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The Federal Reserve, after the recent increase in the discount rate, is in the
position of the chaperone who has ordered the punch bowl removed just when
the party was really warming up.

William McChesney Martin, Chairman of the Federal Reserve (1951–1970)

1 Introduction

Since the financial crisis of 2007–2008, financial instability has been back at the forefront of the
attention of economists and policymakers. There has been much debate about the causes of financial
crises, which policy responses are appropriate, and whether there are reforms to the financial system
or regulatory changes that might reduce the likelihood of crises occurring in the future.

One hypothesis is that monetary policy bears some responsibility for crises. By setting interest
rates too low, central banks create asset-price booms and encourage an unsustainable build-up of
debt. Once asset prices eventually drop, the presence of large amounts of debt leads to a financial
crisis. This view has been articulated by Taylor (2009) in the context of the U.S. monetary policy
prior to the 2007–2008 financial crisis, and more generally as the ‘BIS view’ (Borio and Lowe,
2002, Borio, 2012). However, it is not clear what theoretical mechanism leads monetary policy
to have such dramatic real effects on financial instability. If central banks cannot influence long-
term real interest rates, which gravitate to a natural level independent of monetary policy, how can
they be responsible for booms and busts in asset prices and debt? Moreover, even if there were a
link between monetary policy and crises, why would central banks knowingly adopt policies that
increase financial risk?

The contribution of this paper is to answer both of these questions by presenting a theory of
financial crises caused by central banks under pressure to maintain excessively loose monetary poli-
cies. In this theory, monetary policy takes centre stage in explaining financial crises because it has
long-lasting real effects on borrowing costs and the volatility of asset prices. By studying the polit-
ical economy of monetary policy, the theory also explains why central banks will find it difficult to
‘take away the punch bowl’ and thus find themselves in the position of pursuing policies that raise
the risk of financial crises.

In the equilibrium of the model, monetary policy keeps real borrowing costs low for as long as
possible. The consequence of this policy is that most of the time there is sustained inflation in house
prices and a build-up of debt. However, the policy also results in occasional financial crises: rare
events where house prices collapse and significant deleveraging occurs. The occurrence of financial
crises and the booms in asset prices and credit that precede them imply a highly inefficient allocation
of resources in the economy. Monetary policy is at fault in the sense that it would be possible for
the central bank to achieve an efficient allocation of resources by setting higher interest rates to
prevent house-price booms and busts — but tight monetary policy will be highly unpopular with
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many individuals in the economy.
There are two key ingredients of the theory. First, an incomplete markets friction whereby bor-

rowers are restricted to nominal debt contracts. Households who want to borrow to buy houses only
have access to standard mortgages. They cannot raise finance by selling equity shares in their houses,
or hedge their exposure to house prices by buying or selling derivatives. Markets are also incom-
plete in that households cannot decouple their enjoyment of housing services from homeownership
by making use of a perfect rental market.

The second key ingredient is political economy. The central bank does not exist in a political
vacuum — it cannot ignore the distributional impact of its policies on the majority of the population,
which could sway policy from a sole focus on the technocratic goal of economic efficiency. The
tension between distribution and efficiency stems from the central bank having limited instruments:
interest rates affect both the distribution of wealth and the efficiency of the allocation of resources
in the economy. The central bank does not have access to individual-specific lump-sum taxes and
transfers to sterilize the distributional consequences of changes to interest rates.

The theory is built on a mechanism through which the central bank can have a long-lasting im-
pact on the real cost of borrowing. This is the effect of monetary policy on risk premiums. Even
without introducing any frictions, monetary policy can always affect nominal asset prices and thus
influence the probability distribution of unexpected nominal changes in asset prices. Comparing
these uncertain nominal returns to the perfectly predictable nominal return on nominal bonds, stan-
dard asset-pricing theory predicts that monetary policy will be able to affect the risk premium over
nominal bonds of real assets such as housing or shares, even though it cannot change the relative
returns on two real assets. Combined with the incomplete markets friction whereby borrowers need
to obtain credit in the form of nominal debt, monetary policy is therefore able to vary the real cost
of borrowing through its impact on the relative returns on nominal and real assets.

The mechanism behind this effect of monetary policy on real borrowing costs is not restricted to
a ‘short run’ defined in terms of sluggish price adjustment or imperfect information. Consequently,
monetary policy operating through the risk premium channel can have long-lasting effects on real
asset prices and credit. The greater the risk premium, the larger the gap between mortgage rates
and the expected capital gains on housing. A lower real cost of borrowing stimulates a build-up of
mortgage debt and pushes up real house prices. The impact is magnified by the financial accelerator
where increases in house prices improve balance sheets and stimulate further mortgage lending.
Note that the ability of monetary policy to affect real borrowing costs through the mechanism here
does not mean it can raise or lower real returns simultaneously for all assets: higher real returns for
homeowners are associated with lower real returns for bonds held as pensions.

Importantly, the central bank cannot change real interest rates through the risk premium channel
without this having consequences for financial stability. The logic behind the risk premium means
there must be in equilibrium a negative relationship between the interest rate on bonds and the
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volatility of asset prices. Lower interest rates can then only be achieved with a concomitant rise in
financial risk. The boom in real asset prices and credit resulting from loose monetary policy is not
one that can be sustained forever in equilibrium. All else equal, the larger the boom and the longer
on average it is sustained, the larger must be the fall in asset prices when the boom unexpectedly
comes to an end.

The theory thus explains the occurrence of financial crises if the central bank pursues loose
monetary policy for long periods of time. In this case, there must be some rare occasions when
there is a large fall in nominal house prices. Since crises have been preceded by a build-up of
nominal debt, the financial accelerator mechanism goes into reverse. New lending is reduced as
balance sheets deteriorate, and the fall in nominal assets prices during the crisis largely represents a
reduction in the relative price of housing, with goods prices and nominal incomes falling much less.

Even if monetary policy could create a risk of financial crises because of the logic above, it is
less obvious why policy would be conducted in this way, especially as the central bank acts to solve
a Ramsey problem maximizing the average utility of households in the economy. The explanation
lies in the distributional effects of monetary policy. Savers lose from low real interest rates, while
borrowers gain, both directly and indirectly through the increased real return on their leveraged
investment in housing. All else equal, leveraged homeowners dislike the financial instability that re-
sults from low interest rates because they are exposed to house-price risk, but all else is not equal due
to the negative equilibrium relationship between the interest rate and the volatility of house prices.
The model presented in this paper shows how borrowers overall prefer low rates and financial insta-
bility when financial risk is a rare event concentrated in the far left tail of the asset-price probability
distribution.

The theory of financial crises in this paper does not depend on agents being irrational, or form-
ing expectations with systematic errors. Furthermore, policymakers are benevolent in the sense of
maximizing the average utility of people in the economy. In the model, everyone knows that loose
monetary policy creates the conditions for financial crises, even if the timing of crises cannot be
predicted. Nonetheless, there is sufficient political pressure from borrowers for central banks to
maintain low interest rates in spite of the negative consequences.

In explaining why there are low-probability events with large falls in house prices, the theory
endogenously generates ‘rare events’ of the kind that have been emphasized in the literature on asset
pricing (see, for example, Barro, 2006). As in that literature, rare events have a large impact on
risk premiums. Here, the difference is that the rare events are the consequence of monetary policy
trying to generate a housing boom for as long as possible, with the transmission mechanism of
monetary policy working through risk premiums. The importance of risk premiums in understanding
house price developments is stressed by Favilukis, Ludvigson and Van Nieuwerburgh (2017) in a
richer quantitative model, but that paper does not study the consequences of monetary policy for risk
premiums.
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The paper differs radically from the common approach in models of financial frictions where
a linearized model is subject to shocks that generate small fluctuations in the neighbourhood of
a steady state (Bernanke, Gertler and Gilchrist, 1999, Kiyotaki and Moore, 1997). In trying to
understand financial crises as large discrete changes that hit an economy, the paper’s goals have
some similarity to Brunnermeier and Sannikov (2014). However, the mechanism for generating
financial crises is completely different from that paper. There, the key assumption is that capital can
be used most effectively by financially constrained ‘experts’. By finding the full non-linear solution
for the model’s equilibrium, it is shown how an accumulation of small shocks can trigger a crisis
episode. Here, financial crises occur in the housing market and are caused by the political economy
of monetary policy. These are novel features in a formal model of financial crises.

The model’s theoretical prediction of a credit cycle with credit booms preceding financial crises is
consistent with the empirical evidence in Schularick and Taylor (2012). There is also some evidence
supporting the role of monetary policy in generating credit booms (Jiménez, Ongena, Peydró and
Saurina, 2014).

The normative implications of the paper build on a earlier literature that has explored optimal
monetary policy with incomplete financial markets (Koenig, 2013, Sheedy, 2014). Here, achiev-
ing financial stability requires setting systematically higher interest rates — a central bank that is
‘conservative’ in the sense of giving greater weight to the interests of creditors rather than debtors.

The modelling strategy in the paper is to present a highly stylized model that is stripped down
to the essentials. Everything can be solved analytically without the need for any approximations or
numerical methods, including the constrained optimization of social welfare used to determine the
central bank’s monetary policy. The essential features of the model are heterogeneous agents with
risk aversion, a housing market, nominal debt contracts, aggregate risk, and monetary policy set en-
dogenously to solve a Ramsey problem. The simplest model that allows an exposition of the theory
has overlapping generations of individuals with stylized hump-shaped profiles of non-financial in-
come and the marginal utility from housing over their three-period lives, a stochastic endowment of
consumption goods, and an exogenous supply of housing. This simple model exogenously assumes
incomplete markets, but the main conclusions are robust to an extension where there are also markets
subject to frictions for renting houses and trading equity shares in houses.

The plan of the paper is as follows. Section 2 sets up a model of a credit economy with hous-
ing and incomplete markets. Section 3 analyses the political economy of monetary policy and the
equilibrium with financial crises when the central bank maximizes average household utility. Pol-
icy implications are studied in section 4, where it is shown that monetary policy can implement a
first-best allocation of resources by making financial stability its goal. Section 5 endogenizes incom-
plete markets by extending the analysis to include additional markets subject to frictions. Finally,
section 6 draws some conclusions.
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2 A credit economy with housing and incomplete markets

This section lays out a simple model to illustrate the transmission of monetary policy through risk
premiums and the political economy of its distributional effects. The model is deliberately kept basic
to demonstrate transparently the novel mechanisms at work. A full global non-linear solution method
is required because conventional perturbation methods (of any order) cannot be used: financial crises
lie outside the radius of convergence of the Taylor series expansions of the model’s equations. An
advantage of the simple model proposed here is that both the economy’s competitive equilibrium
and the solution of the policymaker’s Ramsey problem can be found analytically.

2.1 The model

Overlapping generations The economy has overlapping generations of individuals who have de-
terministic lives spanning three discrete time periods. Individuals of different generations are re-
ferred to as the ‘young’, ‘middle-aged’, and ‘old’, indexed by a ∈ {y,m,o}. There is a measure-one
population of each age group in each time period.

Preferences Individuals born at date t have the following lifetime expected utility function:

Ut = logCy,t +βEt [logCm,t+1 +Θ(Hm,t+1− ¯
H)]+β

2Et logCo,t+2, (1)

where Ca,t denotes per-person consumption of a composite good by individuals of age a at date
t. Utility is logarithmic in consumption of goods. The subjective discount factor is β (satisfying
0 < β < ∞), and Et [·] denotes expectations conditional on all date-t information, which are formed
rationally. There is no altruism across generations.

Utility from housing services Ha,t , a continuous variable, is additively separable from consump-
tion.1 The utility function assumes a stylized life-cycle pattern of housing demand that is concen-
trated in middle age. Individuals have an exogenous need for housing services

¯
H at all stages of

life, and receive utility Θ(Hm,t − ¯
H) from housing services in excess of this minimum when middle

aged. The function Θ(H) is strictly increasing, strictly concave, and satisfies the Inada conditions
(Θ′(H) > 0, Θ′′(H) < 0, limH→0 Θ′(H) = ∞, and limH→∞ Θ′(H) = 0). Making these assumptions
provides a simple reason for houses to be traded between the generations.

Endowments The economy is an endowment economy:

Yt = (1+gt)Yt−1 where gt ∈ [
¯
g, ḡ], and Lt = L. (2)

1Conditional on additive separability, logarithmic utility in consumption is required for the existence of a balanced
growth path (see footnote 7 below). Risk aversion is essential to the model because of the central role of risk premiums.
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Real GDP Yt is an exogenous stochastic supply of non-storable composite goods, and Lt = L is
the exogenous fixed supply of housing, which has no maintenance costs and can be interpreted as
‘land’. The growth rate gt of real GDP can be any continuous random variable with bounded support
between

¯
g >−1 and ḡ < ∞. The inelastic supply of land L can be any finite number in excess of the

minimum housing needs 3
¯
H of the measure-three population.

The economy’s endowments of goods and housing are distributed as follows:

yy,t = 0, ym,t = Yt , yo,t = 0, and Hy,t = Ho,t−1, (3)

where ya,t denotes the real non-financial income of individuals of age a at time t, which can be
interpreted as labour income, assuming labour is supplied inelastically. Non-financial income is
assumed to have a stylized life-cycle pattern that is concentrated in middle age. Each middle-aged
person receives an equal share of real GDP (there is aggregate risk, but no idiosyncratic risk), while
the young and the old receive nothing. Making these assumptions provides a simple reason for
individuals to participate in financial markets, namely to borrow to buy houses and consume goods
when young, and to save for retirement when old.

All young individuals receive an equal endowment of housing given by the amount held by the
previous generation of old at the end of their lives, who pass on this housing to the young as an
involuntary bequest.

Since the economy is an endowment economy, the model is silent about the transmission of a
financial crisis to the real economy. Instead, the model is used to explore the causes of crises.

Money Money is used as a unit of account, but the economy is ‘cash-less’ in the sense of having
no physical monetary tokens. The nominal price of a unit of goods is denoted by Pt and the nominal
price of unit of housing by Vt .

Markets and market incompleteness All markets are perfectly competitive and all prices are
fully flexible. The model therefore differs from the ‘nominal rigidities’ approach to generating
real effects of monetary policy. Instead, the crucial friction is market incompleteness. Apart from
housing, the only asset or liability is a one-period nominal bond.2

Let Ba,t denote the quantity of nominal bonds purchased (or issued, if negative) by households
of age a at the end of time period t. Each nominal bond is a riskless claim to one monetary unit at
time t +1. Consequently, there is no option of voluntary default, and the natural borrowing limit is
imposed to ensure there is no involuntary default in any state of the world.3 At time t, the nominal
price of a bond is Qt .

2The one period maturity is without loss of generality given the overlapping generations structure.
3A collateral constraint where borrowing is limited to a given fraction of housing values is not imposed, but it turns

out that borrowing is proportional to housing values in equilibrium even without a binding collateral constraint.
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The bond market is assumed to operate without any explicit financial intermediation by banks.
However, the overlapping generations structure of the economy naturally restricts new lending to
be done only by the current generation of middle aged, who play the role of ‘bankers’, and whose
lending is limited by their net worth.

A key missing market is for securities where payments depend on the realization of house prices
(or the exogenous state of the world more generally). Here, house purchases cannot be financed by
issuing such securities, but the presence of such a market subject to frictions is considered later in
section 5. Utility from housing services can only be obtained through homeownership, and houses
must be purchased and held between t − 1 and t to enjoy utility flows at time t. Another missing
market is a perfect rental market that would allow consumption of housing services to be separated
from homeownership. The presence of a frictional rental market is considered later in section 5.4

The budget identities of the young, middle-aged, and old are respectively:

Cy,t +
VtHm,t+1

Pt
+

QtBy,t

Pt
=

VtHy,t

Pt
; (4a)

Cm,t +
VtHo,t+1

Pt
+

QtBm,t

Pt
= ym,t +

VtHm,t

Pt
+

By,t−1

Pt
; (4b)

Co,t =
Bm,t−1

Pt
. (4c)

The young begin with an endowment of housing but no financial assets. Given their life-cycle income
in (3), they must borrow (By,t < 0) to purchase the housing they will enjoy when middle aged and
to consume. The middle aged earn income, repay their debts, save for retirement (Bm,t > 0), and
then sell some housing to the next generation of young. While old, they consume the value of
their financial assets, leaving no bequests (Bo,t = 0) other than the housing they hold at the end of
their lives. Given non-negativity constraints on consumption and the minimum housing need

¯
H, the

natural borrowing limit that must hold in all states of the world is:

−
By,t−1

Pt
≤ ym,t +

Vt(Hm,t− ¯
H)

Pt
. (5)

Competitive equilibrium The equilibrium concept is standard competitive equilibrium. Given
prices Pt , Vt , and Qt , individual consumption, housing, and financial asset demands maximize life-
time expected utility (1) subject to budget identities (4) with endowments (2) and (3), the minimum
housing need

¯
H, and the natural borrowing limit (5). Given individuals’ optimizing behaviour, prices

4Even in the absence of a rental market, it is conceivable that individuals might hold housing greater than their
consumption of housing services purely as a ‘bubble asset’ with the only returns coming from capital gains or losses.
This possibility is ruled out for now, but it is considered later as a special case of the analysis in section 5.
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adjust to ensure that all markets clear:

Cy,t +Cm,t +Co,t = Yt ; (6a)

Hy,t +Hm,t +Ho,t = Lt ; (6b)

By,t +Bm,t = 0. (6c)

Consumption of goods Ca,t and holdings of housing Ha,t across all individuals must sum to the
economy’s respective endowments Yt and Lt . The net supply of nominal bonds is zero: the retirement
savings of the middle aged must be matched by the borrowing of the young.

Lifetime utility (1) is a strictly concave function and the constraints in (4) are linear in the choice
variables, so first-order conditions are necessary and sufficient for a global maximum. The natural
borrowing limit is equivalent to non-negative consumption, and since logarithmic utility in consump-
tion satisfies the Inada conditions, marginal utility is infinite if the natural borrowing limit binds. This
means (5) does not need to be imposed as an additional constraint.5 The equations characterizing
the solution of the constrained utility-maximization problem are:

Vt

PtCy,t
= βEt

[
Θ
′(Hm,t+1− ¯

H)+
Vt+1

Pt+1Cm,t+1

]
, and Ho,t+1 = ¯

H; (7a)

Qt

PtCy,t
= βEt

[
1

Pt+1Cm,t+1

]
, and

Qt

PtCm,t
= βEt

[
1

Pt+1Co,t+1

]
. (7b)

The demand for housing is characterized by the equations in (7a), and borrowing and saving deci-
sions by the Euler equations in (7b).

A competitive equilibrium is a set of prices Pt , Vt , Qt , and quantities Ca,t , Ha,t , Ba,t that satisfy
(4), (5), (6), and (7), taking as given the exogenous variables ya,t , Yt , and Lt from (2) and (3). There
are many possible competitive equilibria because prices Pt , Vt , and Qt are in terms of a monetary unit
of account. It will be seen that equilibria differ not only in nominal prices but also in real quantities
because financial markets are restricted to nominal bonds.

Instrument of monetary policy The role of monetary policy is to provide a nominal anchor to
the economy by pinning down one nominal price and the associated competitive equilibrium. The
instrument of monetary policy is the nominal interest rate it paid by the central bank on reserves that
are perfect substitutes for risk-free nominal bonds.6 For both reserves and privately issued nominal

5Formally, imposing the constraint (5) would mean adding its Lagrangian multiplier to the marginal utility of con-
sumption in the first-order conditions. The multiplier is only positive when the constraint binds, which occurs only when
the marginal utility of consumption is infinite, so this would not change the solution of the first-order conditions.

6The nominal interest rate it is not subject to the zero lower bound here because there is no physical cash.
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bonds to be willingly held, the nominal bond price Qt must satisfy:

Qt =
1

1+ it
. (8)

A crucial assumption is that the central bank does not have access to lump-sum taxation or transfers.
For consistency with this limit on the central bank’s instruments, it manages its balance sheet so
that no gains or losses occur in equilibrium, matching the positive issuance of reserves exactly with
purchases of risk-free nominal bonds. Reinterpreting Ba,t as an individual’s net holdings of nominal
bonds plus reserves, the budget identities (4) remain valid. Equilibrium in the markets for nominal
bonds and reserves requires the no-arbitrage condition (8) and equation (6c), which is unchanged
from before because reserves are exactly matched by central-bank bond purchases.

2.2 Properties of a competitive equilibrium

Before considering the choice of monetary policy, some key features of any competitive equilibrium
of the model are derived.

Asset returns The main focus of this paper is the returns on housing and bonds. The ex-post
nominal returns between t−1 and t are denoted by Rt for nominal bonds and R̂t for housing:

Rt =
1

Qt−1
−1, and R̂t = πt +

Zt

Vt−1
with πt =

Vt−Vt−1

Vt−1
and Zt = Θ

′(Hm,t− ¯
H)PtCm,t . (9)

The return on housing is the sum of capital gains πt , that is, house-price inflation (Vt −Vt−1)/Vt−1,
and an imputed rental yield Zt/Vt−1. The formula for the imputed rent Zt above is such that the
housing return satisfies the asset pricing condition 1= βEt [(1+ R̂t+1)PtCy,t/Pt+1Cm,t+1)] given (7a).
The same equation holds for the nominal bond return, 1 = βEt [(1+Rt+1)PtCy,t/Pt+1Cm,t+1)], given
(7b). The expected excess return ξt of housing over nominal bonds is defined by:

ξt ≡
Et R̂t+1−EtRt+1

1+EtRt+1
, which satisfies ξt =−Covt

[
R̂t+1,

βPtCy,t

Pt+1Cm,t+1

]
. (10)

The variable ξt is given by the usual conditional covariance formula for a risk premium, noting that it
is the covariance between the nominal return on housing and the nominal stochastic discount factor
of buyers of housing because bonds are risk free in nominal terms, but not necessarily in real terms.

Real returns on bonds and housing in terms of consumption goods are denoted by rt and r̂t ex
post, and expected real returns by ρt and ρ̂t ex ante:

rt ≡
1+Rt

1+ γt
−1, r̂t ≡

1+ R̂t

1+ γt
−1, with γt =

Pt−Pt−1

Pt−1
, ρt ≡ Etrt+1, ρ̂t = Et r̂t+1. (11)
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The inflation rate for goods prices Pt is denoted by γt .

Ratios It is convenient to define variables representing some key ratios that remain stationary:

ca,t ≡
Ca,t

Yt
, ht ≡

Vt(Hm,t− ¯
H)

Ptym,t
, dt ≡−

QtBy,t

PtYt
, and bt ≡−

By,t−1

Vt(Hm,t− ¯
H)

. (12)

Consumption of each age group relative to GDP is ca,t , the ratio of the value of house purchases to
income is ht , the debt-to-GDP ratio is dt , and bt summarizes the balance sheets of the middle aged,
being a ratio of their debt to the value of their housing assets in excess of minimum housing needs.

Equilibrium conditions Goods-market equilibrium (6a) in terms of ca,t from (12) is:

cy,t + cm,t + co,t = 1. (13)

Using (2) and (3), the other equilibrium conditions (4), (6b), (6c), (7), and (8) are stated equivalently
as the system of equations below in terms of the new variables from (9), (11), and (12):

bt =
(1+ rt)dt−1

(1+gt)ht
, and

1+πt

1+ γt
=

(1+gt)ht

ht−1
; (14a)

cy,t +ht = dt , cm,t +dt = 1+(1−bt)ht , and co,t = btht ; (14b)

ht

cy,t
= βθ +βEt

[
ht+1

cm,t+1

]
, where θ ≡ (L−3

¯
H)Θ′(L−3

¯
H); (14c)

1
cy,t

= βEt

[
1+ rt+1

(1+gt+1)cm,t+1

]
, and

1
cm,t

= βEt

[
1+ rt+1

(1+gt+1)co,t+1

]
; (14d)

1+ rt =
1+ it−1

1+ γt
, (14e)

and the natural borrowing limit (5) is equivalent to the following inequality:

1+(1−bt)ht ≥ 0. (15)

The equations in (14a) are accounting identities that link together the newly defined variables. The
equations in (14b) are the budget identities (4) of the young, middle aged, and old after impos-
ing housing- and bond-market clearing. Equation (14c) specifies optimal housing choices (7a) in
terms of a parameter θ (satisfying 0 < θ < ∞) that summarizes housing preferences Θ(·), needs

¯
H,

and availability L. The equations in (14d) are the Euler equations (7b) for saving and borrowing
behaviour. Last, (14e) is the Fisher equation defining the ex-post real return on nominal bonds.

There are a total of ten equations in (13) and (14). However, (13) is redundant by Walras’ law,
being implied by the budget identities (14b), leaving nine independent equations. Real GDP growth
gt is exogenous, and there are ten other variables including the monetary policy instrument it . This

10



leaves one degree of freedom that is resolved by adding an equation to describe monetary policy.
Different monetary policies imply different paths of nominal prices, and without loss of generality,
let these be indexed by the state-contingent path of nominal house-price inflation πt . The variable πt

can depend on the exogenous state of the world at each date t, where the state space includes both
the fundamental gt , real GDP growth, and also a non-fundamental exogenous random variable ψt

independent of gt and continuously distributed, which can be interpreted as a ‘sunspot’.

Behaviour of lenders Total lending is measured by the debt-to-GDP ratio dt . All lending is done
by the current middle-aged generation.

Step 1 The debt accounting identity in (14a), the budget identity of the old in (14b), and the bond
Euler equation of the middle aged in (14d) imply dt = βcm,t .

PROOF See appendix A.1. �

The finding that lending is proportional to the consumption of the middle aged implies that they lend
a constant fraction of their net worth. This proportionality is because income and substitution effects
cancel out with logarithmic utility in consumption for those who will be retirees in the future.7

Given net worth, lending does not depend on either the expected real return on bonds ρt =Etrt+1 or
uncertainty about the real return rt+1. A fall in ρt or a rise in uncertainty about rt+1 both discourage
lending (substitution effect), but both also make the middle-aged worse off, leading them to consume
less and lend more (income effect).

Behaviour of borrowers The young choose consumption and house purchases funded through
borrowing. This means they have a portfolio choice problem: how much debt to take on relative to
the housing assets they acquire, as measured by the leverage ratio λt =−QtBy,t/Vt(Hm,t+1− ¯

H).

Step 2 The budget identity of the young in (14b) and the housing Euler equation (14c), combined
with lenders’ optimal behaviour in Step 1, imply that λt = λ , where λ = (1−δ/β )−1 for a constant
δ satisfying 0 < δ < β that depends only on β and θ . The leverage ratio λ is decreasing in both
patience β and the housing parameter θ .

PROOF See appendix A.2. �
7If utility from consumption of goods has the general isoelastic form (C1−κ−1)/(1−κ) instead of logC when κ= 1,

but remains additively separable from housing in (1), then the equilibrium conditions (14c) and (14d) are replaced by:

ht

cκy,t
= βθYκ−1

t +βEt

[
(1+gt+1)

1−κht+1

cκm,t+1

]
,

1
cκy,t

= βEt

[
1+ rt+1

(1+gt+1)κcκm,t+1

]
,

1
cκm,t

= βEt

[
1+ rt+1

(1+gt+1)κcκo,t+1

]
,

where 1/κ is the elasticity of intertemporal substitution. The other equilibrium conditions in (14) remain unchanged.
By solving these equations in the absence of any uncertainty and with non-zero steady-state real growth gt = g 6= 0,
the existence of a steady-state equilibrium for the house price-to-income ratio ht , the debt-to-GDP ratio dt , and the real
interest rate rt requires κ = 1. There is no balanced growth path in the general case κ 6= 1.
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A constant leverage ratio means that spending on house purchases is proportional to lending. Since
the supply of housing is inelastic, a corollary is that the debt-to-GDP ratio dt determines the house
price-income ratio ht . Lending and house prices are perfectly correlated, but unlike with a collateral
constraint, causation goes from lending to house prices. Given the budget identity of the young, a
further corollary is that borrowed funds are divided in constant shares between those used to finance
house purchases and those used to pay for consumption:

ht =
1
λ

dt , and cy,t =

(
1− 1

λ

)
dt . (16)

The constant leverage ratio is consistent with optimal behaviour for individuals because housing does
not hedge consumption risk in this environment. Since lending is proportional to the consumption
of the middle aged (Step 1), a constant leverage ratio makes future house prices ht+1 perfectly co-
move with lending dt+1 and consumption cm,t+1. Moreover, with logarithmic utility, the imputed
rental value is also proportional to cm,t+1 (see 9), which corresponds to the constant term θ in
(14c). Consequently, the optimality condition for housing (14c) is satisfied when house prices ht are
proportional to consumption cy,t .8

Since lending is proportional to the value of houses at the time of purchase, the ex-post level
of debt relative to the value of houses at time t varies only with the nominal interest rate it−1 and
nominal house-price inflation πt . Using (14a), the Fisher equation (14e), and (16):

bt = λ
1+ it−1

1+πt
. (17)

The realized balance sheet of the middle aged improves (lower bt) with greater house-price inflation
πt or lower borrowing costs it−1.

Equilibrium in asset markets In addition to borrowers’ optimal portfolio choice implying that
borrowing and house purchases are proportional, their overall demand for loans can be characterized
and combined with the behaviour of lenders to obtain equilibrium in asset markets. This equilibrium
is conditional on the as-yet-undetermined path of nominal house-price inflation πt .

Step 3 Given any path of nominal house-price inflation, there exists a unique equilibrium of the
housing and bond markets (combining Step 1, Step 2, and borrowers’ bond Euler equation in 14d):

it =
1

βδEt [(1+πt+1)−1]
−1, and Etbt+1 =

λ

βδ
. (18)

8To see that the constant solution of (14c) is the unique solution, observe that if the share of loans going to house
purchases were higher then ht/cy,t would rise, which requires a higher expected value of ht+1/cm,t+1 and entails an even
higher share of loans for house purchases in the future. Similarly, a lower share would entail an even lower share is
expected in the future. Hence any solution of (14c) other than the constant leverage ratio would imply economically
meaningless lending shares at some future date.
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The coefficient δ is such that δ < 1 and 0 < βδ < 1, and the combined coefficient βδ is increasing
in patience β and decreasing in the housing parameter θ . The equilibrium returns on bonds and
houses from (9) and the expected excess housing return (10) satisfy:

Rt = it−1, R̂t =
1+πt

βδ
−1, and ξt = Et [1+πt+1]Et [(1+πt+1)

−1]−1. (19)

The housing risk premium ξt is strictly positive for any non-degenerate probability distribution of
house-price inflation πt+1 (conditional on date-t information) and increases with a mean-preserving
spread of πt+1; it would be zero if πt+1 were perfectly predictable at date t.

PROOF See appendix A.3. �

The nominal return Rt on bonds is the predetermined interest rate it−1, which is the sense in which
bonds are risk-free in nominal terms. The predetermined nominal payments on bonds are uncorre-
lated with any unpredictable changes in homeowners’ consumption expenditure, which means that
taking on nominal mortgage debt to buy houses exposes homeowners to greater financial risk. The
expected return on housing must therefore be greater than the return on bonds for individuals to be
willing to borrow money to buy houses.

Owing to the comovement between house prices and the consumption of homeowners, the prob-
ability distribution of nominal house-price inflation πt is a sufficient statistic for the risk borne by
borrowers (and the overall housing return, comprising imputed rents as well as capital gains or losses,
is proportional to house-price inflation). The housing risk premium ξt can thus be interpreted as the
compensation to borrowers for absorbing house-price risk while promising to make fixed nominal
debt repayments. The risk premium increases with uncertainty about nominal house-price inflation,
and is only zero in the special case where house-price inflation is perfectly predictable and houses
become equivalent to bonds as financial assets.

Given a state-contingent path of nominal house-price inflation πt , the equilibrium interest rate
is (18).9 Every sequence of probability distributions of πt corresponds to a different competitive
equilibrium. These different state-contingent paths of the nominal variable πt can be interpreted as
different monetary policy regimes because πt cannot be determined without reference to monetary
policy. Notice that nominal interest rates it and expected inflation Etπt+1 generally do not move
one-for-one across monetary policy regimes because of differences in housing risk premiums ξt :

1+ it
1+Etπt+1

=
1

βδ (1+ξt)
. (20)

9In an infinitely-lived representative-agent version of the model with discount factor β < 1, logarithmic utility in
consumption, and additively separable utility from housing, equation (18) would hold with δ = 1. Thus, the coefficient
δ < 1, implying a higher interest rate all else equal, captures the effect of the overlapping generations structure where
the young must borrow to buy houses. This effect would be present even if markets were complete (see section 5).
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This logic points to a portfolio balance channel of monetary policy transmission through risk premi-
ums even in the absence of any unconventional balance-sheet policies by the central bank.10

Financial conditions The balance sheets of the middle aged depend on interest rates it and house-
price inflation πt . The following measure φt of financial conditions is a sufficient statistic for the
state of balance sheets, which determines how much lending can be done by the middle aged:

φt = 1−βδ
1+ it−1

1+πt
, implying bt =

λ

βδ
(1−φt). (21)

Financial conditions φt are increasing in asset prices and decreasing in interest rates. Equation (18)
shows that interest rates settle in equilibrium at the point where the expected value of the balance-
sheet variable bt is λ/βδ , meaning that the expected ratio of debt obligations to assets held is always
constant. Every competitive equilibrium thus has expected financial conditions one period ahead
equal to a constant, and φt is defined in such a way in (21) that this expected neutral value is zero
without loss of generality. Formally, φt must be a martingale difference sequence in equilibrium,
with realized values determined by the state-contingent path of nominal house-price inflation:

Et−1φt = 0 with φt ∈ [−∞,1], where φt =−
(1+πt)

−1−Et−1
[
(1+πt)

−1]
Et−1 [(1+πt)−1]

. (22)

The choice of monetary policy regime can generate any probability distribution of financial con-
ditions satisfying Et−1φt = 0 with support [−∞,1] as a competitive equilibrium. Knowing this
probability distribution is sufficient to calculate the housing risk premium ξt , which is given by
ξt =Et [φt+1/(1−φt+1)]. This is the expectation of a convex function of financial conditions, which
increases with any spread of financial conditions φt+1 around its mean value of zero.

The relative price of housing The characterization of a competitive equilibrium is completed by
imposing the remaining equilibrium condition, the budget identity of the middle aged, to determine
the relative price of housing Vt/Pt and thus the house price-to-income ratio ht . Step 1 shows that the
lending done by the middle aged is proportional to their consumption. Together with their budget
identity in (14b), lending as measured by the debt-to-GDP ratio dt is proportional to the net worth of
middle-aged lenders as a fraction of GDP, denoted by nt = (ym,t +Vt(Hm,t− ¯

H)/Pt +By,t−1/Pt)/Yt :

dt =
β

1+β
nt , where nt = 1+(1−bt)ht . (23)

10It is analogous to the more-familiar idea that monetary policy affects the inflation risk premium between nominal
and inflation-indexed bonds. Here, the same logic applies to the difference in return between houses and nominal bonds,
though quantitatively the housing risk premium is likely to be larger than the inflation risk premium because house prices
are more volatile than goods prices, both empirically and in the model here.
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With house prices determined by lending (see 16), but also affecting lenders’ net worth in (23) and
thus feeding back into lending, the equilibrium value of ht is the fixed point of the equation:

ht =
β

λ (1+β )

(
1+
(

1− λ

βδ
(1−φt)

)
ht

)
. (24)

The solution for ht is a function of financial conditions φt and parameters. An improvement in
financial conditions φt lowers bt (see 21) and improves net worth nt (see 23) by a fraction λ/βδ of
ht . A unit increase in net worth nt raises ht by β/λ (1+β ), so the direct effect of a unit increase in
φt is an increase of ht by 1/δ (1+β ) percent. However, there is also a feedback effect from ht to nt

and then to dt and ht . Taking account of this effect in equation (24), the semi-elasticity of ht with
respect to financial conditions evaluated at the mean value of φt is:

α =
∂ loght

∂φt

∣∣∣∣
φt=Eφt

=

β

λ (1+β )
λ

βδ

1− β

λ (1+β )

(
1− λ

βδ

) .
The term α captures how much a shock to financial conditions working through the balance sheets
of lenders (the ‘financial accelerator’) affects real lending and the relative price of housing.

Step 4 For a given path of financial conditions φt consistent with (22), there is a unique competitive
equilibrium with house price-income ratio ht = αβδ/λ (1−αφt), where α = 1/(1+δ +δ 2). The
value of α lies between 1/3 and 1, and is increasing in the housing parameter θ and the distance of
the discount factor β from 1. Equilibrium net worth is nt = α(1+β )δ/(1−αφt) and the debt-to-
GDP ratio is dt = αβδ/(1−αφt).

PROOF See appendix A.4. �

Using (23), the natural borrowing constraint (15) is equivalent to lenders never becoming bankrupt
(non-negative net worth nt ≥ 0). This condition is always met in equilibrium, so (15) holds.

An improvement in financial conditions raises the equilibrium house price-income ratio, debt-to-
GDP ratio, and the net worth of lenders, with the semi-elasticities all given by α . From the definition
in (12), a larger value of ht means a higher relative price of housing. The positive relationship
between ht and financial conditions φt implies that variation in nominal house prices reflects changes
in the relative price of housing in same direction, with correspondingly smaller variation in nominal
goods prices. Given nominal house-price inflation πt and real GDP growth gt , the rate of nominal
goods-price inflation γt implied by Step 4 can be obtained from (11), (12), and (21):

γt =
((1−α)(1+πt)+αβδ (1+ it−1))(1+πt−1)

((1−α)(1+πt−1)+αβδ (1+ it−2))(1+gt)
−1. (25)

The larger is α , the less responsive are nominal goods prices to a shock to nominal house prices.
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Note that there is an important asymmetry in how financial conditions affect ht , which shows up
in the link (25) between house-price inflation πt and goods-price inflation γt . The ratio ht is bounded
above no matter how expansionary are financial conditions: extremely high realizations of house-
price inflation are associated with extremely high realizations of goods-price inflation. However,
there is in principle no limit to how small ht could become for low realizations of financial conditions
that drive lenders close to bankruptcy: a collapse in nominal house prices thus means a collapse in
the relative price of housing and not a similar collapse in goods prices.

Real returns on assets Conditional on the monetary policy regime and the distribution of financial
conditions φt it implies, the results of Step 3 and Step 4 characterize the equilibrium values of all
prices, and from this the real returns on bonds and housing are calculated and the associated levels of
consumption of each generation. The ex-post real returns on bonds rt+1 and housing r̂t+1 measured
relative to the economy’s growth rate gt+1 follow from (14a), (14e), Step 3, (21), and Step 4:

1+ rt+1

1+gt+1
=

(1+ it)ht+1

(1+πt+1)ht
=

(1−αφt)(1−φt+1)

βδ (1−αφt+1)
; (26a)

1+ r̂t+1

1+gt+1
=

ht+1

βδht
=

(1−αφt)

βδ (1−αφt+1)
. (26b)

Result 1 Take any distribution of financial conditions φt+1 consistent with a competitive equilibrium
(22). A weighted average of the expected real returns on housing and bonds depends only on ex-
pected real GDP growth and parameters, that is, (1−α)E[(1+ ρ̂t)/(1+Etgt+1)]+αE[(1+ρt)/(1+
Etgt+1)] = 1/βδ . For any non-degenerate distribution of φt+1, the expected real return on housing is
greater than the expected real real return on bonds, that is,E[(1+ r̂t+1)/(1+gt+1)]> 1/βδ >E[(1+
rt+1)/(1+gt+1)] (these two terms have a weighted average equal to 1/βδ , and are identical if φt+1

has a degenerate distribution). A spread of financial conditions φt+1 increases the expected housing
return Et [(1+ r̂t+1)/(1+gt+1)] and lowers the expected bond return Et [(1+ rt+1)/(1+gt+1)].

PROOF See appendix A.5. �

These findings show that a monetary policy regime with a greater housing risk premium, and thus
a larger gap between the expected returns on housing and bonds, must correspond in equilibrium to
both a lower expected real bond return and a higher expected real housing return.

The behaviour of the relative price of housing is crucial in understanding these claims. If ht were
fixed, it can be seen from (26a) that the real bond return would be proportional to (1+ it)/(1+πt+1),
the expected value of which is a constant 1/βδ using (18). This reflects the result that whatever
happens to nominal house price risk, the nominal interest rate adjusts so that the expected ratio of
debt repayments to housing values remains stable (Etbt+1 = λ/βδ ). But the relative price ht is not
constant, and when nominal interest rates fall owing to a greater risk of extreme realizations of house
price inflation, this does not translate into an equivalent increase in the risk of extreme realizations of
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goods-price inflation (see 25). Specifically, the nominal interest rate might be low and the housing
risk premium high because leveraged homeowners are worried about a very large drop in house
prices. However, if that event were to occur, it would not mean a huge drop in goods prices, which
is what would be needed to avoid lower expected real bond returns.

To understand why a greater housing risk premium means both a fall in real bond returns and

a rise in real housing returns, it is important to appreciate that monetary policy in the environment
studied here has no special ability to raise or lower real returns across all assets. The overall real
return on assets is determined by fundamentals (real GDP growth and preferences) because real
returns ultimately translate into consumption. If everyone’s real return were to increase or decrease,
aggregate consumption demand would be inconsistent with the economy’s supply of goods. Note
(14a) and (14b) imply co,t = ((1+ rt)/(1+ gt))dt−1; Step 1, (16), (26b), and the expression for λ

from Step 2 imply cm,t = δλ ((1+ r̂t)/(1+ gt))ht−1 and cy,t = δ 2λ ((1+ r̂t)/(1+ gt))ht−1. Given
parameters, past outcomes, and current fundamentals gt , goods-market equilibrium (13) requires that
any increase in the real housing return r̂t must be matched by a decrease in the real bond return rt .

Each generation’s consumption associated with real returns (26a) and (26b) is found by using
the formulas above together with Step 4:

cy,t =
αδ 2

1−αφt
, cm,t =

αδ

1−αφt
, and co,t =

α(1−φt)

1−αφt
. (27)

Young and middle-aged consumption are strictly convex functions of financial conditions φt , while
the consumption of the old is a strictly concave function. For any non-degenerate distribution of φt ,
Jensen’s inequality implies Ecy,t > c∗y, Ecm,t > c∗m, and Eco,t < c∗o, where c∗y = αδ 2, c∗m = αδ , and
c∗o = α are the values of these consumption ratios if there is no uncertainty about φt .

Long-run real effects of monetary policy The results above show that different monetary policy
regimes imply different average age-specific levels of consumption. This reflects the fact that there
is a range of housing risk premiums across policy regimes and thus different average levels of real
bond and housing returns. Low real bond returns hit the pension savings of the old, while high
housing returns boost the portfolios of the middle aged. Since the young depend on loans from the
middle aged, their consumption moves in the same direction.

A corollary of Result 1 is that there is no meaningful notion in the incomplete-markets economy
of a ‘natural rate of interest’ that is invariant to monetary policy.11 The market-clearing real interest
rate (and its long-run average) is dependent on the monetary policy regime in place.

11Since there is no nominal rigidity in the economy considered here, the concept of the natural rate of interest coincides
with the actual real interest rate.
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3 Financial crises and monetary policy

Having set up the model and explained the channel through which monetary policy has real effects
on the economy, this section develops the key claim that the interaction between incomplete markets
and the political economy of monetary policy creates the conditions for financial crises to occur.

3.1 The political economy of monetary policy

Distributional effects of monetary policy The first step is to understand how the choice of mon-
etary policy regime affects different groups in the economy. Individuals are borrowers and savers at
different points in their lifetimes, and so may benefit from a policy regime at some ages and lose out
at others. To be precise about this, define continuation expected utilities Ua,t for each age group a:

Uy,t =Ut , Um,t = logCm,t +Θ(Hm,t− ¯
H)+βEt logCo,t+1, and Uo,t = logCo,t , (28)

which include all current and expected future terms from the lifetime utility function (1).

Result 2 For all competitive equilibria, individuals fall into one of two groups in a particular period
of life: a group labelled ‘savers’ who lose from lower real bond returns in that period, or a group la-
belled ‘borrowers’ who gain from lower real interest rates on bonds and higher real returns on hous-
ing, even though this is associated with greater uncertainty about financial conditions. Formally,
the expected continuation utilities (28) satisfy Et−1Uy,t = wB,t + βEtwB,t+1 + β 2EtwS,t+2 + t.i.p.,
Et−1Um,t = wB,t +βEtwS,t+1 + t.i.p., and Et−1Uo,t = wS,t + t.i.p., where wS,t = Et−1[log(1−φt)−
log(1−αφt)] and wB,t =−Et−1[log(1−αφt)] denote respectively the welfare of the groups of savers
(S) and borrowers (B), and t.i.p. refers to terms independent of the monetary policy regime. Distri-
butions of φt with lower expected real bond returns imply lower wS,t and higher wB,t .

PROOF See appendix A.6. �

As shown in Result 1, a change to the monetary policy regime can lower the expected real return
between t− 1 and t on bonds and raise the expected real return on housing if it is associated with
a spread of financial conditions φt . It is already known (see 27) that this lowers the expected con-
sumption of the old. It is also bad for the old because they are risk averse and the spread of financial
conditions increases uncertainty about asset returns.

For the middle-aged, lower expected real bond returns and higher expected real housing returns
are good for their portfolios on average, raising their average level of consumption. However, be-
cause of the associated spread of financial conditions, their leveraged position in housing exposes
them to greater risk coming from shocks to house prices, which they dislike owing to risk aversion.
In utility terms, it turns out that the level effect on average returns always dominates the risk effect in
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the environment considered here.12 The middle aged therefore favour monetary policy regimes with
cheap credit and high average housing returns, even though they dislike risk and know such policy
regimes must feature greater risk in equilibrium.

Since the young are dependent on loans from the current middle-aged generation (the ‘bankers’
in the economy), their welfare depends on the financial health of that generation. Thus, the interests
of the young and middle aged are aligned and both favour monetary policy regimes with low bond
returns and high housing returns. This group is referred to as ‘borrowers’ as a shorthand, even though
it includes those taking out new loans (the young) as well as those repaying past loans (the middle
aged). Opposed to them are the old, referred to as ‘savers’, who would like high bond returns.

Social welfare function A key idea of this paper is that monetary policy is not arbitrary — to be
chosen, a monetary policy regime must be in the interests of some group of individuals. The social
welfare function Wt aggregates individuals’ preferences over outcomes from date t onwards:

Wt = Et−1

[
Ωt−2|tUo,t +Ωt−1|tUm,t +

∞

∑
`=0

Ωt+`|tUy,t+`

]
, (29)

where Ωt+`|t denotes the weight assigned from date t to the expected continuation utility (28) of
individuals born at date t + ` (` = −2,−1,0,1, . . .). The social welfare function is based on ex-
ante expectations of utility, hence the presence of the conditional expectation operator Et−1[·]. The
weights Ωt+`|t must be positive and non-stochastic conditional on information known at t− 1, en-
suring all individuals receive some weight and are treated as autonomous during their lifetimes.

Ramsey problem The monetary policy regime is chosen with social welfare as the objective,
conditional on some weights assigned to different generations. Monetary policy is the solution of a
Ramsey problem in that the central bank can only choose allocations that are competitive equilibria
of the economy for some policy regime, that is, those satisfying the equilibrium conditions (14)
for some path of nominal house-price inflation {πt}. Formally, state-contingent πt are chosen from
some date s for k time periods to make social welfare Ws (29) as high as possible, where k denotes
the length of time for which there is commitment to these choices made at date s:

sup
{πt}s+k−1

t=s

Ws subject to (14) for all t, and {πt}∞
t=s+k taken as given. (30)

The constrained optimization problem is stated in terms of finding the supremum of social welfare
rather than the maximum because the central bank is choosing among nominal prices that are com-
petitive equilibria, which cannot be restricted to a compact set. The state-contingent path of inflation

12This might be surprising because the difference in housing and bond returns is simply the risk premium that com-
pensates buyers of housing for greater risk at the margin. However, those real returns in general equilibrium depend on
the financial accelerator channel analysed in Step 4, which gives rise to pecuniary externalities.
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πt beyond the period of commitment t = s, . . . ,s+ k−1 is taken as given (except in the case of per-
petual commitment, k = ∞). This is a Markovian restriction that means the future path is assumed
to depend on the exogenous state of the world rather than on histories of endogenous variables.

Past values of πt are predetermined in the problem (30), but monetary policy must respect equi-
librium conditions at all dates t, even those outside the period of commitment. This means that
unlike ‘discretionary policymaking’, it is not allowed here to choose policy regimes ex post that
violate equilibrium conditions related to past expectations of current policy. There is always some
minimum degree of commitment assumed in (30), though it may not be perpetual commitment.

Step 5 Existence of a solution of the Ramsey problem requires ∑
∞
t=s Ωt|s < ∞ and is guaranteed by

∑
∞
t=s tΩt|s < ∞. The solution can be found by solving the following simpler problem to determine

the state-contingent value of financial conditions φt at each date t = s, . . . ,s+ k−1:

sup
φt

(
(1−ωt|s)wB,t +ωt|swS,t

)
subject to Et−1φt = 0 and φt ∈ [−∞,1], (31)

where ωt|s = β min{2,t−s}Ωt−2|s/(Ωt|s+β min{1,t−s}Ωt−1|s+β min{2,t−s}Ωt−2|s) is a number strictly be-
tween 0 and 1 that gives the relative weight on the welfare of savers at date t. The weighted average of
borrowers’ and savers’ welfare wt =(1−ωt|s)wB,t +ωt|swS,t =Et−1

[
ωt|s log(1−φt)− log(1−αφt)

]
depends only on the probability distribution of financial conditions φt . Social welfare is given by
Ws = ∑

∞
t=s ∆t|sEs−1wt + t.i.p., where ∆t|s = Ωt|s +β min{1,t−s}Ωt−1|s +β min{2,t−s}Ωt−2|s.

PROOF See appendix A.7. �

Solving the Ramsey problem turns out to be simpler than it might first appear. The solution can be
broken down into a series of independent problems for the monetary policy regime in place at each
date t — even when commitment extends over several periods. Each date’s policy regime is selected
with a weighted average of the expected utilities wB,t and wS,t of the groups of borrowers and savers
at that date as the objective. This simplification is possible because each period’s expected utilities
depend solely on the probability distribution of financial conditions φt at that date (see Result 2), and
the only requirement for financial conditions to be a competitive equilibrium is Et−1φt = 0. There
are no intertemporal constraints linking the values of financial conditions at different dates, and thus
no difference between a multi-period commitment and a series of one-period commitments, unless
the relative weight on savers ωt|s changes with the starting dates s of the commitments.

Democracy The political pressure that shapes the monetary policy regime takes the form of ‘democ-
racy’, interpreted as assigning an equal weight to all individuals currently alive, and with no com-
mitment to the policy regime in place in the future. Formally:

Ωt|t−2 = Ωt|t−1 = Ωt|t with any Ωt+`|t > 0 such that
∞

∑
`=0

`Ωt+`|t < ∞, and k = 1. (32)
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This implies ωt|t = 1/3 for all t irrespective of the weights assigned to unborn future generations,
which can be chosen to be any positive numbers such that the social welfare is well defined.13

The baseline assumption makes the unweighted mean welfare of all individuals currently alive
the objective of the monetary policy regime. It is also possible to consider the case where the
welfare of the median individual is the objective, an application of the median voter theorem which
has stronger political-economy foundations. That extension is taken up in section 5.

3.2 Financial crises

The solution of the Ramsey problem with a democratic social welfare function turns out to have a
very surprising feature. The monetary policy regime adopted leads financial conditions φt to have
a two-point discrete probability distribution. This means there are endogenously two regimes for
financial conditions — boom and bust — with stochastic transitions between the two over time.

Regime switching Since Et−1φt = 0 and φt ∈ [−∞,1] must hold in any competitive equilibrium,
the general form of a two-point discrete distribution of financial conditions is:

φt =

φ̄t with probability 1− εt

¯
φ t with probability εt

, where φ̄t =
xt

1+ xt
and

¯
φ t =−

(1− εt)xt

εt(1+ xt)
. (33)

The terms xt ≥ 0 and 0 < εt < 1, which are known conditional on information available at date t−1,
describe the probability distribution of financial conditions at date t. Which of the two values of φt

is drawn depends on the history of the exogenous state of the world {gt ,ψt ,gt−1,ψt−1, . . .} in such a
way that the event φt =

¯
φ t has probability εt conditional on what is known at date t−1.

For any xt > 0, there are two possible realizations of φt : a boom φ̄t > 0 (probability 1− εt)
with a high realization of house-price inflation πt relative to the interest rate it−1, and a bust

¯
φ t < 0

(probability εt) with a low realization of πt relative to it−1 (see 21). The term xt measures how
expansionary are financial conditions in the boom relative to average, and thus how much the two
regimes differ (in the special case xt = 0 there is a single regime with stable financial conditions).
As shown in Step 4, these fluctuations in financial conditions have real consequences. In a boom,
the debt-to-GDP ratio is d̄t = αβδ (1 + xt)/(1 + (1− α)xt) and the house price-income ratio is
h̄t = αβδ (1+ xt)/λ (1+ (1−α)xt), both of which are larger than their corresponding values

¯
dt

and
¯
ht in a bust. Both d̄t and h̄t increase with the magnitude xt of the boom.

Rare events Not only does the Ramsey problem solution endogenously generate two regimes, it
also features a stark asymmetry: the bust regime is a rare event with a small but positive probability

13It is not possible to give all current and future individuals equal weight and solve the Ramsey problem with full
commitment because the social welfare function would not be well defined.
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εt . For a given level of expansion xt in the boom, the low probability of a bust means that when one
does happen, the consequences are severe. Since φt must have mean zero in equilibrium, a smaller
value of εt requires a more negative

¯
φ t in the bust regime (see 33). As εt shrinks towards zero, a bust

features an increasingly large drop in house-price inflation πt , the house price-income ratio ht , and
the debt-to-GDP ratio dt . The bust regime can thus be interpreted as a financial crisis, and the other
normal regime (probability near one) with expansionary financial conditions as a long credit boom.

Result 3 The solution of the Ramsey problem (30) with democratic social welfare (32) has rare
but severe financial crises occurring in equilibrium. Formally, financial conditions φt has a two-
point probability distribution (33) with xt = x = (3α−1)/(1−α)> 0 and εt small but positive (the
supremum is approached as εt becomes arbitrarily small), with any mapping from the exogenous
state of the world to the realization of φt consistent with probability εt of a financial crisis.

PROOF See appendix A.8. �

The equilibrium behaviour of house-price inflation implied by this result is seen from 1 + πt =

(1+Et−1πt)/(1+ ξt−1)(1−φt) using (18) and (21). When εt is small, the probability distribution
(33) implies ξt−1 = xt , and since the equilibrium value of xt is constant, it follows that 1+ πt =

(1+Et−1πt)/(1+ x)(1−φt). The small but positive value of εt together with the positive constant
x in (33) means the equilibrium features long periods of tranquillity with steady growth of house
prices in line with expectations that are very occasionally interrupted by sudden reversals where
house prices drop sharply. A typical realization of the path of nominal house-price inflation for small
but positive εt and a constant average rate of nominal house-price inflation is shown in Figure 1.

Interestingly, the equilibrium has a probability distribution with the type of ‘rare events’ that
have been emphasized in the literature on asset pricing (see, for example, Barro, 2006). Unlike many
models studying imperfections in financial markets (Bernanke, Gertler and Gilchrist, 1999, Kiyotaki
and Moore, 1997), the economy undergoes occasional large discrete jumps rather than continuous
small fluctuations in the neighbourhood of a steady state. It is important to emphasize that the
probability distribution (33) is endogenously generated by the interaction of incomplete markets and
the political economy of monetary policy. Its features do not derive from the probability distributions
of the exogenous variables gt and ψt .

Fat tails, negative skewness, and excess kurtosis The monetary policy regime solving the Ram-
sey problem gives rise to a unique equilibrium for the probability distribution of financial conditions
φt with long periods of expansion punctuated by rare and dramatic collapses in asset prices. The
probability distribution of financial conditions in (33) has a ‘fat tail’ in the sense that second- and
higher-order moments of the distribution of φt such as E[φ 2

t ] are unbounded as εt becomes small.
The distribution of φt has negative skewness as E[φ 3

t ]/E[φ
2
t ]

3/2 is negative for small εt , and also ex-
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Figure 1: Equilibrium with financial crises

Time

Log(House prices)

Notes: The graph depicts a typical realization of the path of (log) nominal house prices given the equilibrium
characterized in Result 3, assuming the average rate of nominal house-price inflation is constant.

cess kurtosis as E[φ 4
t ]/E[φ

2
t ]

2 exceeds 3 for small εt .14 This negative skewness and excess kurtosis
are also features of the associated distribution of house-price inflation πt .

Bubbles and sunspots Informally, the episodes of boom and bust in house prices could be de-
scribed as ‘bubbles’, though logically they are completely different from the usual notion of rational
bubbles. Unlike models with rational bubbles, there is no multiplicity of equilibria encompassing
cases with no bubbles and cases of bubbles with various stochastic properties — here, the monetary
policy regime solving the Ramsey problem has a unique probability distribution of asset prices. Also
unlike rational bubbles, here, new bubbles can form in equilibrium after past bubbles have burst, and
there is no requirement for the economy to be dynamically inefficient to sustain bubbles.15

Although the probability distribution of financial conditions is uniquely determined, there is one
sense in which there is a role for multiple equilibria: the exogenous trigger for switching between
the credit boom and financial crisis regimes in (33) is not uniquely determined. The solution of
the Ramsey problem can have regime shifts caused by any exogenous variable as long as the im-
plied probability distribution of financial conditions is consistent with Result 3. As a result, credit
booms could turn to financial crises either because of shocks to the economy’s fundamentals gt (real
GDP growth) or because of sunspots ψt . Intuitively, monetary policy is creating the conditions for
financial crises to occur with some positive probability, but this leaves open precisely which circum-
stances will lead to the onset of a crisis.

14For given εt > 0, these moments are E[φ 2
t ] = (1/εt −1)(xt/(1+ xt))

2, E[φ 3
t ]/E[φ

2
t ]

3/2 = −(1−2εt)
√

1− εt/
√

εt ,
and E[φ 4

t ]/E[φ
2
t ]

2 = (1−3εt(1− εt))/εt(1− εt).
15The limited role of dynamic efficiency or inefficiency is discussed further in section 4.
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The role of monetary policy What is the central bank doing to generate an equilibrium where
there are booms and busts in asset prices? Given that (33) implies ξt−1 = xt for small εt , the observed
path of nominal interest rates associated with the equilibrium (33) follows from equation (18):

it =
1+Eπt+1

βδ (1+ xt+1)
−1. (34)

The central bank would be seen to adjust interest rates it one-for-one in response to predictable
changes in nominal asset prices Etπt+1, but in no sense would monetary policy be seen actively
to ‘pop’ bubbles. The only other variable appearing in (34) is xt+1, measuring how expansionary
financial conditions are when the economy is in the credit boom state. According to Result 3, the
Ramsey solution has xt+1 constant over time at x. The effect of the positive value of x in (34) is that
the central bank sets a lower nominal interest rate relative to expected asset-price inflation Etπt+1.
It is this systematic low level of interest rates that brings about the equilibrium (33) with financial
crises, not any cyclical variation of monetary policy, nor the occurrence of monetary policy shocks.

Pecuniary externalities and risk taking by policymakers While (34) shows what the central
bank does, there remains the question of why. Since all individuals in the economy are risk averse,
why does the central bank act in a way that increases financial risk, especially tail risk? The answer
lies in the effect of the monetary policy (34) on asset returns. The equilibrium probability distribu-
tion of financial conditions (33) with small εt has housing risk premium ξt−1 = xt , which means a
wedge between the expected returns on bonds and housing. Using (19), the small but positive εt and
constant xt implied by Result 3 lead to the following expected real bond and housing returns:

E

[
1+ rt

1+gt

]
=

1
(1+(1−α)x)βδ

, and E
[

1+ r̂t

1+gt

]
=

1+ x
(1+(1−α)x)βδ

. (35)

A positive value of x implies a lower expected bond return and a higher expected housing return,
which both raise the expected consumption of those who borrow to buy houses. This is what ex-
plains why borrowers can gain from loose monetary policy, even though it exposes them to greater
financial risk. Moreover, Result 2 shows that for utility, the effects on expected asset returns dom-
inate the effects on risk. Consequently, policymakers face pressure to pursue risky policies even
though individuals are prudent and risk averse in their own behaviour. With lending to the young
dependent on the financial health of the middle-aged generation, this creates a powerful constituency
in favour of maintaining cheap credit, in spite of its foreseeable negative effects on financial stability.

While the difference in returns between houses and bonds is equal in equilibrium to a risk pre-
mium that compensates borrowers for the risk of buying houses, the discussion of Result 1 explains
why the risk premium has an associated general-equilibrium effect that depresses the expected real
return on bonds, and which is not internalized by individuals. That pecuniary externality works
through the relative price of housing, which falls sharply with nominal house prices because nom-
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inal debt obligations are predetermined and the lending that supports the relative price of housing
depends on the net worth of homeowners. This is the financial accelerator mechanism shown in
Step 4. The pecuniary externality has its strongest effect on the relative price of housing for extreme
left-tail realizations of nominal house prices, explaining why monetary policy is conducted in a way
that leaves risk in the left tail of the asset-price distribution while avoiding fluctuations during normal
times. Note also the value of x in Result 3 is increasing in the strength α of the financial accelerator.

Numerical methods While there is no reason to think that a similar logic would not apply in more
complicated models, it is likely there are serious computational challenges in finding equilibria using
numerical methods. Here, the equilibrium can be derived analytically, but it is interesting to note
that it cannot be found by using perturbation methods, no matter what order of Taylor polynomial
is used. The reason is that equilibrium consumption ca,t from (27) and the implied level of utility
logca,t do not converge to their Taylor series expansions in financial conditions φt over the support
of the equilibrium probability distribution of φt . Intuitively, financial crises lie outside the radius
of convergence of the Taylor series around the model’s non-stochastic steady state.16 While other
numerical methods might in principle work, the computational challenges would be non-trivial.17

3.3 The implementation of monetary policy

Equation (34) completely characterizes the model’s implications for the observable actions of the
central bank. However, since monetary policy is conducted by setting the nominal interest rate, it
might be asked how it would ensure the solution of the Ramsey problem (33) is the unique equi-
librium of the economy. The issue is analogous to the one that arises in New Keynesian models
when monetary policy is modelled as a Taylor rule. While this paper focuses on what is the solution
of the Ramsey problem rather than how it is implemented, it is nonetheless possible to address the
question of implementation by using an interest-rate feedback rule, similar to the typical approach
in New Keynesian models.

Consider the following interest-rate feedback rule that responds to expected house-price inflation
Etπt+1 and current financial conditions φt :

it =
(1+Etπt+1)ζ

(
max

{
φt− x

1+x ,0
})

βδ

(
1+ (1−ε)x2

x+ε

) −1, (36)

16Since Et−1φt = 0, the non-stochastic steady state of the model must be φt = 0. From equation (27), ca,t and
logca,t are infinitely differentiable functions of financial conditions for all φt ∈ (−∞,1), but their Taylor series at 0 do
not converge for φt < −1/α . For small εt , the negative value of φt from (33) lies in this range, and therefore Taylor
polynomials of whatever order will fail to approximate the equilibrium of the economy.

17The utility-maximization problems of individuals require solving a portfolio choice problem because of the presence
of housing as an asset. On top of this, finding the equilibrium requires solving a Ramsey problem where the social welfare
function is not globally concave. Finally, the extent of aggregate risk is non-negligible because the equilibrium features
rare events with large aggregate fluctuations.
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where x ≥ 0 and 0 < ε < 1 are constants and ζ (·) is a strictly increasing function with ζ (0) = 1.
Different from (34), equation (36) has the central bank raise the nominal interest rate it if financial
conditions φt exceed their value in the credit-boom state of (33). If financial conditions are anywhere
below that value, it responds only to expected house-price inflation Etπt+1.

Step 6 As ε becomes small, (33) is the unique i.i.d. probability distribution of financial conditions
φt consistent with the equilibrium conditions (22) and the interest-rate rule (36).

PROOF See appendix A.9. �

The interest-rate rule (36) thus ensures the Ramsey solution (33) is the unique i.i.d. equilibrium for
financial conditions φt .18

4 Policy implications

The previous section showed that financial crises occur in equilibrium in an incomplete-markets
economy where the monetary policy regime is chosen to maximize a democratic unweighted social
welfare function. But for this to be a theory of financial crises caused by loose monetary policy, it
must be shown that such crises would not occur if monetary policy were conducted differently, in
particular, if monetary policy were systematically tighter. Furthermore, since financial crises occur
even though the policy regime maximizes a social welfare function, it might be wondered in what
sense such crises are actually a bad thing. To address that point, it will be seen that financial crises
never result in a first-best (Pareto efficient) allocation of resources, while having sufficiently tight
monetary policy to rule out crises does achieve a first-best allocation.

4.1 Inefficiency and welfare costs of financial instability

The social planner benchmark Before analysing alternative monetary policies, it is helpful to
consider a hypothetical social planner. The social planner can directly specify a state-contingent
allocation of consumption and housing across all individuals subject only to the economy’s resource
constraints. The social planner effectively has a complete set of policy instruments including lump-
sum taxes and transfers, unlike a central banker who operates by setting the nominal interest rate in
a market economy.

The resource constraints are that total consumption of goods Cy,t +Cm,t +Co,t and housing Hy,t +

Hm,t +Ho,t must respectively add up to the economy’s supplies of goods and housing Yt and Lt ,
as given by the endowments in (2). Mathematically, these are the same as the market-clearing

18Financial conditions φt must always be a martingale difference sequence (Et−1φt = 0) in equilibrium (see 22),
but strengthening that requirement to i.i.d. in Step 6 rules out equilibria with conditional heteroscedasticity, or other
conditional higher moments. Whether such equilibria exist subject to (36) is a question left for future work.
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conditions for goods and housing from (6a) and (6b). An allocation of resources from some date s

onwards is Pareto efficient if subject only to resource constraints, no individual can be given a higher
ex-ante utility (meaning expected utility conditional on date s− 1 information) without some other
individual obtaining a lower ex-ante utility. The allocations satisfying this condition are first best.

Step 7 Any Pareto-efficient allocation of consumption and housing (from s onwards) must feature
Hy,t = ¯

H, Hm,t = L−2
¯
H, and Ho,t = ¯

H, and have consumption/GDP ratios ca,t that satisfy feasibility
(13), risk sharing cy,t/Es−1cy,t = cm,t/Es−1cm,t = co,t/Es−1co,t for all t ≥ s, consumption smoothing
Etcm,t+1/cy,t = Etco,t+1/cm,t for all t ≥ s, and dynamic efficiency liminft→∞Et [cy,t+1/cm,t+1] ≤
1/β and liminft→∞Et [cm,t+1/co,t+1]≤ 1/β .

Conversely, any allocation satisfying these requirements (with limsupt→∞ and strict inequality
in the dynamic efficiency condition) is Pareto efficient and maximizes the social welfare function Ws

in (29) subject to resource constraints for a sequence of weights {Ωt|s} where supWs exists.

PROOF See appendix A.10. �

The requirements for Pareto efficiency are standard. Individuals must share consumption risk in
that any shock to consumption is proportionately distributed across everyone alive at a given date.
Individuals with overlapping lifetimes must smooth consumption as much as possible in that their
expected rates of consumption growth are equalized. As the economy has overlapping generations,
there is also the requirement of dynamic efficiency. This is equivalent to a long-run upper bound on
the ratio of consumption between younger and older individuals. If that is not satisfied, resources
can be shifted from younger to older individuals at each date to leave everyone better off.

Tests for efficiency in a market economy The three requirements for Pareto efficiency are stated
directly in terms of allocations in Step 7. In the incomplete-markets economy, these conditions can
be translated into equivalent tests involving inflation and interest rates.

Step 8 The risk sharing requirement for efficiency holds if and only if nominal house-price infla-
tion is perfectly predictable, that is, πt = Et−1πt with probability 1. The consumption smoothing
requirement holds if and only if the interest rate it is sufficiently far above expected house-price
inflation Etπt+1, that is, it = (1+Etπt+1)/βδ − 1. The dynamic efficiency conditions hold if and
only if the interest rate is above the expected rate of house-price inflation in the long run, that is,
limsupt→∞(it−Etπt+1)≥ 0.

Risk sharing always holds between the young and middle aged, and holds between the old and
other age groups if and only if cm,t/Et−1cm,t = co,t/Et−1co,t . Consumption smoothing holds if and
only if risk sharing does, and when it fails must result in Etcm,t+1/cy,t > Etco,t+1/cm,t . Dynamic
efficiency is implied by either risk sharing or consumption smoothing.

PROOF See appendix A.11. �
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Intuitively, risk sharing requires that nominal house-price inflation is perfectly predictable because
otherwise any shocks to nominal house prices would fall disproportionately on leveraged home-
owners who have fixed nominal debt. Consumption smoothing requires nominal interest rates suf-
ficiently far above house-price inflation because otherwise investment returns on pensions would
not keep pace with the returns of homeowners who are able to finance house purchases with cheap
mortgages, leading to a divergence between the consumption growth of the different age groups.
Similarly, dynamic efficiency requires the nominal mortgage rate to exceed the expected rate of
nominal house-price inflation in the long run because otherwise the consumption of the old rela-
tive to the middle aged would fall to a point where transfers from the middle aged to the old could
improve the welfare of each generation.

Financial stability Although markets are incomplete, there is nothing inevitable about the ineffi-
ciency of the competitive equilibrium. It turns out there is a monetary policy regime that supports
an efficient allocation of resources, which can be interpreted as the central bank pursuing the goal of
financial stability by setting interest rates sufficiently high to stabilize house-price inflation.

Result 4 There are monetary policy regimes where nominal house-price inflation is predictable, that
is, πt = Et−1πt with probability 1. Such a monetary policy regime requires a nominal interest rate
it = (1+Etπt+1)/βδ −1, which is higher for any Etπt+1 than a monetary policy regime associated
with financial crises (compare 34). A monetary policy regime of this type results in financial stability
in the sense that the house price-income ratio ht and the debt-to-GDP ratio dt remain stable at values
h∗ = αβδ/λ and d∗ = αβδ , which are lower than both the credit-boom values h̄ and d̄ and the
long-run averages Eht and Edt of these variables under a monetary policy regime associated with
financial crises (33). The equilibrium with financial stability is a first-best allocation.

PROOF See appendix A.12. �

Predictable house prices promote risk sharing across the generations, and higher interest rates raise
the expected consumption growth of the old to the level enjoyed by the young and middle aged.

Result 4 shows that financial stability can be expressed in three exactly equivalent ways. First, in
avoiding unanticipated swings in nominal house-price inflation. This objective is within the domain
of monetary policy because the goal is predictability of nominal house prices, a nominal variable,
and it can be achieved using the monetary policy instrument the central bank has available by setting
sufficiently high interest rates.

Financial stability can also be expressed in real terms as stabilizing the ratio of house prices to
income at a lower level than what occurs during a credit boom and what occurs on average in the
equilibrium with financial crises. Finally, financial stability also means avoiding credit booms and
busts by stabilizing the ratio of lending to GDP, again at a lower level than what prevails during
a credit boom and on average across the boom and bust states of an equilibrium with financial
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crises. While these ‘real’ interpretations of financial stability are typically seen as outside the domain
of monetary policy and being the responsibility of macroprudential or other regulatory policy, the
analysis shows that it is possible to view financial instability instead as a monetary phenomenon.19

Welfare costs of excessively loose monetary policy While the equilibrium where monetary policy
pursues financial stability results in a first-best allocation, the equilibrium with financial crises that
is the solution of the Ramsey problem with democratic social welfare is never first best.

Result 5 An equilibrium with financial crises (33 with positive x and ε) is Pareto inefficient, always
violating the risk-sharing and consumption smoothing conditions. For small ε , the equilibrium is
also dynamically inefficient if x is larger than (βδ )−1−1, which may or may not hold for the value
of x in Result 3 depending on parameters.

PROOF See appendix A.13. �

An equilibrium with financial crises always fails some, and possibly all, of the requirements for
Pareto efficiency. The unpredictability of house-price inflation violates the sharing of risk between
leveraged homeowners and pensioners. The low level of interest rates compared to expected house-
price inflation drives a wedge between the expected consumption growth of the two groups, and may
even result in a dynamically inefficient equilibrium.

4.2 Achieving financial stability

Sterilizing the distributional consequences of monetary policy To understand how the conflict
between efficiency and distribution is the source of the monetary policy that causes financial crises,
this section hypothetically introduces age-specific lump-sum transfers that can be used to sterilize
the distributional consequences of a change to monetary policy.

The per-person net lump-sum transfers to the young, middle-aged, and the old are respectively
Ty,t , Tm,t , and To,t (negative values are taxes). The budget identities (4) are modified by adding the
transfers to the right-hand side. Since the lump-sum transfers are taken as given by individuals, all
earlier first-order conditions are unchanged. The fiscal budget constraint for the transfers is:

Ty,t +Tm,t +To,t = 0. (37)

19It is important to note that the analysis does not predict that stabilizing nominal house-price inflation would simply
cause an extreme amount of volatility in nominal goods prices instead. As financial stability leads to stable ratios of
lending and house prices to income, an immediate implication is that the volatility of goods-price inflation would only
be the same as the volatility of the real GDP growth rate. Although the financial instability due to unpredictability in
nominal house prices is a monetary phenomenon, the financial accelerator effect that played a key role in the analysis
predicts nominal house-price fluctuations are associated with movements of the relative price of housing in the same
direction.
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This budget constraint rules out the fiscal authority issuing or holding bonds, which as will be seen
is without loss of generality.

Without any restrictions on the state-contingency of the transfers Ty,t , Tm,t , and To,t beyond the
budget constraint (37), the policymaker will be able to engineer any state-contingent consumption
allocation satisfying the resource constraints. This is irrespective of what is done with monetary pol-
icy. The policymaker would essentially have sufficiently powerful instruments to be able to achieve
the same as a social planner, and monetary policy would become irrelevant.

To avoid this vacuous outcome, the state-contingency of the transfers is restricted. Starting from
a date s, the transfer Ta,t for age group a at date t must be proportional to some predetermined
multiple τa,t of GDP Yt , that is, τa,t = Es−1τa,t with probability 1. The transfer to the young is also
restricted to be zero (Ty,t = τy,t = 0), which turns out to be without loss of generality.

Result 6 Without transfers, the financial stability equilibrium is the only first-best allocation that can
be implemented using monetary policy. If in addition to its conventional monetary policy instrument
the central bank has access to individual-specific (but not state-contingent) lump-sum taxes and
transfers then it chooses a monetary policy with financial stability and predictable nominal house
prices for all social welfare weights {Ωt} (and hence all values of ωt). Lump-sum taxes and transfers
can be used to ensure that moving from financial instability to financial stability is Pareto improving.

PROOF See appendix A.14. �

As described earlier, while financial stability is efficient, achieving it requires systematically tighter
interest-rate policy, resulting in less lending relative to the size of the economy, and lower house
prices relative to incomes. The political economy analysis of Result 2 indicates these effects will
be bad for borrowers, who will therefore lose from moves towards financial stability. While trans-
fers from the savers who gain to the borrowers who lose could in principle make everyone better
off overall, the central bank lacks access to the lump-sum taxes and transfers needed to make this
happen. Taking away the punch bowl is good for efficiency, but will leave borrowers disgruntled as
the central bank cannot compensate them for the higher interest rates they will face. Inefficient fi-
nancial instability can therefore persist because there are too many individuals with a vested interest
in maintaining cheap credit.

5 Endogenizing incomplete markets

This paper has explored how systematically loose monetary policy creates the conditions for finan-
cial crises to occur, and how the political economy of monetary policy explains why there is pressure
on central banks to adopt such risky monetary policies. The analysis was done in the context of an
economy with incomplete markets, where all lending must take the form of nominal debt contracts,
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and where housing services can only be received through homeownership. However, this exoge-
nously assumes that trade cannot ever take place in other markets.

5.1 Frictionless complete markets

Begin by considering a frictionless complete-markets benchmark. The model is the same as that of
section 2 except all individuals can trade securities with payoffs contingent on any state of the world
(Arrow-Debreu securities). Individuals trade in contingent securities markets sequentially during
their lives, excluding participation by individuals before birth.20

Formally, let Aa,t denote the per-person portfolio of securities making payoffs (denominated in
terms of goods without loss of generality) at time t to age a individuals conditional on the realization
of a specific state of the world. This portfolio is chosen at time t− 1. The prices of securities (in
terms of goods) relative to the probabilities of the future states (conditional on the current state) are
Mt+1, so the cost of a portfolio At+1 is Et [Mt+1At+1] at time t. The new budget constraints, first-
order conditions, and market-clearing conditions can be found in the proof of the result below, which
characterizes the unique equilibrium for real variables in the complete-markets economy.

Step 9 With complete financial markets, there is a unique equilibrium for all real variables that is
independent of monetary policy. The equilibrium is cy,t = c∗y, cm,t = c∗m, co,t = c∗o and ht = h∗ in
all states and at all times. The equilibrium is Pareto efficient and coincides with the equilibrium
with financial stability from Result 4. The nominal interest rate it , house-price inflation πt , and the
housing risk premium ξt continue to satisfy equations (18) and (19).

PROOF See appendix A.15. �

With complete markets, monetary policy has no impact on the real equilibrium of the economy.
While monetary policy can still affect the risk premium of real assets over nominal bonds, this is
irrelevant to any real decisions because individuals can conduct the trade they desire in financial
markets by buying or selling packages of contingent securities. Hence, irrespective of monetary
policy, the equilibrium of the economy is Pareto efficient because individuals can directly achieve
full risk sharing and consumption smoothing by choosing appropriate long or short positions in
each contingent security.21 The outcome is the same as the ‘financial stability’ equilibrium of the
incomplete-markets economy where the central bank stabilizes nominal house-price inflation. Fi-
nancial crises cannot occur here with complete markets because the mechanism of the central bank
holding down real borrowing costs owing to political pressure does not operate.

20This turns out to be without loss of generality here.
21It turns out that the equilibrium is ex-ante efficient even in respect of newly born individuals who did not participate

in financial markets before they were born. This is the sense in which excluding participation by individuals before
they are born is without loss of generality. The complete-markets equilibrium must also avoid dynamic inefficiency to
be Pareto efficient. Even though the model has overlapping generations of individuals, the equilibrium with complete
markets is always dynamically efficient because of the existence of housing as a physical asset that does not depreciate.
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5.2 Additional markets with frictions

The next step is to allow for additional markets: alternative forms of housing finance to mortgages,
and a rental market for houses, but where these additional markets are subject to frictions. Trade
in those additional markets may or may not take place depending on whether the gains from trade
outweigh the frictions. Crucially, whether these markets are active or not is endogenous to the
conduct of monetary policy. It is shown that the main conclusions are robust to endogenizing the
incompleteness of markets.

Moving away from the abstract notion of complete contingent securities markets, now consider
an extension of the model of section 2 where there are two specific additional markets subject to
frictions: a rental market for houses, and a market for equity shares in houses.

The lifetime utility function (1) is replaced by:

Ut = logCy,t +βEt [logCm,t+1 +Θ(Hm,t+1 +Hr,t+1− ¯
H)]+β

2Et logCo,t+2, (38)

where the new variable Hr,t denotes housing services acquired through the rental market rather than
homeownership. Here, rented housing is fundamentally the same as owner-occupied housing, so
utility depends on the sum Hm,t +Hr,t . The nominal rent is Zt , which is paid at date t for renting one
unit of housing during time period t. The supply of houses for rent at time t is equal to Ho,t− ¯

H, the
number of housing units held by the old in excess of their own housing demand.

The friction in the rental market is contract enforceability combined with asymmetric informa-
tion. A fraction χr of rental payments will be unenforceable. Renters are of two types: those that
always pay (fraction 1−χr) and those that always default (fraction χr). Individual renters know their
type, but landlords cannot distinguish the two types in advance (the defaulting type will mimic the
repaying type when contracts are written). For simplicity, both types pool consumption risk.

There is also a market for housing equity shares, which is a form of financing for borrowers
where payments are proportional to the value of a house. Formally, the seller of one unit of housing
equity at date t makes a nominal payment to the buyer equal to the value of a house Vt+1 at date
t +1. The net housing equity share positions of the young and the middle aged at the end of period t

are denoted by ey,t and em,t respectively, where a positive value indicates a purchase and a negative
value a sale. The nominal price of a unit of housing equity is St when it is sold.

The friction in the market for housing equity shares is also contract enforceability with asym-
metric information. A fraction χe of payments to holders of equity shares will be unenforceable.
Analogous to the assumptions for renters, there are two types of borrowers (fractions 1− χe and χe

of all borrowers) who know their type, but investors cannot distinguish them ex ante.
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The budget identities (4) of the young, middle aged, and old are replaced by:

Cy,t +
VtHm,t+1

Pt
+

QtBy,t

Pt
+

Stey,t

Pt
=

VtHy,t

Pt
; (39a)

Cm,t +
ZtHr,t

Pt
+

QtBm,t

Pt
+

VtHo,t+1

Pt
+

Stem,t

Pt
= ym,t +

VtHm,t

Pt
+

By,t−1

Pt
+

Vtey,t−1

Pt
+

Xt

Pt
; (39b)

and Co,t =
Bm,t−1

Pt
+

ZtHo,t

Pt
+

VtHo,t

Pt
+

Vtem,t−1

Pt
− Xt

Pt
, (39c)

where Xt denotes the sum of defaults on rental contracts and housing equity shares, which is sub-
tracted from the budget identity of the old. Defaults are added to a single budget identity for the
middle aged because the repaying and defaulting types pool consumption risk. The first-order con-
dition for maximizing utility (38) with respect to house purchases Hm,t+1 subject to (39) is:

Vt

PtCy,t
= βEt

[
Θ
′(Hm,t+1 +Hr,t+1)+

Vt+1

Pt+1Cm,t+1

]
, (40)

which replaces (7a). The first-order conditions with respect to bond holdings Ba,t remain (7b).
Considering respectively an individual who is a repaying type of renter and a repaying type of

borrower, the first-order conditions for maximizing lifetime expected utility (38) with respect to Hr,t

and ey,t subject to the budget identities (39) are:

Zt

PtCm,t
= Θ

′(Hm,t +Hr,t), and
St

PtCy,t
= βEt

[
Vt+1

Pt+1Cm,t+1

]
, (41)

which are derived taking defaults Xt as given because the individual knows he is a repaying type.
The defaulting types mimic the choices of Hr,t and ey,t implied by (41), so all young individuals
choose the same ey,t and all middle-aged individuals choose the same Hr,t .

Given the default and asymmetric information frictions, investors’ losses Xt at date t are:

Xt = χrZtHo,t +χeVtem,t−1. (42)

While investors cannot distinguish individuals’ types, they know the fractions of repaying and de-
faulting types in the population, and they therefore take account of (42) when choosing Ho,t and em,t .
Given non-negativity constraints on Ho,t and em,t , the conditions for maximizing lifetime utility (38)
with respect to Ho,t+1 and em,t subject to (39) and (42) are as follows:

Ho,t+1 ≥ ¯
H, and

Vt

PtCm,t
≥ βEt

[
(1−χr)Zt+1 +Vt+1

Pt+1Co,t+1

]
with equality if Ho,t+1 > ¯

H; (43)

em,t ≥ 0, and
St

PtCm,t
≥ β (1−χe)Et

[
Vt+1

Pt+1Co,t+1

]
with equality if em,t > 0. (44)
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Two new market-clearing conditions are added for the rental and equity share markets:

Hr,t = Ho,t− ¯
H (45)

ey,t + em,t = 0, (46)

where Ho,t− ¯
H is the supply of investment properties. All other aspects of the model from section 2

are unchanged.
For simplicity, the following restriction is imposed so that the strengths χr and χe of the rental

and equity share frictions are both indexed by a common parameter χ (with 0≤ χ ≤ 1):

χr = χ, and χe = (1−βδ )χ, (47)

where β is as defined in (18). Define a variable σt as follows:

σt =
Vt(Ho,t+1− ¯

H)+Stem,t

QtBm,t +Vt(Ho,t+1− ¯
H)+Stem,t

, (48)

which denotes the fraction of total savings held as rental housing and housing equity shares.

Result 7 Conditional on a monetary policy regime, there exists a unique equilibrium σt with φt

replaced by ηt = σt−1(1−βδ )χ +(1−σt−1)φt and dt = αβδ (1−σt)/(1−αφt). With no frictions
(χ = 0), the equilibrium is the same as with complete markets in Step 9. In the presence of frictions
χ > 0, there is no trade in the additional markets (Ho,t+1 = 0 and em,t = 0, and thus σt = 0) if and
only if ξt ≤ ξ̄ where ξ̄ = (1−βδ )χ/(1− (1−βδ )χ). When ξt > ξ̄ , there is a positive equilibrium
value of σt that is decreasing in χ and increasing in spreads of financial conditions.

PROOF See appendix A.16. �

6 Conclusions

This paper revisits an old debate about whether monetary policy should be influenced by financial
stability concerns. The current consensus view is that monetary policy should focus on stabilizing
inflation rates for goods and services, but should not concern itself with asset-price ‘bubbles’ or
‘excessive’ levels of debt. To the extent that these are seen as problems for policymakers to address,
the solutions are believed to lie in the domain of regulation or macroprudential policy. This paper
challenges the consensus view by presenting a simple theoretical mechanism based on incomplete
markets through which the monetary policy actions of the central bank can have long-lasting effects
on real interest rates and the level and volatility of asset prices.

In the theory presented here, loose monetary policy creates the conditions for excessive growth
in lending, booms in asset prices, and ultimately financial crises: rare events where asset prices drop
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dramatically and result in painful deleveraging. The central bank is responsible for these problems in
the sense that tighter monetary policy could have prevented them. However, the theory also explains
why, for political economy reasons, the central bank will find tough action difficult: taking away the
punch bowl will not be popular.

How should the challenges for monetary policy highlighted by this paper be addressed? One
analogy is with the old problem of the ‘inflation bias’. There, price stability helps an economy op-
erate more efficiently, but policymakers face pressure to reduce unemployment by trying to exploit
a Phillips curve, which results in excessively high inflation. The inflation bias has been conquered
through a combination of conservative central bankers, central bank independence, and the institu-
tional framework provided by inflation targeting. Here, policymakers face pressure for low interest
rates even though this results in inefficient fluctuations in asset prices and lending: a ‘financial
instability’ bias. Overcoming this problem reaffirms the need for central bank independence and
conservative central bankers: but now ‘conservative’ in the sense of standing up for the interests of
savers rather than ignoring unemployment. More systematically, the results of the paper suggest a
case for embedding financial stability concerns into the monetary policy framework.
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A Appendices

A.1 Proof of Step 1
Take the second equation in (14d) and substitute for (1+ rt+1)/(1+gt+1) using the first equation from (14a),
and for co,t+1 using the third equation in (14b):

1
cm,t

= βEt

[
bt+1ht+1

dt

1
bt+1ht+1

]
.

Cancelling terms immediately shows that dt = βcm,t .

A.2 Proof of Step 2
Comparing the definition of the leverage ratio λt = −QtBy,t/Vt(Hm,t+1− ¯

H) to the definitions of ht and dt

from (12) and using (2) and Hm,t = L− 2
¯
H from housing-market clearing (6b), it follows that λt = dt/ht , or

ht = dt/λt . The first equation from (14b) is cy,t +ht = dt , from which it follows that cy,t = (1−1/λt)dt , and
hence ht/cy,t = 1/(λt − 1). As ht and cy,t must be non-negative, so is dt , and thus λt ≥ 1 is required at all
dates. The result cm,t+1 = dt+1/β from Step 1 implies ht+1/cm,t+1 = β/λt+1.

Now define δt = β (1−1/λt), noting the admissible range is 0≤ δt ≤ β . Rearranging the definition shows
that λt = β/(β −δt) and thus 1/(λt−1) = β/δt−1 and β/λt+1 = β −δt+1. Together with the results above,
these formulas can be substituted for ht/cy,t and ht+1/cm,t+1 in (14c) to obtain an equivalent equation:

Etδt+1 = β
−1 +β +θ − 1

δt
.

This defines an expectational difference equationEtδt+1 =F(δt), where F(δ )= β−1+β +θ−δ−1. A steady-
state solution δ = F(δ ) is a root of the quadratic equation G(δ ) = 0, where G(δ ) = δ 2− (β−1+β +θ)δ +1.
Since G(0) = 1 and G(β ) = −βθ , there exists a unique economically meaningful steady state δ between 0
and β . The second root is a larger positive number because G(δ ) is positive for large δ . As the product of
the roots of G(δ ) = 0 is 1, the steady-state δ is less than 1 and can be found by inverting the formula for the
larger root and noting that (β−1 +β +θ)2−4 = (β−1(1−β )2 +θ)(β−1(1+β )2 +θ):

δ =
2

β−1 +β +θ +
√
(β−1(1−β )2 +θ)(β−1(1+β )2 +θ)

, (A.1)

The equation for δt is equivalent to the stochastic difference equation δt = F(δt−1)+υt , where υt = δt −
Et−1δt must be a martingale difference sequence (Et−1υt = 0). The function F(δ ) has properties F(0) =−∞,
F(β ) = β + θ , and F ′(δ ) = δ−2. It is monotonic with a gradient greater than 1 at the steady state (δ < 1).
Since there must be positive-probability realizations of both υt ≥ 0 and υt ≤ 0 for all t and for any past
history, it follows that if δt 6= δ then there exists a positive probability path such that δt+` < 0 or δt+` > β for
some finite `. Such a value of δt+` is impossible, so the unique equilibrium is δt = δ for all t. This implies
λt = (1−δ/β )−1, where the value of δ from (A.1) depends only on β and θ .

It can be seen immediately from (A.1) that δ is decreasing in θ , which implies λ is also decreasing in θ

because λ is increasing in δ . The effect of β on λ is found by first considering the effect of changing this
parameter on δ . Since the equation δ 2− (β−1 +β +θ)δ +1 = 0 implicitly defines δ as a function of β and
θ , the implicit function theorem implies:

∂δ

∂β
=− −(1−β−2)δ

2δ − (β−1 +β +θ)
=

δ (1−β−2)

2δ − (δ +δ−1)
=

δ 2(1−β 2)

β 2(1−δ 2)
, (A.2)

where the second equality uses β−1 +β +θ = δ +δ−1. This result can be used to differentiate the ratio δ/β :

∂ (δ/β )

∂β
=

1
β

∂δ

∂β
− δ

β 2 =
δ 2(1−β 2)

β 3(1−δ 2)
− δ

β 2 =−δ (1+βδ )(β −δ )

β 3(1−δ 2)
,
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which is negative because 0 < δ < β and δ < 1. Since λ is increasing in the ratio δ/β it follows that λ is
decreasing in β .

A.3 Proof of Step 3
Using (16) it follows that dt = λht and hence cy,t = (λ − 1)ht . Combining this with cm,t+1 = dt+1/β from
Step 1 leads to cm,t+1 = (λ/β )ht+1. Substituting these results for cy,t and cm,t+1 in the first equation from
(14d), and using (14e) to substitute for 1+ rt+1:

1
(λ −1)ht

= βEt

[
(1+ it)

(1+ γt+1)(1+gt+1)

β

λht+1

]
.

Substituting for (1+ γt+1)(1+gt+1)ht+1/ht using the second equation in (14a):

1 = βEt

[
β

(
1− 1

λ

)
1+ it

1+πt+1

]
,

and since the constant λ from Step 2 is λ = (1− δ/β )−1, a rearrangement of the equation shows that δ =
β (1−1/λ ). It follows that the equilibrium condition becomes:

1 = βδEt

[
1+ it

1+πt+1

]
,

and solving for it leads to the formula in (18). Since Et [(1+ it)/(1+πt+1)] = 1/βδ , taking the conditional
expectation of equation (17) immediately yields the result for Etbt+1 in (18). Using the findings from the
proof of Step 2, the coefficient δ is the smaller positive root of the quadratic equation G(δ ) = δ 2− (β−1 +
β +θ)δ +1 = 0. Noting that G(β−1) =−θβ−1 < 0, it follows that δ < β−1 and hence 0 < βδ < 1. It can be
seen from (A.1) that δ is decreasing in θ , so the combined coefficient βδ is also decreasing in θ . The formula
for the derivative of δ in (A.2) can be used to show:

∂ (βδ )

∂β
= δ +β

∂δ

∂β
= δ +

δ 2(1−β 2)

β (1−δ 2)
=

δ (β +δ )(1−βδ )

β (1−δ 2)
,

which is positive because βδ < 1. Thus, the combined coefficient βδ is increasing in β .
The formula in (19) for Rt follows immediately by combining (8) and (9). The housing return R̂t in (9) is

the sum of capital gains πt and an imputed rental yield Zt/Vt−1. The imputed rental yield is:

Zt

Vt−1
= (1+πt)

Θ′(Hm,t − ¯
H)PtCm,t

Vt
= (1+πt)

(Hm,t − ¯
H)Θ′(Hm,t − ¯

H)
Cm,t
Yt

Vt(Hm,t− ¯
H)

Pt yt

= (1+πt)
θcm,t

ht
,

where the first equality uses the definition of house-price inflation πt and the imputed rent Zt from (9), the
second equality uses (3), and the third equality uses housing-market equilibrium (6b) and (7a) to deduce
Hm,t− ¯

H = L−3
¯
H, together with the definitions of cm,t , ht , and θ from (12) and (14c). Using (9), cm,t = dt/β

from Step 1, and dt = λht from (16), the return on housing satisfies:

1+ R̂t = (1+πt)

(
1+

θcm,t

ht

)
=

(
1+

θλ

β

)
(1+πt) =

(
1+

θ

β −δ

)
(1+πt),

where the final equality follows from the definition of λ = (1−δ/β )−1. The quadratic equation for δ implies
θ = δ−1−β−1−β + δ , which can be written equivalently as θ = (β − δ )/(β−1δ−1− 1). Substituting this
into the equation above implies 1+ R̂t = (1+ πt)/βδ , confirming the claim in (19). The expected excess
return on housing from (10) can then be calculated using the expressions for Rt and R̂t in (19):

ξt =
Et [1+ R̂t+1]− (1+ it)

(1+ it)
=
Et [1+πt+1]

βδ (1+ it)
−1.

Since (18) implies βδ (1+ it) = 1/Et [(1+πt+1)
−1] in equilibrium, the formula for ξt in (19) is obtained. If

πt+1 is perfectly predictable using information available at date t then Et [(1+πt+1)
−1] = (Et [1+πt+1])

−1,
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in which case ξt = 0. Since (1+ πt+1)
−1 is a strictly convex function of πt+1, whenever πt+1 has a non-

degenerate probability distribution, Jensen’s inequality implies Et [(1+πt+1)
−1] > (1+Etπt+1)

−1 and thus
ξt > 0. Owing to the strict convexity of (1+πt+1)

−1, Et [(1+πt+1)
−1] increases with any mean-preserving

spread of πt+1, which therefore increases ξt because it does not affect Et [1+πt+1].

A.4 Proof of Step 4
Taking equation (24) and collecting terms in ht on one side:(

1− β

λ (1+β )
+

β

λ (1+β )

λ

βδ
(1−φt)

)
ht =

β

λ (1+β )
.

The value of φt must satisfy−∞≤ φt ≤ 1 in any equilibrium. Together with λ =(1−δ/β )−1 > 1 as δ < β , this
implies the coefficient of ht above is strictly positive and thus there exists a unique solution of the equation
for ht given a value of financial conditions φt . Dividing both sides of the equation by the positive term
1− (β/λ (1+β ))(1−λ/βδ ) leads to:

(1−αφt)ht =
αβδ

λ
, with α =

β

λ (1+β )
λ

βδ

1− β

λ (1+β )

(
1− λ

βδ

) , (A.3)

where the coefficient α is as defined in the main text. This confirms the solution ht = αβδ/λ (1−αφt) for ht .
The solution for dt follows immediately by substituting this result into dt = λht from (16), and the solution
for nt is then obtained by using nt = ((1+β )/β )dt from (23).

Simplifying the formula for α from (A.3) allows it to written as follows:

α =

1
δ (1+β )

1− β

λ (1+β ) +
1

δ (1+β )

=
1

1+δ (1+β )− βδ

λ

=
1

1+δ +βδ
(
1− 1

λ

) .
Rearranging the definition λ = (1−δ/β )−1 leads to 1−1/λ = δ/β , and substituting into the expression for
α confirms that α = 1/(1+ δ + δ 2). The proof of Step 2 shows that 0 < δ < 1, from which it follows that
1/3 < α < 1. It is also shown there that δ is decreasing in θ , which implies α is increasing in θ . Using
equation (A.2) from the proof of Step 2 together with 0 < δ < 1 demonstrates that δ is increasing in β when
β < 1, and decreasing in β when β > 1. These findings immediately imply that α is increasing in the distance
of the discount factor β from 1.

A.5 Proof of Result 1
Adding α multiplied by (26a) to 1−α multiplied by (26b):

α
1+ rt+1

1+gt+1
+(1−α)

1+ r̂t+1

1+gt+1
=

α(1−αφt)(1−φt+1)

βδ (1−αφt+1)
+

(1−α)(1−αφt)

βδ (1−αφt+1)
=

1−αφt

βδ
. (A.4)

Taking unconditional expectations of both sides and using Eφt = 0 implied by (22):

αE

[
1+ rt+1

1+gt+1

]
+(1−α)E

[
1+ r̂t+1

1+gt+1

]
=

1−αEφt

βδ
=

1
βδ

,

which shows that an average ofE[(1+rt+1)/(1+gt+1)] andE[(1+ ρ̂t+1)/(1+gt+1)] with weights α and 1−α

is always equal to 1/βδ . Multiplying both sides of (A.4) by 1+gt+1 and taking expectations conditional on
date-t information implies α(1+ρt)+(1−α)(1+ ρ̂t) = ((1−αφt)/βδ )(1+Etgt+1), recalling the definitions
of ρt and ρ̂t in (11). Dividing by 1+Etgt+1, taking unconditional expectations, and using Eφt = 0 leads to
the result that the weighted average of E[(1+ρt)/(1+Etgt+1)] and E[(1+ ρ̂t)/(1+Etgt+1)] is always equal
to 1/βδ .
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Taking expectations of (26a) and (26b) conditional on date-t information:

Et

[
1+ rt+1

1+gt+1

]
=

1−αφt

βδ
Et

[
1−φt+1

1−αφt+1

]
, and Et

[
1+ r̂t+1

1+gt+1

]
=

1−αφt

βδ
Et

[
1

1−αφt+1

]
. (A.5)

Let FS(φ) = (1−φ)/(1−αφ), which has first derivative F ′S(φ) =−(1−α)/(1−αφ)2. The second derivative
is F ′S(φ) =−2α(1−α)/(1−αφ)3 which is negative for all φ ∈ [−∞,1] because α < 1, so FS(φ) is a strictly
concave function of φ . Likewise, let FB(φ) = 1/(1−αφ), which has first derivative F ′B(φ) = α/(1−αφ)2.
The second derivative is F ′′B (φ) = 2α2/(1−αφ)3, which is positive over the range of φ , establishing that
FB(φ) is a strictly convex function.

Since FS(φ) is a strictly concave function and FB(φ) is a strictly convex function, Jensen’s inequality
implies EtFS(φt+1) < FS(Etφt+1) and EtFB(φt+1) > FB(Etφt+1) for any non-degenerate distribution of φt+1.
As (22) requires Etφt+1 = 0, it follows that Et [(1−φt+1)/(1−αφt+1)]< 1 < Et [1/(1−αφt+1)]. Moreover,
Et [(1−φt+1)/(1−αφt+1)] and Et [1/(1−αφt+1)] are respectively decreasing and increasing with any spread
of φt+1 (which given 22 must necessarily remain with mean zero). Since the coefficients (1−αφt)/βδ in (A.5)
are positive for all valid φt ∈ [−∞,1], Et [(1+ rt+1)/(1+gt+1)] and Et [(1+ r̂t+1)/(1+gt+1)] are respectively
decreasing and increasing with spreads of φt+1. Furthermore, Et [(1+ rt+1)/(1+gt+1)] < (1−αφt)/βδ and
Et [(1+ r̂t+1)/(1+gt+1)] > (1−αφt)/βδ for any non-degenerate distribution of φt+1. Taking unconditional
expectations and noting that E[(1−αφt)/βδ ] = 1/βδ , it follows that E[(1+ rt+1)/(1+gt+1)] is always less
than 1/βδ andE[(1+ r̂t+1)/(1+gt+1)] is always greater than 1/βδ . If φt+1 has a degenerate distribution then
it must equal 0 with probability one, in which case both E[(1+ rt+1)/(1+gt+1)] and E[(1+ r̂t+1)/(1+gt+1)]
are equal to 1/βδ using (26a) and (26b).

A.6 Proof of Result 2
Substituting housing demand Ho,t = ¯

H from (7a), Hy,t = ¯
H from (3), and housing supply (2) into the housing

market clearing condition (6b) implies Hm,t = L−2
¯
H. It follows that Θ(Hm,t− ¯

H) =Θ(L−3
¯
H) = t.i.p., where

t.i.p. denotes terms independent of monetary policy. Note that logCa,t = logca,t + logYt using the definition of
the consumption ratio ca,t from (12), and since real GDP Yt from (2) is exogenous, this means that logCa,t =
logca,t + t.i.p.. Taking logarithms of both sides of the expressions for the consumption ratios ca,t in (27) implies
logcy,t = − log(1−αφt)+ t.i.p., cm,t = − log(1−αφt)+ t.i.p., and co,t = log(1−φt)− log(1−αφt)+ t.i.p.,
which when combined with the earlier results allows the continuation utilities (28) to be written as:

Uy,t =− log(1−αφt)−βEt log(1−αφt+1)+β
2Et [log(1−φt+2)− log(1−αφt+2)]+ t.i.p.;

Um,t =− log(1−αφt)+βEt [log(1−φt+1)− log(1−αφt+1)]+ t.i.p.;

Uo,t = log(1−φt)− log(1−αφt)+ t.i.p..

By defining wS,t = Et−1[log(1−φt)− log(1−αφt)] and wB,t = −Et−1[log(1−αφt)] and taking conditional
expectations of the continuation utilities above using date t−1 information leads to the expressions given for
Et−1Uy,t , Et−1Um,t , and Et−1Uo,t . Thus, in respect of the welfare effects of the monetary policy regime, all
individuals at a point in time fall into a group of ‘borrowers’ (B) (the young and middle aged) or a group of
‘savers’ (S) (the old).

Consider the functions fS(φ) = log(1− φ)− log(1−αφ) and fB(φ) = − log(1−αφ), which have first
derivatives f ′S(φ) = α/(1−αφ)−1/(1−φ) and f ′B(φ) = α/(1−αφ). The second derivatives are:

f ′′S (φ) =
α2

(1−αφ)2 −
1

(1−φ)2 =−(1−α)((1−α)+2α(1−φ))

((1−αφ)(1−φ))2 , and f ′′B(φ) =
α2

(1−αφ)2 ,

implying f ′′S (φ) < 0 and f ′′B(φ) > 0 for all φ ∈ [−∞,1] because α < 1. Hence, wS,t = Et−1 fS(φt) and wB,t =
Et−1 fB(φt), where fS(φ) and fB(φ) are respectively strictly concave and strictly convex functions of φ . As
shown in Result 1, the real return on housing increases and the real return on bonds decreases with spreads
of financial conditions φt around its conditional mean Et−1φt = 0. Owing to the concavity and convexity of
fS(φ) and fB(φ) respectively, these spreads of φt decrease the welfare of savers and increase the welfare of
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borrowers.

A.7 Proof of Step 5
Substituting the continuation utilities (28) into the social welfare function (29):

Wt = Et−1
[
Ωt−2|t {logCo,t}+Ωt−1|t {logCm,t +Θ(Hm,t − ¯

H)+βEt logCo,t+1}
]

+Et−1

[
∞

∑
`=0

Ωt+`|t
{

logCy,t+`+βEt+` logCm,t+`+1 +Θ(Hm,t+`+1− ¯
H)+β

2Et+` logCo,t+`+2
}]

.

Applying the law of iterated expectations and grouping terms corresponding to the same time period:

Wt = Et−1

[
∞

∑
`=0

{
Ωt+`|t logCy,t+`+β

min{1,`}
Ωt+`−1|t logCm,t+`+β

min{2,`}
Ωt+`−2|t logCo,t+`

}]

+Et−1

[
∞

∑
`=0

β
min{1,`}

Ωt+`−1|tΘ(Hm,t+`− ¯
H)

]
. (A.6)

In any competitive equilibrium, Hy,t = Ho,t = ¯
H, hence Hm,t = L−2

¯
H using (6b), from which it follows that

Et−1

[
∞

∑
`=0

β
min{1,`}

Ωt+`−1|tΘ(Hm,t+`− ¯
H)

]
= Θ(L−3

¯
H)

(
Ωt−1|t +β

∞

∑
`=0

Ωt+`|t

)
.

Substituting this and logCa,t = logca,t + logYt from the definition (12) into (A.6):

Ws = Es−1

[
∞

∑
t=s

{
Ωt|s logcy,t +β

min{1,t−s}
Ωt−1|s logcm,t +β

min{2,t−s}
Ωt−2|s logco,t

}]
+Es−1

[
∞

∑
t=s

∆t|s logYt

]
+Θ(L−3

¯
H)

(
Ωs−1|s +β

∞

∑
t=s

Ωt|s

)
, (A.7)

where s denotes the starting time period for the welfare calculation, and where ∆t|s =Ωt|s+β min{1,t−s}Ωt−1|s+

β min{2,t−s}Ωt−2|s is defined. Having the positive sum ∑
∞
t=s Ωt|s < ∞ ensures the final term in (A.7) is finite.

Using the definition of real GDP growth gt from (2), logYt = logYs−1+∑
t−s
`=0 log(1+gs+`), and the bounds on

growth in (2) imply (t− s) log(1+
¯
g)≤ ∑

t−s
`=0 log(1+gs+`)≤ (t− s) log(1+ ḡ). It follows that:

(logYs−1− s log(1+
¯
g))

∞

∑
t=s

∆t|s− (log(1+
¯
g))

∞

∑
t=s

t∆t|s ≤ Es−1

[
∞

∑
t=s

∆t|s logYt

]
≤ (log(1+ ḡ))

∞

∑
t=s

t∆t|s

+(logYs−1− s log(1+ ḡ))
∞

∑
t=s

∆t|s,

and therefore ∑
∞
t=s t∆t|s < ∞ (which implies ∑

∞
t=s ∆t|s < ∞) is sufficient for the final two terms in (A.7) to be

finite as −1 <
¯
g and ḡ < ∞. Those terms are independent of monetary policy, denoted t.i.p. in what follows.

It can be seen from the definition of ∆t|s that ∑
∞
t=s tΩt|s < ∞ implies ∑

∞
t=s t∆t|s < ∞, guaranteeing the terms

independent of monetary policy in (A.7) are finite, hence

Ws = Es−1

[
∞

∑
t=s

{
Ωt|s logcy,t +β

min{1,t−s}
Ωt−1|s logcm,t +β

min{2,t−s}
Ωt−2|s logco,t

}]
+ t.i.p. (A.8)

is a well-defined expression for social welfare (A.7). Using the expressions for the consumption ratios in (27)
and borrower and saver welfare wB,t and wS,t from Result 2, it follows that Es−1cy,t = log(αδ 2)+Es−1wB,t ,
Es−1cm,t = log(αδ )+Es−1wB,t , and Es−1co,t = logα +Es−1wS,t for all t ≥ s. Together with the definition of
ωt|s = β min{2,t−s}Ωt−2|s/(Ωt|s +β min{1,t−s}Ωt−1|s +β min{2,t−s}Ωt−2|s), (A.8) can be written as

Ws = Es−1

[
∞

∑
t=s

∆t|s
{
(1−ωt|s)wB,t +ωt|swS,t

}]
+ t.i.p. =

∞

∑
t=s

∆t|sEs−1wt + t.i.p.,
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where wt = (1−ωt|s)wB,t +ωt|swS,t . This follows by using the earlier definition of ∆t|s and noting that ∆t|s
and ωt|s must be s−1-measurable given the same property of Ωt|s. Since Ωt|s is positive, ωt|s must lie strictly
between 0 and 1. Taking wB,t = −Et−1[log(1−αφt)] and wS,t = Et−1[log(1−φt)− log(1−αφt)] from Re-
sult 2, this yields wt = Et−1[ωt|s log(1−φt)− log(1−αφt)]. Given ωt|s, the variable wt depends only on the
probability distribution of φt and parameters.

The Ramsey problem (30) finds the supremum of Ws over the state-contingent path of nominal house-price
inflation {πt}s+k−1

t=s subject to the equilibrium conditions in (14) for all t, and taking {πt}∞
t=s+k as given. The

equilibrium conditions imply (13), which means that ca,t ≤ 1, showing the expression for social welfare in
(A.8) must be bounded above (terms independent of monetary policy are finite). It follows that there exists a
supremum of social welfare subject to the equilibrium conditions.

Using Step 3, the equilibrium conditions imply (22), so φt must satisfy Et−1φt = 0 and φt ∈ [−∞,1] for all
t. Noting that wt = 0 when φt = 0 in all states of the world, which satisfies the constraints on φt , it follows that
wt = 0 is attainable, so the supremum of social welfare is finite. Since (22) shows that φt is entirely determined
by the probability distribution of πt , the Ramsey policymaker can choose {φt}s+k−1

t=s subject to φt ∈ [−∞,1] and
Et−1φt = 0, taking as given {φt}∞

t=s+k. Thus, the policymaker’s choices for t = s, . . . ,s+ k−1 have no effect
on ∑

∞
t=s+k ∆t|sEs−1wt and hence Ws = ∑

s+k−1
t=s ∆t|sEs−1wt + t.i.p. Since each term Es−1wt enters Ws additively

with a strictly positive coefficient and depends only on φt , and the constraints on φt are independent for each
date t, the supremum of Ws can be obtained by finding the supremums of wt over the probability distribution
of φt subject to Et−1φt = 0 and φt ∈ [−∞,1] for all t = s, . . . ,s+ k−1, as stated in (31).

A.8 Proof of Result 3
According to Step 5, the Ramsey solution for financial conditions φt is determined by (31). Given a value of
ωt|s = ω (satisfying 0≤ ω ≤ 1), the problem in (31) has a time-invariant form:

sup
φ

E [ω log(1−φ)− log(1−αφ)] subject to Eφ = 0 and φ ∈ [−∞,1], (A.9)

where α is the parameter from Step 4 (satisfying 1/3 < α < 1). The objective function above comes from
(1−ωt|s)wB,t + ωt|swS,t = Et−1[ωt|s log(1− φt)− log(1− αφt)] in Step 5, and the time subscripts can be
dropped because of the time-invariant form of the constraints Et−1φt = 0 and φt ∈ [−∞,1], and because the
relative weight on savers ωt|s is known given date t−1 information. It is known from Step 5 that the supremum
in (A.9) exists, so the problem has a solution.

Since neither of the exogenous variables gt and ψt appear in the problem (31), this means (A.9) can be
stated equivalently as the choice of a distribution function F(·) for φ on support [−∞,1]:

sup
F(·)

∫ 1

−∞

υ(φ)dF(φ) s.t.
∫ 1

−∞

φdF(φ) = 0, where υ(φ) = ω log(1−φ)− log(1−αφ), (A.10)

with υ(φ) denoting the realized value of social welfare if financial conditions take value φ . The probability
distribution F(φ) is generated by the mapping from the exogenous state of the world to the realization of
φ together with the stochastic process for the exogenous state, but the exact form of this mapping from
exogenous state to φ has no bearing on the value of the objective function. Any mapping that gives rise to
the same probability distribution F(φ) leads to the same value of the objective function. Since the exogenous
variables gt and ψt have continuous distributions, it is possible to generate any valid probability distribution
F(φ) using some mapping from the exogenous state to the realization of φt .

With democracy (32), the weight on savers is ω = 1/3, but the more general case of ω < α is considered
here (recalling α > 1/3). The solution of the problem (A.10) can be analysed using the Lagrangian:

Λ =
∫ 1

−∞

υ(φ)dF(φ)−µ

∫ 1

−∞

φdF(φ), (A.11)

where µ is the multiplier on the constraint Eφ = 0. Taking the first-order conditions of the Lagrangian, if
υ ′(φ) = µ does not hold for every value of φ ∈ (−∞,1] receiving positive density or mass in the probability
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distribution F(φ) thenEυ(φ) can be increased by a strictly positive amount by choosing a different probability
distribution. The first derivative of realized social welfare is υ ′(φ) = α/(1−αφ)−ω/(1−φ) = (α −ω −
α(1−ω)φ)/(1−αφ)(1−φ). It can be seen that in the range φ ∈ [−∞,1], since the terms in the denominator
are non-negative, υ ′(φ) is positive if φ < φ̂ and negative if φ > φ̂ where φ̂ = (α−ω)/α(1−ω). The second
derivative of υ(φ) is:

υ
′′(φ) =

α2

(1−αφ)2 −
ω

(1−φ)2 =

(
α−
√

ω−α(1−
√

ω)φ
)(

(1−α)
√

ω +α(1+
√

ω)(1−φ)
)

(1−αφ)2(1−φ)2 ,

where the second expression follows by taking a common denominator and using the formula for the difference
of two squares. The terms in the denominator are non-negative, and for φ ∈ [−∞,1], the second term in
the numerator is strictly positive. It follows that in the range φ ∈ [−∞,1], υ ′′(φ) is positive if φ < (α −√

ω)/α(1−
√

ω) and negative if φ > (α −
√

ω)/α(1−
√

ω). Hence υ ′(φ) can switch from increasing to
decreasing in φ at most once, and thus there is a maximum of two values of φ where υ ′(φ) = µ for any µ .
Attention can therefore be restricted to probability distributions of φ with one or two point masses.

Consider the case of a distribution of φ with two mass points, φ =
¯
φ with probability ε , and φ = φ̄ with

probability 1− ε . The Lagrangian (A.11) for this simpler problem reduces to:

Λ = ευ(
¯
φ)+(1− ε)υ(φ̄)−µ

(
ε

¯
φ +(1− ε)φ̄

)
.

Suppose
¯
φ and φ̄ lie in a bounded interval within (−∞,1]. Since ε ∈ [0,1] and

¯
φ and φ̄ are restricted to a

compact interval on which υ(φ) is continuous (if ω > 0, a neighbourhood of φ = 1 can be excluded because
limφ→1 υ(φ) = −∞), there exists a maximum for Eυ(φ) subject to the constraint Eφ = 0. If this maximum
features ε ∈ (0,1) then the first-order necessary conditions of the Lagrangian with respect to

¯
φ , φ̄ , and ε are:

υ
′(

¯
φ) =

υ(φ̄)−υ(
¯
φ)

φ̄ −
¯
φ

= υ
′(φ̄) = µ, and ε

¯
φ +(1− ε)φ̄ = 0. (A.12)

Suppose there exists a solution of these equations for
¯
φ , φ̄ , ε , and µ . Since υ(φ) is a continuously differ-

entiable function for φ ∈ (−∞,1), the mean value theorem together with the first two equations in (A.12)
implies there exists a φ̃ such that

¯
φ < φ̃ < φ̄ and υ ′(φ̃) = µ . But that would mean there are three values of φ

satisfying the equation υ ′(φ) = µ , which contradicts the properties of υ(φ) established earlier. It follows the
solution of (A.10) is not a two-point distribution within some bounded interval. That leaves two possibilities,
a degenerate probability distribution (ε = 0 or ε = 1), or the case where a higher value of Eυ(φ) can always
be attained by choosing

¯
φ and φ̄ outside any bounded interval.

If the probability distribution of φ is degenerate then the constraintEφ = 0 requires φ = 0 with probability
one. In this case, the value of the objective function would be Eυ(φ) = υ(0). As α < 1 and ω ≥ 0, it follows
that φ̂ = (α−ω)/α(1−ω) does not exceed 1. Since υ(φ) is increasing for φ < φ̂ and decreasing for φ > φ̂

as shown earlier, the unconstrained maximum value of υ(φ) on the interval [−∞,1] is υ(φ̂). This means
supEυ(φ)≤ υ(φ̂). With ω < α , it must be the case that φ̂ ∈ (0,1], and thus υ(0)< υ(φ̂).

Taking the two-point probability distribution
¯
φ and φ̄ with probabilities ε and 1− ε , fix the value of

φ̄ to x/(1+ x) for some x > 0, so 0 < φ̄ ≤ 1. Given the constraint Eφ = 0,
¯
φ must satisfy the equation

ε

¯
φ +(1− ε)φ̄ = 0 and hence

¯
φ =−(1− ε)x/ε(1+ x) conditional on the values of x > 0 and 0 < ε < 1. This

is the probability distribution of φ specified in (33). Note that 1−
¯
φ = ((1− ε)φ̄ + ε)/ε and 1−α

¯
φ = ((1−

ε)αφ̄ +ε)/ε and thus υ(
¯
φ) =ω log((1−ε)φ̄ +ε)− log((1−ε)αφ̄ +ε)+(1−ω) logε . With limε→0 ε logε =

0 and α > 0, it follows that limε→0 ευ(
¯
φ) = 0 for any φ̄ ∈ (0,1]. With the two-point probability distribution,

the value of the objective function is Eυ(φ) = (1− ε)υ(φ̄)+ ευ(
¯
φ), and therefore Eυ(φ) approaches υ(φ̄)

as ε tends to zero. Since Eυ(φ) can be made arbitrarily close to υ(φ̄) for any φ̄ ∈ (0,1] while satisfying
Eφ = 0, it follows that supEυ(φ) ≥ υ(φ̄) for all φ̄ ∈ (0,1]. Since it is known that supEυ(φ) ≤ υ(φ̂) and
0 < φ̂ ≤ 1, this argument establishes that supEυ(φ) = υ(φ̂).

As supEυ(φ) is strictly greater than υ(0), the degenerate distribution of φ is not the solution of (A.9).
Instead, it is (33) with xt = x satisfying x/(1+ x) = φ̂ = (α−ω)/α(1−ω) and εt small but positive (where
the supremum is approached as εt → 0). Rearranging the equation for x yields x = (α−ω)/(1−α)ω , which
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is (3α−1)/(1−α) when ω = 1/3 in the case of democracy (32).

A.9 Proof of Step 6
The interest-rate feedback rule for it implies

1+ it
1+Etπt+1

=
ζ
(
max

{
φt − x

1+x ,0
})

βδ

(
1+ (1−ε)x2

x+ε

) , (A.13)

where x ≥ 0, 0 < ε < 1, and ζ (·) is a function satisfying ζ (0) = 1 and ζ ′(·) > 0. The requirement that
financial conditions φt are a martingale difference sequence (Et−1φt = 0) is strengthened to φt being an i.i.d.
stochastic process, which must have zero mean. Using (20) and the expression for the housing risk premium
ξt = Et [φt+1/(1−φt+1)], it follows that equilibrium interest rates and house-price inflation must satisfy:

1+ it
1+Etπt+1

=
1

βδ (1+ξ )
, with ξ = E

[
φt

1−φt

]
,

where the time-invariance of the housing risk premium comes from the i.i.d. property of φt . Combining these
equations with the interest-rate feedback rule (A.13) implies that the equilibrium probability distribution of
financial conditions φt must satisfy the following in all states of the world:

E

[
φt

1−φt

]
=

1+ (1−ε)x2

x+ε

ζ
(
max

{
φt − x

1+x ,0
}) −1, and E[φt ] = 0.

Using ζ ′(·)> 0, the right-hand side of the first equation is strictly decreasing in φt for φt > x/(1+x), while the
left-hand side does not depend on the particular realization of φt , so it follows that if the distribution is to have
support to the right of x/(1+ x) then it must be a degenerate distribution. However, since x/(1+ x)≥ 0, such
a degenerate distribution with φt > x/(1+ x) is inconsistent with the equilibrium condition E[φt ] = 0. Hence,
the equilibrium distribution of φt must have support within the interval [−∞,x/(1+ x)]. Using ζ (0) = 1, the
probability distribution of φt must therefore satisfy all of:

E

[
φt

1−φt

]
=

(1− ε)x2

x+ ε
, E[φt ] = 0, and φt ∈

[
−∞,

x
1+ x

]
. (A.14)

Observe that the distribution of financial conditions in (33) with xt = x and εt = ε satisfies E[φt ] = 0 and lies
in the interval [−∞,x/(1+ x)], and moreover:

E

[
φt

1−φt

]
= (1− ε)

(
x

1+x

1− x
1+x

)
− ε

 (1−ε)x
ε(1+x)

1+ (1−ε)x
ε(1+x)

= (1− ε)x− ε(1− ε)x
x+ ε

=
(1− ε)x2

x+ ε
. (A.15)

The probability distribution (33) is therefore consistent with the conditions (A.14). It is now shown that any
other distribution satisfying (A.14) as ε approaches zero must approach (33).

Note that φt/(1−φt) is a strictly increasing function of φt , so subject to φt ∈ [−∞,x/(1+x)], the maximum
value φt/(1−φt) takes is x, and hence E[φt/(1−φt)] ≤ x for any probability distribution of φt with support
[−∞,x/(1+x)]. Conditional on having to satisfyE[φt ] = 0, the supremum ofEt [φt/(1−φt)] exists and cannot
exceed x. Taking the limit as ε→ 0 in (A.15),E[φt/(1−φt)] approaches x, hence supE[φt/(1−φt)] = x subject
to E[φt ] = 0 and φt ∈ [−∞,x/(1+x)]. Since φt/(1−φt) is strictly convex in φt , the expectation E[φt/(1−φt)]
cannot be maximized subject to E[φt ] = 0 with positive mass or density in the interior of [−∞,x/(1+ x)].
Therefore, as ε tends to zero, a probability distribution of φt consistent with (A.14) must approach (33) for
small but positive ε .
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A.10 Proof of Step 7
Given the minimum housing need

¯
H, but utility from housing in excess of

¯
H is received only by the middle-

aged, it follows that subject to the housing resource constraint (6b), any Pareto efficient allocation must have
Hy,t = ¯

H, Ho,t = ¯
H, and Hm,t = L−2

¯
H, the same allocation of housing as in any competitive equilibrium.

The allocation of consumption goods is subject to (6a) for all t ≥ s. Considering the allocation at just
one specific date t across the three generations alive at that date, Pareto efficiency requires that Cy,t , Cm,t , and
Co,t maximize one of the expected utilities Es−1Uy,t , Es−1Um,t , or Es−1Uo,t from (28) subject to (6a) and to
achieving given values of the other expected utilities. The first-order conditions for this problem imply Ca,t

is the ratio of a s− 1-measurable term (specific to a) and the Lagrangian multiplier on the date-t resource
constraint Cy,t +Cm,t +Co,t =Yt . This demonstrates Ca,t/Es−1Ca,t is the equalized for all a ∈ {y,m,o}, that is,
the unpredictable component of each person’s consumption is proportional to their own expected consumption:
a risk-sharing condition. Given that ca,t =Ca,t/Yt , this can be equivalently expressed as ca,t/Es−1ca,t equalized
across a ∈ {y,m,o}, which must hold for t ≥ s.

Now consider the allocation of consumption for two adjacent dates t and t +1 and only for those individ-
uals whose lives overlap on both dates, namely those who are young or middle-aged at date t, and who will
be middle-aged or old at date t +1. Pareto efficiency requires maximizing either expected utility Es−1Uy,t or
Es−1Um,t subject to a given value of the other expected utility and the resource constraints (6a) at dates t and
t+1. This implies both Cm,t+1/Cy,t and Co,t+1/Cm,t are equal to a common term proportional to the ratio of the
Lagrangian multipliers on the dates t +1 and t resource constraints. It follows that Cm,t+1/Cy,t =Co,t+1/Cm,t ,
which means expected consumption growth must be equalized across generations whose lives overlap, that
is, EtCm,t+1/Cy,t = EtCo,t+1/Cm,t : a consumption smoothing condition. Since ca,t =Ca,t/Yt , those conditions
can be stated equivalently as cm,t+1/cy,t = co,t+1/cm,t and Etcm,t+1/cy,t = Etco,t+1/cm,t .

The perpetual sequence of generations means that it is also necessary to consider whether adjustments
to the consumption allocation across an infinite number of time periods can make some generation better off
without any being worse off. Starting from an initial allocation that fails liminft→∞Et [cm,t+1/co,t+1] ≤ 1/β ,
suppose at each date t from s onwards, a positive fraction τt of the consumption of the middle-aged Cm,t

is transferred to the old at that date. Feasibility requires τt < 1 for all t. This makes the initial gen-
eration of old at date s better off. For infinitesimal τt , the conditions for all other generations to be no
worse off is τtCm,t/Cm,t ≤ βEt [τt+1Cm,t+1/Co,t+1]. Using the definition of ca,t = Ca,t/Yt , this is equivalent
to Et [(τt+1/τt)(cm,t+1/co,t+1)]≥ 1/β .

Start from a given τs. A sequence {τt}∞
t=s is constructed recursively using τt+1 = (βEt [cm,t+1/co,t+1])

−1τt

for all t ≥ s. Note that this implies Et [(τt+1/τt)(cm,t+1/co,t+1)] = 1/β . The recursion can be iterated to de-
duce τt = τs ∏

t−s
`=1(βEs+`−1[cm,s+`/co,s+`])

−1. Since βEt [cm,t+1/co,t+1] is non-negative for all t, it follows that
limsupt→∞(βEt [cm,t+1/co,t+1])

−1 = (liminft→∞ βEt [cm,t+1/co,t+1])
−1, and hence the property of the alloca-

tion liminft→∞ βEt [cm,t+1/co,t+1] > 1 implies limsupt→∞(βEt [cm,t+1/co,t+1])
−1 < 1. Thus, the constructed

sequence satisfies limt→∞ τt = 0 for any τs, and hence the whole sequence {τt} can be made arbitrarily small
for an appropriate choice of τs. Therefore, there exists a feasible sequence of transfers that makes one gener-
ation better off without making any other generation worse off. This means a necessary condition for Pareto
efficient is liminft→∞Et [cm,t+1/co,t+1]≤ 1/β , which the nature of the transfers in this argument reveals to be
a dynamic efficiency condition. Exactly analogous reasoning for transfers from the young to the middle-aged
shows that liminft→∞Et [cy,t+1/cm,t+1]≤ 1/β is also a requirement for dynamic efficiency.

Now take the social welfare function (29). Since the welfare-maximizing allocation of housing must
coincide with the competitive-equilibrium allocation, and as Yt is taken as given by the planner, the same steps
from the proof of Step 5 used to derive the expression for social welfare in (A.8) apply here, and hence:

Ws = Es−1

[
∞

∑
t=s

{
Ω̃t|s logcy,t +β Ω̃t−1|s logcm,t +β

2
Ω̃t−2|s logco,t

}]
+ t.i.p., (A.16)

where Ω̃s−2|s = β−2Ωs−2|s, Ω̃s−1|s = β−1Ωs−1|s, and Ω̃t|s = Ωt|s for all t ≥ s denote the scaled sequence of
positive and s− 1-measurable weights, and t.i.p. is now terms independent of the planner’s choice of the
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consumption allocation ca,t . Social welfare (A.16) depends only on ca,t , and the resource constraint (6a)
is equivalent to (13) in terms of ca,t . Following the proof of Step 5, existence of a finite supremum of Ws

subject to the resource constraints requires ∑
∞
t=s Ω̃t|s < ∞ (equivalent to ∑

∞
t=s Ωt|s < ∞), and is guaranteed by

∑
∞
t=s tΩ̃t|s < ∞. The Lagrangian for maximizing (A.16) subject to (13) for all t ≥ s is:

Λs = Es−1

[
∞

∑
t=s

{
Ω̃t|s logcy,t +β Ω̃t−1|s logcm,t +β

2
Ω̃t−2|s logco,t +Ψt|s

(
1− cy,t − cm,t − co,t

)}]
,

where Ψt|s denotes the Lagrangian multiplier on the date-t resource constraint for the allocation chosen from
date s. The first-order conditions are:

Ω̃t|s

cy,t
=

β Ω̃t−1|s

cm,t
=

β 2Ω̃t−2|s

co,t
= Ψt|s, (A.17)

and these first-order conditions can be rearranged to deduce cy,t = Ω̃t|s/Ψt|s, cm,t = β Ω̃t−1|s/Ψt|s, and co,t =

β 2Ω̃t−2|s. It follows immediately that cy,t/Es−1cy,t = cm,t/Es−1cm,t = co,t/Es−1co,t and Etcm,t+1/cy,t =

Etco,t+1/cm,t . Observing Et [cm,t+1/co,t+1] = (Ω̃t|s/Ω̃t−1|s)/β and Et [cy,t+1/cm,t+1] = (Ω̃t+1|s/Ω̃t|s)/β and
noting liminft→∞ Ω̃t+1|s/Ω̃t|s≤ 1 is necessary for ∑

∞
t=s Ω̃t|s <∞ implies that liminft→∞Et [cy,t+1/cm,t+1]≤ 1/β

and liminft→∞Et [cm,t+1/co,t+1]≤ 1/β must hold.
Conversely, consider a consumption allocation {ca,t}∞

t=s that satisfies (13), cy,t/Es−1cy,t = cm,t/Es−1cm,t =
co,t/Es−1co,t , and Etcm,t+1/cy,t = Etco,t+1/cm,t for all t ≥ s, and limsupt→∞Et [cy,t+1/cm,t+1] < 1/β and
limsupt→∞Et [cm,t+1/co,t+1]< 1/β . It will be shown there exists a well-defined sequence of weights {Ω̃t}∞

t=s−2
and Lagrangian multipliers {Ψt|s}∞

t=s such that the allocation satisfies the first-order conditions (A.17) and the
social welfare function (A.16) converges. Note that the first-order conditions are homogeneous of degree zero
in the weights and the multipliers, so one normalization (a scaling by a s− 1-measurable variable) can be
imposed without loss of generality. The normalization adopted is Ω̃s−2|s = 1.

The sequence of weights is constructed recursively for all t ≥ s using Ω̃t|s = β (cy,t/cm,t)Ω̃t−1|s starting
from Ω̃s−2|s = 1 and Ω̃s−1|s = βcm,s/co,s. The risk-sharing condition implies cy,t/cm,t = Es−1cy,t/Es−1cm,t

and cm,t/co,t = Es−1cm,t/Es−1co,t , hence the ratios cy,t/cm,t and cm,t/co,t are s− 1-measurable for all t ≥ s.
The definition of the weights {Ω̃t|s}∞

t=s−2 therefore results in a strictly positive and s−1-measurable sequence.
Now consider any t > s. The risk-sharing condition requires cm,t/Es−1cm,t = co,t/Es−1co,t and taking ex-

pectations conditional on date t−1 information and rearranging yieldsEs−1cm,t/Es−1co,t =Et−1cm,t/Et−1co,t .
Combining this with the consumption smoothing conditionEt−1cm,t/cy,t−1 =Et−1co,t/cm,t−1 yields cm,t/co,t =
cy,t−1/cm,t−1. Hence, using the recursive definition of Ω̃t|s for any t > s, Ω̃t−1|s = β (cy,t−1/cm,t−1)Ω̃t−2|s =

β (cm,t/co,t)Ω̃t−2|s and Ω̃t|s = β (cy,t/cm,t)Ω̃t−1|s = β (cy,t/cm,t)β (cm,t/co,t)Ω̃t−2|s = β 2(cy,t/co,t)Ω̃t−2|s. Note
that since Ω̃s−2|s = 1, the definition of Ω̃s−1|s directly implies Ω̃s−1 = β (cm,s/co,s)Ω̃s−2|s, and substituting the
definition of Ω̃s−1|s into Ω̃s|s implies Ω̃s|s = β 2(cy,s/co,s)Ω̃s−2|s. Putting these results together, it has been
shown that Ω̃t−1|s = β (cm,t/co,t)Ω̃t−2|s and Ω̃t|s = β 2(cy,t/co,t)Ω̃t−2|s for all t ≥ s.

The recursion for Ω̃t|s gives Et [cy,t+1/cm,t+1] = (Ω̃t+1|s/Ω̃t|s)/β and Et [cm,t+1/co,t+1] = (Ω̃t|s/Ω̃t−1|s)/β ,
so the dynamic efficiency conditions limsupt→∞Et [cy,t+1/cm,t+1] < 1/β and limsupt→∞Et [cm,t+1/co,t+1] <
1/β imply that the sequence Ω̃t|s must satisfy limsupt→∞ Ω̃t|s/Ω̃t−1|s < 1. Since the limit of t/(t−1) is 1 as t
becomes large, this also shows limsupt→∞(tΩ̃t|s)/((t−1)Ω̃t−1|s) < 1, which guarantees ∑

∞
t=s tΩ̃t|s < ∞. The

argument from the proof of Step 5 then demonstrates that the social welfare function is finite and has a well-
defined constrained maximum subject to (13). That constrained maximum is characterized by the first-order
conditions (A.17).

Define Ψt|s = Ω̃t|s + β Ω̃t−1|s + β 2Ω̃t−2|s for all t ≥ s. Using the earlier results for Ω̃t|s it follows that
Ψt|s = β 2(cy,t/co,t)Ω̃t−2|s + β 2(cm,t/co,t)Ω̃t−2|s + β 2(co,t/co,t)Ω̃t−2|s. Since the resource constraint (13) re-
quires cy,t + cm,t + co,t = 1, this means that Ψt|s = β 2Ω̃t−2|s/co,t . Using β 2Ω̃t−2|s = β Ω̃t−1|sco,t/cm,t and
β 2Ω̃t−2|s = Ω̃t−1|sco,t/cy,t , it follows that the weights and Lagrangian multipliers satisfy all the first-order
conditions (A.17) for the consumption allocation {ca,t}∞

t=s. The original sequence of weights {Ωt|s}∞
t=s−2 can

be recovered from {Ω̃t|s}∞
t=s−2 using Ωs−2|s = β 2Ω̃s−2|s, Ωs−1|s = β Ω̃s−1|s, and Ωt|s = Ω̃t|s for all t ≥ s. The

46



allocation is the solution of the planner’s problem for some set of weights, so it is Pareto efficient.

A.11 Proof of Step 8
In respect of risk sharing, note that (27) implies cy,t = δcm,t , so cy,t/Es−1cy,t = cm,t/Es−1cm,t holds auto-
matically for all t even though markets are incomplete. Suppose cm,t/Et−1cm,t = co,t/Et−1co,t holds. Using
(27) to deduce co,t/cm,t = (1− φt)/δ , it follows that φt = 1− δEt−1co,t/Et−1cm,t . This means φt is t − 1-
measurable, and hence φt = 0 with probability one because of (22). Conversely, if φt = 0 with probabil-
ity one then (27) implies cm,t = αδ and co,t = α . Therefore, φt = 0 with probability one is equivalent to
cm,t/Et−1cm,t = co,t/Et−1co,t .

The remaining requirement for risk sharing is cm,t/Es−1cm,t = co,t/Es−1co,t for all t ≥ s. If φt = 0
with probability one for all t ≥ s then (27) immediately implies that risk sharing condition holds. Con-
versely, cm,t/Es−1cm,t = co,t/Es−1co,t implies Et−1cm,t/Es−1cm,t = Et−1co,t/Es−1co,t for any t ≥ s and thus
cm,t/Et−1cm,t = co,t/Et−1co,t , which is known to imply φt = 0 with probability one. The risk sharing con-
ditions are therefore equivalent in the incomplete-markets economy either to cm,t/Et−1cm,t = co,t/Et−1co,t
or φt = 0 with probability one. Finally, using (22), φt = 0 with probability one is equivalent to nominal
house-price inflation πt being t−1-measurable, that is, πt = Et−1πt with probability one.

In respect of consumption smoothing, consider the inequality Et [(cm,t+1/cy,t)− (co,t+1/cm,t)]≥ 0. Since
(27) implies cy,t = δcm,t , which is non-negative, the inequality is equivalent to Et [(cm,t+1/δ )− co,t+1] ≥ 0.
Substituting from (27), (cm,t+1/δ )−co,t+1 =α/(1−αφt+1)−α(1−φt+1)/(1−αφt+1)=αφt+1/(1−αφt+1),
and therefore the inequality is equivalent to Et [φt+1/(1−αφt+1)] ≥ 0, cancelling the positive term α . Since
φt+1/(1−αφt+1) is a strictly convex function of φt+1, and Etφt+1 = 0 given (22), Jensen’s inequality implies
the inequality always holds, and holds with equality if and only if φt+1 = 0 with probability one.

Using ξt =Et [φt+1/(1−φt+1)]≥ 0, having φt+1 = 0 with probability one is equivalent to ξt = 0, which is
in turn equivalent to 1+ it = (1+Etπt+1)/βδ given (20). Therefore, it has been shown that Et [(cm,t+1/cy,t)−
(co,t+1/cm,t)] = 0, which is the consumption smoothing condition Etcm,t+1/cy,t = Etco,t+1/cm,t , holds if and
only if it = (1 +Etπt+1)/βδ − 1. Consumption smoothing is implied by risk sharing because that gives
φt+1 = 0 with probability one. Since the earlier inequality always holds, a failure of consumption smoothing
must mean Etcm,t+1/cy,t > Etco,t+1/cm,t , which is associated with it < (1+Etπt+1)/βδ −1 because ξt > 0.

Finally, in respect of dynamic efficiency, observe that (27) implies cy,t+1/cm,t+1 = δ , so it follows that
limsupt→∞Et [cy,t+1/cm,t+1] = δ . Since Step 3 implies βδ < 1, this means that liminft→∞Et [cy,t+1/cm,t+1]<
1/β . Equation (27) implies Et [cm,t+1/co,t+1] = δEt [1/(1−φt+1)] = δ (1+ξt) noting that 1+ξt =Et [1/(1−
φt+1)]. Using (20) implies 1+ξt =(1+Etπt+1)/βδ (1+it), and henceEt [cm,t+1/co,t+1] = (1+Etπt+1)/β (1+
it). Since β is positive and finite, the requirement liminft→∞Et [cm,t+1/co,t+1] ≤ 1/β is thus equivalent to
liminft→∞(Etπt+1− it)/(1+ it) ≤ 0. As long as it is bounded away from −1 and ∞, this condition becomes
liminft→∞(Etπt+1− it)≤ 0, or equivalently limsupt→∞(it −Etπt+1)≥ 0. Note that risk sharing or consump-
tion smoothing entail it = (1+Etπt+1)/βδ −1 >Etπt+1 because 0 < βδ < 1, so they imply that the dynamic
efficiency conditions hold.

A.12 Proof of Result 4
There exist monetary policy regimes where the path of nominal house-price inflation πt is predictable one
time period in advance, that is, πt =Et−1πt with probability one. Using (22), this implies financial conditions
will satisfy φt = 0 with probability one. Since ξt = Et [φt+1/(1− φt+1)], this in turn implies ξt = 0 for all
t. Equation (20) then implies interest rate it = (1+Etπt+1)/βδ − 1, so the required nominal interest rate is
higher than that in a equilibrium with financial crises (see 34 with xt+1 > 0).

Using Step 4 and φt = 0, the house-price income and debt-to-GDP ratios are constant at ht = h∗ and
dt = d∗, where h∗ = αβδ/λ and d∗ = αβδ . In an equilibrium with financial crises and credit booms of size x,
the house-price income ratio in the credit boom is h̄=αβδ (1+x)/λ (1+(1−α)x), which is higher than h∗ for
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any x > 0 because α > 0. Likewise, the debt-to-GDP ratio in a credit boom is d̄ = αβδ (1+x)/(1+(1−α)x),
which is always higher than d∗. The formulas for ht and dt given in Step 4 are strictly convex functions of φt ,
and as Et−1φt = 0 must hold, it follows that Eht > h∗ and Edt > d∗ in an equilibrium with financial crises.

Finally, πt = Et−1πt is equivalent to the risk-sharing condition for efficiency according to Step 8, and
it = (1+Etπt+1)/βδ − 1 is equivalent to the consumption smoothing condition. These imply the dynamic
efficiency condition using Step 8, so the equilibrium with financial stability is a first-best allocation.

A.13 Proof of Result 5
An equilibrium with financial crises has financial conditions φt given by (33) for xt > 0 and small εt > 0. Using
(22), the non-degenerate distribution of φt implies πt 6= Et−1πt with probability one, so given Step 8 the risk
sharing requirement for efficiency is violated. The interest rate satisfies (34) implying it > (1+Etπt+1)/βδ −
1, hence the consumption smoothing requirement for efficiency is violated according to Step 8.

Considering a case with xt = x and small εt , it is known that ξt = x, and hence 1+ it =(1+Etπt+1)/βδ (1+
x) using (20). Rearranging this equation leads to βδ (1+ x)− 1 = (Etπt+1− it)/(1+ it), and thus there is
dynamic inefficiency if βδ (1+ x)− 1 > 0 according to Step 8, that is, x > 1/βδ − 1. Using x = (3α −
1)/(1−α) from Result 3 and α = 1/(1+δ +δ 2) from Step 4, it follows that x = 2/δ (1+δ )−1, and hence
dynamic inefficiency occurs if 2/δ (1+δ )> 1/βδ , which is equivalent to δ < 2β −1. This inequality may or
may not hold depending on parameters. If β < 1/2 then 2β −1 is negative, and since δ > 0 it follows that the
equilibrium is dynamically efficient because the inequality is not true. But if β > 1 then 2β −1 > 1, implying
the inequality must be true because δ < 1. Therefore, an equilibrium with financial crises is never a first-best
allocation as risk sharing and consumption smoothing fail, but it may or may not be dynamically efficient.

Suppose εt is small for all t. Now consider an alternative allocation of consumption from some start date
s for all t ≥ s. Taking the values of xt from the probability distributions of financial conditions in (33), define:

c̃y,t =
αδ 2

1−α
xt

1+xt

, c̃m,t =
αδ

1−α
xt

1+xt

, and c̃o,t =
α

(
1− xt

1+xt

)
1−α

xt
1+xt

. (A.18)

Noting that α(1+ δ + δ 2) = 1 from Step 4, this allocation is feasible because it satisfies (13). The new
consumption allocation (A.18) implies c̃a,t = Et−1c̃a,t with probability one, so it features risk sharing (see
Step 7), unlike the original equilibrium ca,t .

The consumption smoothing requirement for efficiency from Step 7 is (Etcm,t+1/cy,t)/(Etco,t+1/cm,t)= 1.
For the new allocation (A.18), it follows that (Et c̃m,t+1/c̃y,t)/(Et c̃o,t+1/c̃m,t) = (c̃m,t+1/c̃o,t+1)/δ = 1+ xt+1,
noting c̃y,t = δ c̃m,t . This means consumption smoothing fails to the extent that xt+1 > 0. With the probability
distribution of φt taking the form (33), observe that:

lim
εt→0

Et−1

[
1

1−αφt

]
= lim

εt→0

(
(1− εt)

1
1−α

xt
1+xt

+ εt
εt(1+ xt)

α(1− εt)xt + εt(1+ xt)

)
=

1
1−α

xt
1+xt

.

Similar reasoning shows that limεt→0Et−1[(1−φt)
−1] = 1+ xt and limεt→0Et−1[(1−φt)/(1−αφt)] = (1−

xt/(1+ xt))/(1−αxt/(1+ xt)). Using (27) and comparing to (A.18), these observations imply the consump-
tion allocation in an equilibrium with financial crises satisfies limεt→0Et−1ca,t = c̃a,t for all a∈{y,m,o}. Thus,
it follows that limεt+1→0(Etcm,t+1/cy,t)/(Etco,t+1/cm,t)= (c̃m,t+1/c̃o,t+1)/δ = 1+xt+1 noting that cy,t = δcm,t .

For dynamic efficiency, note that both cy,t+1/cm,t+1 = δ and c̃y,t+1/c̃m,t+1 = δ so the first requirement
from Step 7 is satisfied both by the equilibrium with financial crises and the new allocation (A.18). The new
allocation implies c̃m,t+1/c̃o,t+1 = δ (1+ xt+1). The equilibrium consumption levels are given by (27) and
hence cm,t+1/co,t+1 = δ (1−φt+1)

−1. Since limεt+1→0Et [(1−φt+1)
−1] = 1+ xt+1 using the arguments above,

this means limεt+1→0Et [cm,t+1/co,t+1] = Et [c̃m,t+1/c̃o,t+1] = δ (1+ xt+1). It follows that if the probabilities of
financial crises are small, moving from the equilibrium ca,t to the new allocation c̃a,t has a negligible effect on
whether the consumption smoothing and dynamic efficiency requirements for efficiency are satisfied.
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The probability distribution of financial conditions φt in (33) also implies:

lim
εt→0

Et−1[log(1−αφt)] = lim
εt→0

(
(1− εt) log

(
1−α

xt

1+ xt

)
+ εt log

(
α(1− εt)xt

1+ xt
+ εt

)
− εt logεt

)
= log

(
1−α

xt

1+ xt

)
,

which makes use of the result limε→0 ε logε = 0. Similar steps can be used to show limεt→0Et−1[log(1−φt)] =
log(1− xt/(1+ xt)). Using the equilibrium consumption levels (27) and comparing to the new allocation
(A.18), it follows that limεt→0Et−1[logca,t ] =Et−1[log c̃a,t ] = log c̃a,t for all a ∈ {y,m,o}. So, for small prob-
abilities of financial crises, the welfare consequences of moving from the equilibrium to the new consumption
allocation (A.18) are negligible. Since the new allocation satisfies risk sharing, but fails consumption smooth-
ing (and possibly dynamic efficiency) to the same extent as the original equilibrium, this demonstrates that
the welfare loss from the failure of risk sharing in the equilibrium with financial crises is negligible when
the probability of a crisis is small. Any non-negligible welfare costs must therefore come from the failure of
consumption smoothing (and possibly dynamic efficiency).

Now consider a deterministic economy where the values of all future variables are known with certainty.
Suppose there is a proportional tax levied on the capital value of loans. The tax rate is κt at date t and the
proceeds are rebated as a lump-sum transfer Kt to the group of taxpayers. In particular, if a loan of value
Dt =−QtBy,t is made then a borrower receives an amount (1−κt)Dt after the tax. The budget identity of the
young in (4a) is replaced by:

Cy,t +
VtHm,t+1

Pt
+

(1−κt)QtBy,t

Pt
=

VtHy,t

Pt
+

Kt

Pt
, (A.19)

where the lump-sum transfer Kt is taken as given by an individual, but is equal to −κtQtBy,t in equilibrium.
An alternative tax instrument applies to the interest income derived from making loans. The present value of
the interest income resulting from a loan Dt = −QtBy,t is −(1−Qt)By,t . If this transfer between borrowers
and lenders is taxed at rate ιt then borrowers receive an amount (1− ιt(1−Qt)/Qt)Dt = (1− ιt it)Dt after tax
using (8), so this instrument is equivalent to κt = ιt it in terms of the nominal interest rate it .

Maximizing utility (1) subject to the new budget identity (A.19) implies the first Euler equation in (7b) is
replaced by (1−κt)Qt/PtCy,t = β/Pt+1Cm,t+1]. All other first-order conditions remain unchanged, except that
conditional expectation operators are ignored because the economy is deterministic. Imposing the equilibrium
lump-sum transfer Kt = κtDt in (A.19) implies the original form of the budget identity in (4a). Hence, apart
from dropping expectation operators, it follows that all the equilibrium conditions in (14) are unaffected except
for the first equation in (14d) being replaced by:

1−κt

cy,t
= β

1+ rt+1

(1+gt+1)cm,t+1
. (A.20)

The proofs of Step 1 and Step 2 are unaffected. Following the proof of Step 3 but using (A.20) leads to
it = (1−κt)/βδ (1+πt+1)−1 instead of the equation for it in (18). Comparing this with (21) shows that (22)
is replaced by the equation φt = κt−1. Conditional on this solution for φt , the proof of Step 4 still applies and
the same solutions for consumption as a function of φt in (27) are valid. Since co,t+1 is decreasing in κt , the
incidence of the tax on lending falls on savers.

In the financial crises equilibrium with small εt , the housing risk premium is given by ξt = xt+1. By
setting κt = ξt/(1+ξt), the consumption allocation with φt = κt−1 in the deterministic economy with taxes on
lending is the same as (A.18) because φt = xt/(1+ xt). It follows that the welfare consequences of having the
equilibrium with financial crises are equivalent to a tax on lending in a deterministic economy with tax rate
κt equal to ξt/(1+ξt) in terms of the housing risk premium. Or equivalently, to a tax on the income derived
from lending with tax rate ιt equal to (ξt/it)/(1+ξt) because ιt = κt/it has the same effect as κt .
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A.14 Proof of Result 6
Step 8 shows that setting the nominal interest rate it = (1+Etπt+1)/βδ − 1 is a necessary condition for the
consumption smoothing requirement of Pareto efficiency. This is the same interest rate policy that implements
the equilibrium with financial stability from Result 4, so that equilibrium is the only Pareto-efficient allocation
that can be implemented through monetary policy alone.

Now suppose that transfers are available. Using the new budget identities and following the same steps
used to derive (14b), those budget equations are replaced by:

cy,t +ht = dt , cm,t +dt = 1+(1−bt)ht + τm,t , and co,t = btht + τo,t , (A.21)

which uses the definitions τa,t = Ta,t/Yt and the restriction Ty,t = 0. Dividing both sides of the fiscal budget
constraint (37) by Yt , the following constraint on τm,t and τo,t must be respected:

τm,t + τo,t = 0. (A.22)

Since none of the first-order conditions is affected by the lump-sum transfers, the only change to the set of
equilibrium conditions (14) is that (14b) is replaced by (A.21).

Now take any allocation that satisfies the sufficient conditions for Pareto efficiency stated in Step 7 from
some starting date s onwards. It will be shown that there exist a sequence of transfers {τa,t} satisfying τa,t =
Es−1τa,t for all t ≥ s that support this allocation as a competitive equilibrium subject to monetary policy
pursuing financial stability.

The risk-sharing conditions in Step 7 require cm,t/cy,t =Es−1cm,t/Es−1cy,t and co,t/cm,t =Es−1co,t/Es−1cm,t

to hold for all t ≥ s, so it follows that cm,t/cy,t and co,t/cm,t are s− 1 measurable. The allocation must
also satisfy the resource constraint, which is equivalent to (13), and which can be rearranged to obtain
cy,t = 1/(1+(cm,t/cy,t)+ (co,t/cm,t)(cm,t/cy,t)). This implies cy,t is s−1 measurable for all t ≥ s, and since
the ratios cm,t/cy,t and co,t/cm,t are also s−1 measurable, so must be cm,t and co,t too.

Now suppose there exists an equilibrium where this efficient consumption allocation prevails. Rearranging
the budget identity of the old from (A.21) gives btht = co,t−τo,t . The restriction τo,t =Esτo,t and the efficiency
requirement of s−1 measurability for co,t , an equilibrium that implements the allocation requires that btht is
s−1 measurable for all t ≥ s. Using the first accounting identity in (14a), (1+ rt)/(1+gt) = btht/dt−1, from
which it follows that the equilibrium must have (1+ rt)/(1+ gt) be t− 1 measurable for all t ≥ s (because
btht is s− 1 measurable). These measurability conditions for (1+ rt)/(1+ gt) together with those for the
consumption allocation mean that the bond Euler equations (14d) can be stated as:

cm,t+1

cy,t
= β

1+ rt+1

1+gt+1
, and

co,t+1

cm,t
= β

1+ rt+1

1+gt+1
. (A.23)

These equations reveal that (1+ rt)/(1+gt) must be s−1 measurable for all t ≥ s owing to the measurability
requirements on the consumption allocation (A.23 shows this for t > s, while the case of t = s follows from
the earlier finding of t−1 measurability).

The first accounting identity in (14a) can be rearranged to write dt = (bt+1ht+1)/((1+ rt+1)/(1+gt+1)),
and thus s−1 measurability of dt is inherited from the same property of bt+1bt+1 and (1+ rt+1)/(1+gt+1).
The budget identity of the young in (A.21) requires ht = dt−cy,t , and s−1 measurability of ht can be deduced
from the same property of lt and cy,t . By combining the second accounting identity in (14a) and the ex-post
Fisher equation (14e) to eliminate γt :

1+πt = (1+ it−1)

(
1+gt

1+ rt

)
ht

ht−1
.

As ht and (1+ rt)/(1+gt) must be s−1 measurable for all t ≥ s, it follows from the equation above that πt

must be t− 1 measurable for all t from s onwards. Therefore, it is necessary that monetary policy is used to
achieve financial stability as in Result 4 to support an efficient allocation.

The next step is to show that there exists an equilibrium supported by a particular scheme of transfers that
implements an efficient allocation. Since ca,t and ht must all be s−1 measurable in such an equilibrium, the
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housing Euler equation (14c) is equivalent to:

ht

cy,t
= βθ +β

ht+1

cm,t+1
= βθ +

βcy,t+1

cm,t+1

ht+1

cy,t+1
. (A.24)

Using the measurability conditions for the consumption allocation, the first dynamic efficiency requirement
(with limsupt→∞ and strict inequality) from Step 7 can be stated as limsupt→∞ βcy,t+1/cm,t+1 < 1. Taking
(A.24) as a difference equation in ht+1/cy,t , dynamic efficiency there exists a unique bounded solution for
ht/cy,t , with ht given by:

ht = βθ

(
1+

βcy,t+1

cm,t+1
+

βcy,t+1

cm,t+1

βcy,t+2

cm,t+2
+ · · ·

)
cy,t .

This value of ht is well defined, and together with the consumption allocation, satisfies (14c). Letting dt =
cy,t +ht , the budget identity of the young in (A.21) is satisfied.

Let the real return on bonds rt be rt = (1+gt)co,t/δcm,t−1 for all t ≥ s using the consumption allocation
and the exogenous gt , which satisfies the second equation in (A.23) by construction. Since the consumption
allocation is efficient, it must satisfy the consumption smoothing requirement cm,t+1/cy,t = co,t+1/cm,t for all
t ≥ s, which means that the first equation in (A.23) also holds with the constructed path of rt . As (A.23) is
equivalent to (14d) at an efficient consumption allocation, (14d) is satisfied. Finally, let bt = (1+rt)dt−1/(1+
gt)ht for all t ≥ s, which implies the first accounting identity from (14a) holds by construction.

Using the constructed values of bt and ht and the efficient consumption allocation, set the net transfer to the
old equal to τo,t = co,t −btht , and the net transfer to the middle-aged equal to τm,t = btht − co,t . Note that this
satisfies the budget identity of the old in (A.21) and the fiscal budget constraint (A.22) because τo,t = −τm,t .
The allocation necessarily satisfies the resource constraint, so cm,t = 1− cy,t − co,t , and by substituting for
the consumption of the young and old using the first and third budget identities from (A.21) it follows that
cm,t = 1−dt +ht−btht−τo,t . Together with (A.22) this implies the second budget identity of the middle-aged
in (A.21) must hold.

Now specify an arbitrary path of nominal house-price inflation such that πt =Et−1πt with probability one
for all t ≥ s. Let goods-price inflation be γt = (1+Et−1πt)ht−1/(1+ gt)ht − 1 in terms of the constructed
path of ht and the exogenous gt . This implies the second accounting identity in (14a) holds by construction.
The final equilibrium condition to verify is (14e), the ex-post Fisher equation, which requires 1 + it−1 =
(1+ rt)(1+ γt). Using the constructed value of γt , (1+ rt)(1+ γt) = (1+Et−1πt)(ht−1/ht)(1+ rt)/(1+gt),
which is t − 1 measurable for all t ≥ s because Et−1πt is known at date t − 1 and (1+ rt)/(1+ gt) and ht

are known to be s−1 measurable for all t ≥ s. There exists a well-defined path of nominal interest rates that
supports the equilibrium with financial stability and transfers.

A.15 Proof of Step 9
[To be added.]

A.16 Proof of Result 7
[To be added.]

51


	1 Introduction
	2 A credit economy with housing and incomplete markets
	2.1 The model
	2.2 Properties of a competitive equilibrium

	3 Financial crises and monetary policy
	3.1 The political economy of monetary policy
	3.2 Financial crises
	3.3 The implementation of monetary policy

	4 Policy implications
	4.1 Inefficiency and welfare costs of financial instability
	4.2 Achieving financial stability

	5 Endogenizing incomplete markets
	5.1 Frictionless complete markets
	5.2 Additional markets with frictions

	6 Conclusions
	References
	A Appendices
	A.1 Proof of Step 1
	A.2 Proof of Step 2
	A.3 Proof of Step 3
	A.4 Proof of Step 4
	A.5 Proof of Result 1
	A.6 Proof of Result 2
	A.7 Proof of Step 5
	A.8 Proof of Result 3
	A.9 Proof of Step 6
	A.10 Proof of Step 7
	A.11 Proof of Step 8
	A.12 Proof of Result 4
	A.13 Proof of Result 5
	A.14 Proof of Result 6
	A.15 Proof of Step 9
	A.16 Proof of Result 7


