Risk-based Selection in Unemployment Insurance:
Evidence and Implications

Camille Landais Arash Nekoei Peter Nilsson
LSE Stockholm University Stockholm University

David Seim Johannes Spinnewijn*
Stockholm University LSE

May 30, 2018

Abstract

This paper studies whether adverse selection can rationalize a universal mandate for unemployment insurance (UI). Building on a unique feature of the unemployment policy in Sweden, where workers can opt for supplemental UI coverage above a minimum mandate, we provide the first direct evidence for adverse selection in UI and derive its implications for UI design. We find that the unemployment risk is more than twice as high for workers who buy supplemental coverage, even when controlling for a rich set of observables. Exploiting variation in risk and prices to control for moral hazard, we show how this correlation is driven by substantial risk-based selection. Despite the severe adverse selection, we find that mandating the supplemental coverage is dominated by a design leaving the choice to workers. In this design, using a subsidy for supplemental coverage is optimal and complementary to the use of a minimum mandate. Our findings raise questions about the desirability of the universal mandate of generous UI in other countries, which has not been tested before.

Keywords: Adverse Selection, Unemployment Insurance, Mandate, Subsidy

*We thank Francesco Decarolis, Liran Einav, Itzik Fadlon, Amy Finkelstein, Francois Gerard, Nathan Hendren, Simon Jaeger, Henrik Kleven, Neale Mahoney, Magne Mogstad, Emmanuel Saez, Frans Spinnewyn, Pietro Tebaldi, and seminar participants at Marseille, Stanford, Ecole Polytechnique, UCL, Cambridge, Bonn, Einaudi, AEA Meetings, IFS, San Diego, NBER PF/Insurance Spring Meeting, Amsterdam, Zurich, CEPR Public Policy Meeting, Wharton, BFI, Chicago Harris, and LSE for helpful comments and suggestions and our discussants Attila Lindner and Florian Scheuer for their valuable input. We also thank Arnaud Dyevre and Yannick Schindler for excellent research assistance. We acknowledge financial support from the ERC starting grants #679704 and #716485 and FORTE Grant #2015-00490.
1 Introduction

While some features of the unemployment insurance (UI) system vary across countries (for instance, the level and time profile of unemployment benefits), the different UI systems share one striking similarity: the participation to UI is universally mandated and no coverage choice is offered to workers. Workers are forced to pay payroll taxes when employed and receive a set transfer when unemployed, which is not subject to choice. Neither do private markets exist for more comprehensive UI. Why do (almost) all countries mandate UI? Why is no coverage choice available? Are these optimal features of UI design? Despite the large existing literature on UI, these fundamental questions have so far been unanswered.

A universal mandate is seen as the canonical solution to the inefficiencies arising under adverse selection [see Akerlof [1970], Chetty and Finkelstein [2013]]. Indeed, it is well-known that adverse selection hinders efficient market function as low risks leave the market and put upward pressure on equilibrium prices. Adverse selection is arguably the culprit here, but there are two issues with this argument in the context of UI. First, since UI is universally mandated, the role of adverse selection in UI has never been tested before. Second, even when adverse selection is present, the government may do better by using alternative interventions that allow for choice (e.g., subsidies, minimum mandates with choice of supplemental coverage, etc.), which are common practice in other social insurance programs.[1] Our paper tries to address both issues. We provide first-time evidence on the presence and severity of risk-based selection into unemployment insurance and we develop a general framework to evaluate the desirability of a universal mandate relative to choice-based interventions using this evidence.

Our empirical analysis exploits the combination of an exceptional setting and rich, administrative data in Sweden. All Swedish workers are entitled to a minimum benefit level when becoming unemployed, but can opt to buy more comprehensive UI at a uniform premium set by the government.[2] The comprehensive plan has been heavily subsidized - the premium corresponds to only 18% of the difference between the average cost of providing the comprehensive plan and the average cost of providing the basic plan. This subsidy has encouraged more than 80% of workers to buy the comprehensive plan. We observe the UI choice of the universe of Swedish workers and can link these choices to their unemployment histories registered by the Public Employment Service. We merge this data with a rich collection of household and firm registers, providing extremely detailed information on the determinants of workers’ unemployment risk and insurance choices.

We present a set of empirical results, which provide direct and robust evidence that workers have private information about their unemployment risk, and act on this when making their

1 Minimum mandates and subsidies are often used in the provision of in health insurance, old-age pensions, disability insurance, etc. In the US health insurance market, for example, the recent Affordable Care Act involved the combined use of a minimum mandate and subsidies. In some cases, the government provides a menu of plans. In other cases, private insurance is available to top-up compulsory public insurance. See for example [Cabral and Cullen 2016]) in the context of disability insurance.

2 Denmark, Iceland and Finland also run a voluntary UI program, historically administered by trade union-linked funds (the so-called Ghent system). This is the system many countries had in place before switching to compulsory insurance overseen by the government [see Carroll 2005].
unemployment insurance choice. This would create severe adverse selection in any UI market.

In a first step, following a prominent literature studying insurance markets, we perform so-called positive correlation tests, assessing whether workers who choose to buy comprehensive UI are more likely to be unemployed (see Chiappori and Salanié [2000]). Our estimates indicate that the unemployment risk for workers buying the comprehensive coverage is about 2.3 times the risk for workers who choose to stay on basic coverage. Interestingly, this large difference is robust to various measures of unemployment risk, but also to the introduction of a rich set of controls. Hence, even when absorbing the variation in risk coming from observables, workers’ choices remain strongly correlated with unemployment risk, suggesting strong asymmetries in information that cannot be priced. In fact, some controls increase the positive correlation estimate, suggesting that these observables drive advantageous selection into insurance. For example, young workers are more likely to be unemployed, but also less likely to buy comprehensive coverage. In contrast, controlling for unemployment histories does substantially reduce the correlation between current UI choices and future unemployment.

In a second step, we go beyond the positive correlation tests, as the correlations may still be fully driven by moral hazard. We use price and risk variation to provide direct evidence of risk-based selection and estimate empirical moments relevant for welfare analysis.

First, we provide evidence of risk-based selection following an approach inspired by Einav et al. [2010b], which consists in using price variation to identify marginal buyers and compare their unemployment risk to infra-marginal buyers of the same insurance plan. Price or policy variation allows estimating how the cost of providing either insurance plan changes, and therefore identifies the risk-based selection, given unpriced heterogeneity, that is relevant for assessing the welfare impact of changing these prices or policies. We exploit a large premium increase (following the first-time election of the right-wing party in Sweden) and provide evidence of significant risk based selection. We contribute to the standard approach of Einav et al. [2010b] by offering a new methodology, based on panel data, that allows for aggregate risk correlated with price variation. We find that the marginal workers who stopped buying comprehensive coverage when the price increased face an unemployment risk that is 60% to 70% higher than inframarginal workers who did not buy comprehensive coverage, neither before nor after the premium increase, when all these workers are observed under the same basic coverage. We show that unpriced observables have a limited role in explaining the magnitude of risk-based selection revealed by the price variation approach. The 2007 price reform also allows to investigate patterns of selection along other dimensions than unemployment probability. In particular, we use proxies for risk aversion and for the expected value of having unemployment insurance to reveal the presence of significant selection based on risk-preferences.

Second, we also exploit variation in unemployment risk across individuals to get further insights on adverse selection. We leverage various features of the Swedish labor market that provide variation in unemployment risk beyond the direct control of individuals. In particular, we focus on firm layoff risk and relative tenure ranking - two key determinants of an individual’s unemployment risk.
due to the strict enforcement of the last-in-first-out principle in Sweden. We explain how and under what assumptions these risk shifters, that affect individuals’ unemployment probability conditional on their own actions, can be used to test for the presence of risk-based selection. This test is similar in spirit to the unused observables test in Finkelstein and Poterba [2014], and can reject that unemployment risk is unrelated to the willingness to pay for insurance. We implement this test using various identification strategies that all confirm the importance of risk-based selection into UI. We also use this risk variation to build a rich predictive model of individual unemployment risk, and combine this model with the 2007 price variation. This allows for further tests of the presence of private information. In particular, we show that little adverse selection remains when fully conditioning on our rich model of unemployment risk, which exploits all observable risk shifters in the Swedish context.

We use our empirical estimates to study the welfare implications of common interventions used to tackle adverse selection. We build on the seminal work by Einav and Finkelstein, extending their demand and cost framework to be able to analyze the desirability of both price and coverage interventions. The combination of the 2007 price variation and our predicted risk model allows us to estimate the cost curves under both the basic and the comprehensive UI plan, accounting for adverse selection and moral hazard. Our implementation of the cost curves illustrates the substantial role played by both sources of inefficiency in driving the wedge in costs of providing basic vs. comprehensive coverage. The implementation implies that the wedge driven by adverse selection is about three quarters of the wedge driven by moral hazard. Moreover, the moral hazard response to supplemental coverage by workers who opt for basic coverage is more elastic than for workers opting for comprehensive coverage, unlike the “selection on moral hazard” findings in Einav et al. [2013] and Shepard [2016]. Our estimates indicate that it is not efficient to mandate all Swedish workers to buy comprehensive coverage, despite the severe adverse selection. Using a revealed preference approach, we can use prices to bound the value of supplemental coverage depending on whether a worker chooses to buy it or not. For workers who choose not to buy the supplemental coverage, the revealed value is exceeded by the insurance costs, accounting for the large moral hazard response. Mandating those workers to buy the comprehensive coverage would thus decrease welfare. This is of course an important conclusion in light of the universal mandates of as comprehensive UI coverage in other countries, the desirability of which has never been tested before.

We then move on to choice-based interventions in insurance markets and derive sufficient-statistic formulae that highlight the key trade-offs and allow linking our empirical estimates to the theory. A key result that we leverage in deriving these formulae is that the welfare impact of changes in insurance selection is fully captured by the corresponding fiscal externality, which simplifies to the price and cost differential of providing coverage to the marginal workers. The central trade-off when subsidizing supplemental coverage is between reducing adverse selection into

3Examples of countries mandating UI with similar replacement rates as the voluntary, comprehensive plan in Sweden are Belgium, France, Luxemburg, Netherlands, Portugal, Spain and Switzerland. In other countries like the US and the UK, UI is also compulsory, but at lower replacement rates.
comprehensive insurance - captured by the corresponding fiscal externality - and redistributing to the workers buying comprehensive coverage. A minimum mandate is a complementary policy, as it mitigates the welfare loss from being priced out of comprehensive insurance, but worsens the adverse selection in the supplemental market. The central trade-off when setting the level of the minimum mandate is thus not just between providing insurance and maintaining incentives for those on the basic plan, as it also creates an adverse selection externality by attracting “good” risks away from the comprehensive plan.

Applying our formulae to the Swedish context, we find that the large subsidy for supplemental insurance, covering 82 percent of the difference in average cost of providing the comprehensive vs. basic coverage, is too high, unless the redistributive gains towards the insured are deemed to be substantial. The simple reason is that the subsidy exceeds the estimated wedge between marginal and average costs driven by adverse selection. The high subsidy also reverses the sign of the fiscal externality of discouraging marginal buyers from buying comprehensive coverage when increasing the minimum benefit level. The minimum mandate can be assessed using a Baily-Chetty formula [Baily 1978, Chetty 2006], evaluated for the workers who opt to stay with the minimum mandate and corrected for this adverse selection externality. Interestingly, our implementation indicates that the moral hazard response is particularly large for these workers, but the correction for for the adverse selection externality is negative due to the high subsidy.

Our work contributes to different strands of literature. First, a large literature has analyzed the role of adverse selection in insurance markets. While the theoretical work dates back to the classical references by Akerlof 1970 and Rothschild and Stiglitz 1976, the surge in empirical work has been recent, pioneered by Chiappori and Salanié 2000 in the context of car insurance and rapidly extended to various insurance markets and settings [see Einav et al. 2010a]. Our work highlights the advantages of using comprehensive, detailed and population-wide registry data to perform correlation tests, but also proposes new approaches to isolate exogenous risk variation and identify risk-based selection. Second, the lack of private markets and choices related to unemployment insurance, makes that the role of adverse selection in UI has been untested so far. Most related to our paper is the work by Hendren 2017, who analyzes elicited beliefs about job loss and finds that workers’ private information on their unemployment risk is sufficient to explain the absence of a private market for supplemental unemployment insurance in the US (in addition to the public UI policy in place). Our paper complements Hendren’s evidence with direct evidence based on actual insurance choices and studies the optimality of the public unemployment policy itself. Finally, there is a large literature studying the optimal trade-off between insurance and incentives in determining UI coverage [Baily 1978, Chetty 2006, Schmieder et al. 2012, Kolsrud et al. 2017], which never considered potential selection effects when allowing for choice. On the other hand, a growing literature starting with the work by Einav and Finkelstein analyzes adverse selection and its welfare consequences, allowing for equilibrium pricing, but taking insurance coverage as given [e.g., Hackmann et al. 2015, Finkelstein et al. 2017, Tebaldi 2017]. Our framework tries to bridge these two strands of the literature, allowing not only to evaluate price subsidies, but
also the coverage levels themselves. In doing so, we are also providing implementable insights for policy design, related to recent work by Veiga and Weyl [2016] and Azevedo and Gottlieb [2017] characterizing equilibria with endogenous prices and coverages.

Our paper proceeds as follows. In Section 2 we describe the institutional background and the data we use. In Section 3 we provide the results of our correlation tests relating unemployment risk to unemployment coverage. In Section 4 we go beyond the correlation test using risk and price variation to provide direct evidence for risk-based selection. In Section 5 we provide a theoretical framework to analyze the welfare impact of different policy interventions, which we then link to our empirical estimates in the Swedish context. Section 6 concludes.

2 Context and Data

2.1 Institutional Background

Unemployment Insurance Sweden is with Iceland, Denmark and Finland, one of the only four countries in the world to have a voluntary UI scheme derived from the “Ghent system”. In practice, the Swedish UI system consists of two parts.

The first part of the system is mandated and provides basic coverage funded by a payroll tax (that we denote p_0). The benefits that unemployed receive with this basic coverage (b_0) are non-contributory (i.e., do not depend on the unemployed earnings prior to displacement). The benefit level of the basic coverage is low. During our period of analysis (2002-2009) the benefit level remained at 320 SEK per day ($\approx 35 USD$) which corresponds to a replacement rate of a little less than 20% for the median wage earner.

The second part of the Swedish UI system is voluntary. By paying an insurance premium $p = p_1 - p_0$ to UI funds (on top of the payroll tax p_0), workers can opt for more comprehensive coverage. Upon displacement, workers who have continuously contributed premia for the comprehensive coverage during the past twelve months, get benefits b_1, that replace 80% of previous earnings up to a cap, in lieu of the basic coverage b_0. Workers are free to opt in or out of the comprehensive UI plan at any time, but need to contribute for 12 consecutive months to be eligible. Apart from the level of benefits, there are no coverage differences between the basic and the comprehensive UI scheme. In particular, the potential duration of benefits b_0 and b_1 is the same, and was unlimited during our period of analysis. Moreover, to be eligible for either benefit upon unemployment, workers must fulfill a labor market attachment criterion, which is that they need to have worked 80 hours per month for six months during the past year.

The administration of the comprehensive UI coverage is done by 27 UI funds (Kassa’s) but the government, through the Swedish Unemployment Insurance Board (IAF), supervises and coordinates the entire UI system. In particular, both the premia and benefit levels of the basic and comprehensive coverage are fully determined by the government. Importantly, the government

Benefits are paid per “working day”, which means that there are 5 days of benefits paid per week. Benefits of 320 SEK a day therefore translate into 6960 SEK a month ($\approx 765 USD$).
does not allow UI funds to charge different prices to different individuals. One exception are union members who get a small rebate of $\approx 10\%$ on the UI premium for the comprehensive coverage. During our period of study, the government also did not allow premia to differ across UI funds. Premia paid by workers cover only a (small) fraction of benefits paid by the UI funds to eligible unemployed, and the government subsidizes UI funds for the difference out of the general budget.

Until January 1st of 2007, the monthly premium p for the comprehensive coverage was homogenous across UI funds, at around 100 SEK, and a 40% income tax credit was given for the premia paid. In January 2007, the newly elected right-wing government increased the premium substantially and removed the income tax credit on premia paid to UI funds. It also introduced an additional fee that partly tied the premium of each UI fund to the average unemployment rate of that fund, starting from July 2008. In our analysis, and partly due to data availability, we focus on the period before July 2008 where insurance premia are homogenous across UI funds.

Historically, with the “Ghent system” in place, labor and trade unions played an important role in providing unemployment insurance in Sweden. Today’s 27 UI funds, which broadly correspond to 27 different industries/occupations, originated from unemployment insurance funds set up by unions. However, since the government overtook the responsibility of supervising the entire UI system in 1948, the links between UI funds and unions have loosened progressively.

In our empirical analysis, we always control for trade union membership to account for the fact that union members face a different UI premium than non-members.

Layoff Notifications and Last-In-First-Out Principle In our analysis, we exploit variation in unemployment risk across individuals within a firm. Under Sweden’s employment-protection law, firms subject to a shock and intending to displace 5 or more workers simultaneously must notify the Public Employment Service in advance. Once a notification is emitted, employers need to come up with the list and dates for the intended layoffs. These layoffs may happen up to 2 years after the original notification has been sent. The list needs to follow the last-in-first-out principle. This means that workers get divided into groups, defined by collective bargaining agreements, and then a tenure ranking within each group is constructed. The more recent hires are displaced before workers with longer tenure. For firms with multiple establishments, one layoff notification needs to be sent for each establishment intending to layoff workers. And the LIFO principle applies at the level of the establishment.

5Note that individuals can still continue to contribute to UI funds while unemployed, to build eligibility in case of a future unemployment spell, in which case they are also entitled to paying a reduced premium.
6The 10% rebate on UI premia for union members is a remnant of the “Ghent system”, but a large ($\approx 20\%$) and growing share of workers are members of an unemployment fund without being members of a union, and a growing share of union members ($\approx 10\%$) do not buy unemployment insurance.
7In our data, the collective bargaining agreement that individuals are in is not directly observed. We use detailed occupation codes instead, which are regarded as a good proxy.
2.2 Data

We combine data from various administrative registers in Sweden. First, we use UI fund membership information for the universe of workers in Sweden aged 18 and above, from 2002 to 2009, and coming from two distinct sources. The first source is tax data for the period 2002 to 2006, during which workers paying UI premia received a 40% tax credit. This source records the total amount of UI premia paid for each year. From this source, we define a dummy variable V_t for buying the comprehensive coverage in year t as reporting any positive amount of premia paid in year t. We use this source of information for the positive correlation tests of Section 3 as well as the risk variation analysis in Section B.2. For the analysis using the price variation of the 2007 reform in Section 4.1, we combine this data with a second source of information, coming from UI fund data that Kassa’s sent to the IAF. This data contains a dummy variable indicating whether an individual aged 18 and above in Sweden is contributing premia for the comprehensive coverage as of December of each year from 2005 until 2009.

We add data on unemployment outcomes coming from the Swedish Public Employment Service, with records for the universe of unemployment spells from 1990 to 2015, and we merge it with the UI benefit registers from the IAF which provides information on all UI benefit payments (for both the basic and comprehensive coverage), information on daily wage for benefit computation, and Kassa membership information for all unemployed individuals. Based on this data, we define unemployment as a spell of non-employment, following an involuntary job loss, and during which an individual has zero earnings, receives unemployment benefits and reports searching for a full-time job. To define the start date of an unemployment spell, we use the registration date at the PES. The end of a spell is defined as finding any employment (part-time or full-time employment, entering a PES program with subsidized work or training, etc.) or leaving the PES (labor force exit, exit to another social insurance program such as disability insurance, etc.).\footnote{Note that UI benefits can be received forever in Sweden during the period 2002-2006 so the duration spent unemployed is identical to the duration spent receiving unemployment benefits.} We define displacement as an involuntary job loss, due to a layoff or a quit following a ‘valid reason’.\footnote{Valid reasons for quitting a job are defined as being sick or injured from working, being bullied at work, or not being paid out one’s wage by one’s employer. Quits are reviewed by the Public Employment Service at the moment an individual registers a new spell and if the quit is made because of a valid reason, the individual is eligible for UI and a notification is made in the PES data, allowing us to observe such quits under valid reasons. Involuntary quits are a small fraction of unemployment spells in our sample: 95.0% of unemployment spells observed in our data are due to layoffs. We exclude voluntary quits from our measure of unemployment and displacement.} In the rest of the paper, we use the terms displacement and layoff as synonyms.

We complement this data with information on earnings, income, taxes and transfers and demographics from the LISA register, and with information on wealth from the wealth tax registers.

Finally, we use two labor market registers. The matched employer-employee register (RAMS), from 1985 to 2015, reports monthly earnings for the universe of individuals employed in establishments of firms operating in Sweden. We use this register to compute tenure and tenure ranking for each employee. We also use the layoff-notification register (VARSEL) which records, for years 2002 to 2012, all layoff notifications emitted by firms.
In Table 1 we provide summary statistics for our main sample of interest over the period 2002 to 2006. To mitigate concerns about younger individuals switching in and out of education, or older individuals close to retirement, we restrict our attention to individuals aged between 25 and 55. The average probability to be displaced in year \(t + 1 \) conditional on working in year \(t \) is 3.35%, (3.56% when including quits) over the period 2002 to 2006. The average probability to be unemployed in year \(t + 1 \) (unconditional on employment status in year \(t \)) is higher, at 4.71%. Note also that the fraction of individuals who are members of a UI fund (i.e., buying the comprehensive UI coverage) is large during the 2002-2006 period, at 86%.

3 Positive Correlation Tests

We first show the presence of a strong positive correlation between an individual’s choice of UI coverage and his or her unemployment risk. This strong correlation is robust to different measures of the unemployment risk, the addition of a rich set of controls and non-parametric implementations. Correlation tests are a natural first step to investigate adverse selection and common in the insurance literature, but may be confounded by the presence of moral hazard.

3.1 Framework

We start by presenting the conceptual framework for insurance choices that underpins our empirical and theoretical analysis. A Swedish worker faces the choice between two plans: a basic plan \((b_0, p_0)\) and a comprehensive plan \((b_1, p_1)\) with unemployment benefit levels \(b_1 > b_0\) and premia \(p_1 > p_0\). A worker chooses the plan providing the highest (indirect) expected utility. That is, a worker buys the comprehensive plan \((V = 1)\) when her expected utility in the comprehensive plan exceeds her expected utility in the basic plan,

\[
V = 1 \quad \text{if } v - p \geq 0, \\
V = 0 \quad \text{otherwise},
\]

where \(v = v_1 - v_0\) and \(p = p_1 - p_0\).\(^{10}\) In a stylized binary risk setting, the net-value of a plan equals

\[
v_k - p_k \equiv \max_{a'} \pi(\theta, a') u(b_k - p_k|\mu, a') + (1 - \pi(\theta, a')) u(w - p_k|\mu, a')
\]

where \(\pi\) denotes the probability of unemployment, \(a\) denotes effort, and \(\theta\) and \(\mu\) are risk and preference parameters. Importantly, not only the value but also the cost of providing the coverage depends on the agent’s type and her effort. In the binary-risk setting, the cost of providing plan \(k\) equals \(c_k = \pi(\theta, a_k) b_k\), depending on the agent’s risk type \(\theta\) and the effort level \(a_k\) that she exerts under contract \(k\).

\(^{10}\)We focus on valuations that are quasi-linear in the premium \(p_k\) as it leads conveniently to a welfare analysis in terms of total surplus. This formulation, although it leaves out income effects, can still easily incorporate distributional concerns through the social welfare function, as we do in Section 4.
We refer to the group of individuals buying the comprehensive plan by I and those buying the basic plan by U. Throughout the rest of the paper, we will use the notation $E_I(\cdot) = E[\cdot|v - p \geq 0]$ and $E_U(\cdot) = E[\cdot|v - p < 0]$ for the respective conditional expectations. The individuals at the margin between the two plans are referred to by M^{11}. Regarding the timing of the model, we stick closely to the structure of the Swedish UI system where individuals become eligible to receive the supplemental benefits when they have been contributing for one year to the comprehensive coverage, and can opt in and out of the comprehensive plan at any time. As a consequence, the value v_t and cost c_t of the supplemental coverage in year t depend on unemployment risk π_{t+1} in year $t+1$. With this in mind, we drop from now on the time subscripts with v (c) always referring to v_t (c_t) and π to π_{t+1}, unless otherwise specified. In practice, the value and cost do not just depend on the binary risk of becoming unemployed, but on the expected distribution of days spent unemployed.

3.2 Correlation Tests

The insurance choice model of equation (2) suggests that v is an increasing function of π and that unpriced heterogeneity in θ leads to risk-based selection into UI. Unless preference heterogeneity undoes this risk-based selection, adverse selection will arise whereby riskier individuals are more likely to buy the comprehensive plan, creating a positive correlation between insurance choice and observed risk. The correlation test consists in comparing the expected risk of individuals conditional on their insurance coverage choice and testing for $E_I(\pi) > E_U(\pi)$.

Linear Probability Model The simplest way to test for $E_I(\pi) > E_U(\pi)$ in practice, is to estimate a simple linear model for various measures Y of realized risk in year $t+1$, which proxy for π:

$$Y = \gamma \cdot V + X' \alpha + \epsilon, \tag{3}$$

where V is an indicator for buying the supplemental coverage in year t. The vector X controls for individual characteristics that affect the unemployment insurance contracts available to each individual. Controlling for these characteristics guarantees that we compare individuals who are facing the same options so that the correlation is driven by demand rather than by supply (different individuals being offered different contracts by the *Kassa*). As explained in Section 2 above, this is strictly regulated by the government. We estimate model (3) over the period 2002-2006, during which UI contracts only differ according to three dimensions: employment history, earnings and union membership.

The first dimension is whether individuals meet the work eligibility requirement or not, for which they need to have worked for at least 6 calendar months within the past 12 months prior to displacement. We therefore include an indicator for having worked at least 6 months in year t in

11 Marginal individuals are defined by the condition $v = p$. We further clarify this definition in the context of our price variation experiment in Section 4.1.
The second dimension of contract differentiation is earnings: the additional daily benefits b that individuals get when buying the supplemental coverage is a kinked function of daily earnings w. Formally, $b = b_1 - b_0 = F(w) = (.8 * w - 380) \cdot 1[400 \leq w < 725] + 200 \cdot 1[725 \leq w]$. We therefore include the supplemental benefit function $F(w)$ as a control function in X to make sure that we compare individuals facing the same benefit level per unit of premium paid. The last dimension of contract differentiation is that union members pay a slightly lower premium than non-union members for the supplemental coverage. We therefore include in X an indicator variable for union membership. We also include year fixed effects in X to account for small adjustments to the premium in January every year over the period 2002–2006.

Figure 1 reports the results of specification (3) for four different realized risk outcomes: total UI claims under comprehensive coverage in $t + 1$, total duration spent unemployed in $t + 1$, the probability of displacement in $t + 1$, and the probability of displacement in $t + 1$ but excluding involuntary quits. The total UI claims are defined as the total amount of UI benefits that individuals would be collecting in $t + 1$ were they to buy the comprehensive coverage. For each outcome, Figure 1 displays $\hat{\gamma}/\bar{Y}$, that is the semi-elasticity of the realized risk outcome in $t + 1$ with respect to the insurance choice in t.

For all realized risk outcomes, we find a strong and significant positive correlation with UI coverage choice. Individuals who buy the comprehensive coverage in t make UI claims in $t + 1$ that are 161.6% larger than the hypothetical claims under comprehensive coverage by individuals who stick to the basic coverage in t. Their unemployment duration in $t + 1$ is 140.8% longer and they are 131.7% more likely to be displaced in $t + 1$ than individuals who do not buy it.

Alternative risk outcomes All risk outcomes capture ex-post risk realizations rather than ex-ante risks. These realizations reflect in part actions taken by individuals because of their insurance choices. The correlation test amounts to comparing $E_I(\pi(\theta, a_1))$ to $E_U(\pi(\theta, a_0))$ and estimated correlations could therefore be driven by moral hazard. Separating risk-based selection from moral hazard is exactly the topic of Section 4. We note that different measures of unemployment risks are subject to different types of moral hazard. A large body of literature has for example documented that higher unemployment benefits increase the duration of unemployment spells conditional on becoming unemployed (see Schmieder and Von Wachter [2016] for a recent review). Such moral hazard conditional on displacement will increase the correlation between unemployment duration in $t + 1$ and insurance coverage in t (second bar in Figure 1). The probability of displacement, while immune to moral hazard once displaced, is potentially affected by moral hazard “on the job” (third bar in Figure 1). An example of this would be collusion between employers and employees to qualify

12 Note that eligibility requires individuals to have worked at least 80 hours per month for 6 calendar months within the past 12 months. While we do not have precise data on monthly hours, to be conservative, we also include a dummy for having earnings above 80 hours \times 6 months \times the negotiated janitor wage. In the absence of an official, legally binding minimum wage in Sweden, the janitor wage is often considered the effective minimum wage in the labor market.

13 For individuals who do not buy the comprehensive coverage in t, we therefore computed the counterfactual benefit claims they would have if they were to receive supplemental benefits.
actual voluntary quits as “quits following a valid reason”, which are eligible for unemployment benefits. The correlation with displacement probability excluding “quits following a valid reason” (fourth bar in Figure 1) should, however, be unaffected by this particular margin.

Our correlation tests use the risk outcomes in $t + 1$, reflecting the idea that workers need to contribute for a year to be able to get the comprehensive coverage. However, the risk realization in $t + 1$ may fail to fully capture the unemployment risk faced by an individual as she is making her coverage choice at time t, which justifies using risk realizations further into the future. In Figure 2 we report the correlation of the insurance choice in t with displacement outcomes in $t + 1$, $t + 2$, ..., up to $t + 8$. For each displacement outcome, the chart displays $\hat{\gamma}_k / \bar{Y}$, that is the semi-elasticity of the realized risk outcomes in $t + k$ with respect to insurance choices in t, from a specification similar to (3) where we also control for all displacement outcomes in previous years ($t + k - 1$, $t + k - 2$, etc.). The Figure reveals an interesting dynamic pattern. The correlation decreases rapidly as we consider later years, but remains statistically significant up to six years. This pattern could indicate that workers’ insurance choices incorporate private information about unemployment risk further into the future (albeit to a decreasing extent), but it may also be affected by moral hazard responses.

Bivariate Probit & Non-parametric Tests While the linear probability model in (3) provides a simple test for the presence of positive correlation between risk and insurance choices, and a straightforward interpretation of its magnitude, it relies on a very limiting functional form and our OLS estimates do not provide correct inference. We now relax these functional form restriction and provide proper inference for the correlation tests. First, we provide results of bivariate probit tests, popularized by [Chiappori and Salanié 2000](#). We specify both the choice of insurance coverage and the realization of our binary measure of unemployment risk (i.e., the probability of displacement) as probit models:

$$
V = 1[X'\alpha_1 + \epsilon > 0] \\
Y = 1[X'\alpha_2 + \eta > 0]
$$

(4)

allowing for correlation ρ between the two error terms ϵ and η. The vector of controls X contains the same variables as in specification (3). We provide in Table 2 estimates of ρ and formal tests of the null that $\rho = 0$. Results confirm the presence of a strong and significant correlation between insurance choices and realized unemployment risk. The functional forms involved in the bivariate probit tests are still relatively restrictive since the latent models are linear and the errors are normal, excluding cross-effects or more complicated non-linear functions of the variables in X. We therefore also produce results from non-parametric tests as in [Chiappori and Salanié 2000](#). The procedure of the test consists in partitioning the data into cells where all observations in a given cell have the same value for the variables in X. The procedure then computes within each cell a Pearson’s χ^2 test statistic for independence between V and Y. This test statistic is asymptotically distributed as a $\chi^2(1)$ under the null hypothesis that V and Y are statistically independent (within the cell).
We report in the first column of Table 3 results from this non-parametric procedure when cells are defined using the same controls X as in specification (3) and where our risk measure Y is the probability of displacement. Results again strongly confirm the presence of a positive correlation between insurance choices and unemployment probability.

3.3 The Role of Unpriced Observables

As explained in Section 2, during our period of analysis, the Swedish unemployment system did not allow for price discrimination across individuals based on differences in risks. Many observable characteristics that are known to usually correlate with unemployment risk (age, industry, occupation, gender, etc.) cannot be priced by insurance funds. We briefly explore to what extent the positive correlation between insurance and unemployment risk documented above is directly driven by selection on such unpriced observables and whether the correlation would survive if such characteristics were to be priced. To do so, we start with the baseline positive correlation test from specification (3) where Y is the probability of displacement in $t + 1$, and show how the semi-elasticity $\hat{\gamma}/\bar{Y}$ evolves as we add more characteristics to the vector of controls X. Results are displayed in Figure 3 panel A. We start by adding (sequentially) demographic controls: age, then gender, and marital status. Interestingly, the estimated correlation increases when adding these covariates, which suggests that these characteristics actually drive the selection to be “advantageous”: they correlate positively with risk but negatively with insurance coverage. Age in particular leads to meaningful advantageous selection as young individuals are more likely to be unemployed, but significantly less likely to buy UI. The correlation does not seem to be affected much by the inclusion of controls for skills and other labor market characteristics. Adding rich sets of controls for education (four categories), industry (1-digit code), occupation (1-digit code) and wealth level (quartiles) decreases the estimated correlation only slightly. But adding controls for past unemployment history (dummies for having been unemployed in $t - 1$, $t - 2$ and up to $t - 8$) has a significant negative effect on the estimate. Past unemployment history is a strong predictor of future unemployment risk and correlates strongly with current insurance choices. Yet, even when controlling very flexibly for past unemployment history and all the other controls, results from Figure 3 show that a large positive correlation remains between insurance choices and probability of displacement.

The results seem robust beyond our linear regression specification in (3). First, we show in Figure 3 panel B how the correlation from the bivariate probit specification (4) evolves when adding sequentially to the vector X the same set of characteristics as in panel A. Second, in Table 3 columns (2) to (4), we reproduce the non-parametric Kolmogorov-Smirnov test adding sequentially these same characteristics when partitioning the data into cells. Results confirm that demographics may offer advantageous selection, that past unemployment history creates significant adverse selection, and that a significant positive correlation between insurance and probability of

\[14\] In Appendix Figure A.1, we display the empirical distribution of the Pearson’s χ^2 test statistics computed from all the cells allows for comparison with a theoretical $\chi^2(1)$ distribution. Taking the largest absolute difference between the theoretical and the empirical distribution gives the Kolmogorov-Smirnov test statistic reported in Table 3.
displacement remains even after controlling for all these rich observables.

4 Beyond Correlation Tests: Variation in Prices and Risks

Positive correlation tests are a useful starting point, but cannot separate risk-based selection from moral hazard responses. In other words, it is well understood that correlation tests are a joint test of selection and/or moral hazard. This section provides evidence of substantial risk-based selection using complementary approaches that exploit variation in prices and risks. Identifying the respective role of selection and moral hazard is useful from a descriptive perspective, but also necessary from a welfare perspective as we show in Section 5.

4.1 Using Variation in Prices

We first exploit variation in prices to identify adverse selection, closely following Einav et al. [2010b]. However, our approach relies on panel data, enabling to go further than comparing average costs across price observations, and is immune to the presence of aggregate risk realizations.

The 2007 Price Reform We exploit a sudden and unanticipated increase in the premia paid for the supplemental coverage in 2007. The reform followed the surprise ousting of the Social Democrats from government after the September 2006 general election. With this reform, monthly premia, which had been remarkably stable over the previous years, suddenly increased from 100 SEK to around 320 SEK on January 1st, 2007, as shown in Figure 4. The Figure also shows that the take-up of the supplemental coverage responded significantly to this sharp surge in prices. After staying almost constant around 86%, the fraction of the eligible population buying the comprehensive coverage abruptly dropped to 78% right after the reform. Interestingly, Figure 4 displays little sign of pre-trends or anticipation in the take-up rate of the comprehensive coverage, adding credibility to the assumption that this sudden increase in premia, following the surprise change in political majority, was arguably exogenous to individuals’ willingness to pay v. The unemployment rate was also smoothly decreasing throughout the period, so that the increase in p cannot be explained by an endogenous pricing response to an increase in the underlying costs of the comprehensive coverage.15

Hence, the 2007 reform created significant variation in price and in the fraction buying the supplemental coverage. Following Einav et al. [2010b], this variation could be exploited to identify adverse selection by simply comparing average costs in the supplemental coverage across the different price levels, i.e. before vs after the reform. Yet, in our context, variation in average costs may also reflect realizations of some aggregate unemployment risk, which may vary over time, and will therefore correlate with the price variation. More generally, if there is some aggregate component

15 If anything, the 2007 premia reform was combined with a minor legislated decrease in the benefits received in the comprehensive coverage. On January 1st 2007, the cap on the benefits b1 was slightly decreased for benefits received in the first 20 weeks of an unemployment spell. Given this reform had only a negligible effect on average benefits received, we neglect it in the welfare implementation.
to risk, and if there is correlation between aggregate risk variation and price variation, direct comparisons of average costs across price observations as in Einav et al. [2010b] will not identify adverse selection. This is likely to be an issue in many insurance contexts, where most of the variation in price available comes from variation over time, or across places and groups of individuals.

Here, we propose a simple method to address this issue and identify adverse selection, in the spirit of Einav et al. [2010b].

Non-Parametric Tests of Risk-Based Selection With panel data, exogenous price variation allows for the identification of marginals, who switch coverage in response to the price change. We can then rank individuals in three groups, the insured I, the marginals M and the uninsured U, ordered in terms of their willingness to pay v: $E_I[v] > E_M[v] > E_U[v]$. This enables the implementation of a direct non-parametric test for selection by correlating willingness to pay with risk of individuals observed under the same insurance coverage. Depending on the available variation in prices, we can test for $E_M[Y_0] > E_U[Y_0]$ or $E_I[Y_1] > E_M[Y_1]$, or both, where Y_k denotes individuals’ risk observed under contract k. Because individuals are compared under the same coverage, this test is immune to moral hazard and directly identifies selection. Second, because individuals are compared under the same aggregate conditions, this test is also immune to aggregate risk realizations correlated with the price variation. Note also that, as in Einav et al. [2010b], this test does not separate what directly comes from risk-based selection and what comes from selection along unpriced dimensions of heterogeneity that are correlated with risk, such as for instance selection on MH. Yet, this test reveals the welfare-relevant selection as it helps tracing out the welfare-relevant cost curves given the unpriced heterogeneity in the current UI system. We turn to this in Section 5.

The large response to the 2007 exogenous change in prices allows for the identification of marginal individuals, individuals who were buying under the 2006 price regime but are not buying any longer under the 2007 price regime. From equation (1) describing insurance choices, it is immediate to see that these marginal individuals must have a willingness to pay for the supplemental coverage v lying between the value of the premia $p_{pre-2007}$ and the value of the premia $p_{post-2007}$.

The identification of marginal individuals therefore enables to rank individuals in three distinct groups by descending order of their willingness-to-pay v for the supplemental coverage, which we do in Figure 5. First, the group denoted I of individuals insured both in 2006 and 2007: they were buying the supplemental coverage in 2006 under the low premia and continue to buy the supplemental coverage under the high premia, and therefore have the highest level of v. The marginals M, who were insured in 2006 but switch out in 2007 when premia increase, have a lower willingness-to-pay for insurance than the always insured I. Finally, individuals who were neither insured in 2006 nor in 2007, that we denote by U, have the lowest willingness-to-pay for

The outcomes of interest from the insurer’s perspective are the coverage costs under each contract, $Y_k = c_k$. In principle, we want to see how the costs under the comprehensive coverage $E_p[c_1]$ and under the basic coverage $E_p[c_0]$ vary with p. We discuss this further in Section 5.
the supplemental coverage.

Using this ranking, we can now perform direct non-parametric tests for risk-based selection, by correlating willingness-to-pay with various measures of unemployment risk Y. Because the marginals and the uninsured are now observed under the same UI coverage (i.e., the basic plan), the comparison of the average risk of these two groups, $E_M[Y_0] - E_U[Y_0]$ is immune to moral hazard and provides a direct estimate of risk-based selection\(^\text{17}\). Comparison of the average risk of the marginals and the always insured $E_I[Y_1] - E_M[Y_0]$ will be a combination of selection and moral hazard, as these two groups are now observed under different coverages.

Figure 5 presents the results of such non-parametric tests and provides direct compelling evidence of the presence of risk-based selection into UI. Panel A starts by reporting the average probability of being displaced in 2008 for each group, while panel B reports the average number of days spent unemployed in 2008 for each group.\(^\text{18}\) Both panels clearly show that the average unemployment risk in 2008 of the marginals is significantly higher (60% to 70% higher) than that of the uninsured, despite both groups being eligible to the same coverage in 2008. This is direct evidence of risk-based selection.

Panels A and B use realized risk outcomes in 2008, i.e., in the year after insurance choices are made and willingness-to-pay is observed. However, the risk realization in 2008 may fail to fully capture the unemployment risk faced by an individual when choosing how much coverage to get in 2007. This justifies using risk realizations further into the future, as we have done previously in the context of the positive correlation test. In Appendix Figure A.2, we report the correlation between willingness-to-pay in 2007 and displacement outcomes in $t+1$, $t+2$, ..., up to $t+5$. We report in panel A for each year $t \in 2008, \ldots, 2012$, the semi-elasticity $(E_M[Y_t] - E_U[Y_t])/E_U[Y_t]$ of the displacement rate in year t for the marginals M relative to the uninsured U.\(^\text{19}\) The Figure reveals a dynamic pattern comparable to that of Figure 2. The displacement rate of the marginals M is 30% larger than that of the uninsured in the first years, but the semi-elasticity then decreases as we consider later years. Yet, it remains statistically significant up to five years.

Unpriced Observables and Preferences Following our analysis of unpriced observables in the context of the PCTs in Section 3.3, the 2007 price reform allows us to investigate how much of the risk-based selection is driven by selection on unpriced observables correlated with risk. The results confirm the patterns we found before. Appendix Figure A.3 reports, in a similar fashion as in Figure 3, the evolution of the semi-elasticity $(E_M[Y_0] - E_U[Y_0])/E_U[Y_0]$ of the realized risk.

\(^{17}\)It is worth emphasizing the timing of the Swedish UI policy again: one needs to contribute for at least 12 months in order to become eligible to the comprehensive benefits b_1. Marginals and uninsured in 2007 did not contribute any premium to the comprehensive plan in 2007. In 2008, if they become unemployed they will therefore get the basic benefits b_0 irrespective of their insurance choice in 2008. In other words, because of their insurance choice in 2007, marginals and uninsured face the exact same coverage in 2008. The difference in their unemployment risk in 2008 cannot be driven by moral hazard due to different coverage choices in 2008.

\(^{18}\)Note that for each risk panel, we report the average outcome of each group conditional on X, the same vector of controls for contract differentiation that we use in the positive correlation tests. To be precise, we report the average outcome, fixing the average characteristics X in each group at the same level as that of the uninsured U.

\(^{19}\)In panel B, we report the corresponding semi-elasticity $(E_I[Y^\ast] - E_U[Y^\ast])/E_U[Y^\ast]$ for the insured I.

16
for the marginals M relative to the uninsured U, as we include sequentially more observables in the vector of controls X. We again find significant advantageous selection on demographics with age being one of the main drivers of this positive selection into UI. Adding rich sets of controls for education, industry, occupation and wealth decreases the estimated correlation only slightly, indicating that there is little risk-related selection along these margins. Controlling for past unemployment history, however, decreases significantly the estimated semi-elasticity, which confirms that past unemployment history drives part of the observed estimated risk-based selection. Interestingly, controlling for these unpriced observables does not exhaust risk-based selection in the supplemental UI coverage. In other words, even if the supplemental coverage policies were to price this rich set of observable characteristics, a significant amount of adverse selection would remain.

The 2007 price reform also allows to investigate patterns of selection along dimensions other than risk. In Figure 6 we examine how characteristics that proxy for preferences and for the expected value of having unemployment insurance correlate with willingness-to-pay for insurance revealed by the 2007 price variation. Panel A correlates the level of individuals’ net wealth in 2006 in thousands of SEK with their willingness-to-pay controlling for age. Individuals with larger net wealth have more means to smooth consumption in case of displacement, and as a result, should value extra coverage less. The graph indeed confirms the presence of a clear monotonic relationship between net wealth and v: the uninsured U have significantly larger net wealth than the marginals M, who have significantly more net wealth than the insured I. In panel B, we probe into the potential amount of selection based on risk-preferences. To proxy for risk aversion, we use the fraction of total net wealth invested in risky assets (stocks). The graph shows that the uninsured U have a significantly larger fraction of risky assets in their portfolio than the marginals and the insured, conditional on net wealth. This evidence is in line with more risk-averse individuals valuing the extra coverage more.

Robustness Our partition of the population in terms of willingness to pay implicitly assumes that v is constant over time, or to be more precise that the ranking of individuals’ willingness to pay is the same in 2006 and 2007. In practice v may change over time, due for instance to idiosyncratic shocks to risk, or preferences, thus creating a flow of individuals switching out of the comprehensive plan, even absent price changes. Appendix Figure A.4 provides evidence that the flow of individuals who switch out of the supplemental coverage was in fact very small prior to the 2007 price reform, but experienced a sudden surge in 2007. This alleviates the concern that our ranking of individuals by willingness-to-pay is confounded by underlying changes in individuals’ preferences or risks.

We also note that our partition of the population ignores a negligible fourth group of individuals, who were not buying the comprehensive plan in 2006, but switched in the comprehensive plan in 2007. The size of this group is seven times smaller than the group of individuals switching out of the comprehensive plan in 2007. The ranking of this fourth group in terms of willingness-to-pay is also ambiguous, as one would need to include idiosyncratic shocks to v to account for the fact
that these individuals switched in the comprehensive coverage in 2007 despite the increase in prices \(p \). We display in Appendix Figure A.4 the evolution of the flow of individuals not buying the comprehensive plan in \(t - 1 \) but switching in the comprehensive plan in \(t \). The graph shows that this flow of individuals was small prior to 2007, and equivalent in size to the flow of individuals switching out, hence the stability in the fraction of individuals insured. The flow of individuals switching in seems to decrease with the 2007 reform, but only slightly. The average unemployment risk of the workers switching into the comprehensive plan was the highest among the four groups throughout this period.

4.2 Using Variation in Unemployment Risk

Variation in risk allows for a complementary approach to test for adverse selection. We leverage shifters of unemployment risk in the Swedish context to provide additional evidence that the PCTs are not just driven by moral hazard but also by risk-based selection. This follows the “unused observables” tests of Finkelstein and Poterba [2014]. We then build a comprehensive, flexible model predicting risks, which we can combine with price variation and relate to insurance choices to shed further light on the role of adverse selection. This approach also forms the empirical basis for our welfare analysis in Section 5.

Non-parametric Test of Risk-Based Selection

Building on the intuition of Finkelstein and Poterba [2014], the main pre-requisite to exploit risk variation to test for adverse selection is the existence of exogenous risk shifters that (i) affect individuals’ risk conditional on their own actions, and (ii) are unused in pricing. The test for adverse selection is then whether individuals change their insurance choice in response to these exogenous risk shifters. We explain the test and the underlying identification assumptions in detail in Appendix B.

To implement these tests in practice, we use risk shifters exploiting two fundamental sources of risk variation, arguably beyond the control of individuals.

The first source of risk variation is firm level risk, which can vary cross-sectionally, due to permanent differences in turnover across firms, or over time, due to firms experiencing shocks over time. In Figure 7 panel A, we provide evidence of the role of firm layoff risk as a shifter of individuals’ own displacement probability. For each individual \(i \) working in firm \(j \), we define average firm displacement risk \(\pi_{-i,j} \) as the average probability of displacement of all other workers within the firm excluding individual \(i \) over all years where the firm is observed active in our sample years. We then plot the average firm displacement risk in 20 bins of equal population size, against the individual probability of displacement in \(t + 1 \). The Figure shows that there is significant heterogeneity in firms’ separation rates, and that individuals’ unemployment risk is very strongly correlated with firm level risk.

The second source of risk variation is at the individual level and stems from the strict enforcement of the Last-In-First-Out (LIFO) principle. As explained in Section 2, when a firm wants to downsize, the legal system prescribes that displacement occurs by descending order of tenure.
within each establishment times occupation group. The tenure ranking of an individual within her establishment and occupation group directly determines her probability to be separated. Panel B of Figure 7 plots the probability of being displaced in $t+1$ among individuals working in firms that emit a layoff notification in $t+1$, as a function of relative tenure ranking within establishment and occupation. The Figure provides clear evidence of a strong negative correlation between relative tenure ranking and individuals’ displacement probability. Individuals within the lowest 10 percent of tenure rankings have a probability of being displaced in $t+1$ larger than .1; this probability declines steadily as tenure ranking increases, and then stays below .02 for individuals in the highest 50 percent tenure rankings.

These two sources of variations enable us to construct exogenous shifters of individuals’ unemployment risk and to study the response in UI choices. We propose three different identification strategies, which control differently for unobserved heterogeneity across individuals and firms, and all three strategies indicate the presence of significant risk-based selection in UI. We first simply use the cross-sectional variation in displacement risk across firms as a risk shifter and find a strong positive correlation between firm layoff risk and individuals’ probability to buy the comprehensive UI coverage. Second, we rely on a firm switcher design, and find that workers who switch firms increase their UI coverage and more so the higher the layoff risk in the new compared to the old firm. Finally, we exploit shocks to firms over time, and find that workers who are employed by a firm issuing a collective layoff notification, indicative of a shock to layoff risk at the firm level, increase their UI coverage and more so the lower their relative tenure ranking. We discuss the different strategies, the underlying assumptions and the estimates in detail in Appendix B. While the identifying variation and affected workers differ for the three strategies, the large and significant responses of UI coverage choice provide strong, complementary evidence for the importance of risk-based selection into UI.

Predicted Risk Model

While our “unused observable tests” zoom in on the effect of particular risk shifting experiments, we can also combine the risk shifters to take advantage of the rich variation in risk. We flexibly combine all observable sources of risk variation together in a comprehensive prediction model of individuals’ unemployment risk, which we then relate to their insurance choices to provide further insights about the role of adverse selection and the nature of private information.

Following our previous analysis, we model both the probability of being laid-off in $t+1$ and the total number of days unemployed in $t+1$. We use a logit model for the former risk outcome and a zero inflated poisson model for the latter. The demographic characteristics included in our predicted models are the same set of demographics used in Figure 3 and the risk shifters included in the models are the average firm layoff risk, the full history of the firm layoff notifications, and the relative tenure ranking of the individual. We start by including a rich set of interactions between all the variables, and optimize our model using a forward stepwise selection algorithm.

Figure 8 reports results for the model predicting the probability of layoff. Panel A correlates predicted layoff risk with actual layoff risk and provides evidence that the model performs well in
predicting individuals’ unemployment risk. Panel B simply correlates predicted layoff risk with the probability to buy UI coverage. The graph shows a strong positive correlation between individuals’ predicted risk and their probability to buy the supplemental UI coverage. Interestingly, this is largely driven by what happens at the bottom of the predicted layoff risk distribution. The relationship between predicted risk and the probability to buy UI coverage is very steep at the bottom of the predicted risk distribution and flattens out as the predicted layoff risk increases further. As discussed, some demographics may be offsetting the adverse selection (e.g., age), but the overall positive correlation is in line with the results from our “unused observable” tests.

Further Testing for Private Information We can now also combine the predicted risk model with the price reform in 2007 to control for moral hazard and further push our answer to the question: “how much adverse selection would be left when conditioning prices flexibly on the richest set of observable characteristics predicting risk?” To this effect, we replicate the exercise of Figure A.3 now adding the predicted risk score as a control. We report in Figure 9 the estimated semi-elasticity \(\frac{E_M[Y_0] - E_U[Y_0]}{E_U[Y_0]} \) of the realized risk for the marginals M relative to the uninsured U when only controlling for observables affecting contract space (“baseline”) and when controlling for all unpriced observables and 20 dummies for the predicted unemployment risk score. We do this exercise both for the realized layoff rate in 2008, and for the realized time spent unemployed in 2008. In both cases, we find that there is no significant residual correlation left between realized risk and willingness-to-pay when we fully control for predicted unemployment risk using our rich set of predictors including firm layoff risk, tenure and firm shocks. In other words, conditional on our predicted risk score, if there remains any unobservable idiosyncratic component to risk, it is uncorrelated with willingness-to-pay. This result is particularly interesting. It suggests that little private information is left once we condition on this very rich set of detailed risk proxies. It also means, as a consequence, that the predicted risk model can be used to estimate counterfactual risks, which we will exploit in our welfare analysis to estimate the costs of providing comprehensive and basic coverage and how these change with the demand for insurance.

4.3 Summary of Empirical Evidence

We started by showing the presence of a large and significant positive correlation between insurance choices and unemployment risk. We then went beyond positive correlation tests, by exploiting both price variation and risk variation. We have shown, following these two complementary approaches that the positive correlations are not only driven by moral hazard but also by severe adverse selection into the comprehensive UI coverage. Finally, we studied the restriction on the current UI policy not to condition prices on observables. We provided clear evidence that even if standard observables were priced, severe adverse selection would remain. Yet, we also showed that a rich set of observable risk shifters (including firm layoff risk, layoff notifications, tenure, etc.) can be used in the Swedish context to accurately predict unemployment risk, and that little private information remains in UI choices when conditioning on predicted risk using these observables.
Overall, this combined set of empirical results provides direct and compelling evidence of the presence of large adverse selection in the UI market. In the next section, we analyze the policy implications of this large adverse selection for the optimal design of UI systems.

5 Adverse Selection: Welfare and Policy

This section goes beyond testing for adverse selection and instead aims to assess the inefficiency caused by adverse selection and the welfare impact of common government interventions to tackle this. We start with the evaluation of a universal mandate, which is the standard policy response in UI. We then consider subsidies and minimum mandates, which are two common choice-based interventions in other social insurance programs, but are also combined in Sweden’s UI policy. Building on the insurance choice model from Section 3.1, we set up the government’s problem of designing a mandatory, basic insurance plan and allowing individuals to opt for comprehensive insurance at a (subsidized) premium [see also Cutler and Reber [1998]]. We provide simple characterizations of the welfare impact of these government interventions, expressed as a function of moments that can be estimated empirically. For the implementation, we first show how to use the price and risk variation in our Swedish context to estimate demand and cost curves for basic and comprehensive insurance. These curves allow us to quantify the role of adverse selection, relevant to evaluate changes in insurance prices, but also to compare this to the role of moral hazard, relevant to evaluate changes in insurance coverage. Our framework allows for multi-dimensional heterogeneity, but ignores the presence of other frictions or inefficiencies (e.g., behavioural frictions, externalities).

5.1 Demand and Cost Curves

As well known since Einav et al. [2010] and implemented in non-UI applications [e.g., Hackmann et al. 2015, Finkelstein et al. 2017, Tebaldi 2017], the demand for insurance and the corresponding cost of providing insurance are sufficient for evaluating the welfare cost due to inefficient pricing due to adverse selection, conditional on plans. In our setting with two plans, this requires knowing the demand for comprehensive relative to basic coverage, revealing the workers’ valuation v of supplemental coverage, and how the cost of providing supplemental coverage changes with demand, $E[c|v]$. The slope of the corresponding supplemental cost curve reveals the scope for adverse selection.

The difference in costs c mechanically depends on the extra coverage provided - keeping workers’ unemployment risk constant - and the response in unemployment risk to the extra coverage provided,

$$c = c_1 - c_0 = [c_1 - c_1|0] + [c_1|0 - c_0].$$

20 A number of papers document how insurance choices are subject to important frictions [e.g., Abaluck and Gruber 2011, Handel 2013, Handel and Kolstad 2015], which can invalidate the use of our revealed preference approach for welfare purposes [see Spinnewijn 2017].

21 Following earlier notation, we continue to use the bold notation $x \equiv x_1 - x_0$ to define the difference between the comprehensive and basic UI coverage plan.
\(c_x|y\) denotes the cost of providing plan \(x\) given workers’ behavior under plan \(y\). We will show that separating moral hazard and selection responses is key for evaluating the welfare impact of policy interventions that change coverage (e.g., minimum mandate), but is unnecessary for the evaluation of interventions that only affect plan choices only (e.g., subsidy), which is fully determined by the difference between value and cost.

To gauge the overall magnitude of moral hazard relative to adverse selection, we can compare the contribution of both types of inefficiency to the difference in average cost of providing comprehensive coverage and basic coverage, using the following decomposition:

\[
E_I (c_1) - E_U (c_0) = \underbrace{E_U (c_{1|0} - c_0)}_{\text{Mechanical}} + \underbrace{E_U (c_1 - c_{1|0})}_{\text{MH}} + \underbrace{E_I (c_1) - E_U (c_1)}_{\text{Selection}}. \tag{5}
\]

When the basic and comprehensive cost curves are known, one can naturally separate moral hazard and adverse selection.

Implementation With enough price variation, our method relying on identifying marginals allows tracing out the cost curves non-parametrically for both the basic and comprehensive plan by simply comparing the realized unemployment risk for marginal buyers at different prices. In our setting though, we only have one price change, the 2007 price increase. Hence, to compare the costs for the three groups defined using the price reform, we could only compare the days spent unemployed in 2008 under the plan coverage they chose after the reform, i.e., \(E_I (\pi_1), E_M (\pi_0)\) and \(E_U (\pi_0)\). To get estimates of the counterfactual cost of the insurance plan not taken by a group of workers, we combine the price variation with our predicted risk model. The risk model predicts an agent’s risk under each plan \(k\), \(\pi_{i,k} = \pi_k (X_i) + \epsilon_{i,k}\) based on observables \(X\), being estimated on the sample of individuals choosing plan \(k\). As discussed in Section 4.2, results from Figure 9 suggest that \(\epsilon_{i,k} \perp v\), i.e. that residual risk conditional on predicted risk score \(\hat{\pi}_k (X_i)\) is uncorrelated with willingness-to-pay \(v\) for the supplemental coverage. As a consequence, we can use the risk model estimated on the group of uninsured (insured) to extrapolate the risk under basic (comprehensive) coverage to the workers with higher (lower) valuation.

Panels A and B of Figure 10 show the average predicted days spent unemployed under basic and comprehensive coverage for all three groups. For Panel A, we start by estimating the predicted risk under the basic coverage on the sample of individuals uninsured between 2002 to 2006. We then compute the average predicted risk under the basic coverage of the three groups of always insured, marginals and always uninsured, defined using the 2007 price variation, and based on their observable characteristics as of 2006. The predicted unemployment risk is about 60 percent higher for the marginals than for the uninsured, similar to what we found for the realized unemployment

22 The actual magnitudes of the decomposition depend on whether we consider the moral hazard response and selection effect along the comprehensive or basic coverage cost curve.

23 We fix observable characteristics as of 2006, prior to the price change, as individuals might have changed these characteristics endogenously in 2007 based on their new insurance coverage choice, which would reintroduce potential moral hazard. Fixing observable characteristics as of 2007 gives nevertheless very similar results.
risk (see Figure 5). The predicted unemployment risk for the insured is also larger than for the marginals, but the difference is smaller. Note that this difference in predicted unemployment risk is only driven by selection, indicating that the larger difference in realized unemployment risk between insured and marginals in Figure 5 is largely driven by moral hazard. For panel B, we started by estimating predicted risk under the comprehensive coverage on the sample of individuals insured between 2002 to 2006, and then computed the average days spent unemployed under the comprehensive coverage of all three groups. We find the same monotonic increase in willingness-to-pay from uninsured to marginals and to insured, but the predicted risk is much larger than under the basic coverage for all three groups, confirming the importance of moral hazard.

We convert predicted days spent unemployed into an estimate of the average expected cost
\[E_j(c_k) = E_j(\hat{\pi}_k(X) \cdot b_k) \]
for each plan \(k \in \{0,1\} \) and for each group of workers \(j \in \{I,M,U\} \).

We then extrapolate linearly to obtain the comprehensive and basic cost curves, shown in Panel A of Figure 11, and take the difference between the two curves to obtain the supplemental cost curve, shown in Panel B. This implementation delivers the following insights:

First, the supplemental cost curve is downward-sloping, indicating that the choice between basic and comprehensive coverage is indeed adversely selected. In other words, providing the supplemental coverage is more costly for the workers who value it more (36% more costly for the insured than for the uninsured). To evaluate the welfare impact of selection responses we will need to compare this supplemental cost to the corresponding value.

Second, the comparison of predicted risks under both coverages offers an estimate of the moral hazard response to supplemental coverage for each group. We find unemployment elasticities of \(\varepsilon^{I,\pi,b} = 0.68 \), \(\varepsilon^{M,\pi,b} = 0.74 \) and \(\varepsilon^{U,\pi,b} = 1.1 \) for the three groups respectively. Interestingly, while these values fall in the range of recent estimates in the literature [see Schmieder and Von Wachter [2016]], the elasticities are larger for individuals with lower valuation. This suggests that workers select basic coverage anticipating that they will reduce their risk more, at least in relative terms. In absolute terms, we find that the incremental unemployment risk for workers selecting into comprehensive coverage is still slightly higher (3.9 vs. 3.7 extra days of unemployment), which has been termed as selection on moral hazard by Einav et al. [2013]. A negative correlation between the unemployment elasticity and insurance value reduces the slope of the supplemental cost curve and makes the adverse selection less pronounced.

Third, the decomposition following equation (5) indicates that the overall impact of adverse selection is almost as large as the impact of moral hazard on the difference in coverage costs.

24 Note that by using predicted rather than the realized risks to calculate the expected costs we assume that aggregate shocks to unemployment are unanticipated.

25 We scale down the costs by \(0.20\) to account for the taxes paid on the unemployment benefits received, following the assumption in Kolsrud et al. [2017] as the average tax rate paid by the unemployed equals 20.7%. We locate the estimated average costs for the three groups at the midpoint of the ranges of the corresponding valuation quantiles and then use a piece-wise linear interpolation to construct the cost curves.

26 Note that there is no a priori reason why the correlation between the value of supplemental coverage and the incremental unemployment risk in absolute terms cannot be negative either. It will for example depend on how the baseline risk correlates with the returns to efforts to reduce the baseline risk (e.g., more employable workers may have more control over their employment prospects).
between the comprehensive and basic plan. Out of an estimated difference of 4,054SEK, 22% is due the mechanical increase in coverage, while 32% is driven by adverse selection and 46% is due to moral hazard, as indicated in Panel A of Figure [II].

5.2 Universal Mandate

The replacement rate in the comprehensive coverage in Sweden is very close to the replacement rates of UI mandates in many countries, especially in Europe. The desirability of mandating such a high level of coverage in UI has never been tested before.

From an efficiency perspective, an individual should be insured under the comprehensive plan rather than under the basic plan if the difference in value exceeds the difference in costs, \(v \geq c \). When given the choice, an individual chooses to buy the comprehensive plan whenever the difference in value exceeds the difference in price, \(v \geq p \). In a competitive market, the sorting of high-risk individuals into the comprehensive plan would drive up the price differential and discourage individuals from buying the comprehensive coverage, even when the welfare surplus from the extra coverage is positive (i.e., \(p > v > c \)). A standard remedy to this problem of under-insurance is to impose a universal mandate, mandating all individuals to buy comprehensive coverage. However, this also forces individuals who efficiently decide not to buy comprehensive coverage into buying it (i.e., \(c > v \) and \(p > v \)), and thus introduces a trade-off in the evaluation of a universal mandate.

The demand and cost curves are sufficient to assess this trade-off, following Einav et al. [2010b], as they allow comparing the average value and cost of supplemental coverage for the group of individuals buying basic coverage, i.e., \(E_U (v - c) \). This comparison can also be made in a simple, non-parametric test. Using a standard revealed preference argument, we can bound the value of the extra coverage for the individuals in group \(U \) by the price, \(v < p \) (which they are not willing to pay). If the average cost of providing insurance to this group exceeds the price (i.e., \(E_U (c) > p \)), it must be inefficient for at least some individuals on basic coverage to be forced into comprehensive coverage. Price variation allows to apply a similar non-parametric test to the individuals in group \(M \) who are at the margin of buying comprehensive coverage at price \(p \).

Implementation Before the 2007 reform in Sweden, workers paid a premium of 100SEK (≈ 11USD) per month to get access to comprehensive coverage, but receiving a tax credit of 40 percent of the premium. The low premium provides an upper bound on the valuation of the on average 14 percent of workers who do not buy the extra coverage between 2002 and 2006. We compare this to the cost of providing them with supplemental coverage. Our estimate of the supplemental cost for the uninsured, accounting for the moral hazard response, equals 2,742SEK, which is substantially above the upper bound on the workers’ valuation. Hence, on average, the workers not buying comprehensive coverage are doing this efficiently as they value the coverage less than its costs. Imposing a universal mandate that forces them to buy the comprehensive coverage would be inefficient.

Panel B of Figure [II] compares our estimate of the supplemental cost curve with a linear
demand curve, which simply extrapolates the shares of individuals buying the comprehensive plan before and after the premium increase in 2007. The comparison confirms that value is below cost for a substantial share of workers. Moreover, the 8 percent of workers who switch out of the comprehensive plan with the price reform value the supplemental insurance somewhere between the pre-reform price of 720SEK and the post-reform price of 4,116SEK. The estimated cost of providing supplemental coverage for these individuals is bounded in between. Hence, for workers who are marginal at the pre-reform price, it is not efficient to buy comprehensive coverage, but it is for workers who are marginal at the post-reform price. The premium at which value and cost coincide equals 3,355SEK and 80 percent of workers would buy insurance at this price.

In sum, our implementation indicates that opting for the comprehensive plan is inefficient for workers with valuation below the low post-reform price, but efficient for those with valuation above the high pre-reform price. Mandating the former group to buy comprehensive insurance would decrease welfare. This result has implications more broadly, as it raises the question whether the universal mandate of as generous UI coverage observed in many other countries is socially desirable.

One caveat to this conclusion is why cost exceeds value for a significant group of workers. An important part of the gap is of course moral hazard: workers would double their unemployment risk in response to the supplemental coverage. This behavioral response would have some value to workers, but it is smaller than the resulting increase in insurer’s costs, which they do not internalize. In our setting, our estimate of the mechanical cost of supplemental coverage for the uninsured (889SEK) is still slightly above the price (720SEK), which is thus better than actuarially fair for these workers, even when ignoring their potential unemployment response. One potential explanation why they still choose not to buy is that they do not fully account for the tax credit, but focus on the before-tax premium of 1200SEK instead. Another explanation is that the uninsured tend to underestimate the value of insurance, for example because they underestimate the risk or the coverage (e.g., Spinnewijn [2017]). While the presence of such frictions would affect the welfare analysis, our findings still imply that in Sweden the severe adverse selection by itself is not sufficient to rationalize making the generous comprehensive coverage compulsory.

5.3 Choice-based Policy Interventions

When a universal mandate is not desirable, the question is how to regulate choice in an adversely selected market? We analyze two choice-based interventions that are standard in insurance markets and often used in combination: a subsidy, which induces people to buy more coverage and reduces under-insurance due to adverse selection, and a minimum mandate, which guarantees coverage for people who are potentially priced out of the market and thus mitigates the consequences of adverse selection.

We analyze these two interventions in a setting where the government designs a basic insurance plan \((b_0, p_0)\) and a comprehensive insurance plan \((b_1, p_1)\), between which workers choose, and aims
to maximize social welfare:

\[W = \int_{v \geq p} \omega (v_1 - p_1) \, dG (v) + \int_{v < p} \omega (v_0 - p_0) \, dG (v) \]

\[\quad + \lambda \{ F [p_1 - E_I (c_1)] + (1 - F) [p_0 - E_U (c_0)] \}, \]

where \(\lambda \) equals the marginal cost of public funds, pre-multiplying the expected surplus on the unemployment policy, and \(F = 1 - G(p) \) equals the share of individuals buying comprehensive insurance (group \(I \)). The function \(\omega (\cdot) \) maps individuals’ consumer surplus into welfare and we denote by \(g_j = \omega' (v_j - p_j) \) the marginal social gain from a dollar when buying plan \(j \).

5.3.1 Subsidy

A subsidy induces more individuals to buy coverage by lowering its price. It achieves the same outcome as a universal mandate in the extreme case that it induces everyone to buy insurance, but can also be set to target individuals for whom the surplus is positive. We consider the determination of a subsidy in our stylized framework where coverage and prices are set by the government. We define the subsidy for supplemental coverage as

\[S \equiv [E_I (c_1) - E_U (c_0)] - [p_1 - p_0]. \]

The subsidy allows the government to move away from average-cost pricing, but also redistributes from those buying basic coverage to those buying comprehensive coverage.

To illustrate the efficiency-equity trade-off, we consider the welfare impact of a small increase in the subsidy \(dS \). This change reduces the price for comprehensive coverage by \(dp_1 = -(1 - F) dS \) and increases the price for basic coverage by \(dp_0 = F dS \). Absent any behavioural responses, the government’s revenues would remain the same. However, the increased subsidy will change the selection of plans by making comprehensive insurance more attractive.

The selection response to \(dS \) has a first-order impact on the budget, but not on the agents’ welfare. The small nature of the change allows us to invoke the envelope theorem: the impact on agents’ welfare depends on the direct effect of the price changes, but not of the re-sorting of individuals at the margin. The welfare gain from inducing buyers at the margin (i.e., \(v = p \)) to buy comprehensive insurance thus simplifies to the corresponding fiscal externality,

\[AS \equiv p - E_M (c) = [E_I (c_1) - E_M (c_1)] + [E_M (c_0) - E_U (c_0)] - S. \]

Two insights come out of this simple expression. First, by relating prices to average costs, we see that both adverse selection into the comprehensive plan and advantageous selection into the basic plan increase the inefficient wedge between price and marginal costs. That is, with adverse selection, individuals at the margin tend to be cheaper than the average consumer of the comprehensive plan \((E_I (c_1) > E_M (c_1)) \), but also more expensive than the average consumer of the basic plan.
(\(E_M (c_0) > E_U (c_0)\)). Second, the expression for the fiscal externality \(\text{AS}\) confirms that moral hazard by itself does not contribute to the pricing inefficiency. The impact of moral hazard on the cost differential would be priced efficiently under average-cost pricing if there is no risk-based selection into insurance.

The optimal subsidy trades off the fiscal externality and the redistributive consequences, as summarized in the following Proposition:

Proposition 1. For given coverage levels \((b_0, b_1)\), the price subsidy \(S\) is optimal only if

\[
\left[1 - \frac{E_M (c)}{p} \right] \times \frac{\varepsilon_{1-p} \cdot p}{\lambda} = \frac{E_U (g_0) - E_I (g_1)}{\lambda}.
\]

The left-hand side of Proposition 1 equals the fiscal return to a marginal dollar transferred from the uninsured to the insured due to the reduced adverse selection. This depends on the responsiveness of the demand for supplemental coverage to its price and how much the price exceeds the cost of providing the supplemental coverage to those who respond. The right-hand side can be interpreted as the redistributive cost (or gain if negative) from transferring a marginal dollar from the uninsured to the insured. In the absence of redistributive motives, the optimal subsidy is such that prices reflect the cost of providing insurance to individuals at the margin, i.e., \(p = E_M (c)\). Increasing the subsidy further causes the fiscal externality to be negative (i.e., \(p < E_M (c)\)) and can be justified by valuing the redistribution from the uninsured to the insured.

Implementation Before the price reform in 2007 the premium for supplemental coverage paid only for 18% of the difference in average costs. The cost of providing supplemental coverage to individuals at the margin is substantially above the premium, as shown in Panel B of Figure 11. The subsidy thus inefficiently induced individuals at the margin to buy insurance, causing the fiscal externality to be negative. Setting the subsidy as high can still be rationalized by valuing the redistribution towards workers buying the comprehensive coverage. The fiscal cost depends on the fiscal externality per marginal worker \((1 - E_M (c)) / p = -3.3\) and the price elasticity of (marginal) workers \((\varepsilon_{1-p} \cdot p = .09)\), which is estimated to be low due to the modest demand response to the substantial price increase in 2007. Given our estimates, the large pre-reform subsidy would be optimal if the return from redistributing to the insured equals 30%. The 2007 reform increased the price dramatically, in fact, setting the premium above the estimated difference in average costs. Despite this large premium, more than 3 out of 4 workers are still buying comprehensive insurance.

27Hendren [2018] links this redistributive gain to the ex-ante welfare of insurance and estimates this gain using the demand curve.

28Note that the redistributive motive from uninsured to insured by itself cannot justify inducing everyone to buy comprehensive insurance as the relative weight of the negative fiscal externality goes to infinity when \(F\) goes to 1.

29Hendren [2018] approximates the relative difference in marginal utilities between insured and uninsured by

\[
\frac{E_I (u' (c)) - E_U (u' (c))}{E (u' (c))} \approx \frac{u'' (c)}{u' (c)} \times [p - E_U (v)].
\]

The implied redistributive gain is less than 5% for \(\text{CARA} = 5 \times 10^{-4}\) (expressing values in USD) or for \(\text{CRRA} = 3\) (for an average annual consumption level of 150,000SEK).
which indicates that the inelastic demand could hold this adversely selected market together when privatizing this market.\footnote{The inelastic response may, however, be due to high inertia \cite{Handel2013}, which would cause the demand curve to overstate the value of insurance for people still buying insurance after the price increase. See \cite{Handel2015} for a welfare analysis that combines frictional demand and pricing inefficiencies due to adverse selection.}

5.3.2 Minimum mandate

A minimum mandate provides protection against unemployment risk for workers who are priced out of the market for comprehensive coverage. With adverse selection, these workers are the ones with the lowest risk. The challenge is that increasing the basic coverage is attractive to individuals with high risk and thus makes the selection into comprehensive coverage even more adverse. A minimum mandate thus needs to trade off the protection to individuals who do not buy comprehensive coverage at equilibrium prices against further reducing the share of individuals buying comprehensive coverage. The welfare impact of the latter depends on how generous the subsidy is.

To illustrate this trade-off, we consider a small change in the basic coverage level b_0. Absent any selection effects, an increase in basic coverage provides more insurance to the group of workers with this coverage, but also reduces their incentives to avoid unemployment. This standard trade-off between insurance and incentives is captured by the well-known Baily-Chetty formula \cite{Baily1978, Chetty2006}. This formula compares the consumption smoothing gains, depending on the relative marginal utility when unemployed $\frac{E_u'(b) - \lambda}{\lambda}$, and the fiscal cost, captured by the unemployment elasticity $\varepsilon_{E\pi,b}$. When considering a change in the minimum benefit level, these moments should be evaluated for workers on basic coverage. Workers who opt out of supplemental coverage value coverage less on average, but may value coverage more at the margin as they are less covered. The elasticity will be different as well for this group depending on the selection on moral hazard.

Another key difference with the standard formula comes from the fact that the selection of workers changes in response to the benefit change. An increase in coverage makes the basic insurance plan more attractive and especially so to workers with higher unemployment risk. The corresponding fiscal externality depends on how the premium p compares to the cost of supplemental coverage for the group of workers who switch to the basic coverage level, which we denote by $E_M(b_0)(c)$. This effect corresponds to the sorting effect identified by Veiga and Weyl \cite{Veiga2016}. Note that if workers only differed in their risk, the buyers at the margin responding to a change in UI benefits would be the same as when changing the subsidy. This is no longer true with multi-dimensional...

\footnote{Veiga and Weyl \cite{Veiga2016} characterize the single-traded contract firms offer in an insurance market (with multi-dimensional heterogeneity). Private firms face a similar trade-off in determining the optimal coverage level between creating insurance value and discouraging higher risk from selection into their plan (i.e., cream-skimming). Interestingly, a private firm does not internalize the consequences for competing insurers from attracting different risk types. That is, the negative sorting effect for a private firm increasing b_0 equals $p_0 - E_M(b_0)c_0$, which underestimates the total impact, equal to $[p_0 - E_M(b_0)c_0 - (p_1 - E_M(b_0)c_1)]$. We briefly discuss this further in Appendix C.}
We can state the following result:

Proposition 2. The minimum mandate b_0 is optimal, for given subsidy S and comprehensive coverage b_1, only if

$$\frac{E_U (g_0 \times u' (b_0)) - \lambda}{\lambda} - \varepsilon E_{U (\pi), b_0} = \left[1 - \frac{E_M (b_0) (c)}{p} \right] \times \frac{p}{E_U (c_0)} \times \varepsilon_{1-F,b_0}.$$

The proposition delivers two important insights for the design of social insurance more generally:

First, it clearly identifies and provides an implementable characterization of the trade-off between mitigating the consequence of adverse selection at the extensive margin and worsening adverse selection at the intensive margin. This trade-off is also studied by Azevedo and Gottlieb (2017) who provide a general characterization of equilibrium contracts and prices in a competitive market (with multi-dimensional heterogeneity). Their analysis shows how setting a minimum mandate can discourage individuals from buying even more coverage as the mandate effectively pools agents in the lowest range of unemployment risks into the minimum coverage plan and as such reduces its equilibrium price. The mechanisms are very related: increasing the minimum mandate provides a more attractive alternative for workers attracted to more comprehensive coverage, either by increasing the available coverage or lowering the price.

Second, the proposition highlights the complementarity between subsidies and mandates. The welfare impact of the selection effect critically depends on the subsidy in place. The fiscal cost...
of increasing adverse selection is lower for a higher subsidy, making a higher minimum mandate more desirable. More generally, while the minimum mandate worsens adverse selection into the supplemental market (or even excludes the viability of a private market as in [Hendren 2017]), this inefficiency can be countered by a more generous subsidy for supplemental coverage.

Implementation In Sweden the minimum UI benefit equals 320SEK ($\approx 35\text{USD}$) a day, which is about half of the average benefit level under the comprehensive plan. The fiscal cost of increasing this minimum benefit level depends on the moral hazard and selection responses. Our estimates of the cost curve imply an elasticity of $\varepsilon_{U,\pi,b} = 1.05$ for the uninsured. As discussed before, the moral hazard response tends to be larger for people on basic coverage, which increases the cost of a minimum mandate. In an adversely selected market, we would expect the selection response to further increase the cost. However, due to the large subsidy in Sweden before 2007, this fiscal externality was actually negative and thus reduced the fiscal cost. We can use both the fiscal externality of a subsidy and the demand response to a change in the subsidy as lower bounds and find a downward correction of at least 0.12. This is relatively small compared to the moral hazard cost.

Moreover, given the complementarity between the minimum mandate and the subsidy, this correction would be smaller and eventually change signs for lower subsidies.

These costs need to be traded off against the consumption smoothing gains provided by the additional coverage. [Kolsrud et al. 2018] estimate an average consumption drop of only 10% during unemployment for workers on basic coverage, implying a return to a marginal kroner spent on basic coverage of 30 percent for relative risk-aversion $\gamma = 3$. The gains would be small compared to the costs and suggest that the minimum mandate is too generous. The consumption-based implementation, however, is likely to provide a lower bound and recent approaches based on revealed preferences show that the value of UI can be substantially higher, including estimates that exceed costs [see Chetty 2008, Chetty and Finkelstein 2013, and Kolsrud et al. 2018].

37 See also the simulations in Azevedo and Gottlieb 2017 showing that subsidizing supplemental coverage increases welfare.

38 A similar complementarity was stated in the seminal paper by Rothschild and Stiglitz 1976 showing that by subsidizing the comprehensive coverage (for the “high-risk” type), the basic coverage can be increased (for the “low-risk” type) while maintaining incentive compatibility.

39 As shown before, the fiscal externality of a subsidy is indeed a lower bound when costs and marginal value of coverage are positively correlated. Regarding the demand elasticity, we note that a risk-neutral worker values the supplemental coverage at $\pi_{b} - p$ and thus responds proportionally to a change in coverage or in prices. A risk-averse worker responds relatively more to a change in coverage. Hence,

$$\varepsilon_{1-F,b_0} \geq \varepsilon_{1-F,p} \frac{\pi_{b_0}}{p} = F\varepsilon_{1-F} \frac{E_M(c_0)}{F\varepsilon_{1-F} p}.$$

This implies

$$\frac{p}{E_U(c_0)} \times \varepsilon_{1-F,b_0} \geq \frac{E_M(c_0)}{E_U(c_0)} F\varepsilon_{1-F} \frac{E_M(c_0)}{F\varepsilon_{1-F} p},$$

which corresponds to 0.12 in our Swedish context.

40 Using a Taylor approximation, the difference in marginal utilities when employed vs. unemployed simplifies to the drop in consumption between employment and unemployment, multiplied by the relative risk-aversion [Gruber 1997, Chetty 2006].

41 For example, Kolsrud et al. 2018 estimate the marginal propensity to consume when unemployed and when
6 Conclusion

Seventy five years ago, the Beveridge Report, in its attempt at increasing welfare for all, recommended a new set of revolutionary social insurance policies and insisted that these insurance policies “must be achieved by co-operation between the State and the individual. (...) The state should not stifle incentive, opportunity, responsibility; in establishing a national minimum, it should leave room and encouragement for voluntary action by each individual to provide more than that minimum for himself and his family” [42]. In the context of unemployment insurance though, generous mandates have left very little room for choice and voluntary actions by individuals, under the (untested) presumption that offering choice would trigger risk-based selection. Our paper provides the first direct evidence for risk-based selection into unemployment insurance and offers new insights on how to reconcile social insurance design with individual choice in such a context of adverse selection.

Using various empirical strategies and different sources of variation, we robustly find that workers who face higher (ex-ante) unemployment risk select into more comprehensive coverage. We further leverage our rich administrative data to show how the severe adverse selection can survive even when workers’ observable risks were to be priced. Despite the severe adverse selection, we find that mandating all workers into comprehensive coverage is not the best policy response. The Swedish workers who choose not buy the comprehensive coverage value it below its cost, which is high due to moral hazard. This simple observation sheds new light on the universal mandates of comprehensive UI that are in place around the world – the desirability of which has never been tested before. Moreover, the ubiquitous absence of private markets for UI may be precisely because of the mandated public programs in place and the adverse selection into supplemental coverage they cause. As our analysis shows, the impact of adverse selection can be mitigated by subsidizing the premia for more comprehensive coverage, which would increase the desirability of a more generous minimum mandate.

The value of providing choice in social insurance programs does rely on individuals using this choice in their best interest. This is an assumption we have maintained throughout our analysis. A rapidly growing literature documents the importance of frictions distorting households’ insurance choices. This introduces another important caveat when introducing choice, closely related to the potential for adverse selection. We leave this challenging, but important issue for future research.

[42] Beveridge [1942]
References

_ and Amy Finkelstein, Chapter 3 - Social Insurance: Connecting Theory to Data, Vol. 5 of Handbook of Public Economics, Elsevier,

Notes: The Figure reports estimates of positive correlation tests following specification (3) estimated over the period 2002-2006 for four different realized risk outcomes: total UI claims under comprehensive coverage in $t+1$, total duration spent unemployed in $t+1$, the probability of displacement in $t+1$, and the probability of displacement in $t+1$ but excluding quits. Total UI benefit claims are defined as the total amount of UI benefits that individuals would be collecting in $t+1$ were they to buy the comprehensive coverage and receive benefits b_1. For individuals who do not buy the comprehensive coverage in t, we computed the counterfactual benefit claims they would have if they were to receive the comprehensive benefits. For each outcome, the chart displays $\hat{\gamma}/\bar{Y}$, that is the semi-elasticity of the realized risk outcomes in $t+1$ with respect to insurance choices in t. Specification (3) controls for year fixed effects and for the limited set of characteristics that affect the unemployment insurance coverage available to individuals: a dummy for whether individuals meet the work eligibility requirement, a dummy for union membership, and earnings level. See text for details. For all realized risk outcomes, we find a strong and significant positive correlation with UI coverage choice.
Figure 2: Positive Correlation Tests - Dynamics

Notes: Risk realization in $t + 1$ may fail to fully capture the unemployment risk faced by an individual as she is making her coverage choice at time t, which justifies using risk realizations for that individual further into the future. This Figure reports the correlation of insurance choice in t with displacement outcomes in $t + 1$, $t + 2$, ... up to $t + 8$. The Figure displays estimates of positive correlation tests following specification $[3]$ estimated over the period 2002-2006. For each outcome, the chart displays $\hat{\gamma}_k / Y$, that is the semi-elasticity of the realized displacement rate in $t + k$ with respect to insurance choices in t. For each displacement outcome in year $t + k$, we control for displacement outcomes in previous years ($t + k - 1$, $t + k - 2$, etc.), for year fixed effects and for the limited set of characteristics X that affect the unemployment insurance coverage available to individuals. See text for details.
A. Semi-elasticity from linear specification

![Graph showing semi-elasticity for insurance choice](image)

B. Correlation from bivariate probit

![Graph showing correlation for risk measures](image)

Notes: The Figure explores to what extent the positive correlation between insurance and unemployment risk is driven by selection on observables characteristics that are unpriced in the Swedish UI system. In panel A, we start with the baseline positive correlation test from the linear specification (3) where \(Y \) is the probability of displacement in \(t + 1 \), and show how the semi-elasticity \(\hat{\gamma}/\bar{Y} \) evolves as we add sequentially more characteristics to the vector of controls \(X \). We start by adding demographic controls (age, then gender, and marital status), then controls for skills and other labor market characteristics (controls for education (four categories), industry (1-digit code), occupation (1-digit code) and wealth level (quartiles). We finally add controls for past unemployment history (dummies for having been unemployed in t-1, t-2 and up to t-8). In panel B, we do a similar positive correlation exercise but using a bivariate probit specification instead. We report how the estimated correlation \(\rho \) between the two error terms \(\epsilon \) and \(\eta \) from the bivariate probit specification (4) evolves when adding sequentially to the vector \(X \) the same set of characteristics as in panel A.
Figure 4: Price Variation: evolution of premia p and of the fraction of workers insured around the 2007 reform

Notes: The Figure reports the evolution of monthly premium for the supplemental UI coverage over time. As explained in Section 2, there are no sources of premium differentiation up to 2008, apart from small rebates for union members and for unemployed individuals. Here, we report the value of the premium for employed union members. The Figure shows a large and sudden increase in the premia paid for the supplemental coverage in 2007. This increase followed the surprise ousting of the Social Democrats from government after the September 2006 general election. Note that from July 2008 on, premia started to be differentiated across UI funds. For 2008 and 2009 we therefore report the average monthly premium among unemployed union members across all UI funds. The Figure also shows the evolution of the take-up of the supplemental UI coverage, measured as the sum of all individuals buying the supplemental coverage divided by the total number of individuals aged 18 to 60 meeting the eligibility criteria for receiving UI benefits.
Figure 5: Price Variation: Unemployment Risk by willingness-to-pay v

A. Displacement Rate in 2008

B. Total Unemp. Duration in 2008

Notes: The Figure uses the 2007 price reform to rank individuals according to their willingness-to-pay for the supplemental coverage v, and then uses this ranking to correlate willingness-to-pay with measures of unemployment risk. In each panel, individuals are ranked by decreasing order of their willingness-to-pay. The group on the left (I) are individuals who are insured with the supplemental coverage both in 2006 and 2007 and have the highest level of v. The middle group corresponds to the marginals (M): individuals who were insured with the supplemental coverage in 2006 but switch out in 2007 when the premium increases. They have a lower level of v than the always insured (I), but a higher level of v than the last group on the right (U), of individuals who neither buy the supplemental coverage in 2006, nor in 2007. Using this ranking, we perform direct non-parametric tests for risk-based selection, by correlating willingness-to-pay with various measures of unemployment risk Y. For each risk outcome, we report the average risk outcome of each group controlling for the same vector of characteristics X affecting contract differentiation, that we use in the positive correlation tests. Panel A reports the average displacement rate in 2008 for each group. Panel B reports the average number of days spent unemployed in 2008 for each group.
Notes: The Figure uses the 2007 price reform to rank individuals according to their willingness-to-pay for the supplemental coverage v, and uses this ranking to correlate v with proxies for the value of unemployment insurance and risk preferences. In both panels, individuals are ranked by decreasing order of v. The group on the left (I) are individuals who are insured with the supplemental coverage both in 2006 and 2007 and have the highest level of v. The middle group corresponds to the marginals (M): individuals who were insured with the supplemental coverage in 2006 but switch out in 2007 when the premium increases. They have a lower level of v than the always insured (I), but a higher level of v than the last group on the right (U), of individuals who neither buy the supplemental coverage in 2006, nor in 2007. Using this ranking, we correlate in panel A willingness-to-pay with the level of net wealth in 2006. Individuals with higher net wealth have better means to smooth consumption in case of displacement and should have a lower valuation of additional unemployment insurance. We winsorize net wealth and eliminate the bottom and top percentile of the distribution. In panel B, we proxy for risk aversion using the fraction of total net wealth invested in risky assets (stocks). In both panels we report the average outcome of each group controlling for our baseline vector of characteristics X plus a cubic polynomial for age, and a cubic for net wealth in panel B.
Figure 7: Risk shifters: Firm Displacement Risk & Last-in-first-out Principle

A. Firm Displacement Risk vs Individual Displacement Probability in \(t + 1 \)

\[\text{Firm Displacement Risk in } t \ (\text{exc. individual}) \]

\[\text{Individual Displacement Risk in } t + 1 \]

B. Relative Tenure Ranking in year \(t \) vs Displacement Probability in year \(t + 1 \)

Notes: The Figure provides evidence of the role of firm level risk and of the Last-In-First-Out (LIFO) principle in creating variation in individuals’ unemployment risks. In panel A, we provide evidence of the role of firm layoff risk as a shifter of individuals’ own displacement probability. For each individual \(i \) working in firm \(j \), we define average firm displacement risk as the average probability of displacement of all other workers within the firm excluding individual \(i \), \(\pi_{-i,j} \) over all years where the firm is observed active in our sample years. We then plot the average firm displacement risk in 20 bins of equal population size, against the individual probability of displacement in \(t + 1 \). The Figure shows that there is significant heterogeneity in firms’ separation rates, and that individuals’ unemployment risk is very strongly correlated with firm level risk. Panel B plots the probability of being displaced in \(t + 1 \) among individuals working in firms that emit a layoff notification in \(t + 1 \), as a function of relative tenure ranking within establishment and occupation in year \(t \). See Section 2 for institutional details. The Figure provides clear evidence of a strong negative correlation between relative tenure ranking and individuals’ displacement probability.
A. Predicted Layoff Risk vs Actual Displacement Rates

B. Predicted Layoff Risk vs UI choices

Notes: The Figure reports results from the model of predicted displacement risk in $t + 1$, presented in Section 4.2. The model combines flexibly all observable sources of risk shifting together, and allows for a richer variation in risk than the one obtained from using the risk shifters separately. The risk shifters included in the model are the average firm layoff risk, the full history of the firm layoff notifications, and the relative tenure ranking of the individual. We also add the full past unemployment history of the individual. Panel A correlates predicted layoff risk with actual displacement rates in $t + 1$ and provides evidence that the model performs well in predicting individuals’ risk. Panel B correlates predicted layoff risk with the probability to buy UI coverage in t, and suggests again a strong positive correlation between individuals’ risk and their probability to buy the supplemental UI coverage. Interestingly, the graph also suggests that the strong positive correlation between risk and insurance coverage is mostly driven by what happens at the bottom of the predicted risk distribution.
Figure 9: Price Variation: Residual Private Information

Notes: The Figure uses the 2007 price reform to estimate how much adverse selection is left when controlling flexibly for predicted risk using all observable risk shifters available in the Swedish context. The Figure reports the semi-elasticity \((E_M[Y] - E_U[Y])/E_U[Y]\) the marginals \(M\) relative to the uninsured \(U\) for two risk measures, the layoff probability and the total days spent unemployed in 2008. The dark grey bar is the baseline estimate only controlling for the characteristics affecting the actual UI policy, while the light grey bar is the estimated semi-elasticity when we add demographic controls (age, then gender, and marital status), controls for skills and other labor market characteristics (controls for education (four categories), industry (1-digit code), occupation (1-digit code) and wealth level (quartiles), controls for past unemployment history and XX dummies for the predicted risk score using our predicted risk model.
Figure 10: **Counterfactual Unemployment Risk by Willingness-to-pay**

A. Predicted Days Unemployed under Basic Coverage

![Chart showing predicted days unemployed under basic coverage for different groups.]

B. Predicted Days Unemployed under Comprehensive Coverage

![Chart showing predicted days unemployed under comprehensive coverage for different groups.]

Notes: The Figure combines the price variation and the risk variation to predict counterfactual risk under both coverages as a function of willingness-to-pay. The 2007 price reform allows to rank individuals according to their willingness-to-pay for the supplemental coverage. We then use this ranking to correlate willingness-to-pay with the predicted total days spent unemployed, which determine the cost of providing insurance. For Panel A, we start by estimating a model that predicts the days spent unemployed under the basic coverage on the sample of individuals uninsured between 2002 to 2006. We then compute the average predicted risk under the basic coverage of all three groups of always insured, marginals and always uninsured defined using the 2007 price variation, based on their observable characteristics as of 2006. For panels B, we start by estimating a model that predicts the days spent unemployed under the comprehensive coverage on the sample of individuals insured between 2002 to 2006, and then compute the average predicted days of unemployment under the comprehensive coverage of all three groups.
Notes: The figure shows the value and cost curves underlying the welfare implementation in Section 5. Panel A plots the cost curves for the comprehensive and basic plan. For the basic (comprehensive) plan cost curve, we convert the predicted days spent unemployed under basic (comprehensive) coverage in Figure (10) into the expected cost of providing basic (comprehensive) coverage for insured, marginals and uninsured, defined using the 2007 price change. We locate the estimated average costs for the three groups at the midpoint of the ranges of the corresponding valuation quantiles and then use a piece-wise linear interpolation to construct the cost curves. For the uninsured (insured), we also calculate $E_U(c_{1|0})$ ($E_I(c_{0|1})$), i.e., the cost of providing comprehensive (basic) coverage, assuming their unemployment risk remains unchanged. This allows for the decomposition in equation (5) and comparing the impact of adverse selection and moral hazard. Panel B compares the value v and cost c of providing supplemental coverage for different workers ranked based on their valuation v. The supplemental cost curve is the difference between the cost of providing the comprehensive plan and the basic plan, plotted separately in Panel B. The linear demand curve is derived based on the share of individuals switching out of the comprehensive plan in response to the premium increase in 2007.
Table 1: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>P10</th>
<th>P50</th>
<th>P90</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Unemployment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement probability</td>
<td>3.56%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Displacement probability (exc. quits)</td>
<td>3.35%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unemployment probability</td>
<td>4.71%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unemployment spell (days)</td>
<td>3.37</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Duration of spell (days)</td>
<td>155.99</td>
<td>21</td>
<td>92</td>
<td>328</td>
</tr>
<tr>
<td>Fraction receiving layoff notification</td>
<td>.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fraction switching firms</td>
<td>.04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II. Union and UI Fund Membership</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union membership</td>
<td>.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UI fund membership (V)</td>
<td>.86</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III. Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>42.02</td>
<td>28</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>Years of education</td>
<td>12.9</td>
<td>11</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Fraction men</td>
<td>.51</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fraction married</td>
<td>.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IV. Income and Wealth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEK 2003(K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross earnings</td>
<td>236.7</td>
<td>54.5</td>
<td>228</td>
<td>387.9</td>
</tr>
<tr>
<td>Net wealth</td>
<td>490</td>
<td>-178.7</td>
<td>99.7</td>
<td>1148</td>
</tr>
<tr>
<td>Bank holdings</td>
<td>50.2</td>
<td>0</td>
<td>0</td>
<td>123</td>
</tr>
</tbody>
</table>

Notes: The Table provides summary statistics for our main sample of interest over the period 2002 to 2006, which comprises the universe of workers in Sweden aged between 25 and 55. Data on unemployment outcomes comes from the Public Employment Service register combined with the IAF register. Unemployment is defined as a spell of non-employment, following an involuntary job loss, and during which an individual has zero earnings, receives unemployment benefits and reports searching for a full time job. We define displacement as an involuntary job loss, due to a layoff or a quit following a ‘valid reason’. Voluntary quits are not included in our measures of displacement and unemployment. See text for details. The probability of displacement is the probability to be displaced in year \(t+1 \) conditional on working in year \(t \). The unemployment probability is the probability to be unemployed in year \(t+1 \) unconditional on employment status in year \(t \). The fraction of workers receiving layoff notification comes from the layoff-notification register (VARSEL) and is defined as the fraction of workers that are employed in an establishment emitting a layoff notification in year \(t \). The employer-employee matched data (RAMS) registers all existing labor contracts on a monthly basis. We define a “firm switch” as moving from having a labor contract with firm \(j \) (the origin firm) to having a contract with firm \(k \) (the destination firm), without any recorded non-employment spell between these two contracts. UI fund membership information comes from tax data for the period 2002 to 2006, during which premia were eligible for a 40% tax credit. The dummy variable \(V \) for buying the comprehensive coverage in year \(t \) is defined as reporting any positive amount of premia paid in year \(t \). All earnings, income and asset level measures are from wealth and income registers, and are yearly measures in constant k2003SEK. All assets are aggregated at the household level and estimated at their market value. \(1 \text{SEK2003} \approx 0.11 \text{USD2003} \)
Table 2: Positive Correlation Tests: Bivariate Probits

<table>
<thead>
<tr>
<th>Test</th>
<th>ρ</th>
<th>s.d.</th>
<th>χ²</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proba. of displacement</td>
<td>0.3047</td>
<td>0.0030</td>
<td>8842.4</td>
<td>0.00</td>
</tr>
<tr>
<td>Proba. of displacement excl. quits</td>
<td>0.3056</td>
<td>0.0031</td>
<td>8493.9</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes: The Table reports positive correlation estimates between insurance and risk using bivariate probit models. We specify both the choice of insurance coverage and the probability of displacement as probit models allowing for correlation ρ between the two error terms ϵ and η. The Table reports estimates of ρ and its standard error. We also report results of formal tests of the null that ρ = 0. In the first row, we consider the probability of displacement. In the second row we consider the probability of displacement excluding quits, as some quits may be eligible for UI after a waiting period. See text for details.
Table 3: Positive Correlation Tests: Non-Parametric Tests

<table>
<thead>
<tr>
<th>Variables included in partitioning the data in cells</th>
<th>Baseline + Demographics</th>
<th>+ Educ & Industry</th>
<th>+ Past U History</th>
</tr>
</thead>
<tbody>
<tr>
<td># of cells</td>
<td>40</td>
<td>484</td>
<td>1,124</td>
</tr>
<tr>
<td>Average cell size</td>
<td>50,903</td>
<td>3,181</td>
<td>958</td>
</tr>
<tr>
<td>Median cell size</td>
<td>35,275</td>
<td>1,270</td>
<td>346</td>
</tr>
<tr>
<td>Minimum cell size</td>
<td>14,202</td>
<td>88</td>
<td>6</td>
</tr>
<tr>
<td>Fraction of cells too granular</td>
<td>0%</td>
<td>24%</td>
<td>65%</td>
</tr>
<tr>
<td>Fraction of rejected cells</td>
<td>98%</td>
<td>74%</td>
<td>53%</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov stat.</td>
<td>5.98</td>
<td>15.37</td>
<td>16.20</td>
</tr>
<tr>
<td>Binomial p-value</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Notes: The Table reports results from non-parametric tests of correlation between insurance choices in \(t \) and probability of displacement in \(t + 1 \). The procedure of the test consists in partitioning the data into cells where all observations in a given cell have the same value for the variables in \(\mathbf{X} \). Columns (1) to (4) differ in the control variables included in \(\mathbf{X} \) and used to partition the data. The procedure then computes within each cell a Pearson’s \(\chi^2 \) test statistic for independence between \(UI_t \) and \(Y_{t+1} \). This test statistic is asymptotically distributed as a \(\chi^2(1) \) under the null hypothesis that \(UI_t \) and \(Y_{t+1} \) are statistically independent (within the cell). The critical values of this statistic for 95% and 99% confidence are 1.36 and 1.63 respectively. The reported Kolmogorov-Smirnov test statistic is scaled by \(\sqrt{n} \) where \(n \) is the number of cells. When adding a lot of controls to the vector \(\mathbf{X} \), some cells can become too granular to compute the test statistic (division by zero). We therefore also report in the Table the number of cells that are too granular.
Appendix A Additional Graphs And Tables
Figure A.1: Positive Correlation Tests - Distribution of χ^2 test statistics from all cells vs Theoretical $\chi^2(1)$ distribution - Additional Controls

1. Baseline

2. + Demographics

3. + Educ/Industry

4. + Past U History

Notes: The Figure displays the empirical distribution of the Pearson’s χ^2 test statistics for independence between V (buying the comprehensive coverage) and Y, the probability of layoff in $t + 1$, computed from all the cells where we split individuals in cells corresponding to various unpriced observable characteristics. In panel 1, we only use priced characteristics (baseline controls of the positive correlation tests), corresponding to the test implemented in column (1) of Table 3. In panel 2, we add controls for demographics (cf. column (2) of Table 3). Panel 3 and 4 add education and past unemployment history controls (cf. column (3) and (4) of Table 3). The χ^2 test statistic is asymptotically distributed as a $\chi^2(1)$ under the null hypothesis that V and Y_{t+1} are statistically independent (within the cell). We therefore compare this distribution with a theoretical $\chi^2(1)$ distribution. Taking the largest absolute difference between the theoretical and the empirical distribution gives the Kolmogorov-Smirnov test statistic reported in Table 3.
Figure A.2: Price Variation: Dynamics.

A. Marginals M

![Graph of semi-elasticity relative to always uninsured for each year from 2008 to 2012.]

B. Insured I

![Graph of semi-elasticity relative to always uninsured for each year from 2008 to 2012.]

Notes: Because risk realization in 2008 may fail to fully capture the unemployment risk faced by an individual as she is making her coverage choice in 2007, the Figure uses individual risk realizations further into the future, as done previously in the context of the positive correlation test in Figure 2. This Figure reports the correlation between willingness-to-pay in 2007 and realized displacement outcomes in 2008, 2009... up to 2012. Panel A reports for each year $t \in 2008,...,2012$, the semi-elasticity ($E_M[Y^t] - E_U[Y^t]) / E_U[Y^t]$ of the displacement rate in year t for the marginals M relative to the uninsured U. Panel B, reports the corresponding semi-elasticity ($E_I[Y^t] - E_U[Y^t]) / E_U[Y^t]$ for the insured I. Note that the average outcome of each year t and each group G, $E_G[Y^t]$ is conditional on X, the baseline vector of controls for contract differentiation used in the positive correlation tests. To be precise, we compute the average outcome, fixing the average characteristics X in each group at the same level as that of the uninsured U.

51
Figure A.3: Price Variation: Role of Unpriced Heterogeneity

A. Probability of Layoff

B. Total Unemployment Duration

Notes: The Figure explores to what extent estimated adverse selection using the 2007 price variation is driven by selection on observable characteristics that are unpriced in the Swedish UI system. In panel A, we report the semi-elasticity \((E_M[Y] - E_U[Y])/E_U[Y]\) of the displacement rate in 2008 for the marginals \(M\) relative to the uninsured \(U\), while in panel B we report the semi-elasticity of the total unemployment duration in 2008. In both panels, we start with the baseline estimate only controlling for the characteristics affecting the actual UI policy, and show how the semi-elasticity evolves as we add sequentially more characteristics to the vector of controls \(X\). We start by adding demographic controls (age, then gender, and marital status), then controls for skills and other labor market characteristics (controls for education (four categories), industry (1-digit code), occupation (1-digit code) and wealth level (quartiles). We finally add controls for past unemployment history.
Figure A.4: The 2007 Price Reform: Flows of individuals switching in and switching out of the comprehensive coverage over time

Notes: The Figure reports the evolution of the absolute flows of individuals “switching in” and “switching out” of the comprehensive coverage over time. The sample is restricted to individuals were meeting the work eligibility requirement. Individuals who switch in are individuals who were not buying the comprehensive coverage in year $t-1$ but are buying in year t (blue curve). Individuals who switch out are individuals who were buying the comprehensive coverage in year $t-1$ but are no longer buying in year t (red curve). The Figure shows a large and sudden increase in the flow of individuals switching out and a decrease in the flow of individuals switching in, following the large increase in the the premia paid for the supplemental coverage in 2007.
Appendix B Using Risk Variation to Identify Adverse Selection

In this appendix, we explain precisely under what conditions variation in risk can be used to test for the presence of risk-based selection. We then implement this test using three different identification strategies, which all leverage risk shifters that are credibly exogenous to individuals’ own actions.

B.1 Using Variation in Risk

Moral hazard creates reverse causality from insurance to risk, as individuals choose different levels of optimal actions a_k under each plan $k = 0, 1$. Such reverse causality could in principle fully drive the correlation between observed realized risk Y and insurance. The most direct way to control for moral hazard is to shift individuals’ risk, independently of individuals’ actions. To do this, one needs to find variables Z that operate as unpriced shifters of individuals’ risks, akin to the unused observables test in Finkelstein and Poterba [2014].

We briefly explain how and under what assumptions using such variation in risk can identify the presence of risk-based selection. We start from the framework of equation (2) above, which can be rewritten as:

$$v - p \equiv \pi(\theta, a_1) \Delta u_1(\mu, a_1) - \pi(\theta, a_0) \Delta u_0(\mu, a_0) - \Delta u_w(\mu, a_1, a_0)$$ \hspace{1cm} (8)

where a_k denotes an individual’s optimal action under each plan $k = 0, 1$ and $\Delta u_k(\mu, a_k) = u(b_k - p_k|\mu, a_k) - u(w - p_k|\mu, a_k)$ denotes the utility loss due to unemployment when covered by plan k. We also use the notation $\Delta u_w(\mu, a_1, a_0) = u(w - p_1|\mu, a_1) - u(w - p_0|\mu, a_0)$.

Assume now that we can find risk shifters Z that have the following two properties: $\frac{\partial \pi(\theta, Z, a_k)}{\partial Z} \neq 0$ and $Z \perp \mu$. The first property is equivalent to a first-stage property and guarantees that Z shocks individuals’ risk conditional on their actions. The second property can be thought of as an exclusion restriction, and guarantees that Z is uncorrelated with the preference type μ, which would affect willingness-to-pay independent of the change in risk. Under these two assumptions about Z, testing for $v - p \perp Z$ is a test for the null of no risk-based selection. In other words, rejecting the null is equivalent to rejecting the “pure moral hazard” model, in which the correlation between realized risk and insurance choice is entirely driven by moral hazard. The “pure moral hazard” model is characterized by the fact that $E(\pi(\theta, a_k)|v) = \gamma_k$ for both plans k and thus that the average unemployment risk is constant in v.

In the “pure moral hazard model”, there might still be heterogeneity in individuals’ risk types θ or in individuals’ actions, but this heterogeneity must be offset by the preference heterogeneity such that the resulting risks are uncorrelated with willingness-to-pay.

The positive correlation test will pick up a positive correlation in this model as long as $\gamma_1 \neq \gamma_0$. Note, however, that there will be no correlation between willingness-to-pay and any risk shifter Z satisfying the two properties above in the “pure moral hazard” model. The reason is that if Z affects individuals’ risk, but is uncorrelated with individuals’ preference type μ, it can only affect the insurance choice through its impact on risk. Hence, a correlation between Z and insurance choices means that unemployment risk can no longer
be uncorrelated to the willingness-to-pay v as is the case in the “pure moral hazard” model.

If the exclusion restriction $Z \perp \mu$ were not to hold, the correlation between Z and preference type μ could in principle exactly offset the direct impact of the risk shifter on the willingness-to-pay and leave the resulting risk uncorrelated to the willingness-to-pay. In general, however, any correlation between Z and willingness-to-pay would identify the presence of risk-based selection, either stemming from the direct effect of Z on π, which one could call “direct risk selection”, or from selection on risk-related heterogeneity (including selection on moral hazard). In the rest of this section, we exploit the presence of several unpriced risk shifters Z in the Swedish context, and discuss for each of them whether $\text{Cov}(Z, \mu) = 0$ is a credible assumption.

In practice, we test for correlation between risk shifters Z and willingness to pay by running specifications like:

$$V = 1[\sigma \cdot Z + X'\alpha_1 + \epsilon > 0]$$ \hspace{1cm} (9)

and testing for $\sigma = 0$. For useful comparison with the positive correlation test estimates in the linear case, we also report comparison of the PCT model

$$V = \beta_{OLS} \cdot Y + X'\alpha + \epsilon$$ \hspace{1cm} (10)

with estimates of the two-stage least square model

$$V = \beta_{2SLS} \cdot Y + X'\alpha_1 + \epsilon$$

$$Y = \zeta \cdot Z + X'\alpha_2 + \eta$$ \hspace{1cm} (11)

The 2SLS model will yield $\hat{\beta}_{2SLS} = 0$ if the OLS PCT estimate $\hat{\beta}_{OLS}$ is fully driven by the pure moral hazard model.\(^{45}\)

Risk shifters that are exogenous to individuals’ actions are a direct way to test for the presence of risk-based selection versus a model of “pure moral hazard”. Yet, any selection on unpriced risks - whether it is direct or through risk-related preference heterogeneity - is relevant from the insurer’s perspective, as selection along these dimensions will affect the cost of providing the insurance coverage. An important drawback of using risk shifters is that they may get rid of the indirect selection that is welfare relevant or introduce selection that is not directly welfare relevant. To overcome this limitation, we follow a second strategy which relies on exploiting exogenous variation in prices

\(^{44}\)Selection on moral hazard is a form of risk-based selection, but where the choice to buy insurance is related to the difference between e_1 and e_0. For example, an individual buys more coverage anticipating that he or she will reduce her effort a lot under the extra coverage. This again again creates a correlation between willingness-to-pay and cost of providing the different plans k.

\(^{45}\)While risk-based selection is needed for $\hat{\beta}_{2SLS} \neq 0$, the presence of moral hazard still affects this estimate when individuals exert less effort in response to the extra coverage they buy when their risk is shifted.

55
The implementation of the “risk-variation approach” relies on finding risk shifters that affect individuals’ risk probability conditional on their own actions, and that are credibly exogenous to preference heterogeneity (µ) governing individuals’ willingness-to-pay for insurance. Our risk shifters exploit two fundamental sources of risk variation, arguably beyond the control of individuals.

The first source is firm level risk, which can vary cross-sectionally, due to permanent differences in turnover across firms, or over time, due to firms experiencing temporary shocks. In Figure 7 panel A, we provide evidence of the role of firm layoff risk as a shifter of individuals’ own displacement probability. For each individual i working in firm j, we define average firm displacement risk $\pi_{i,j}$ as the average probability of displacement of all other workers within the firm excluding individual i over all years where the firm is observed active in our sample years. We then plot the average firm displacement risk in 20 bins of equal population size, against the individual probability of displacement in $t+1$. The Figure shows that there is significant heterogeneity in firms’ separation rates, and that individuals’ unemployment risk is very strongly correlated with firm level risk.

The second source of exogenous risk variation is at the individual level and stems from the strict enforcement of the Last-In-First-Out (LIFO) principle. As explained in Section 2 when a firm wants to downsize, the legal system prescribes that displacement occurs by descending order of tenure within each establishment times occupation group. The tenure ranking of an individual within her establishment and occupation group directly determines her probability to be separated. Figure 7 panel B plots the probability of being displaced in $t+1$ among individuals working in firms that emit a layoff notification in $t+1$, as a function of relative tenure ranking within establishment and occupation. The Figure provides clear evidence of a strong negative correlation between relative tenure ranking and individuals’ displacement probability. Individuals within the lowest 10 percent of tenure rankings have a probability of being displaced in $t+1$ larger than .1; this probability declines steadily as tenure ranking increases, and then stays below .02 for individuals in the highest 50 percent tenure rankings.

We combine the sources of variations brought about by these underlying risk shifters (firm level risk and LIFO) into three different identification strategies.

Firm Layoff Risk The first strategy consists in simply using the cross-sectional variation in displacement risk across firms as a risk shifter. In Figure B.1 panel A, we group individuals in 50 equal size bins of firm layoff risk, and plot their average firm layoff risk against their average probability of buying supplemental coverage, residualized on the same vector X of baseline controls affecting UI contracts used in the positive correlation test of Section 3.2. The graph displays a strong positive correlation between firm layoff risk and individuals’ probability to buy the comprehensive UI coverage, indicating that there is a clear correlation between Z and willingness to pay ($\sigma \neq 0$). We also report on the graph the coefficient β_{OLS} from an OLS regression of specification (10) and then the estimated coefficient β_{2SLS} from our two-stage least square model (11) where we use $Z = \pi_{-i,j}$ as a risk shifter. In panel B of Figure B.1 we replicate the same procedure, but now
add to the regression the same rich set of additional controls used in Section 3.3 and find a similar strong positive correlation between insurance choices and firm layoff risk.

The positive and significant coefficient $\beta_{2SLS} = .50 \ (0.01)$ rejects that the results of the positive correlation tests of Section 3.2 are solely driven by moral hazard. The relative magnitude of β_{2SLS} and β_{OLS} is also informative. While we anticipate that by controlling for moral hazard β_{2SLS} decreases relative to β_{OLS}, two effects can play in the opposite direction. First, the two-stage least square procedure removes the potential attenuation bias from measurement error in β_{OLS}. Second, risk shifters also introduces some selection, through $\text{Cov}(Z, \mu)$, which has an a priori ambiguous impact on the estimate. $\text{Cov}(Z, \mu)$ will depend on the self-selection of workers into riskier firms: if workers who select to work in riskier firms are more likely to buy UI, selection will be positive. $\text{Cov}(Z, \mu)$ will also depend on the unobserved effect of riskier firm environments on insurance choices: firms with high turnover may have different prevalence of collective bargaining, different firm cultures that can affect individuals’ UI choices. Decomposing $\mu = \kappa_i + \rho_j$ into an individual specific component κ_i and a firm specific component ρ_j, we can think of the the selection introduced by a risk shifter Z as the combination of individual fixed effects and firm fixed effects. We now move to two additional strategies that allow us to control more directly for these two sources of selection introduced by our risk shifters.

Firm Switchers Design In this second strategy, we use the panel dimension of the data to control for the selection introduced by individual specific heterogeneity κ_i. We exploit within individual variation in risk, stemming from both risk shifters: firm risk and tenure ranking. To this end, we focus on individuals who change firms (“switchers”). The employer-employee matched data (RAMS) registers all existing labor contracts on a monthly basis. We define a switch as moving from having a labor contract with firm j (the origin firm) to having a contract with firm k (the destination firm), without any recorded non-employment spell between these two contracts. We focus on individuals with more than 1 year of tenure in the origin firm. Switchers experience a change in their layoff risk coming from underlying variation in both risk shifters: their tenure ranking changes, and so does their underlying firm layoff risk.

First, switchers experience a reduction in their relative tenure ranking, as they become the “last-in” when they move to the destination firm. To document the magnitude of the variation in relative tenure ranking and corresponding layoff risk, following a firm switch, we define year $n = 0$ as the year of a firm switch, and run, on the sample of firm switchers, event studies of the form:

$$Y_n = \sum_k \delta_k \cdot 1[n = k] + \mathbf{X}'\alpha + \epsilon$$

where Y_n denotes the risk outcome of interest in event year n, $1[n = k]$ are a set of event time dummies, and \mathbf{X} is the vector of baseline controls affecting UI contracts. In Appendix Figure B.4 we display the evolution of relative tenure ranking of switchers as a function of event time by plotting the coefficient δ_k, taking event time $n = -1$ as the omitted category. The graph confirms
that relative tenure ranking decreases sharply at the moment of the firm switch. Figure B.2 panel A explores how this variation in relative tenure ranking affects the probability of displacement over event time \(n \). The graph shows that the displacement rate one year ahead (in year \(t + 1 \)) increases sharply and significantly at the time of the firm switch.

In Figure B.3 panel A, we run a similar event study specification with UI coverage as an outcome. The figure shows that the probability of buying the comprehensive coverage increases sharply by about 2.2 percentage points at the time of the firm switch. On the graph, we also display the coefficient from a two-stage least square specification similar to (11) where we use firm switch as risk shifter \(Z \) for individual displacement probability and control for individual fixed-effects. \(\beta_{2SLS} \) is positive and strongly significant, which again indicates that the positive correlation tests are not simply picking up moral hazard responses to insurance coverage.

While these event studies control for fixed underlying heterogeneity across individuals that may affect their UI choices (\(\kappa_{i} \)), one concern with this original implementation of the firm switchers design is that individuals are somewhat inert, and decide to reoptimize their UI choices only at specific times, like, for instance, when they switch firm.

To mitigate the concern that the surge in UI coverage at the time of the switch is the result of the specific timing of UI choices and not a response to the change in underlying risk, we exploit additional variation in risk in the switchers design coming from changes in underlying firm layoff risk. While all switchers experience an increase in their displacement probability due to the decline in their tenure ranking, the effect of a switch on individual displacement probability exhibits large differences according to whether their destination firm is much riskier (“positive shock”) or a lot less risky (“negative shock”) than their origin firm. We therefore split the population of switchers according to their rank in the distribution of \(\Delta_{j,j'}\pi - i = \pi - i,j' - \pi - i,j \), the change in their underlying firm risk when moving from firm \(j \) to firm \(j' \). In Figure B.2 panel B, we contrast individuals in the bottom decile of \(\Delta_{j,j'}\pi - i \) (large negative shock, i.e., individuals who experience a large negative decline in their firm layoff risk, going from a high risk to a low risk firm), and individuals in the top decile of \(\Delta_{j,j'}\pi - i \) (large positive shock, i.e., individuals who experience a large increase in their firm layoff risk going from a low risk to a high risk firm). The Figure confirms that individuals experiencing a large positive shock in their firm layoff risk exhibit a significantly larger increase, of about 2 percentage point, in their displacement probability at the time of the switch, relative to individuals experiencing a large negative shock. In panel B of Figure B.3 we now compare the evolution of insurance choices around firm switch for individuals experiencing large positive vs large negative shocks. The graph indicates that the increase in the probability to buy UI around firm switch is significantly larger (by about 1.5 percentage point) among individuals moving to significantly more risky firms relative to those moving to less risky firms. We also report on the graph the estimated coefficient \(\beta_{2SLS} = .57 (.08) \) of the two-stage model of specification (11) where we now use firm switch interacted with \(\Delta\pi - i,j \) as risk shifter \(Z \) for individual displacement probability.
Layoff Notification and LIFO The previous strategy may still pick up selection on firm level heterogeneity \(\rho_j \) if firm heterogeneity is correlated with \(\Delta \pi_{-i,j} \). The final strategy controls jointly for firm level heterogeneity \(\rho_j \) and individual level heterogeneity \(\kappa_i \) by exploiting variation in layoff risk both within firm and across individuals over time. To this effect we leverage the fact that under Sweden’s employment-protection law, firms subject to a shock and intending to displace 5 or more workers simultaneously must notify the Public Employment Service in advance. In Figure B.5, we report the evolution of the displacement probability of workers around the first layoff notification event in the history of the firm. We define event year \(n = 0 \) as the year in which a firm emits its first layoff notification, and focus on the panel of workers who are employed in the firm at the date this layoff notification is emitted to the PES. The graph shows that a layoff notification is indeed associated with a sudden and large increase in the displacement probability of workers. Immediately following the layoff notification, the displacement rate of workers jumps by 6 percentage points compared to pre-notification levels, and remains high for about two years, before decreasing and converging back to pre-notification levels.

Because the panel of workers is selected based on being employed in the firm in year \(n = 0 \), one may worry that this surge in displacement rates is mechanical, as displacement can only increase after year 0 conditional on all workers being employed in year 0. To mitigate this concern, we follow a matching strategy and create a control panel of workers selected along the same procedure as the original panel. We use nearest-neighbor matching to select a set of firms that are similar, along a set of observable characteristics, to the firms emitting a layoff notification, but never emit a layoff notification. We allocate to the matched firm in the control group a placebo event date equal to the layoff notification date of her nearest-neighbor in the treated group of firms. We then select workers that are in the control firm at the time of the placebo event date to create our matched control panel. Results in Figure B.5 show that, pre-event, the displacement risk is very similar in control and treated firms, and that it evolves smoothly in the control firms around the event.

Once a notification is emitted, employers need to come up with the list and dates for the intended layoffs. These layoffs may happen up to 2 years after the original notification has been sent. The list needs to follow the last-in-first-out principle, so that relative tenure ranking within each establishment and occupation group directly determines one’s displacement probability once a notification has been sent. As a consequence, the effect of a layoff notification on displacement probability is strongly heterogenous depending on the relative tenure ranking of workers, as shown in Figure 7 panel B. Workers with relative tenure ranking below .5 have a much higher probability of being laid-off following a layoff notification than workers with relative tenure ranking above .5.

We exploit this additional layer of variation in displacement risk coming from the interaction between a notification event and relative tenure ranking. In Figure B.6, we show that insurance choices significantly respond to this shift in displacement risk. Panel A of Figure B.6 reports the evolution of UI coverage around the time of the first layoff notification for the panel of workers.

\[^{46}\text{The covariates used for matching are the number of employees, the 4 digit sector codes of the firm, the average earnings and average years of education of workers in the firm.}\]
in the treated group and for workers in our placebo (matching) group, restricting the sample to workers with relative tenure ranking below 50% in year $n = 0$. The Figure shows that UI coverage increases significantly among the treated group, starting one year before the layoff notification is sent, which suggests the existence of some degree of private information among workers regarding the timing of the layoff notification. The Figure displays the estimated coefficient $\beta_{2SLS} = .84 (.21)$ of our two-stage least square model using the layoff event interacted with tenure and a dummy for being in the treatment group as a risk shifter Z. In panel B, we report similar estimates but for the sample of workers with relative tenure ranking above 50% in year $n = 0$. The graph displays no sign of variation in individuals’ insurance coverage around the event.

Taken together, this evidence, which jointly controls for underlying selection on heterogeneity μ coming from firm fixed effects and individual fixed effects, strongly suggests that UI choices do significantly respond to variations in individuals’ underlying unemployment risk. Under the assumption that there is no other heterogeneity varying jointly with the timing of the notification and individuals’ tenure ranking at the time of the notification, $\text{Cov}(Z, \mu) = 0$ in this strategy, and $\beta_{2SLS} \neq 0$ provides evidence for direct risk-based selection.
Figure B.1: Firm Level Risk and UI Coverage Choice

A. Baseline controls for contract space

![Graph showing the relationship between firm displacement risk and the probability to buy UI coverage in t, residualized on the same vector X of baseline controls affecting UI contracts used in the positive correlation test of Section 3.2.]

- Individual-level model
 \[\beta_{OLS} = .108 (.001) \]
 \[\beta_{2SLS} = .502 (.013) \]

B. With additional demographic controls

![Graph showing the relationship between firm displacement risk and the probability to buy UI coverage in t, residualized on the same vector X of baseline controls affecting UI contracts used in the positive correlation test of Section 3.2.]

- Individual-level model
 \[\beta_{OLS} = .082 (.003) \]
 \[\beta_{2SLS} = .245 (.028) \]

Notes: The Figure uses cross-sectional variation in displacement risk across firms as a risk shifter to estimate how UI coverage choices react to variation in risk that is not driven by individual moral hazard. Panel A groups individuals in 50 equal size bins of firm layoff risk, and plot their average firm layoff risk against their average probability of buying supplemental coverage, residualized on the same vector X of baseline controls affecting UI contracts used in the positive correlation test of Section 3.2. We report on the graph the coefficient \(\beta_{OLS} \) from an OLS regression of specification (10) and then the estimated coefficient \(\beta_{2SLS} \) from our two-stage least square model (11) where we use \(Z = \pi_{i,j} \) as a risk shifter. In panel B, we replicate the same procedure, but now add to the regression the same rich set of additional controls used in Section 3.3 and find a similar strong positive correlation between insurance choices and firm layoff risk.
Figure B.2: Firm Switchers - Displacement Rate in $t+1$ as a Function of Time To/Since Firm Switch

A. All Switchers

![Graph showing displacement rate as a function of time to firm switch for all switchers.]

B. Switchers Experiencing Large Positive Firm Layoff Risk Shock vs Large Negative Firm Layoff Risk Shock

![Graph comparing displacement rates for switchers experiencing large positive and large negative firm layoff risk shocks.]

Notes: The Figure focuses on “firm switchers”, i.e. individuals moving from having a labor contract with firm j to having a contract with firm k, without any recorded non-employment spell between these two contracts. We focus on individuals with more than 1 year of tenure in the origin firm. Switchers experience a variation in their layoff risk coming from underlying variation in both risk shifters: their tenure ranking changes, and so does their underlying firm layoff risk. In panel A, we display estimates of the event study specification using displacement risk in $t+1$ as an outcome. The graph shows that the displacement risk increases sharply and significantly at the time of the firm switch. In panel B, we split the population of switchers according to their rank in the distribution of $\Delta_{j,j'}\pi_{-i} = \pi_{-i,j'} - \pi_{-i,j}$, the change in their underlying firm risk when moving from firm j to firm j'. We focus on individuals in the bottom decile of $\Delta_{j,j'}\pi_{-i}$ (large negative shock, i.e., individuals going from a high risk to a low risk firm), and individuals in the top decile of $\Delta_{j,j'}\pi_{-i}$ (large positive shock).
Figure B.3: Firm Switchers - UI coverage choices as a function of time to/since firm switch

A. All Switchers

B. Switchers Experiencing Large Positive Firm Layoff Risk Shock vs Large Negative Firm Layoff Risk Shock

Notes: The Figure focuses on “firm switchers”. In panel A, we display estimates of the event study specification \((12) \) using UI coverage \(V \) as an outcome. The Figure shows that the probability of buying the comprehensive coverage increases sharply at the time of the firm switch. In panel B, we split the population of switchers according to their rank in the distribution of \(\Delta_{j,y} \) : \(\pi_{-i,j'} - \pi_{-i,j} \), the change in their underlying firm risk when moving from firm \(j \) to firm \(j' \), as in Figure B.2 panel B. The graph indicates that the increase in the probability to buy UI around firm switch is significantly larger among individuals moving to significantly more risky firms relative to those moving to less risky firms. On both panels, we display the coefficient from a two-stage least square fixed-effect specification similar to \((11) \) where we use firm switch (and firm switch interacted with shock size) as risk shifter \(Z \) for individual displacement probability.
Figure B.4: Switchers Design: Relative Tenure Ranking as a function of event time

Notes: The Figure focuses on “firm switchers”, i.e. individuals moving from having a labor contract with firm j to having a contract with firm k, without any recorded non-employment spell between these two contracts. We focus on individuals with more than 1 year of tenure in the origin firm. In this Figure we show that switchers experience a variation in their layoff risk coming from underlying variation in their relative tenure ranking. Relative tenure ranking affects displacement probability due to the strict enforcement of the Last-In-First-Out (LIFO) principle in Swedish labor laws. To follow the rules pertaining to the application of LIFO, relative tenure ranking is defined within each establishment times occupation group using the RAMS employer-employee data since 1985. The chart displays estimates of the event study specification (12) using relative tenure ranking as an outcome. The graph shows that relative tenure ranking drops abruptly at the time of the firm switch. Panel A of Figure B.2 shows that this drop in tenure ranking translates in a significant increase in displacement risk.
Notes: The Figure reports estimates of the evolution of the displacement probability of workers around the first layoff notification event in the history of the establishment. We define event year $n = 0$ as the year in which an establishment emits its first layoff notification, and focus on the panel of workers who are employed in the establishment at the date this layoff notification is emitted to the PES. The graph shows that a layoff notification is indeed associated with a sudden and large increase in the displacement risk of workers. Because the panel of workers is selected based on being employed in the firm in year $n = 0$, one may worry that this surge in displacement rates is mechanical, as displacement can only increase after year 0 conditional on all workers being employed in year 0. To mitigate this concern, we follow a matching strategy and create a control panel of workers selected along the same procedure as the original panel. We use nearest-neighbor matching to select a set of firms that are similar, along a set of observable characteristics, to the firms emitting a layoff notification, but never emit a layoff notification. We allocate to the matched firm in the control group a placebo event date equal to the layoff notification date of her nearest-neighbor in the treated group of firms. We then select workers that are in the control firm at the time of the placebo event date to create our matched control panel.
A. Workers With Relative Tenure Ranking < .5 at Event Time 0

B. Workers With Relative Tenure Ranking ≥ .5 at Event Time 0

Notes: The Figure uses layoff notification events interacted with relative tenure ranking as a source of variation in displacement risk to investigate how UI coverage choices react to variations in underlying risk. Panel A reports the evolution of UI coverage around the time of the first layoff notification for the panel of workers in the treated group and for workers in our placebo (control) group, restricting the sample to workers with relative tenure ranking below 50% in year $n = 0$. The Figure shows that UI coverage increases significantly among the treated group, starting one year before the layoff notification is sent, which suggests the existence of some degree of private information among workers regarding the timing of the layoff notification. In panel B, we report similar estimates but for the sample of workers with relative tenure ranking above 50% in year $n = 0$. The graph displays no sign of variations in individuals insurance coverage among the event. On both panels, we display the estimated coefficient β_{2SLS} of our two-stage least square model using the layoff event interacted with tenure and a dummy for being in the treatment group as a risk shifter Z.
Appendix C Proofs and Extensions of Welfare Analysis

This appendix provides the proofs of the Propositions in Section 5 and briefly discusses further extensions.

C.1 Proof of Proposition 1

Proof. We consider the welfare impact of the joint price changes \(dp_1 = -(1 - F) dS \) and \(dp_0 = F dS \) and, hence, \(d(p_1 - p_0) = -dS \) The share of individuals buying comprehensive insurance is given by \(F = \int_{v \geq p} dG(v) \). Applying Leibniz rule, we have \(\frac{\partial F}{\partial p} = -\frac{\partial F}{\partial p_1} = -\frac{\partial F}{\partial p_0} = -\frac{\partial G(p)}{\partial p} \). We can re-write the change in cost from providing coverage due to the switchers by

\[
\frac{\partial}{\partial p} \left[\int_{v \geq p} E(c_1|v) dG(v) + \int_{v < p} E(c_0|v) dG(v) \right] = E(c_1 - c_0|v = p) \frac{\partial G(p)}{\partial p} = E_M(c) \frac{\partial F}{\partial p}.
\]

Invoking the envelope condition for the individuals at the margin (i.e., \(v - p = 0 \)), we can rewrite the welfare impact of the subsidy as

\[
dW = \{ F (1 - F) E_I (g_1) - F (1 - F) E_U (g_0) - \lambda [(p_1 - p_0) - E_M (c_1 - c_0)] \times \frac{\partial F}{\partial [p_1 - p_0]} \} \times dS,
\]

where \(E_I (g_1) = \frac{1}{F} \int_{v \geq p} \omega'(v_1 - p_1) dG(v) \) and \(E_U (g_0) = \frac{1}{1 - F} \int_{v < p} \omega'(v_0 - p_0) dG(v) \). Re-arranging terms, we find

\[
dW / dS / F (1 - F) = \{ E_I (g_1) - E_U (g_0) - \lambda \times \frac{(p_1 - p_0) - E_M (c_1 - c_0)}{p_1 - p_0} \frac{\partial F}{\partial [p_1 - p_0]} \} \times (1 - F) F.
\]

Assuming an interior solution, the subsidy can be optimal only if \(dW/dS = 0 \). This leads to the optimality condition in the Proposition for \(\frac{1}{1 - F} \frac{\partial(1 - F)}{\partial p} = \frac{\partial (1 - F) / F}{\partial [p_1 - p_0]} (1 - F) / F \).

C.2 Proof of Proposition 2

Proof. We consider the welfare impact of an increase in \(b_0 \), for given prices and coverage \(b_1 \). The impact of a change in \(b_0 \) on the government’s budget depends both on the change in selection into both plans and the direct effect from increasing the coverage,

\[
\frac{\partial}{\partial b_0} \left[\int_{v \geq p} [p_1 - E(c_1|v)] dG(v) + \int_{v < p} [p_0 - E(c_0|v)] dG(v) \right]
\]
By analogy to the subsidy change, we decompose the change in cost from providing coverage due to
the change in selection as the demand effect \(\frac{\partial E}{\partial b_0} \) multiplied by the fiscal externality \(p - E_{M(b_0)}(c) \),
caused by the switching of individuals who respond to the coverage change. This fiscal externality
differs from the fiscal externality of the subsidy as different individuals respond to a change in
coverage depending on their marginal value of basic coverage \(\frac{\partial v}{\partial b_0} \), explaining the weights put on
the costs of the different marginals with valuation equal to \(p \).

Invoking now the envelope condition for the individuals at the margin (i.e., \(v - p = 0 \)), we find

\[
d\mathcal{W} = (1 - F) \frac{\partial E_U^0}{\partial b_0} - \lambda (1 - F) \frac{\partial E_{U^0}}{\partial b_0} + \lambda [p - E_{M(b_0)}(c)] \frac{\partial F}{\partial b_0},
\]

where

\[
\frac{\partial E_U^0}{\partial b_0} = \frac{1}{1 - F} \int_{v < p} E \left(\omega' (v - p_0) \frac{\partial v}{\partial b_0} \right) dG(v)
\]

\[
= \frac{1}{1 - F} \int_{v < p} E \left(\omega' (v - p_0) \pi u'(b_0) | v \right) dG(v)
\]

\[
= E_U(\pi) E_U \left(g_0 \times \frac{\pi}{E_U(\pi)} \times u'(b_0) \right).
\]

Using \(\frac{\partial v}{\partial b_0} = \pi \partial u'(b_0) \) and \(E_U(c_0) = E_U(\pi) b_0 \) in the static unemployment model with unemploy-
ment probability \(\pi \), we can re-write

\[
\frac{\partial E_U^0}{\partial b_0} = E_U(\pi) E_U \left(\frac{\pi}{E_U(\pi)} g_0 \times u'(b_0) \right),
\]

\[
\frac{\partial E_{U^0}}{\partial b_0} = E_U(\pi) + \frac{\partial E_U(\pi)}{\partial b_0} b_0 = E_U(\pi) \left[1 + \varepsilon E_U(\pi) b_0 \right].
\]

\footnote{Following the arguments in \cite{Veiga2016} and \cite{Handel2015}, we provide a formal derivation in the
technical appendix showing that

\[
\frac{\partial}{\partial b_0} \int_{v(b_0) > p} E(z | v(b_0)) dG(v(b_0)) = E \left(\frac{\partial v}{\partial b_0} | p \right) g(p).
\]
Hence, the welfare impact becomes

\[
\frac{dW}{\lambda (1 - F) E_U(\pi)} = \frac{EU \left(\frac{\pi}{EU(\pi)} g_0 \times u'(b_0) \right) - \lambda}{\lambda} - \varepsilon_{EU(\pi),b_0} - \left[1 - \frac{E_{M(b_0)}(c)}{p} \right] \frac{p}{E_U(c_0)} \varepsilon_{1-F,b_0}.
\]

At an (interior) optimum, we need \(dW = 0\) and thus the Proposition follows.

C.3 Baily-Chetty Representation

Our optimal policy characterization considers one-dimensional changes in the policy and compares the impact on agents’ welfare relative to the impact on the government’s budget. Alternatively, we can consider a joint change in policy instruments that keeps the budget fixed. In particular, consider the budgetary impact of a joint change in \(b_0\) and \(p_0\),

\[
DB = \left[(1 - F) + [p - E_M(c)] \frac{\partial F}{\partial p_0} \right] dp_0 + \left[- (1 - F) \frac{\partial E_U}{\partial b_0} + [p - E_{M(b_0)}(c)] \frac{\partial F}{\partial b_0} \right] db_0.
\]

A budget-balanced change requires

\[
\frac{dp_0}{db_0} = E_U(\pi) \left[1 + \varepsilon_{EU(\pi),b_0} \right] - \left[p - E_{M(b_0)}(c) \right] \frac{\partial F}{\partial b_0} \frac{1}{1 - F} - \left[p - E(c) \right] \frac{\partial F}{\partial p_0} \frac{1}{1 - F} \frac{dp_0}{db_0},
\]

\[
\equiv E_U(\pi) \left[1 + \varepsilon_{EU(\pi),b_0} \right] + \left[p - E_{M}(c) \right] \frac{\varepsilon_{1-F,b_0}}{E_U(c_0)} - \frac{\text{cov} \left(c, \frac{\partial v}{\partial b_0} | p \right)}{E \left(\frac{\partial v}{\partial b_0} | p \right)} \varepsilon_{1-F,b_0} - \frac{\text{cov} \left(c, \frac{\partial v}{\partial p_0} | p \right)}{E \left(\frac{\partial v}{\partial p_0} | p \right)} \varepsilon_{1-F,b_0}
\]

where the \(\varepsilon_{1-F,b_0,p_0}\) corresponds to the demand elasticity with respect to an actuarially fair increase in basic coverage (accounting for the changed selection). Intuitively, in an adversely selected market, the increase in basic coverage is relatively cheap, given the low risk types buying basic coverage, and thus likely to induce individuals who buy comprehensive coverage to switch to basic coverage.

The welfare impact equals

\[
\frac{dW}{db_0} \frac{dp_0}{(1 - F)} = \frac{\partial E_U(\omega)}{\partial b_0} - \frac{\partial E_U(\omega)}{\partial p_0} \frac{dp_0}{db_0}.
\]

Now to move closer to the original Baily-Chetty formula, we use \(\omega = \pi u(b - p) + (1 - \pi) u(w - p)\) for an agent’s contribution to (utilitarian) social welfare, and assume homogeneity in either risks
or in marginal utilities, so we find that at the optimum,

\[
\frac{E_U (u' (b_0)) - E_U (u' (w - p_0))}{E_U (\pi u' (b_0) + (1 - \pi) u' (w - p_0)) / (1 - E_U (\pi))} = \varepsilon \frac{E_U (\pi u' (b_0)) + (1 - \pi) u' (w - p_0))}{E_U (\pi u' (b_0)) + (1 - \pi) u' (w - p_0)) / (1 - E_U (\pi))} \]

where the left-hand side is determined by the relative difference in marginal utilities of consumption when unemployed vs. employed, just like in the original Baily-Chetty formula.

C.4 Comprehensive Coverage and Private Markets

In the main text, we only provided the characterization of the basic coverage level, because of its immediate relation to a minimum mandate. We can derive a characterization of the socially optimal level of comprehensive coverage in an analogous manner:

Proposition 3. The comprehensive coverage level \(b_1 \) is optimal, for given subsidy \(S \) and basic coverage \(b_0 \), only if

\[
\frac{E_I (g_1 \times u' (b_1)) - \lambda}{\lambda} - \varepsilon_{E_I (\pi), b_1} = - \left[1 - \frac{E_M (b_1) (c)}{p} \right] \times \frac{p}{E_I (c_1)} \times \varepsilon_{F, b_1}.
\]

Note that here the fiscal externality enters the optimality condition with opposite sign, since an increase in comprehensive coverage attracts more individuals to this plan. To provide intuition, it is, however, useful to consider again an actuarially fair increase in \(b_1 \) (funded by those buying comprehensive coverage). By analogy, we find

\[
\frac{E_I (u' (b_1)) - E_I (u' (w - p_1))}{E_I (\pi u' (b_1) + (1 - \pi) u' (w - p_1)) / (1 - E_I (\pi))} = \varepsilon_{E_I (\pi), b_1} - \left[\frac{E_M (b_1) (c)}{E_I (c_1)} \right] \times \frac{cov (c, \partial I / \partial b_1 | p)}{E (\partial I / \partial b_1 | p)} \times \varepsilon_{F, b_1}.
\]

Here, again, the fiscal externality enters with the opposite sign. However, in an adversely selected market, an increase in comprehensive coverage will be costly given the high risk of buying it and will likely discourage individuals at the margin from buying it. This suggests that both for setting the basic coverage and the comprehensive coverage, an increase in the coverage level in an actuarially fair way is likely to make the supplemental market more adversely selected.

While the equilibrium characterization for a market with profit-maximizing insurance is beyond the scope of this paper, we can see how profit-maximizing firms will face a similar trade-off when deciding how to set coverage and price. Two important differences arise compared to the social planner’s trade-off. First, private insurers may care only about the utility increase for individuals at the margin of buying their plan. This would change the left-hand side of the above characterization.
Second, private insurers are likely to only care about how the changed selection affects their own
profits, not how it affects the selection out of other plans. This would change the right-hand
side of the above characterization. In particular, private insurers deciding how to set \(b_1 \) when
the government provides minimum coverage \(b_0 \), will account for \([p_1 - E_{M(b_1)}c_1] \) rather than
\([p - E_{M(b_1)}c] \). In an adversely selected market with average-cost pricing, this would reduce the
impact of the selection effect. As selection effects tend to put downward pressure on the optimal
coverage levels, private insurers may end up over-insuring as a consequence.

C.5 Sorting Effect

The fiscal externality in both Propositions 1 and 2 depends on how many individuals change in
response to the policy (as captured by the demand elasticity) and the cost characteristics of those
who switch. Here we develop formally the argument why the cost characteristics of the switchers
in response to the policy \(\varepsilon \) (as captured by the demand elasticity) and the cost characteristics of those
who switch. Here we develop formally the argument why the cost characteristics of the switchers
in response to a change in coverage is different than for a change in price under multi-dimensional
heterogeneity.48 In particular, we show that

\[
\frac{\partial}{\partial b_0} \left[\int_{v \geq p} E(c_1|v) \, dG(v) \right] = E \left(c_1 \frac{\partial v}{\partial b_0} \big| p \right) \cdot g(p).
\]

An anologue derivation applies for the cost of providing basic coverage.

We use notation \(v' \equiv \frac{\partial v}{\partial b_0} \). Using iterated expectations, we can re-write

\[
\frac{\partial}{\partial b_0} \left[\int_{v \geq p} E(c_1|v) \, dG(v) \right] = \frac{\partial}{\partial b_0} \left[\int_{v \geq p} \int E(c_1|v, v') f(v'|v) \, g(v) \, dv' \, dv \right]
\]

\[
= \int \frac{\partial}{\partial b_0} \left[\int_{v \geq p - v' [b_0 - b_\varepsilon]} E(c_1|v, v') g^\varepsilon(v, v') \, dv \right] \cdot f(v') \, dv'
\]

The second equality follows from using \(f(v'|v) \, g(v) = g(v|v') \cdot f(v') \), approximating \(v \equiv v(b_0) + v' \times [b_0 - b_\varepsilon] \), and substituting the variable in the integral \(v(b_0)(\equiv v) \) by \(v(b_\varepsilon)(\equiv v) \), where
\(dv = dv_\varepsilon \), conditional on \(v' \). We can now apply Leibniz rule and find after re-substituting,

\[
\frac{\partial}{\partial b_0} \left[\int_{v \geq p} E(c_1|v) \, dG(v) \right] = \int \left[E(c_1v'|p, v') f(v'|p) \, dv' \right] g(p)
\]

\[
= E \left(c_1 \frac{\partial v}{\partial b_0} \big| p \right) \cdot g(p).
\]

\[
= E(c_1|p) E \left(\frac{\partial v}{\partial b_0} \big| p \right) \cdot g(p) + \text{cov} \left(c_1, \frac{\partial v}{\partial b_0} \big| p \right)
\]

Note also that the effect on the share of individuals buying comprehensive coverage equals

\[
\frac{\partial}{\partial b_0} \left[\int_{v \geq p} dG(v) \right] = E \left(\frac{\partial v}{\partial b_0} \big| p \right) \cdot g(p) \equiv \frac{\partial F}{\partial b_0}.
\]

48 The derivation follows Handel et al. 2015, which is a slight variation of the approach in Veiga and Weyl 2016.
Hence,

\[
\frac{\partial}{\partial b_0} \left[\int_{v \geq p} E(c_1|v) \, dG(v) \right] = E \left(c_1 \frac{\partial v}{\partial b_0} \bigg| p \right) \frac{\partial F}{\partial b_0}
\]

as used in the proof of Proposition 2.