Job Seekers' Perceptions and Employment Prospects: Heterogeneity, Duration Dependence and Bias Andreas I. Mueller UT Austin Johannes Spinnewijn LSE > **Giorgio Topa** New York Fed > > May, 2019 #### Introduction - Long-term unemployment is a key concern: - ▶ long 'history' in Europe, more recent in US - cost to workers + inefficiency of labor market - Long literature on sources of LT unemployment: - central finding: observed negative duration-dependence in job finding - major challenge: separate true duration-dependence from heterogeneity in job finding - Disentangling different sources is essential for design of unemployment policy # This Paper - 1. Document novel facts about job seekers' perceptions - 2. Use perceptions to separate heterogeneity in job finding from true duration dependence - Study how biased beliefs contribute to incidence of LT unemployment ## This Paper: Main Ideas - 1. Document novel facts about job seekers' perceptions - 2. Use perceptions to separate heterogeneity in job finding from true duration dependence - ► Infer heterogeneity from relation between ex ante beliefs and ex post job finding outcomes - ▶ Build on Hendren ('13,'17), but allow for biases in beliefs - Study how biased beliefs contribute to incidence of LT unemployment ## This Paper: Main Ideas - 1. Document novel facts about job seekers' perceptions - 2. Use perceptions to separate heterogeneity in job finding from true duration dependence - Study how biased beliefs contribute to incidence of LT unemployment - This part requires assumptions on how beliefs affect job search - ▶ Under-reaction in beliefs to Δ in employment prospects magnifies Δ in job finding ## This Paper: Preview of Results - 1. Document novel facts about job seekers' perceptions - Perceptions have strong predictive power - Job seekers are over-optimistic, especially LT unemployed - Job seekers do not revise beliefs downward over the spell - 2. Use perceptions to separate heterogeneity in job finding from true duration dependence - Study how much biased beliefs contribute to incidence of LT unemployment ## This Paper: Preview of Results - 1. Document novel facts about job seekers' perceptions - 2. Use perceptions to separate heterogeneity in job finding from true duration dependence - Heterogeneity explains almost all of the decline in job finding - ▶ Beliefs under-react to variation in job finding rates - Study how much biased beliefs contribute to incidence of LT unemployment ## This Paper: Preview of Results - 1. Document novel facts about job seekers' perceptions - 2. Use perceptions to separate heterogeneity in job finding from true duration dependence - Study how much biased beliefs contribute to incidence of LT unemployment - ▶ Biases increase share of LT unemployed by ~ 10 percent #### Related literature - ▶ Incidence of LT unemployment - Machin-Manning (1999), Kroft et al. (2016) - Separating true duration-dependence vs. heterogeneity - Unobserved Heterogeneity: Heckman-Singer (1984ab),... - Audit studies: Kroft et al (2013), Farber et al (2018), Jarosch-Pilossoph (2018) - Repeated spells: Honoré (1993), Alvarez et al (2016) - Behavioral biases / frictions in job search - Information frictions: Spinnewijn (2015), Altmann et al. (2018), Belot et al. (2018), Conlon et al. (2018) - ▶ Hyperbolic discounting: DellaVigna-Paserman (2005) - ▶ Reference-dependence: DellaVigna et al. (2017) - Persistent reservation wages: Krueger-Mueller (2016) - Use of survey elicitations in models of job search - ▶ Beliefs on wage offers: Conlon et al (2018) - ► Elicited reservation wages: Hall-Mueller (2018) #### Data I - NY Fed's Survey of Consumer Expectations (SCE) - ► Started in 2013, after extensive testing phase - ► Nationally representative, internet-based survey of a 12-month rotating panel of about 1,300 household heads - Core monthly survey on expectations about macro and household level variables #### Data I - NY Fed's Survey of Consumer Expectations (SCE) - ► Started in 2013, after extensive testing phase - Nationally representative, internet-based survey of a 12-month rotating panel of about 1,300 household heads - Core monthly survey on expectations about macro and household level variables - Job finding expectations (asked of unemployed job seekers): - "[...] what do you think is the percent chance that within the coming 3 months, you will find a job that you will accept, considering the pay and type of work?" #### Data I - NY Fed's Survey of Consumer Expectations (SCE) - Started in 2013, after extensive testing phase - ► Nationally representative, internet-based survey of a 12-month rotating panel of about 1,300 household heads - Core monthly survey on expectations about macro and household level variables - Job finding expectations (asked of unemployed job seekers): - "[...] what do you think is the percent chance that within the coming 3 months, you will find a job that you will accept, considering the pay and type of work?" - ► Panel data allows to link perceived job finding to actual job finding (with limited attrition) #### Data II - Survey of Unemployed Workers in New Jersey (KM) - ► Panel of about 6,000 unemployed job seekers (UI recipients in October 2009) - Interviewed weekly for 12 weeks - Long term unemployed surveyed for additional 12 weeks #### Data II - Survey of Unemployed Workers in New Jersey (KM) - ► Panel of about 6,000 unemployed job seekers (UI recipients in October 2009) - Interviewed weekly for 12 weeks - Long term unemployed surveyed for additional 12 weeks - Job finding expectations: - "What do you think is the percent chance that you will be employed again within the next 4 weeks?" #### Data II - Survey of Unemployed Workers in New Jersey (KM) - ► Panel of about 6,000 unemployed job seekers (UI recipients in October 2009) - Interviewed weekly for 12 weeks - Long term unemployed surveyed for additional 12 weeks - Job finding expectations: - "What do you think is the percent chance that you will be employed again within the next 4 weeks?" - "How many weeks do you estimate it will actually take before you will be employed again?" #### Fact 1: Predictive Value of Beliefs ## True Job Finding vs. Perceived Job Finding, SCE Survey # Fact 1: Predictive Value of Beliefs [cont'd] SCE: 3-month UE Transition Rate | | (1) | (2) | (3) | (4) | (5) | |--------------------------------|----------------------|---------------------|----------------------|-------|----------------------| | Elicited 3-month Probability | 0.618***
(0.0654) | | 0.624***
(0.0886) | | 0.565***
(0.0952) | | Lagged Elicited 3-m Prob | | 0.314***
(.0684) | | | | | Elicited 3-m Prob x LT Unempl. | | | -0.216*
(0.125) | | -0.274**
(0.123) | | LT Unemployed | | | -0.111
(0.0695) | | -0.0291
(0.0738) | | Controls | | | | Х | Х | | N | 983 | 392 | 983 | 983 | 983 | | R2 | 0.142 | 0.0454 | 0.190 | 0.152 | 0.252 | # Fact 2: Optimistic Bias (for LT unemployed) #### Perceived vs. True Job Finding by Time Unemployed, SCE Survey ## Fact 3: No Downward Revising of Beliefs ## Perceived Job Finding by Time Unemployed, SCE Survey ## Fact 3: No Downward Revising of Beliefs #### Perceived Job Finding by Time Unemployed, KM Survey #### Further Discussion - Lack of negative updating seems puzzling: - ▶ is true duration-dependence not perceived? no learning from unsuccessful job search? - There could be behavioral explanations (e.g., gambler's fallacy, motivated beliefs) - ... BUT is there true duration dependence? something to be learned? - Other related evidence - reservation wages hardly decrease over the spell (Krueger, Mueller 2016) - similar under-reaction of perceptions to aggregate indicators, but only for the unemployed Table # Part II: Statistical Analysis of Job Finding - Develop a statistical framework to separate: - 1. Heterogeneity in job finding - 2. True duration-dependence in job finding - 3. Biases in beliefs, both across job seekers and over spell - 4. Random elicitation errors ► (Latent) true job finding probability: $$T_{id} = [1 - \theta]^d (T_i + \tau_{id})$$ ► (**Elicited**) perceived job finding rate: $$Z_{id} = b_0 + b_1 \tilde{T}_{id} + \varepsilon_{id}$$ ▶ (**Observed**) job finding realization: $$F_{id} = \left\{ egin{array}{ll} 1 & ext{with prob.} & T_{id} \ 0 & ext{with prob.} & 1 - T_{id} \end{array} ight.$$ ▶ (Latent) true job finding probability: $$T_{id} = [1 - \theta]^d (T_i + \tau_{id})$$ - $ightharpoonup \theta$ is the depreciation rate \Rightarrow true duration-dependence - $ightharpoonup T_i$ is a persistent component \Rightarrow dynamic selection - $ightharpoonup au_{id}$ is a transitory component \Rightarrow dynamic selection ▶ (Latent) true job finding probability: $$T_{id} = [1 - \theta]^d (T_i + \tau_{id})$$ ► (**Elicited**) perceived job finding rate: $$Z_{id} = b_0 + b_1 \tilde{T}_{id} + \varepsilon_{id}$$ - ▶ b_0 and b_1 capture systematic 'biases' (rational exp, perfect info $\Rightarrow b_0 = 0, b_1 = 1$) - \triangleright ε_{id} is random error in elicitations or perceptions $$\tilde{T}_{id} = [1 - \hat{\theta}]^d (T_i + \tau_{id})$$ • $\hat{\theta} \neq \theta$ allows for different cross-sectional and longitudinal 'bias' (learning from unsuccessful job search $\Rightarrow \hat{\theta} > \theta$) ▶ (Latent) true job finding probability: $$T_{id} = [1 - \theta]^d (T_i + \tau_{id})$$ ► (**Elicited**) perceived job finding rate: $$Z_{id} = b_0 + b_1 \tilde{T}_{id} + \varepsilon_{id}$$ ▶ (**Observed**) job finding realization: $$F_{id} = \left\{ egin{array}{ll} 1 ext{ with prob. } T_{id} \ 0 ext{ with prob. } 1 - T_{id} \end{array} ight.$$ # Identification: Heterogeneity vs. Depreciation - Identification challenge: - what drives observed duration dependence? $$\frac{E_{d+1}(T_{i,d+1})}{E_d(T_{i,d})} = (1-\theta) \left[1 - \frac{Var_d(T_i)}{E_d(T_{i,d})(1-E_d(T_{i,d}))} \right]$$ - Our approach: - infer heterogeneity from relation between ex-ante elicitations and ex-post
realizations (cfr Hendren '13) - non-parametric implementation: any predictable variation in job finding indicates ex ante heterogeneity $$Var(T_{id}) \geq Var(E(T_{id}|X_{id}))$$ - parametric implementation using model of beliefs: - ▶ noisy elicitation: $Z_{id} = T_{id} + \varepsilon_{id}$ (with $E(\varepsilon_{id} | T_{id}) = 0$) - binary realization: $F_{id} = 1$ with prob T_{id} - ▶ Hence, $Cov(Z_{id}, F_{id}) = Var(T_{id})$ # Identification: Challenges - ► Challenge 1: only persistent heterogeneity drives selection - ightharpoonup elicitation depends on both persistent component T_i and transitory shock au_{id} - ▶ separate the two using $Cov(Z_{i,d-x}, F_{i,d})$ vs. $Cov(Z_{i,d}, F_{i,d})$ - Challenge 2: beliefs are biased - ▶ biased beliefs: $Z_{id} = b_0 + b_1 T_{id} + \varepsilon_{id}$ (with $E(\varepsilon_{id} | T_{id}) = 0$) - ightharpoonup Hence, $Cov(Z_{id}, F_{id}) = b_1 Var(T_{id})$ - ⇒ To what extent is variation in job finding perceived? ## Identification: Biases in Beliefs - Use variation in job finding T across spell durations to estimate bias - ▶ identify b_1 from $\frac{E_{LT}(Z_{id}) E_{ST}(Z_{id})}{E_{LT}(T_{id}) E_{ST}(T_{id})}$ - e.g., LTU: lower job finding, more optimistic $\Rightarrow b_1 < 1$ - Allow for different cross-sectional and longitudinal bias - ▶ identify $\hat{\theta} \neq \theta$ using $Cov(Z_{i,d+x}, F_{i,d+x})$ vs. $Cov(Z_{i,d}, F_{i,d})$ - intuition: covariance between Z and F for LT unemployed depends also on longitudinal bias - ▶ In principle, we can use other observable variation T|X, but we would need the bias not to change with X, i.e., $E(\varepsilon|X) = 0$ - Estimation using method of simulated moments - ► RESULT 1: heterogeneity >> depreciation in job finding - ▶ RESULT 2: beliefs under-react to ∆ in job finding ► Estimates/Robustness/Sensitivity - Estimation using method of simulated moments - minimize weighted SSR using inverse of covariance matrix - check non-param. identification arguments in full model - gauge sensitivity to functional forms / distrib. assumps - ▶ RESULT 1: heterogeneity >> depreciation in job finding - ▶ RESULT 2: beliefs under-react to Δ in job finding ▶ Estimates/Robustness/Sensitivity - Estimation using method of simulated moments - ► RESULT 1: heterogeneity >> depreciation in job finding - substantial heterogeneity in job finding; 23 percent driven by transitory shocks - dynamic selection explains 98 (35.5) percent of the decline in job finding rates - dynamic selection on 'observables' explains only 28 percent of the decline Table - ▶ non-parametric lower bound: $Var(T_{id}) \ge Var(E(T_{id}|X_{id}))$ - ▶ using beliefs: LB = 32% of estimated variance - ightharpoonup using beliefs + observables : LB = 53% of estimated variance - other robustness: - similar results when estimating statistical model on residualized moments - model fit is worse without heterogeneity - ▶ RESULT 2: beliefs under-react to Δ in job finding - Estimation using method of simulated moments - ▶ RESULT 1: heterogeneity >> depreciation in job finding - ► RESULT 2: beliefs under-react to Δ in job finding - only half of the heterogeneity in job finding is perceived - ▶ slope parameter: $b_1 = .54$ (.12) < 1 - ightharpoonup no extra longitudinal response: $\hat{ heta} pprox heta$ - ightharpoonup model fit is worse for $b_1 = 1$, not for $\hat{\theta} = \theta$ - optimistic bias for LTU is driven by dynamic selection - job seekers with low job finding are optimistic and do not revise their beliefs downward ▶ Estimates/Robustness/Sensitivity ## The Distribution of T_i among Survivors # Duration Dependence in Job Finding Rates ## Duration Dependence in Biases in Perceptions #### Part III: Structural Model with Biased Beliefs - Statistical model abstracts from job seekers' behavior - Questions: - how do beliefs affect job seekers' behavior? - how much do beliefs affect incidence of LT unemployment? - ► Setup McCall search model ▶ Details - allow for heterogeneity, duration-dependence and bias - introduce action through arrival rate of job offers - target true and perceived job finding rates - target estimates from statistical model directly #### True vs. Perceived Arrival Rate - Key mechanism: - as arrival rate increases, behavioral response mitigates increase in exit rate, but only if perceived $$T = \underbrace{(1 - F(R))}_{\text{Acceptance Rate}} \times \underbrace{\lambda}_{\text{Arrival Rate}}$$ $$dT = \underbrace{\left[1 - F(R)\right] \times d\lambda}_{\text{Mechanical Effect}} - \underbrace{\left[\lambda f\left(R\right)\partial R/\partial\hat{\lambda}\right] \times d\hat{\lambda}}_{\text{Behavioral Effect}}.$$ - ▶ Pass-through elasticity: $\varepsilon_{T,\lambda} = 1 \beta \times \kappa$ - ▶ With $d\hat{\lambda} = \beta d\lambda$; $\kappa = \frac{f(R)}{1 F(R)} E_{w \geq R} (w R)$ - Behavioral response is consistent with larger optimism for LT unemployed - ▶ lower arrival rate \Rightarrow optimistic bias in job finding (for $\beta < 1$) - ▶ optimistic bias in arrival rate \Rightarrow lower job finding (as $R \uparrow$) ## Heterogeneity Consider heterogeneity in true and perceived arrival rates: $$\hat{\lambda}_i = \beta_0 + \beta_1 \lambda_i + \nu_i$$ with $\sigma_{\lambda}, \sigma_{\nu}$ and $E(\nu_i | \lambda_i) = 0$ #### Proposition - 1. increasing in heterogeneity in arrival rates (σ_{λ}) - 2. and more so if heterogeneity is under-estimated ($\beta_1 < 1$) ## Heterogeneity Consider heterogeneity in true and perceived arrival rates: $$\hat{\lambda}_i = \beta_0 + \beta_1 \lambda_i + \nu_i$$ with $\sigma_{\lambda}, \sigma_{\nu}$ and $E(\nu_i | \lambda_i) = 0$ #### Proposition - 1. increasing in heterogeneity in arrival rates (σ_{λ}) - 2. and more so if heterogeneity is under-estimated ($\beta_1 < 1$) - 'Proof': - Duration-dependence depends on variance in job finding - Variance can be approximated for 'small' heterogeneity by $$\mathit{var}_0(\mathit{T}) \propto \left[1 - \beta_1 \kappa\right]^2 \sigma_\lambda^2 + \kappa^2 \sigma_\nu$$ ## Depreciation Consider depreciation of true and perceived arrival rates: $$\lambda_{d+1} = (1 - \theta) \lambda_d$$; $\hat{\lambda}_{d+1} = (1 - \beta_{\theta} \theta) \hat{\lambda}_d$ #### Proposition - 1. increasing in depreciation of arrival rates (θ) - 2. and more so if depreciation is under-estimated $(\beta_{\theta} < 1)$ ## Depreciation Consider depreciation of true and perceived arrival rates: $$\lambda_{d+1} = (1 - \theta) \lambda_d$$; $\hat{\lambda}_{d+1} = (1 - \beta_{\theta} \theta) \hat{\lambda}_d$ #### Proposition - 1. increasing in depreciation of arrival rates (θ) - 2. and more so if depreciation is under-estimated $(\beta_{\theta} < 1)$ - 'Proof': - Duration-dependence depends on updating of reservation wage - Workers lower reservation wages over the unemployment spell to offset the (perceived) decrease in arrival rates $$\frac{d\left[\frac{T_{d+1}}{T_d}\right]}{d\theta} = -\left[1 - \beta_\theta \frac{\kappa}{\lambda}\right]$$ #### Structural Model: Calibration + Results - Calibration using method of simulated moments - target true and perceived job finding means - directly target depreciation from statistical analysis - add moments/parameters for search model Targets/Estimates - ► Main results / counterfactuals - behavioral effect is sizeable, so quantitative impact of beliefs can be substantial Comparative Stats - ▶ biases jointly explain 12 14 percent of the incidence of LT unemployment - Robustness of contribution to LT incidence - result is driven by under-reaction in beliefs, not by exact role of depreciation vs. heterogeneity - calibration ignores random error in perceptions, which would further increase beliefs-driven variance in job finding # Counterfactual Analysis: Elimination of Biases | | | | Eliminati | ng Biases | | |-----------------------------------|------------|-----------|-----------|---------------|---------------| | | Calibrated | | | | $B_0 = 0$ | | | Model | $B_0 = 0$ | $B_1 = 1$ | $B_{ heta}=1$ | $B_1 = 1$ | | | | | | | $B_{ heta}=1$ | | A. Baseline Model | | | | | | | Unemployment duration | 4.24 | 4.24 | 4.21 | 4.24 | 4.21 | | Share of LT unemployed | 0.32 | 0.32 | 0.29 | 0.32 | 0.29 | | B. Alternative spec: high depreci | iation | | | | | | Average unemployment duration | 4.3 | 4.56 | 4.27 | 3.99 | 4.08 | | Share of LT unemployed | 0.32 | 0.33 | 0.31 | 0.30 | 0.29 | ## **Concluding Remarks** - ► Elicitation of job seekers' perceptions can be used to learn about 'real' environment - Biases in job seekers' perception by themselves pose a 'real' challenge for unemployment policy - Understanding the source of these biases will be important when hoping to target biases directly # SCE: Summary Statistics / Representativeness | | SCE | CPS | SCE | CPS | |-----------------------------------|---------|-----------|------------|------------| | | 2012-17 | 2012-17 | 2012-17 | 2012-17 | | | All | All | Unemployed | Unemployed | | Demographic data (in percent) | | | | | | High-School Degree or Less | 31.9 | 35.3 | 42.8 | 45.0 | | Some College Education | 18.7 | 18.9 | 21.0 | 21.3 | | College Degree or More | 49.0 | 45.8 | 35.3 | 33.6 | | Female | 49.5 | 48.2 | 55.7 | 49.2 | | Ages 20-34 | 26.4 | 26.6 | 24.8 | 35.2 | | Ages 35-49 | 37.4 | 34.0 | 32.7 | 33.3 | | Ages 50-65 | 36.2 | 39.4 | 42.4 | 31.6 | | Black | 11.4 | 14.3 | 16.5 | 23.6 | | Hispanic | 9.8 | 15.2 | 11.4 | 18.1 | | Survey outcomes | | | | | | Avg. monthly job finding rate (%) | n.a. | n.a. | 17.6 | 22.7 | | # of respondents | 8,396 | n.a. | 777 | n.a. | | # of survey responses | 53,089 | 2,427,795 | 2117 | 86,761 | # SCE vs. KM: Summary Statistics | | SCE
2012-17 | KM Survey
2009-10 | |---|----------------|----------------------| | Demographic data (in percent) | | | | High-School Degree or Less | 42.8 | 32.5 | | Some College Education | 21.0 | 37.4 | | College Degree or More | 35.3 | 30.1 | | Female
 55.7 | 48.6 | | Ages 20-34 | 24.8 | 38.1 | | Ages 35-49 | 32.7 | 35.4 | | Ages 50-65 | 42.4 | 26.5 | | Black | 16.5 | 19.8 | | Hispanic | 11.4 | 25.6 | | Survey outcomes | | | | Avg. monthly job finding rate (in percent) | 17.6 | 13.6 | | # of respondents | 777 | 2,384 | | # of respondents w/ at least 2 unemployed surveys | 437 | 1,422 | | # of unemployed survey responses | 2,117 | 4,803 | # Kernel Density Estimates of 3-Month Elicitation (SCE) ## Comparison with Alternative Form of Elicitation (SCE) ## Kernel Density Estimates of 1-Month Elicitation (KM) ## Comparison with Alternative Form of Elicitation (KM) # Bias in Job Finding Beliefs (1/3) #### SCE (3-month horizon) | | Realized Job- | Perceived Job- | Sample | |----------------------|----------------------|-----------------------|--------| | | Finding Rate | Finding Probability | Size | | Full sample | 0.396 (0.024) | 0.474 (0.016) | 983 | | Duration 0-3 months | 0.622 (0.043) | 0.592 (0.032) | 302 | | Duration 4-6 months | 0.435 (0.053) | 0.511 (0.034) | 160 | | Duration 7-12 months | 0.349 (0.050) | 0.540 (0.028) | 164 | | Duration 13+ months | 0.223 (0.030) | 0.340 (0.016) | 357 | → Back # Bias in Job Finding Beliefs (1/3) #### KM (1-month horizon) | | Realized Job- | Perceived Job- | Sample | |----------------------|----------------------|-----------------------|--------| | | Finding Rate | Finding Probability | Size | | Full sample | 0.105 (0.022) | 0.256 (0.019) | 734 | | Duration 0-6 months | 0.135 (0.043) | 0.256 (0.042) | 79 | | Duration 7-12 months | 0.116 (0.048) | 0.283 (0.031) | 158 | | Duration 13+ months | 0.076 (0.022) | 0.232 (0.028) | 497 | ▶ Back # Predictive Value of Beliefs (2/3) | Dependent Variable:
3-Month UE Transition Rate | (1) | (2) | (3) | (4) | |---|----------|----------|------------|------------| | Prob(Find Job in 3 Months) | 0.618*** | 0.624*** | | 0.565*** | | | (0.0654) | (0.0886) | | (0.0952) | | Prob(Find Job in 3 Months) | | -0.216* | | -0.274** | | x LT Unemployed | | (0.125) | | (0.123) | | LT Unemployed | | -0.111 | | -0.0291 | | | | (0.0695) | | (0.0738) | | Female | | | -0.143*** | -0.0730** | | | | | (0.0424) | (0.0371) | | Race: African-American | | | 0.218*** | 0.129* | | | | | (0.0641) | (0.0664) | | Race: Hispanic | | | -0.0458 | -0.0940* | | | | | (0.0577) | (0.0565) | | Race: Asian | | | 0.0785 | 0.167* | | | | | (0.0983) | (0.0886) | | Race: Other | | | -0.0971 | -0.0839 | | | | | (0.0656) | (0.0602) | | Age | | | 0.0158 | 0.0206* | | - | | | (0.0146) | (0.0111) | | Age*Age | | | -0.000280* | -0.000283* | | | | | (0.000157) | (0.000123) | # Predictive Value of Beliefs [cont'd] (2/3) | Dependent Variable:
3-Month UE Transition Rate | (1) | (2) | (3) | (4) | |---|----------------------|----------------------|----------------------|----------------------| | HH income: 30,000-59,999 | | | 0.0921*
(0.0513) | 0.0753*
(0.0430) | | HH income: 60,000-100,000 | | | 0.163**
(0.0633) | 0.130**
(0.0641) | | HH income: 100,000+ | | | 0.135**
(0.0604) | 0.122*
(0.0689) | | High-School Degree | | | 0.333***
(0.0778) | 0.201***
(0.0703) | | Some College | | | 0.256***
(0.0661) | 0.167***
(0.0633) | | College Degree | | | 0.252***
(0.0640) | 0.133**
(0.0634) | | Post-Graduate Education | | | 0.264***
(0.0696) | 0.143**
(0.0690) | | Other Education | | | 0.602***
(0.176) | 0.416***
(0.147) | | Constant | 0.103***
(0.0328) | 0.207***
(0.0583) | 0.0600
(0.323) | -0.258
(0.252) | | N
R2 | 983
0.142 | 983
0.190 | 983
0.152 | 983
0.252 | # Persistence in Predictive Value of Beliefs (2/3) | Dependent Variable: | | | | | |-------------------------------------|----------------------|---------------------|-------|---------------------| | 3-Period Forward UE Transition Rate | (1) | (2) | (3) | (4) | | Elicited 3-Month Probability | 0.314***
(0.0864) | 0.486***
(0.125) | | 0.425***
(0.121) | | Elicited 3-M Prob x LT unemployed | | -0.368**
(0.157) | | -0.319**
(0.143) | | LT Unemployed | | 0.0472
(0.0704) | | 0.0344
(0.0681) | | Controls | | | Х | Х | | N | 392 | 392 | 392 | 392 | | R2 | 0.0454 | 0.0778 | 0.153 | 0.207 | → Back # Updating in Beliefs among Unemployed (3/3) | Panel A. SCE, Dependent Va | riable: | | | | | | | |------------------------------|----------------|-------------|-------------|------------|--|--|--| | Elicited 3-Month Probability | (1) | (2) | (3) | (4) | | | | | Unempl. Duration (Ms) | -0.00544*** | -0.00473*** | -0.00395*** | 0.00395 | | | | | | (0.000767) | (0.000524) | (0.000490) | (0.00761) | | | | | Demographics | Demographics X | | | | | | | | Spell FE | | | | X | | | | | Observations | 673 | 1845 | 1845 | 1845 | | | | | R^2 | 0.107 | 0.079 | 0.164 | 0.822 | | | | | | | | | | | | | | Panel B. KM Survey, Depend | ent Variable: | | | | | | | | Elicited 1-Month Probability | (1) | (2) | (3) | (4) | | | | | Unempl. Duration (Ms) | -0.0009 | -0.0020 | -0.0025 | 0.0216 | | | | | | (0.0021) | (0.0016) | (0.0014)* | (0.0077)** | | | | | Demographics | | | X | | | | | | Individual Fixed Effects | | | | X | | | | | Observations | 2,088 | 4,435 | 4,318 | 4,435 | | | | | R-Squared | 0.000 | 0.003 | 0.119 | 0.902 | | | | ## Dynamic Selection on Observables | Dependent Variable:
3-Month UE Transition Rate | (1) | (2) | (3) | (4) | |---|------------------------|------------------------|----------------------|----------------------| | Unemployment Duration, in Months | -0.0090***
(0.0009) | -0.0071***
(0.0009) | | | | Unemployment Duration: 4-6 Months | (* ****) | (* ****) | -0.187***
(0.069) | -0.152**
(0.064) | | Unemployment Duration: 7-12 Months | | | -0.274***
(0.066) | -0.239***
(0.060) | | Unemployment Duration: 13+ Months | | | -0.400*** | -0.287*** | | | | | (0.053) | (0.052) | | Demographics | | Х | | X | | HH income (3 Bins) | | X | | X | | Education levels | | X | | Х | | Observations | 983 | 983 | 983 | 983 | | R^2 | 0.119 | 0.213 | 0.116 | 0.205 | ▶ Back ## Dynamic Selection on Beliefs | Dependent Variable:
3-Month UE Transition Rate | (1) | (2) | (3) | (4) | |---|------------------------|------------------------|----------------------|----------------------| | Unemployment Duration, in Months | -0.0064***
(0.0009) | -0.0053***
(0.0010) | | | | Unemployment Duration: 4-6 Months | , , | , , | -0.145**
(0.060) | -0.127**
(0.059) | | Unemployment Duration: 7-12 Months | | | -0.240***
(0.061) | -0.214***
(0.058) | | Unemployment Duration: 13+ Months | | | -0.274*** | -0.200***
(0.052) | | | | | (0.050) | (0.052) | | Demographics | | X | | X | | HH income (3 Bins) | | X | | X | | Education levels | | X | | X | | Belief Controls (10 Bins) | X | X | Х | Х | | Observations | 983 | 983 | 983 | 983 | | R^2 | 0.200 | 0.262 | 0.199 | 0.261 | ### Beliefs vs. Behavior | Dependent variable: | Prob(Find Jol | o in 1 Month) | Expected Duration (Inverted) | | |---|---------------|---------------|------------------------------|-----------| | | (1) | (2) | (3) | (4) | | Time Spent on Job Search (Hours per Week) | 0.0013 | -0.0013 | 0.0009 | 0.0007 | | , | (0.0006)** | (0.0010) | (0.0005) | (0.0013) | | Log(Hourly Reservation Wage) | -0.0387 | -0.0099 | -0.0586 | 0.1374 | | | (0.0360) | (0.0758) | (0.0316)* | (0.0828)* | | Reservation Commuting Distance (in min) | -0.0000 | -0.0010 | -0.0006 | -0.0003 | | - , | (0.0006) | (0.0013) | (0.0005) | (0.0013) | | Controls | X | | X | | | Individual F.E. | | Χ | | X | | N | 3,992 | 4,087 | 3,911 | 3,990 | | R^2 | 0.129 | 0.915 | 0.097 | 0.891 | # Response to Aggregate Indicators for Unemployed | Panel A. Unemployed Individuals:
Elicited 3-Month Probability | (1) | (2) | (3) | (4) | |--|------------------|------------------|-------------------|-----------------------| | National Unemployment Rate | 2.059
(1.946) | | | | | National Job Openings Rate | 3.535
(4.792) | | | | | State Unemployment Rate | | 0.534
(0.729) | -0.150
(0.727) | | | Elicited Prob(rise in US stock prices) | | | | 0.170***
(0.0399) | | Elicited Prob(rise in US unempl.) | | | | -0.0905**
(0.0373) | | Demographics
State FE | Х | Х | X
X | X
X | | Observations R^2 | 1826
0.116 | 1832
0.115 | 1832
0.183 | 1821
0.195 | # Response to Aggregate Indicators for Employed | Panel B. Employed Individuals: (Conditional) Elicitation | (1) | (2) | (3) | (4) | |--|----------------------|----------------------|----------------------|------------------------| | National Unemployment Rate | -1.407***
(0.426) | | | | | National Job Openings | 4.984***
(1.094) | | | | | State Unemployment Rate | | -2.812***
(0.147) | -3.120***
(0.177) | | | Elicited Prob(rise in US stock prices) | | | | 0.223***
(0.00920) | | Elicited Prob(rise in US unempl.) | | | | -0.109***
(0.00924) | | Demographics
State FE | Х | X | X
X | X
X | | Observations R^2 | 44309
0.056 | 44380
0.058 | 44380
0.073 | 44494
0.086 | ## Functional Form and Distributional Assumptions - \triangleright Permanent job finding rates, T_i , follows Beta distribution - lacktriangle Transitory component of the job finding rate, au_{id} , with $T_{id} \in [0,1]$ - uniform distribution on the interval $[-\sigma_{\tau}, \sigma_{\tau}]$ - ▶ masspoint(s) at the bounds such that $E(\tau|T_i) = 0$ - ▶ Perceptions/elicitations errors, ε_{id} , with $Z_{id} \in [0,1]$ - uniform distribution on the interval $[-\sigma_{\varepsilon}, \sigma_{\varepsilon}]$ - lacktriangle masspoint(s) at the bounds such that $E(arepsilon | ilde{T}_{id}^3) = 0$ - ► Geometric depreciation
in baseline specification. Alternative specification with piecewise linear depreciation: $$\theta_d = \begin{cases} \theta d \text{ if } d \leq 12 \\ \theta 12 \text{ if } d > 12 \end{cases} \quad \text{and } \hat{\theta}_d = \begin{cases} \hat{\theta} d \text{ if } d \leq 12 \\ \hat{\theta} 12 \text{ if } d > 12 \end{cases}$$ ## **Targeted Moments** | | | Value | e in | |---|-------------------------|--------|--------| | Moment | Symbol | SCE | Model | | Mean of 3-Month Job Finding Rates: | | | | | at 0-3 Months of Unemployment | $m_{F_{03}}$ | 0.623 | 0.626 | | at 4-6 Months of Unemployment | $m_{F_{46}}$ | 0.435 | 0.441 | | \dots at $7+$ Months of Unemployment | $m_{F_{7+}}$ | 0.260 | 0.261 | | Mean of 3-Month Elicitations (Deviation | on from Actual): | | | | at 0-3 Months of Unemployment | $m_{Z_{03}}-m_{F_{03}}$ | -0.031 | -0.029 | | at 4-6 Months of Unemployment | $m_{Z_{46}}-m_{F_{46}}$ | 0.076 | 0.057 | | \dots at $7+$ Months of Unemployment | $m_{Z_{7+}}-m_{F_{7+}}$ | 0.139 | 0.141 | | Mean of Monthly Innovations | | | | | in Elicitations | m_{dZ} | 0.009 | 0.008 | | Var. of Elicitations | s_Z^2 | 0.089 | 0.089 | | Cov. with Job Finding | $c_{Z,F}$ | 0.055 | 0.057 | | Cov. wtih Job Finding in 3 Months | C_{Z_d}, F_{d+3} | 0.023 | 0.023 | #### **Estimation Results** #### A. Parameter Estimates | Parameter/ | | | | |----------------------|--|----------|---------| | Moment | Explanation | Estimate | (S.e.) | | $E(T_i)$ | Mean of distribution of T_i | 0.389 | (0.066) | | $Var(T_i)$ | Variance of distribution of T_i | 0.048 | (0.022) | | $\sigma_{ au}$ | Dispersion in transitory component $ au_{id}$ | 0.325 | (0.250) | | θ | Depreciation in job finding | 0.003 | (0.049) | | b_0 | Intercept bias | 0.262 | (0.053) | | b_1 | Slope bias | 0.537 | (0.112) | | $\sigma_{arepsilon}$ | Dispersion in elicitation errors, $arepsilon_{id}$ | 0.438 | (0.024) | ▶ Back ### **Estimation Results** | B. Additional Mo | ments w.r.t. Job Finding | | | |--|---|----------|---------| | Moment | Explanation | Estimate | (S.e.) | | $Var(T_{i0}^3)$ | Var. in job finding at $d=0$ | 0.084 | (0.017) | | $Var(T_i^3)$ | Var. in permanent component at $d=0$ | 0.065 | (0.022) | | $Var(dT_{id}^3)$ | Var. in changes job finding | 0.017 | (0.010) | | $E(T_{i0}^3 - T_{i12}^3)$ | 12-month decline (longitudinal) | 0.010 | (0.159) | | $E(T_{i0}^3) - E(T_{i12}^3)$ | 12-month decline (cross-sectional) | 0.442 | (0.077) | | $\frac{E(T_{i0}^3 - T_{i12}^3)}{E(T_{i0}^3) - E(T_{i12}^3)}$ | Ratio of longitud. to cross-sect. decline | 0.022 | (0.356) | | C. Additional Mo | ments w.r.t. Job Finding | | | | $Var(Z_{i0}^3)$ | Var. in elicitations at $d=0$ | 0.080 | (0.005) | | $Var(Z_{i0}^3 - \varepsilon_{i0})$ | Var. in elicitations at $d = 0$ (net of err.) | 0.024 | (800.0) | | $Var(dZ_{id}^3)$ | Var. in changes in elicitations | 0.124 | (0.013) | | $Var(dZ_{id}^3 - darepsilon_{id})$ | Var. in changes in elicit. (net of err.) | 0.005 | (0.003) | | $E(Z_{i0}^3 - Z_{i12}^3)$ | 12-month decline (longitudinal) | 0.006 | (0.083) | | $E(Z_{i0}^3) - E(Z_{i12}^3)$ | 12-month decline (cross-sectional) | 0.238 | (0.046) | | $\frac{E(Z_{i0}^3 - Z_{i12}^3)}{E(Z_{i0}^3) - E(Z_{i12}^3)}$ | Ratio of longitud. to cross-sect. decline | 0.026 | (0.347) | | A D | | (1) | |---|----------|----------------| | A. Parameter Est | timates: | Baseline | | $E(T_i)$ | | 0.388 | | $Var(T_i)$ | | 0.048 | | σ_{τ} | | 0.325 | | θ | | 0.003 | | <i>b</i> ₀ | | 0.262 | | b_1 | | 0.537 | | σ_{ε} | | 0.438 | | B. Model Fit: | Data | (1) | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.029 | | $m_{Z_{46}}^{03} - m_{F_{46}}^{03}$ | 0.076 | 0.057 | | $m_{Z_{7+}}^{40} - m_{F_{7+}}^{40}$ | 0.139 | 0.141 | | m _{F03} | 0.623 | 0.626 | | m _{F46} | 0.435 | 0.441 | | | 0.260 | 0.261 | | s2 1+ | 0.089 | 0.089 | | | 0.055 | 0.057 | | C7 F | | | | m _{F7+} s _Z ² c _{Z,F} | 0.033 | 0.023 | | $c_{Z_d,F_{d+3}}$ | | 0.023
0.008 | | $c_{Z,F}$ $c_{Z_d,F_{d+3}}$ m_{dZ} Weighted SSR | 0.023 | | | A. Parameter Es | timates: | (1)
Baseline | $\theta = 0$ | |-------------------------------------|----------|-----------------|--------------| | $E(T_i)$ | | 0.388 | 0.386 | | $Var(T_i)$ | | 0.048 | 0.048 | | σ_{τ} | | 0.325 | 0.316 | | θ | | 0.003 | 0 | | <i>b</i> ₀ | | 0.262 | 0.260 | | b_1 | | 0.537 | 0.541 | | σ_{ε} | | 0.438 | 0.438 | | B. Model Fit: | Data | (1) | (2) | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.029 | -0.027 | | $m_{Z_{46}} - m_{F_{46}}$ | 0.076 | 0.057 | 0.057 | | $m_{Z_{7+}}^{40} - m_{F_{7+}}^{40}$ | 0.139 | 0.141 | 0.14 | | $m_{F_{03}}$ | 0.623 | 0.626 | 0.624 | | m _{F46} | 0.435 | 0.441 | 0.440 | | | 0.260 | 0.261 | 0.263 | | e ² /+ | 0.089 | 0.089 | 0.09 | | s_Z^2 $c_{Z,F}$ | 0.055 | 0.059 | 0.09 | | | 0.033 | 0.037 | 0.024 | | $c_{Z_d,F_{d+3}}$ | | | | | m_{dZ} | 0.009 | 0.008 | 0.009 | | Weighted SSR | | 0.3347 | 0.3374 | | 0 | | | | | | | (1) | (2) | (3) | |---------------------------------------|----------|----------|--------------|-------------| | A. Parameter Es | timates: | Baseline | $\theta = 0$ | No heterog. | | | | | | in T_{id} | | $E(T_i)$ | | 0.388 | 0.386 | 0.286 | | $Var(T_i)$ | | 0.048 | 0.048 | 0 | | σ_{τ} | | 0.325 | 0.316 | 0 | | θ | | 0.003 | 0 | 0.097 | | b ₀ | | 0.262 | 0.260 | 0.340 | | b_1 | | 0.537 | 0.541 | 0.295 | | σ_{ε} | | 0.438 | 0.438 | 0.423 | | B. Model Fit: | Data | (1) | (2) | (3) | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.029 | -0.027 | -0.055 | | $m_{Z_{46}}^{-03} - m_{F_{46}}^{-03}$ | 0.076 | 0.057 | 0.057 | 0.03 | | $m_{Z_{7+}}^{-40} - m_{F_{7+}}$ | 0.139 | 0.141 | 0.14 | 0.184 | | $m_{F_{03}}$ | 0.623 | 0.626 | 0.624 | 0.56 | | m _{F46} | 0.435 | 0.441 | 0.440 | 0.440 | | | 0.260 | 0.261 | 0.263 | 0.222 | | $m_{F_{7+}}$ s_Z^2 | 0.089 | 0.089 | 0.09 | 0.062 | | $c_{Z,F}^{Z}$ | 0.055 | 0.057 | 0.057 | 0.008 | | c_{Z_d}, F_{d+3} | 0.023 | 0.023 | 0.024 | 0.007 | | m_{dZ} | 0.009 | 0.008 | 0.009 | -0.010 | | Weighted SSR | | 0.3347 | 0.3374 | 45.663 | | | | (1) | (2) | (3) | (4) | | |---------------------------------------|----------|----------|--------------|-------------|---------------------|--| | A. Parameter Es | timates: | Baseline | $\theta = 0$ | No heterog. | $\sigma_{\tau} = 0$ | | | | | | | in T_{id} | | | | $E(T_i)$ | | 0.388 | 0.386 | 0.286 | 0.412 | | | $Var(T_i)$ | | 0.048 | 0.048 | 0 | 0.076 | | | σ_{τ} | | 0.325 | 0.316 | 0 | 0 | | | θ | | 0.003 | 0 | 0.097 | -0.069 | | | b_0 | | 0.262 | 0.260 | 0.340 | 0.264 | | | b_1 | | 0.537 | 0.541 | 0.295 | 0.525 | | | σ_{ε} | | 0.438 | 0.438 | 0.423 | 0.440 | | | B. Model Fit: | Data | (1) | (2) | (3) | (4) | | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.029 | -0.027 | -0.055 | -0.025 | | | $m_{Z_{46}} - m_{F_{46}}$ | 0.076 | 0.057 | 0.057 | 0.03 | 0.073 | | | $m_{Z_{7+}}^{-40} - m_{F_{7+}}^{-40}$ | 0.139 | 0.141 | 0.14 | 0.184 | 0.141 | | | $m_{F_{03}}$ | 0.623 | 0.626 | 0.624 | 0.56 | 0.612 | | | m _{F46} | 0.435 | 0.441 | 0.440 | 0.440 | 0.401 | | | | 0.260 | 0.261 | 0.263 | 0.222 | 0.261 | | | $s_Z^{m_{F_{7+}}}$ | 0.089 | 0.089 | 0.09 | 0.062 | 0.088 | | | $c_{Z,F}^{Z}$ | 0.055 | 0.057 | 0.057 | 0.008 | 0.054 | | | $c_{Z_d,F_{d+3}}$ | 0.023 | 0.023 | 0.024 | 0.007 | 0.029 | | | m_{dZ} | 0.009 | 0.008 | 0.009 | -0.010 | 0.008 | | | Weighted SSR | | 0.3347 | 0.3374 | 45.663 | 1.9952 | | | | | (1) | (2) | (3) | (4) | (5) | | |---------------------------------------|----------|----------|--------------|--------------------|---------------------|-----------|--| | A. Parameter Es | timates: | Baseline | $\theta = 0$ | No heterog. | $\sigma_{\tau} = 0$ | $b_1 = 1$ | | | | | | | in T _{id} | | | | | $E(T_i)$ | | 0.388 | 0.386 | 0.286 | 0.412 | 0.269 | | | $Var(T_i)$ | | 0.048 | 0.048 | 0 | 0.076 | 0.017 | | | σ_{τ} | | 0.325 | 0.316 | 0 | 0 | 0.201 | | | 9 | | 0.003 | 0 | 0.097 | -0.069 | 0.001 | | | <i>b</i> ₀ | | 0.262 | 0.260 | 0.340 | 0.264 | 0.057 | | | b_1 | | 0.537 | 0.541 | 0.295 | 0.525 | 1 | | | σ_{ε} | | 0.438 | 0.438 | 0.423 | 0.440 | 0.350 | | | B. Model Fit: | Data | (1) | (2) | (3) | (4) | (5) | | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.029 | -0.027 | -0.055 | -0.025 | 0.056 | | | $m_{Z_{46}} - m_{F_{46}}$ | 0.076 | 0.057 | 0.057 | 0.03 | 0.073 | 0.057 | | | $m_{Z_{7+}}^{-46} - m_{F_{7+}}^{-46}$ | 0.139 | 0.141 | 0.14 | 0.184 | 0.141 | 0.057 | | | $m_{F_{03}}$ | 0.623 | 0.626 | 0.624 | 0.56 | 0.612 | 0.543 | | | m _{F46} | 0.435 | 0.441 | 0.440 | 0.440 | 0.401 | 0.453 | | | | 0.260 | 0.261 | 0.263 | 0.222 | 0.261 | 0.330 | | | m _{F7+}
² Z | 0.089 | 0.089 | 0.09 | 0.062 | 0.088 | 0.093 | | | CZ,F | 0.055 | 0.057 | 0.057 | 0.008 | 0.054 | 0.058 | | | $c_{Z_d,F_{d+3}}$ | 0.023 | 0.023 | 0.024 | 0.007 | 0.029 | 0.033 | | | m_{dZ} | 0.009 | 0.008 | 0.009 | -0.010 | 0.008 | 0.008 | | | Weighted SSR | | 0.3347 | 0.3374 | 45.663 | 1.9952 | 10.141 | | | | | (1) | (2) | (3) | (4) | (5) | (6) | |---------------------------------------|----------|----------|--------------|--------------------|---------------------|-----------|-----------| | A. Parameter Es | timates: | Baseline | $\theta = 0$ | No heterog. | $\sigma_{\tau} = 0$ | $b_1 = 1$ | $b_0 = 0$ | | | | | | in T _{id} | | | $b_1 = 1$ | | $E(T_i)$ | | 0.388 | 0.386 | 0.286 | 0.412 | 0.269 | 0.298 | | $Var(T_i)$ | | 0.048 | 0.048 | 0 | 0.076 | 0.017 | 0.017 | | σ_{τ} | | 0.325 | 0.316 | 0 | 0 | 0.201 | 0.210 | | 9 | | 0.003 | 0 | 0.097 | -0.069 | 0.001 | 0.001 | | b ₀ | | 0.262 | 0.260 | 0.340 | 0.264 | 0.057 | 0 | | b_1 | | 0.537 | 0.541 | 0.295 | 0.525 | 1 | 1 | | σ_{ε} | | 0.438 | 0.438 | 0.423 | 0.440 | 0.350 | 0.358 | | B. Model Fit: |
Data | (1) | (2) | (3) | (4) | (5) | (6) | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.029 | -0.027 | -0.055 | -0.025 | 0.056 | 0 | | $m_{Z_{46}}^{03} - m_{F_{46}}^{03}$ | 0.076 | 0.057 | 0.057 | 0.03 | 0.073 | 0.057 | 0 | | $m_{Z_{7+}}^{-40} - m_{F_{7+}}^{-40}$ | 0.139 | 0.141 | 0.14 | 0.184 | 0.141 | 0.057 | 0.001 | | $n_{F_{03}}$ | 0.623 | 0.626 | 0.624 | 0.56 | 0.612 | 0.543 | 0.589 | | m _{F46} | 0.435 | 0.441 | 0.440 | 0.440 | 0.401 | 0.453 | 0.498 | | n _{F7+} | 0.260 | 0.261 | 0.263 | 0.222 | 0.261 | 0.330 | 0.375 | | 2 ' ' | 0.089 | 0.089 | 0.09 | 0.062 | 0.088 | 0.093 | 0.093 | | Z,F | 0.055 | 0.057 | 0.057 | 0.008 | 0.054 | 0.058 | 0.056 | | $c_{Z_d,F_{d+3}}$ | 0.023 | 0.023 | 0.024 | 0.007 | 0.029 | 0.033 | 0.033 | | n_{dZ} | 0.009 | 0.008 | 0.009 | -0.010 | 0.008 | 0.008 | 0.009 | | Weighted SSR | | 0.3347 | 0.3374 | 45.663 | 1.9952 | 10.141 | 14.983 | ## Restricted Model Results | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | |---------------------------------------|----------|----------|--------------|-------------|---------------------|-----------|-----------|----------------------------| | A. Parameter Es | timates: | Baseline | $\theta = 0$ | No heterog. | $\sigma_{\tau} = 0$ | $b_1 = 1$ | $b_0 = 0$ | $\theta \neq \hat{\theta}$ | | | | | | in T_{id} | | | $b_1 = 1$ | $b_1 = 1$ | | $E(T_i)$ | | 0.388 | 0.386 | 0.286 | 0.412 | 0.269 | 0.298 | 0.345 | | $Var(T_i)$ | | 0.048 | 0.048 | 0 | 0.076 | 0.017 | 0.017 | 0.016 | | σ_{τ} | | 0.325 | 0.316 | 0 | 0 | 0.201 | 0.210 | 0.306 | | θ | | 0.003 | 0 | 0.097 | -0.069 | 0.001 | 0.001 | 0.067 | | b_0 | | 0.262 | 0.260 | 0.340 | 0.264 | 0.057 | 0 | -0.062 | | b_1 | | 0.537 | 0.541 | 0.295 | 0.525 | 1 | 1 | 1 | | σ_{ε} | | 0.438 | 0.438 | 0.423 | 0.440 | 0.350 | 0.358 | 0.343 | | B. Model Fit: | Data | (1) | (2) | (3) | (4) | (5) | (6) | (7) | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.029 | -0.027 | -0.055 | -0.025 | 0.056 | 0 | -0.023 | | $m_{Z_{46}} - m_{F_{46}}$ | 0.076 | 0.057 | 0.057 | 0.03 | 0.073 | 0.057 | 0 | 0.042 | | $m_{Z_{7+}}^{-40} - m_{F_{7+}}^{-40}$ | 0.139 | 0.141 | 0.14 | 0.184 | 0.141 | 0.057 | 0.001 | 0.141 | | $m_{F_{03}}$ | 0.623 | 0.626 | 0.624 | 0.56 | 0.612 | 0.543 | 0.589 | 0.618 | | m _{F46} | 0.435 | 0.441 | 0.440 | 0.440 | 0.401 | 0.453 | 0.498 | 0.470 | | m _{F7+} | 0.260 | 0.261 | 0.263 | 0.222 | 0.261 | 0.330 | 0.375 | 0.257 | | s_Z^2 | 0.089 | 0.089 | 0.09 | 0.062 | 0.088 | 0.093 | 0.093 | 0.089 | | cZ,F | 0.055 | 0.057 | 0.057 | 0.008 | 0.054 | 0.058 | 0.056 | 0.055 | | $c_{Z_d,F_{d+3}}$ | 0.023 | 0.023 | 0.024 | 0.007 | 0.029 | 0.033 | 0.033 | 0.024 | | m_{dZ} | 0.009 | 0.008 | 0.009 | -0.010 | 0.008 | 0.008 | 0.009 | 0.009 | | Weighted SSR | | 0.3347 | 0.3374 | 45.663 | 1.9952 | 10.141 | 14.983 | 0.4761 | ## **Extended Model Results** | | | (1) | |---------------------------------------|----------|----------------------------| | A. Parameter Es | timates: | $\theta \neq \hat{\theta}$ | | | | $b_1 \neq 1$ | | F(T) | | 0.397 | | $E(T_i)$
$Var(T_i)$ | | 0.044 | | σ_{τ} | | 0.448 | | θ | | 0.021 | | $\hat{\theta}$ | | 0.021 | | bn | | 0.021 | | b ₁ | | 0.528 | | σ_{ε} | | 0.431 | | D 14 1150 | Б. | (4) | | B. Model Fit: | Data | (1) | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.030 | | $m_{Z_{46}}^{-03} - m_{F_{46}}^{-03}$ | 0.076 | 0.060 | | $m_{Z_{7+}}^{-46} - m_{F_{7+}}^{-46}$ | 0.139 | 0.153 | | $m_{F_{03}}$ | 0.623 | 0.636 | | m _{F46} | 0.435 | 0.444 | | m _{F7+} | 0.260 | 0.249 | | s_Z^2 | 0.089 | 0.089 | | $c_{Z_{06},F_{06}}$ | 0.058 | 0.055 | | CZ | 0.030 | 0.032 | | c _{Z7+} , _{F7+} | 0.023 | 0.021 | | c_{Z_d}, F_{d+3} | 0.023 | 0.021 | | m_{dZ} | 0.009 | 0.010 | | | | | ## **Extended Model Results** | | | (1) | (2) | | |---|----------|-------------------------|-------------------------|--| | A. Parameter Es | timates: | $ heta eq \hat{ heta}$ | $ heta eq \hat{ heta}$ | | | | | $b_1 \neq 1$ | $b_1 = 1$ | | | F(T) | | 0.207 | 0.240 | | | $E(T_i)$ | | 0.397
0.044 | 0.342
0.014 | | | $Var(T_i)$ | | 0.448 | 0.014 | | | $\frac{\sigma_{\tau}}{\theta}$ | | 0.448 | 0.519 | | | $\hat{\theta}$ | | | | | | - | | 0.021 | 0.049 | | | <i>b</i> ₀ | | 0.271 | 0.070 | | | b_1 | | 0.528 | 1 | | | σ_{ε} | | 0.431 | 0.000 | | | B. Model Fit: | Data | (1) | (2) | | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.030 | -0.025 | | | $m_{Z_{46}}^{-03} - m_{F_{46}}^{-03}$ | 0.076 | 0.060 | 0.105 | | | $m_{Z_{7+}}^{Z_{46}} - m_{F_{7+}}^{Z_{46}}$ | 0.139 | 0.153 | 0.154 | | | m _{F03} | 0.623 | 0.636 | 0.610 | | | m _{F46} | 0.435 | 0.444 | 0.457 | | | m _{F7+} | 0.260 | 0.249 | 0.236 | | | s_7^2 | 0.089 | 0.089 | 0.087 | | | $c_{Z_{06},F_{06}}$ | 0.058 | 0.055 | 0.041 | | | c _{Z7+} ,F ₇₊ | 0.030 | 0.032 | 0.040 | | | $c_{Z_d,F_{d+3}}$ | 0.023 | 0.021 | 0.022 | | | m_{dZ} | 0.009 | 0.010 | 0.009 | | | Weighted SSR | | 0.7739 | 4.8157 | | ## **Extended Model Results** | | | (1) | (2) | (3) | |-----------------------------------|----------|-------------------------|-------------------------|---------------------| | A. Parameter Es | timates: | $ heta eq \hat{ heta}$ | $ heta eq \hat{ heta}$ | $ heta=\hat{ heta}$ | | | | $b_1 \neq 1$ | $b_1 = 1$ | $b_1 \neq 1$ | | $E(T_i)$ | | 0.397 | 0.342 | 0.395 | | $Var(T_i)$ | | 0.044 | 0.014 | 0.393 | | σ_{τ} | | 0.448 | 0.519 | 0.448 | | θ | | 0.021 | 0.077 | 0.022 | | $\hat{\theta}$ | | 0.021 | 0.049 | 0.022 | | b ₀ | | 0.271 | 0.070 | 0.270 | | <i>b</i> ₁ | | 0.528 | 1 | 0.529 | | σ_{ε} | | 0.431 | 0.000 | 0.432 | | B. Model Fit: | Data | (1) | (2) | (3) | | | | . , | . , | . , | | $m_{Z_{03}} - m_{F_{03}}$ | -0.031 | -0.030 | -0.025 | -0.030 | | $m_{Z_{46}} - m_{F_{46}}$ | 0.076 | 0.060 | 0.105 | 0.059 | | $m_{Z_{7+}} - m_{F_{7+}}$ | 0.139 | 0.153 | 0.154 | 0.153 | | m _{F03} | 0.623 | 0.636 | 0.610 | 0.635 | | m _{F46} | 0.435 | 0.444 | 0.457 | 0.445 | | m _{F7+} | 0.260 | 0.249 | 0.236 | 0.250 | | s_7^2 | 0.089 | 0.089 | 0.087 | 0.089 | | $c_{Z_{06},F_{06}}$ | 0.058 | 0.055 | 0.041 | 0.055 | | c _{Z7+} , _{F7+} | 0.030 | 0.032 | 0.040 | 0.032 | | $c_{Z_d,F_{d+3}}$ | 0.023 | 0.021 | 0.022 | 0.021 | | m_{dZ} | 0.009 | 0.010 | 0.009 | 0.010 | | Weighted SSR | | 0.7739 | 4.8157 | 0.7739 | # Dur. Dep. in Job Finding (Extended Model) # Dur. Dep. in Biases in Perceptions (Extended Model) # Identification of the Parameter $\hat{\theta}$ # Identification of the Parameter $\sigma_{ au}$ ## Robustness | Parameter
Estimates: | (1)
Baseline | (2)
Gamma
(<i>T_i</i>) | (3) Weibull (T_i) | (4)
Normal $(arepsilon)$ | (5)
Linear
Depreciation | |-------------------------|-----------------|--|---------------------|-----------------------------|-------------------------------| | $E(T_i)$ | 0.389 | 0.387 | 0.37 | 0.388 | 0.388 | | $Var(T_i)$ | 0.048 | 0.047 | 0.038 | 0.048 | 0.049 | | $\sigma_{ au}$ | 0.325 | 0.326 | 0.343 | 0.337 | 0.316 | | θ | 0.003 | 0.003 | 0.006 | 0.003 | 0 | | b_0 | 0.262 | 0.261 | 0.262 | 0.235 | 0.262 | | b_1 | 0.537 | 0.539 | 0.538 | 0.597 | 0.537 | | $\sigma_arepsilon$ | 0.438 | 0.438 | 0.438 | 0.276 | 0.438 | | Weighted SSR | 0.3347 | 0.3325 | 0.3031 | 0.3353 | 0.3372 | # Robustness (continued) | Parameter
Estimates:(1)
Baseline
(1)
(2)
(3)
(4)
(4)
(5)
(5)
(6)
(7)
(7)
(7)
(7)
(8)
(7)
(8)
(8)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(| | | | | | |
--|--------------------|--------|--------|------------|------------|-----------------| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | ` ' | ` ' | Horizon=5y | Persistent | (9)
Bunching | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $E(T_i)$ | 0.389 | 0.366 | 0.361 | 0.385 | 0.387 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $Var(T_i)$ | 0.048 | 0.043 | 0.038 | 0.046 | 0.047 | | b_0 0.2620.2620.260.2570.268 b_1 0.5370.5340.540.5430.523 σ_{ε} 0.4380.440.4390.4490.425 | $\sigma_{ au}$ | 0.325 | 0.282 | 0.324 | 0.346 | 0.323 | | b_1 0.537 0.534 0.54 0.543 0.523 $σ_ε$ 0.438 0.44 0.439 0.449 0.425 | θ | 0.003 | -0.012 | -0.001 | 0.006 | 0.003 | | σ_{ε} 0.438 0.44 0.439 0.449 0.425 | b_0 | 0.262 | 0.262 | 0.26 | 0.257 | 0.268 | | | b_1 | 0.537 | 0.534 | 0.54 | 0.543 | 0.523 | | Weighted SSR 0.3347 0.3306 0.3848 0.281 0.2932 | $\sigma_arepsilon$ | 0.438 | 0.44 | 0.439 | 0.449 | 0.425 | | | Weighted SSR | 0.3347 | 0.3306 | 0.3848 | 0.281 | 0.2932 | # Robustness (continued) | Parameter
Estimates: | (1)
Baseline | (10)
Resid.
Moments | (11)
Excl.
Recall | (12)
Exactly
Identified | (13)
Diagonal
W | |-------------------------|-----------------|---------------------------|-------------------------|-------------------------------|-----------------------| | $E(T_i)$ | 0.389 | 0.322 | 0.388 | 0.365 | 0.387 | | $Var(T_i)$ | 0.048 | 0.02 | 0.047 | 0.042 | 0.051 | | $\sigma_{ au}$ | 0.325 | 0.244 | 0.325 | 0.323 | 0.301 | | θ | 0.003 | -0.001 | 0.004 | 0.008 | -0.008 | | b_0 | 0.262 | 0.238 | 0.26 | 0.255 | 0.272 | | b_1 | 0.537 | 0.581 | 0.541 | 0.555 | 0.514 | | $\sigma_arepsilon$ | 0.438 | 0.392 | 0.438 | 0.436 | 0.443 | | Weighted SSR | 0.3347 | 0.9067 | 0.3284 | 0 | 0.1059 | ## Setup Model - ► Unemployed worker *i*: - lacktriangleright receives job offer with probability λ - wage w is drawn from distribution $F(\mu_w, \sigma_w)$ - set reservation wage R - Introduce all relevant action in arrival rates: - ▶ Heterogeneity: $\lambda_i \in \lambda^h, \lambda^l$ - ▶ Depreciation: $\lambda_{i,d} = (1 \theta) \lambda_{i,d-1}$ - Biases in beliefs: - uniform bias: $\hat{\lambda}^j = \lambda^j + B_0$ - ross-sectional bias: $Prob(\hat{\lambda}_{i,0} = \hat{\lambda}^j | \lambda_{i,0} = \lambda^j) = B_1$ - longitudinal bias: $B_{\theta} = 0$ - Unemployed workers solve dynamic problem depending on their beliefs ## Setup Model - ► Unemployed worker *i*: - ightharpoonup receives job offer with probability λ - wage w is drawn from distribution $F(\mu_w, \sigma_w)$ - set reservation wage R - Introduce all relevant action in arrival rates: - ▶ Heterogeneity: $\lambda_i \in \lambda^h, \lambda^l$ - ▶ Depreciation: $\lambda_{i,d} = (1 \theta) \lambda_{i,d-1}$ - Biases in beliefs: - uniform bias: $\hat{\lambda}^j = \lambda^j + B_0$ - ross-sectional bias: $Prob(\hat{\lambda}_{i,0} = \hat{\lambda}^j | \lambda_{i,0} = \lambda^j) = B_1$ - longitudinal bias: $B_{\theta} = 0$ - Unemployed workers solve dynamic problem depending on their beliefs $$U_{id} = u_d + \frac{1}{1+\delta} \max_{R} \{U_{i,d+1} + \hat{\lambda}_{i,d} \int_{R} [V_i(w) - U_{i,d+1})] dF(w)\}$$ # Calibration Targets | Moments | Data | Baseline
Model | High
Depreciation | |-------------------------------------|-------|-------------------|----------------------| | Mean of 3-Month Job Finding Rates: | | | | | at 0-3 Months of Unemployment | 0.623 | 0.622 | 0.613 | | at 4-6 Months of Unemployment | 0.435 | 0.436 | 0.455 | | at 7 Months of Unemployment or more | 0.26 | 0.259 | 0.244 | | Mean of 3-Month Elicitations: | | | | | at 0-3 Months of Unemployment | 0.592 | 0.592 | 0.594 | | at 4-6 Months of Unemployment | 0.511 | 0.510 | 0.511 | | at 7 Months of Unemployment or more | 0.399 | 0.400 | 0.399 | | Acceptance Rate: | 0.71 | 0.710 | 0.716 | | True Duration Dependence: | | | | | Baseline | 0.991 | 0.982 | - | | High Depreciation | 0.650 | - | 0.654 | ## Calibration Estimates | Parameters | Symbol | Baseline
Model | High
Depreciation | |---|--------------------------|-------------------|----------------------| | A. Set Parameters | | | | | Median of wage offer distribution | $\mu_{\sf w}$ | 1 | 1 | | Std. dev. of logged wage offer distribution | σ_{w} | 0.24 | 0.24 | | Exogeneous job loss probability | σ | 0.02 | 0.02 | | Arrival rate when employed | λ^e | 0.15 | 0.15 | | Discount rate | δ | 0.004 | 0.004 | | Coefficient of relative risk aversion | γ | 2 | 2 | | Longitudinal bias | $B_{ heta}$ | 0 | 0 | | B. Estimated Parameters | | | | | Uniform bias | B_0 | -0.001 | -0.068 | | Cross-sectional bias | B_1 | 0.81 | 0.93 | | Low-type arrival rate | λ_I | 0.10 | 0.19 | | High-type arrival rate | λ_h | 0.64 | 0.72 | | Share of high-types | φ | 0.74 | 0.65 | | Depreciation in arrival rate | $\overset{\cdot}{ heta}$ | 1.1E-05 | 0.060 | | Unemployed consumption (b_u) | Ь | 0.51 | 0.52 | ## True vs. Perceived Arrival Rate ⇒ Duration ## True vs. Perceived Heterogeneity ⇒ LT Incidence # True vs. Perceived Depreciation \Rightarrow LT Incidence