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A Proofs of propositions

A.1 Lemmas

Lemma 1 Let Dρ ≡
{
z ∈ C

∣∣ |z| ≤ ρ} be the closed disc of radius ρ and let ψ(z) ≡
∑∞

`=0ψ`z
`

denote the z-transform of the sequence of survival probabilities {ψ`}∞`=0.
(i) The function ψ(z) is analytic on Dρ for some ρ > 1.
(ii) A stationary age distribution {ω`}∞`=0 consistent with the hazard function {α`}∞`=1 is stable if

and only if ψ(z) has no roots in Dρ for some ρ > 1.

Proof (i) Let α∞ ≡ lim`→∞ α` be the limiting value of the hazard function {α`}∞`=1. It is
assumed that α∞ > 0. Let $ be a number lying strictly between (1−α∞) and 1, which must satisfy
0 < $ < 1. Given that α` → α∞ as `→∞, there must exist a value of  such that (1− α`) < $ for
all ` ≥ . Since ψ` = (1−α`)ψ`−1, this implies that ψ`+1 ≤ $ψ` for all ` ≥  and hence ψ` ≤ $`−ψ.

Now let ρ be any number strictly between 1 and $−1, which implies 0 < $ρ < 1 and hence that∑∞
`=0$

`|z|` ≤
∑∞

`=0($ρ)` = (1−$ρ)−1 <∞ for all z ∈ Dρ. By applying the triangle inequality to
the power series ψ(z), it follows that∣∣∣∣∣

∞∑
`=0

ψ`z
`

∣∣∣∣∣ ≤
∞∑
`=0

ψ`|z|` ≤
−1∑
`=0

ψ`|z|` +ψ
∞∑
`=

$`−|z|` =
−1∑
`=0

ψ`|z|` +ψ|z|
∞∑
`=0

$`|z|`,

and hence |ψ(z)| <∞ if z ∈ Dρ. Therefore, the power series ψ(z) is analytic on Dρ for some ρ > 1.

(ii) Let {ω`}∞`=0 be a stationary age distribution satisfying
∑∞

`=0ω` = 1 and consistent with the
hazard function {α`}∞`=1 so that ω` = (1 − α`)ω`−1. Now let ∆`,t ≡ ω`,t −ω` denote the sequence
of deviations {∆`,t}∞`=0 from this stationary distribution at time t. As

∑∞
`=0ω`,t = 1, it must be the

case that
∑∞

`=0∆`,t = 0 and hence ∆0,t = −
∑∞

`=1∆`,t. Thus considering the sequence of deviations
{∆`,t}∞`=1 is sufficient to know the behaviour of the whole sequence {∆`,t}∞`=0.

The laws of motion for the age distribution {ω`,t}∞`=0 require that ω`,t = (1−α`)ω`−1,t−1 for all
` ≥ 1. These imply laws of motion for the deviations ∆`,t:

∆1,t = −(1− α1)
∞∑
`=1

∆`,t−1, and ∆`,t = (1− α`)∆`−1,t−1 for ` = 2, 3, . . . , [A.1.1]

using the earlier formula for ∆0,t−1 in terms of the sequence {∆`,t−1}∞`=1.
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The equations in [A.1.1] define a linear transformation of the sequence {∆`,t}∞`=1. Suppose ζ
is an eigenvalue of this linear transformation, with the sequence {v`}∞`=1 being the corresponding
eigenvector. The eigenvalue-eigenvector pair is characterized by

ζv1 = −(1− α1)
∞∑
`=1

v`, and ζv` = (1− α`)v`−1 for ` = 2, 3, . . . . [A.1.2]

The stability of the stationary age distribution {ω`}∞`=0 is equivalent to all eigenvalues of the linear
transformation having modulus less than one.

For a non-zero eigenvalue ζ, note that the equations in [A.1.2] imply v1 6= 0, otherwise all elements
of the sequence {v`}∞`=1 would be zero, which would mean that it could not be an eigenvector (which
must be non-zero). Applying [A.1.2] recursively yields

(1− α1)v` = ζ−(`−1)

∏̀
=1

(1− α)

 v1 for ` = 2, 3, . . . ,

and hence (1 − α1)v` = ζ−(`−1)ψ`v1 using the definition of the survival probabilities {ψ`}∞`=0. Sub-
stitution into the remaining equation from [A.1.2] implies{ ∞∑

`=0

ψ`ζ
−`

}
v1 = 0,

which together with v1 6= 0 requires that ψ(ζ−1) = 0. Thus, any eigenvalue ζ of the linear trans-
formation from {∆`,t}∞`=1 to {∆`,t+1}∞`=1 is either zero, or its reciprocal ζ−1 is a root of the equation
ψ(z) = 0. Similarly, the reciprocal of any root of ψ(z) = 0 will be an eigenvalue of the linear
transformation.

If there is a ρ > 1 such that ψ(z) = 0 has no roots on Dρ then all eigenvalues ζ must have
modulus less than one. Conversely, note that Dρ is a compact set for any fixed ρ. If this ρ is no
more than the threshold found in part (i) then ψ(z) is an analytic function on Dρ, so it has a finite
number of roots in this set. Hence if all eigenvalues ζ have modulus less than one then there exists
a minimum value of |ζ−1|, which is greater than one. It follows that there exists a ρ > 1 such that
ψ(z) = 0 has no roots on Dρ. This completes the proof. �

Lemma 2 Suppose ψ(z) ≡
∑∞

`=0ψ`z
` is a power series with coefficients satisfying ψ0 = 1 and

0 ≤ ψ`+1 ≤ (1− α)ψ` for all ` ≥ 0 and for some 0 < α ≤ 1. Then there exists a ρ > 1 such that the
equation ψ(z) = 0 has no roots in the set Dρ ≡

{
z ∈ C

∣∣ |z| ≤ ρ}.

Proof Let $ be a number lying strictly between (1 − α) and 1, which must satisfy 0 < $ < 1.
Since ψ`+1 = (1− α`+1)ψ`, the definition of $ then implies that ψ`+1 ≤ $ψ` for all ` ≥ 0. Now let
ρ be any number strictly between 1 and the minimum of $−1 and the radius of the disc on which
ψ(z) is analytic (greater than one), as established by Lemma 1.

Construct a new function F(z) ≡ (1−$z)ψ(z), which inherits the property that it is analytic on
Dρ from ψ(z) using Lemma 1. Using the definition of ψ(z) and collecting terms in common powers
of z:

F(z) = 1−
∞∑
`=1

($ψ`−1 −ψ`)z`.

The function can be written as F(z) = F0(z)+F1(z), where F0(z) ≡ 1 and F1(z) ≡ −
∑∞

`=1($ψ`−1−
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ψ`)z` are defined. The modulus of F1(z) satisfies

|F1(z)| ≤
∞∑
`=1

|$ψ`−1 −ψ`||z|` =
∞∑
`=1

($ψ`−1 −ψ`)|z|`,

using the triangle inequality and the positivity of the coefficient of |z|`. Now take any z ∈ Dρ. Since
|z|` ≤ ρ`, it follows that

∞∑
`=1

($ψ`−1 −ψ`)|z|` ≤
∞∑
`=1

($ψ`−1 −ψ`)ρ` = $ρ− (1−$ρ)
∞∑
`=1

ψ`ρ
` ≤ $ρ,

by collecting common terms in ψ` and using the non-negativity of {ψ`}∞`=0 together with ψ0 = 1 and
0 < $ρ < 1. Combining the equations above yields |F1(z)| ≤ $ρ, and hence |F1(z)| < |F0(z)| for all
z ∈ Dρ, since |F0(z)| = 1.

As a constant function, F0(z) must be analytic, and consequently F1(z) inherits this property
from F(z). Since F(z) = F0(z) + F1(z), Rouché’s Theorem1 implies that F(z) and F0(z) have the
same number of zeros on Dρ. Since F0(z) clearly has no zeros on this set, neither has F(z). Because
its definition ensures that F(z) inherits any roots of ψ(z) = 0, this precludes ψ(z) having a zero in
Dρ as well. This completes the proof. �

Lemma 3 The sequence of recursive parameters {ϕi}∞i=1 generating the hazard function {α`}∞`=1

using [3.1] can be written as

ϕi = (−1)i
∑

(1,...,i+1)∈Ci+1

i+1∏
`=1

σ` , [A.1.3]

where the sequence {σ`}∞`=1 is defined by σ1 ≡ −(1− α1) and σ` ≡ α` − α`−1, and where {Ci}∞i=2 is
a sequence of sets Ci, with each Ci being a subset of the set of sequences

Pi ≡
{

(1, . . . , i) ∈ Ni
∣∣∣ 1 ≤ ` ≤ `

}
. [A.1.4]

Proof Define a sequence {φi}∞i=1 with φ1 ≡ 1−α and φi ≡ −ϕi−1 for i ≥ 2. With these definitions,
the recursion [3.2] for the survival function {ψ`}∞`=0 reduces to:

ψ` =
∑̀
i=1

φiψ`−i,

with initial condition ψ0 = 1. Using the initial condition, the order of the recursion can be reversed
to yield

φi = ψi −
i−1∑
j=1

ψi−jφj . [A.1.5]

The definition of the survival probabilities means that ψi =
∏i
`=1(1− α`), and the definition of the

sequence {σ`}∞`=1 in the statement of the Lemma implies 1− α` =
∑`

j=1(−σj). It follows that

ψi =
i∏

`=1

∑̀
j=1

(−σj) = (−1)i
1∑

1=1

· · ·
i∑

i=1

i∏
`=1

σ` ,

1See any text on complex analysis, such as Gamelin (2001), for further details about the theorem.

3



where the order of summation and multiplication is reversed in the final expression for ψi. Note that
the definition of the set Pi of sequences (1, . . . , i) in [A.1.4] implies that ψi can be written as a
sum of products

∏i
`=1 σ` over all sequences in the set Pi:

ψi = (−1)i
∑

(1,...,i)∈Pi

i∏
`=1

σ` . [A.1.6]

Now let C1 ≡P1 ≡ { (1) }, where the expression for P1 comes from [A.1.4], and define the sets Ci
in the sequence {Ci}∞i=2 with the recursion

Ci ≡Pi\

i−1⋃
j=1

(Cj ×Pi−j)

 , [A.1.7]

in terms of the sequence {Pi}∞i=1 specified in [A.1.4]. Observe that Ci ⊆Pi is well defined if Cj ⊆Pj

for all j = 1, . . . , i− 1 because (1, . . . , i−j) ∈Pi−j implies ` ≤ `+ j. Since C1 ⊆P1 by definition,
the claim that Ci ⊆Pi for all i follows by induction.

Now consider the following claim about the sequence of sets {Ci}∞i=1 defined by [A.1.7]:

(Cj ×Pi−j) ∩ (Ck ×Pi−k) = ∅, for all i, j, k ∈ N with j, k < i , j 6= k. [A.1.8]

Suppose for contradiction that (Cj ×Pi−j) ∩ (Ck ×Pi−k) 6= ∅, and without loss of generality take
j > k. Hence there is a sequence (1, . . . , i) ∈ Ni such that (1, . . . , j) ∈ Cj , (1, . . . , k) ∈ Ck, and
(k+1, . . . , i) ∈ Pi−k. This implies that (k+1, . . . , j) ∈ Pj−k because the first j − k terms of a
sequence of length i − k > j − k in Pi−k must necessarily belong to Pj−k given the definition in
[A.1.4]. Thus it follows that there exists a (1, . . . , j) ∈ Cj ∩ (Ck ×Pj−k) for some k < j. However,
this directly contradicts the definition of Cj in [A.1.7]. Therefore, [A.1.8] must be true.

Given the recursion for {φi}∞i=1 in [A.1.5] and the expression for ψi in [A.1.6], the following
provides a formula for φi:

φi =

(−1)i
∑

(1,...,i)∈Pi

i∏
`=1

σ`

−
i−1∑
j=1

φj

(−1)i−j
∑

(1,...,i−j)∈Pi−j

i−j∏
`=1

σ`

 . [A.1.9]

It is claimed that the following equation holds for all i = 1, 2, . . .:

φi = (−1)i
∑

(1,...,i)∈Ci

i∏
`=1

σ` , [A.1.10]

Suppose this statement has already been proved for j = 1, . . . , i− 1 and substitute it into [A.1.9] to
obtain:

φi =

(−1)i
∑

(1,...,i)∈Pi

i∏
`=1

σ`

− i−1∑
j=1

(−1)i
∑

(1,...,i)∈(Cj×Pi−j)

i∏
`=1

σ`

 , [A.1.11]

where the following has been used:(−1)j
∑

(1,...,j)∈Cj

j∏
`=1

σ`


(−1)i−j

∑
(1,...,i−j)∈Pi−j

i−j∏
`=1

σ`

 = (−1)i
∑

(1,...,i)∈(Cj×Pi−j)

i∏
`=1

σ` .
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It follows from [A.1.11] that [A.1.10] holds for i if the sets Cj ×Pi−j and Ck ×Pi−k are disjoint for
all j 6= k, which is the claim [A.1.8] established earlier. Now note that the definitions of C1, σ1 and
φ1 imply that [A.1.10] holds for i = 1. Therefore, the expression for φi in [A.1.10] is verified for all i
by induction. Since ϕi = (−1)φi+1 by definition, equation [A.1.3] is demonstrated for the particular
sets {Ci}∞i=2 characterized in [A.1.7]. This completes the proof. �

A.2 Proof of Proposition 1

Let ψ(z) ≡
∑∞

`=0ψ`z
` denote the z-transform of the survival probabilities {ψ`}∞`=0. Lemma 1

demonstrates that ψ(z) is analytic on Dρ ≡
{
z ∈ C

∣∣ |z| ≤ ρ} for some ρ > 1. Since 1 ∈ Dρ, it follows
that ψ(1) =

∑∞
`=0ψ` is finite (and positive given that ψ0 = 1 and ψ` ≥ 0). Define ω0 = ψ(1)−1

and ω` = ω0ψ` for ` ≥ 1. By construction, the sequence {ω`}∞`=0 satisfies
∑∞

`=0ω` = 1, and
ω` = (1− α`)ω`−1 since ψ` = (1− α`)ψ`−1. Note also that

∞∑
`=1

α`ω`−1 = ω0

∞∑
`=1

α`ψ`−1 = ω0

∞∑
`=1

(ψ`−1 −ψ`) = ω0,

as ψ` = (1−α`)ψ`−1 and ψ0 = 1. This confirms that {ω`}∞`=0 is a stationary age distribution. There
can be only one such distribution because {ω`}∞`=0 must satisfy ω` = (1 − α`)ω`−1 for all ` ≥ 1.
This leaves only ω0 to be determined, but this is pinned down by the requirement

∑∞
`=0ω` = 1.

Now suppose that α` ≥ α for all ` for some α satisfying 0 < α < 1. Since ψ`+1 = (1− α`+1)ψ`,
this implies 0 ≤ ψ`+1 ≤ (1 − α)ψ` for all `. Hence Lemma 2 implies that there exists a ρ > 1 such
that ψ(z) = 0 has no roots on Dρ. Lemma 1 shows that this condition implies that the stationary
age distribution is stable, completing the proof.

A.3 Proof of Proposition 2

The first step is to derive the standard representation of the Phillips curve [2.6] from equations [2.3],
[2.4] and [2.5]. Let ψ(z) ≡

∑∞
`=0ψ`z

` and ω(z) ≡
∑∞

`=0ω`z
` be the z-transforms of the sequences

of survival probabilities {ψ`}∞`=0 and the age distribution {ω`}∞`=0. Written in terms of the lag and
forward operators L and F, equations [2.4] and [2.5] become:

rt = ψ(β)−1Et [ψ(βF)p∗t ] , and pt = ω(L)rt. [A.3.1]

Note that ω` = ψ`ω0, so ω0 = ψ(1)−1 since ω(1) = 1. This justifies the relationship ω(z) =
ψ(1)−1ψ(z) between ω(z) and ψ(z). By using this result, eliminating the reset price rt from [A.3.1],
and substituting the expression for p∗t from [2.3]:{

I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)
}

pt = ν
{
ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
xt, [A.3.2]

where I denotes the identity operator.
The left-hand side of [A.3.2] is

{
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt = pt −

∑∞
=0ψ

∑∞
`=0 β

`ψ`Et−pt−+`∑∞
=0ψ

∑∞
`=0 β

`ψ`
. [A.3.3]

The definition of inflation πt = pt − pt−1 implies pt−+` = pt− + πt−+1 + · · ·+ πt−+`, so

{
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt =

∑∞
`=0ψ`(pt − pt−`)∑∞

`=0ψ`
−
∑∞

=0

∑∞
`=0ψ

(∑∞
i=` β

iψi
)
Et−πt−+`∑∞

=0

∑∞
`=0 β

`ψψ`
.
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The definition of inflation also implies pt − pt−` = πt−`+1 + · · ·+ πt, thus

{
I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
pt =

∑∞
`=1ψ`∑∞
`=0ψ`

πt +
∑∞

`=1

(∑∞
i=`+1ψi

)
πt−`∑∞

`=0ψ`

−
∑∞

=0

∑∞
`=0ψ

(∑∞
i=` β

iψi
)
Et−πt−+`∑∞

=0

∑∞
`=0 β

`ψψ`
. [A.3.4]

The right-hand side of [A.3.2] is

ν
{
ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
xt = ν

∑∞
=0

∑∞
`=0 β

`ψψ`Et−xt−+`∑∞
=0

∑∞
`=0 β

`ψψ`
. [A.3.5]

Using the expressions in [A.3.4] and [A.3.5], it is seen that [A.3.2] is equivalent to the standard
Phillips curve equation [2.6] with the coefficients:

a` = −
∑

i=`+1ψi∑∞
i=1ψi

, b` =
ψ
∑∞

i=`ψi∑∞
i=1

∑∞
h=0 β

hψiψh
, and c` =

β`ψψ`∑∞
i=1

∑∞
h=0 β

hψiψh
.

Now suppose the hazard function implies that the stationary age distribution of prices is stable.
As Lemma 1 shows, this is equivalent to there being a ρ > 1 such that ψ(z) has no roots in the
set Dρ ≡

{
z ∈ C

∣∣ |z| ≤ ρ}. Under this condition, the function φ(z) ≡ ψ(z)−1 is analytic on Dρ,
which is equivalent to φ(z) being equal to its Taylor expansion around z = 0 for all z ∈ Dρ. Thus,
φ(z) ≡ 1−

∑∞
`=1φ`z

` for some sequence of numbers {φ`}∞`=1, with
∑∞

`=1 |φ`| <∞ since Dρ encloses
the unit circle. The first term in the Taylor series of φ(z) is 1 because ψ(0) = ψ0 = 1.

Since φ(z)ψ(z) = 1 for all |z| ≤ 1, it follows that I = ψ(L)φ(L), which allows the left-hand side
of [A.3.2] to be expressed equivalently as follows:{

I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)
}

pt = ψ(1)−1ψ(β)−1ψ(L) {ψ(1)ψ(β)φ(L)− Etψ(βF)} pt. [A.3.6]

It also follows from φ(z)ψ(z) = 1 that I = ψ(βF)φ(βF), and thus φ(L) = Iφ(L) = ψ(βF)φ(βF)φ(L).
Furthermore, note that the power series φ(L) ≡

∑∞
`=0φ`L

` contains only non-negative powers of
the lag operator L, so φ(L)pt = Etφ(L)pt. Putting these two results together implies φ(L)pt =
Etψ(βF)φ(βF)φ(L)pt. Then observe that because the power series ψ(βF) ≡

∑∞
`=0 β

`ψ`F
` contains

only non-negative powers of F, the law of iterated expectations (from which it follows that the
conditional expectation operator Et commutes with all non-negative powers of the forward operator
F) implies

φ(L)pt = Et [ψ(βF) {Etφ(βF)φ(L)} pt] .

This result, together with [A.3.6], and noting φ(βF)φ(L) = φ(L)φ(βF), ψ(1) = φ(1)−1 and ψ(β) =
φ(β)−1, yields{

I− ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)
}

pt ={
ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
Et
{
φ(1)−1φ(β)−1φ(L)φ(βF)− I

}
pt. [A.3.7]

Equating this expression to the right-hand side of [A.3.2] leads to the following equation that is
exactly equivalent to the Phillips curve [2.6]:{

ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)
} (
Et
[{
φ(1)−1φ(β)−1φ(L)φ(βF)− I

}
pt
]
− νxt

)
= 0. [A.3.8]

Now define the function χ(z) ≡ φ(1)−1φ(β)−1φ(z)φ(βz−1) − 1, which is analytic on Aρ ≡{
z ∈ C

∣∣ βρ−1 ≤ |z| ≤ ρ
}

given that φ(z) is analytic and has no roots on Dρ. Notice that χ(1) = 0,
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so it follows that there is another function θ(z) analytic on Aρ such that χ(z) = (1 − z)θ(z). The
function θ(z) is equal to its Laurent series expansion θ(z) =

∑∞
`→−∞ θ`z

` for all z ∈ Aρ. Since Aρ

includes the unit circle, it follows that
∑∞

`→−∞ |θ`| <∞. Make the following definitions of sequences
{λ`}∞`=1 and {ξ`}∞`=1, and coefficient κ appearing in the new Phillips curve [2.7]:

λ` ≡ −
θ`

θ0
, ξ` ≡ −

θ−`
θ0

, and κ ≡ 1
θ0
.

With these definitions, the sequences clearly satisfy
∑∞

`=1 |λ`| < ∞ and
∑∞

`=1 |ξ`| < ∞ (it can be
shown that θ0 6= 0 using the argument presented in the proof of Proposition 6).

Now define

dt ≡ πt −
∞∑
`=1

λ`πt−` −
∞∑
`=1

ξ`Etπt+` − νκxt, [A.3.9]

and note that the definitions above imply dt = κ {Et [θ(L)πt]− νxt}. Since πt = (I − L)pt and
χ(L) = (I − L)θ(L), it follows that θ(L)πt = χ(L)pt and hence dt = κ {Et [χ(L)pt]− νxt}. There-
fore, comparing this expression for dt to equation [A.3.8], the Phillips curve [2.6] is equivalent to{
ψ(1)−1ψ(β)−1ψ(L)Etψ(βF)

}
dt = 0, and thus to

ψ(L)Et [ψ(βF)dt] = 0, [A.3.10]

holding in all time periods t. Let et ≡ Et [ψ(βF)dt], with equation [A.3.10] being equivalent to
ψ(L)et = 0 for all t.

Note that by comparing [A.3.9] to [2.7], the new Phillips curve equation is equivalent to dt = 0
for all t. Suppose the new Phillips curve equation [2.7] holds. Thus dt = 0 for all t and hence et = 0
for all t as well. It follows that ψ(L)et = 0, so the original Phillips curve [2.6] must hold.

Conversely, suppose the original Phillips curve [2.6] holds, which implies ψ(L)et = 0 using [A.3.10].
Given the stability of the stationary age distribution, it has been shown that ψ(z) = 0 has no roots on
or inside the unit circle. Thus if et0 6= 0 for some t0, it follows from ψ(L)et = 0 that et is unbounded
for time periods before t0. Now given the location of the roots of ψ(z) = 0, it follows from 0 < β < 1
that ψ(βz) = 0 has no roots on or inside the unit circle. Hence if et = 0 for all t, the only bounded
solution of et ≡ Et [ψ(βF)dt] is dt = 0 for all t. On the other hand, if et is unbounded over all time
periods t, then dt must also be unbounded. If dt is unbounded then equation [A.3.9] shows that either
inflation πt or real marginal cost xt must be unbounded. Consequently, if attention is restricted to
bounded rational expectations solutions (as is conventional), the original Phillips curve [2.6] implies
et = 0 for all t, and hence dt = 0 for all t. This then demonstrates that the new Phillips curve [2.7]
must hold, completing the proof.

A.4 Proof of Proposition 3

Let ψ(z) ≡
∑∞

`=0ψ`z
` denote the z-transform of the sequence of survival probabilities {ψ`}∞`=0

generated by some hazard function {α`}∞`=1 from parameters α and {ϕi}ni=1 using the recursion [3.1].
Define the polynomial

φ(z) = 1−

(
1− α+

n∑
i=1

ϕi

)
z +

n∑
=1

ϕz
+1 [A.4.1]

using these parameters. Since the recursion in [3.1] is equivalent to [3.2], by multiplying the power
series φ(z) and ψ(z) and noting that ψ0 = 1, it follows that φ(z)ψ(z) = 1 for all z for which ψ(z) is
analytic.

The hazard function implies a unique stationary age distribution {ω`}∞`=0, with its z-transform
denoted by ω(z) ≡

∑∞
`=0ω`z

`. Since ω` = (1−α`)ω`−1 and ψ` = (1−α`)ψ`−1, it follows that ω(z)
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is a multiple of ψ(z). In particular, as ψ0 = 1, it must be the case that ω(z) = ω0ψ(z). As {ω`}∞`=0

is a probability distribution, it follows that ω(1) = 1, and thus ω0 = ψ(1)−1 and ω(z) = ψ(1)−1ψ(z).
Together with φ(z)ψ(z) = 1, it is established that φ(z)ω(z) = ψ(1)−1. Since ψ(1)−1 = φ(1):

ω(z) = φ(1)φ(z)−1. [A.4.2]

(i) Let ᾱ denote the average probability of price adjustment, calculated with respect to the
stationary age distribution of prices at the beginning of any period. This distribution is given by
{ω`−1}∞`=1, so ᾱ =

∑∞
`=1ω`−1α`. Using the fact that ω` = (1 − α`)ω`−1, it follows that ω`−1α` =

ω`−1 −ω` and thus

ᾱ =
∞∑
`=1

(ω`−1 −ω`) =
∞∑
`=0

ω` −
∞∑
`=1

ω` = ω0. [A.4.3]

The fraction of newly set prices is ω0. Since ω0 = ω(0) and φ(0) = 1, it follows from [A.4.1] and
[A.4.2] that

ᾱ = ω0 = φ(1) = α, [A.4.4]

for all values of {ϕi}ni=1.

(ii) Now consider the expected duration of a newly set price. If ς` ≡ 1−α` denotes the probability
of price stickiness in the current period if ` periods have elapsed since the last change then α`

∏`−1
=1 ς

is the probability that a price will survive for exactly ` periods after first being set before being
changed. The expected duration is denoted by }:

} ≡
∞∑
`=1

`α`

`−1∏
=1

ς.

The definition of the survival probabilities {ψ`}∞`=0 implies ψ`−1 =
∏`−1
=1 ς. Together with α`ψ`−1 =

ψ`−1 −ψ`, the expected duration is given by

} =
∞∑
`=1

`α`ψ`−1 =
∞∑
`=1

`(ψ`−1 −ψ`) =
∞∑
`=0

(`+ 1)ψ` −
∞∑
`=0

`ψ` =
∞∑
`=0

ψ` = ψ(1). [A.4.5]

As φ(z)ψ(z) = 1, it follows that ψ(1) = φ(1)−1. The result in [A.4.4] then implies that } = α−1.

(iii) Let ~α denote the average age of the prices that are changed. Using Bayes’ law, the probability
that a price has age ` conditional on being changed is the product of α` and ω`−1 divided by α = ω0.
Since ω`−1/ω0 = ψ`−1, it follows that ~α is given by

~α =
∞∑
`=1

`α`ψ`−1. [A.4.6]

The result in [A.4.5] then implies ~α = } = α−1.
Let ~ς denote the average age of the prices that are not changed. Again, using Bayes’ law, the

probability that a price has age ` conditional on not being changed is the product of ς` = 1−α` and
ω`−1 divided by 1− α. Thus ~ς is given by

~ς =
∞∑
`=1

`
ς`ω`−1

1− α
.
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Using ς` = 1− α` and ω`−1 = αψ`−1 since ω0 = α:

~ς =
1

1− α

( ∞∑
`=1

`ω`−1 − α
∞∑
`=1

`α`ψ`−1

)
=

1
1− α

( ∞∑
`=0

ω` +
∞∑
`=0

`ω` − α
∞∑
`=1

`α`ψ`−1

)
.

Note that
∑∞

`=0ω` = 1. From the definition of ω(z) it follows that ω′(z) =
∑∞

`=0 `ω`z
`−1 and thus

ω′(1) =
∑∞

`=0 `ω`. Substituting these results and using the expression for ~α from [A.4.6] together
with ~α = α−1 to deduce:

~ς =
1

1− α
(
1 + ω′(1)− αα−1

)
=
ω′(1)
1− α

. [A.4.7]

Differentiation of both sides of [A.4.2] yields:

ω′(z) = −φ(1)φ′(z)
φ(z)2

,

and hence ω′(1) = −φ′(1)φ(1)−1. Differentiation of the polynomial φ(z) in [A.4.1] implies φ′(z) =
− (1− α+

∑n
i=1ϕi) +

∑n
=1( + 1)ϕz, from which it follows that φ′(1) = − (1− α−

∑n
i=1 iϕi).

And since φ(1) = α:

ω′(1) =

(
1− α−

n∑
i=1

iϕi

)
α−1. [A.4.8]

Therefore, using [A.4.7], the difference between the average ages of prices conditional on adjustment
and non-adjustment is

~α − ~ς = α−1 −

(
1− α−

n∑
i=1

iϕi

)
α−1(1− α)−1 =

(
n∑
i=1

iϕi

)
α−1(1− α)−1.

(iv) Let ~ ≡
∑∞

`=0 `ω` denote the average age of prices actually in use according to the stationary
distribution {ω`}∞`=0. Using the definition of ω(z) it follows that ~ = ω′(1). Hence, [A.4.8] implies

~ =

(
1− α−

n∑
i=1

iϕi

)
α−1 =

(
1−

n∑
i=1

iϕi

)
α−1 − 1. [A.4.9]

(v) The hazard function recursion [3.1] implies that the probability of adjusting the most recently
set price is

α1 = α−
n∑
i=1

ϕi.

So α1 is clearly strictly decreasing in each ϕi.
Let α∞ ≡ lim`→∞ α` be the limiting value of the hazard function for price spells of arbitrarily long

duration. The recursion for the hazard function is equivalent to the linear recursion for the survival
probabilities {ψ`}∞`=0 in [3.2]. The recursion [3.2] is a linear difference equation with φ(z−1) = 0 in
[A.4.1] being the characteristic polynomial (since φ(z)ψ(z) = 1).

Now consider parameter values α and {ϕi}ni=1 such that φ(z) = 0 has no repeated roots. This
will be without loss of generality because there is always a set of parameters implying no repeated
roots arbitrarily close to parameters for which there are repeated roots. With no repeated roots, the
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solution for the sequence of survival probabilities {ψ`}∞`=0 takes the following general form

ψ` =
n+1∑
=1

κζ`, [A.4.10]

for some sequence of coefficients {κ}n+1
=1 , and a sequence {ζ}n+1

=1 where each ζ is a reciprocal of
one of the n+ 1 distinct roots of φ(z) = 0, that is, φ(ζ−1

 ) = 0.
Without loss of generality, order the sequence {ζ}n+1

=1 so that |ζ1| ≥ |ζ2| ≥ · · · ≥ |ζn+1|. As
ψ` = (1− α`)ψ`−1, it follows that α` = 1− (ψ`/ψ`−1) and hence:

α` = 1−
∑n+1

=1 κζ`∑n+1
=1 κζ`−1



= 1−
ζ1 +

∑n+1
=2 ζ

κ

κ1

(
ζ

ζ1

)`−1

1 +
∑n+1

=2
κ

κ1

(
ζ

ζ1

)`−1
.

With no repeated roots, ζ1 6= ζ2, so a necessary condition for the limit lim`→∞ α` to exist is that
|ζ1| > |ζ2| (using the ordering of the roots), which also requires ζ1 to be a real number. Under
this condition, α∞ ≡ lim`→∞ α` = 1 − ζ1. For this limit to be economically meaningful and ensure
α∞ > 0, it is necessary that 0 ≤ ζ1 < 1.

It is known that φ(z)ψ(z) = 1, so φ(1) = ψ(1)−1, which is necessarily positive since ψ0 = 1 and
ψ` ≥ 0 for all `. As ζ1 is the largest of the reciprocals of the roots of φ(z) = 0, there must be no
value of ζ between ζ1 and 1 such that φ(ζ−1) = 0. Since φ(z) in [A.4.1] is a polynomial, it is a
continuous function. Together with φ(1) > 0 and the absence of any value of ζ between ζ1 and 1
such that φ(ζ−1) = 0, it must be the case that φ′(ζ−1

1 ) < 0.
The value of ζ1 is characterized by φ(ζ−1

1 ) = 0, so the change in ζ1 resulting from a change in
a parameter ϕi is implicitly determined by the condition φ(ζ−1

1 ) = 0. Differentiating this condition
yields

∂ζ−1
1

∂ϕi

∣∣∣∣
φ(ζ−1

1 )=0

= − 1
ζi+1
1 φ′(ζ−1

1 )
. [A.4.11]

As α∞ = 1− (ζ−1
1 )−1, it follows that ∂α∞/∂ζ−1

1 = ζ2
1, and thus using the chain rule with [A.4.11]:

∂α∞
∂ϕi

= − 1
ζi−1
1 φ′(ζ−1

1 )
> 0,

since φ′(ζ−1
1 ) < 0 as demonstrated above.

(vi) In what follows, suppose that n = ∞ in the hazard function recursion [3.1]. This is without
loss of generality because any superfluous ϕi parameters can be set to zero. Equation [3.1] implies

α`+1 − α` =
∑̀
i=1

ϕi

 ∏̀
j=`+1−i

(1− αj)

−1

−
`−1∑
i=1

ϕi

 `−1∏
j=`−i

(1− αj)

−1

,

and by combining overlapping terms and extracting common factors:

α`+1 − α` = ϕ`

∏̀
j=1

(1− αj)

−1

+
`−1∑
i=1

ϕi

 ∏̀
j=`−i

(1− αj)

−1

{(1− α`−i)− (1− α`)} .
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Therefore, the change in the hazard function is given by:

α`+1 − α` =
`−1∑
i=1

ϕi(α` − α`−i)

 ∏̀
j=`−i

(1− αj)

−1

+ϕ`

∏̀
j=1

(1− αj)

−1

. [A.4.12]

It follows that ϕi = 0 for all i implies α` = α for all `. Similarly, suppose α` = α1 for all `. It follows
from [A.4.12] that ϕi = 0 for all i.

(vii) Suppose that ϕi ≥ 0 for all i. It follows immediately from [A.4.12] that α2 ≥ α1. Now
suppose that α1 ≤ α2 ≤ · · · ≤ αi−1 ≤ α` has already been established for some `. Given this
supposition, it follows that α`−α`−i ≥ 0 for all i = 1, . . . , `− 1. Equation [A.4.12] then implies that
α`+1 ≥ α`. This proves α`+1 ≥ α` for all ` by induction.

(viii) Define the sequence {σ`}∞`=1 using σ1 = −(1−α1) and σ` = α`−α`−1 for ` ≥ 2. If α`+1 ≤ α`
for all ` then σ` ≤ 0 for all `. It follows from the expression for ϕi in equation [A.1.3] justified by
Lemma 3 that ϕi is the product of (−1)i and i + 1 non-positive terms. Hence, ϕi ≤ 0 for all i is
established. This completes the proof.

A.5 Proof of Proposition 4

Let ψ(z) ≡
∑∞

`=0ψ`z
` denote the z-transform of the sequence of survival probabilities {ψ`}∞`=0 gen-

erated by a hazard function {α`}∞`=1. If the hazard function implies the stationary age distribution is
stable then Lemma 1 shows there exists a ρ > 1 such that ψ(z) has no roots in Dρ ≡

{
z ∈ C

∣∣ |z| ≤ ρ}.
Define the function φ(z) ≡ ψ(z)−1 on Dρ, which is analytic because ψ(z) 6= 0 for all z ∈ Dρ.

Since φ(z) is an analytic function, it is equal to its Taylor series expansion around z = 0 (contained
in Dρ). Thus φ(z) ≡ 1−

∑∞
i=1φiz

` for some sequence {φi}∞i=1 (the leading term of the Taylor series
is 1 because ψ(0) = ψ0 = 1). As z = 1 belongs to Dρ, it follows that

∑∞
i=1 |φi| <∞.

The definition of φ(z) requires φ(z)ψ(z) = 1 for all z ∈ Dρ. Multiplying the power series for φ(z)
and ψ(z) yields

φ(z)ψ(z) = ψ0 +
∞∑
`=1

(
ψ` −

∑̀
i=1

φiψ`−i

)
z`.

Since ψ0 = 1 always, φ(z)ψ(z) = 1 holds for all z ∈ Dρ if and only if ψ` =
∑`

i=1φiψ`−i is true for
all `. Define α and {ϕi}∞i=1 according to α ≡ 1−

∑∞
i=1φi and ϕi ≡ −φi+1. With these definitions,

the recursion for {ψ`}∞`=0 in [3.2] holds with n =∞, which is equivalent to the original recursion for
the hazard function in [3.1]. Given the definitions, it has also been shown that

∑∞
i=1 |ϕi| <∞. This

completes the proof.

A.6 Proof of Proposition 5

(i) Define the sequence of probabilities of price stickiness {ς`}∞`=1 as ς` ≡ 1− α` using the hazard
function {α`}∞`=1. If the parameters α and {ϕi}ni=1 generate a well-defined hazard function then it
follows that 0 ≤ ς` ≤ 1 for all `.

Using the hazard function recursion [3.1], the sequence {ς`}∞`=1 satisfies

ς` =

(
1− α+

n∑
i=1

ϕi

)
−

min{`−1,n}∑
i=1

ϕi∏`−1
j=`−i ςj

, [A.6.1]

for all `.
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Consider the claim
n∑
j=i

ϕj ≤ α. [A.6.2]

Since [A.6.1] implies ς1 = 1 − α +
∑n

i=1ϕi, the requirement ς1 ≤ 1 implies that [A.6.2] is true for
i = 1.

Now suppose that the claim [A.6.2] has been proved for all i = 1, . . . , k for some k. If ϕk ≥ 0 then
the result

∑n
j=k+1ϕj ≤ α follows automatically from

∑n
j=k ϕj ≤ α, proving the statement [A.6.2]

for the case i = k + 1 as well.
Consider the case ϕk < 0. Using [A.6.1], the requirement ςk+1 ≤ 1 is equivalent to

−
k−1∑
i=1

ϕi∏k
j=k+1−i ςj

− ϕk∏k
j=1 ςj

≤ α−
n∑
i=1

ϕi. [A.6.3]

Since 0 ≤ ς1 ≤ 1 and ϕk < 0 in the case under consideration, it follows from [A.6.3] that

−
k−2∑
i=1

ϕi∏k
j=k+1−i ςj

− (ϕk−1 +ϕk)∏k
j=2 ςj

≤ α−
n∑
i=1

ϕi. [A.6.4]

Now if ϕk−1+ϕk ≥ 0 then
∑n

j=k+1ϕj ≤ α would follow from
∑n

j=k−1ϕj ≤ α, proving the statement
[A.6.2] for i = k + 1. If not, then since 0 ≤ ς2 ≤ 1, inequality [A.6.4] together with ϕk−1 + ϕk < 0
implies that

−
k−3∑
i=1

ϕi∏k
j=k+1−i ςj

− (ϕk−2 +ϕk−1 +ϕk)∏k
j=3 ςj

≤ α−
n∑
i=1

ϕi. [A.6.5]

By again considering the two cases for the sign of ϕk−2 +ϕk−1 +ϕk the claim [A.6.2] for i = k + 1
either follows, or a new inequality is deduced alone the pattern of [A.6.3]–[A.6.5] above. This process
terminates either with [A.6.2] proved for i = k + 1 or the inequality

−
∑k

i=1ϕi

ςk
≤ α−

n∑
i=1

ϕi.

Since 0 ≤ ςk ≤ 1 and the claim [A.6.2] is known to be true for i = 1, it follows that

−
k∑
i=1

ϕi ≤ α−
n∑
i=1

ϕi,

which proves that [A.6.2] holds for i = k + 1. Thus, [A.6.2] is true for i = k + 1 in all cases, so it
follows for all i = 1, . . . , n by induction.

Next, consider the claim

−(1− α) ≤
n∑
j=i

ϕi. [A.6.6]

Noting that [A.6.1] implies ς1 = 1 − α +
∑n

i=1ϕi, the requirement ς1 ≥ 0 means that [A.6.6] must
hold for i = 1.

Now suppose that the statement [A.6.6] has been proved for i = 1, . . . , k for some k. Given
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equation [A.6.1], the inequality ςk+1 ≥ 0 holds if and only if

k∑
i=1

ϕi∏k
j=k+1−i ςj

≤

(
1− α+

n∑
i=1

ϕi

)
. [A.6.7]

Multiplying both sides by the non-negative term
∏k
j=1 ςj leads to an equivalent inequality:

k−1∑
i=1

k−i∏
j=1

ςj

ϕi +ϕk ≤

(
1− α+

n∑
i=1

ϕi

)
k∏
j=1

ςj . [A.6.8]

If ϕk < 0 then the inequality −(1−α) ≤
∑n

j=k+1ϕj follows automatically from −(1−α) ≤
∑n

j=k ϕj ,
proving the statement [A.6.6] for i = k + 1. On the other hand, if ϕk ≤ 0 then inequality [A.6.8]
together with the requirement 0 ≤ ς1 ≤ 1 implies

k−2∑
i=1

k−i∏
j=1

ςj

ϕi + ς1(ϕk−1 +ϕk) ≤

(
1− α+

n∑
i=1

ϕi

)
k∏
j=1

ςj . [A.6.9]

If ϕk−1 +ϕk < 0 then −(1−α) ≤
∑n

j=k+1ϕj follows from knowing −(1−α) ≤
∑n

j=k−1ϕj , proving
[A.6.6] for i = k + 1. But if ϕk−1 +ϕk ≥ 0 then [A.6.9] and 0 ≤ ς2 ≤ 1 imply:

k−3∑
i=1

k−i∏
j=1

ςj

ϕi + ς1ς2(ϕk−2 +ϕk−1 +ϕk) ≤

(
1− α+

n∑
i=1

ϕi

)
k∏
j=1

ςj . [A.6.10]

Proceeding this way, the claim [A.6.6] either follows, or the following inequality is eventually deduced:k−1∏
j=1

ςj

( k∑
i=1

ϕi

)
≤

(
1− α+

n∑
i=1

ϕi

)
k∏
j=1

ςj .

Since [A.6.6] is known to be true for i = 1 and as 0 ≤ ςk ≤ 1, it follows that:k−1∏
j=1

ςj

( k∑
i=1

ϕi

)
≤

(
1− α+

n∑
i=1

ϕi

)k−1∏
j=1

ςj

 ,

from which the statement [A.6.6] is proved for i = k + 1. Thus [A.6.6] is demonstrated for all
i = 1, . . . , n by induction. Therefore −(1− α) ≤

∑n
j=iϕj ≤ α for all i = 1, . . . , n.

(ii) Suppose n = 1 and ϕ ≡ ϕ1. In the case ϕ = 0, the restriction 0 ≤ α ≤ 1 is clearly all that is
required for the hazard function to be well defined. Thus assume ϕ 6= 0 in what follows.

The hazard function recursion [3.1] in the case n = 1 reduces to

α` = (α−ϕ) +
ϕ

1− α`−1
, [A.6.11]

and the linear recursion for the survival probabilities [3.2] becomes:

ψ` = (1− α+ϕ)ψ`−1 −ϕψ`−2. [A.6.12]

Define the quadratic equation φ(z) = 1−(1−α+ϕ)z−ϕz2. Note that φ(z−1) = 0 is the characteristic
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equation for the sequence of survival probabilities {ψ`}∞`=0. Let ζ1 and ζ2 denote the reciprocals of
the two roots of φ(z) = 0. The quadratic can thus be written as φ(z) = (1 − ζ1z)(1 − ζ2z). By
equating coefficients of powers of z, it follows that 1 − α + ϕ = ζ1 + ζ2 and ϕ = ζ1ζ2. Note that
α1 = α−ϕ, which must be a well-defined probability, so ϕ ≤ α is always required.

The roots ζ1 and ζ2 are real numbers when the following condition is satisfied:

(1− α+ϕ)2 − 4ϕ = ϕ2 − 2(1 + α)ϕ+ (1− α)2 ≥ 0. [A.6.13]

Interpreted as a quadratic in ϕ, it is straightforward to see that it has two positive real roots. The
condition above is satisfied when ϕ is below the smaller of the two roots:

ϕ ≤ (1 + α)−
√

(1 + α)2 − (1− α)2 =
(
1−
√
α
)2
. [A.6.14]

The sum of the roots of the quadratic in [A.6.13] is 2(1 + α), so the larger root is greater than α,
which is in the range where ϕ ≤ α is violated.

Consider first the case where ϕ > 0. Suppose it is claimed that there is an upper bound ᾱ for
the hazard function {α`}∞`=1. If α`−1 ≤ ᾱ then [A.6.11] implies

α` ≤ (α−ϕ) +
ϕ

1− ᾱ
.

Hence ᾱ is valid upper bound for {α`}∞`=1 (satisfying 0 < ᾱ < 1) if the following inequality holds:

(α−ϕ) +
ϕ

1− ᾱ
≤ ᾱ,

which is equivalent to:
1− (1− α+ϕ)(1− ᾱ)−1 +ϕ(1− ᾱ)−2 ≤ 0.

Since in the case ϕ > 0, [A.6.11] implies the hazard function is strictly increasing as long as it remains
well defined. Thus the hazard function is well defined if and only if ϕ ≤ α and there is some bound
ᾱ satisfying 0 < ᾱ < 1 such that φ((1− ᾱ)−1) ≤ 0. This requires φ(z) = 0 to have real roots, which
in turn requires the inequality in [A.6.14] to be satisfied. Furthermore, one of the real roots must be
strictly greater than one to ensure 0 < ᾱ < 1. Note that φ(0) = 1 and φ(1) = α > 0, and that the
product of the roots of φ(z) = 0 is ϕ−1. Under the condition [A.6.14], ϕ < 1, so the product of the
roots is greater than one. The sum of the roots is positive, so both must be positive. Thus, ϕ ≤ α
and [A.6.14] are necessary and sufficient for the hazard function to be well defined in the case ϕ > 0.

Now consider the case where ϕ < 0. Since α1 = α− ϕ, it is necessary to assume ϕ ≥ −(1− α)
to ensure α1 is a well-defined probability. Note that any negative value of ϕ satisfies [A.6.13], so
both ζ1 and ζ2 are real numbers. As ζ1ζ2 = ϕ, one of these numbers must be positive and the other
negative. Without loss of generality, assume ζ1 > 0 and ζ2 < 0. Since ζ1 + ζ2 = 1 − α + ϕ and
as α1 = α − ϕ is well defined, it follows that ζ1 > −ζ2. Noting that φ(0) = 1 and φ(1) = α, so as
φ(ζ−1

1 ) = 0 and φ(ζ−1
2 ) = 0 it must be the case that ζ1 < 1 (otherwise φ(z) would have to change

sign twice between 0 and 1, implying that both ζ1 and ζ2 would be positive).
Since ζ1 and ζ2 are distinct numbers in the case ϕ < 0, the survival probabilities {ψ`}∞`=0 can be

expressed as ψ` = κ1ζ
`
1 + κ2ζ

`
2, where κ1 and κ2 are real numbers. Consequently:

ψ` = κ1ζ
`
1

{
1 +

κ2

κ1

(
ζ2

ζ1

)`}
, and ψ` −ψ`+1 = κ1(1− ζ1)ζ`1

{
1 +

κ2(1− ζ2)
κ1(1− ζ1)

(
ζ2

ζ1

)`}
. [A.6.15]

The hazard function recursion [A.6.11] implies α1 = α−ϕ and α2 = (α−ϕ) +ϕ/(1−α+ϕ). Given
the restriction ϕ ≥ −(1− α) that ensures α1 is well defined in the case ϕ < 0, the probability α2 is
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well defined if and only if ϕ ≥ −(α − ϕ)(1 − α + ϕ). Rearranging this inequality shows that it is
equivalent to

ϕ2 − 2αϕ− α(1− α) ≤ 0.

Interpreted as a quadratic in ϕ, the above inequality has one positive and one negative root. Given
that ϕ < 0 in the case under consideration, the relevant restriction is that

ϕ ≥ α−
√
α2 + α(1− α) = −

√
α(1−

√
α). [A.6.16]

Notice that
√
α(1−

√
α) ≤ 1− α, so the requirement ϕ ≥ −(1− α) is automatically satisfied when

[A.6.16] holds.
The condition [A.6.16] is thus seen to be equivalent to α1 and α2 being well defined in the case

ϕ < 0. This is itself equivalent to 0 ≤ ψ2 ≤ ψ1 ≤ ψ0 = 1 because ψ` = (1 − α`)ψ`−1. By using
[A.6.15], ψ0 − ψ1 = κ1(1 − ζ1) + κ2(1 − ζ2) ≥ 0 and ψ1 − ψ2 = κ1(1 − ζ1)ζ1 + κ2(1 − ζ2)ζ2 ≥ 0.
Since 0 < ζ1 < 1 and ζ2 < 0, it follows from the first inequality that at least one of κ1 and κ2 must
be non-negative, and thus from the second inequality that κ1 ≥ 0.

Since ζ1 > −ζ2, the terms (κ2/κ1)(ζ2/ζ1)i and (κ2(1− ζ2)/κ1(1− ζ1))(ζ2/ζ1)i in [A.6.15] must
alternate in sign and decline in absolute value as ` increases. Because κ1, ζ1 and (1 − ζ1) are non-
negative, the inequalities 0 ≤ ψ2 ≤ ψ1 ≤ ψ0 imply 0 ≤ ψ` ≤ ψ`−1 for all `, which ensure the
hazard function is well defined everywhere. Since this condition is equivalent to [A.6.16], the proof
is complete.

A.7 Proof of Proposition 6

(i) Let ψ(z) ≡
∑∞

`=0ψ`z
` and ω(z) ≡

∑∞
`=0ω`z

` denote the z-transforms of the survival prob-
abilities {ψ`}∞`=0 and the stationary age distribution {ω`}∞`=0. Equations [2.4] and [2.5] for the reset
price rt and price level pt can be written in terms of the lag and forward operators L and F and the
power series ψ(z) and ω(z):

rt = ψ(β)−1Et [ψ(βF)p∗t ] , and pt = ω(L)rt. [A.7.1]

Suppose that the hazard function {α`}∞`=1 is generated by the recursion [3.1] using parameters α and
{ϕi}ni=1. Define the polynomial φ(z) ≡ 1− (1− α+

∑n
i=1ϕi) z+

∑n
=1ϕz

+1. Lemma 1 shows that
ψ(z) is analytic on the set Dρ ≡

{
z ∈ C

∣∣ |z| ≤ ρ} for some ρ > 1. Note that the equivalent recursion
[3.2] for the survival probabilities and ψ0 = 1 imply φ(z)ψ(z) = 1 for all z ∈ Dρ.

Now multiply both sides of the equation in [A.7.1] for the reset price rt by φ(βF) and take
conditional expectations at time t:

Et [φ(βF)rt] = Et
[
φ(βF)

{
ψ(β)−1Et [ψ(βF)p∗t ]

}]
= Et

[
ψ(β)−1Et [φ(βF)ψ(βL)p∗t ]

]
= ψ(β)−1p∗t .

[A.7.2]
This result follows first because φ(βF) contains only non-negative powers of F, so it commutes with the
conditional expectation Et[·] operator inside another conditional expectation. Second, φ(z)ψ(z) = 1,
hence φ(βF)ψ(βF) = I, where I is the identity operator. Next, note that because ω` = (1 −
α`)ω`−1 and ψ` = (1 − α`)ψ`−1, the functions ω(z) and ψ(z) are proportional. Thus ω(z) =
(ω(1)/ψ(1))ψ(z), and ω(z) = φ(1)ψ(z), since ψ(1)−1 = φ(1), and ω(1) = 1 because {ω`}∞`=0 is a
probability distribution. It follows that φ(z)ω(z) = φ(1) for all z ∈ Dρ. Multiplying both sides of
the equation for pt in [A.7.1] by φ(L) yields

φ(L)pt = φ(L)ω(L)rt = φ(1)Irt = φ(1)rt. [A.7.3]

Now multiply both sides of equation [A.7.2] by φ(1) and note that ψ(β)−1 = φ(β), and then substitute
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the expression for p∗t from [2.3]:

Et [φ(βF)φ(1)rt] = φ(1)φ(β)(pt + νxt).

Substitute the formula for φ(1)rt from [A.7.3] into the above and divide both sides by φ(1)φ(β):

Et

[{
φ(L)
φ(1)

φ(βF)
φ(β)

− 1
}

pt

]
= νxt. [A.7.4]

Define the Laurent polynomial χ(z) as follows:

χ(z) ≡ φ(z)
φ(1)

φ(βz−1)
φ(β)

− 1, [A.7.5]

so that equation [A.7.4] is equivalent to Et [χ(L)pt] = νxt, noting that F ≡ L
−1. For algebraic

convenience, define the sequence of coefficients {φ}n+1
=1 by φ1 ≡ (1− α+

∑n
i=1ϕi) and φ ≡ −ϕ−1

for  = 2, . . . , n + 1 in terms of the parameters of the recursion [3.1]. With these definitions the
polynomial φ(z) can be written as φ(z) ≡ 1 −

∑n+1
=1 φz

. The Laurent polynomial χ(z) can be
written explicitly using this expression:

χ(z) = ϑ


1−

n+1∑
=1

φz


1−
n+1∑
=1

βφz
−

−
1−

n+1∑
=1

φ

1−
n+1∑
=1

βφ

 ,

where ϑ ≡ φ(1)−1φ(β)−1 is defined. Expanding the brackets to obtain an expression of the form
χ(z) =

∑n+1
`=−(n+1) χ`z

` and equating powers of z implies that χ(z) can be written as

χ(z) = χ0 +
n+1∑
`=1

χ`

{
z` + β`z−`

}
, where χ` = −ϑ

φ` −
n+1−`∑
=1

βφφ+`

 for ` ≥ 1, [A.7.6]

since χ−` = β`χ` for all `. As the definition in [A.7.5] implies χ(1) = 0, it follows that χ0 =
−
∑n+1

`=1 (1 + β`)χ`. Furthermore, χ(1) = 0 implies that there exists a Laurent polynomial θ(z) such
that χ(z) = (1 − z)θ(z). Given the degree of χ(z), this Laurent polynomial must have the form
θ(z) =

∑n
`=−(n+1) θ`z

`. Multiplying θ(z) by 1− z and equating powers of z yields an expression for
χ(z):

χ(z) = θ−(n+1)z
−(n+1) +

n∑
`=−n

(θ` − θ`−1)z` − θnzn+1.

Equating coefficients of powers of z with those in [A.7.6] implies χn+1 = −θn, βn+1χn+1 = θ−(n+1),
and χ` = θ` − θ`−1 for all ` = −n, . . . , n. Iterating these relationships then implies

θ` = −
n+1∑
=`+1

χ, and θ−` =
n+1∑
=`

βχ, [A.7.7]

for all ` = 1, . . . , n+ 1. Combining these expressions with those for χi in [A.7.6] yields

θ` = ϑ

n+1∑
i=`+1

φi −
n+1−i∑
j=1

βjφjφi+j

 = ϑ

n+1∑
i=`+1

φi

1−
i−`−1∑
j=1

βjφj

 , [A.7.8a]
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where a change in the order of summation has been made in the final term. Similarly,

θ−` = −ϑ
n+1∑
i=`

βi

φi −
n+1−i∑
j=1

βjφjφi+j

 = −ϑ
n+1∑
i=`

βiφi

1−
i−∑̀
j=1

φj

 . [A.7.8b]

The original definitions of the terms of the sequence {φ}n+1
=1 are φ1 = 1−α+

∑n
i=1ϕi and φ = −ϕ−1

for  = 2, . . . , n+1. Substituting the original parameters α and {ϕ}n=1 back into [A.7.8a] and [A.7.8b]
yields

θ` = −ϑ

ϕ` +
n∑

i=`+1

ϕi

1− β(1− α1) +
i−`−1∑
j=1

βj+1ϕj

 , for ` = 1, . . . , n; [A.7.9a]

θ−(`+1) = ϑβ`+1

ϕ` +
n∑

i=`+1

βi−`ϕi

α1 +
i−`−1∑
j=1

ϕj

 , for ` = 1, . . . , n; [A.7.9b]

θ0 = ϑ

(1− α1)−
n∑
i=1

ϕi

1− β(1− α1) +
i−1∑
j=1

βj+1ϕj

 ; and [A.7.9c]

θ−1 = −ϑβ

(1− α1)−
n∑
i=1

βiϕi

α1 +
i−1∑
j=1

ϕj

 . [A.7.9d]

Since the definition of θ(z) requires χ(z) = (1−z)θ(z), and as inflation is defined by πt = (I−L)pt,
it follows from equations [A.7.4] and [A.7.5] that Et [θ(L)πt] = νxt. Make the following definitions
of the coefficient κ and the sequences {λ`}n`=1 and {ξ`}n+1

`=1 in terms of the elements of the sequence
{θ`}n`=−(n+1) from [A.7.9]:

λ` ≡ −
θ`

θ0
, ξ` ≡ −

θ−`
θ0

, and κ ≡ 1
θ0
, [A.7.10]

noting that θ0 > 0 ensures these definitions are valid. With these definition, the Laurent polynomial
θ(z) is given by θ(z) = κ−1

{
1−

∑n
`=1 λ`z

` −
∑n+1

`=1 ξ`z
−`
}

, and so Et [θ(L)πt] = νxt is equivalent to
the Phillips curve in [4.3].

(ii) First consider the expression for θ0 in [A.7.9c]. By expanding the bracket and changing the
order of summation:

θ0 = ϑ

(1− α1)− (1− β(1− α1))

(
n∑
i=1

ϕi

)
−
n−1∑
i=1

βi+1ϕi

 n∑
j=i+1

ϕj

 .

Adding and subtracting terms in the final summation to obtain an equivalent expression:

θ0 = ϑ

(1− α1)− (1− β(1− α1))

(
n∑
i=1

ϕi

)
−

(
n∑
i=1

βi+1ϕi

) n∑
j=1

ϕj

+
n∑
i=1

βi+1ϕi

 i∑
j=1

ϕj

 .

The definition of the polynomial φ(z) implies φ(1) = α1 +
∑n

i=1ϕi and φ(β) = 1 − β(1 − α1) +∑n
i=1 β

i+1ϕi. By defining the sums si ≡
∑i

j=1ϕj for i = 0, . . . , n (with s0 = 0) and noting that
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φ(1)− α1 =
∑n

i=1ϕi:

θ0 = ϑ

{
(1− α1)− (φ(1)− α1)φ(β) +

n∑
i=1

βi+1(si − si−1)si

}
.

Rearranging the first two terms leads to

θ0 = ϑ

{
(1− α1)(1− φ(β)) + (1− φ(1))φ(β) +

n∑
i=1

βi+1(si − si−1)si

}
. [A.7.11]

Note that (si − si−1)si = (1/2)
{

(s2
i − s2

i−1) + (si − si−1)2
}

, and thus

n∑
i=1

βi+1(si − si−1)si =
1
2

{
n∑
i=1

βi+1ϕ2
i + (1− β)

n−1∑
i=1

βi+1s2
i + βn+1s2

n − β2s2
0

}
,

since si − si−1 = ϕi. Using s0 = 0 and substituting this result into [A.7.11]:

θ0 = ϑ

{
(1− α1)(1− φ(β)) + (1− φ(1))φ(β) +

1
2

{
n∑
i=1

βi+1ϕ2
i + (1− β)

n−1∑
i=1

βi+1s2
i + βn+1s2

n

}}
.

[A.7.12]
Now observe that φ(1) = ψ(1)−1, and ψ(1) =

∑∞
`=0ψ`, so 0 < φ(1) < 1 because ψ0 ≡ 1, ψ` ≥ 0,∑∞

`=0ψ` < ∞, and ψ1 > 0 under the assumption α1 < 1. Similarly, φ(β) = ψ(β)−1 and ψ(β) =∑∞
`=0 β

`ψ`. Since 0 < β < 1, it follows that 0 < φ(β) < 1. Together these results establish that ϑ > 0
since ϑ ≡ φ(1)−1φ(β)−1. Given α1 < 1, the parameter α1 must satisfy 0 ≤ α1 < 1. Consequently, the
first two terms in the brackets in [A.7.12] are strictly positive and all other terms are non-negative.
Thus, it is shown that θ0 > 0. The proof of θ0 > 0 then automatically shows κ > 0.

(iii) Now consider the value of ξ1, which requires examining θ−1. Let si ≡ α1 +
∑i

j=1ϕj , and so
si− si−1 = ϕi for all i = 1, . . . , n, and s0 = α1. The expression for θ−1 in [A.7.9d] can be written as

−θ−1 = ϑ

{
β(1− α1)−

n∑
i=1

βi+1(si − si−1)si−1

}
. [A.7.13]

Note that (si − si−1)si−1 = (1/2)
{

(s2
i − s2

i−1)− (si − si−1)2
}

, and hence

n∑
i=1

βi+1(si − si−1)si−1 =
1
2

{
(1− β)

n−1∑
i=1

βi+1s2
i + βn+1s2

n − β2s2
0 −

n∑
i=1

βi+1ϕ2
i

}
.

Also note that
∑n

i=1 β
i+1ϕi =

∑n
i=1 β

i+1(si − si−1) = (1 − β)
∑n−1

i=1 β
i+1si + βn+1sn − β2s0. By

adding and subtracting a multiple of these equal terms to the equation above:

n∑
i=1

βi+1(si − si−1)si−1 =
1
2

n∑
i=1

βi+1ϕi −
1
2

{
(1− β)

n−1∑
i=1

βi+1si + βn+1sn −
1
2
β2α1

}

+
1
2

{
(1− β)

n−1∑
i=1

βi+1s2
i + βn+1s2

n − β2α2
1 −

n∑
i=1

βi+1ϕ2
i

}
,

recalling that s0 = α1. Since
∑∞

i=1 β
i+1ϕi = φ(β) − 1 + β(1 − α1), the above equation can be
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rearranged as follows:

n∑
i=1

βi+1(si − si−1)si−1 = −β
2
{
α2

1β− α1β+ α1 − 1
}

+
1
2

(1− φ(β))

+
1
2

{
(1− β)

n−1∑
i=1

βi+1si(1− si) + βn+1sn(1− sn) +
n∑
i=1

βi+1ϕ2
i

}
.

Substituting this result into equation [A.7.13] yields:

−θ−1 =
ϑ

2
{β(1− α1)(1− α1β) + (1− φ(β))}

+
ϑ

2

{
(1− β)

n−1∑
i=1

βi+1si(1− si) + βn+1sn(1− sn) +
n∑
i=1

βi+1ϕ2
i

}
.

Proposition 5 demonstrates that 0 ≤ si ≤ 1 for all i = 1, . . . , n is necessary for the hazard function
{α`}∞`=1 to be well defined. Since 0 < α1 < 1, 0 < β < 1, and 0 < φ(β) < 1, ϑ > 0 and θ0 > 0 as
shown earlier, it follows that ξ1 = −θ−1/θ0 is strictly positive.

(iv) Next, note that

1− β(1− α1) +
i∑

j=1

βj+1ϕj = (1− β)

{
1 +

i−1∑
h=0

βh+1sh

}
+ βi+1si, where sj ≡ α1 +

j∑
h=1

ϕj .

Using equations [A.7.9a] and [A.7.10], the coefficients of lagged inflation {λ`}n`=1 can be expressed as

λ` =
(
ϑ

θ0

)
ϕ` +

n∑
i=`+1


(
ϑ

θ0

)(1− β)

1 +
i−`−2∑
j=0

βj+1sj

+ βi−`sj−i−1

ϕi.
Proposition 5 shows that 0 ≤ si ≤ 1 for all i = 0, 1, . . . , n. Since ϑ > 0 and θ0 > 0, it follows that λ`
is a weighted sum of ϕ`, . . . ,ϕn.

(v) Similarly, equations [A.7.9b] and [A.7.10] show that the coefficients on future inflation {ξ`}n+1
`=2

are:

ξ` = −

{(
ϑβ`

θ0

)
ϕ`−1 +

n∑
i=`

(
ϑβi+1si−`

θ0

)
ϕi

}
, for ` = 2, . . . , n+ 1,

where si is as defined above. Thus ξ` for ` ≥ 2 is the negative of a weighted sum of the parameters
ϕ`−1, . . . ,ϕn.

(vi) Note that [A.7.5] implies χ(β) = 0. Since χ(z) = (1 − z)θ(z), it must be the case that
θ(β) = 0 also. The definition of θ(z) then implies that

∑n
`→−(n+1) β

`θ` = 0. The result follows by
using [A.7.10].

(vii) Finally, to derive the restrictions across the sequences of coefficients {λ`}n`=1 and {ξ`}n+1
`=1 ,

use the definition in [A.7.10] and equation [A.7.7] to deduce:

(1− β)
n∑
i=`

βiλi = −(1− β)
θ0

n∑
i=`

βiθi =
(1− β)
θ0

n∑
i=`

n+1∑
j=i+1

βiχj =
(1− β)
θ0

n+1∑
i=`+1


i−1∑
j=`

βj

χi,
19



using a change in the order of summation to derive the final equality. Using the formula for the
geometric sum yields

(1− β)
n∑
i=`

βiλi =
1
θ0

n+1∑
i=`+1

(β` − βi)χi. [A.7.14]

Thus, adding β to the equation above in the case of ` = 1 and substituting for θ0 using [A.7.7]

β+ (1− β)
n∑
i=1

βiλi =
1
θ0

{
n+1∑
i=2

(β− βi)χi − β
n+1∑
i=1

χi

}
= − 1

θ0

n+1∑
i=1

βiχi = −θ−1

θ0
,

with the expression for θ−1 taken from [A.7.7]. Given the definition in [A.7.10], the equation for ξ1

is confirmed. Now substract the expression in [A.7.14] for ` ≥ 2 from β`λ`−1:

β`λ`−1 − (1− β)
n∑
i=`

βiλi = −β
`θ`−1

θ0
− 1
θ0

n+1∑
i=`+1

(β` − βi)χi =
1
θ0

{
β`

n+1∑
i=`

χi −
n+1∑
i=`+1

(β` − βi)χi

}
,

making use of equations [A.7.7] and [A.7.10]. It follows that

β`λ`−1 − (1− β)
n∑
i=`

βiλi =
1
θ0

n+1∑
i=`

βiχi =
θ−`
θ0

,

using [A.7.7] again. Therefore the equation for ξ` is verified for ` ≥ 2. This completes the proof.

20


