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A Solving the model

Steady state

Finding the steady state of the model characterized in section 3.4 requires solving only one equation
numerically. For parameters ε and η satisfying condition [16], the markup ratio µ is a root of the equation
R(µ; ε,η) = 0, where R(µ; ε,η) is the determinant

R(µ; ε,η) ≡

∣∣∣∣∣∣∣∣∣∣
a0(µ; ε,η) a1(µ; ε,η) a2(η) 0 0

0 a0(µ; ε,η) a1(µ; ε,η) a2(η) 0
0 0 a0(µ; ε,η) a1(µ; ε,η) a2(η)

b0(µ; ε,η) b1(µ; ε,η) b2(µ; ε,η) b3(η) 0
0 b0(µ; ε,η) b1(µ; ε,η) b2(µ; ε,η) b3(η)

∣∣∣∣∣∣∣∣∣∣
, [A.1]

and where the functions in the matrix are given by:

a0(µ; ε,η) ≡ ε(ε− 1)µη−ε; [A.2a]

a1(µ; ε,η) ≡ η(ε− 1)
(

1− µη−ε+1

1− µ

)
+ ε(η− 1)

(
µη−ε − µ

1− µ

)
; [A.2b]

a2(η) ≡ η(η− 1); [A.2c]

b0(µ; ε,η) ≡ (ε− 1)

(
µ2(η−ε) − µ2η−ε

1− µη

)
; [A.2d]

b1(µ; ε,η) ≡ (η− 1)

(
µ2(η−ε) − µη

1− µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε

1− µη
)

; [A.2e]

b2(µ; ε,η) ≡ (ε− 1)
(

1− µ2η−ε

1− µη
)

+ 2(η− 1)
(
µη−ε − µη

1− µη
)

; [A.2f]

b3(η) ≡ (η− 1). [A.2g]

When searching for a root, it is necessary to restrict attention to economically meaningful solutions. These
correspond to positive real values of the function

z(µ; ε,η) ≡ −a1(µ; ε,η)−
√

a1(µ; ε,η)2 − 4a2(η)a0(µ; ε,η)
2a2(η)

. [A.3]

Under the conditions stated in Theorem 1, there exists a unique economically meaningful solution of the
equation R(µ; ε,η) = 0.

Having obtained the markup ratio µ, the quantity ratio χ is

χ = µ−ε
(

1 + µ−(η−ε)z(µ; ε,η)
1 + z(µ; ε,η)

)
, [A.4]

and the sales frequency s is

s =

(
λ

1−λz(µ; ε,η)
)−( η−1

η−ε

)
− 1

µ−(η−1) − 1
. [A.5]

This expression for the sales frequency is economically meaningful when λ lies between the bounds λ(ε,η)
and λ(ε,η) referred to in Theorem 1, which are given by:

λ(ε,η) ≡ 1
1 + µ−(η−ε)z (µ; ε,η)

, and λ(ε,η) ≡ 1
1 + z (µ; ε,η)

. [A.6]
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An expression for real marginal cost x (the reciprocal of the average markup) is

x =
(
λ
(
(1 + z (µ; ε,η)) +

(
(µ1−ε − 1) + (µ1−η − 1)z (µ; ε,η)

)
s
)) 1

ε−1

(
(ε− 1) + (η− 1)z (µ; ε,η)

ε+ ηz (µ; ε,η)

)
, [A.7]

and the degree of price distortion ∆ = Y/Q is given by:

∆ =

(
λ
(
(1 + z (µ; ε,η)) +

(
(µ1−ε − 1) + (µ1−η − 1)z (µ; ε,η)

)
s
)) ε

ε−1

λ ((1 + z (µ; ε,η)) + ((µ−ε − 1) + (µ−η − 1)z (µ; ε,η)) s)
. [A.8]

DSGE model

The system of log-linearized equations of the model from section 4 is

πt = βEtπt+1 +
1

1−ψ (κxt +ψ (∆xt − βEt∆xt+1)) ; [A.9a]

xt =
1

1 + γδ
wt +

γ

1 + γδ
Yt; [A.9b]

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςθ−1

h

((
θ−1
c +

1
1 + γδ

θ−1
h

α

)
Yt −

(
1 +

δ

1 + γδ
θ−1
h

α

)
wt

)
;

[A.9c]

∆wt = πW,t − πt; [A.9d]
Yt = EtYt+1 − θc (it − Etπt+1) ; [A.9e]

∆Yt = ∆Mt − πt; [A.9f]
∆Mt = p∆Mt−1 + (1− p)et. [A.9g]

The Phillips curve equation is from Theorem 2 and derivations of the other equations are given in appendix
F. All the coefficients apart from ψ, κ and δ are as defined in Table 2. Formulæ for ψ, κ and δ are

ψ = 1−
(1− s)

(
1−

(
η−1
ε−1

)(
µ1−ε−1
µ1−η−1

))
(1 + z(µ; ε,η)) + ((µ1−ε − 1) + (µ1−η − 1)z(µ; ε,η)) s

, κ =
(1− φp)(1− βφp)

φp
, and [A.10a]

δ =
sχε(1− µ)
sχ+ (1− s) [A.10b]

+
sχµ+ (1− s)
sχ+ (1− s)

 1
ε−1

(
(ε− 1)(µ−ε − 1)− ε(µ1−ε − 1)

)
+ z(µ;ε,η)

η−1

(
(η− 1)(µ−η − 1)− η(µ1−η − 1)

)(
µ1−η−1
η−1

)
−
(
µ1−ε−1
ε−1

)
 .

The solution of the system [A.9] can be obtained using standard methods for solving expectational difference
equations.

The standard model without sales is a special case of [A.9] with the following parameter restrictions:

ψ = 0, δ = 0, ξ =
1

1− x, and κ =
1

1 + ξγ
(1− φp)(1− βφp)

φp
,

where the Phillips curve then reduces to the standard New Keynesian Phillips curve.

B Properties of the demand, revenue and marginal revenue

functions

The structure of household consumption preferences introduced in section 2.2 implies that firms face a
demand curve q = D(p;PB, E) of the form given in equation [10] at each shopping moment. It is easier to
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analyse the properties of this demand function — and the associated total and marginal revenue functions
— by working with what can be thought of as the corresponding “relative” demand function D(ρ), defined
by

D(ρ) ≡ λρ−ε + (1− λ)ρ−η, [B.1]

which satisfies D(1) = 1 for all choices of parameters. The relative demand function q = D(ρ) gives the
“relative” quantity sold q as a function of the relative price ρ, where relative price here means money price
p relative to PB, the bargain hunters’ price index from [7], and relative quantity means quantity q sold
relative to E/P εB, where E = P εY is the measure of aggregate expenditure from [10]:

ρ ≡ p

PB
, and q ≡ P εB

E q. [B.2]

With these definitions, the original demand function [10] is stated in terms of the relative demand function
[B.1] as follows:

D(p;PB, E) =
E
P εB
D
(
p

PB

)
. [B.3]

The relative demand function [B.1] is a continuously differentiable function of ρ for all ρ > 0, and is
strictly decreasing everywhere. Notice also that D(ρ) → ∞ as ρ → 0, and D(ρ) → 0 as ρ → ∞. By
continuity and monotonicity, this implies that for every q > 0 there is a unique ρ > 0 such that q = D(ρ).
Thus the inverse demand function D−1(q) is well defined for all q > 0, and is itself strictly decreasing and
continuously differentiable. The revenue function R(q), defined in terms of the relative demand function,
is

R(q) ≡ qD−1(q). [B.4]

Using the inverse demand function ρ = D−1(q), an equivalent expression for the revenue function is R(q) =
D−1(q)D

(
D−1(q)

)
, and by substituting the demand function from [B.1]:

R(q) = λ
(
D−1(q)

)1−ε + (1− λ)
(
D−1(q)

)1−η
.

Since ε > 1 and η > 1, and given the limiting behaviour of the demand function established above, it
follows that R(q) → ∞ as q → ∞ and R(q) → 0 as q → 0. Hence, R(0) = 0, and R(q) is continuously
differentiable for all q ≥ 0.

Differentiating the revenue functionR(q) from [B.4] using the inverse function theorem, and substituting
demand function [B.1] yields an expression for marginal revenue:

R′ (D(ρ)) =
(

(ε− 1)λ+ (η− 1)(1− λ)ρε−η

ελ+ η(1− λ)ρε−η

)
ρ. [B.5]

Because ε > 1 and η > 1, it follows that R′(q) > 0 for all q, so revenue R(q) is strictly increasing in q.
Furthermore, because ρ → ∞ as q → 0, and ρ → 0 as q → ∞, [B.5] implies R′(q) → ∞ as q → 0 and
R′(q)→ 0 as q→∞.

Just as [B.3] establishes the original demand function D(p;PB, E) in [10] is connected to the relative
demand function D(ρ) in [B.1], there are similar relations between the original inverse demand function
D−1(q;PB, E), original revenue R(q;PB, E) and marginal revenue R′(q;PB, E) functions, and their equi-
valents defined in terms of the relative demand function. The link between the inverse demand functions
follows directly from [B.3]:

D−1(q;PB, E) = PBD−1

(
qP εB
E

)
. [B.6]

Equations [11], [B.4] and [B.6] justify the following connections between the revenue functions and their
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derivatives:

R(q;PB, E) = P 1−ε
B ER

(
qP εB
E

)
, R′(q;PB, E) = PBR′

(
qP εB
E

)
, and R′′(q;PB, E) =

P 1+ε
B

E R′′
(
qP εB
E

)
.

[B.7]
The next result examines the conditions under which marginal revenue R′(q) is non-monotonic.

Lemma 1 Consider the marginal revenue function R′(q) obtained from [B.4] using the relative demand
function [B.1], and suppose that η > ε > 1.

(i) If λ = 0 or λ = 1 or condition [16] does not hold then marginal revenue R′(q) is strictly decreasing
for all q ≥ 0.

(ii) If 0 < λ < 1 and ε and η satisfy condition [16] then there exist q and q such that 0 < q < q < ∞
and where R′(q) is strictly decreasing between 0 and q and above q, and strictly increasing between
q and q.

Proof (i) If λ = 0 then it follows from [B.5] that R′(q) = ((η − 1)/η)D−1(q), and if λ = 1 that
R′(q) = ((ε− 1)/ε)D−1(q). Since the inverse demand function D−1(q) is strictly decreasing, then marginal
revenue must also be so in these cases.

(ii) In what follows, assume 0 < λ < 1. Differentiate [B.5] to obtain

D′(ρ)R′′ (D(ρ)) =
η(η− 1)

(
1−λ
λ
ρε−η

)2 − ((η− ε)2 − η(ε− 1)− ε(η− 1)
) ( (1−λ)

λ
ρε−η

)
+ ε(ε− 1)(

ε+ η
(

1−λ
λ
ρε−η

))2 , [B.8]

for all ρ > 0, where the assumption that λ 6= 0 is used to simplify the expression by dividing through by
λ2. Define the function Z(q) in terms of inverse demand function D−1(q):

Z(q) ≡ 1− λ
λ

(
D−1(q)

)ε−η
, [B.9]

and use this together with [B.8] to write the derivative of marginal revenue as follows:

R′′(q) =
η(η− 1) (Z(q))2 −

(
(η− ε)2 − η(ε− 1)− ε(η− 1)

)
Z(q) + ε(ε− 1)

D′ (D−1(q)) (ε+ ηZ(q))2 . [B.10]

Since D′
(
D−1(q)

)
< 0 for all q, and the remaining term in the denominator of [B.10] is strictly positive,

the sign of R′′(q) is the opposite of that of the quadratic function

Q(z) ≡ η(η− 1)z2 −
(
(η− ε)2 − η(ε− 1)− ε(η− 1)

)
z + ε(ε− 1), [B.11]

evaluated at z = Z(q). The aim is to find a region where marginal revenue is upward sloping, which
corresponds to Q(z) being negative, which is in turn equivalent to its having positive roots (it is U-shaped
because η > 1).

Under the assumptions ε > 1 and η > 1, the product of the roots of quadratic equation Q(z) = 0 is
positive, so it has either no real roots, two negative real roots, or two positive real roots (possibly including
repetitions). In the first two cases, since Q(0) = ε(ε−1) > 0 it then follows that Q(z) > 0 for all z > 0. To
see which combinations of elasticities ε and η lead to positive real roots, define the following two quadratic
functions of the elasticity η (for a given value of the elasticity ε):

Gp(η; ε) ≡ η2 − (4ε− 1)η+ ε(ε+ 1), and Gr(η; ε) ≡ η2 − 2(3ε− 1)η+ (ε+ 1)2. [B.12]

By comparing Gp(η; ε) to the coefficient of z in [B.11], the sum of the roots Q(z) = 0 is positive if and only
if Gp(η; ε) > 0 since η > 1. Then the discriminant of the quadratic Q(z) is factored in terms of Gr(η; ε) as
follows: (

(η− ε)2 − η(ε− 1)− ε(η− 1)
)2 − 4εη(ε− 1)(η− 1) = (η− ε)2Gr(η; ε), [B.13]
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and as η 6= ε, the equation Q(z) = 0 has two distinct real roots if and only if Gr(η; ε) > 0. To summarize,
the quadratic Q(z) has two positive real roots if and only if Gp(η; ε) > 0 and Gr(η; ε) > 0. It turns out
that in the relevant parameter region η > ε > 1, the binding condition is Gr(η; ε) > 0.

Since ε > 1, the quadratic equations Gp(η; ε) = 0 and Gr(η; ε) = 0 in η (for a given value of ε) both
have two distinct positive real roots (this is confirmed by verifying that the discriminants and the sums and
products of the roots are all positive). Let η∗(ε) be the larger of the two roots of the equation Gr(η; ε) = 0:

η∗(ε) = (3ε− 1) + 2
√

2ε(ε− 1),

and observe that η∗(ε) > ε and η∗′(ε) > 0 for all ε > 1. Since both quadratics Gp(η; ε) and Gr(η; ε) have
positive coefficients of η2, it follows that they are negative for all η values lying strictly between their two
roots.

The difference between the two quadratic functions Gp(η; ε) and Gr(η; ε) in [B.12] is

Gp(η; ε)− Gr(η; ε) = (2ε− 1)η− (ε+ 1),

which is a linear function of η. Thus let η̂(ε) be the unique solution for η of the equation Gp(η; ε) = Gr(η; ε),
taking ε as given. As ε > 1, such a solution exists and is unique, and Gp(η; ε) > Gr(η; ε) holds if and only
if η > η̂(ε). The difference between the solution η̂(ε) and ε is given by

η̂(ε)− ε =
2ε− (2ε2 − 1)

2ε− 1
. [B.14]

Consider first the case of ε values where η̂(ε) ≤ ε. This means that for all η > ε, Gr(η; ε) < Gp(η; ε).
Since Gp(ε; ε) = −2ε(ε − 1) < 0 for all ε > 1, it follows that Gr(ε; ε) < 0. Therefore, the smaller root of
Gr(η; ε) = 0 is less than ε. This establishes that the only η values for which all the inequalities η > ε,
Gr(η; ε) > 0 and Gp(η; ε) > 0 hold are those satisfying η > η∗(ε).

Now consider what happens in the remaining case where η̂(ε) > ε. By rearranging the terms in [B.12],
notice that Gp(η; ε) = (η−ε)2− 1− ((2ε− 1)η− (ε+ 1)). Therefore, from the definition of η̂(ε), it follows
that Gp(η̂(ε); ε) = Gr(η̂(ε); ε) = (η̂(ε) − ε)2 − 1. As η̂(ε) > ε in this case, equation [B.14] implies that
2ε− (2ε2− 1) > 0, and therefore 0 < η̂(ε)− ε < 1 if 2ε2− 1 > 1, which is equivalent to ε2 > 1. This must
hold since ε > 1, and hence (η̂(ε) − ε)2 < 1. Thus Gp(η̂(ε); ε) = Gr(η̂(ε); ε) < 0. As Gp(η; ε) > Gr(η; ε)
holds for η > η̂(ε), the larger of the roots of Gp(η; ε) = 0 lies strictly between η̂(ε) and η∗(ε). Therefore in
this case as well, the only values of η consistent with all the inequalities η > ε, Gr(η; ε) > 0 and Gp(η; ε) > 0
are those satisfying η > η∗(ε).

Thus for η > ε > 1, if η > η∗(ε) then the quadratic equation Q(z) = 0 from [B.11] has two distinct
positive real roots z and z with z < z. Q(z) < 0 must hold for all z ∈ (z, z) since the coefficient of z2 is
positive. For z ∈ [0, z) or z ∈ (z,∞), the quadratic satisfies Q(z) > 0. If η ≤ η∗(ε) then Q(z) > 0 for all
z (except at a single isolated point when η = η∗(ε) exactly). Therefore, in the case where η ≤ η∗(ε), it
follows from [B.10] and [B.11] that R′(q) is strictly decreasing for all q ≥ 0.

Now restrict attention to the case where η > η∗(ε). Since 0 < λ < 1, η > ε, and the inverse demand
function D−1(q) is strictly decreasing, the function Z(q) defined in [B.9] is strictly increasing. Its inverse
is

Z−1(z) = D
((

λ

1− λz
) 1

ε−η

)
, [B.15]

which is also a strictly increasing function. Define q ≡ Z−1(z) and q ≡ Z−1(z) using the roots z and z
of the quadratic equation Q(z) = 0. From [B.10] and [B.11] it follows that R′′(q) = 0 and R′′(q) = 0.
As Z−1(z) is a strictly increasing function, R′(q) must be strictly decreasing for 0 < q < q and q > q,
and strictly increasing for q < q < q. The condition η > η∗(ε) is the same as that given in [16], so this
completes the proof. �

When the marginal revenue function R′(q) is non-monotonic, the following result provides the founda-
tion for verifying the existence and uniqueness of the two-price equilibrium.
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Lemma 2 Given the revenue function R(q) defined in [B.4], suppose that 0 < λ < 1, and ε and η are such
that non-monotonicity condition [16] holds.

(i) There exist unique values qS and qN such that 0 < qN < qS <∞ which satisfy the equations

R′(qS) = R′(qN ) =
R(qS)−R(qN )

qS − qN
. [B.16]

(ii) The solutions qS and qN of the above equations must also satisfy the inequalities

R′′(qS) < 0, R′′(qN ) < 0, R(qS)/qS > R′(qS), and R(qN )/qN > R′(qN ). [B.17]

(iii) The following inequality holds for all q ≥ 0:

R(q) ≤ R(qS) +R′(qS)(q− qS) = R(qN ) +R′(qN )(q− qN ). [B.18]

Proof (i) When 0 < λ < 1 and condition [16] hold then Lemma 1 demonstrates that there exist q and
q such that 0 < q < q < ∞ and R′′(q) = R′′(q) = 0. Define R′ ≡ R′(q) and R′ ≡ R′(q). Since Lemma 1
also shows that R′(q) is strictly increasing between q and q, it follows that R′ < R′.

The function R′(q) is continuously differentiable for all q > 0 and limq→0R′(q) =∞. Hence there must
exist a value q

1
such that R′(q

1
) = R′ and q

1
< q. Define q1 ≡ q. According to Lemma 1, the function

R′(q) is strictly decreasing on the interval [q
1
, q1] and thus has range [R′,R′].

Define q
2
≡ q and q2 ≡ q. Given the construction of R′ and R′ and the fact that R′(q) is strictly

increasing on [q
2
, q2], the range of R′(q) is [R′,R′] on this interval.

Now define q
3
≡ q. Since limq→∞R′(q) = 0 and R′(q) is continuously differentiable, there must exist a

q3 such that R′(q3) = R′ and q3 > q
3
. Lemma 1 shows that R′(q) is strictly decreasing on [q

3
, q3] and so

has range [R′,R′] on this interval.
For each κ ∈ [0, 1], define the function q1(κ) as follows:

q1(κ) ≡ (1− κ)q
1

+ κq1, [B.19]

in other words, as a convex combination of q
1

and q1. Note that q1(κ) is strictly increasing in κ. The
construction of this function, the monotonicity ofR′(q) on [q

1
, q1], and the definitions ofR′ andR′ guarantee

that R′ ≤ R′(q1(κ)) ≤ R′ for all κ ∈ [0, 1]. Given that the function R′(q) is also strictly monotonic on
each of the intervals [q

2
, q2] and [q

3
, q3], and has range [R′,R′] on both, there must exist unique values

q2 ∈ [q
2
, q2] and q3 ∈ [q

3
, q3] such that R′(q2) = R′(q3) = R′(q1(κ)) for any particular κ. Hence define the

functions q2(κ) and q3(κ) to give these values in the two intervals for each specific κ ∈ [0, 1]:

R′(q1(κ)) ≡ R′(q2(κ)) ≡ R′(q3(κ)). [B.20]

At the endpoints of the intervals (corresponding to κ = 0 and κ = 1) note that

q2(0) = q3(0) = q, and q1(1) = q2(1) = q. [B.21]

Continuity and differentiability of R′(q) and of q1(κ) from [B.19] guarantee that q2(κ) and q3(κ) are
continuous for all κ ∈ [0, 1] and differentiable for all κ ∈ (0, 1). By differentiating [B.20] it follows that

q′2(κ) =
R′′(q1(κ))
R′′(q2(κ))

q′1(κ), and q′3(κ) =
R′′(q1(κ))
R′′(q3(κ))

q′1(κ).

As Lemma 1 establishes R(q) is concave on [q
1
, q1] and [q

3
, q3], and convex on [q

2
, q2], the results above

show that q′2(κ) < 0 and q′3(κ) > 0 for all κ ∈ (0, 1).

Existence
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For each κ ∈ [0, 1], define the function z(κ) in terms of the following integrals:

z(κ) ≡
∫ q3(κ)

q2(κ)

(
R′(q)−R′(q2(κ))

)
dq−

∫ q2(κ)

q1(κ)

(
R′(q2(κ))−R′(q)

)
dq. [B.22]

From continuity and differentiability of q1(κ), q2(κ) and q3(κ), it follows that z(κ) is also continuous for
all κ ∈ [0, 1] and differentiable for all κ ∈ (0, 1). Evaluating z(κ) at the endpoints of the interval [0, 1] and
making use of [B.21] yields

z(0) = −
∫ q2

q
1

(
R′ −R′(q)

)
dq < 0, and z(1) =

∫ q3

q
2

(
R′(q)−R′

)
dq > 0,

where the first inequality follows because R′(q) < R′ for all q
1
< q < q2, and the second because R′(q) > R′

for all q
2
< q < q3. Differentiating z(κ) in [B.22] using Leibniz’s rule and substituting the definitions from

[B.20] leads to the following result:

z′(κ) = −(q3(κ)− q1(κ))q′2(κ)R′′(q2(κ)) > 0,

for all κ ∈ (0, 1) since q3(κ) > q1(κ), q′2(κ) < 0, and R′′(q2(κ)) > 0 from Lemma 1. Therefore, because
z(0) < 0, z(1) > 0, and z(κ) is continuous and strictly increasing in κ, there exists a unique κ∗ ∈ (0, 1)
such that z(κ∗) = 0.

The solution of the system of equations [B.16] is found by setting qN ≡ q1(κ∗) and qS ≡ q3(κ∗), using
the solution κ = κ∗ of the equation z(κ) = 0 obtained above. From [B.20], it follows immediately that
R′(qN ) = R′(qS), establishing the first equality in [B.16]. Since z(κ∗) = 0, the definition of z(κ) in
equation [B.22] implies∫ qS

q2(κ∗)

(
R′(q)−R′(q2(κ∗))

)
dq =

∫ q2(κ∗)

qN

(
R′(q2(κ∗))−R′(q)

)
dq, [B.23]

which is rearranged to deduce ∫ qS

qN

R′(q)dq = (qS − qN )R′(q2(κ∗)). [B.24]

Equation [B.20] implies R′(q2(κ∗)) = R′(qN ) = R′(qS), which together with the above establishes that

R′(qS) = R′(qN ) =
R(qS)−R(qN )

qS − qN
. [B.25]

Thus, the values of qN and qS are indeed a solution of the system of equations in [B.16].

Uniqueness

First note that given the monotonicity of R′(q) on the intervals [0, q] and [q,∞), and using the fact that the
range of R′(q) is [R′,R′] on [q

1
, q1], [q

2
, q2] and [q

3
, q3], it follows that no solution of [B.16] can be found

in either [0, q
1
) or (q3,∞) since marginal revenue needs to be equalized at two quantities. Furthermore, as

the definitions of the functions q1(κ), q2(κ) and q3(κ) in [B.20] make clear, it is necessary that those two
quantities correspond to two out of the three of q1(κ), q2(κ) and q3(κ) for some particular κ ∈ [0, 1] if
marginal revenue is to be equalized at two distinct points.

In addition to equalizing marginal revenue, the solution qS and qN must satisfy the second equality in
[B.16]. If qN is set equal to q1(κ) and qS equal to q3(κ) for the same value of κ ∈ [0, 1] then equations
[B.23] and [B.24] show that the second equality in [B.16] requires z(κ) = 0. But it has already been
demonstrated that there is one and only one solution of this equation.

Now consider the alternative choices of setting qN to q1(κ) and qS to q2(κ) for some common κ ∈ [0, 1],
or to q2(κ) and q3(κ) respectively, again for some common value of κ. Since [B.20] holds by construction,
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and the function R′(q) is strictly decreasing on the intervals [q
1
, q1] and [q

3
, q3], and strictly increasing on

[q
2
, q2], it follows that∫ q2(κ)

q1(κ)
R′(q)dq < (q2(κ)− q1(κ))R′(q2(κ)), and

∫ q3(κ)

q2(κ)
R′(q)dq > (q3(κ)− q2(κ))R′(q2(κ)),

and hence both inequalities R(q2(κ))−R(q1(κ)) < (q2(κ)− q1(κ))R′(q2(κ)) and R(q3(κ))−R(q2(κ)) >
(q3(κ) − q2(κ))R′(q2(κ)) must hold for every κ ∈ [0, 1]. Consequently, there is no way that all three
equations in [B.25] can hold except by setting qN = q1(κ∗) and qS = q3(κ∗). Therefore the solution of
[B.16] constructed above is unique.

(ii) Lemma 1 shows that R(q) is a strictly concave function on the intervals [0, q] and [q,∞). The
argument above demonstrating the existence and uniqueness of the solution establishes that qN and qS
must lie respectively in the intervals (q

1
, q1) and (q

3
, q3), which are themselves contained in [0, q] and [q,∞)

respectively. Together these findings imply R′′(qN ) < 0 and R′′(qS) < 0, and that the following inequalities
must hold:

R(q) ≤ R(qN ) +R′(qN )(q− qN ) ∀q ∈ [0, q], and R(q) ≤ R(qS) +R′(qS)(q− qS) ∀q ∈ [q,∞), [B.26]

where the inequalities are strict for q 6= qN and q 6= qS respectively. Note that an implication of the
equations characterizing qS and qN in [B.16] is

R(qS)−R′(qS)qS = R(qN )−R′(qN )qN . [B.27]

By evaluating the first inequality in [B.26] at q = 0, where R(0) = 0, and making use of the equation above
it is deduced that

R(qS)−R′(qS)qS > 0, and R(qN )−R′(qN )qN > 0,

and thus R(qS)/qS > R′(qS) and R(qN )/qN > R′(qN ). This confirms all the inequalities given in [B.17].

(iii) By applying the inequalities in [B.26] at the endpoints q and q of the intervals [0, q] and [q,∞) it
follows that:

R(q) ≤ R(qN ) +R′(qN )(q− qN ), and R(q) ≤ R(qN ) +R′(qN )(q− qN ). [B.28]

Now take any q ∈ (q, q) and note that because Lemma 1 demonstrates R(q) is a convex function on this
interval:

R(q) ≡ R
((

q− q

q− q

)
q +

(
q− q

q− q

)
q

)
≤
(

q− q

q− q

)
R(q) +

(
q− q

q− q

)
R(q), [B.29]

using the fact that the coefficients of R(q) and R(q) in the above are positive and sum to one. A weighted
average of the two inequalities in [B.28] using as weights the coefficients from [B.29] yields R(q) ≤ R(qN )+
R′(qN )(q − qN ) for all q ∈ (q, q). This finding, together with the inequalities in [B.26] and the equations
[B.25] and [B.27], implies:

R(q) ≤ R(qS) +R′(qS)(q− qS) = R(qN ) +R′(qN )(q− qN )

for all q ≥ 0. Thus [B.18] is established, which completes the proof. �

The existence and uniqueness of the solution of equations [B.16] has been demonstrated given condition
[16] for the non-monotonicity of the marginal revenue function R′(q). A method for computing this solution
and a characterization of which parameters it depends upon is provided in the following result.

Lemma 3 Let qS and qN be the solution of equations [B.16] (under the conditions assumed in Lemma 2),
and let ρN ≡ D−1(qN ) and ρS ≡ D−1(qS) be the corresponding relative prices consistent with the demand
function [B.1]. In addition, define the markup ratio µ ≡ µS/µN = ρS/ρN and the quantity ratio χ ≡ qS/qN .
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(i) The markup ratio µ ≡ ρS/ρN is the only solution of the equation R(µ; ε,η) = 0 from [A.1] with
0 < µ < 1 and where z(µ; ε,η) in [A.3] is a positive real number. Thus µ depends only on parameters
ε and η.

(ii) Given the value of µ satisfying R(µ; ε,η) = 0, the quantity ratio χ ≡ qS/qN is equal to the expression
in equation [A.4]. Hence χ depends only on parameters ε and η.

(iii) The equilibrium markups µS and µN from [18] depend only on ε and η and are given by

µS =
ε+ ηµ−(η−ε)z(µ; ε,η)

(ε− 1) + (η− 1)µ−(η−ε)z(µ; ε,η)
, and µN =

ε+ ηz(µ; ε,η)
(ε− 1) + (η− 1)z(µ; ε,η)

, [B.30]

where the function z(µ; ε,η) is given in [A.3].

(iv) The equilibrium values of ρN , ρS , qN and qS depend on parameters ε, η and λ and are obtained as
follows:

ρN =
(

λ

1− λz(µ; ε,η)
)− 1

η−ε

, and ρS =
(

λ

1− λz(µ; ε,η)
)− 1

η−ε

µ, [B.31]

where qN = D(ρN ) and qS = D(ρS) using the relative demand function D(ρ) from [B.1].

Proof (i) Using the expression for marginal revenue from [B.5], the first equality in [B.16] is equivalent
to the requirement that(

λ(ε− 1) + (1− λ)(η− 1)ρε−ηN

λε+ (1− λ)ηρε−ηN

)
ρN =

(
λ(ε− 1) + (1− λ)(η− 1)ρε−ηS

λε+ (1− λ)ηρε−ηS

)
ρS .

By dividing numerator and denominator of the above by λ, defining z ≡ ((1− λ)/λ)ρε−ηN , and restating the
resulting equation in terms of µ = ρS/ρN and z it follows that

µ =

(
ε+ ηµ−(η−ε)z

ε+ ηz

)(
(ε− 1) + (η− 1)z

(ε− 1) + (η− 1)µ−(η−ε)z

)
. [B.32]

Since ρS < ρN the markup ratio satisfies 0 < µ < 1, and thus neither of the denominators of the fractions
above can be zero. Hence for a given value of µ, equation [B.32] is rearranged to obtain a quadratic equation
in z:

η(η− 1)µ−(η−ε)(1− µ)z2 +
(
ε(η− 1)

(
1− µ1−(η−ε)

)
+ η(ε− 1)

(
µ−(η−ε) − µ

))
z + ε(ε− 1)(1− µ) = 0,

which as 0 < µ < 1 is in turn multiplied on both sides by µη−ε/(1− µ) to obtain an equivalent quadratic:

η(η− 1)z2 +
(
η(ε− 1)

(
1− µη−ε+1

1− µ

)
+ ε(η− 1)

(
µη−ε − µ

1− µ

))
z + ε(ε− 1)µη−ε = 0. [B.33]

This quadratic is denoted by Q(z;µ, ε,η) ≡ a0(µ; ε,η)+a1(µ; ε,η)z+a2(η)z2, where the coefficient functions
a0(µ; ε,η), a1(µ; ε,η) and a2(η) listed in [A.2] are obtained directly from [B.33].

Now note that R(qN ) − qNR′(qN ) = R(qS) − qSR′(qS) is deduced by rearranging the equations in
[B.16]. The definition of the revenue function R(q) in [B.4] shows that R (D(ρ)) = ρD(ρ) is a valid
alternative expression for all ρ > 0. By combining these two observations and substituting qS = D(ρS) and
qN = D(ρN ), the relative prices and quantities must satisfy

qS
(
ρS −R′(qS)

)
= qN

(
ρN −R′(qN )

)
. [B.34]

After expressing this in terms of the quantity ratio χ ≡ qS/qN and dividing both sides by R′(qS) = R′(qN )
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(justified by [B.16]), equation [B.34] becomes

χ =
(

ρN
R′ (D(ρN ))

− 1
)/( ρS

R′ (D(ρS))
− 1
)
. [B.35]

The formula for marginal revenue R′(D(ρ)) in [B.5] is then rearranged to show

ρ

R′ (D(ρ))
− 1 =

λ+ (1− λ)ρε−η

λ(ε− 1) + (η− 1)(1− λ)ρε−η
,

which is substituted into [B.35] to obtain

χ =

(
λ+ (1− λ)ρε−ηN

λ+ (1− λ)ρε−ηS

)(
(ε− 1)λ+ (η− 1)(1− λ)ρε−ηS

(ε− 1)λ+ (η− 1)(1− λ)ρε−ηN

)
.

By dividing numerator and denominator of both fractions by λ and recalling µ = ρS/ρN and the definition
z ≡ ((1− λ)/λ)ρε−ηN , this equation is equivalent to

χ =
(

1 + z

1 + µ−(η−ε)z

)(
(ε− 1) + (η− 1)µ−(η−ε)z

(ε− 1) + (η− 1)z

)
. [B.36]

The quantity ratio is then written as χ = D(ρS)/D(ρN ) using the relative demand function q = R(ρ)
from equation [B.1], and thus

χ =
λρ−εS + (1− λ)ρ−ηS
λρ−εN + (1− λ)ρ−ηN

.

By factorizing λρ−εS and λρ−εN from the numerator and denominator respectively, and using µ = ρS/ρN and
the definition z ≡ ((1− λ)/λ)ρε−ηN , the above expression for χ becomes

χ = µ−ε
(

1 + µ−(η−ε)z
1 + z

)
. [B.37]

Putting together the two expressions for the quantity ratio χ in [B.36] and [B.37], µ and z must satisfy
the equation (

1 + z

1 + µ−(η−ε)z

)(
(ε− 1) + (η− 1)µ−(η−ε)z

(ε− 1) + (η− 1)z

)
= µ−ε

(
1 + µ−(η−ε)z

1 + z

)
. [B.38]

Since the quantity ratio χ is finite, none of the terms in the denominators of [B.36] or [B.37] can be zero,
so [B.38] is rearranged as follows to obtain a cubic equation in z for a given value of µ:

(η− 1)µ−(2η−ε) (1− µη) z3 + µ−(2η−ε) ((ε− 1)
(
1− µ2η−ε)+ 2(η− 1) +

(
µη−ε − µη

))
z2

+ µ−(2η−ε)
(

(η− 1)
(
µ2(η−ε) − µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε)) z

+ (ε− 1)µ−(2η−ε)
(
µ2(η−ε) − µ2η−ε

)
= 0.

Because 0 < µ < 1, both sides of the above are multiplied by µ2η−ε/(1− µη) to obtain an equivalent cubic
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equation:

(η− 1)z3 +
(

(ε− 1)
(

1− µ2η−ε

1− µη
)

+ 2(η− 1)
(
µη−ε − µη

1− µη
))

z2

+

(
(η− 1)

(
µ2(η−ε) − µη

1− µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε

1− µη
))

z

+ (ε− 1)

(
µ2(η−ε) − µ2η−ε

1− µη

)
= 0. [B.39]

This cubic is denoted by C(z;µ, ε,η) ≡ b0(µ; ε,η)+b1(µ; ε,η)z+b2(µ; ε,η)z2+b3(η)z3, where the coefficient
functions b0(µ; ε,η), b1(µ; ε,η), b2(µ; ε,η) and b3(η) listed in [A.2] are obtained directly from [B.39].

These steps demonstrate that starting from a solution qS and qN of [B.16], the quadratic and the cubic
equations [B.33] and [B.39] in z must simultaneously hold for z = ((1 − λ)/λ)ρε−ηN , with ρN ≡ D−1(qN ),
and where the coefficient functions [A.2] are evaluated at µ = ρS/ρN , with ρS ≡ D−1(qS). If the quadratic
equation Q(z;µ, ε,η) = 0 and cubic equation C(z;µ, ε,η) = 0 share a root then it is a standard result from
the theory of polynomials that the resultant R(µ; ε,η), as defined in [A.1], is zero. Since the coefficients of
the polynomials Q(z;µ, ε,η) and C(z;µ, ε,η) are functions only of the markup ratio µ and the parameters ε
and η, solving the equation R(µ; ε,η) = 0 provides a straightforward procedure for finding the equilibrium
markup ratio µ. Furthermore, the only parameters appearing in the equation R(µ; ε,η) = 0 are ε and η,
so the equilibrium markup ratio µ depends only on these parameters.

Lemma 2 shows that the solution of [B.16] for qS and qN is unique, and therefore the solution of
R(µ; ε,η) = 0 for µ must also be unique, given the added condition that the shared root z of the quadratic
Q(z;µ, ε,η) = 0 and cubic C(z;µ, ε,η) = 0 is a positive real number. This restriction is required because
z = ((1− λ)/λ)ρε−ηN and ρN must of course be positive real numbers. Since η > ε > 1, the product of the
roots of the quadratic Q(z;µ, ε,η) = 0 is positive, so the shared root z is positive and real if and only if
either branch of the quadratic root function is positive and real. Hence this condition is verified by checking
whether z(µ; ε,η) in [A.3] (the smaller of the two roots of Q(z;µ, ε,η) = 0) is positive and real.

Note that the resultant R(µ; ε,η) is always zero at µ = 0 and µ = 1 for all values of ε and η. This is
seen by taking limits of the coefficients in [A.2] as µ→ 0 and µ→ 1 and applying L’Hôpital’s rule, which
yields

C(z; 0, ε,η) = zQ(z; 0, ε,η), and C(z; 1, ε,η) = (1 + z)Q(z; 1, ε,η).

As the polynomials Q(z;µ, ε,η) and C(z;µ, ε,η) clearly share roots when µ = 0 or µ = 1, it follows that
R(0; ε,η) = R(1; ε,η) = 0. Thus these zeros of the equation R(µ; ε,η) = 0 must be ignored when solving
for µ.

(ii) The quadratic equation Q(z;µ, ε,η) = 0 with z = ((1 − λ)/λ)ρε−ηN determines a relative price ρN
such that with ρS = µρN , marginal revenue is equalized at both ρS and ρN . Lemma 1 demonstrates that
there are two candidate solutions for ρN that meet this criterion under the conditions shown by Lemma 2
to be necessary for a solution qS and qN of [B.16] to exist. However, Lemma 2 shows that both ρN and
ρS are on the downward-sloping sections of the marginal revenue function. To rule out a solution in the
middle upward-sloping section of marginal revenue, the smaller of the two ρN candidate values must be
discarded to select the correct solution. Since z is decreasing in ρN , this is equivalent to discarding the
larger of the two roots of the quadratic. Given that a2(η) in [A.2] is positive, the smaller of the two roots
of quadratic Q(z;µ, ε,η) = 0 is found using the expression for z(µ; ε,η) in [A.3].

The equilibrium quantity ratio χ is obtained by substituting z = z(µ; ε,η) into [B.37]. This construction
demonstrates that χ depends only on ε and η.

(iii) Since ρS ≡ PS/PB and ρN ≡ PN/PB according to [B.2], the formula for the purchase multipliers in
[10] implies vN = ρε−ηN and vS = µε−ηvN . Using the fact that z ≡ ((1− λ)/λ)ρε−ηN , and dividing numerator
and denominator of the expression in [17] by λ yields [B.30].
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(iv) The expressions for the relative prices ρS and ρN in [B.31] are obtained by rearranging the definition
of z ≡ ((1− λ)/λ)ρε−ηN and using ρS = µρN . This completes the proof. �

C Proof of Theorem 1

Non-monotonicity of the marginal revenue function

Using the relationship between the revenue function R(q;PB, E) and its equivalent R(q) defined in [B.4]
using the relative demand function D(ρ) from [B.1], the corresponding two marginal revenue functions
R′(q;PB, E) and R′(q) are proportional according to [B.7]. Lemma 1 demonstrates that R′(q) has the
described pattern of non-monotonicity under the conditions 0 < λ < 1 and [16], and is otherwise a decreasing
function of q.

Existence of a two-price equilibrium

For a two-price equilibrium to exist, first-order conditions [15] for profit-maximization must be satisfied at
two prices pS and pN , with associated quantities qS = D(pS ;PB, E) and qN = D(pN ;PB, E), where PB is
the bargain hunters’ price index from [7], and E = P εY is the measure of aggregate expenditure from [10].

The necessary conditions for the two-price equilibrium are now restated in terms of the relative demand
function D(ρ) defined in [B.1], and its associated total and marginal revenue functions R(q) and R′(q), as
defined in [B.4] and analysed in appendix B. The relative demand function q = D(ρ) is specified in terms
of the relative price ρ ≡ p/PB and relative quantity q ≡ q/(E/P εB), in accordance with [B.2]. Using the
relationships in [B.3] and [B.7], the first two optimality conditions in [15] are equivalent to

R′
(
qSP

ε
B

E

)
= R′

(
qNP

ε
B

E

)
=
R
(
qSP

ε
B
E

)
−R

(
qNP

ε
B
E

)
qSP

ε
B
E − qNP

ε
B
E

. [C.1]

With qS ≡ qS/(E/P εB) and qN ≡ qN/(E/P εB), the first-order conditions in [C.1] are identical to the equations
in [B.16] studied in Lemma 2. These clearly require the equalization of marginal revenue R′(q) at two
different quantities, which means that the marginal revenue function must be non-monotonic. Lemma 1
then shows that 0 < λ < 1 and parameters ε and η satisfying the inequality [16] are necessary and sufficient
for this. If these conditions are met then Lemma 2 demonstrates the existence of a unique solution qS and
qN of the equations [B.16].

The relative quantities qS and qN must also be well defined if the solution is to be economically
meaningful. This means that if ρS = D−1(qS) and ρN = D−1(qN ) are the corresponding prices pS and
pN relative to PB then ρS < 1 < ρN . This is a necessary requirement because the expression [20] for the
bargain hunters’ price index PB implies

sρ1−η
S + (1− s)ρ1−η

N = 1, [C.2]

and the equilibrium sales frequency s must satisfy s ∈ (0, 1).
Assume the parameters are such that ε and η satisfy [16], and consider a given value of λ ∈ (0, 1).

Lemma 3 shows that the markup ratio (or price ratio) µ ≡ µS/µN = ρS/ρN consistent with the unique
solution of [B.16] is a function only of the elasticities ε and η. The equilibrium relative prices ρS and ρN
are functions of all three parameters ε, η and λ, and are obtained from equation [B.31] by substituting
the equilibrium value of µ into the function z(µ; ε,η) defined in [A.3]. Since ρS = µρN and µ < 1, the
requirement ρS < 1 < ρN implies µ < ρS < 1. By substituting for ρS from [B.31], this condition is
equivalent to:

z (µ; ε,η) <
1− λ
λ

< µ−(η−ε)z (µ; ε,η) . [C.3]

Define lower and upper bounds for λ conditional on ε and η using the formulæ in [A.6] together with the
equilibrium value of µ (which is a function only of ε and η) and the function z(µ; ε,η) from [A.3]. Note
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that if z(µ; ε,η) > 0 and 0 < µ < 1 then 0 < λ(ε,η) < λ(ε,η) < 1. By rearranging the inequality [C.3] and
using the definitions of the bounds on λ, the inequality is equivalent to λ lying in the interval:

λ(ε,η) < λ < λ(ε,η). [C.4]

This restriction on λ is necessary and sufficient for the existence of an equilibrium sales frequency s ∈ (0, 1)
satisfying [C.2]. The equivalence is demonstrated by substituting the expressions for ρS and ρN from [B.31]
into [C.2]: (

1 + s
(
µ−(η−1) − 1

))( λ

1− λz(µ; ε,η)
) η−1

η−ε

= 1.

This is a linear equation in s, and has a unique solution because η > 1 and 0 < µ < 1. Solving explicitly
for s yields:

s =

(
λ

1−λz(µ; ε,η)
)−( η−1

η−ε

)
− 1

µ−(η−1) − 1
. [C.5]

Recalling the equivalence of inequalities [C.3] and [C.4], it follows that s ∈ (0, 1) if and only if λ ∈
(λ(ε,η), λ(ε,η)). So for λ ∈ [0, λ(ε,η)] or λ ∈ [λ(ε,η), 1] there is no two-price equilibrium. But given
elasticities ε and η satisfying the non-monotonicity condition [16] and a loyal fraction λ ∈ (λ(ε,η), λ(ε,η)),
by using the arguments above there exist two distinct relative prices ρS ≡ pS/PB and ρN ≡ pN/PB and
a sales frequency s ∈ (0, 1) consistent with the first two equalities in [15]. Lemma 3 then demonstrates
that the two purchase multipliers vS and vN and the two optimal markups µS and µN are determined.
Equations [14] and [17] show that using the optimal markups in [18] is equivalent to satisfying the remaining
first-order condition involving marginal cost in [15]. The other variables relevant to the macroeconomic
equilibrium are then determined as discussed in section 3.4.

Confirming that the two-price equilibrium exists then requires checking that the remaining first-order
condition [13c] is satisfied and that the first-order conditions are sufficient as well as necessary to characterize
the maximum of the profit function. Using the relationships in [B.7] and the results of Lemma 2 in [B.17]
the following inequalities are deduced:

R(qS ;PB, E)−R′(qS ;PB, E)qS > 0, and R(qN ;PB, E)−R′(qN ;PB, E)qN > 0. [C.6]

Since s ∈ (0, 1), the Lagrangian multiplier ℵ from first-order conditions [13b]–[13c] is determined as follows:

ℵ = R(qS ;PB, E)−R′(qS ;PB, E)qS = R(qN ;PB, E)−R′(qN ;PB, E)qN ,

and hence ℵ > 0 because of [C.6]. By combining this expression for the Lagrangian multiplier with the
first-order condition [13c]:

R(q;PB, E) ≤ R(qN ;PB, E) + R′(qN ;PB, E)(q − qN ) = R(qS ;PB, E) + R′(qS ;PB, E)(q − qS), [C.7]

which is required to hold for all q ≥ 0. Appealing to the result of Lemma 2 in [B.18] and again using [B.7]
verifies the inequality.

The assumptions about the production function [8] ensure that the total cost function C (Q;W ) in [9]
is continuously differentiable and convex, so for all q ≥ 0:

C (q;W ) ≥ C (Q;W ) + C ′(Q;W )(q −Q), [C.8]

where Q ≡ sqS+(1−s)qN is the specific total physical quantity sold using the two-price strategy constructed
earlier. Now consider a general alternative pricing strategy for a given firm, assuming that all other firms
continue to use the same two-price strategy. The new strategy is specified in terms of a distribution function
F (p) for prices. Let G(q) ≡ 1 − F (D(p;PB, E)) be the implied distribution function for quantities sold.
The level of profits P from the new strategy is obtained by making a change of variable from prices to
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quantities in the integrals of [12]:

P =
∫
q
R(q;PB, E)dG(q)− C

(∫
q
qdG(q);W

)
.

Applying the inequalities involving the revenue and total cost functions from [C.7] and [C.8] to the expres-
sion for profits yields:

P ≤
(
R(qN ;PB, E)−R′(qN ;PB, E)qN

)
−
(
C (Q;W )− C ′(Q;W )Q

)
+
(
R′(qN ;PB, E)− C ′(Q;W )

)(∫
q
qdG(q)

)
.

The first-order conditions [15] imply that the coefficient of the integral in the above expression is zero, and
that R(qN ;PB, E)−R′(qN ;PB, E)qN = R(qS ;PB, E)−R′(qS ;PB, E)qS . Recalling Q = sqS + (1− s)qN , it
follows that:

P ≤ sR(qS ;PB, E) + (1− s)R(qN ;PB, E)− C (sqS + (1− s)qN ;W ) ,

for all alternative pricing strategies. Hence there is no profit-improving deviation from the two-price
strategy. This establishes that a two-price equilibrium exists when [16] and λ ∈ (λ(ε,η), λ(ε,η)) hold, and
that it is unique within the class of two-price equilibria.

Uniqueness of the two-price equilibrium

Suppose the parameters ε, η and λ are such that a two-price equilibrium exists. Now consider the possibility
that a one-price equilibrium also exists for the same parameters. Since all firms are symmetric, the relative
price found in this one-price equilibrium is necessarily equal to one. The relative prices ρS and ρN in the
two-price equilibrium cannot be on the same side of one, implying µ < ρS < 1 and thus ρS < 1 < ρN , where
ρS = D−1(qS) and ρN = D−1(qN ) using the relative quantities qS and qN . Since [B.1] implies D(1) = 1
and because the relative demand function D(ρ) is strictly decreasing in ρ, it follows that qN < 1 < qS .

Given that the marginal revenue function must be non-monotonic if a two-price equilibrium is to exist,
it follows from Lemma 1 that R(q) is strictly concave on the intervals (0, q) and (q,∞), strictly convex on
(q, q), and from Lemma 2 that qN < q < q < qS .

Consider first the case where q < 1 < q. Since q1 = 1 for all firms in the one-price equilibrium,
the actual common quantity produced is q1 = E/P εB using [B.2], where PB and E are the values of these
variables associated with the putative one-price equilibrium. Since R′′(1) > 0, equation [B.7] implies
R′′(q1;PB, E) > 0. Therefore, for sufficiently small ε > 0, the profits P from selling quantity q1 − ε at one
half of shopping moments and q1 + ε at the other half exceed the profits from offering one price and hence
one quantity at all shopping moments:

1
2
R(q1 − ε;PB, E) +

1
2
R(q1 + ε;PB, E)− C

(
1
2

(q1 − ε) +
1
2

(q1 + ε);W
)
> R(q1;PB, E)− C (q1;W ).

Therefore a one-price equilibrium cannot exist in this case.
Next consider the case where qN < 1 < q. Let p1 = PB denote the price it is claimed all firms charge

in a one-price equilibrium, and q1 = E/P εB the associated quantity sold. Now let qS = D(ρSp1;PB, E) be
quantity sold if the sale relative price ρS = D−1(qS) is used when other firms are following the one-price
strategy of charging p1 at all shopping moments. Consider an alternative strategy where price ρSp1 is
offered at a fraction ε of moments and price p1 at the remaining fraction 1− ε of moments. Profits P from
the hybrid strategy are given by:

P = (1− ε)R(q1;PB, E) + εR(qS ;PB, E)− C ((1− ε)q1 + εqS ;W ) . [C.9]
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As the cost function C (q;W ) is differentiable in q, the above equation implies:

P = (R(q1;PB, E)− C (q1;W )) + ε(qS − q1)
(

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

− C ′(q1;W )
)

+ O
(
ε2
)
,

where O
(
ε2
)

denotes second- and higher-order terms in ε. A necessary condition for a one-price equilibrium
to exist is that the single price p1 is chosen optimally, in which case first-order conditions [13] reduce to
the usual marginal revenue equals marginal cost condition R′(q1;PB, E) = C ′(q1;W ). Hence the above
expression for P becomes:

P = (R(q1;PB, E)− C (q1;W )) + ε(qS − q)
(

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

−R′(q1;PB, E)
)

+ O
(
ε2
)
.

[C.10]
Since qN < 1 < qS in the case under consideration and q1 = 1, the results from Lemma 2 in [B.16] can

be expressed as follows: ∫ 1

qN

R′(q)dq +R(qS)−R(q1) = (qS − qN )R′(qN ). [C.11]

As qN < 1 < q and R′(q) is strictly decreasing for q < q, the integral above satisfies:∫ 1

qN

R′(q)dq < (1− qN )R′(qN ). [C.12]

Noting that R′(qN ) > R′(1) because of qN < 1 < q, and substituting [C.12] into [C.11] and rearranging
yields:

R(qS)−R(1)
qS − 1

> R′(qN ) > R′(1), [C.13]

where qS > 1 ensures that the direction of the inequality is preserved. Now given the fact that q1 = (E/P εB)
and qS = (E/P εB)qS from [B.2], and the links between the functions R(q) and R(q;PB, E) as set out in
[B.7]:

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

> R′(q1;PB, E). [C.14]

Therefore, by comparing this inequality with [C.10] and noting qS > q1, it follows for sufficiently small
ε > 0 that P > R(q1;PB, E)−C (q1;W ), so profits from a hybrid strategy exceed those from following the
strategy required for the one-price equilibrium to exist.

The remaining case to consider is q < 1 < qS . The argument here is analogous to that given above.
The alternative strategy considered is offering price pN = ρNp1 (where ρN = D−1(qN )) at a fraction ε of
shopping moments and price p1 = PB at the remaining fraction 1− ε, with quantities sold respectively at
those moments of qN = D(ρNp1;PB, E) and q1. Following the steps in [C.9]–[C.10] leads to an expression
for profits P resulting from this hybrid strategy:

P = (R(q1;PB, E)− C (q1;W )) + ε(q1 − qN )
(

R′(q1;PB, E)− R(q1;PB, E)−R(qN ;PB, E)
q1 − qN

)
+ O

(
ε2
)
.

[C.15]
Appealing to the properties of R(q) for q > q and following similar steps to those in [C.11]–[C.13] implies
R′(1) > R′(qS) > (R(1)−R(qN ))/(1− qN ), and hence an equivalent of [C.14]:

R′(q1;PB, E) >
R(q1;PB, E)−R(qN ;PB, E)

q1 − qN
. [C.16]

Since q1 > qN , for sufficiently small ε > 0, [C.15] and [C.16] demonstrate that there is a hybrid strategy
which delivers higher profits than the one-price strategy used by all other firms. This proves that for all
parameters where the two-price equilibrium exists, a one-price equilibrium cannot exist for any of these
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same parameter values.

One-price equilibrium

The first point to note is that when a two-price equilibrium fails to exist owing to a violation of the non-
monotonicity condition [16], Lemma 1 implies that marginal revenue R′(q;PB, E) is strictly decreasing for
all q. This is equivalent to revenue R(q;PB, E) being a strictly concave function of quantity q. Since total
cost C (q;W ) is a convex function of the quantity produced, it follows immediately that the profit function
is globally concave, and thus a one-price equilibrium always exists, and is the only possible equilibrium in
the parameter range where ε or η fail to satisfy [16], or where λ = 0 or λ = 1.

Now suppose the parameters are such that the marginal revenue function is non-monotonic, but a two-
price equilibrium fails to exist owing to λ not lying between λ(ε,η) and λ(ε,η). Note that [C.3] and [A.6]
imply λ ∈ [0, λ(ε,η)] and λ ∈ [λ(ε,η), 1] are equivalent to 1 > qS and 1 < qN respectively.

Taking the first of these cases, Lemma 1 demonstrates the concavity of R(q) on [q,∞) (containing qS),
which establishes that R(q) ≤ R(1) +R′(1)(q− 1) for all q ∈ [q,∞). Lemma 2 shows that R(q) ≤ R(qS) +
R′(qS)(q− qS) for all q ≥ 0. Note that the concavity of R(q) in the relevant range implies R′(qS) > R′(1),
which together with the second of the previous inequalities yields R(q) ≤ R(qS) + R′(1)(q − qS) for all
q ∈ [0, qS ]. Applying the first inequality at q = qS establishes that R(qS) ≤ R(1) + R′(1)(qS − 1). By
combining these results it follows that R(q) ≤ R(1) +R′(1)(q − 1) for all q ≥ 0. Translating this into a
property of the original revenue function R(q;PB, E) using [B.2] and [B.7] yields the following for all q:

R(q;PB, E) ≤ R(q1;PB, E) + R′(q1;PB, E)(q − q1). [C.17]

When λ ∈ [λ(ε,η), 1] the other case to consider is 1 < qN . Using an exactly analogous argument to
that given above, it is deduced that R(q) ≤ R(1) +R′(1)(q − 1) for all q ≥ 0 in this case as well. Hence
[C.17] holds in both cases. The convexity of the total cost function C (q;W ) together with [C.17] proves
that no pricing strategy can improve on that used in the one-price equilibrium.

Non-existence of equilibria with more than two prices

Take any two prices p1 and p2 offered by a firm at a positive fraction of shopping moments, and define
ρ1 ≡ p1/PB and ρ2 ≡ p2/PB in accordance with [B.2]. Denote the quantities sold by q1 and q2 and define
q1 ≡ (P εB/E)q1 and q2 ≡ (P εB/E)q2 also in accordance with [B.2]. Using the first-order conditions [13]
together with [B.2] and [B.7], it follows that q1 and q2 must satisfy the system of equations [B.16] in place
of qS and qN . But as Lemma 2 demonstrates that the solution to this system of equations is unique, there
is a maximum of two distinct prices in any firm’s profit-maximizing strategy. This completes the proof.

D Proof of Proposition 1

(i) The first-order conditions are of course necessary. For sufficiency, note using the argument in the
proof of Theorem 1 that the first-order conditions in [15] are equivalent to the equations in [C.1]. As
Lemma 3 shows, the equations in [C.1] have a unique solution. Since an equilibrium is known to exist by
Theorem 1, the first-order conditions must also be sufficient.

(ii) Lemma 3 shows that µ, χ, µS and µN are uniquely determined as functions of ε and η when the
inequality [16] is satisfied, as is necessary for the two-price equilibrium to exist.

(iii) Lemma 3 implicitly determines the purchase multipliers vS and vN using the expressions for ρS ≡
pS/PB and ρN = pN/PB in [B.31] and the fact that vS = (pS/PB)−(η−ε) and vN = (pN/PB)−(η−ε) from
[10]. Hence Lemma 3 shows that these variables depend only on ε, η and λ. In conjunction with equation
[20], knowledge of ρS and ρN from [B.31] yields a linear equation for s after dividing both sides of [20] by
PB. This shows that it too only depends on ε, η and λ.

(iv) Substituting the bounds for λ from [A.6] into equation [C.5] proves the first two results. Differenti-
ating [C.5] with respect to λ yields the third result. This completes the proof.
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E Proof of Theorem 2

Log linearizations

The notational convention adopted here is that a variable without a time subscript denotes its flexible-
price steady-state value as determined in section 3, and the corresponding sans serif letter denotes the log
deviation of the variable from its steady-state value (except for the sales frequency s, where it denotes just
the deviation from steady state, and the inflation rate, where it denotes the log deviation of the gross rate).

Consider first the demand function faced by firms. The levels of demand qS,`,t and qN,`,t at the sale and
normal prices are obtained from [22], which have the following log-linearized forms:

qS,`,t =
(

(1− λ)vS
λ+ (1− λ)vS

)
vS,`,t − ε(pS,`,t − Pt) + Yt, and [E.1a]

qN,`,t =
(

(1− λ)vN
λ+ (1− λ)vN

)
vN,`,t − ε(RN,t−` − Pt) + Yt, [E.1b]

where the expressions are given in terms of log deviations of the purchase multipliers vS,`,t and vN,`,t from
[10]:

vS,`,t = −(η− ε) (pS,`,t − PB,t) , and vN,`,t = −(η− ε) (RN,t−` − PB,t) . [E.2]

By substituting the purchase multipliers into the demand functions [E.1], the following expressions are
found:

qS,`,t = −
(
λε+ (1− λ)ηvS
λ+ (1− λ)vS

)
pS,`,t + (η− ε)

(
(1− λ)vS

λ+ (1− λ)vS

)
PB,t + εPt + Yt, and [E.3a]

qN,`,t = −
(
λε+ (1− λ)ηvN
λ+ (1− λ)vN

)
RN,t−` + (η− ε)

(
(1− λ)vN

λ+ (1− λ)vN

)
PB,t + εPt + Yt. [E.3b]

From equation [17], the log-linearized optimal markups at given sale and normal prices are:

µS,`,t = −cSvS,`,t, with cS ≡
λ(1− λ)(η− ε)vS

(λε+ (1− λ)ηvS) (λ(ε− 1) + (1− λ)(η− 1)vS)
, and [E.4a]

µN,`,t = −cNvN,`,t, with cN ≡
λ(1− λ)(η− ε)vN

(λε+ (1− λ)ηvN ) (λ(ε− 1) + (1− λ)(η− 1)vN )
, [E.4b]

which are given in terms of the purchase multipliers from [E.2]. Overall demand Q`,t = s`,tqS,`,t + (1 −
s`,t)qN,`,t is log-linearized as follows:

Q`,t =
(

χ− 1
sχ+ (1− s)

)
s`,t +

(
sχ

sχ+ (1− s)

)
qS,`,t +

(
1− s

sχ+ (1− s)

)
qN,`,t. [E.5]

Define the following weighted averages of variables across the distribution of normal-price vintages.
First, the average sale frequency:

st ≡ (1− φp)
∞∑
`=0

φ`ps`,t.

Now the average normal price, the average quantity sold, and the purchase multiplier associated with the
normal price:

PN,t ≡ (1− φp)
∞∑
`=0

φ`pRN,t−`, qN,t ≡ (1− φp)
∞∑
`=0

φ`pqN,`,t, and vN,t ≡ (1− φp)
∞∑
`=0

φ`pvN,`,t. [E.6]

Finally, the average sale price and associated average quantity and purchase multiplier:

PS,t ≡ (1− φp)
∞∑
`=0

φ`ppS,`,t, qS,t ≡ (1− φp)
∞∑
`=0

φ`pqS,`,t, and vS,t ≡ (1− φp)
∞∑
`=0

φ`pvS,`,t. [E.7]
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The bargain hunters’ price index PB,t as given in [29] is log-linearized as follows:

PB,t = ϑBPS,t + (1− ϑB)PN,t −ϕBst, where [E.8]

ϑB ≡
(

s

s+ (1− s)µη−1

)
, and ϕB ≡

1
η− 1

(
1− µη−1

s+ (1− s)µη−1

)
,

using the averages defined above. The coefficients satisfy 0 ≤ ϑB ≤ 1 and ϕB ≥ 0. By analogy with
the expression for PB,t in [29], define a price index PL,t corresponding to the average purchase price for a
hypothetical loyal customer:

PL,t =

(
(1− φp)

∞∑
`=0

φ`p

{
s`,tp

1−ε
S,`,t + (1− s`,t)R1−ε

N,t−`

}) 1
1−ε

. [E.9]

This has the following log linearization:

PL,t = ϑLPS,t + (1− ϑL)PN,t −ϕLst, where [E.10]

ϑL ≡
(

s

s+ (1− s)µε−1

)
, and ϕL ≡

1
ε− 1

(
1− µε−1

s+ (1− s)µε−1

)
,

where the coefficients satisfy 0 ≤ ϑL ≤ 1 and ϕL ≥ 0.
Note that [28], [29] and [E.9] imply that the price level Pt can be expressed in terms of PL,t and PB,t:

Pt =
(
λP 1−ε

L,t + (1− λ)P 1−ε
B,t

) 1
1−ε

,

which can be log linearized to yield:

Pt = (1−$)PL,t +$PB,t, where $ =
(1− λ)

(1− λ) + λ~ε−1
, and ~ =

(
s+ (1− s)µε−1

) 1
ε−1

(s+ (1− s)µη−1)
1

η−1

, [E.11]

with ~ being a bargain hunter’s cost of consumption relative to a loyal customer, that is ~ ≡ PB/PL, and
$ denoting the weight on the bargain hunters’ price index in the overall aggregate price level (0 ≤ $ ≤ 1).
It is convenient to express the price level Pt in terms of the averages PS,t, PN,t and st:

Pt = ϑPPS,t+(1−ϑP )PN,t−ϕP st, where ϑP = (1−$)ϑL+$ϑB, and ϕP = (1−$)ϕL+$ϕB. [E.12]

Note that 0 ≤ ϑP ≤ 1 and ϕP ≥ 0 follow from the properties of the coefficients ϑB, ϑL, ϕL, ϕB and $.
The log linearization of the production function [8] is

Q`,t = αH`,t, where α ≡ F
−1(Q)F ′(F−1(Q))
F(F−1(Q))

. [E.13]

The nominal marginal cost function corresponding to [9] has the following log-linear form:

X`,t = γQ`,t+Wt, where γ ≡ QC ′′(Q;W )
C ′(Q;W )

=
(
−F

−1(Q)F ′′(F−1(Q))
F ′(F−1(Q))

)(
Q

F−1(Q)F ′(F−1(Q))

)
. [E.14]

(i) The log-linearized first-order condition for the sales frequency (the first equation in [27]) is

(χ− 1)X`,t = µSχpS,`,t − µNRN,t−` + (µS − 1)χ(qS,`,t − qN,`,t), [E.15]
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where the fact that χ = (µN − 1)/(µS − 1) is used to simplify the expression. By using equation [E.3]:

(χ− 1)X`,t =
(
µS − (µS − 1)

(
λε+ (1− λ)ηvS
λ+ (1− λ)vS

))
χpS,`,t

−
(
µN − (µN − 1)

(
λε+ (1− λ)ηvN
λ+ (1− λ)vN

))
RN,t−`

+ (η− ε)
(

(1− λ)vS
λ+ (1− λ)vS

− (1− λ)vN
λ+ (1− λ)vN

)
(µS − 1)χPB,t.

Given the expressions for µS and µN in [17], the coefficients of both pS,`,t and RN,`,t in the above are zero.
Since χ > 1, this equation implies X`,t is independent of pS,`,t and RN,t−`. Using χ = (µN − 1)/(µS − 1)
yields:

(χ− 1)X`,t = (χ− 1)PB,t −
(

1− (η− ε)
(

(1− λ)vS
λ+ (1− λ)vS

)
(µS − 1)

)
χPB,t

+
(

1− (η− ε)
(

(1− λ)vN
λ+ (1− λ)vN

)
(µN − 1)

)
PB,t. [E.16]

After substituting the expressions for µS and µN from [18], the above equation reduces to

(χ− 1)X`,t = (χ− 1)PB,t + (ε− 1) ((µS − 1)χ− (µN − 1)) PB,t,

and noting that the coefficient on the final term is zero, it follows that X`,t = PB,t for all `. Hence, all firms
have the same marginal cost, Xt = PB,t, irrespective of their normal-price vintage.

The optimal pS,`,t is characterized by the second equation in [27]. In log-linear terms it is

pS,`,t = µS,`,t + Xt.

By substituting the expressions for the log-linearized optimal sale markup from [E.4] and the sale purchase
multiplier from [E.2], and using Xt = PB,t:

(1− (η− ε)cS) (pS,`,t − Xt) = 0, [E.17]

so pS,`,t = Xt if the coefficient in the above is different from zero. The expressions for cS from [E.4] and µS
from [18] imply

(1− (η− ε)cS)
µS

=
(λ(ε− 1) + (1− λ)(η− 1)vS) (λε+ (1− λ)ηvS)− (η− ε)2λ(1− λ)vS

(λε+ (1− λ)ηvS)2 .

Using [B.8] and noting that vS = ρε−ηS it follows that 1 − (η − ε)cS = µSD′(ρS)R′′(D(ρS)), where the
functions D(ρ) and R(q) are defined in [B.1] and [B.4]. The coefficient in [E.17] is strictly positive because
D′(ρS) < 0 and Lemma 2 shows that R′′(D(ρS)) < 0, and therefore pS,`,t = Xt.

Since all firms face the same wage Wt, and as the argument above shows that all have the same nominal
marginal cost Xt, the log linearization of nominal marginal cost in [E.14] shows that all must produce the
same total quantity Qt when γ > 0.

The log-linearization of the first-order condition [26] for the optimal reset price RN,t simplifies to

∞∑
`=0

(βφp)`Et [RN,t − µN,`,t+` − Xt+`] = 0, [E.18]

where µN,`,t is the log-deviation of the optimal markup µN,`,t ≡ µ(RN,t−`;PB,t). The optimal markup
function is log-linearized in [E.4] and is given in terms of the corresponding purchase multiplier, itself log-
linearized in [E.2]. Putting those results together, it follows that µN,`,t+` = (η − ε)cN (RN,t − PB,t+`). So
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by using Xt = PB,t and substituting these results into [E.18]:

(1− (η− ε)cN )
∞∑
`=0

(βφp)`Et [RN,t − Xt+`] = 0.

An exactly analogous argument to the proof of 1− (η− ε)cS > 0 above shows that 1− (η− ε)cN > 0 also
holds. Hence:

RN,t = (1− βφp)
∞∑
`=0

(βφp)`EtXt+`. [E.19]

(ii) By using PS,t = Xt and substituting this into [E.12] it is demonstrated that

ϕP st = ϑP (Xt − Pt) + (1− ϑP )(PN,t − Pt). [E.20]

Likewise, by using PB,t = Xt and performing similar substitutions in the expression for PB,t from [E.8]:

ϕBst = (1− ϑB)(PN,t − Xt). [E.21]

Equation [E.20] can be written as

ϕP st = ϑP (Xt − Pt) + (1− ϑP ) ((PN,t − Xt) + (Xt − Pt)) ,

and st is eliminated using [E.21]. After some rearrangement this leads to

Xt − PN,t =
1

1−ψxt, [E.22]

where xt = Xt − Pt is real marginal cost and ψ is defined as follows:

ψ =
(1− ϑB)ϕP + ϑPϕB

ϕB
. [E.23]

Note that the recursive form of the expression for PN,t in [E.6] is

PN,t = φpPN,t−1 + (1− φp)RN,t, [E.24]

and the recursive form of the equation [E.19] for RN,t is:

RN,t = βφpEtRt+1 + (1− βφp)Xt. [E.25]

Then multiplying both sides of the above by (1 − φp) and substituting in the recursive equation for PN,t
yields

PN,t − φpPN,t−1 = βφpEt [PN,t+1 − φpPN,t] + (1− φp)(1− βφp)Xt,
which can be written in terms of normal-price inflation πN,t ≡ PN,t − PN,t−1:

πN,t = βEtπN,t+1 + κ(Xt − PN,t), [E.26]

and where κ = (1− φp)(1− βφp)/φp is as defined in the statement of the theorem.
Taking the first difference of [E.21] yields

∆st = −(1− ϑB)
ϕB

(∆Xt − πN,t) . [E.27]

Now use [E.12] and make the substitution PS,t = Xt as before, and then take first differences and rearrange:

πt = πN,t + ϑP (∆Xt − πN,t)−ϕP∆st.
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By eliminating ∆st from this equation using [E.27]:

πt = πN,t +ψ (∆Xt − πN,t) .

Substituting the first difference of equation [E.22] into the above yields

πN,t = πt −
ψ

1−ψ∆xt.

Combining this equation with [E.22] and [E.26] implies(
πt −

ψ

1−ψ∆xt

)
= βEt

[
πt+1 −

ψ

1−ψ∆xt+1

]
+

κ

1−ψxt,

which is rearranged to yield the result [32]. Recursive forward substitution of equation [32] leads to

πt =
1

1−ψ
∞∑
`=0

β`Et [κxt+` +ψ (∆xt+` − β∆xt+1+`)] .

Notice that all ∆xt+` terms apart from ∆xt cancel out because each occurs twice with opposite signs.
Hence equation [33] is obtained.

(iii) Equation [E.23] implies that an expression for 1−ψ is

1−ψ =
(1− ϑP )ϕB − (1− ϑB)ϕP

ϕB
. [E.28]

It follows from [E.12] that (1− ϑP ) = (1−$)(1− ϑL) +$(1− ϑB). Together with the expression for ϕP
from the same equation, [E.28] implies

1−ψ =
((1−$)(1− ϑL) +$(1− ϑB))ϕB − (1− ϑB) ((1−$)ϕL +$ϕB)

ϕB
,

and by rearranging this expression:

1−ψ = (1−$)ϕL

(
1− ϑL
ϕL

− 1− ϑB
ϕB

)
. [E.29]

Define the function

Φ(ζ;µ) ≡ µ−ζ − 1
ζ

[E.30]

in terms of the markup ratio µ. An alternative expression for this function is Φ(ζ;µ) = (e(− logµ)ζ − 1)/ζ,
which shows that it has derivative

Φ′(ζ;µ) =
((− logµ)ζ − 1) e(− log µ)ζ + 1

ζ2
.

Now define another function
J (z) ≡ 1 + (z − 1)ez,

and note that J ′(z) = zez. Since J (0) = 0, and J ′(z) > 0 for all z > 0, it follows that J (z) > 0 for all
z > 0. Then note

Φ′(ζ;µ) =
J ((− logµ)ζ)

ζ2
,

which proves that Φ(ζ;µ) is strictly increasing in ζ when ζ > 0 since 0 < µ < 1.
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The expressions for ϑL and ϕL given in [E.10] are now used to demonstrate that:

1− ϑL
ϕL

= (1− s)
(

ε− 1
(µ−1)ε−1 − 1

)
=

1− s
Φ(ε− 1;µ)

. [E.31]

Similarly, the expressions for ϑB and ϕB from [E.8] yield

1− ϑB
ϕB

= (1− s)
(

η− 1
(µ−1)η−1 − 1

)
=

1− s
Φ(η− 1;µ)

. [E.32]

These formulæ are then substituted into [E.29] to obtain:

1−ψ = (1−$)(1− s)ϕL
(

1
Φ(ε− 1;µ)

− 1
Φ(η− 1;µ)

)
.

The expression for ψ in [E.23] together with the properties of ϑB, ϑP , ϕB and ϕP derived earlier demon-
strates that ψ ≥ 0. The inequality ψ ≤ 1 follows from Φ(ζ;µ) being an increasing function of ζ together
with η > ε and the properties of $ and ϕL. Thus, it is established that 0 ≤ ψ ≤ 1.

Now use [E.31] to obtain the following:

1−ψ = (1−$)(1− ϑL) (1−Θ(ε,η;µ)) , where Θ(ε,η;µ) ≡ Φ(ε− 1;µ)
Φ(η− 1;µ)

. [E.33]

Note that the expression for PB in [20] can be substituted into v(pS ;PB) from [7] to obtain:

vS =
1

(s+ (1− s)µη−1)
η−ε
η−1

,

and which by combining this with the expression for ~ from [E.11] yields

~ε−1 =
1
vS

(
s+ (1− s)µε−1

s+ (1− s)µη−1

)
.

Thus, the weight 1−$ given in [E.11] is

1−$ =
λ(s+ (1− s)µε−1)

λ(s+ (1− s)µε−1) + (1− λ)vS(s+ (1− s)µη−1)
.

Substituting this into [E.33] and using the formula for ϑL from [E.10] implies

1−ψ =
λ(1− s)µε−1

λ(s+ (1− s)µε−1) + (1− λ)vS(s+ (1− s)µη−1)
(1−Θ(ε,η;µ)) .

Since the purchase multipliers are given by vN = ρ
−(η−ε)
N and vS = ρ

−(η−ε)
S , the expressions for ρS and ρN

from Lemma 3 imply that

(1− λ)vN = λz, and (1− λ)vS = µε−ηλz, [E.34]

where z = z(µ; ε,η) is the value of the function in [A.3]. Substituting vS into the expression for 1−ψ above
yields

1−ψ = (1− s)(1−Θ(ε,η;µ))
µε−1

(s+ (1− s)µε−1) + µε−ηz(s+ (1− s)µη−1)
.

After further rearrangement this implies

1−ψ =
(1−Θ(ε,η;µ))(1− s)

(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s
. [E.35]
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For parameters consistent with a two-price equilibrium, Lemma 3 shows that z = z(µ; ε,η) must be a
positive real number. The definition of Φ(ζ;µ) in [E.30] implies that it is non-negative when 0 < µ < 1
and ζ > 0. Since η > ε > 1 and as Φ(ζ;µ) is increasing in ζ, the definition of Θ(ε,η;µ) in [E.33]
ensures that 0 ≤ Θ(ε,η;µ) ≤ 1. Hence, because all terms in the expression above for 1 − ψ are positive,
the derivative with respect to s (holding ε and η constant, and hence µ and z constant by Lemma 3) is
negative. Proposition 1 shows that λ and s are negatively related (holding ε and η constant), so ψ is
strictly decreasing in λ.

By using [A.4], it follows that µχ = µ1−ε(1 + µε−ηz)/(1 + z), and hence

sµχ+ (1− s) =
1

1 + z

(
(1 + z) +

(
(µ1−ε − 1) + (µ1−η − 1)z

)
s
)
.

This expression is substituted into [E.35] to yield

1−ψ =
(1−Θ(ε,η;µ))(1− s)
(1 + z)(sµχ+ (1− s)) . [E.36]

Note that ψ = 1 requires the right-hand side of this expression to be zero. There are four terms to
consider. First, s = 1 is the only way the expression can be zero as a result of the 1− s term. Now consider
the terms in the denominator. Since µ = pS/pN and χ = qS/qN , the second term in the denominator is
linked to the GDP share transacted at the normal price:

1
sµχ+ (1− s) =

1
1− s

(
(1− s)pNqN

spSqS + (1− s)pNqN

)
.

So when s < 1, (sµχ + (1 − s)) → ∞ only if (1 − s)pNqN/(spSqS + (1 − s)pNqN ) → 0, that is, the GDP
share traded at the sticky normal price tends to zero. The other term in the denominator is 1 + z, where
z = z(µ; ε,η), which is the smallest root of the quadratic [B.33]. As the proof of Lemma 3 demonstrates,
this quadratic must always have two positive real roots in the relevant parameter range. The product of
these roots is obtained from the coefficients of the quadratic in [B.33]:(

ε(ε− 1)
η(η− 1)

)
µη−ε,

which is always less than one, hence 1 + z is finite, so the only way the denominator of [E.36] can approach
infinity is through the normal-price GDP share approaching zero.

The final possibility to consider is Θ(ε,η;µ) = 1. The function Θ(ε,η;µ) from [E.33] can be written
as:

Θ(ε,η;µ) =
(
η− 1
ε− 1

)(
e(− log µ)(ε−1) − 1
e(− log µ)(η−1) − 1

)
,

and by L’Hôpital’s rule:
lim
µ→1

Θ(ε,η;µ) = 1,

for any elasticities ε and η such that 1 < ε < η, so µ = 1 is also a possible way that ψ = 1 could occur.
Now take any other parameters ε and η such that 0 ≤ µ < 1. The non-monotonicity condition [16] is
necessary for an equilibrium with µ < 1 to exist. Note that [16] implies that ε can never approach η in
the region of parameters consistent with µ < 1. Since Φ(ζ;µ) is known to be strictly increasing in ζ for
any 0 < µ < 1, and that η is bounded away from ε, it follows that Φ(ε − 1;µ) < Φ(η − 1;µ) and thus
Θ(ε,η;µ) < 1 for any µ < 1. This argument establishes that µ = 1 is the only other possible way that
ψ = 1 can occur, and so completes the proof.

The arguments developed in the proof above lead to the following set of results characterizing the
fluctuations in other variables of interest.
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Lemma 4 The Phillips curve in [32] is a relationship between aggregate inflation πt and real marginal
cost xt. Underlying this relationship are the following:

(i) The average sale discount PN,t − PS,t is determined by real marginal cost xt. There is a negative
relationship between PN,t−PS,t and xt, and the magnitude of the response of the average sale discount
to real marginal cost is decreasing in λ.

(ii) The average quantity ratio qS,t − qN,t is determined by real marginal cost xt. There is a positive
relationship between qS,t − qN,t and xt, and the magnitude of the response of the average quantity
ratio to real marginal cost is decreasing in λ.

(iii) The average sales frequency st is determined by real marginal cost xt. There is a negative relationship
between st and xt, and the magnitude of the response of the average sales frequency to real marginal
cost is decreasing in λ.

(iv) A firm with a normal price above the average has a sale discount above the average and a sales
frequency above the average.

(v) Relative price distortions Qt − Yt are negatively related to real marginal cost xt.

Proof (i) Let µt = PS,t − PN,t. Using the result PS,t = Xt from Theorem 2 and [E.22], it follows that

µt =
1

1−ψxt. [E.37]

The coefficient on xt is known to be positive because of the inequality for ψ derived in Theorem 2. Its
magnitude is decreasing in λ because ψ is negatively related to λ, as shown in Theorem 2.

(ii) Let χt = qS,t−qN,t. The log-linearized demand functions and purchase multipliers in [E.1] and [E.2]
imply

χt = −ζN (PN,t − PS,t),

with ζN being the steady-state price elasticity at the normal price, and where PS,t = PB,t has been used.
Substitution of the result in [E.37] yields

χt =
ζN

1−ψxt.

Using the inequality for ψ from Theorem 2 and ζN > 0, it follows that the coefficient of xt in the above is
positive. By combining the expression for ζN from [14] and equation [E.34]:

ζN =
ε+ zη

1 + z
. [E.38]

Since z = z(µ; ε,η), it follows from Lemma 3 that ζN is independent of λ. Hence, since Theorem 2 shows
that ψ is decreasing in λ, the coefficient of xt in the equation for χt is also decreasing in λ.

(iii) For the average sales frequency st, use equation [E.21] together with Xt = PS,t and the expression
for µt in [E.37] to obtain:

st = −
(

1− ϑB
ϕB

)(
1

1−ψ

)
xt. [E.39]

It has been shown that 0 ≤ ϑB ≤ 1, ϕB ≥ 0, and 0 ≤ ψ ≤ 1, so it follows that the coefficient of xt above
is negative. By substituting the expressions for (1 − ϑB)/ϕB from [E.32] and 1 − ψ from [E.35] into the
above: (

1− ϑB
ϕB

)(
1

1−ψ

)
=

(1 + z) +
(
(µ1−ε − 1) + (µ1−η − 1)z

)
s

Φ(η− 1;µ) (1−Θ(ε,η;µ))
.

Since all the terms in the denominator and µ and z in the numerator are independent of λ, it follows that
the magnitude of this coefficient is decreasing in λ because s is decreasing in λ.
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(iv) Since Theorem 2 implies that pS,`,t = PS,t for all `, it follows that:

(RN,t−` − pS,`,t)− (PN,t − PS,t) = (RN,t−` − PN,t),

where RN,t−` − PN,t clearly has a positive coefficient. A further consequence of pS,`,t = PS,t is that qS,`,t =
qS,t for all `. The demand function in [E.3] implies qN,`,t − qN,t = −ζN (RN,t−` − PN,t). Together with
equation [E.5] and the result Q`,t = Qt from Theorem 2:

s`,t − st =
(1− s)ζN
χ− 1

(RN,t−` − PN,t),

with the coefficient on RN,t−` − PN,t in the above being positive.

(v) Let ∆t = Yt−Qt. From the expression for the log-linearized demand function and purchase multipliers
in [E.1] and [E.2], the following individual demand functions are obtained:

qS,t = −εxt + Yt, qN,t = −εxt + Yt − ζN (PN,t − PS,t),

where the results PS,t = PB,t = Xt from Theorem 2 have been used. By substituting these into the
expression for total quantity from [E.5]:

Qt = Yt − εxt − ζN
(

(1− s)
sχ+ (1− s)

)
(PN,t − PS,t) +

(
χ− 1

sχ+ (1− s)

)
st.

Substituting [E.37] and [E.39] in the above expression yields

∆t ≡ Yt − Qt =
(
ε+

1
(sχ+ (1− s))(1−ψ)

(
(χ− 1)

(
1− ϑB
ϕB

)
− (1− s)ζN

))
xt.

This is written as ∆t = δxt, with the coefficient δ of real marginal cost xt defined by:

δ =
sχµ+ (1− s)
sχ+ (1− s)

(
ε
sχ+ (1− s)
sχµ+ (1− s) + ℘

)
, [E.40]

and where the term ℘ is:

℘ =
1

(1−ψ)(sµχ+ (1− s))

(
(χ− 1)

(
1− ϑB
ϕB

)
− (1− s)ζN

)
.

By substituting the expression for 1−ψ from [E.36] and rearranging:

℘ =
1 + z

1−Θ(ε,η;µ)

(
(χ− 1)

(
1− ϑB
ϕB(1− s)

)
− ζN

)
.

Equation [E.32] then implies

℘ =
1 + z

1−Θ(ε,η;µ)

(
χ− 1

Φ(η− 1;µ)
− ζN

)
. [E.41]

Noting that equation [A.4] can be used to express χ− 1 as follows:

χ− 1 =
(µ−ε − 1) + z (µ−η − 1)

1 + z
,

and substituting this together with the formula for ζN in [E.38] into the expression for ℘ from [E.41]:

℘ =
(µ−ε − 1) + z (µ−η − 1)− (ε+ ηz)Φ(η− 1;µ)

(1−Θ(ε,η;µ))Φ(η− 1;µ)
.
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By using the definitions of the functions Φ(ζ;µ) and Θ(ε,η;µ) from [E.30] and [E.33]:

℘ =
ε (Φ(ε;µ)−Φ(η− 1;µ)) + zη (Φ(η;µ)−Φ(η− 1;µ))

Φ(η− 1;µ)−Φ(ε− 1;µ)
.

The expression for δ from [E.40] can thus be written as:

δ =
sχµ+ (1− s)
sχ+ (1− s)

(
ε
sχ+ (1− s)
sχµ+ (1− s) +

ε (Φ(ε;µ)−Φ(η− 1;µ)) + zη (Φ(η;µ)−Φ(η− 1;µ))
Φ(η− 1;µ)−Φ(ε− 1;µ)

)
.

The final expression for δ is obtained by adding and subtracting ε inside the brackets:

δ =
sχε(1− µ)
sχ+ (1− s) +

sχµ+ (1− s)
sχ+ (1− s)

(
ε (Φ(ε;µ)−Φ(ε− 1;µ)) + zη (Φ(η;µ)−Φ(η− 1;µ))

Φ(η− 1;µ)−Φ(ε− 1;µ)

)
.

Since the function Φ(ζ;µ) from [E.30] is known to be strictly increasing in ζ, it follows that δ is positive.
This completes the proof. �

F DSGE model derivations

Wage-setting behaviour

When each firm chooses its use of the continuum of labour inputs to minimize the cost of obtaining a
unit of H from equation [30], the minimized cost is given by the wage index

W ≡
(∫

W (ı)1−ςdı
) 1

1−ς

, [F.1]

and the cost-minimizing labour demand functions are

H(ı) =
(
W (ı)
W

)−ς
H. [F.2]

As households are selected to update their wages at random, as they enjoy the same consumption, and as
they face the same demand function for their labour services, all households setting a new wage at time t
choose the same wage. This common wage is referred to as the reset wage, and is denoted by RW,t. It is
chosen to maximize expected utility over the lifetime of the wage subject to the labour demand function
[F.2]. As shown by Erceg, Henderson and Levin (2000), the first-order condition for this maximization
problem is

∞∑
`=0

(βφw)`Et

W ς
t+`Ht+`υc(Yt+`)

υc(Yt)

RW,tPt+`
− ς

ς − 1

νh

(
R−ςW,tW

ς
t+`Ht+`

)
υc(Yt+`)


 = 0. [F.3]

The wage index Wt in [F.1] then evolves according to

Wt =

(
(1− φw)

∞∑
`=0

φ`wR
1−ς
W,t−`

) 1
1−ς

. [F.4]

The presence of market power in wage setting means that the equation [24] determining steady-state output
Y is replaced by

x =
ς

ς − 1
νh
(
F−1(Y/∆)

)
υc(Y )F ′ (F−1(Y/∆))

.

All other equations determining the steady state are unaffected.
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Log linearizations

The DSGE model is log linearized around the flexible-price equilibrium characterized in section 3. The
notational convention is that a variable without a time subscript denotes its flexible-price steady-state
value, and the corresponding sans serif letter denotes the log deviation of the variable from its steady-state
value (except for the inflation rate and the nominal interest rate, where it denotes the log deviation of the
corresponding gross rates).

The log linearization of the intertemporal IS equation in [34] is

Yt = EtYt+1 − θc (it − Etπt+1) , where θc ≡ −
(
Y υcc(Y )
υc(Y )

)−1

. [F.5]

The intertemporal elasticity of substitution is θc. Money demand is implied by the binding cash-in-advance
constraint in [34]. It is log linearized as follows:

Mt − Pt = Yt. [F.6]

The money supply rule [35] has the following log-linear form:

∆Mt = p∆Mt−1 + (1− p)et. [F.7]

The log-linearized version of equation [F.3] for the utility-maximizing reset wage is

RW,t = (1− βφw)
∞∑
`=0

(βφw)`Et

[(
1

1 + ςθ−1
h

)
(Pt+` + w∗t+`) +

(
ςθ−1
h

1 + ςθ−1
h

)
Wt+`

]
, [F.8]

with w∗t being the desired real wage in the absence of constraints on wage adjustment:

w∗t = θ−1
h Ht + θ−1

c Y, where θh ≡
(F−1(Y/∆)νhh(F−1(Y/∆))

νh(F−1(Y/∆))

)−1

. [F.9]

The Frisch elasticity of labour supply is θh. Equation [F.8] has the following recursive form:

RW,t = βφwEtRW,t+1 + (1− βφw)

((
1

1 + ςθ−1
h

)
(Pt + w∗t ) +

(
ςθ−1
h

1 + ςθ−1
h

)
Wt

)
. [F.10]

The log-linearized wage index [F.4] is

Wt =
∞∑
`=0

(1− φw)φ`wRW,t−`,

which also has a recursive form:
Wt = φwWt−1 + (1− φw)RW,t. [F.11]

Combining the reset wage equation [F.10] with the wage index equation [F.11] yields an expression for wage
inflation πW,t ≡Wt −Wt−1:

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςθ−1

h

(w∗t − wt) , [F.12]

where w∗t is defined in [F.9].
By averaging over normal-price vintages, equations [E.13] and [E.14] imply:

Qt = αHt, and xt = wt + γQt. [F.13]

Substituting Yt = Qt + δxt from Lemma 4 into the above yields [A.9b]. Using equation [F.13] to eliminate

27



Ht from [F.9] implies:

w∗t =
θ−1
h

α
Qt + θ−1

c Yt.

Then by using Qt = Yt − δxt to eliminate Qt and substituting in the expression for xt from [A.9b] leads to
the following expression for w∗t − wt:

w∗t − wt =

(
θ−1
c +

1
1 + γδ

θ−1
h

α

)
Yt −

(
1 +

δ

1 + γδ
θ−1
h

α

)
wt.

Replacing w∗t − wt in [F.12] with the expression above yields [A.9c].

G Two-sector model

DSGE model

The steady state of the two-sector model from section 5 is derived exactly as for the one-sector model
by taking the sale sector as representative of the whole economy. This steady state is characterized in
section 3.4 and can be computed as described in Appendix A.

The system of equations of the two-sector DSGE model with sales is

π̄t = βEtπ̄t+1 +
1

1− ψ̄
(
κxt + ψ̄ (∆xt − βEt∆xt+1)

)
+
(

1− σ
1− ψ̄ (κρt + ∆ρt − βEt∆ρt+1)

)
; [G.1a]

∆ρt = βEt∆ρt+1 +
κ

1 + ξγ

(
γ((1−ψ)δ+ψε− ξ)

1− ψ̄ xt −
γ(1−ψ)(ε− (1− σ)δ) + (1− ψ̄) + (1− σ)ξγ

1− ψ̄ ρt

)
;

[G.1b]

Yt = Ȳt + ε
(

1− σ
1− ψ̄

)
((1−ψ)ρt −ψxt) ; [G.1c]

Yt = Qt + δ
(

1−ψ
1− ψ̄

)
(xt + (1− σ)ρt) ; [G.1d]

xt = wt + γQt; [G.1e]

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςθ−1

h

(w∗t − wt); [G.1f]

w∗t =

(
θ−1
c +

θ−1
h

α

∆

σ+ (1− σ)∆

)
Ȳt +

θ−1
h

α

σ

σ+ (1− σ)∆
(Qt −∆Yt) ; [G.1g]

∆wt = πW,t − π̄t; [G.1h]
Ȳt = EtȲt+1 − θc (it − Etπ̄t+1) ; [G.1i]

∆Ȳt = ∆Mt − π̄t; [G.1j]
∆Mt = p∆Mt−1 + (1− p)et. [G.1k]

A bar above a variable denotes the log-deviation averaged across both sale and non-sale sectors, using the
appropriate weights (σ and 1 − σ), and this convention is also employed for the Phillips curve coefficient
ψ, with ψ̄ denoting the average Phillips curve coefficient σψ. All variables without a bar refer either to
economy-wide aggregates, or sale-sector variables as used in earlier sections, as appropriate. The coefficients
∆, ψ, δ, ξ and κ are calculated using the same formulæ as those for the one-sector economy given in appendix
A taking the sale sector as representative of the whole economy.

Derivation of the two-sector model

In the following, the notational conventions in addition to those already described are that large script
letters denote non-sale sector variables and small script letters denote the corresponding log deviations of
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the non-sale sector variables.
The aggregate price level is now

P̄t =
(
σP 1−ε

t + (1− σ)P1−ε
t

) 1
1−ε ,

which has the log linear form:
P̄t = σPt + (1− σ)Pt. [G.2]

The log-linearized price level Pt in the non-sale sector is a weighted average of past reset prices Rt in that
sector:

Pt = φpPt−1 + (1− φp)Rt. [G.3]

The log-linearized first-order condition for the non-sale sector reset price is standard:

Rt = βφpEtRt+1 + (1− βφp)
(

1
1 + ξγ

Xt +
ξγ

1 + ξγ
Pt

)
, [G.4]

where ξ is the constant price elasticity in that sector and γ is the elasticity of marginal cost with respect
to output at the firm level.

Optimization by households implies the following overall relative demand between the sale and non-sale
sectors:

Yt
Yt

=
(Pt
Pt

)−ε
,

which has the log-linear form:
Yt − Yt = −ε(Pt − Pt). [G.5]

Define ρt ≡ Pt − PN,t to be the average relative price between the non-sale sector and the normal prices in
the sale sector. Substituting the sale-sector price level equation into the aggregate price level leads to

P̄t = (1− ϑ̄P )PN,t + ϑ̄PPS,t − ϕ̄P st + (1− σ)ρt, [G.6]

where ϑ̄P = σϑP and ϕ̄P = σϕP are defined (by analogy with the aggregate Phillips curve coefficient ψ̄).
Real marginal cost xt for the sale sector is defined in the usual way. By using equation [G.6]:

xt = (1− ϑ̄P )(PS,t − PN,t) + ϕ̄P st − (1− σ)ρt,

where Xt = PS,t has been substituted. Then by using [E.21] to eliminate st and rearranging:

xt =
(

(1− ϑ̄P )ϕB − (1− ϑB)ϕ̄P
ϕB

)
(PS,t − PN,t)− (1− σ)ρt.

Noting that the coefficient in parentheses is 1− σψ, which is also equal to 1− ψ̄ using the definition of ψ̄,
the equation above can be solved for PS,t − PN,t:

PS,t − PN,t =
1

1− ψ̄ (xt + (1− σ)ρt) . [G.7]

Using equation [E.21] again, the sales frequency st is given by

st = −
(

1− ϑB
ϕB

)(
1

1− ψ̄

)
(xt + (1− σ)ρt) . [G.8]

Taking equation [E.12] and substituting the expressions for PS,t − PN,t and st derived above:

Pt − PN,t =
ψ

1− ψ̄ (xt + (1− σ)ρt) ,
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which uses the formula for ψ derived in Theorem 2. Note that Xt − Pt = (PS,t − PN,t) + (PN,t − Pt), so

Xt − Pt =
1−ψ
1− ψ̄ (xt + (1− σ)ρt) . [G.9]

Similarly, note that Pt − P̄t = (Pt − Xt) + xt. Then substituting the expression for Xt − Pt and simplifying
yields:

Pt − P̄t =
1− σ
1− ψ̄ (ψxt − (1−ψ)ρt) . [G.10]

An analogous log-linearization of the cost function in the non-sale sector leads to

Xt = γQt + Wt,

where the assumption about the non-sale sector production function guarantees it has the same elasticity
of marginal cost with respect to output as in the sale sector. Note that Qt = Yt in the non-sale sector since
all output in that sector is sold at the same price in the steady state. The derivation of the link between
Yt and Qt in the sale sector continues to hold subject to Pt being the price level for the sale sector alone:

Yt = Qt + δ(Xt − Pt).

Hence the marginal cost differential between the two sectors is

Xt − Xt = γ ((Yt − Yt) + δ(Xt − Pt)) . [G.11]

Using the demand function [G.5] and the aggregate price index [G.2], relative demand is given by

Yt − Yt =
ε

1− σ(Pt − P̄t). [G.12]

By substituting this into [G.11] and using [G.9] and [G.10], the marginal cost differential is

Xt − Xt =
γ

1− ψ̄ ((εψ+ δ(1−ψ))xt + (1−ψ)(δ(1− σ)− ε)ρt) .

Since price-setting behaviour in the non-sale sector is entirely standard, the usual derivation of the New
Keynesian Phillips curve from [G.3] and [G.4] yields

∆Pt = βEt∆Pt+1 +
κ

1 + ξγ
(Xt − Pt).

Together with [E.26], the differential ρt between Pt and PN,t is determined by the equation:

∆ρt = βEt∆ρt+1 +
κ

1 + ξγ
((Xt − Xt)− ξγ(PS,t − PN,t)− ρt) ,

which is derived by using Xt = PS,t. Substituting [G.7] and [G.11] into the above leads to [G.1b] after some
rearrangement.

To obtain equation [G.1c], note that log-linearized aggregate output is Ȳt = σYt + (1 − σ)Yt, which is
equivalent to Yt − Ȳt = −(1 − σ)(Yt − Yt). Using [G.12] and substituting the expression for Pt − P̄t from
[G.10] yields the result.

Equation [G.1d] follows from substituting [G.9] into Yt = Qt+δ(Xt−Pt), which is taken from Lemma 4.
By writing equation [G.6] as P̄t = PN,t + ϑ̄P (PS,t − PN,t)− ϕ̄P st + (1− σ)ρt, substituting in [G.7] and

[G.8], and then taking first differences:

π̄t = πN,t +
ψ̄

1− ψ̄∆xt +
(

1− σ
1− ψ̄

)
∆ρt. [G.13]
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Then combine equation [E.26] with [G.7] to obtain:

πN,t = βEtπN,t+1 +
κ

1− ψ̄ (xt + (1− σ)ρt) .

Using equation [G.13] to write down an expression for π̄t −βEtπ̄t+1 and substituting for πN,t −βEtπN,t+1

from above yields the Phillips curve [G.1a].
Note that the choice of ξ (which equalizes the average markups in the two sectors) and the production

function F(H) in the non-sale sector imply that Y = Y, and hence Q/Q = ∆. Since the production
functions in the two sectors are related by F(H) = ∆F(∆−1H), it follows that H/H = ∆. This means that
the total labour usage equation H̄t = σHt + (1− σ)Ht is log linearized as follows:

H̄t =
(

σ

σ+ (1− σ)∆

)
Ht +

(
(1− σ)∆

σ+ (1− σ)∆

)
Ht.

The log-linearized production functions are the same in the two sectors, so Qt = αHt and Qt = αHt. By
substituting these into the above equation:

H̄t =
1
α

((
σ

σ+ (1− σ)∆

)
Qt +

(
(1− σ)∆

σ+ (1− σ)∆

)
Qt

)
.

By using Yt = Qt and noting that Yt = (Ȳt − σYt)/(1− σ):

H̄t =
1
α

1
σ+ (1− σ)∆

(
∆Ȳt + σ(Qt −∆Yt)

)
.

Substituting this expression into [F.9] and rearranging yields [G.1g].

H Proof of Proposition 2

(i) Note that Proposition 1 implies µ is only a function of ε and η. This is also true of z = z(µ; ε,η), as
can be seen from equation [A.3]. The value of s is then determined by λ (recall that Proposition 1 shows
for every s ∈ (0, 1) there is a value of λ generating this s).

Hence, the equilibrium value of ψ can be obtained as a function of s, ε and η. This is denoted by
Ψ(s; ε,η). From [E.35], the function is:

Ψ(s; ε,η) = 1− (1−Θ(ε,η;µ))(1− s)
(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

.

It has already been shown in Theorem 2 that Ψ(s; ε,η) is non-negative. By taking the first derivative with
respect to s (holding ε and η constant, and hence varying only λ implicitly):

Ψ′(s; ε,η) =
1−Θ(ε,η;µ)

(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

(
1 +

(
(µ1−ε − 1) + (µ1−η − 1)z

)
s

(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

)
,

which is always strictly positive using the same logic from the proof of Theorem 2. Finally, taking the
second derivative yields

Ψ′′(s; ε,η) = −2
(1−Θ(ε,η;µ))

(
(µ1−ε − 1) + (µ1−η − 1)z

)
(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

(
1 +

(
(µ1−ε − 1) + (µ1−η − 1)z

)
s

(1 + z) + ((µ1−ε − 1) + (µ1−η − 1)z) s

)
,

which is always strictly negative. This establishes that the function Ψ(s; ε,η) is non-negative-valued, strictly
increasing and strictly concave.

(ii) The two-sector model’s Phillips curve in the general case is given in equation [G.1a] following the
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derivation in appendix G. Note that when γ = 0, the only stable solution of [G.1b] is ρt = 0. By
substituting this result into [G.1a], it is clear that the resulting equation reduces to the Phillips curve with
sales in [32] with coefficient ψ̄ in place of ψ. Finally, note that γ = 0 implies that xt is real marginal cost
for both sectors, and hence for the aggregate economy. This completes the proof.
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