C}_{j} \times \mathscr{P}_{i-j} \right) \right), \qquad [A.1.7]$$

in terms of the sequence $\{\mathscr{P}_i\}_{i=1}^{\infty}$ specified in [A.1.4]. Observe that $\mathscr{C}_i \subseteq \mathscr{P}_i$ is well defined if $\mathscr{C}_j \subseteq \mathscr{P}_j$ for all $j = 1, \ldots, i-1$ because $(j_1, \ldots, j_{i-j}) \in \mathscr{P}_{i-j}$ implies $j_{\ell} \leq \ell + j$. Since $\mathscr{C}_1 \subseteq \mathscr{P}_1$ by definition, the claim that $\mathscr{C}_i \subseteq \mathscr{P}_i$ for all *i* follows by induction.

Now consider the following claim about the sequence of sets $\{\mathscr{C}_i\}_{i=1}^{\infty}$ defined by [A.1.7]:

$$(\mathscr{C}_j \times \mathscr{P}_{i-j}) \cap (\mathscr{C}_k \times \mathscr{P}_{i-k}) = \emptyset$$
, for all $i, j, k \in \mathbb{N}$ with $j, k < i$, $j \neq k$. [A.1.8]

Suppose for contradiction that $(\mathscr{C}_j \times \mathscr{P}_{i-j}) \cap (\mathscr{C}_k \times \mathscr{P}_{i-k}) \neq \emptyset$, and without loss of generality take j > k. Hence there is a sequence $(j_1, \ldots, j_i) \in \mathbb{N}^i$ such that $(j_1, \ldots, j_j) \in \mathscr{C}_j, (j_1, \ldots, j_k) \in \mathscr{C}_k$, and $(j_{k+1}, \ldots, j_i) \in \mathscr{P}_{i-k}$. This implies that $(j_{k+1}, \ldots, j_j) \in \mathscr{P}_{j-k}$ because the first j - k terms of a sequence of length i - k > j - k in \mathscr{P}_{i-k} must necessarily belong to \mathscr{P}_{j-k} given the definition in [A.1.4]. Thus it follows that there exists a $(j_1, \ldots, j_j) \in \mathscr{C}_j \cap (\mathscr{C}_k \times \mathscr{P}_{j-k})$ for some k < j. However, this directly contradicts the definition of \mathscr{C}_j in [A.1.7]. Therefore, [A.1.8] must be true.

Given the recursion for $\{\phi_i\}_{i=1}^{\infty}$ in [A.1.5] and the expression for ψ_i in [A.1.6], the following provides a formula for ϕ_i :

$$\Phi_{i} = \left\{ (-1)^{i} \sum_{(j_{1},\dots,j_{i})\in\mathscr{P}_{i}} \prod_{\ell=1}^{i} \sigma_{j_{\ell}} \right\} - \sum_{j=1}^{i-1} \Phi_{j} \left\{ (-1)^{i-j} \sum_{(j_{1},\dots,j_{i-j})\in\mathscr{P}_{i-j}} \prod_{\ell=1}^{i-j} \sigma_{j_{\ell}} \right\}.$$
[A.1.9]

It is claimed that the following equation holds for all i = 1, 2, ...:

$$\Phi_i = (-1)^i \sum_{(j_1,\dots,j_i) \in \mathscr{C}_i} \prod_{\ell=1}^i \sigma_{j_\ell}, \qquad [A.1.10]$$

Suppose this statement has already been proved for j = 1, ..., i - 1 and substitute it into [A.1.9] to obtain:

$$\Phi_{i} = \left((-1)^{i} \sum_{(j_{1},\dots,j_{i})\in\mathscr{P}_{i}} \prod_{\ell=1}^{i} \sigma_{j_{\ell}} \right) - \sum_{j=1}^{i-1} \left((-1)^{i} \sum_{(j_{1},\dots,j_{i})\in(\mathscr{C}_{j}\times\mathscr{P}_{i-j})} \prod_{\ell=1}^{i} \sigma_{j_{\ell}} \right),$$
 [A.1.11]

where the following has been used:

$$\left\{(-1)^{j}\sum_{(j_{1},\ldots,j_{j})\in\mathscr{C}_{j}}\prod_{\ell=1}^{j}\sigma_{j_{\ell}}\right\}\left\{(-1)^{i-j}\sum_{(j_{1},\ldots,j_{i-j})\in\mathscr{P}_{i-j}}\prod_{\ell=1}^{i-j}\sigma_{j_{\ell}}\right\}=(-1)^{i}\sum_{(j_{1},\ldots,j_{i})\in(\mathscr{C}_{j}\times\mathscr{P}_{i-j})}\prod_{\ell=1}^{i}\sigma_{j_{\ell}}.$$

It follows from [A.1.11] that [A.1.10] holds for i if the sets $\mathscr{C}_j \times \mathscr{P}_{i-j}$ and $\mathscr{C}_k \times \mathscr{P}_{i-k}$ are disjoint for all $j \neq k$, which is the claim [A.1.8] established earlier. Now note that the definitions of \mathscr{C}_1 , σ_1 and ϕ_1 imply that [A.1.10] holds for i = 1. Therefore, the expression for ϕ_i in [A.1.10] is verified for all iby induction. Since $\varphi_i = (-1)\phi_{i+1}$ by definition, equation [A.1.3] is demonstrated for the particular sets $\{\mathscr{C}_i\}_{i=2}^{\infty}$ characterized in [A.1.7]. This completes the proof.

A.2 Proof of Proposition 1

Let $\psi(z) \equiv \sum_{\ell=0}^{\infty} \psi_{\ell} z^{\ell}$ denote the z-transform of the survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$. Lemma 1 demonstrates that $\psi(z)$ is analytic on $\mathscr{D}_{\rho} \equiv \{z \in \mathbb{C} \mid |z| \leq \rho\}$ for some $\rho > 1$. Since $1 \in \mathscr{D}_{\rho}$, it follows that $\psi(1) = \sum_{\ell=0}^{\infty} \psi_{\ell}$ is finite (and positive given that $\psi_{0} = 1$ and $\psi_{\ell} \geq 0$). Define $\omega_{0} = \psi(1)^{-1}$ and $\omega_{\ell} = \omega_{0}\psi_{\ell}$ for $\ell \geq 1$. By construction, the sequence $\{\omega_{\ell}\}_{\ell=0}^{\infty}$ satisfies $\sum_{\ell=0}^{\infty} \omega_{\ell} = 1$, and $\omega_{\ell} = (1 - \alpha_{\ell})\omega_{\ell-1}$ since $\psi_{\ell} = (1 - \alpha_{\ell})\psi_{\ell-1}$. Note also that

$$\sum_{\ell=1}^\infty \alpha_\ell \omega_{\ell-1} = \omega_0 \sum_{\ell=1}^\infty \alpha_\ell \psi_{\ell-1} = \omega_0 \sum_{\ell=1}^\infty \left(\psi_{\ell-1} - \psi_\ell \right) = \omega_0,$$

as $\psi_{\ell} = (1 - \alpha_{\ell})\psi_{\ell-1}$ and $\psi_0 = 1$. This confirms that $\{\omega_{\ell}\}_{\ell=0}^{\infty}$ is a stationary age distribution. There can be only one such distribution because $\{\omega_{\ell}\}_{\ell=0}^{\infty}$ must satisfy $\omega_{\ell} = (1 - \alpha_{\ell})\omega_{\ell-1}$ for all $\ell \geq 1$. This leaves only ω_0 to be determined, but this is pinned down by the requirement $\sum_{\ell=0}^{\infty} \omega_{\ell} = 1$.

Now suppose that $\alpha_{\ell} \geq \underline{\alpha}$ for all ℓ for some $\underline{\alpha}$ satisfying $0 < \underline{\alpha} < 1$. Since $\psi_{\ell+1} = (1 - \alpha_{\ell+1})\psi_{\ell}$, this implies $0 \leq \psi_{\ell+1} \leq (1 - \underline{\alpha})\psi_{\ell}$ for all ℓ . Hence Lemma 2 implies that there exists a $\rho > 1$ such that $\psi(z) = 0$ has no roots on \mathscr{D}_{ρ} . Lemma 1 shows that this condition implies that the stationary age distribution is stable, completing the proof.

A.3 Proof of Proposition 2

The first step is to derive the standard representation of the Phillips curve [2.6] from equations [2.3], [2.4] and [2.5]. Let $\psi(z) \equiv \sum_{\ell=0}^{\infty} \psi_{\ell} z^{\ell}$ and $\omega(z) \equiv \sum_{\ell=0}^{\infty} \omega_{\ell} z^{\ell}$ be the z-transforms of the sequences of survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$ and the age distribution $\{\omega_{\ell}\}_{\ell=0}^{\infty}$. Written in terms of the lag and forward operators \mathbb{L} and \mathbb{F} , equations [2.4] and [2.5] become:

$$\mathbf{r}_t = \psi(\beta)^{-1} \mathbb{E}_t \left[\psi(\beta \mathbb{F}) \mathbf{p}_t^* \right], \text{ and } \mathbf{p}_t = \omega(\mathbb{L}) \mathbf{r}_t.$$
 [A.3.1]

Note that $\omega_{\ell} = \psi_{\ell}\omega_0$, so $\omega_0 = \psi(1)^{-1}$ since $\omega(1) = 1$. This justifies the relationship $\omega(z) = \psi(1)^{-1}\psi(z)$ between $\omega(z)$ and $\psi(z)$. By using this result, eliminating the reset price r_t from [A.3.1], and substituting the expression for p_t^* from [2.3]:

$$\left\{\mathbb{I} - \psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{L})\mathbb{E}_t\psi(\beta\mathbb{F})\right\}\mathsf{p}_t = \mathsf{v}\left\{\psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{L})\mathbb{E}_t\psi(\beta\mathbb{F})\right\}\mathsf{x}_t, \qquad [A.3.2]$$

where \mathbbm{I} denotes the identity operator.

The left-hand side of [A.3.2] is

$$\left\{\mathbb{I} - \psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{I})\mathbb{E}_t\psi(\beta\mathbb{F})\right\}\mathsf{p}_t = \mathsf{p}_t - \frac{\sum_{j=0}^{\infty}\psi_j\sum_{\ell=0}^{\infty}\beta^{\ell}\psi_\ell\mathbb{E}_{t-j}\mathsf{p}_{t-j+\ell}}{\sum_{j=0}^{\infty}\psi_j\sum_{\ell=0}^{\infty}\beta^{\ell}\psi_\ell}.$$
 [A.3.3]

The definition of inflation $\pi_t = p_t - p_{t-1}$ implies $p_{t-j+\ell} = p_{t-j} + \pi_{t-j+1} + \cdots + \pi_{t-j+\ell}$, so

$$\left\{\mathbb{I}-\psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{L})\mathbb{E}_{t}\psi(\beta\mathbb{F})\right\}\mathsf{p}_{t}=\frac{\sum_{\ell=0}^{\infty}\psi_{\ell}(\mathsf{p}_{t}-\mathsf{p}_{t-\ell})}{\sum_{\ell=0}^{\infty}\psi_{\ell}}-\frac{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{j}\left(\sum_{i=\ell}^{\infty}\beta^{i}\psi_{i}\right)\mathbb{E}_{t-j}\pi_{t-j+\ell}}{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\beta^{\ell}\psi_{j}\psi_{\ell}}-\frac{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{j}\left(\sum_{i=\ell}^{\infty}\beta^{i}\psi_{i}\right)\mathbb{E}_{t-j}\pi_{t-j+\ell}}{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{\ell}}-\frac{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{j}\left(\sum_{i=\ell}^{\infty}\beta^{i}\psi_{i}\right)\mathbb{E}_{t-j}\pi_{t-j+\ell}}{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{\ell}}-\frac{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{j}\left(\sum_{i=\ell}^{\infty}\beta^{i}\psi_{i}\right)\mathbb{E}_{t-j}\pi_{t-j+\ell}}{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{\ell}}-\frac{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{j}\left(\sum_{i=\ell}^{\infty}\beta^{i}\psi_{i}\right)\mathbb{E}_{t-j}\pi_{t-j+\ell}}{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{\ell}}-\frac{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{j}\left(\sum_{i=\ell}^{\infty}\beta^{i}\psi_{i}\right)\mathbb{E}_{t-j}\pi_{t-j+\ell}}{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\psi_{j}}$$

The definition of inflation also implies $\mathbf{p}_t - \mathbf{p}_{t-\ell} = \pi_{t-\ell+1} + \cdots + \pi_t$, thus

$$\left\{ \mathbb{I} - \psi(1)^{-1} \psi(\beta)^{-1} \psi(\mathbb{I}) \mathbb{E}_t \psi(\beta \mathbb{F}) \right\} \mathsf{p}_t = \frac{\sum_{\ell=1}^{\infty} \psi_\ell}{\sum_{\ell=0}^{\infty} \psi_\ell} \pi_t + \frac{\sum_{\ell=1}^{\infty} \left(\sum_{i=\ell+1}^{\infty} \psi_i \right) \pi_{t-\ell}}{\sum_{\ell=0}^{\infty} \psi_\ell} - \frac{\sum_{j=0}^{\infty} \sum_{\ell=0}^{\infty} \psi_j \left(\sum_{i=\ell}^{\infty} \beta^i \psi_i \right) \mathbb{E}_{t-j} \pi_{t-j+\ell}}{\sum_{j=0}^{\infty} \sum_{\ell=0}^{\infty} \beta^\ell \psi_j \psi_\ell}.$$
 [A.3.4]

The right-hand side of [A.3.2] is

$$\nu\left\{\psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{L})\mathbb{E}_{t}\psi(\beta\mathbb{F})\right\}\mathsf{x}_{t} = \nu\frac{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\beta^{\ell}\psi_{j}\psi_{\ell}\mathbb{E}_{t-j}\mathsf{x}_{t-j+\ell}}{\sum_{j=0}^{\infty}\sum_{\ell=0}^{\infty}\beta^{\ell}\psi_{j}\psi_{\ell}}.$$
[A.3.5]

Using the expressions in [A.3.4] and [A.3.5], it is seen that [A.3.2] is equivalent to the standard Phillips curve equation [2.6] with the coefficients:

$$\mathbf{a}_{\ell} = -\frac{\sum_{i=\ell+1} \psi_i}{\sum_{i=1}^{\infty} \psi_i}, \quad \mathbf{b}_{j\ell} = \frac{\psi_j \sum_{i=\ell}^{\infty} \psi_i}{\sum_{i=1}^{\infty} \sum_{h=0}^{\infty} \beta^h \psi_i \psi_h}, \quad \text{and} \ \mathbf{c}_{j\ell} = \frac{\beta^\ell \psi_j \psi_\ell}{\sum_{i=1}^{\infty} \sum_{h=0}^{\infty} \beta^h \psi_i \psi_h}$$

Now suppose the hazard function implies that the stationary age distribution of prices is stable. As Lemma 1 shows, this is equivalent to there being a $\rho > 1$ such that $\psi(z)$ has no roots in the set $\mathscr{D}_{\rho} \equiv \{z \in \mathbb{C} \mid |z| \leq \rho\}$. Under this condition, the function $\phi(z) \equiv \psi(z)^{-1}$ is analytic on \mathscr{D}_{ρ} , which is equivalent to $\phi(z)$ being equal to its Taylor expansion around z = 0 for all $z \in \mathscr{D}_{\rho}$. Thus, $\phi(z) \equiv 1 - \sum_{\ell=1}^{\infty} \varphi_{\ell} z^{\ell}$ for some sequence of numbers $\{\varphi_{\ell}\}_{\ell=1}^{\infty}$, with $\sum_{\ell=1}^{\infty} |\varphi_{\ell}| < \infty$ since \mathscr{D}_{ρ} encloses the unit circle. The first term in the Taylor series of $\phi(z)$ is 1 because $\psi(0) = \psi_0 = 1$.

Since $\phi(z)\psi(z) = 1$ for all $|z| \leq 1$, it follows that $\mathbb{I} = \psi(\mathbb{I})\phi(\mathbb{I})$, which allows the left-hand side of [A.3.2] to be expressed equivalently as follows:

$$\left\{\mathbb{I}-\psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{L})\mathbb{E}_t\psi(\beta\mathbb{F})\right\}\mathsf{p}_t=\psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{L})\left\{\psi(1)\psi(\beta)\phi(\mathbb{L})-\mathbb{E}_t\psi(\beta\mathbb{F})\right\}\mathsf{p}_t.$$
 [A.3.6]

It also follows from $\phi(z)\psi(z) = 1$ that $\mathbb{I} = \psi(\beta\mathbb{F})\phi(\beta\mathbb{F})$, and thus $\phi(\mathbb{L}) = \mathbb{I}\phi(\mathbb{L}) = \psi(\beta\mathbb{F})\phi(\beta\mathbb{F})\phi(\beta\mathbb{F})\phi(\mathbb{L})$. Furthermore, note that the power series $\phi(\mathbb{L}) \equiv \sum_{\ell=0}^{\infty} \phi_{\ell}\mathbb{L}^{\ell}$ contains only non-negative powers of the lag operator \mathbb{L} , so $\phi(\mathbb{L})\mathbf{p}_t = \mathbb{E}_t\phi(\mathbb{L})\mathbf{p}_t$. Putting these two results together implies $\phi(\mathbb{L})\mathbf{p}_t = \mathbb{E}_t\psi(\beta\mathbb{F})\phi(\beta\mathbb{F})\phi(\beta\mathbb{F})\phi(\mathbb{L})\mathbf{p}_t$. Then observe that because the power series $\psi(\beta\mathbb{F}) \equiv \sum_{\ell=0}^{\infty} \beta^{\ell}\psi_{\ell}\mathbb{F}^{\ell}$ contains only non-negative powers of \mathbb{F} , the law of iterated expectations (from which it follows that the conditional expectation operator \mathbb{E}_t commutes with all non-negative powers of the forward operator \mathbb{F}) implies

$$\phi(\mathbb{L})\mathbf{p}_t = \mathbb{E}_t \left[\psi(\beta \mathbb{F}) \left\{ \mathbb{E}_t \phi(\beta \mathbb{F}) \phi(\mathbb{L}) \right\} \mathbf{p}_t \right].$$

This result, together with [A.3.6], and noting $\phi(\beta \mathbb{F})\phi(\mathbb{L}) = \phi(\mathbb{L})\phi(\beta \mathbb{F}), \ \psi(1) = \phi(1)^{-1}$ and $\psi(\beta) = \phi(\beta)^{-1}$, yields

$$\left\{ \mathbb{I} - \psi(1)^{-1} \psi(\beta)^{-1} \psi(\mathbb{L}) \mathbb{E}_t \psi(\beta \mathbb{F}) \right\} \mathsf{p}_t = \left\{ \psi(1)^{-1} \psi(\beta)^{-1} \psi(\mathbb{L}) \mathbb{E}_t \psi(\beta \mathbb{F}) \right\} \mathbb{E}_t \left\{ \phi(1)^{-1} \phi(\beta)^{-1} \phi(\mathbb{L}) \phi(\beta \mathbb{F}) - \mathbb{I} \right\} \mathsf{p}_t.$$
 [A.3.7]

Equating this expression to the right-hand side of [A.3.2] leads to the following equation that is exactly equivalent to the Phillips curve [2.6]:

$$\left\{\psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{L})\mathbb{E}_t\psi(\beta\mathbb{F})\right\}\left(\mathbb{E}_t\left[\left\{\phi(1)^{-1}\phi(\beta)^{-1}\phi(\mathbb{L})\phi(\beta\mathbb{F})-\mathbb{I}\right\}\mathsf{p}_t\right]-\mathsf{v}\mathsf{x}_t\right)=0.$$
 [A.3.8]

Now define the function $\chi(z) \equiv \phi(1)^{-1}\phi(\beta)^{-1}\phi(z)\phi(\beta z^{-1}) - 1$, which is analytic on $\mathscr{A}_{\rho} \equiv \{z \in \mathbb{C} \mid \beta \rho^{-1} \leq |z| \leq \rho\}$ given that $\phi(z)$ is analytic and has no roots on \mathscr{D}_{ρ} . Notice that $\chi(1) = 0$,

so it follows that there is another function $\theta(z)$ analytic on \mathscr{A}_{ρ} such that $\chi(z) = (1-z)\theta(z)$. The function $\theta(z)$ is equal to its Laurent series expansion $\theta(z) = \sum_{\ell \to -\infty}^{\infty} \theta_{\ell} z^{\ell}$ for all $z \in \mathscr{A}_{\rho}$. Since \mathscr{A}_{ρ} includes the unit circle, it follows that $\sum_{\ell \to -\infty}^{\infty} |\theta_{\ell}| < \infty$. Make the following definitions of sequences $\{\lambda_{\ell}\}_{\ell=1}^{\infty}$ and $\{\xi_{\ell}\}_{\ell=1}^{\infty}$, and coefficient κ appearing in the new Phillips curve [2.7]:

$$\lambda_\ell \equiv -\frac{\theta_\ell}{\theta_0}, \quad \xi_\ell \equiv -\frac{\theta_{-\ell}}{\theta_0}, \quad {\rm and} \ \kappa \equiv \frac{1}{\theta_0}$$

With these definitions, the sequences clearly satisfy $\sum_{\ell=1}^{\infty} |\lambda_{\ell}| < \infty$ and $\sum_{\ell=1}^{\infty} |\xi_{\ell}| < \infty$ (it can be shown that $\theta_0 \neq 0$ using the argument presented in the proof of Proposition 6).

Now define

$$\mathsf{d}_t \equiv \pi_t - \sum_{\ell=1}^{\infty} \lambda_\ell \pi_{t-\ell} - \sum_{\ell=1}^{\infty} \xi_\ell \mathbb{E}_t \pi_{t+\ell} - \nu \kappa \mathsf{x}_t, \qquad [A.3.9]$$

and note that the definitions above imply $d_t = \kappa \{\mathbb{E}_t [\theta(\mathbb{L})\pi_t] - \nu x_t\}$. Since $\pi_t = (\mathbb{I} - \mathbb{L})p_t$ and $\chi(\mathbb{L}) = (\mathbb{I} - \mathbb{L})\theta(\mathbb{L})$, it follows that $\theta(\mathbb{L})\pi_t = \chi(\mathbb{L})p_t$ and hence $d_t = \kappa \{\mathbb{E}_t [\chi(\mathbb{L})p_t] - \nu x_t\}$. Therefore, comparing this expression for d_t to equation [A.3.8], the Phillips curve [2.6] is equivalent to $\{\psi(1)^{-1}\psi(\beta)^{-1}\psi(\mathbb{L})\mathbb{E}_t\psi(\beta\mathbb{F})\} d_t = 0$, and thus to

$$\psi(\mathbb{L})\mathbb{E}_t\left[\psi(\beta\mathbb{F})\mathsf{d}_t\right] = 0,\tag{A.3.10}$$

holding in all time periods t. Let $\mathbf{e}_t \equiv \mathbb{E}_t [\psi(\beta \mathbb{F}) \mathbf{d}_t]$, with equation [A.3.10] being equivalent to $\psi(\mathbb{L})\mathbf{e}_t = 0$ for all t.

Note that by comparing [A.3.9] to [2.7], the new Phillips curve equation is equivalent to $d_t = 0$ for all t. Suppose the new Phillips curve equation [2.7] holds. Thus $d_t = 0$ for all t and hence $e_t = 0$ for all t as well. It follows that $\psi(\mathbb{L})e_t = 0$, so the original Phillips curve [2.6] must hold.

Conversely, suppose the original Phillips curve [2.6] holds, which implies $\psi(\mathbb{L})\mathbf{e}_t = 0$ using [A.3.10]. Given the stability of the stationary age distribution, it has been shown that $\psi(z) = 0$ has no roots on or inside the unit circle. Thus if $\mathbf{e}_{t_0} \neq 0$ for some t_0 , it follows from $\psi(\mathbb{L})\mathbf{e}_t = 0$ that \mathbf{e}_t is unbounded for time periods before t_0 . Now given the location of the roots of $\psi(z) = 0$, it follows from $0 < \beta < 1$ that $\psi(\beta z) = 0$ has no roots on or inside the unit circle. Hence if $\mathbf{e}_t = 0$ for all t, the only bounded solution of $\mathbf{e}_t \equiv \mathbb{E}_t \left[\psi(\beta \mathbb{F}) \mathbf{d}_t \right]$ is $\mathbf{d}_t = 0$ for all t. On the other hand, if \mathbf{e}_t is unbounded over all time periods t, then \mathbf{d}_t must also be unbounded. If \mathbf{d}_t is unbounded then equation [A.3.9] shows that either inflation π_t or real marginal cost \mathbf{x}_t must be unbounded. Consequently, if attention is restricted to bounded rational expectations solutions (as is conventional), the original Phillips curve [2.6] implies $\mathbf{e}_t = 0$ for all t, and hence $\mathbf{d}_t = 0$ for all t. This then demonstrates that the new Phillips curve [2.7] must hold, completing the proof.

A.4 Proof of Proposition 3

Let $\psi(z) \equiv \sum_{\ell=0}^{\infty} \psi_{\ell} z^{\ell}$ denote the z-transform of the sequence of survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$ generated by some hazard function $\{\alpha_{\ell}\}_{\ell=1}^{\infty}$ from parameters α and $\{\varphi_i\}_{i=1}^n$ using the recursion [3.1]. Define the polynomial

$$\phi(z) = 1 - \left(1 - \alpha + \sum_{i=1}^{n} \varphi_i\right) z + \sum_{j=1}^{n} \varphi_j z^{j+1}$$
[A.4.1]

using these parameters. Since the recursion in [3.1] is equivalent to [3.2], by multiplying the power series $\phi(z)$ and $\psi(z)$ and noting that $\psi_0 = 1$, it follows that $\phi(z)\psi(z) = 1$ for all z for which $\psi(z)$ is analytic.

The hazard function implies a unique stationary age distribution $\{\omega_\ell\}_{\ell=0}^{\infty}$, with its z-transform denoted by $\omega(z) \equiv \sum_{\ell=0}^{\infty} \omega_\ell z^\ell$. Since $\omega_\ell = (1 - \alpha_\ell) \omega_{\ell-1}$ and $\psi_\ell = (1 - \alpha_\ell) \psi_{\ell-1}$, it follows that $\omega(z)$

is a multiple of $\psi(z)$. In particular, as $\psi_0 = 1$, it must be the case that $\omega(z) = \omega_0 \psi(z)$. As $\{\omega_\ell\}_{\ell=0}^{\infty}$ is a probability distribution, it follows that $\omega(1) = 1$, and thus $\omega_0 = \psi(1)^{-1}$ and $\omega(z) = \psi(1)^{-1}\psi(z)$. Together with $\phi(z)\psi(z) = 1$, it is established that $\phi(z)\omega(z) = \psi(1)^{-1}$. Since $\psi(1)^{-1} = \phi(1)$:

$$\omega(z) = \phi(1)\phi(z)^{-1}.$$
 [A.4.2]

(i) Let $\bar{\alpha}$ denote the average probability of price adjustment, calculated with respect to the stationary age distribution of prices at the beginning of any period. This distribution is given by $\{\omega_{\ell-1}\}_{\ell=1}^{\infty}$, so $\bar{\alpha} = \sum_{\ell=1}^{\infty} \omega_{\ell-1} \alpha_{\ell}$. Using the fact that $\omega_{\ell} = (1 - \alpha_{\ell})\omega_{\ell-1}$, it follows that $\omega_{\ell-1}\alpha_{\ell} = \omega_{\ell-1} - \omega_{\ell}$ and thus

$$\bar{\alpha} = \sum_{\ell=1}^{\infty} (\omega_{\ell-1} - \omega_{\ell}) = \sum_{\ell=0}^{\infty} \omega_{\ell} - \sum_{\ell=1}^{\infty} \omega_{\ell} = \omega_0.$$
 [A.4.3]

The fraction of newly set prices is ω_0 . Since $\omega_0 = \omega(0)$ and $\phi(0) = 1$, it follows from [A.4.1] and [A.4.2] that

$$\bar{\alpha} = \omega_0 = \phi(1) = \alpha, \qquad [A.4.4]$$

for all values of $\{\varphi_i\}_{i=1}^n$.

(ii) Now consider the expected duration of a newly set price. If $\varsigma_{\ell} \equiv 1 - \alpha_{\ell}$ denotes the probability of price stickiness in the current period if ℓ periods have elapsed since the last change then $\alpha_{\ell} \prod_{j=1}^{\ell-1} \varsigma_j$ is the probability that a price will survive for exactly ℓ periods after first being set before being changed. The expected duration is denoted by \hbar :

$$\hbar \equiv \sum_{\ell=1}^{\infty} \ell \alpha_{\ell} \prod_{j=1}^{\ell-1} \varsigma_{j}.$$

The definition of the survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$ implies $\psi_{\ell-1} = \prod_{j=1}^{\ell-1} \varsigma_j$. Together with $\alpha_{\ell} \psi_{\ell-1} = \psi_{\ell-1} - \psi_{\ell}$, the expected duration is given by

$$\hbar = \sum_{\ell=1}^{\infty} \ell \alpha_{\ell} \psi_{\ell-1} = \sum_{\ell=1}^{\infty} \ell (\psi_{\ell-1} - \psi_{\ell}) = \sum_{\ell=0}^{\infty} (\ell+1) \psi_{\ell} - \sum_{\ell=0}^{\infty} \ell \psi_{\ell} = \sum_{\ell=0}^{\infty} \psi_{\ell} = \psi(1).$$
 [A.4.5]

As $\phi(z)\psi(z) = 1$, it follows that $\psi(1) = \phi(1)^{-1}$. The result in [A.4.4] then implies that $\hbar = \alpha^{-1}$.

(iii) Let \hbar_{α} denote the average age of the prices that are changed. Using Bayes' law, the probability that a price has age ℓ conditional on being changed is the product of α_{ℓ} and $\omega_{\ell-1}$ divided by $\alpha = \omega_0$. Since $\omega_{\ell-1}/\omega_0 = \psi_{\ell-1}$, it follows that \hbar_{α} is given by

$$\hbar_{\alpha} = \sum_{\ell=1}^{\infty} \ell \alpha_{\ell} \psi_{\ell-1}.$$
 [A.4.6]

The result in [A.4.5] then implies $\hbar_{\alpha} = \hbar = \alpha^{-1}$.

Let \hbar_{ς} denote the average age of the prices that are not changed. Again, using Bayes' law, the probability that a price has age ℓ conditional on not being changed is the product of $\varsigma_{\ell} = 1 - \alpha_{\ell}$ and $\omega_{\ell-1}$ divided by $1 - \alpha$. Thus \hbar_{ς} is given by

$$\hbar_{\varsigma} = \sum_{\ell=1}^{\infty} \ell \frac{\varsigma_{\ell} \omega_{\ell-1}}{1-\alpha}.$$

Using $\varsigma_{\ell} = 1 - \alpha_{\ell}$ and $\omega_{\ell-1} = \alpha \psi_{\ell-1}$ since $\omega_0 = \alpha$:

$$\hbar_{\varsigma} = \frac{1}{1-\alpha} \left(\sum_{\ell=1}^{\infty} \ell \omega_{\ell-1} - \alpha \sum_{\ell=1}^{\infty} \ell \alpha_{\ell} \psi_{\ell-1} \right) = \frac{1}{1-\alpha} \left(\sum_{\ell=0}^{\infty} \omega_{\ell} + \sum_{\ell=0}^{\infty} \ell \omega_{\ell} - \alpha \sum_{\ell=1}^{\infty} \ell \alpha_{\ell} \psi_{\ell-1} \right).$$

Note that $\sum_{\ell=0}^{\infty} \omega_{\ell} = 1$. From the definition of $\omega(z)$ it follows that $\omega'(z) = \sum_{\ell=0}^{\infty} \ell \omega_{\ell} z^{\ell-1}$ and thus $\omega'(1) = \sum_{\ell=0}^{\infty} \ell \omega_{\ell}$. Substituting these results and using the expression for \hbar_{α} from [A.4.6] together with $\hbar_{\alpha} = \alpha^{-1}$ to deduce:

$$\hbar_{\varsigma} = \frac{1}{1 - \alpha} \left(1 + \omega'(1) - \alpha \alpha^{-1} \right) = \frac{\omega'(1)}{1 - \alpha}.$$
 [A.4.7]

Differentiation of both sides of [A.4.2] yields:

$$\omega'(z) = -\frac{\phi(1)\phi'(z)}{\phi(z)^2},$$

and hence $\omega'(1) = -\phi'(1)\phi(1)^{-1}$. Differentiation of the polynomial $\phi(z)$ in [A.4.1] implies $\phi'(z) = -(1 - \alpha + \sum_{i=1}^{n} \varphi_i) + \sum_{j=1}^{n} (j+1)\varphi_j z^j$, from which it follows that $\phi'(1) = -(1 - \alpha - \sum_{i=1}^{n} i\varphi_i)$. And since $\phi(1) = \alpha$:

$$\omega'(1) = \left(1 - \alpha - \sum_{i=1}^{n} i\varphi_i\right) \alpha^{-1}.$$
 [A.4.8]

Therefore, using [A.4.7], the difference between the average ages of prices conditional on adjustment and non-adjustment is

$$\hbar_{\alpha} - \hbar_{\varsigma} = \alpha^{-1} - \left(1 - \alpha - \sum_{i=1}^{n} i\varphi_i\right) \alpha^{-1} (1 - \alpha)^{-1} = \left(\sum_{i=1}^{n} i\varphi_i\right) \alpha^{-1} (1 - \alpha)^{-1}.$$

(iv) Let $\hbar \equiv \sum_{\ell=0}^{\infty} \ell \omega_{\ell}$ denote the average age of prices actually in use according to the stationary distribution $\{\omega_{\ell}\}_{\ell=0}^{\infty}$. Using the definition of $\omega(z)$ it follows that $\hbar = \omega'(1)$. Hence, [A.4.8] implies

$$\hbar = \left(1 - \alpha - \sum_{i=1}^{n} i\varphi_i\right)\alpha^{-1} = \left(1 - \sum_{i=1}^{n} i\varphi_i\right)\alpha^{-1} - 1.$$
 [A.4.9]

(v) The hazard function recursion [3.1] implies that the probability of adjusting the most recently set price is

$$\alpha_1 = \alpha - \sum_{i=1}^n \varphi_i.$$

So α_1 is clearly strictly decreasing in each φ_i .

Let $\alpha_{\infty} \equiv \lim_{\ell \to \infty} \alpha_{\ell}$ be the limiting value of the hazard function for price spells of arbitrarily long duration. The recursion for the hazard function is equivalent to the linear recursion for the survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$ in [3.2]. The recursion [3.2] is a linear difference equation with $\phi(z^{-1}) = 0$ in [A.4.1] being the characteristic polynomial (since $\phi(z)\psi(z) = 1$).

Now consider parameter values α and $\{\varphi_i\}_{i=1}^n$ such that $\phi(z) = 0$ has no repeated roots. This will be without loss of generality because there is always a set of parameters implying no repeated roots arbitrarily close to parameters for which there are repeated roots. With no repeated roots, the

solution for the sequence of survival probabilities $\{\psi_\ell\}_{\ell=0}^\infty$ takes the following general form

$$\psi_{\ell} = \sum_{j=1}^{n+1} \varkappa_j \zeta_j^{\ell}, \qquad [A.4.10]$$

for some sequence of coefficients $\{\varkappa_j\}_{j=1}^{n+1}$, and a sequence $\{\zeta_j\}_{j=1}^{n+1}$ where each ζ_j is a reciprocal of one of the n+1 distinct roots of $\phi(z) = 0$, that is, $\phi(\zeta_j^{-1}) = 0$.

Without loss of generality, order the sequence $\{\zeta_j\}_{j=1}^{n+1}$ so that $|\zeta_1| \ge |\zeta_2| \ge \cdots \ge |\zeta_{n+1}|$. As $\psi_{\ell} = (1 - \alpha_{\ell})\psi_{\ell-1}$, it follows that $\alpha_{\ell} = 1 - (\psi_{\ell}/\psi_{\ell-1})$ and hence:

$$\alpha_{\ell} = 1 - \frac{\sum_{j=1}^{n+1} \varkappa_j \zeta_j^{\ell}}{\sum_{j=1}^{n+1} \varkappa_j \zeta_j^{\ell-1}} = 1 - \frac{\zeta_1 + \sum_{j=2}^{n+1} \zeta_j \frac{\varkappa_j}{\varkappa_1} \left(\frac{\zeta_j}{\zeta_1}\right)^{\ell-1}}{1 + \sum_{j=2}^{n+1} \frac{\varkappa_j}{\varkappa_1} \left(\frac{\zeta_j}{\zeta_1}\right)^{\ell-1}}.$$

With no repeated roots, $\zeta_1 \neq \zeta_2$, so a necessary condition for the limit $\lim_{\ell \to \infty} \alpha_{\ell}$ to exist is that $|\zeta_1| > |\zeta_2|$ (using the ordering of the roots), which also requires ζ_1 to be a real number. Under this condition, $\alpha_{\infty} \equiv \lim_{\ell \to \infty} \alpha_{\ell} = 1 - \zeta_1$. For this limit to be economically meaningful and ensure $\alpha_{\infty} > 0$, it is necessary that $0 \leq \zeta_1 < 1$.

It is known that $\phi(z)\psi(z) = 1$, so $\phi(1) = \psi(1)^{-1}$, which is necessarily positive since $\psi_0 = 1$ and $\psi_{\ell} \ge 0$ for all ℓ . As ζ_1 is the largest of the reciprocals of the roots of $\phi(z) = 0$, there must be no value of ζ between ζ_1 and 1 such that $\phi(\zeta^{-1}) = 0$. Since $\phi(z)$ in [A.4.1] is a polynomial, it is a continuous function. Together with $\phi(1) > 0$ and the absence of any value of ζ between ζ_1 and 1 such that $\phi(\zeta^{-1}) = 0$.

The value of ζ_1 is characterized by $\phi(\zeta_1^{-1}) = 0$, so the change in ζ_1 resulting from a change in a parameter φ_i is implicitly determined by the condition $\phi(\zeta_1^{-1}) = 0$. Differentiating this condition yields

$$\frac{\partial \zeta_1^{-1}}{\partial \varphi_i} \bigg|_{\phi(\zeta_1^{-1})=0} = -\frac{1}{\zeta_1^{i+1} \phi'(\zeta_1^{-1})}.$$
 [A.4.11]

As $\alpha_{\infty} = 1 - (\zeta_1^{-1})^{-1}$, it follows that $\partial \alpha_{\infty} / \partial \zeta_1^{-1} = \zeta_1^2$, and thus using the chain rule with [A.4.11]:

$$\frac{\partial \alpha_{\infty}}{\partial \varphi_i} = -\frac{1}{\zeta_1^{i-1} \phi'(\zeta_1^{-1})} > 0$$

since $\phi'(\zeta_1^{-1}) < 0$ as demonstrated above.

(vi) In what follows, suppose that $n = \infty$ in the hazard function recursion [3.1]. This is without loss of generality because any superfluous φ_i parameters can be set to zero. Equation [3.1] implies

$$\alpha_{\ell+1} - \alpha_{\ell} = \sum_{i=1}^{\ell} \varphi_i \left(\prod_{j=\ell+1-i}^{\ell} (1-\alpha_j) \right)^{-1} - \sum_{i=1}^{\ell-1} \varphi_i \left(\prod_{j=\ell-i}^{\ell-1} (1-\alpha_j) \right)^{-1},$$

and by combining overlapping terms and extracting common factors:

$$\alpha_{\ell+1} - \alpha_{\ell} = \varphi_{\ell} \left(\prod_{j=1}^{\ell} (1 - \alpha_j) \right)^{-1} + \sum_{i=1}^{\ell-1} \varphi_i \left(\prod_{j=\ell-i}^{\ell} (1 - \alpha_j) \right)^{-1} \{ (1 - \alpha_{\ell-i}) - (1 - \alpha_{\ell}) \}$$

Therefore, the change in the hazard function is given by:

$$\alpha_{\ell+1} - \alpha_{\ell} = \sum_{i=1}^{\ell-1} \varphi_i(\alpha_{\ell} - \alpha_{\ell-i}) \left(\prod_{j=\ell-i}^{\ell} (1 - \alpha_j)\right)^{-1} + \varphi_{\ell} \left(\prod_{j=1}^{\ell} (1 - \alpha_j)\right)^{-1}.$$
 [A.4.12]

It follows that $\varphi_i = 0$ for all *i* implies $\alpha_{\ell} = \alpha$ for all ℓ . Similarly, suppose $\alpha_{\ell} = \alpha_1$ for all ℓ . It follows from [A.4.12] that $\varphi_i = 0$ for all *i*.

(vii) Suppose that $\varphi_i \geq 0$ for all *i*. It follows immediately from [A.4.12] that $\alpha_2 \geq \alpha_1$. Now suppose that $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{i-1} \leq \alpha_{\ell}$ has already been established for some ℓ . Given this supposition, it follows that $\alpha_{\ell} - \alpha_{\ell-i} \geq 0$ for all $i = 1, \ldots, \ell - 1$. Equation [A.4.12] then implies that $\alpha_{\ell+1} \geq \alpha_{\ell}$. This proves $\alpha_{\ell+1} \geq \alpha_{\ell}$ for all ℓ by induction.

(viii) Define the sequence $\{\sigma_{\ell}\}_{\ell=1}^{\infty}$ using $\sigma_1 = -(1 - \alpha_1)$ and $\sigma_{\ell} = \alpha_{\ell} - \alpha_{\ell-1}$ for $\ell \geq 2$. If $\alpha_{\ell+1} \leq \alpha_{\ell}$ for all ℓ then $\sigma_{\ell} \leq 0$ for all ℓ . It follows from the expression for φ_i in equation [A.1.3] justified by Lemma 3 that φ_i is the product of $(-1)^i$ and i+1 non-positive terms. Hence, $\varphi_i \leq 0$ for all i is established. This completes the proof.

A.5 Proof of Proposition 4

Let $\psi(z) \equiv \sum_{\ell=0}^{\infty} \psi_{\ell} z^{\ell}$ denote the z-transform of the sequence of survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$ generated by a hazard function $\{\alpha_{\ell}\}_{\ell=1}^{\infty}$. If the hazard function implies the stationary age distribution is stable then Lemma 1 shows there exists a $\rho > 1$ such that $\psi(z)$ has no roots in $\mathscr{D}_{\rho} \equiv \{z \in \mathbb{C} \mid |z| \leq \rho\}$. Define the function $\phi(z) \equiv \psi(z)^{-1}$ on \mathscr{D}_{ρ} , which is analytic because $\psi(z) \neq 0$ for all $z \in \mathscr{D}_{\rho}$.

Since $\phi(z)$ is an analytic function, it is equal to its Taylor series expansion around z = 0 (contained in \mathscr{D}_{ρ}). Thus $\phi(z) \equiv 1 - \sum_{i=1}^{\infty} \phi_i z^{\ell}$ for some sequence $\{\phi_i\}_{i=1}^{\infty}$ (the leading term of the Taylor series is 1 because $\psi(0) = \psi_0 = 1$). As z = 1 belongs to \mathscr{D}_{ρ} , it follows that $\sum_{i=1}^{\infty} |\phi_i| < \infty$.

The definition of $\phi(z)$ requires $\phi(z)\psi(z) = 1$ for all $z \in \mathscr{D}_{\rho}$. Multiplying the power series for $\phi(z)$ and $\psi(z)$ yields

$$\phi(z)\psi(z) = \psi_0 + \sum_{\ell=1}^{\infty} \left(\psi_\ell - \sum_{i=1}^{\ell} \phi_i \psi_{\ell-i}\right) z^{\ell}.$$

Since $\psi_0 = 1$ always, $\phi(z)\psi(z) = 1$ holds for all $z \in \mathscr{D}_{\rho}$ if and only if $\psi_{\ell} = \sum_{i=1}^{\ell} \phi_i \psi_{\ell-i}$ is true for all ℓ . Define α and $\{\varphi_i\}_{i=1}^{\infty}$ according to $\alpha \equiv 1 - \sum_{i=1}^{\infty} \phi_i$ and $\varphi_i \equiv -\phi_{i+1}$. With these definitions, the recursion for $\{\psi_{\ell}\}_{\ell=0}^{\infty}$ in [3.2] holds with $n = \infty$, which is equivalent to the original recursion for the hazard function in [3.1]. Given the definitions, it has also been shown that $\sum_{i=1}^{\infty} |\varphi_i| < \infty$. This completes the proof.

A.6 Proof of Proposition 5

(i) Define the sequence of probabilities of price stickiness $\{\varsigma_\ell\}_{\ell=1}^{\infty}$ as $\varsigma_\ell \equiv 1 - \alpha_\ell$ using the hazard function $\{\alpha_\ell\}_{\ell=1}^{\infty}$. If the parameters α and $\{\varphi_i\}_{i=1}^n$ generate a well-defined hazard function then it follows that $0 \leq \varsigma_\ell \leq 1$ for all ℓ .

Using the hazard function recursion [3.1], the sequence $\{\varsigma_{\ell}\}_{\ell=1}^{\infty}$ satisfies

$$\varsigma_{\ell} = \left(1 - \alpha + \sum_{i=1}^{n} \varphi_i\right) - \sum_{i=1}^{\min\{\ell-1, n\}} \frac{\varphi_i}{\prod_{j=\ell-i}^{\ell-1} \varsigma_j},$$
[A.6.1]

for all ℓ .

Consider the claim

$$\sum_{j=i}^{n} \varphi_j \le \alpha.$$
 [A.6.2]

Since [A.6.1] implies $\varsigma_1 = 1 - \alpha + \sum_{i=1}^n \varphi_i$, the requirement $\varsigma_1 \leq 1$ implies that [A.6.2] is true for i = 1.

Now suppose that the claim [A.6.2] has been proved for all i = 1, ..., k for some k. If $\varphi_k \ge 0$ then the result $\sum_{j=k+1}^{n} \varphi_j \le \alpha$ follows automatically from $\sum_{j=k}^{n} \varphi_j \le \alpha$, proving the statement [A.6.2] for the case i = k + 1 as well.

Consider the case $\varphi_k < 0$. Using [A.6.1], the requirement $\varsigma_{k+1} \leq 1$ is equivalent to

$$-\sum_{i=1}^{k-1} \frac{\varphi_i}{\prod_{j=k+1-i}^k \varsigma_j} - \frac{\varphi_k}{\prod_{j=1}^k \varsigma_j} \le \alpha - \sum_{i=1}^n \varphi_i.$$
 [A.6.3]

Since $0 \le \varsigma_1 \le 1$ and $\varphi_k < 0$ in the case under consideration, it follows from [A.6.3] that

$$-\sum_{i=1}^{k-2} \frac{\varphi_i}{\prod_{j=k+1-i}^k \varsigma_j} - \frac{(\varphi_{k-1} + \varphi_k)}{\prod_{j=2}^k \varsigma_j} \le \alpha - \sum_{i=1}^n \varphi_i.$$
 [A.6.4]

Now if $\varphi_{k-1} + \varphi_k \ge 0$ then $\sum_{j=k+1}^n \varphi_j \le \alpha$ would follow from $\sum_{j=k-1}^n \varphi_j \le \alpha$, proving the statement [A.6.2] for i = k + 1. If not, then since $0 \le \varsigma_2 \le 1$, inequality [A.6.4] together with $\varphi_{k-1} + \varphi_k < 0$ implies that

$$-\sum_{i=1}^{k-3} \frac{\varphi_i}{\prod_{j=k+1-i}^k \varsigma_j} - \frac{(\varphi_{k-2} + \varphi_{k-1} + \varphi_k)}{\prod_{j=3}^k \varsigma_j} \le \alpha - \sum_{i=1}^n \varphi_i.$$
 [A.6.5]

By again considering the two cases for the sign of $\varphi_{k-2} + \varphi_{k-1} + \varphi_k$ the claim [A.6.2] for i = k + 1 either follows, or a new inequality is deduced alone the pattern of [A.6.3]–[A.6.5] above. This process terminates either with [A.6.2] proved for i = k + 1 or the inequality

$$-rac{\sum_{i=1}^k arphi_i}{arsigma_k} \leq lpha - \sum_{i=1}^n arphi_i.$$

Since $0 \le \varsigma_k \le 1$ and the claim [A.6.2] is known to be true for i = 1, it follows that

$$-\sum_{i=1}^k \varphi_i \le \alpha - \sum_{i=1}^n \varphi_i,$$

which proves that [A.6.2] holds for i = k + 1. Thus, [A.6.2] is true for i = k + 1 in all cases, so it follows for all i = 1, ..., n by induction.

Next, consider the claim

$$-(1-\alpha) \le \sum_{j=i}^{n} \varphi_i.$$
 [A.6.6]

Noting that [A.6.1] implies $\varsigma_1 = 1 - \alpha + \sum_{i=1}^n \varphi_i$, the requirement $\varsigma_1 \ge 0$ means that [A.6.6] must hold for i = 1.

Now suppose that the statement [A.6.6] has been proved for i = 1, ..., k for some k. Given

equation [A.6.1], the inequality $\varsigma_{k+1} \ge 0$ holds if and only if

$$\sum_{i=1}^{k} \frac{\varphi_i}{\prod_{j=k+1-i}^{k} \varsigma_j} \le \left(1 - \alpha + \sum_{i=1}^{n} \varphi_i\right).$$
[A.6.7]

Multiplying both sides by the non-negative term $\prod_{j=1}^{k} \varsigma_j$ leads to an equivalent inequality:

$$\sum_{i=1}^{k-1} \left(\prod_{j=1}^{k-i} \varsigma_j \right) \varphi_i + \varphi_k \le \left(1 - \alpha + \sum_{i=1}^n \varphi_i \right) \prod_{j=1}^k \varsigma_j.$$
 [A.6.8]

If $\varphi_k < 0$ then the inequality $-(1-\alpha) \leq \sum_{j=k+1}^n \varphi_j$ follows automatically from $-(1-\alpha) \leq \sum_{j=k}^n \varphi_j$, proving the statement [A.6.6] for i = k + 1. On the other hand, if $\varphi_k \leq 0$ then inequality [A.6.8] together with the requirement $0 \leq \varsigma_1 \leq 1$ implies

$$\sum_{i=1}^{k-2} \left(\prod_{j=1}^{k-i} \varsigma_j \right) \varphi_i + \varsigma_1(\varphi_{k-1} + \varphi_k) \le \left(1 - \alpha + \sum_{i=1}^n \varphi_i \right) \prod_{j=1}^k \varsigma_j.$$
 [A.6.9]

If $\varphi_{k-1} + \varphi_k < 0$ then $-(1 - \alpha) \leq \sum_{j=k+1}^n \varphi_j$ follows from knowing $-(1 - \alpha) \leq \sum_{j=k-1}^n \varphi_j$, proving [A.6.6] for i = k + 1. But if $\varphi_{k-1} + \varphi_k \geq 0$ then [A.6.9] and $0 \leq \varsigma_2 \leq 1$ imply:

$$\sum_{i=1}^{k-3} \left(\prod_{j=1}^{k-i} \varsigma_j \right) \varphi_i + \varsigma_1 \varsigma_2 (\varphi_{k-2} + \varphi_{k-1} + \varphi_k) \le \left(1 - \alpha + \sum_{i=1}^n \varphi_i \right) \prod_{j=1}^k \varsigma_j.$$
[A.6.10]

Proceeding this way, the claim [A.6.6] either follows, or the following inequality is eventually deduced:

$$\left(\prod_{j=1}^{k-1}\varsigma_j\right)\left(\sum_{i=1}^k\varphi_i\right)\leq \left(1-\alpha+\sum_{i=1}^n\varphi_i\right)\prod_{j=1}^k\varsigma_j$$

Since [A.6.6] is known to be true for i = 1 and as $0 \le \varsigma_k \le 1$, it follows that:

$$\left(\prod_{j=1}^{k-1}\varsigma_j\right)\left(\sum_{i=1}^k\varphi_i\right)\leq \left(1-\alpha+\sum_{i=1}^n\varphi_i\right)\left(\prod_{j=1}^{k-1}\varsigma_j\right),$$

from which the statement [A.6.6] is proved for i = k + 1. Thus [A.6.6] is demonstrated for all i = 1, ..., n by induction. Therefore $-(1 - \alpha) \leq \sum_{j=i}^{n} \varphi_j \leq \alpha$ for all i = 1, ..., n.

(ii) Suppose n = 1 and $\varphi \equiv \varphi_1$. In the case $\varphi = 0$, the restriction $0 \le \alpha \le 1$ is clearly all that is required for the hazard function to be well defined. Thus assume $\varphi \ne 0$ in what follows.

The hazard function recursion [3.1] in the case n = 1 reduces to

$$\alpha_{\ell} = (\alpha - \varphi) + \frac{\varphi}{1 - \alpha_{\ell-1}}, \qquad [A.6.11]$$

and the linear recursion for the survival probabilities [3.2] becomes:

$$\psi_{\ell} = (1 - \alpha + \varphi)\psi_{\ell-1} - \varphi\psi_{\ell-2}.$$
 [A.6.12]

Define the quadratic equation $\phi(z) = 1 - (1 - \alpha + \varphi)z - \varphi z^2$. Note that $\phi(z^{-1}) = 0$ is the characteristic

equation for the sequence of survival probabilities $\{\psi_\ell\}_{\ell=0}^{\infty}$. Let ζ_1 and ζ_2 denote the reciprocals of the two roots of $\phi(z) = 0$. The quadratic can thus be written as $\phi(z) = (1 - \zeta_1 z)(1 - \zeta_2 z)$. By equating coefficients of powers of z, it follows that $1 - \alpha + \varphi = \zeta_1 + \zeta_2$ and $\varphi = \zeta_1 \zeta_2$. Note that $\alpha_1 = \alpha - \varphi$, which must be a well-defined probability, so $\varphi \leq \alpha$ is always required.

The roots ζ_1 and ζ_2 are real numbers when the following condition is satisfied:

$$(1 - \alpha + \varphi)^2 - 4\varphi = \varphi^2 - 2(1 + \alpha)\varphi + (1 - \alpha)^2 \ge 0.$$
 [A.6.13]

Interpreted as a quadratic in φ , it is straightforward to see that it has two positive real roots. The condition above is satisfied when φ is below the smaller of the two roots:

$$\varphi \le (1+\alpha) - \sqrt{(1+\alpha)^2 - (1-\alpha)^2} = (1-\sqrt{\alpha})^2.$$
 [A.6.14]

The sum of the roots of the quadratic in [A.6.13] is $2(1 + \alpha)$, so the larger root is greater than α , which is in the range where $\varphi \leq \alpha$ is violated.

Consider first the case where $\varphi > 0$. Suppose it is claimed that there is an upper bound $\bar{\alpha}$ for the hazard function $\{\alpha_{\ell}\}_{\ell=1}^{\infty}$. If $\alpha_{\ell-1} \leq \bar{\alpha}$ then [A.6.11] implies

$$\alpha_{\ell} \leq (\alpha - \phi) + rac{\phi}{1 - ar{lpha}}.$$

Hence $\bar{\alpha}$ is valid upper bound for $\{\alpha_\ell\}_{\ell=1}^{\infty}$ (satisfying $0 < \bar{\alpha} < 1$) if the following inequality holds:

$$(\alpha-\phi)+\frac{\phi}{1-\bar{\alpha}}\leq\bar{\alpha},$$

which is equivalent to:

$$1 - (1 - \alpha + \varphi)(1 - \bar{\alpha})^{-1} + \varphi(1 - \bar{\alpha})^{-2} \le 0.$$

Since in the case $\varphi > 0$, [A.6.11] implies the hazard function is strictly increasing as long as it remains well defined. Thus the hazard function is well defined if and only if $\varphi \leq \alpha$ and there is some bound $\bar{\alpha}$ satisfying $0 < \bar{\alpha} < 1$ such that $\phi((1 - \bar{\alpha})^{-1}) \leq 0$. This requires $\phi(z) = 0$ to have real roots, which in turn requires the inequality in [A.6.14] to be satisfied. Furthermore, one of the real roots must be strictly greater than one to ensure $0 < \bar{\alpha} < 1$. Note that $\phi(0) = 1$ and $\phi(1) = \alpha > 0$, and that the product of the roots of $\phi(z) = 0$ is φ^{-1} . Under the condition [A.6.14], $\varphi < 1$, so the product of the roots is greater than one. The sum of the roots is positive, so both must be positive. Thus, $\varphi \leq \alpha$ and [A.6.14] are necessary and sufficient for the hazard function to be well defined in the case $\varphi > 0$.

Now consider the case where $\varphi < 0$. Since $\alpha_1 = \alpha - \varphi$, it is necessary to assume $\varphi \ge -(1 - \alpha)$ to ensure α_1 is a well-defined probability. Note that any negative value of φ satisfies [A.6.13], so both ζ_1 and ζ_2 are real numbers. As $\zeta_1 \zeta_2 = \varphi$, one of these numbers must be positive and the other negative. Without loss of generality, assume $\zeta_1 > 0$ and $\zeta_2 < 0$. Since $\zeta_1 + \zeta_2 = 1 - \alpha + \varphi$ and as $\alpha_1 = \alpha - \varphi$ is well defined, it follows that $\zeta_1 > -\zeta_2$. Noting that $\phi(0) = 1$ and $\phi(1) = \alpha$, so as $\phi(\zeta_1^{-1}) = 0$ and $\phi(\zeta_2^{-1}) = 0$ it must be the case that $\zeta_1 < 1$ (otherwise $\phi(z)$ would have to change sign twice between 0 and 1, implying that both ζ_1 and ζ_2 would be positive).

Since ζ_1 and ζ_2 are distinct numbers in the case $\varphi < 0$, the survival probabilities $\{\psi_\ell\}_{\ell=0}^{\infty}$ can be expressed as $\psi_\ell = \varkappa_1 \zeta_1^\ell + \varkappa_2 \zeta_2^\ell$, where \varkappa_1 and \varkappa_2 are real numbers. Consequently:

$$\psi_{\ell} = \varkappa_1 \zeta_1^{\ell} \left\{ 1 + \frac{\varkappa_2}{\varkappa_1} \left(\frac{\zeta_2}{\zeta_1} \right)^{\ell} \right\}, \quad \text{and} \quad \psi_{\ell} - \psi_{\ell+1} = \varkappa_1 (1 - \zeta_1) \zeta_1^{\ell} \left\{ 1 + \frac{\varkappa_2 (1 - \zeta_2)}{\varkappa_1 (1 - \zeta_1)} \left(\frac{\zeta_2}{\zeta_1} \right)^{\ell} \right\}.$$
 [A.6.15]

The hazard function recursion [A.6.11] implies $\alpha_1 = \alpha - \phi$ and $\alpha_2 = (\alpha - \phi) + \phi/(1 - \alpha + \phi)$. Given the restriction $\phi \ge -(1 - \alpha)$ that ensures α_1 is well defined in the case $\phi < 0$, the probability α_2 is

well defined if and only if $\varphi \ge -(\alpha - \varphi)(1 - \alpha + \varphi)$. Rearranging this inequality shows that it is equivalent to

$$\varphi^2 - 2\alpha\varphi - \alpha(1-\alpha) \le 0.$$

Interpreted as a quadratic in φ , the above inequality has one positive and one negative root. Given that $\varphi < 0$ in the case under consideration, the relevant restriction is that

$$\varphi \ge \alpha - \sqrt{\alpha^2 + \alpha(1 - \alpha)} = -\sqrt{\alpha}(1 - \sqrt{\alpha}).$$
 [A.6.16]

Notice that $\sqrt{\alpha}(1-\sqrt{\alpha}) \leq 1-\alpha$, so the requirement $\varphi \geq -(1-\alpha)$ is automatically satisfied when [A.6.16] holds.

The condition [A.6.16] is thus seen to be equivalent to α_1 and α_2 being well defined in the case $\varphi < 0$. This is itself equivalent to $0 \leq \psi_2 \leq \psi_1 \leq \psi_0 = 1$ because $\psi_\ell = (1 - \alpha_\ell)\psi_{\ell-1}$. By using [A.6.15], $\psi_0 - \psi_1 = \varkappa_1(1 - \zeta_1) + \varkappa_2(1 - \zeta_2) \geq 0$ and $\psi_1 - \psi_2 = \varkappa_1(1 - \zeta_1)\zeta_1 + \varkappa_2(1 - \zeta_2)\zeta_2 \geq 0$. Since $0 < \zeta_1 < 1$ and $\zeta_2 < 0$, it follows from the first inequality that at least one of \varkappa_1 and \varkappa_2 must be non-negative, and thus from the second inequality that $\varkappa_1 \geq 0$.

Since $\zeta_1 > -\zeta_2$, the terms $(\varkappa_2/\varkappa_1)(\zeta_2/\zeta_1)^i$ and $(\varkappa_2(1-\zeta_2)/\varkappa_1(1-\zeta_1))(\zeta_2/\zeta_1)^i$ in [A.6.15] must alternate in sign and decline in absolute value as ℓ increases. Because \varkappa_1 , ζ_1 and $(1-\zeta_1)$ are nonnegative, the inequalities $0 \leq \psi_2 \leq \psi_1 \leq \psi_0$ imply $0 \leq \psi_\ell \leq \psi_{\ell-1}$ for all ℓ , which ensure the hazard function is well defined everywhere. Since this condition is equivalent to [A.6.16], the proof is complete.

A.7 Proof of Proposition 6

(i) Let $\psi(z) \equiv \sum_{\ell=0}^{\infty} \psi_{\ell} z^{\ell}$ and $\omega(z) \equiv \sum_{\ell=0}^{\infty} \omega_{\ell} z^{\ell}$ denote the z-transforms of the survival probabilities $\{\psi_{\ell}\}_{\ell=0}^{\infty}$ and the stationary age distribution $\{\omega_{\ell}\}_{\ell=0}^{\infty}$. Equations [2.4] and [2.5] for the reset price \mathbf{r}_t and price level \mathbf{p}_t can be written in terms of the lag and forward operators \mathbb{L} and \mathbb{F} and the power series $\psi(z)$ and $\omega(z)$:

$$\mathbf{r}_t = \psi(\beta)^{-1} \mathbb{E}_t \left[\psi(\beta \mathbb{F}) \mathbf{p}_t^* \right], \quad \text{and} \ \mathbf{p}_t = \omega(\mathbb{L}) \mathbf{r}_t.$$
[A.7.1]

Suppose that the hazard function $\{\alpha_\ell\}_{\ell=1}^{\infty}$ is generated by the recursion [3.1] using parameters α and $\{\varphi_i\}_{i=1}^n$. Define the polynomial $\phi(z) \equiv 1 - (1 - \alpha + \sum_{i=1}^n \varphi_i) z + \sum_{j=1}^n \varphi_j z^{j+1}$. Lemma 1 shows that $\psi(z)$ is analytic on the set $\mathscr{D}_{\rho} \equiv \{z \in \mathbb{C} \mid |z| \leq \rho\}$ for some $\rho > 1$. Note that the equivalent recursion [3.2] for the survival probabilities and $\psi_0 = 1$ imply $\phi(z)\psi(z) = 1$ for all $z \in \mathscr{D}_{\rho}$.

Now multiply both sides of the equation in [A.7.1] for the reset price r_t by $\phi(\beta \mathbb{F})$ and take conditional expectations at time t:

$$\mathbb{E}_{t}\left[\phi(\beta\mathbb{F})\mathsf{r}_{t}\right] = \mathbb{E}_{t}\left[\phi(\beta\mathbb{F})\left\{\psi(\beta)^{-1}\mathbb{E}_{t}\left[\psi(\beta\mathbb{F})\mathsf{p}_{t}^{*}\right]\right\}\right] = \mathbb{E}_{t}\left[\psi(\beta)^{-1}\mathbb{E}_{t}\left[\phi(\beta\mathbb{F})\psi(\beta\mathbb{L})\mathsf{p}_{t}^{*}\right]\right] = \psi(\beta)^{-1}\mathsf{p}_{t}^{*}.$$
[A.7.2]

This result follows first because $\phi(\beta \mathbb{F})$ contains only non-negative powers of \mathbb{F} , so it commutes with the conditional expectation $\mathbb{E}_t[\cdot]$ operator inside another conditional expectation. Second, $\phi(z)\psi(z) = 1$, hence $\phi(\beta \mathbb{F})\psi(\beta \mathbb{F}) = \mathbb{I}$, where \mathbb{I} is the identity operator. Next, note that because $\omega_{\ell} = (1 - \alpha_{\ell})\omega_{\ell-1}$ and $\psi_{\ell} = (1 - \alpha_{\ell})\psi_{\ell-1}$, the functions $\omega(z)$ and $\psi(z)$ are proportional. Thus $\omega(z) = (\omega(1)/\psi(1))\psi(z)$, and $\omega(z) = \phi(1)\psi(z)$, since $\psi(1)^{-1} = \phi(1)$, and $\omega(1) = 1$ because $\{\omega_{\ell}\}_{\ell=0}^{\infty}$ is a probability distribution. It follows that $\phi(z)\omega(z) = \phi(1)$ for all $z \in \mathscr{D}_{\rho}$. Multiplying both sides of the equation for \mathbf{p}_t in [A.7.1] by $\phi(\mathbb{L})$ yields

$$\phi(\mathbb{L})\mathbf{p}_t = \phi(\mathbb{L})\omega(\mathbb{L})\mathbf{r}_t = \phi(1)\mathbb{I}\mathbf{r}_t = \phi(1)\mathbf{r}_t.$$
[A.7.3]

Now multiply both sides of equation [A.7.2] by $\phi(1)$ and note that $\psi(\beta)^{-1} = \phi(\beta)$, and then substitute

the expression for p_t^* from [2.3]:

$$\mathbb{E}_t \left[\phi(\beta \mathbb{F}) \phi(1) \mathbf{r}_t \right] = \phi(1) \phi(\beta) (\mathbf{p}_t + \mathbf{v} \mathbf{x}_t).$$

Substitute the formula for $\phi(1)\mathbf{r}_t$ from [A.7.3] into the above and divide both sides by $\phi(1)\phi(\beta)$:

$$\mathbb{E}_t \left[\left\{ \frac{\phi(\mathbb{L})}{\phi(1)} \frac{\phi(\beta \mathbb{F})}{\phi(\beta)} - 1 \right\} \mathsf{p}_t \right] = \mathsf{v} \mathsf{x}_t.$$
 [A.7.4]

Define the Laurent polynomial $\chi(z)$ as follows:

$$\chi(z) \equiv \frac{\phi(z)}{\phi(1)} \frac{\phi(\beta z^{-1})}{\phi(\beta)} - 1, \qquad [A.7.5]$$

so that equation [A.7.4] is equivalent to $\mathbb{E}_t [\chi(\mathbb{L})\mathsf{p}_t] = \mathsf{v}\mathsf{x}_t$, noting that $\mathbb{F} \equiv \mathbb{L}^{-1}$. For algebraic convenience, define the sequence of coefficients $\{\phi_j\}_{j=1}^{n+1}$ by $\phi_1 \equiv (1 - \alpha + \sum_{i=1}^n \varphi_i)$ and $\phi_j \equiv -\varphi_{j-1}$ for $j = 2, \ldots, n+1$ in terms of the parameters of the recursion [3.1]. With these definitions the polynomial $\phi(z)$ can be written as $\phi(z) \equiv 1 - \sum_{j=1}^{n+1} \phi_j z^j$. The Laurent polynomial $\chi(z)$ can be written explicitly using this expression:

$$\chi(z) = \vartheta \left\{ \left(1 - \sum_{j=1}^{n+1} \phi_j z^j \right) \left(1 - \sum_{j=1}^{n+1} \beta^j \phi_j z^{-j} \right) - \left(1 - \sum_{j=1}^{n+1} \phi_j \right) \left(1 - \sum_{j=1}^{n+1} \beta^j \phi_j \right) \right\},$$

where $\vartheta \equiv \phi(1)^{-1}\phi(\beta)^{-1}$ is defined. Expanding the brackets to obtain an expression of the form $\chi(z) = \sum_{\ell=-(n+1)}^{n+1} \chi_{\ell} z^{\ell}$ and equating powers of z implies that $\chi(z)$ can be written as

$$\chi(z) = \chi_0 + \sum_{\ell=1}^{n+1} \chi_\ell \left\{ z^\ell + \beta^\ell z^{-\ell} \right\}, \quad \text{where } \chi_\ell = -\vartheta \left\{ \varphi_\ell - \sum_{j=1}^{n+1-\ell} \beta^j \varphi_j \varphi_{j+\ell} \right\} \quad \text{for } \ell \ge 1, \quad [A.7.6]$$

since $\chi_{-\ell} = \beta^{\ell} \chi_{\ell}$ for all ℓ . As the definition in [A.7.5] implies $\chi(1) = 0$, it follows that $\chi_0 = -\sum_{\ell=1}^{n+1} (1+\beta^{\ell}) \chi_{\ell}$. Furthermore, $\chi(1) = 0$ implies that there exists a Laurent polynomial $\theta(z)$ such that $\chi(z) = (1-z)\theta(z)$. Given the degree of $\chi(z)$, this Laurent polynomial must have the form $\theta(z) = \sum_{\ell=-(n+1)}^{n} \theta_{\ell} z^{\ell}$. Multiplying $\theta(z)$ by 1-z and equating powers of z yields an expression for $\chi(z)$:

$$\chi(z) = \theta_{-(n+1)} z^{-(n+1)} + \sum_{\ell=-n}^{n} (\theta_{\ell} - \theta_{\ell-1}) z^{\ell} - \theta_{n} z^{n+1}.$$

Equating coefficients of powers of z with those in [A.7.6] implies $\chi_{n+1} = -\theta_n$, $\beta^{n+1}\chi_{n+1} = \theta_{-(n+1)}$, and $\chi_{\ell} = \theta_{\ell} - \theta_{\ell-1}$ for all $\ell = -n, ..., n$. Iterating these relationships then implies

$$\theta_{\ell} = -\sum_{j=\ell+1}^{n+1} \chi_{j}, \quad \text{and} \quad \theta_{-\ell} = \sum_{j=\ell}^{n+1} \beta^{j} \chi_{j}, \qquad [A.7.7]$$

for all $\ell = 1, ..., n + 1$. Combining these expressions with those for χ_i in [A.7.6] yields

$$\theta_{\ell} = \vartheta \sum_{i=\ell+1}^{n+1} \left\{ \phi_i - \sum_{j=1}^{n+1-i} \beta^j \phi_j \phi_{i+j} \right\} = \vartheta \sum_{i=\ell+1}^{n+1} \phi_i \left\{ 1 - \sum_{j=1}^{i-\ell-1} \beta^j \phi_j \right\}, \quad [A.7.8a]$$

where a change in the order of summation has been made in the final term. Similarly,

$$\theta_{-\ell} = -\vartheta \sum_{i=\ell}^{n+1} \beta^i \left\{ \phi_i - \sum_{j=1}^{n+1-i} \beta^j \phi_j \phi_{i+j} \right\} = -\vartheta \sum_{i=\ell}^{n+1} \beta^i \phi_i \left\{ 1 - \sum_{j=1}^{i-\ell} \phi_j \right\}.$$
 [A.7.8b]

The original definitions of the terms of the sequence $\{\phi_j\}_{j=1}^{n+1}$ are $\phi_1 = 1 - \alpha + \sum_{i=1}^n \varphi_i$ and $\phi_j = -\varphi_{j-1}$ for j = 2, ..., n+1. Substituting the original parameters α and $\{\varphi_j\}_{j=1}^n$ back into [A.7.8a] and [A.7.8b] yields

$$\theta_{\ell} = -\vartheta \left\{ \varphi_{\ell} + \sum_{i=\ell+1}^{n} \varphi_{i} \left(1 - \beta(1 - \alpha_{1}) + \sum_{j=1}^{i-\ell-1} \beta^{j+1} \varphi_{j} \right) \right\}, \quad \text{for } \ell = 1, \dots, n; \quad [A.7.9a]$$

$$\theta_{-(\ell+1)} = \vartheta \beta^{\ell+1} \left\{ \varphi_{\ell} + \sum_{i=\ell+1}^{n} \beta^{i-\ell} \varphi_i \left(\alpha_1 + \sum_{j=1}^{i-\ell-1} \varphi_j \right) \right\}, \quad \text{for } \ell = 1, \dots, n;$$
[A.7.9b]

$$\theta_0 = \vartheta \left\{ (1 - \alpha_1) - \sum_{i=1}^n \varphi_i \left(1 - \beta(1 - \alpha_1) + \sum_{j=1}^{i-1} \beta^{j+1} \varphi_j \right) \right\}; \text{ and}$$
[A.7.9c]

$$\theta_{-1} = -\vartheta\beta\left\{(1-\alpha_1) - \sum_{i=1}^n \beta^i \varphi_i \left(\alpha_1 + \sum_{j=1}^{i-1} \varphi_j\right)\right\}.$$
[A.7.9d]

Since the definition of $\theta(z)$ requires $\chi(z) = (1-z)\theta(z)$, and as inflation is defined by $\pi_t = (\mathbb{I}-\mathbb{L})\mathbf{p}_t$, it follows from equations [A.7.4] and [A.7.5] that $\mathbb{E}_t [\theta(\mathbb{L})\pi_t] = \nu \mathbf{x}_t$. Make the following definitions of the coefficient κ and the sequences $\{\lambda_\ell\}_{\ell=1}^n$ and $\{\xi_\ell\}_{\ell=1}^{n+1}$ in terms of the elements of the sequence $\{\theta_\ell\}_{\ell=-(n+1)}^n$ from [A.7.9]:

$$\lambda_{\ell} \equiv -\frac{\theta_{\ell}}{\theta_0}, \quad \xi_{\ell} \equiv -\frac{\theta_{-\ell}}{\theta_0}, \quad \text{and} \ \kappa \equiv \frac{1}{\theta_0},$$
 [A.7.10]

noting that $\theta_0 > 0$ ensures these definitions are valid. With these definition, the Laurent polynomial $\theta(z)$ is given by $\theta(z) = \kappa^{-1} \left\{ 1 - \sum_{\ell=1}^n \lambda_\ell z^\ell - \sum_{\ell=1}^{n+1} \xi_\ell z^{-\ell} \right\}$, and so $\mathbb{E}_t \left[\theta(\mathbb{L}) \pi_t \right] = \nu \mathsf{x}_t$ is equivalent to the Phillips curve in [4.3].

(ii) First consider the expression for θ_0 in [A.7.9c]. By expanding the bracket and changing the order of summation:

$$\theta_0 = \vartheta \left\{ (1 - \alpha_1) - (1 - \beta(1 - \alpha_1)) \left(\sum_{i=1}^n \varphi_i \right) - \sum_{i=1}^{n-1} \beta^{i+1} \varphi_i \left(\sum_{j=i+1}^n \varphi_j \right) \right\}.$$

Adding and subtracting terms in the final summation to obtain an equivalent expression:

$$\theta_0 = \vartheta \left\{ (1 - \alpha_1) - (1 - \beta(1 - \alpha_1)) \left(\sum_{i=1}^n \varphi_i \right) - \left(\sum_{i=1}^n \beta^{i+1} \varphi_i \right) \left(\sum_{j=1}^n \varphi_j \right) + \sum_{i=1}^n \beta^{i+1} \varphi_i \left(\sum_{j=1}^i \varphi_j \right) \right\}.$$

The definition of the polynomial $\phi(z)$ implies $\phi(1) = \alpha_1 + \sum_{i=1}^n \varphi_i$ and $\phi(\beta) = 1 - \beta(1 - \alpha_1) + \sum_{i=1}^n \beta^{i+1}\varphi_i$. By defining the sums $s_i \equiv \sum_{j=1}^i \varphi_j$ for $i = 0, \ldots, n$ (with $s_0 = 0$) and noting that

 $\phi(1) - \alpha_1 = \sum_{i=1}^n \varphi_i$:

$$\theta_0 = \vartheta \left\{ (1 - \alpha_1) - (\phi(1) - \alpha_1) \phi(\beta) + \sum_{i=1}^n \beta^{i+1} (s_i - s_{i-1}) s_i \right\}.$$

Rearranging the first two terms leads to

$$\theta_0 = \vartheta \left\{ (1 - \alpha_1)(1 - \phi(\beta)) + (1 - \phi(1))\phi(\beta) + \sum_{i=1}^n \beta^{i+1}(s_i - s_{i-1})s_i \right\}.$$
 [A.7.11]

Note that $(s_i - s_{i-1})s_i = (1/2) \{ (s_i^2 - s_{i-1}^2) + (s_i - s_{i-1})^2 \}$, and thus

$$\sum_{i=1}^{n} \beta^{i+1} (\mathbf{s}_i - \mathbf{s}_{i-1}) \mathbf{s}_i = \frac{1}{2} \left\{ \sum_{i=1}^{n} \beta^{i+1} \varphi_i^2 + (1-\beta) \sum_{i=1}^{n-1} \beta^{i+1} \mathbf{s}_i^2 + \beta^{n+1} \mathbf{s}_n^2 - \beta^2 \mathbf{s}_0^2 \right\}$$

since $s_i - s_{i-1} = \varphi_i$. Using $s_0 = 0$ and substituting this result into [A.7.11]:

$$\theta_0 = \vartheta \left\{ (1 - \alpha_1)(1 - \phi(\beta)) + (1 - \phi(1))\phi(\beta) + \frac{1}{2} \left\{ \sum_{i=1}^n \beta^{i+1} \varphi_i^2 + (1 - \beta) \sum_{i=1}^{n-1} \beta^{i+1} s_i^2 + \beta^{n+1} s_n^2 \right\} \right\}.$$
[A.7.12]

Now observe that $\phi(1) = \psi(1)^{-1}$, and $\psi(1) = \sum_{\ell=0}^{\infty} \psi_{\ell}$, so $0 < \phi(1) < 1$ because $\psi_0 \equiv 1$, $\psi_{\ell} \ge 0$, $\sum_{\ell=0}^{\infty} \psi_{\ell} < \infty$, and $\psi_1 > 0$ under the assumption $\alpha_1 < 1$. Similarly, $\phi(\beta) = \psi(\beta)^{-1}$ and $\psi(\beta) = \sum_{\ell=0}^{\infty} \beta^{\ell} \psi_{\ell}$. Since $0 < \beta < 1$, it follows that $0 < \phi(\beta) < 1$. Together these results establish that $\vartheta > 0$ since $\vartheta \equiv \phi(1)^{-1}\phi(\beta)^{-1}$. Given $\alpha_1 < 1$, the parameter α_1 must satisfy $0 \le \alpha_1 < 1$. Consequently, the first two terms in the brackets in [A.7.12] are strictly positive and all other terms are non-negative. Thus, it is shown that $\theta_0 > 0$. The proof of $\theta_0 > 0$ then automatically shows $\kappa > 0$.

(iii) Now consider the value of ξ_1 , which requires examining θ_{-1} . Let $s_i \equiv \alpha_1 + \sum_{j=1}^i \varphi_j$, and so $s_i - s_{i-1} = \varphi_i$ for all i = 1, ..., n, and $s_0 = \alpha_1$. The expression for θ_{-1} in [A.7.9d] can be written as

$$-\theta_{-1} = \vartheta \left\{ \beta(1-\alpha_1) - \sum_{i=1}^n \beta^{i+1} (\mathbf{s}_i - \mathbf{s}_{i-1}) \mathbf{s}_{i-1} \right\}.$$
 [A.7.13]

Note that $(s_i - s_{i-1})s_{i-1} = (1/2) \{ (s_i^2 - s_{i-1}^2) - (s_i - s_{i-1})^2 \}$, and hence

$$\sum_{i=1}^{n} \beta^{i+1} (\mathbf{s}_i - \mathbf{s}_{i-1}) \mathbf{s}_{i-1} = \frac{1}{2} \left\{ (1-\beta) \sum_{i=1}^{n-1} \beta^{i+1} \mathbf{s}_i^2 + \beta^{n+1} \mathbf{s}_n^2 - \beta^2 \mathbf{s}_0^2 - \sum_{i=1}^{n} \beta^{i+1} \varphi_i^2 \right\}.$$

Also note that $\sum_{i=1}^{n} \beta^{i+1} \varphi_i = \sum_{i=1}^{n} \beta^{i+1} (\mathbf{s}_i - \mathbf{s}_{i-1}) = (1 - \beta) \sum_{i=1}^{n-1} \beta^{i+1} \mathbf{s}_i + \beta^{n+1} \mathbf{s}_n - \beta^2 \mathbf{s}_0$. By adding and subtracting a multiple of these equal terms to the equation above:

$$\sum_{i=1}^{n} \beta^{i+1} (\mathbf{s}_{i} - \mathbf{s}_{i-1}) \mathbf{s}_{i-1} = \frac{1}{2} \sum_{i=1}^{n} \beta^{i+1} \varphi_{i} - \frac{1}{2} \left\{ (1-\beta) \sum_{i=1}^{n-1} \beta^{i+1} \mathbf{s}_{i} + \beta^{n+1} \mathbf{s}_{n} - \frac{1}{2} \beta^{2} \alpha_{1} \right\} + \frac{1}{2} \left\{ (1-\beta) \sum_{i=1}^{n-1} \beta^{i+1} \mathbf{s}_{i}^{2} + \beta^{n+1} \mathbf{s}_{n}^{2} - \beta^{2} \alpha_{1}^{2} - \sum_{i=1}^{n} \beta^{i+1} \varphi_{i}^{2} \right\},$$

recalling that $s_0 = \alpha_1$. Since $\sum_{i=1}^{\infty} \beta^{i+1} \varphi_i = \phi(\beta) - 1 + \beta(1 - \alpha_1)$, the above equation can be

rearranged as follows:

$$\begin{split} \sum_{i=1}^{n} \beta^{i+1} (\mathbf{s}_{i} - \mathbf{s}_{i-1}) \mathbf{s}_{i-1} &= -\frac{\beta}{2} \left\{ \alpha_{1}^{2} \beta - \alpha_{1} \beta + \alpha_{1} - 1 \right\} + \frac{1}{2} (1 - \phi(\beta)) \\ &+ \frac{1}{2} \left\{ (1 - \beta) \sum_{i=1}^{n-1} \beta^{i+1} \mathbf{s}_{i} (1 - \mathbf{s}_{i}) + \beta^{n+1} \mathbf{s}_{n} (1 - \mathbf{s}_{n}) + \sum_{i=1}^{n} \beta^{i+1} \varphi_{i}^{2} \right\}. \end{split}$$

Substituting this result into equation [A.7.13] yields:

$$\begin{aligned} -\theta_{-1} &= \frac{\vartheta}{2} \left\{ \beta (1 - \alpha_1) (1 - \alpha_1 \beta) + (1 - \phi(\beta)) \right\} \\ &+ \frac{\vartheta}{2} \left\{ (1 - \beta) \sum_{i=1}^{n-1} \beta^{i+1} \mathbf{s}_i (1 - \mathbf{s}_i) + \beta^{n+1} \mathbf{s}_n (1 - \mathbf{s}_n) + \sum_{i=1}^n \beta^{i+1} \varphi_i^2 \right\}. \end{aligned}$$

Proposition 5 demonstrates that $0 \leq s_i \leq 1$ for all i = 1, ..., n is necessary for the hazard function $\{\alpha_\ell\}_{\ell=1}^{\infty}$ to be well defined. Since $0 < \alpha_1 < 1$, $0 < \beta < 1$, and $0 < \phi(\beta) < 1$, $\vartheta > 0$ and $\theta_0 > 0$ as shown earlier, it follows that $\xi_1 = -\theta_{-1}/\theta_0$ is strictly positive.

(iv) Next, note that

$$1 - \beta(1 - \alpha_1) + \sum_{j=1}^{i} \beta^{j+1} \varphi_j = (1 - \beta) \left\{ 1 + \sum_{h=0}^{i-1} \beta^{h+1} \mathbf{s}_h \right\} + \beta^{i+1} \mathbf{s}_i, \quad \text{where } \mathbf{s}_j \equiv \alpha_1 + \sum_{h=1}^{j} \varphi_j.$$

Using equations [A.7.9a] and [A.7.10], the coefficients of lagged inflation $\{\lambda_\ell\}_{\ell=1}^n$ can be expressed as

$$\lambda_{\ell} = \left(\frac{\vartheta}{\theta_0}\right)\varphi_{\ell} + \sum_{i=\ell+1}^n \left\{ \left(\frac{\vartheta}{\theta_0}\right) \left((1-\beta) \left(1 + \sum_{j=0}^{i-\ell-2} \beta^{j+1} \mathbf{s}_j\right) + \beta^{i-\ell} \mathbf{s}_{j-i-1} \right) \right\} \varphi_i.$$

Proposition 5 shows that $0 \le s_i \le 1$ for all i = 0, 1, ..., n. Since $\vartheta > 0$ and $\theta_0 > 0$, it follows that λ_{ℓ} is a weighted sum of $\varphi_{\ell}, ..., \varphi_n$.

(v) Similarly, equations [A.7.9b] and [A.7.10] show that the coefficients on future inflation $\{\xi_\ell\}_{\ell=2}^{n+1}$ are:

$$\xi_{\ell} = -\left\{ \left(\frac{\vartheta\beta^{\ell}}{\theta_{0}}\right) \varphi_{\ell-1} + \sum_{i=\ell}^{n} \left(\frac{\vartheta\beta^{i+1}s_{i-\ell}}{\theta_{0}}\right) \varphi_{i} \right\}, \quad \text{for } \ell = 2, \dots, n+1,$$

where s_i is as defined above. Thus ξ_{ℓ} for $\ell \geq 2$ is the negative of a weighted sum of the parameters $\varphi_{\ell-1}, \ldots, \varphi_n$.

(vi) Note that [A.7.5] implies $\chi(\beta) = 0$. Since $\chi(z) = (1 - z)\theta(z)$, it must be the case that $\theta(\beta) = 0$ also. The definition of $\theta(z)$ then implies that $\sum_{\ell \to -(n+1)}^{n} \beta^{\ell} \theta_{\ell} = 0$. The result follows by using [A.7.10].

(vii) Finally, to derive the restrictions across the sequences of coefficients $\{\lambda_\ell\}_{\ell=1}^n$ and $\{\xi_\ell\}_{\ell=1}^{n+1}$, use the definition in [A.7.10] and equation [A.7.7] to deduce:

$$(1-\beta)\sum_{i=\ell}^{n}\beta^{i}\lambda_{i} = -\frac{(1-\beta)}{\theta_{0}}\sum_{i=\ell}^{n}\beta^{i}\theta_{i} = \frac{(1-\beta)}{\theta_{0}}\sum_{i=\ell}^{n}\sum_{j=i+1}^{n+1}\beta^{i}\chi_{j} = \frac{(1-\beta)}{\theta_{0}}\sum_{i=\ell+1}^{n+1}\left\{\sum_{j=\ell}^{i-1}\beta^{j}\right\}\chi_{i},$$

using a change in the order of summation to derive the final equality. Using the formula for the geometric sum yields

$$(1-\beta)\sum_{i=\ell}^{n}\beta^{i}\lambda_{i} = \frac{1}{\theta_{0}}\sum_{i=\ell+1}^{n+1}(\beta^{\ell}-\beta^{i})\chi_{i}.$$
 [A.7.14]

Thus, adding β to the equation above in the case of $\ell=1$ and substituting for θ_0 using [A.7.7]

$$\beta + (1 - \beta) \sum_{i=1}^{n} \beta^{i} \lambda_{i} = \frac{1}{\theta_{0}} \left\{ \sum_{i=2}^{n+1} (\beta - \beta^{i}) \chi_{i} - \beta \sum_{i=1}^{n+1} \chi_{i} \right\} = -\frac{1}{\theta_{0}} \sum_{i=1}^{n+1} \beta^{i} \chi_{i} = -\frac{\theta_{-1}}{\theta_{0}},$$

with the expression for θ_{-1} taken from [A.7.7]. Given the definition in [A.7.10], the equation for ξ_1 is confirmed. Now substract the expression in [A.7.14] for $\ell \geq 2$ from $\beta^{\ell} \lambda_{\ell-1}$:

$$\beta^{\ell} \lambda_{\ell-1} - (1-\beta) \sum_{i=\ell}^{n} \beta^{i} \lambda_{i} = -\frac{\beta^{\ell} \theta_{\ell-1}}{\theta_{0}} - \frac{1}{\theta_{0}} \sum_{i=\ell+1}^{n+1} (\beta^{\ell} - \beta^{i}) \chi_{i} = \frac{1}{\theta_{0}} \left\{ \beta^{\ell} \sum_{i=\ell}^{n+1} (\chi_{i} - \sum_{i=\ell+1}^{n+1} (\beta^{\ell} - \beta^{i}) \chi_{i} \right\},$$

making use of equations [A.7.7] and [A.7.10]. It follows that

$$\beta^{\ell} \lambda_{\ell-1} - (1-\beta) \sum_{i=\ell}^{n} \beta^{i} \lambda_{i} = \frac{1}{\theta_{0}} \sum_{i=\ell}^{n+1} \beta^{i} \chi_{i} = \frac{\theta_{-\ell}}{\theta_{0}},$$

using [A.7.7] again. Therefore the equation for ξ_{ℓ} is verified for $\ell \geq 2$. This completes the proof.