Job Seekers' Perceptions and Employment Prospects: Heterogeneity, Duration Dependence and Bias

Andreas I. Mueller UT Austin

Johannes Spinnewijn LSE

> **Giorgio Topa** New York Fed

> > May, 2019

Introduction

- Long-term unemployment is a key concern:
 - ▶ long 'history' in Europe, more recent in US
 - cost to workers + inefficiency of labor market
- Long literature on sources of LT unemployment:
 - central finding: observed negative duration-dependence in job finding
 - major challenge: separate true duration-dependence from heterogeneity in job finding
- Disentangling different sources is essential for design of unemployment policy

This Paper

- 1. Document novel facts about job seekers' perceptions
- 2. Use perceptions to separate heterogeneity in job finding from true duration dependence
- Study how biased beliefs contribute to incidence of LT unemployment

This Paper: Main Ideas

- 1. Document novel facts about job seekers' perceptions
- 2. Use perceptions to separate heterogeneity in job finding from true duration dependence
 - ► Infer heterogeneity from relation between ex ante beliefs and ex post job finding outcomes
 - ▶ Build on Hendren ('13,'17), but allow for biases in beliefs
- Study how biased beliefs contribute to incidence of LT unemployment

This Paper: Main Ideas

- 1. Document novel facts about job seekers' perceptions
- 2. Use perceptions to separate heterogeneity in job finding from true duration dependence
- Study how biased beliefs contribute to incidence of LT unemployment
 - This part requires assumptions on how beliefs affect job search
 - ▶ Under-reaction in beliefs to Δ in employment prospects magnifies Δ in job finding

This Paper: Preview of Results

- 1. Document novel facts about job seekers' perceptions
 - Perceptions have strong predictive power
 - Job seekers are over-optimistic, especially LT unemployed
 - Job seekers do not revise beliefs downward over the spell
- 2. Use perceptions to separate heterogeneity in job finding from true duration dependence
- Study how much biased beliefs contribute to incidence of LT unemployment

This Paper: Preview of Results

- 1. Document novel facts about job seekers' perceptions
- 2. Use perceptions to separate heterogeneity in job finding from true duration dependence
 - Heterogeneity explains almost all of the decline in job finding
 - ▶ Beliefs under-react to variation in job finding rates
- Study how much biased beliefs contribute to incidence of LT unemployment

This Paper: Preview of Results

- 1. Document novel facts about job seekers' perceptions
- 2. Use perceptions to separate heterogeneity in job finding from true duration dependence
- Study how much biased beliefs contribute to incidence of LT unemployment
 - ▶ Biases increase share of LT unemployed by ~ 10 percent

Related literature

- ▶ Incidence of LT unemployment
 - Machin-Manning (1999), Kroft et al. (2016)
- Separating true duration-dependence vs. heterogeneity
 - Unobserved Heterogeneity: Heckman-Singer (1984ab),...
 - Audit studies: Kroft et al (2013), Farber et al (2018), Jarosch-Pilossoph (2018)
 - Repeated spells: Honoré (1993), Alvarez et al (2016)
- Behavioral biases / frictions in job search
 - Information frictions: Spinnewijn (2015), Altmann et al. (2018), Belot et al. (2018), Conlon et al. (2018)
 - ▶ Hyperbolic discounting: DellaVigna-Paserman (2005)
 - ▶ Reference-dependence: DellaVigna et al. (2017)
 - Persistent reservation wages: Krueger-Mueller (2016)
- Use of survey elicitations in models of job search
 - ▶ Beliefs on wage offers: Conlon et al (2018)
 - ► Elicited reservation wages: Hall-Mueller (2018)

Data I

- NY Fed's Survey of Consumer Expectations (SCE)
 - ► Started in 2013, after extensive testing phase
 - ► Nationally representative, internet-based survey of a 12-month rotating panel of about 1,300 household heads
 - Core monthly survey on expectations about macro and household level variables

Data I

- NY Fed's Survey of Consumer Expectations (SCE)
 - ► Started in 2013, after extensive testing phase
 - Nationally representative, internet-based survey of a 12-month rotating panel of about 1,300 household heads
 - Core monthly survey on expectations about macro and household level variables
- Job finding expectations (asked of unemployed job seekers):
 - "[...] what do you think is the percent chance that within the coming 3 months, you will find a job that you will accept, considering the pay and type of work?"

Data I

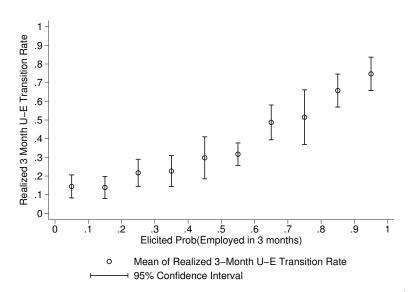
- NY Fed's Survey of Consumer Expectations (SCE)
 - Started in 2013, after extensive testing phase
 - ► Nationally representative, internet-based survey of a 12-month rotating panel of about 1,300 household heads
 - Core monthly survey on expectations about macro and household level variables
- Job finding expectations (asked of unemployed job seekers):
 - "[...] what do you think is the percent chance that within the coming 3 months, you will find a job that you will accept, considering the pay and type of work?"
- ► Panel data allows to link perceived job finding to actual job finding (with limited attrition)

Data II

- Survey of Unemployed Workers in New Jersey (KM)
 - ► Panel of about 6,000 unemployed job seekers (UI recipients in October 2009)
 - Interviewed weekly for 12 weeks
 - Long term unemployed surveyed for additional 12 weeks

Data II

- Survey of Unemployed Workers in New Jersey (KM)
 - ► Panel of about 6,000 unemployed job seekers (UI recipients in October 2009)
 - Interviewed weekly for 12 weeks
 - Long term unemployed surveyed for additional 12 weeks
- Job finding expectations:
 - "What do you think is the percent chance that you will be employed again within the next 4 weeks?"

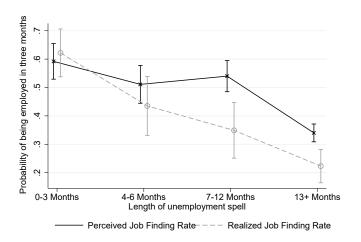

Data II

- Survey of Unemployed Workers in New Jersey (KM)
 - ► Panel of about 6,000 unemployed job seekers (UI recipients in October 2009)
 - Interviewed weekly for 12 weeks
 - Long term unemployed surveyed for additional 12 weeks
- Job finding expectations:
 - "What do you think is the percent chance that you will be employed again within the next 4 weeks?"
 - "How many weeks do you estimate it will actually take before you will be employed again?"

Fact 1: Predictive Value of Beliefs

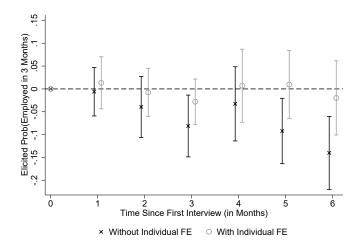
True Job Finding vs. Perceived Job Finding, SCE Survey

Fact 1: Predictive Value of Beliefs [cont'd]

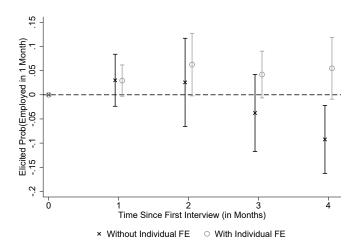

SCE: 3-month UE Transition Rate

	(1)	(2)	(3)	(4)	(5)
Elicited 3-month Probability	0.618*** (0.0654)		0.624*** (0.0886)		0.565*** (0.0952)
Lagged Elicited 3-m Prob		0.314*** (.0684)			
Elicited 3-m Prob x LT Unempl.			-0.216* (0.125)		-0.274** (0.123)
LT Unemployed			-0.111 (0.0695)		-0.0291 (0.0738)
Controls				Х	Х
N	983	392	983	983	983
R2	0.142	0.0454	0.190	0.152	0.252

Fact 2: Optimistic Bias (for LT unemployed)


Perceived vs. True Job Finding by Time Unemployed, SCE Survey

Fact 3: No Downward Revising of Beliefs


Perceived Job Finding by Time Unemployed, SCE Survey

Fact 3: No Downward Revising of Beliefs

Perceived Job Finding by Time Unemployed, KM Survey

Further Discussion

- Lack of negative updating seems puzzling:
 - ▶ is true duration-dependence not perceived? no learning from unsuccessful job search?
 - There could be behavioral explanations (e.g., gambler's fallacy, motivated beliefs)
 - ... BUT is there true duration dependence? something to be learned?
- Other related evidence
 - reservation wages hardly decrease over the spell (Krueger, Mueller 2016)
 - similar under-reaction of perceptions to aggregate indicators, but only for the unemployed Table

Part II: Statistical Analysis of Job Finding

- Develop a statistical framework to separate:
 - 1. Heterogeneity in job finding
 - 2. True duration-dependence in job finding
 - 3. Biases in beliefs, both across job seekers and over spell
 - 4. Random elicitation errors

► (Latent) true job finding probability:

$$T_{id} = [1 - \theta]^d (T_i + \tau_{id})$$

► (**Elicited**) perceived job finding rate:

$$Z_{id} = b_0 + b_1 \tilde{T}_{id} + \varepsilon_{id}$$

▶ (**Observed**) job finding realization:

$$F_{id} = \left\{ egin{array}{ll} 1 & ext{with prob.} & T_{id} \ 0 & ext{with prob.} & 1 - T_{id} \end{array}
ight.$$

▶ (Latent) true job finding probability:

$$T_{id} = [1 - \theta]^d (T_i + \tau_{id})$$

- $ightharpoonup \theta$ is the depreciation rate \Rightarrow true duration-dependence
- $ightharpoonup T_i$ is a persistent component \Rightarrow dynamic selection
- $ightharpoonup au_{id}$ is a transitory component \Rightarrow dynamic selection

▶ (Latent) true job finding probability:

$$T_{id} = [1 - \theta]^d (T_i + \tau_{id})$$

► (**Elicited**) perceived job finding rate:

$$Z_{id} = b_0 + b_1 \tilde{T}_{id} + \varepsilon_{id}$$

- ▶ b_0 and b_1 capture systematic 'biases' (rational exp, perfect info $\Rightarrow b_0 = 0, b_1 = 1$)
- \triangleright ε_{id} is random error in elicitations or perceptions

$$\tilde{T}_{id} = [1 - \hat{\theta}]^d (T_i + \tau_{id})$$

• $\hat{\theta} \neq \theta$ allows for different cross-sectional and longitudinal 'bias' (learning from unsuccessful job search $\Rightarrow \hat{\theta} > \theta$)

▶ (Latent) true job finding probability:

$$T_{id} = [1 - \theta]^d (T_i + \tau_{id})$$

► (**Elicited**) perceived job finding rate:

$$Z_{id} = b_0 + b_1 \tilde{T}_{id} + \varepsilon_{id}$$

▶ (**Observed**) job finding realization:

$$F_{id} = \left\{ egin{array}{ll} 1 ext{ with prob. } T_{id} \ 0 ext{ with prob. } 1 - T_{id} \end{array}
ight.$$

Identification: Heterogeneity vs. Depreciation

- Identification challenge:
 - what drives observed duration dependence?

$$\frac{E_{d+1}(T_{i,d+1})}{E_d(T_{i,d})} = (1-\theta) \left[1 - \frac{Var_d(T_i)}{E_d(T_{i,d})(1-E_d(T_{i,d}))} \right]$$

- Our approach:
 - infer heterogeneity from relation between ex-ante elicitations and ex-post realizations (cfr Hendren '13)
 - non-parametric implementation: any predictable variation in job finding indicates ex ante heterogeneity

$$Var(T_{id}) \geq Var(E(T_{id}|X_{id}))$$

- parametric implementation using model of beliefs:
 - ▶ noisy elicitation: $Z_{id} = T_{id} + \varepsilon_{id}$ (with $E(\varepsilon_{id} | T_{id}) = 0$)
 - binary realization: $F_{id} = 1$ with prob T_{id}
 - ▶ Hence, $Cov(Z_{id}, F_{id}) = Var(T_{id})$

Identification: Challenges

- ► Challenge 1: only persistent heterogeneity drives selection
 - ightharpoonup elicitation depends on both persistent component T_i and transitory shock au_{id}
 - ▶ separate the two using $Cov(Z_{i,d-x}, F_{i,d})$ vs. $Cov(Z_{i,d}, F_{i,d})$
- Challenge 2: beliefs are biased
 - ▶ biased beliefs: $Z_{id} = b_0 + b_1 T_{id} + \varepsilon_{id}$ (with $E(\varepsilon_{id} | T_{id}) = 0$)
 - ightharpoonup Hence, $Cov(Z_{id}, F_{id}) = b_1 Var(T_{id})$
 - ⇒ To what extent is variation in job finding perceived?

Identification: Biases in Beliefs

- Use variation in job finding T across spell durations to estimate bias
 - ▶ identify b_1 from $\frac{E_{LT}(Z_{id}) E_{ST}(Z_{id})}{E_{LT}(T_{id}) E_{ST}(T_{id})}$
 - e.g., LTU: lower job finding, more optimistic $\Rightarrow b_1 < 1$
- Allow for different cross-sectional and longitudinal bias
 - ▶ identify $\hat{\theta} \neq \theta$ using $Cov(Z_{i,d+x}, F_{i,d+x})$ vs. $Cov(Z_{i,d}, F_{i,d})$
 - intuition: covariance between Z and F for LT unemployed depends also on longitudinal bias
- ▶ In principle, we can use other observable variation T|X, but we would need the bias not to change with X, i.e., $E(\varepsilon|X) = 0$

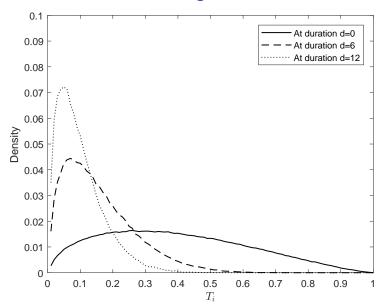
- Estimation using method of simulated moments
- ► RESULT 1: heterogeneity >> depreciation in job finding
- ▶ RESULT 2: beliefs under-react to ∆ in job finding

► Estimates/Robustness/Sensitivity

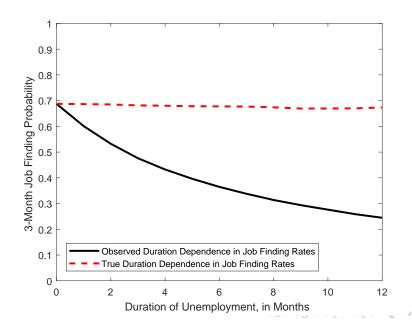
- Estimation using method of simulated moments
 - minimize weighted SSR using inverse of covariance matrix
 - check non-param. identification arguments in full model
 - gauge sensitivity to functional forms / distrib. assumps
- ▶ RESULT 1: heterogeneity >> depreciation in job finding
- ▶ RESULT 2: beliefs under-react to Δ in job finding

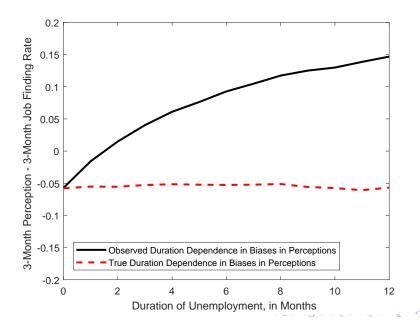
▶ Estimates/Robustness/Sensitivity

- Estimation using method of simulated moments
- ► RESULT 1: heterogeneity >> depreciation in job finding
 - substantial heterogeneity in job finding; 23 percent driven by transitory shocks
 - dynamic selection explains 98 (35.5) percent of the decline in job finding rates
 - dynamic selection on 'observables' explains only 28 percent of the decline Table
 - ▶ non-parametric lower bound: $Var(T_{id}) \ge Var(E(T_{id}|X_{id}))$
 - ▶ using beliefs: LB = 32% of estimated variance
 - ightharpoonup using beliefs + observables : LB = 53% of estimated variance
 - other robustness:
 - similar results when estimating statistical model on residualized moments
 - model fit is worse without heterogeneity
- ▶ RESULT 2: beliefs under-react to Δ in job finding



- Estimation using method of simulated moments
- ▶ RESULT 1: heterogeneity >> depreciation in job finding
- ► RESULT 2: beliefs under-react to Δ in job finding
 - only half of the heterogeneity in job finding is perceived
 - ▶ slope parameter: $b_1 = .54$ (.12) < 1
 - ightharpoonup no extra longitudinal response: $\hat{ heta} pprox heta$
 - ightharpoonup model fit is worse for $b_1 = 1$, not for $\hat{\theta} = \theta$
 - optimistic bias for LTU is driven by dynamic selection
 - job seekers with low job finding are optimistic and do not revise their beliefs downward


▶ Estimates/Robustness/Sensitivity


The Distribution of T_i among Survivors

Duration Dependence in Job Finding Rates

Duration Dependence in Biases in Perceptions

Part III: Structural Model with Biased Beliefs

- Statistical model abstracts from job seekers' behavior
- Questions:
 - how do beliefs affect job seekers' behavior?
 - how much do beliefs affect incidence of LT unemployment?
- ► Setup McCall search model ▶ Details
 - allow for heterogeneity, duration-dependence and bias
 - introduce action through arrival rate of job offers
 - target true and perceived job finding rates
 - target estimates from statistical model directly

True vs. Perceived Arrival Rate

- Key mechanism:
 - as arrival rate increases, behavioral response mitigates increase in exit rate, but only if perceived

$$T = \underbrace{(1 - F(R))}_{\text{Acceptance Rate}} \times \underbrace{\lambda}_{\text{Arrival Rate}}$$

$$dT = \underbrace{\left[1 - F(R)\right] \times d\lambda}_{\text{Mechanical Effect}} - \underbrace{\left[\lambda f\left(R\right)\partial R/\partial\hat{\lambda}\right] \times d\hat{\lambda}}_{\text{Behavioral Effect}}.$$

- ▶ Pass-through elasticity: $\varepsilon_{T,\lambda} = 1 \beta \times \kappa$
 - ▶ With $d\hat{\lambda} = \beta d\lambda$; $\kappa = \frac{f(R)}{1 F(R)} E_{w \geq R} (w R)$
- Behavioral response is consistent with larger optimism for LT unemployed
 - ▶ lower arrival rate \Rightarrow optimistic bias in job finding (for $\beta < 1$)
 - ▶ optimistic bias in arrival rate \Rightarrow lower job finding (as $R \uparrow$)

Heterogeneity

Consider heterogeneity in true and perceived arrival rates:

$$\hat{\lambda}_i = \beta_0 + \beta_1 \lambda_i + \nu_i$$
 with $\sigma_{\lambda}, \sigma_{\nu}$ and $E(\nu_i | \lambda_i) = 0$

Proposition

- 1. increasing in heterogeneity in arrival rates (σ_{λ})
- 2. and more so if heterogeneity is under-estimated ($\beta_1 < 1$)

Heterogeneity

Consider heterogeneity in true and perceived arrival rates:

$$\hat{\lambda}_i = \beta_0 + \beta_1 \lambda_i + \nu_i$$
 with $\sigma_{\lambda}, \sigma_{\nu}$ and $E(\nu_i | \lambda_i) = 0$

Proposition

- 1. increasing in heterogeneity in arrival rates (σ_{λ})
- 2. and more so if heterogeneity is under-estimated ($\beta_1 < 1$)
- 'Proof':
 - Duration-dependence depends on variance in job finding
 - Variance can be approximated for 'small' heterogeneity by

$$\mathit{var}_0(\mathit{T}) \propto \left[1 - \beta_1 \kappa\right]^2 \sigma_\lambda^2 + \kappa^2 \sigma_\nu$$

Depreciation

Consider depreciation of true and perceived arrival rates:

$$\lambda_{d+1} = (1 - \theta) \lambda_d$$
; $\hat{\lambda}_{d+1} = (1 - \beta_{\theta} \theta) \hat{\lambda}_d$

Proposition

- 1. increasing in depreciation of arrival rates (θ)
- 2. and more so if depreciation is under-estimated $(\beta_{\theta} < 1)$

Depreciation

Consider depreciation of true and perceived arrival rates:

$$\lambda_{d+1} = (1 - \theta) \lambda_d$$
; $\hat{\lambda}_{d+1} = (1 - \beta_{\theta} \theta) \hat{\lambda}_d$

Proposition

- 1. increasing in depreciation of arrival rates (θ)
- 2. and more so if depreciation is under-estimated $(\beta_{\theta} < 1)$
- 'Proof':
 - Duration-dependence depends on updating of reservation wage
 - Workers lower reservation wages over the unemployment spell to offset the (perceived) decrease in arrival rates

$$\frac{d\left[\frac{T_{d+1}}{T_d}\right]}{d\theta} = -\left[1 - \beta_\theta \frac{\kappa}{\lambda}\right]$$

Structural Model: Calibration + Results

- Calibration using method of simulated moments
 - target true and perceived job finding means
 - directly target depreciation from statistical analysis
 - add moments/parameters for search model Targets/Estimates
- ► Main results / counterfactuals
 - behavioral effect is sizeable, so quantitative impact of beliefs can be substantial

 Comparative Stats
 - ▶ biases jointly explain 12 14 percent of the incidence of LT unemployment
- Robustness of contribution to LT incidence
 - result is driven by under-reaction in beliefs, not by exact role of depreciation vs. heterogeneity
 - calibration ignores random error in perceptions, which would further increase beliefs-driven variance in job finding

Counterfactual Analysis: Elimination of Biases

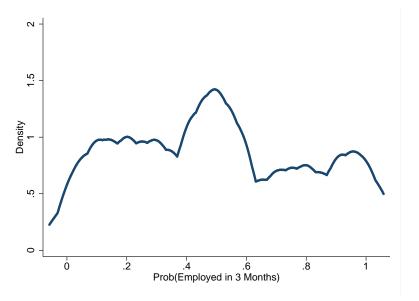
			Eliminati	ng Biases	
	Calibrated				$B_0 = 0$
	Model	$B_0 = 0$	$B_1 = 1$	$B_{ heta}=1$	$B_1 = 1$
					$B_{ heta}=1$
A. Baseline Model					
Unemployment duration	4.24	4.24	4.21	4.24	4.21
Share of LT unemployed	0.32	0.32	0.29	0.32	0.29
B. Alternative spec: high depreci	iation				
Average unemployment duration	4.3	4.56	4.27	3.99	4.08
Share of LT unemployed	0.32	0.33	0.31	0.30	0.29

Concluding Remarks

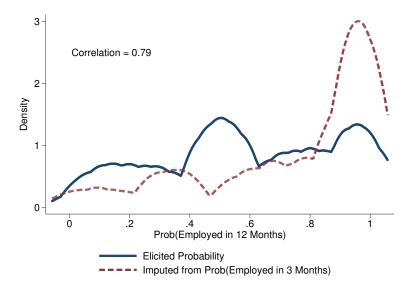
- ► Elicitation of job seekers' perceptions can be used to learn about 'real' environment
- Biases in job seekers' perception by themselves pose a 'real' challenge for unemployment policy
- Understanding the source of these biases will be important when hoping to target biases directly

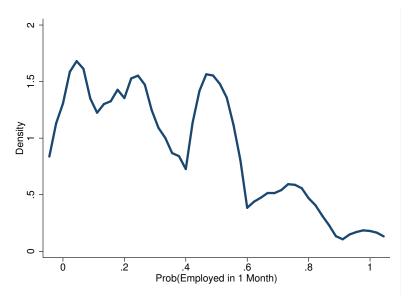
SCE: Summary Statistics / Representativeness

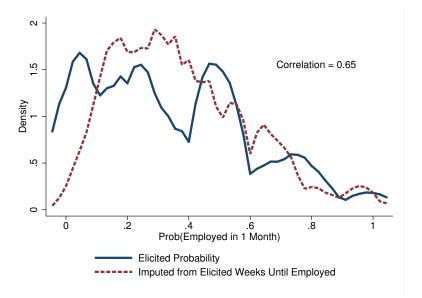
	SCE	CPS	SCE	CPS
	2012-17	2012-17	2012-17	2012-17
	All	All	Unemployed	Unemployed
Demographic data (in percent)				
High-School Degree or Less	31.9	35.3	42.8	45.0
Some College Education	18.7	18.9	21.0	21.3
College Degree or More	49.0	45.8	35.3	33.6
Female	49.5	48.2	55.7	49.2
Ages 20-34	26.4	26.6	24.8	35.2
Ages 35-49	37.4	34.0	32.7	33.3
Ages 50-65	36.2	39.4	42.4	31.6
Black	11.4	14.3	16.5	23.6
Hispanic	9.8	15.2	11.4	18.1
Survey outcomes				
Avg. monthly job finding rate (%)	n.a.	n.a.	17.6	22.7
# of respondents	8,396	n.a.	777	n.a.
# of survey responses	53,089	2,427,795	2117	86,761



SCE vs. KM: Summary Statistics


	SCE 2012-17	KM Survey 2009-10
Demographic data (in percent)		
High-School Degree or Less	42.8	32.5
Some College Education	21.0	37.4
College Degree or More	35.3	30.1
Female	55.7	48.6
Ages 20-34	24.8	38.1
Ages 35-49	32.7	35.4
Ages 50-65	42.4	26.5
Black	16.5	19.8
Hispanic	11.4	25.6
Survey outcomes		
Avg. monthly job finding rate (in percent)	17.6	13.6
# of respondents	777	2,384
# of respondents w/ at least 2 unemployed surveys	437	1,422
# of unemployed survey responses	2,117	4,803


Kernel Density Estimates of 3-Month Elicitation (SCE)


Comparison with Alternative Form of Elicitation (SCE)

Kernel Density Estimates of 1-Month Elicitation (KM)

Comparison with Alternative Form of Elicitation (KM)

Bias in Job Finding Beliefs (1/3)

SCE (3-month horizon)

	Realized Job-	Perceived Job-	Sample
	Finding Rate	Finding Probability	Size
Full sample	0.396 (0.024)	0.474 (0.016)	983
Duration 0-3 months	0.622 (0.043)	0.592 (0.032)	302
Duration 4-6 months	0.435 (0.053)	0.511 (0.034)	160
Duration 7-12 months	0.349 (0.050)	0.540 (0.028)	164
Duration 13+ months	0.223 (0.030)	0.340 (0.016)	357

→ Back

Bias in Job Finding Beliefs (1/3)

KM (1-month horizon)

	Realized Job-	Perceived Job-	Sample
	Finding Rate	Finding Probability	Size
Full sample	0.105 (0.022)	0.256 (0.019)	734
Duration 0-6 months	0.135 (0.043)	0.256 (0.042)	79
Duration 7-12 months	0.116 (0.048)	0.283 (0.031)	158
Duration 13+ months	0.076 (0.022)	0.232 (0.028)	497

▶ Back

Predictive Value of Beliefs (2/3)

Dependent Variable: 3-Month UE Transition Rate	(1)	(2)	(3)	(4)
Prob(Find Job in 3 Months)	0.618***	0.624***		0.565***
	(0.0654)	(0.0886)		(0.0952)
Prob(Find Job in 3 Months)		-0.216*		-0.274**
x LT Unemployed		(0.125)		(0.123)
LT Unemployed		-0.111		-0.0291
		(0.0695)		(0.0738)
Female			-0.143***	-0.0730**
			(0.0424)	(0.0371)
Race: African-American			0.218***	0.129*
			(0.0641)	(0.0664)
Race: Hispanic			-0.0458	-0.0940*
			(0.0577)	(0.0565)
Race: Asian			0.0785	0.167*
			(0.0983)	(0.0886)
Race: Other			-0.0971	-0.0839
			(0.0656)	(0.0602)
Age			0.0158	0.0206*
-			(0.0146)	(0.0111)
Age*Age			-0.000280*	-0.000283*
			(0.000157)	(0.000123)

Predictive Value of Beliefs [cont'd] (2/3)

Dependent Variable: 3-Month UE Transition Rate	(1)	(2)	(3)	(4)
HH income: 30,000-59,999			0.0921* (0.0513)	0.0753* (0.0430)
HH income: 60,000-100,000			0.163** (0.0633)	0.130** (0.0641)
HH income: 100,000+			0.135** (0.0604)	0.122* (0.0689)
High-School Degree			0.333*** (0.0778)	0.201*** (0.0703)
Some College			0.256*** (0.0661)	0.167*** (0.0633)
College Degree			0.252*** (0.0640)	0.133** (0.0634)
Post-Graduate Education			0.264*** (0.0696)	0.143** (0.0690)
Other Education			0.602*** (0.176)	0.416*** (0.147)
Constant	0.103*** (0.0328)	0.207*** (0.0583)	0.0600 (0.323)	-0.258 (0.252)
N R2	983 0.142	983 0.190	983 0.152	983 0.252

Persistence in Predictive Value of Beliefs (2/3)

Dependent Variable:				
3-Period Forward UE Transition Rate	(1)	(2)	(3)	(4)
Elicited 3-Month Probability	0.314*** (0.0864)	0.486*** (0.125)		0.425*** (0.121)
Elicited 3-M Prob x LT unemployed		-0.368** (0.157)		-0.319** (0.143)
LT Unemployed		0.0472 (0.0704)		0.0344 (0.0681)
Controls			Х	Х
N	392	392	392	392
R2	0.0454	0.0778	0.153	0.207

→ Back

Updating in Beliefs among Unemployed (3/3)

Panel A. SCE, Dependent Va	riable:						
Elicited 3-Month Probability	(1)	(2)	(3)	(4)			
Unempl. Duration (Ms)	-0.00544***	-0.00473***	-0.00395***	0.00395			
	(0.000767)	(0.000524)	(0.000490)	(0.00761)			
Demographics	Demographics X						
Spell FE				X			
Observations	673	1845	1845	1845			
R^2	0.107	0.079	0.164	0.822			
Panel B. KM Survey, Depend	ent Variable:						
Elicited 1-Month Probability	(1)	(2)	(3)	(4)			
Unempl. Duration (Ms)	-0.0009	-0.0020	-0.0025	0.0216			
	(0.0021)	(0.0016)	(0.0014)*	(0.0077)**			
Demographics			X				
Individual Fixed Effects				X			
Observations	2,088	4,435	4,318	4,435			
R-Squared	0.000	0.003	0.119	0.902			

Dynamic Selection on Observables

Dependent Variable: 3-Month UE Transition Rate	(1)	(2)	(3)	(4)
Unemployment Duration, in Months	-0.0090*** (0.0009)	-0.0071*** (0.0009)		
Unemployment Duration: 4-6 Months	(* ****)	(* ****)	-0.187*** (0.069)	-0.152** (0.064)
Unemployment Duration: 7-12 Months			-0.274*** (0.066)	-0.239*** (0.060)
Unemployment Duration: 13+ Months			-0.400***	-0.287***
			(0.053)	(0.052)
Demographics		Х		X
HH income (3 Bins)		X		X
Education levels		X		Х
Observations	983	983	983	983
R^2	0.119	0.213	0.116	0.205

▶ Back

Dynamic Selection on Beliefs

Dependent Variable: 3-Month UE Transition Rate	(1)	(2)	(3)	(4)
Unemployment Duration, in Months	-0.0064*** (0.0009)	-0.0053*** (0.0010)		
Unemployment Duration: 4-6 Months	, ,	, ,	-0.145** (0.060)	-0.127** (0.059)
Unemployment Duration: 7-12 Months			-0.240*** (0.061)	-0.214*** (0.058)
Unemployment Duration: 13+ Months			-0.274***	-0.200*** (0.052)
			(0.050)	(0.052)
Demographics		X		X
HH income (3 Bins)		X		X
Education levels		X		X
Belief Controls (10 Bins)	X	X	Х	Х
Observations	983	983	983	983
R^2	0.200	0.262	0.199	0.261

Beliefs vs. Behavior

Dependent variable:	Prob(Find Jol	o in 1 Month)	Expected Duration (Inverted)	
	(1)	(2)	(3)	(4)
Time Spent on Job Search (Hours per Week)	0.0013	-0.0013	0.0009	0.0007
,	(0.0006)**	(0.0010)	(0.0005)	(0.0013)
Log(Hourly Reservation Wage)	-0.0387	-0.0099	-0.0586	0.1374
	(0.0360)	(0.0758)	(0.0316)*	(0.0828)*
Reservation Commuting Distance (in min)	-0.0000	-0.0010	-0.0006	-0.0003
- ,	(0.0006)	(0.0013)	(0.0005)	(0.0013)
Controls	X		X	
Individual F.E.		Χ		X
N	3,992	4,087	3,911	3,990
R^2	0.129	0.915	0.097	0.891

Response to Aggregate Indicators for Unemployed

Panel A. Unemployed Individuals: Elicited 3-Month Probability	(1)	(2)	(3)	(4)
National Unemployment Rate	2.059 (1.946)			
National Job Openings Rate	3.535 (4.792)			
State Unemployment Rate		0.534 (0.729)	-0.150 (0.727)	
Elicited Prob(rise in US stock prices)				0.170*** (0.0399)
Elicited Prob(rise in US unempl.)				-0.0905** (0.0373)
Demographics State FE	Х	Х	X X	X X
Observations R^2	1826 0.116	1832 0.115	1832 0.183	1821 0.195

Response to Aggregate Indicators for Employed

Panel B. Employed Individuals: (Conditional) Elicitation	(1)	(2)	(3)	(4)
National Unemployment Rate	-1.407*** (0.426)			
National Job Openings	4.984*** (1.094)			
State Unemployment Rate		-2.812*** (0.147)	-3.120*** (0.177)	
Elicited Prob(rise in US stock prices)				0.223*** (0.00920)
Elicited Prob(rise in US unempl.)				-0.109*** (0.00924)
Demographics State FE	Х	X	X X	X X
Observations R^2	44309 0.056	44380 0.058	44380 0.073	44494 0.086

Functional Form and Distributional Assumptions

- \triangleright Permanent job finding rates, T_i , follows Beta distribution
- lacktriangle Transitory component of the job finding rate, au_{id} , with $T_{id} \in [0,1]$
 - uniform distribution on the interval $[-\sigma_{\tau}, \sigma_{\tau}]$
 - ▶ masspoint(s) at the bounds such that $E(\tau|T_i) = 0$
- ▶ Perceptions/elicitations errors, ε_{id} , with $Z_{id} \in [0,1]$
 - uniform distribution on the interval $[-\sigma_{\varepsilon}, \sigma_{\varepsilon}]$
 - lacktriangle masspoint(s) at the bounds such that $E(arepsilon | ilde{T}_{id}^3) = 0$
- ► Geometric depreciation in baseline specification. Alternative specification with piecewise linear depreciation:

$$\theta_d = \begin{cases} \theta d \text{ if } d \leq 12 \\ \theta 12 \text{ if } d > 12 \end{cases} \quad \text{and } \hat{\theta}_d = \begin{cases} \hat{\theta} d \text{ if } d \leq 12 \\ \hat{\theta} 12 \text{ if } d > 12 \end{cases}$$

Targeted Moments

		Value	e in
Moment	Symbol	SCE	Model
Mean of 3-Month Job Finding Rates:			
at 0-3 Months of Unemployment	$m_{F_{03}}$	0.623	0.626
at 4-6 Months of Unemployment	$m_{F_{46}}$	0.435	0.441
\dots at $7+$ Months of Unemployment	$m_{F_{7+}}$	0.260	0.261
Mean of 3-Month Elicitations (Deviation	on from Actual):		
at 0-3 Months of Unemployment	$m_{Z_{03}}-m_{F_{03}}$	-0.031	-0.029
at 4-6 Months of Unemployment	$m_{Z_{46}}-m_{F_{46}}$	0.076	0.057
\dots at $7+$ Months of Unemployment	$m_{Z_{7+}}-m_{F_{7+}}$	0.139	0.141
Mean of Monthly Innovations			
in Elicitations	m_{dZ}	0.009	0.008
Var. of Elicitations	s_Z^2	0.089	0.089
Cov. with Job Finding	$c_{Z,F}$	0.055	0.057
Cov. wtih Job Finding in 3 Months	C_{Z_d}, F_{d+3}	0.023	0.023

Estimation Results

A. Parameter Estimates

Parameter/			
Moment	Explanation	Estimate	(S.e.)
$E(T_i)$	Mean of distribution of T_i	0.389	(0.066)
$Var(T_i)$	Variance of distribution of T_i	0.048	(0.022)
$\sigma_{ au}$	Dispersion in transitory component $ au_{id}$	0.325	(0.250)
θ	Depreciation in job finding	0.003	(0.049)
b_0	Intercept bias	0.262	(0.053)
b_1	Slope bias	0.537	(0.112)
$\sigma_{arepsilon}$	Dispersion in elicitation errors, $arepsilon_{id}$	0.438	(0.024)

▶ Back

Estimation Results

B. Additional Mo	ments w.r.t. Job Finding		
Moment	Explanation	Estimate	(S.e.)
$Var(T_{i0}^3)$	Var. in job finding at $d=0$	0.084	(0.017)
$Var(T_i^3)$	Var. in permanent component at $d=0$	0.065	(0.022)
$Var(dT_{id}^3)$	Var. in changes job finding	0.017	(0.010)
$E(T_{i0}^3 - T_{i12}^3)$	12-month decline (longitudinal)	0.010	(0.159)
$E(T_{i0}^3) - E(T_{i12}^3)$	12-month decline (cross-sectional)	0.442	(0.077)
$\frac{E(T_{i0}^3 - T_{i12}^3)}{E(T_{i0}^3) - E(T_{i12}^3)}$	Ratio of longitud. to cross-sect. decline	0.022	(0.356)
C. Additional Mo	ments w.r.t. Job Finding		
$Var(Z_{i0}^3)$	Var. in elicitations at $d=0$	0.080	(0.005)
$Var(Z_{i0}^3 - \varepsilon_{i0})$	Var. in elicitations at $d = 0$ (net of err.)	0.024	(800.0)
$Var(dZ_{id}^3)$	Var. in changes in elicitations	0.124	(0.013)
$Var(dZ_{id}^3 - darepsilon_{id})$	Var. in changes in elicit. (net of err.)	0.005	(0.003)
$E(Z_{i0}^3 - Z_{i12}^3)$	12-month decline (longitudinal)	0.006	(0.083)
$E(Z_{i0}^3) - E(Z_{i12}^3)$	12-month decline (cross-sectional)	0.238	(0.046)
$\frac{E(Z_{i0}^3 - Z_{i12}^3)}{E(Z_{i0}^3) - E(Z_{i12}^3)}$	Ratio of longitud. to cross-sect. decline	0.026	(0.347)

A D		(1)
A. Parameter Est	timates:	Baseline
$E(T_i)$		0.388
$Var(T_i)$		0.048
σ_{τ}		0.325
θ		0.003
<i>b</i> ₀		0.262
b_1		0.537
σ_{ε}		0.438
B. Model Fit:	Data	(1)
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.029
$m_{Z_{46}}^{03} - m_{F_{46}}^{03}$	0.076	0.057
$m_{Z_{7+}}^{40} - m_{F_{7+}}^{40}$	0.139	0.141
m _{F03}	0.623	0.626
m _{F46}	0.435	0.441
	0.260	0.261
s2 1+	0.089	0.089
	0.055	0.057
C7 F		
m _{F7+} s _Z ² c _{Z,F}	0.033	0.023
$c_{Z_d,F_{d+3}}$		0.023 0.008
$c_{Z,F}$ $c_{Z_d,F_{d+3}}$ m_{dZ} Weighted SSR	0.023	

A. Parameter Es	timates:	(1) Baseline	$\theta = 0$
$E(T_i)$		0.388	0.386
$Var(T_i)$		0.048	0.048
σ_{τ}		0.325	0.316
θ		0.003	0
<i>b</i> ₀		0.262	0.260
b_1		0.537	0.541
σ_{ε}		0.438	0.438
B. Model Fit:	Data	(1)	(2)
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.029	-0.027
$m_{Z_{46}} - m_{F_{46}}$	0.076	0.057	0.057
$m_{Z_{7+}}^{40} - m_{F_{7+}}^{40}$	0.139	0.141	0.14
$m_{F_{03}}$	0.623	0.626	0.624
m _{F46}	0.435	0.441	0.440
	0.260	0.261	0.263
e ² /+	0.089	0.089	0.09
s_Z^2 $c_{Z,F}$	0.055	0.059	0.09
	0.033	0.037	0.024
$c_{Z_d,F_{d+3}}$			
m_{dZ}	0.009	0.008	0.009
Weighted SSR		0.3347	0.3374
0			

		(1)	(2)	(3)
A. Parameter Es	timates:	Baseline	$\theta = 0$	No heterog.
				in T_{id}
$E(T_i)$		0.388	0.386	0.286
$Var(T_i)$		0.048	0.048	0
σ_{τ}		0.325	0.316	0
θ		0.003	0	0.097
b ₀		0.262	0.260	0.340
b_1		0.537	0.541	0.295
σ_{ε}		0.438	0.438	0.423
B. Model Fit:	Data	(1)	(2)	(3)
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.029	-0.027	-0.055
$m_{Z_{46}}^{-03} - m_{F_{46}}^{-03}$	0.076	0.057	0.057	0.03
$m_{Z_{7+}}^{-40} - m_{F_{7+}}$	0.139	0.141	0.14	0.184
$m_{F_{03}}$	0.623	0.626	0.624	0.56
m _{F46}	0.435	0.441	0.440	0.440
	0.260	0.261	0.263	0.222
$m_{F_{7+}}$ s_Z^2	0.089	0.089	0.09	0.062
$c_{Z,F}^{Z}$	0.055	0.057	0.057	0.008
c_{Z_d}, F_{d+3}	0.023	0.023	0.024	0.007
m_{dZ}	0.009	0.008	0.009	-0.010
Weighted SSR		0.3347	0.3374	45.663

		(1)	(2)	(3)	(4)	
A. Parameter Es	timates:	Baseline	$\theta = 0$	No heterog.	$\sigma_{\tau} = 0$	
				in T_{id}		
$E(T_i)$		0.388	0.386	0.286	0.412	
$Var(T_i)$		0.048	0.048	0	0.076	
σ_{τ}		0.325	0.316	0	0	
θ		0.003	0	0.097	-0.069	
b_0		0.262	0.260	0.340	0.264	
b_1		0.537	0.541	0.295	0.525	
σ_{ε}		0.438	0.438	0.423	0.440	
B. Model Fit:	Data	(1)	(2)	(3)	(4)	
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.029	-0.027	-0.055	-0.025	
$m_{Z_{46}} - m_{F_{46}}$	0.076	0.057	0.057	0.03	0.073	
$m_{Z_{7+}}^{-40} - m_{F_{7+}}^{-40}$	0.139	0.141	0.14	0.184	0.141	
$m_{F_{03}}$	0.623	0.626	0.624	0.56	0.612	
m _{F46}	0.435	0.441	0.440	0.440	0.401	
	0.260	0.261	0.263	0.222	0.261	
$s_Z^{m_{F_{7+}}}$	0.089	0.089	0.09	0.062	0.088	
$c_{Z,F}^{Z}$	0.055	0.057	0.057	0.008	0.054	
$c_{Z_d,F_{d+3}}$	0.023	0.023	0.024	0.007	0.029	
m_{dZ}	0.009	0.008	0.009	-0.010	0.008	
Weighted SSR		0.3347	0.3374	45.663	1.9952	

		(1)	(2)	(3)	(4)	(5)	
A. Parameter Es	timates:	Baseline	$\theta = 0$	No heterog.	$\sigma_{\tau} = 0$	$b_1 = 1$	
				in T _{id}			
$E(T_i)$		0.388	0.386	0.286	0.412	0.269	
$Var(T_i)$		0.048	0.048	0	0.076	0.017	
σ_{τ}		0.325	0.316	0	0	0.201	
9		0.003	0	0.097	-0.069	0.001	
<i>b</i> ₀		0.262	0.260	0.340	0.264	0.057	
b_1		0.537	0.541	0.295	0.525	1	
σ_{ε}		0.438	0.438	0.423	0.440	0.350	
B. Model Fit:	Data	(1)	(2)	(3)	(4)	(5)	
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.029	-0.027	-0.055	-0.025	0.056	
$m_{Z_{46}} - m_{F_{46}}$	0.076	0.057	0.057	0.03	0.073	0.057	
$m_{Z_{7+}}^{-46} - m_{F_{7+}}^{-46}$	0.139	0.141	0.14	0.184	0.141	0.057	
$m_{F_{03}}$	0.623	0.626	0.624	0.56	0.612	0.543	
m _{F46}	0.435	0.441	0.440	0.440	0.401	0.453	
	0.260	0.261	0.263	0.222	0.261	0.330	
m _{F7+} ² Z	0.089	0.089	0.09	0.062	0.088	0.093	
CZ,F	0.055	0.057	0.057	0.008	0.054	0.058	
$c_{Z_d,F_{d+3}}$	0.023	0.023	0.024	0.007	0.029	0.033	
m_{dZ}	0.009	0.008	0.009	-0.010	0.008	0.008	
Weighted SSR		0.3347	0.3374	45.663	1.9952	10.141	

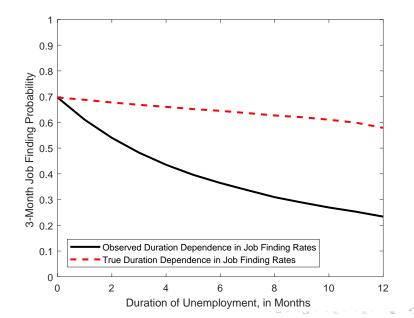
		(1)	(2)	(3)	(4)	(5)	(6)
A. Parameter Es	timates:	Baseline	$\theta = 0$	No heterog.	$\sigma_{\tau} = 0$	$b_1 = 1$	$b_0 = 0$
				in T _{id}			$b_1 = 1$
$E(T_i)$		0.388	0.386	0.286	0.412	0.269	0.298
$Var(T_i)$		0.048	0.048	0	0.076	0.017	0.017
σ_{τ}		0.325	0.316	0	0	0.201	0.210
9		0.003	0	0.097	-0.069	0.001	0.001
b ₀		0.262	0.260	0.340	0.264	0.057	0
b_1		0.537	0.541	0.295	0.525	1	1
σ_{ε}		0.438	0.438	0.423	0.440	0.350	0.358
B. Model Fit:	Data	(1)	(2)	(3)	(4)	(5)	(6)
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.029	-0.027	-0.055	-0.025	0.056	0
$m_{Z_{46}}^{03} - m_{F_{46}}^{03}$	0.076	0.057	0.057	0.03	0.073	0.057	0
$m_{Z_{7+}}^{-40} - m_{F_{7+}}^{-40}$	0.139	0.141	0.14	0.184	0.141	0.057	0.001
$n_{F_{03}}$	0.623	0.626	0.624	0.56	0.612	0.543	0.589
m _{F46}	0.435	0.441	0.440	0.440	0.401	0.453	0.498
n _{F7+}	0.260	0.261	0.263	0.222	0.261	0.330	0.375
2 ' '	0.089	0.089	0.09	0.062	0.088	0.093	0.093
Z,F	0.055	0.057	0.057	0.008	0.054	0.058	0.056
$c_{Z_d,F_{d+3}}$	0.023	0.023	0.024	0.007	0.029	0.033	0.033
n_{dZ}	0.009	0.008	0.009	-0.010	0.008	0.008	0.009
Weighted SSR		0.3347	0.3374	45.663	1.9952	10.141	14.983

Restricted Model Results

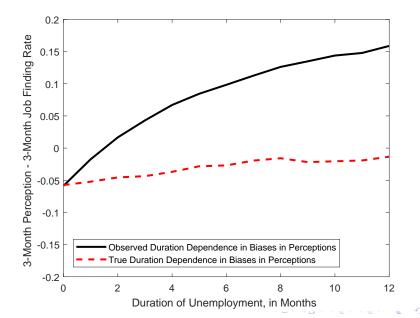
		(1)	(2)	(3)	(4)	(5)	(6)	(7)
A. Parameter Es	timates:	Baseline	$\theta = 0$	No heterog.	$\sigma_{\tau} = 0$	$b_1 = 1$	$b_0 = 0$	$\theta \neq \hat{\theta}$
				in T_{id}			$b_1 = 1$	$b_1 = 1$
$E(T_i)$		0.388	0.386	0.286	0.412	0.269	0.298	0.345
$Var(T_i)$		0.048	0.048	0	0.076	0.017	0.017	0.016
σ_{τ}		0.325	0.316	0	0	0.201	0.210	0.306
θ		0.003	0	0.097	-0.069	0.001	0.001	0.067
b_0		0.262	0.260	0.340	0.264	0.057	0	-0.062
b_1		0.537	0.541	0.295	0.525	1	1	1
σ_{ε}		0.438	0.438	0.423	0.440	0.350	0.358	0.343
B. Model Fit:	Data	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.029	-0.027	-0.055	-0.025	0.056	0	-0.023
$m_{Z_{46}} - m_{F_{46}}$	0.076	0.057	0.057	0.03	0.073	0.057	0	0.042
$m_{Z_{7+}}^{-40} - m_{F_{7+}}^{-40}$	0.139	0.141	0.14	0.184	0.141	0.057	0.001	0.141
$m_{F_{03}}$	0.623	0.626	0.624	0.56	0.612	0.543	0.589	0.618
m _{F46}	0.435	0.441	0.440	0.440	0.401	0.453	0.498	0.470
m _{F7+}	0.260	0.261	0.263	0.222	0.261	0.330	0.375	0.257
s_Z^2	0.089	0.089	0.09	0.062	0.088	0.093	0.093	0.089
cZ,F	0.055	0.057	0.057	0.008	0.054	0.058	0.056	0.055
$c_{Z_d,F_{d+3}}$	0.023	0.023	0.024	0.007	0.029	0.033	0.033	0.024
m_{dZ}	0.009	0.008	0.009	-0.010	0.008	0.008	0.009	0.009
Weighted SSR		0.3347	0.3374	45.663	1.9952	10.141	14.983	0.4761

Extended Model Results

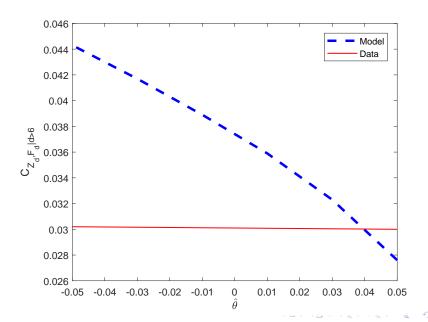
		(1)
A. Parameter Es	timates:	$\theta \neq \hat{\theta}$
		$b_1 \neq 1$
F(T)		0.397
$E(T_i)$ $Var(T_i)$		0.044
σ_{τ}		0.448
θ		0.021
$\hat{\theta}$		0.021
bn		0.021
b ₁		0.528
σ_{ε}		0.431
D 14 1150	Б.	(4)
B. Model Fit:	Data	(1)
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.030
$m_{Z_{46}}^{-03} - m_{F_{46}}^{-03}$	0.076	0.060
$m_{Z_{7+}}^{-46} - m_{F_{7+}}^{-46}$	0.139	0.153
$m_{F_{03}}$	0.623	0.636
m _{F46}	0.435	0.444
m _{F7+}	0.260	0.249
s_Z^2	0.089	0.089
$c_{Z_{06},F_{06}}$	0.058	0.055
CZ	0.030	0.032
c _{Z7+} , _{F7+}	0.023	0.021
c_{Z_d}, F_{d+3}	0.023	0.021
m_{dZ}	0.009	0.010

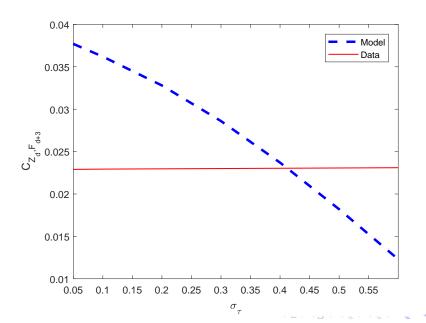

Extended Model Results

		(1)	(2)	
A. Parameter Es	timates:	$ heta eq \hat{ heta}$	$ heta eq \hat{ heta}$	
		$b_1 \neq 1$	$b_1 = 1$	
F(T)		0.207	0.240	
$E(T_i)$		0.397 0.044	0.342 0.014	
$Var(T_i)$		0.448	0.014	
$\frac{\sigma_{\tau}}{\theta}$		0.448	0.519	
$\hat{\theta}$				
-		0.021	0.049	
<i>b</i> ₀		0.271	0.070	
b_1		0.528	1	
σ_{ε}		0.431	0.000	
B. Model Fit:	Data	(1)	(2)	
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.030	-0.025	
$m_{Z_{46}}^{-03} - m_{F_{46}}^{-03}$	0.076	0.060	0.105	
$m_{Z_{7+}}^{Z_{46}} - m_{F_{7+}}^{Z_{46}}$	0.139	0.153	0.154	
m _{F03}	0.623	0.636	0.610	
m _{F46}	0.435	0.444	0.457	
m _{F7+}	0.260	0.249	0.236	
s_7^2	0.089	0.089	0.087	
$c_{Z_{06},F_{06}}$	0.058	0.055	0.041	
c _{Z7+} ,F ₇₊	0.030	0.032	0.040	
$c_{Z_d,F_{d+3}}$	0.023	0.021	0.022	
m_{dZ}	0.009	0.010	0.009	
Weighted SSR		0.7739	4.8157	


Extended Model Results

		(1)	(2)	(3)
A. Parameter Es	timates:	$ heta eq \hat{ heta}$	$ heta eq \hat{ heta}$	$ heta=\hat{ heta}$
		$b_1 \neq 1$	$b_1 = 1$	$b_1 \neq 1$
$E(T_i)$		0.397	0.342	0.395
$Var(T_i)$		0.044	0.014	0.393
σ_{τ}		0.448	0.519	0.448
θ		0.021	0.077	0.022
$\hat{\theta}$		0.021	0.049	0.022
b ₀		0.271	0.070	0.270
<i>b</i> ₁		0.528	1	0.529
σ_{ε}		0.431	0.000	0.432
B. Model Fit:	Data	(1)	(2)	(3)
		. ,	. ,	. ,
$m_{Z_{03}} - m_{F_{03}}$	-0.031	-0.030	-0.025	-0.030
$m_{Z_{46}} - m_{F_{46}}$	0.076	0.060	0.105	0.059
$m_{Z_{7+}} - m_{F_{7+}}$	0.139	0.153	0.154	0.153
m _{F03}	0.623	0.636	0.610	0.635
m _{F46}	0.435	0.444	0.457	0.445
m _{F7+}	0.260	0.249	0.236	0.250
s_7^2	0.089	0.089	0.087	0.089
$c_{Z_{06},F_{06}}$	0.058	0.055	0.041	0.055
c _{Z7+} , _{F7+}	0.030	0.032	0.040	0.032
$c_{Z_d,F_{d+3}}$	0.023	0.021	0.022	0.021
m_{dZ}	0.009	0.010	0.009	0.010
Weighted SSR		0.7739	4.8157	0.7739


Dur. Dep. in Job Finding (Extended Model)


Dur. Dep. in Biases in Perceptions (Extended Model)

Identification of the Parameter $\hat{\theta}$

Identification of the Parameter $\sigma_{ au}$

Robustness

Parameter Estimates:	(1) Baseline	(2) Gamma (<i>T_i</i>)	(3) Weibull (T_i)	(4) Normal $(arepsilon)$	(5) Linear Depreciation
$E(T_i)$	0.389	0.387	0.37	0.388	0.388
$Var(T_i)$	0.048	0.047	0.038	0.048	0.049
$\sigma_{ au}$	0.325	0.326	0.343	0.337	0.316
θ	0.003	0.003	0.006	0.003	0
b_0	0.262	0.261	0.262	0.235	0.262
b_1	0.537	0.539	0.538	0.597	0.537
$\sigma_arepsilon$	0.438	0.438	0.438	0.276	0.438
Weighted SSR	0.3347	0.3325	0.3031	0.3353	0.3372

Robustness (continued)

Parameter Estimates:(1) Baseline (1) (2) (3) (4) (4) (5) (5) (6) (7) (7) (7) (7) (8) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (10) (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` '	` '	Horizon=5y	Persistent	(9) Bunching
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$E(T_i)$	0.389	0.366	0.361	0.385	0.387
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Var(T_i)$	0.048	0.043	0.038	0.046	0.047
b_0 0.2620.2620.260.2570.268 b_1 0.5370.5340.540.5430.523 σ_{ε} 0.4380.440.4390.4490.425	$\sigma_{ au}$	0.325	0.282	0.324	0.346	0.323
b_1 0.537 0.534 0.54 0.543 0.523 $σ_ε$ 0.438 0.44 0.439 0.449 0.425	θ	0.003	-0.012	-0.001	0.006	0.003
σ_{ε} 0.438 0.44 0.439 0.449 0.425	b_0	0.262	0.262	0.26	0.257	0.268
	b_1	0.537	0.534	0.54	0.543	0.523
Weighted SSR 0.3347 0.3306 0.3848 0.281 0.2932	$\sigma_arepsilon$	0.438	0.44	0.439	0.449	0.425
	Weighted SSR	0.3347	0.3306	0.3848	0.281	0.2932

Robustness (continued)

Parameter Estimates:	(1) Baseline	(10) Resid. Moments	(11) Excl. Recall	(12) Exactly Identified	(13) Diagonal W
$E(T_i)$	0.389	0.322	0.388	0.365	0.387
$Var(T_i)$	0.048	0.02	0.047	0.042	0.051
$\sigma_{ au}$	0.325	0.244	0.325	0.323	0.301
θ	0.003	-0.001	0.004	0.008	-0.008
b_0	0.262	0.238	0.26	0.255	0.272
b_1	0.537	0.581	0.541	0.555	0.514
$\sigma_arepsilon$	0.438	0.392	0.438	0.436	0.443
Weighted SSR	0.3347	0.9067	0.3284	0	0.1059

Setup Model

- ► Unemployed worker *i*:
 - lacktriangleright receives job offer with probability λ
 - wage w is drawn from distribution $F(\mu_w, \sigma_w)$
 - set reservation wage R
- Introduce all relevant action in arrival rates:
 - ▶ Heterogeneity: $\lambda_i \in \lambda^h, \lambda^l$
 - ▶ Depreciation: $\lambda_{i,d} = (1 \theta) \lambda_{i,d-1}$
 - Biases in beliefs:
 - uniform bias: $\hat{\lambda}^j = \lambda^j + B_0$
 - ross-sectional bias: $Prob(\hat{\lambda}_{i,0} = \hat{\lambda}^j | \lambda_{i,0} = \lambda^j) = B_1$
 - longitudinal bias: $B_{\theta} = 0$
- Unemployed workers solve dynamic problem depending on their beliefs

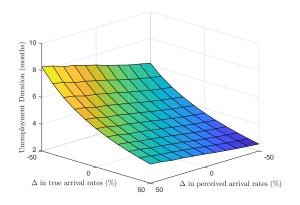
Setup Model

- ► Unemployed worker *i*:
 - ightharpoonup receives job offer with probability λ
 - wage w is drawn from distribution $F(\mu_w, \sigma_w)$
 - set reservation wage R
- Introduce all relevant action in arrival rates:
 - ▶ Heterogeneity: $\lambda_i \in \lambda^h, \lambda^l$
 - ▶ Depreciation: $\lambda_{i,d} = (1 \theta) \lambda_{i,d-1}$
 - Biases in beliefs:
 - uniform bias: $\hat{\lambda}^j = \lambda^j + B_0$
 - ross-sectional bias: $Prob(\hat{\lambda}_{i,0} = \hat{\lambda}^j | \lambda_{i,0} = \lambda^j) = B_1$
 - longitudinal bias: $B_{\theta} = 0$
- Unemployed workers solve dynamic problem depending on their beliefs

$$U_{id} = u_d + \frac{1}{1+\delta} \max_{R} \{U_{i,d+1} + \hat{\lambda}_{i,d} \int_{R} [V_i(w) - U_{i,d+1})] dF(w)\}$$

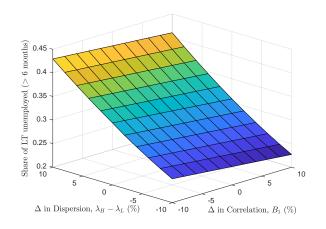
Calibration Targets

Moments	Data	Baseline Model	High Depreciation
Mean of 3-Month Job Finding Rates:			
at 0-3 Months of Unemployment	0.623	0.622	0.613
at 4-6 Months of Unemployment	0.435	0.436	0.455
at 7 Months of Unemployment or more	0.26	0.259	0.244
Mean of 3-Month Elicitations:			
at 0-3 Months of Unemployment	0.592	0.592	0.594
at 4-6 Months of Unemployment	0.511	0.510	0.511
at 7 Months of Unemployment or more	0.399	0.400	0.399
Acceptance Rate:	0.71	0.710	0.716
True Duration Dependence:			
Baseline	0.991	0.982	-
High Depreciation	0.650	-	0.654

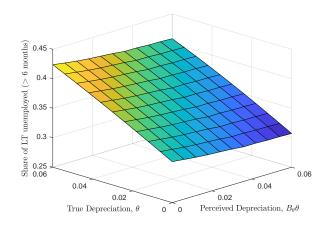


Calibration Estimates

Parameters	Symbol	Baseline Model	High Depreciation
A. Set Parameters			
Median of wage offer distribution	$\mu_{\sf w}$	1	1
Std. dev. of logged wage offer distribution	σ_{w}	0.24	0.24
Exogeneous job loss probability	σ	0.02	0.02
Arrival rate when employed	λ^e	0.15	0.15
Discount rate	δ	0.004	0.004
Coefficient of relative risk aversion	γ	2	2
Longitudinal bias	$B_{ heta}$	0	0
B. Estimated Parameters			
Uniform bias	B_0	-0.001	-0.068
Cross-sectional bias	B_1	0.81	0.93
Low-type arrival rate	λ_I	0.10	0.19
High-type arrival rate	λ_h	0.64	0.72
Share of high-types	φ	0.74	0.65
Depreciation in arrival rate	$\overset{\cdot}{ heta}$	1.1E-05	0.060
Unemployed consumption (b_u)	Ь	0.51	0.52



True vs. Perceived Arrival Rate ⇒ Duration



True vs. Perceived Heterogeneity ⇒ LT Incidence

True vs. Perceived Depreciation \Rightarrow LT Incidence

