
 

 

 

 

Flexibility, Profitability and Survival  

in an (Objective) Model of Knightian Uncertainty∗ 

 

John Sutton 

London School of Economics 

 

 
 
 

Abstract: This paper explores the relationship between a firm’s investments in 

‘capability building’, and its prospects for survival.  The analysis is carried out 

using a model of Knightian uncertainty which differs from the standard 

‘subjective probability’ approaches in a number of fundamental respects. 
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1.     Introduction 

 

When a firm invests in acquiring the know-how to produce some new product, it may 

turn out at some future date that the know-how it has acquired in this way will be of 

value in producing further products, whose nature was not foreseeable when the initial 

investment was made.1 These more distant, indirect benefits of investing in know-how 

play a central role in the modern literature on firms’ capabilities, as discussed in the 

extensive literature on ‘Schumpeterian’ or ‘Evolutionary’ models pioneered by Nelson 

and Winter (1982).2  One aspect of a firm’s capability is its ‘flexibility’: if the firm 

invests in know-how in a way that makes it ‘more flexible’ (in the sense that it can 

respond more quickly or more effectively to changes in future market conditions), then 

how does this affect (a) its profitability, and (b) its prospects for survival?  While a 

positive link between flexibility and survival is empirically well supported,3 the 

connection with profitability is complex.  The main substantive contribution of the 

present paper lies in unraveling the implications of such ‘investments in capability’ for 

the firm’s profitability, and its survival, respectively. 

 

Profitability and survival are usually taken to be positively associated: poor current 

profitability may threaten current survival, while strong current profitability makes 

                                                 
1 In some instances, a firm’s decision to proceed with an R&D project may rest on an appeal to 
benefits of this kind.  The Indian machine-tool maker described in Sutton (2001a) emerged in 
the late 1990s as the country’s leading producer of the most popular computer-controlled 
machine tools.  A ‘next generation’ of more sophisticated tools already accounted for a large 
share of the market in advanced industrial economies.  It was clear that investing in the design 
and production of these new generation tools could not be profitable per se – local demand 
would remain modest over the life cycle of these machines.  The company’s decision to 
undertake a ‘loss-making’ investment in developing these more advanced machines lay in its 
belief that, ten years hence, yet newer designs would have evolved, and if it did not develop the 
capability to produce current leading-edge machines, it would not be able to produce designs a 
decade hence which could compete against imported machines of whatever new but 
unforeseeable types the Indian market would at that stage be demanding.  To ask the Indian 
company to specify the future scenario more precisely than this, or to attach probabilities to 
different scenarios, would be futile – yet the company’s view of its survival prospects hinged on 
this judgment. 
2 This paper is one of three companion papers that offer a simple analytical representation of the 
‘capability’ concept.  For an overview, see the first paper in the series (Sutton 2006). 
3 See in particular Schott and Bernard (2005), who link the survival of U.S. manufacturing firms 
to their propensity to switch from one product group to another. 
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withdrawal from a market less likely4.  This conventional view of the association rests 

implicitly on two notions: that the firm’s current profitability is correlated with its likely 

future profitability, and/or that firms face some kind of capital market imperfection, so 

that their access to retained earnings protects them from the consequences of profit 

fluctuations.  In what follows, we focus on a different aspect of the relationship: 

whenever some change occurs in market conditions that require a costly adjustment, 

each firm’s future prospects will depend inter alia on how costly it will be for it to adjust 

to the change, and so on its underlying capability.  This suggests a rather different take 

on the relationship between profitability and survival: the first implication of the present 

analysis in that firms that engage in ‘capability building’ enhance their prospects for 

survival, but – depending upon the values of underlying parameters – such firms may 

score either relatively well, or relatively badly, in terms of their (ex-post) lifetime 

profitability.   

 

A second implication of the present analysis relates to the question of whether profit 

maximizing firms generate ‘too little’ or ‘too much’ investment in capability.  A familiar 

argument turns on the fact that a firm cannot fully capture the gains from such 

investments, in part because the know-how in which it invests may be non-patentable, 

and may be held by individual employees who can quit and join other firms, thus 

generating ‘spillovers’ for rivals.  This generates a bias towards under-investment in 

capability.  In what follows, however, we identify a second, offsetting, bias that leads 

towards over-investment.  This arises because a firm’s investment in capability reduces 

its likelihood of exiting the market; but the exit of any one firm generates benefits for 

rival firms (or potential entrants) who may capture the departing firm’s market position.   

 

In analysing issues this kind, it is reasonable to model the part of the firm’s payoff 

associated with the product it plans to produce in terms of a conventional ‘probabilistic’ 

analysis.  It is, however, less plausible to imagine the firm having some model relative to 

which it might form a well-founded expectation of the additional benefits it may derive 

from ‘future generation’ products whose nature is not yet known.  A more plausible 
                                                 
4 The model that follows relates to the special case of a firm operating in a single market, so that 
the exit of the firm, and its withdrawal from some market (its closing down some line of 
business) are synonymous.   
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representation of the firm’s decision-making in this setting is one that incorporates ‘true’ 

or ‘Knightian’ uncertainty.   

 

A key claim in the ‘Schumpeterian’ literature is that there is a fundamental difference 

between the environment faced by a firm within a ‘probabilistic’ world, as against a 

world of ‘Knightian uncertainty’ in which the evolution of the system is driven by a 

sequence of unique, unrepeatable circumstances that cannot be represented in a 

probabilistic way.   This claim is difficult to formulate, and address, within the now 

standard ‘subjective probability’ tradition that runs from Savage (1954) to Schmeidler 

(1989), since the question it poses relates to the nature of the ‘true, underlying model’ 

faced by agents, a question that is set aside in the standard approach.5   What the 

question amounts to, in formal terms, is this: what difference does it make to the (range 

of) choices that a rational agent might make, if the different scenarios he or she may face 

can not validly be  modeled as arising with some (known or unknown) probabilities?  

An appropriate way of addressing this issue is to introduce a setup in which the 

objective environment faced by the agent is fully specified, and in which we can 

examine the effect of relaxing the key assumption of measurability on which any 

probabilistic analysis must rest.  This is the approach taken in what follows: firms are 

expected profit maximizers, but the environment they face may be one in which 

expectations cannot be taken across certain sets of outcomes.  (The state space contains 

some non-measurable subset). The result of this is that the set of actions that may be 

                                                 
5 The conventional ‘subjective probability’ approach began with Savage (1954) and Anscombe 
and Aumann (1963), and its most widely accepted exemplar lies in the work of David 
Schmeidler and his co-authors.  See in particular, Schmeidler (1989), Machina and Schmeidler 
(1992, 1995), Gilboa and Schmeidler (1993, 1995), Dow and Werlang (1994).  In the original 
Savage approach, the choices of agents are taken as a given, and these choices are rationalized 
by attributing to agents a set of preferences and (subjective) probabilities over states of the world 
under which these choices are consistent with rationality.  Some strands of the modern literature 
depart from the Savage approach of taking choices as ‘givens’ and inducing the probabilities; for 
example, one strand begins by equipping different agents with different prior beliefs as to the 
likelihood of various states of the world (‘non-common priors’; on Savage’s views on ‘common 
priors’, see the remarks of Aumann (1987)).  Different agents then make different choices, 
because they hold different priors.  The effect of using a non-common priors approach, in the 
present setup, is noted on page 19 below.  Other strands in the post-Savage literature include the 
approach of Bewley (1986, 1987), the ‘incomplete preferences’ approach of Aumann (1962), 
and the ‘lexicographic preferences’ of Blume, Brandenburger and Dekel (1991). 
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taken by a rational agent will in general be widened, relative to that obtaining in the 

probabilistic setup.    It will not in general be the case that an appeal to rationality can 

serve to confine a set of agents with identical preferences to some unique best action. 

 

Specifically, we introduce two devices (‘machines’) that generate outcomes, one of 

which is probabilistic, and the other of which is non-probabilistic.  We compare the case 

of an agent facing a machine of the first type, as against the second.  If the machine is 

used only once, then there is no operational difference between the two types of 

machine, in the sense that the set of actions that may be chosen by a rational agent is the 

same in both cases.  Once the machine is used more than once, however, the use of the 

probabilistic machine has the effect of constraining the range of actions that a rational 

agent may validly take, relative to the non-probabilistic setting (‘reasonable actions’ in 

what follows).  

 

By introducing a representation of Knightian uncertainty in which a rational agent faces 

a fully specified objective model of the environment, the present paper reverts to what 

Savage labelled the ‘frequentist’ or ‘British’ view, and which he set out to replace with 

his ‘subjective personality’ approach.  In reverting to this viewpoint, I make no general 

claim for its merits beyond noting that it offers an appropriate vehicle for addressing the 

‘Schumpeterian’ claim noted above.6  A full description of the several ways in which the 

                                                 
6 A more general way of motivating this exploration of an ‘objective’ representation of 
uncertainty is to note that modern economic analysis rests on the notion of analyzing the actions 
of rational agents faced with a model of the world that is fully specified up to some probabilistic 
description (Sutton, 2006).  A failure to ‘close’ the model, by leaving some aspects of the 
objective description of the agents’ environment unspecified, has in the past been seen as a 
defect.  Most famously, the use of extraneous ‘expectations’ or ‘expectations formation 
mechanisms’ (such as static, extrapolative or adaptive expectations) became unfashionable in 
macroeconomics from the 1970s onwards.  It was agreed that agents’ expectations are in practice 
formed by reference to their experience of their environment, and so the appropriate modelling 
technique is to provide a full (objectively accurate) description of the environment, and to 
require that the agents hold ‘rational’ expectations, relative to this ‘true model’ given their 
(complete or incomplete) information regarding models parameters. 
Relative to this standard paradigm of the ‘rational agent plus fully specified model’, the 
conventional literature on uncertainty, at least in the strict Savage interpretation,  remains an 
exception; here, we work in terms of subjective probability and may choose to leave open the 
objectively correct description of the market.  While the usefulness, and fruitfulness, of this 
approach is not in question, it does nonetheless seem reasonable to explore another formulation, 
in which we seek the same kind of ‘closure’ in respect of a non-probabilistic setting of Knightian 
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present approach differs from the standard (subjective probability) approach to 

Knightian uncertainty of Schmeidler et al. will be found in Section 5. 

 

The main novelty of the present framework is that it offers a simple way of bridging the 

perspective offered by ‘equilibrium’ and ‘evolutionary’ models respectively.  In 

standard (Walrasian or Nash) equilibrium models, the preferences, and so the choices, of 

optimizing agents pin down market outcomes.  In a standard evolutionary model agents 

are not assumed to make optimizing  choices; rather their actions are determined by their 

‘types’, and equilibrium outcomes are driven by selection effects that operate 

differentially across the various types of agent.  In practice, both these features of 

markets are important.  In the setup developed here, agents are rational maximizers with 

identical objectives who face a known environment, but the nature of the environment 

they face is such that an appeal to rationality does not, in general, lead to a complete 

ordering of actions.  In contrast to the now conventional approach which introduces 

some additional behavioural postulate  (‘uncertainty aversion’ or ‘maximin behaviour’) 

in order to pin down a unique outcome, we appeal only to the rationality of (expected) 

profit maximizing agents, and we note that there will, under Knightian uncertainty, be 

some subset of actions, any member of which can be chosen by a rational agent.  In this 

setting, rationality only partially constrains outcomes, while selection effects operating 

across agents also play a role in pinning down the final outcome.  The present approach 

offers one, very simple, way of combining the roles of optimizing behaviour and 

selection effects as drivers of market outcomes. 

 

2.     Modelling Knightian Uncertainty 

 

Consider a ‘machine’ which generates a discrete outcome, z, taking the value 0 or 1, as 

follows.  The machine operates in two steps.  In step 1, a continuous random variable w 

is drawn from a uniform distribution on [0,1].  Step 2 involves a set, S, defined on [0,1], 

the construction of which is described later.  If the random variable w lies in the set S, 

then x=1; otherwise, x=0.  In what follows, an agent will be required to make a choice 
                                                                                                                                                
uncertainty as was achieved for probability (risk) in the ‘rational expectations’ literature.  One 
virtue of the approach offered here is that it provides a very simple way of doing this. 
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between two available alternatives.  The payoff received by the agent will depend on the 

action chosen and on the sequence of future outcomes generated by this ‘machine’. 

 

In specifying the construction of the set S, we distinguish two cases, and we identify two 

distinct machines accordingly.  The first case represents a standard ‘risk’ model: 

Machine I is constructed by choosing as the set S some measurable subset of [0, 1]; the 

measure of S is denoted p.  ‘Machine II’ involves constructing S as a non-measurable 

subset of [0,1].   It will be a useful aid to intuition in what follows to recall some 

standard examples of non-measurable sets: 

 

1. (Vitali):  Map the unit interval onto the circumference of a circle, so that 1 

coincides with 0.  For any pair of points x and y, let x ~y if the length of the arc 

joining them, |x-y|, is rational.  The equivalence relation ~ defines a set of 

equivalence classes; select one member from each class (this step requires the 

Axiom of Choice); the set of members selected form a (non-measurable) set, 

which we denote as S0.  (For a formal statement, and proof, see for example, 

Billingsley (1995), p.45). 7 

 

2. (A sequence of outcomes): Consider 000 S...SS ×××  as a subset of 

[ ] [ ] [ ]0,1...0,10,1 ××× .  The set 000 S...SS ××  is non-measurable (Burrill (1972), 

Sec.   5 – 73, p. 80). 

 

3. (Halmos):  Building on example 1 above, Halmos (1950) constructs a non-

measurable set M which has the property that its inner  (Lebesgue) measure is 

zero, while its outer (Lebesgue) measure is unity.  (The ‘ultimate non-

measurable set’, in the words of Gelbaum and Olmsted (1964)).  This feature 

carries over to subsets of [0, 1] in the following sense: for any Lebesgue 

measurable set E, the outer and inner Lebesgue measure of E∩M  satisfy. 

                                                 
7 The idea behind the proof is that any translation of S0 by a rational number rk produces a 
congruent set Sk.  The proof that S is non-measurable lies in noting that there is a countably 
infinite number of these (disjoint congruent) sets whose union coincides with [0,1], and if S is 
measurable, each must have the same measure.  But this measure must be zero, whence [0,1] has 
measure zero; or it must be positive, whence [0,1] has infinite measure; whence a contradiction.   
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 )E(µ)EM(µ* =∩  and 0)EM(µ* =∩  

 

To construct the set S used in Machine II we proceed as follows: we introduce two 

disjoint Lebesgue measurable sub-sets of [0, 1], labelled 31 E and E , the sum of whose 

measures is at most 1.  We define the (Lebesgue-measurable) set .)EE(E c
312 ∪=   We 

define S as follows: 

 

)EM(    ES 21 ∩∪=          (1) 

 

so that ).E(µ)S(µ and )E(µ)E(µ)S(µ 1*21
* =+=   In the special case where 

,0)E(µ)E(µ 31 ==  we have ‘pure Knightian uncertainty’, while in the case where 

,1)E(µ)E(µ 31 =+  Machine II is equivalent to the ‘probabilistic’ Machine I, with 

).E(µp 1=   The outer and inner Lebesgue measures µ*(S) and µ*(S) provide a 

counterpart to the non-additive probabilities of Schmeidler (1989): to see this, define the 

random variables Zt, taking the value 1 if w 2 1 E E ∪∈ and zero otherwise, and Wt, taking 

the value 1 if  1E ∈w and zero otherwise, whence the partial sums satisfy 
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where the first and last terms converge almost surely to µ*(S) and µ*(S) respectively.  It 

follows that we can associate the non-additive probabilities p = µ* (S) and q = 1- µ*(S) 

with the events 1 and 0 respectively, so that 1 – p – q = µ (E2) provides a measure of the 

degree of uncertainty in the sense of Schmeidler.   

 

The following intuition provides the motivation for the definition of ‘reasonable actions’ 

on which the present approach rests: we may think of the agent considering various 

possible scenarios, each represented by a sequence of random draws of w, (not observed 

by the agent).  We may imagine an agent who ‘thinks through’ each such scenario, and 
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arrives at a (correct) view as to the outcome ), x..., ,x( T1  that will arise under this 

scenario.  But  there is an uncountable infinity of such possible scenarios to consider, 

and in the (pure) uncertainty setting (recalling Example 2 above), there is no ‘grouping’ 

or ‘ordering’ of such scenarios that provides a shortcut to classifying them.  Exploring 

any countable number of scenarios will not lead to any ‘settling down’ in the fraction of 

occurrences of some particular sequence ), x..., ,x( T1  and so continued introspection by 

the agent will not lead to any settled view as to the relative likelihood of this sequence.  

It is plausible that no agent can examine more than a countable infinity of scenarios, and 

so different agents, each having examined different sub-sets of possible scenarios, may 

choose different actions.  In particular, there is no basis for imposing on each agent a 

requirement to choose actions as if (x1,x2) = (1,0) is no more or less likely than  (x1,x2) = 

(0,1): a continuing exploration of scenarios leading to (1,0), or  to (0,1), can produce no 

settled view as to their relative likelihood.  This is the key difference between Machine 

II and the ‘probabilistic’ Machine I, under which these events are equally likely. 8, 9 

 

This remark suggests an obvious question: what would happen if, instead of using the 

same Machine I repeatedly, we used a different version of Machine I each time?  Could 

we not thereby relax the cross-restrictions on the probabilities of different sequences of 

outcomes?  The answer to this turns on the question: where do these ‘different’ versions 

of Machine I come from?  Two cases arise.  In the first case, the different versions of 
                                                 
8 This interpretation may suggest an analogy with the recent literature on complex environments, 
which begins from the question: what if two contracting parties face an environment which is 
‘too complex’ to admit of the writing of a complete contract? (See, for example, Al-Nagar, 
Anderlini and Felli (2006)). 
 
9 It is worth commenting on the role played in the present setup by the ‘stationarity of structure’ 
introduced by way of repeated draws from Machine II.  The idea here is to pin down a key 
distinction: if there are observable differences in the agents’ environment over successive 
periods, then the agent might condition a choice of action on such differences.  In any empirical 
setting, there will always be such differences across successive periods.  We abstract from any 
such conditioning here, in order to focus attention on the key idea: in seeking to capture the idea, 
prevalent in the older literature on Knightian uncertainty, of a sequence of outcomes driven by 
unique, unrepeatable events, we set aside such aspects of this uniqueness and unrepeatability as 
might be used to condition a choice of action by a rational agent; and we embed what remains of 
this uniqueness and unrepeatability in the realizations of w for successive periods.  The point is 
that stationarity in the structure or environment does not here imply any ‘nice’ properties in that 
stationarity in the structure or environment does not here imply any ‘nice’ properties in regard to 
the sequence of outcomes that will be generated. 
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Machine I (or equivalently, the different values of p which they embody) are themselves 

drawn from some underlying distribution.  If this is the case, then we are back in the 

simple setting of a single Machine I; for the agent can proceed by simply taking an 

expectation of p; and can proceed to make inferences from past values of x, in 

essentially the same way as before. 

 

The second case is more interesting.  Here, we posit that there is no underlying 

population of ‘Machine Is’ from which the machine used in any particular period is 

drawn.  Rather, we just have a sequence of machines (i.e. values of p) which are 

‘different’.  But this begs the question, for the issue now becomes: what do we mean by 

a ‘sequence of values that are different’?  Does this sequence have any ergodic property?  

Does it admit of a probabilistic description?  The aim of the construction described 

above is to provide an explicit description of a set-up in which the answers to such 

questions is ‘no’.  Introducing the idea of ‘different machines’ in each period does not 

advance the discussion, and so we operate throughout with a set-up in which the same 

machine, of either type I or type II, is used in successive periods.10, 11 

 

 

 
                                                 
10 That said, some readers may prefer to bypass the use of ‘Machines I and II’, and may be 
willing to appeal instead to the idea that outcomes in setting I are stochastic (probabilistic) but in 
setting II, agents face an ‘arbitrary sequence of 1s and 0s’.  Everything that follows can be built 
on this foundation, so long as it is accepted that this phrase implies  that a rational agent has no 
basis for carrying forward any useful information from past periods, or of appealing to any 
probabilistic arguments in respect of future outcomes.   The idea here is simply to retain the 
classical notion of the fully rational decision maker, while placing that decision maker in a fully 
specified setting in which recourse to any appeal to certain kinds of argument available in the 
classic setting of ‘risk’ or ‘probability’ is logically untenable. 
 
11 One further point is worth noting here, in relation to the ‘Schumpeterian’ question that 
motivated our introduction of the intrinsically non-probabilistic Machine II: why can we not 
replace Machine II with a one-shot machine that selects an infinite sequence of 1s and 0s ab 
initio?  Since this is a one-shot machine, and since it attaches unknown probabilities to each 
possible sequence, the environment it generates is operationally equivalent from the point of 
view of the decision-maker from the repeated use of Machine I.  In this sense, a ‘hidden 
probability, one-shot device’ can always provide an environment equivalent to that of Machine 
II.  Unlike Machine I used repeatedly, however, successive draws have no ergodic property, and 
the Bayesian updating apparatus of the subjective probability approach is not applicable.  
(Gilboa and Schmeidler (1993), Dow and Werlang, (2006)).  
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Reasonable Actions 

 

Recall that we may appeal to the inner and outer Lebesgue measures of S to place 

bounds on the fraction of occurrences of 1, and of 0.  With this in mind, and writing p = 

µ* (S) and q = 1- µ*(S), we introduce the following definition: 

 

Definition (‘Reasonable Actions’): The action a' is reasonable at period t, if there exists 

some (‘justifying’) sequence of 1s and 0s, denoted ), ... , x,x( 21  such that for all actions  

a ∈A, the agent’s expected payoff, conditional on this given sequence, satisfies  

Eπ (a′ | pt, pt+1, … ) ≥  Eπ (a | pt, pt+1, … ) where pt = p + (1 – p –q) xt. 

 

Remark:  In the special case p = q = 0 (pure uncertainty), this reduces to the requirement 

that there exists some (‘justifying’) sequence of outcomes ,...)x,x( 1tt +  such that for all 

actions a є A,  ,...).x,xa(π,...)x,x'a(π 1tt1tt ++ ≥   Here, we can avoid introducing any 

explicit reference to probabilities or beliefs, and work directly in terms of the availability 

of a justifying sequence of outcomes. 

 

Two remarks are in order regarding this setup: 

i. The key point of departure from Savage (1954) lies in dropping Savage’s axiom 6 

(‘measurability’).  This leaves intact Savage’s notion of ‘qualititative probability’.  

Indeed, we may construct an ‘objective’ counterpart of Savage’s concept as 

follows, by taking advantage of the examples described above.  For instance, we 

may choose two versions of Machine II, the first containing the set S defined in 

equation (1) and the second containing the set S' = M ),E∪E(∩ 21  whence S'⊂ S.  

An agent who initially faces the first machine, on being told it has been replaced 

by the second machine, will consider the outcome x=1 to be (weakly) ‘less likely’ 

than before, in the sense of Savage’s ‘qualitative probability’.12  

 

                                                 
12 On later contributions to the literature on ‘qualitative probability’, see, for example, Fishburn 
(1969, 1996). 
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ii. In the conventional Schmeidler approach, and related approaches, the aim is to 

construct a ‘theory of decision’, and so the agent is equipped with some preference 

system such as ‘uncertainty aversion’ in Schmeidler et al. or ‘maxmin behaviour’ 

in Garlappi et al. (2004); the effect of introducing such a restriction in the model 

which follows is considered in Section 3.  It is difficult, however, to find any 

compelling or a priori justification for imposing any single behavioural postulate 

on all agents.  This problem becomes acute in contexts  like the one explored in the 

present paper, in which the pattern of outcomes is not driven by some typical, 

average or predominant type of behaviour among agents, but is instead critically 

dependent on whether a certain action is chosen by any (possibly very small) 

fraction of agents.   

 

In contrast to these conventional approaches, the aim in what follows is not to pin 

down some unique ‘best’ action.  Rather, all agents are equipped with the same 

preferences, but the setup is such that it will not in general be the case that there is 

a unique ‘reasonable action’; in other words, the above criterion of 

‘reasonableness’ will lead only to a partial ordering of actions.  The agent may 

justify the action chosen by avowing a belief that the machine will generate some 

specific ‘justifying sequence’.  This interpretation of the above definition is 

intuitively attractive, and is convenient in thinking about the relationship between 

this approach and the conventional ‘subjective probability’ approach, but it is not 

essential to the present setup, which rests directly on the above concept of 

‘reasonable actions’.  The key intuitive idea underlying the present approach is 

this: we aim to construct a fully specified (‘closed’ or ‘objective’) model of the 

environment faced by agents, within which all agents have equal and complete 

access to a full description of their environment, but in which an appeal to agents’ 

rationality cannot be used to confine agents to a unique best action.  

 

We now add the key behavioural assumption, which ensures that there will be a 

diversity of choices across agents:   
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Denote by )A(Â ⊆  the (finite) set of ‘reasonable actions’.    We assume that there is 

some distribution of ‘agent types’ from which agents are drawn at random.  Faced with a 

set Â of reasonable actions, each type is mapped into one chosen action. 

 

Assumption: (‘Non-degeneracy’; ‘Agent Types’):  there is no proper subset of Â such 

that a fraction 1 of all ‘agent types’ choose actions in this subset. 

 

Remark 1:  The above assumption is natural, given the definition of ‘reasonable actions’; 

for if both a' and a'' lie in Â , then there is no rational argument for favouring a'', or vice 

versa; and so there is no rational argument that an outside observer might use to argue 

that all agents will (or should) avoid the use of a'  in favour of  a''. 

 

Remark 2:  It is of interest to ask: what if we lower the qualitative probability of the 

outcome 1, either in some single period or in all periods, by replacing the set S by S'⊂ S 

in Machine II?  Under the above definition of ‘reasonable actions’, the set of reasonable 

actions is thereby unchanged.  This, however, leaves open the possibility that the 

fraction of agents choosing each action may now change.  This provides an avenue for 

examining how changes in information impinge on outcomes in the present setup; but 

the development of this theme lies outside the scope of the present paper.13 

 

 

3.  Flexibility, Profitability and Survival 

 

The Model 

 

Consider a set of N identical isolated ‘islands’.  We will be concerned with the market, 

on each island, for a certain good, which can be supplied in many alternative ‘varieties’ 

                                                 
13 In the model developed below, replacing S by S' will leave the final outcome unchanged, but 
may change the rate of convergence to that outcome. 
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(or ‘qualities’).  The size of the market on each island is such that this good will be 

supplied, at equilibrium, by a single ‘active’ firm.14   

 

Over successive periods, an exogenous shock may occur which makes feasible the 

production of a new variety which consumers will prefer to the variety currently 

offered.15   When such a shock occurs, any firm offering the new variety completely 

displaces any firm offering the old variety.  Within any given period, the (single) firm 

offering the currently favoured variety enjoys a profit of one unit.16  A firm’s payoff is 

the net present value of its net revenue stream, discounted at a common discount factor 

δ. 

 

The focus of interest lies in asking: will the new variety be offered by the incumbent (i.e. 

the single firm active in the preceding period), or by a new entrant?  The answer to  this 

question will turn on the form of investment in capability that the incumbent has made. 

 

 

 
 

Figure 1:  The relation between product varieties and underlying technologies.  

Learning to produce X (or Y, or Z) costs C.  Mastering know-how element A (or 

B, or C) costs c, where c<C<2c. 

 

In this example, we confine attention to a very simple mapping between the set of  

products (‘varieties’) and the set of underlying technologies used in their production.  

                                                 
14 Alternatively, we may suppose that price competition is à la Bertrand, so that, given positive a 
sunk cost of entry, it is never profitable for a second supplier (or the same-‘current’ or ‘best’-
variety) to enter. 
15 An alternative version of the model involves the introduction of  new, higher quality, products 
that displace current offerings. 
16 i.e. There is a continuous flow of net revenue to the incumbent between t and t+1 whose net 
present value as of t equals unity. 

 W    Z   Y   X

  A B   C 
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Figure 1 illustrates the relationship.  Product varieties are labeled X, Y, Z… and the 

underlying technologies are labeled A, B, C… 

 

A firm aiming to produce any specific product, say X, can choose to master the know-

how required directly in the production of X, at some fixed cost C, incurred over some 

‘learning period’ τ.  This is referred to in what follows as the FIX policy. 

 

Alternatively, it can choose to master the underlying technologies (‘elements of know-

how’) A and B.  (This will be referred to as the FLEX policy).  A firm choosing this 

latter route can master each of these elements of know-how (sequentially) in time τ/2 

each, and bring product X to market within the same time τ as required by a firm using 

the FIX policy , but the cost it incurs is c per element of know-how, or a total of 2c.  We 

assume c<C<2c.17  The return from this more costly investment accrues if and when 

demand switches to product Y (or W), since the incremental fixed outlay that must be 

incurred to produce Y is now the cost of mastering the know-how element C, i.e. a cost 

of c, and the time it takes to do this is τ/2 < τ.  For a firm that followed the (low-cost) 

FIX policy in the production of X, the time taken to bring Y to market is τ and the fixed 

outlay it must incur to produce Y equals C (assuming it learns to produce Y directly; it 

may alternatively do so by mastering know-how elements B and C at cost 2c > C again 

in time τ, thereby moving to a FLEX policy). 

 

Suppose that in some period t > 0 there is a switch to a new variety.  Suppose an 

incumbent is in place who has followed the low investment FIX policy.  Its incremental 

(minimum) fixed outlay in bringing the newly favoured variety to market (and the time 

required to bring it to market) is identical to that of a potential entrant.  We assume that 

there is an infinite sea of  potential entrants, and that each firm, whether incumbent or 

entrant, has an equal chance of being selected, so that the probability of the incumbent’s 

remaining in place is zero.  On the other hand, if the incumbent has followed the high 

investment FLEX policy, then its incremental cost of introducing the new product is c, 

                                                 
17 If C < c, the FLEX strategy can never be worth using, while if C > 2c the FIX strategy can 
never be worth using. 
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and it can introduce it in time τ/2> τ.  It will be feasible and profitable, under this 

scenario, for the incumbent to pre-empt entrants and offer the new variety.  

 

It remains to describe the special case of period t = 0, when the market opens, i.e. there 

is no incumbent.  Before the market opens, there is a demand announcement at time -τ.  

The time taken to bring the product to the market is τ, irrespective of whether the firm 

follows a high or low investment policy.  At time -τ a single firm is selected from among 

the potential entrants, and it may choose either a FIX or FLEX policy. 

 

In order to focus on the main issues, we present the model in terms of  this ‘reduced 

form’ description throughout, so that the only decision faced by a firm lies in choosing 

between the available actions FIX and FLEX, at any period when either (a) t = 0, and it 

is the firm selected or (b) a switch occurs, the incumbent is a FIX firm, and it is the firm 

selected. 18 

 

We now turn to the manner in which switches of demand may occur.  The pattern is as 

follows: either demand switches from X rightwards to Y leftwards to W, or there is no 

switch (Figure 1).  In the first case, demand may at any later date switch one step further 

to the right (i.e. to Z, etc.).  In the second case it may in any future period switch one 

step further to the left.  No ‘reverse’ switches occur in either case.  We will without 

further loss of generality, confine the analysis to rightward switches (X → Y → Z…) in 

what follows. 

 

Machine I 

 

We begin by investigating the evolution of outcomes under Machine I as a function of 

the underlying parameters.  Nothing of interest is lost by fixing the value of C to unity; 

                                                 
18 A ‘structural’ version of the model can be formalised in a conventional way within the 
conventional (probabilistic) model below, by reference to pure strategy Nash equilibrium 
outcomes in the ‘entry’ sub-game beginning from any period t.  (The entry sub-game is played 
between the incumbent and a (large) number of potential entrants. The actions open to potential 
entrants are ‘FIX, FLEX, or Don’t enter’.  For the incumbent, the actions are ‘insert C’ or ‘Don’t 
invest’).  Under the ‘uncertainty’ regime, ‘expected profit’ is not defined, however, and this 
extension is not straightforward. 
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the parameters of interest are then δ, c and p; and the range of interest of c is then ½ ≤ c 

≤ 1.19   

It is useful to think of the state of each island as the action taken by its current 

incumbent.  As we have noted, once any island is occupied by a firm that has chosen 

FLEX, that firm remains the incumbent forever.  We refer to such islands as being in the 

FLEX state; the other islands are in the FIX state.  In this language, FLEX is an 

absorbing state. 

 

We begin with the case where agents know the probability of a switch p,  1p0 ≤≤ .  We 

define the expected payoff (N.P.V.) derived by entering at t=0 with a FIX, or with a 

FLEX, policy, as a function of c, δ and p.   

 

A FLEX firm invests 2c > 1 at t = 0.  It receives a profit of 1 in each period from t = 0.  

In each period from t = 1 onwards it pays a switching cost of c with probability p.  

Hence its NPV as of t = 0 becomes  

 

E cp  
11

1c2FLEX δ−
δ

−
δ−

+−=π       (2) 

 

A FIX firm invests C=1, and it receives a profit of 1, at t = 0.  In each subsequent period 

it continues in operation with probability (1 – p), and conditional on doing so receives a 

profit of 1.  Hence its NPV as of t = 0 becomes 

 

 

E
δ−−

δ−
=π

)p1(1
)p1(

FIX         (3) 

 

We define a schedule in (c,p) space, along which FIXFLEX π=π , for each value of δ.  In 

what follows, we show that this schedule, which we label c (p|δ), has the following 

properties (the proofs of these, and all subsequent results, are given in the Appendix): 

                                                 
19 If c < ½ the FLEX strategy is superior on all trajectories, while if c > 1, the FLEX strategy no 
longer offers a cost saving relative to FIX when a switch occurs. 
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• At p = 0, c (p|δ) = ½, and is increasing with p 

• There is a critical value of )2/)53((=δ : for δ  below this critical value, c(p|δ) 

is strictly increasing on p ∈  [0, 1].  For δ above this critical value, c (p|δ) is 

single peaked on p ∈  [0, 1]. 

 

Figure 2 (a) shows the curve c (p|δ) below which the N.P.V. of the FLEX policy as of t 

= 0 exceeds that of the FIX policy.  It is for intermediate values of p that FLEX does 

relatively well.20  The point to note from this figure is that there exists a maximal value 

of c, corresponding to the peak of the curve, above which FIX does better for all p.  For 

small values of δ, this maximal value of c, which we labeled  ĉ, above lies in the relevant 

region [1/2, 1].  Figure 2 (b) shows the curve in (c, δ) space which separates the region 

where FIX does better for all p, and the region where FLEX does better for some p.  We 

label this curve ).δ(ĉ  

                                                       

 
 
 
 
 
 

 
 

                                 
           
 
    
 
Figure 2:  Optimal actions under the (probabilistic) Machine I: Panel (a) shows the 
curve in (c,p) space below which the N.P.V. of the FLEX strategy exceeds that of the 
FIX strategy, for various values of δ, 321 δδδ << .  As δ increases, the area under this  
curve expands.  Panel (b) shows the curve ĉ (δ) above which FIX wins for all p, and 
below which FLEX wins for some p. 
 

                                                 
20 When p is close to zero, FLEX does relatively badly as switches rarely occur, so the additional 
initial investment cost is not recovered.  When p is high, FLEX does badly, since its continuing 
flow of profits is offset by continuing investment outlays. 
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The implications for the case in which p is known are as follows: depending on the 

probability of switches, and on the underlying parameters c, C and δ, either FLEX is 

optimal and every island is occupied in period 0 by a FLEX firm who remains the 

incumbent forever, or else FIX is optimal and every island is occupied in period 0 by a 

FIX firm, and is thereafter occupied by a continuing sequence of newly arriving FIX 

firms drawn from the pool of potential entrants.   

 

So far, we have assumed that the agents know the value of p.  The results illustrated in 

Figure 2, however, imply some immediate implications for the case where p is not 

(initially) known on the prior beliefs (subjective probabilities) of agents as to the value 

of p.    If different firms have different priors, then within the right hand zone of Figure 

2. (b), some firms may at least initially use the FLEX strategy, while other may use FIX.  

But in the left hand zone, all firms will use FIX, since FIX is superior to FLEX for all 

values of p.  This is the only feature of the Machine I setting which is of interest in what 

follows.  The key point is that this statement is true for the Machine I setup, 

independently of any assumptions that we might choose to make regarding priors and 

methods of updating (learning).  In particular, equipping agents with non-common priors 

leaves this point unchanged.  (For the non-common priors approach, see for example 

Kajii and Ui (2005), Harrison and Kreps (1979)). 

 

Machine II 

 

We now turn to the case in which Knightian uncertainty is present.  Recall that we begin 

at t = 0 with all consumers demanding variety X.  A trajectory (or sequence) of 

outcomes from t = 1 to t = T is a sequence of 0s and 1s, where 1 indicates that a switch 

occurred at period t.  Thus (1, 0, 0…0) denotes a switch at t = 1 and no switch thereafter.  

Two trajectories are distinct if they differ in any element, and the number of distinct 

trajectories over a T-period horizon is 2T. 

 

An action is reasonable if there exists (at least) one ‘justifying sequence’ (pt).  It is 

convenient to write pt  in the form ,x)qp1(p t−−+  ,1x0 t ≤≤  and to refer to xt as the 

‘justifying sequence’. 
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We begin with the characterization of a justifying sequence for the action FLEX.  

Consider the sequence )x( *
t which maximizes the difference in expected profit 

.πE - πE FIXFLEX   The action FLEX is reasonable if and only if FIXFLEX πE  πE ≥ under this 

sequence: 

 

Lemma 1:  The sequence )x( *
t  that maximizes FIXFLEX πE  πE −  takes the form 

(1,1,…1,0, 0, …), i.e. a finite sequence of 1s followed by an infinite sequence of  0s.  

For the ‘pure uncertainty’ case p = q = 0, it takes the form (1, 0, 0, …). 

 

Proof: Appendix 

 

In what follows we confine attention to the case of pure uncertainty. We begin by 

constructing a curve in (c, δ) space, labelled )δ( c~ , along which the FLEX strategy is 

equi-profitable with the FIX strategy along the specific trajectory (1, 0, 0…) on which a 

single switch occurs in period 1 (Figure 3).  It is shown in the Appendix that, to the left 

of this schedule, FIX wins on all trajectories, while to the right, FLEX wins on some 

trajectories.  (Note that FIX always wins on at least one trajectory, viz. (0,0,0,…)). 

 

The schedule )(c~ δ is constructed by reference to the profits earned along the specific 

trajectory (1, 0, 0…).  On this trajectory, 

 

 cδ -
δ-1

1
 + 2c-   =  π  and  0=π FLEXFIX  

 

whence, equating FLEXFIX π=π  to define )(c~ δ  we have 

 

 
)2)(1(

1)(c~
δ+δ−

=δ        (4) 

 

We now state: 
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Lemma 2:  The curve )(c~ δ lies strictly to the left of  the curve )(ĉ δ over the range 

 ½< c ≤  1. 

 

Proof:  Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:   Comparing reasonable actions under Machine II with optimal actions 

under Machine I.  The left hand curve )(c~ δ  shows the values of (c, δ) along 

which FIX and FLEX yield equal N.P.V. on the trajectory (1, 0, 0…).  To the 

right of this curve, FLEX wins on some trajectories. The right hand curve )(ĉ δ  is 

taken from Figure 2 (b), and shows the boundary between the zone where FIX 

wins for all p, and that in which FLEX wins for some p. 

 

The zone of interest in what follows is the middle zone, lying between the two curves.    

It follows that both the FLEX and FIX policies constitute reasonable actions inside this 

middle zone.  (To see this, note that FIX always wins on some trajectories, since it 

necessarily wins on (0, 0, 0…), while FLEX wins on (1, 0, 0…) by construction). 

 

The following result now follows immediately from the above ‘Non-Degeneracy’  

assumption.  Note that the ‘Non-Degeneracy’ assumption implies that there will be some 
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probability p > 0 with which the (randomly chosen) entrant chooses FLEX at each 

period when a switch has occurred; and this probability is independent of the 

(uninformative) history of past outcomes. 

 

Proposition 1: Under Machine II, let (c, δ) lie to the right of )δ(  c~ .  Then, for 

any η,ε > 0, there exists T, such that for a fraction exceeding η - 1  

of trajectories, the probability that any island is occupied by 

FLEX firms at any t > T exceeds 1 – ε. 

 

Proof: Appendix 

 

Proposition 1 implies that FLEX firms must, for almost all trajectories, eventually 

dominate the set of island markets.  Recall that, under Machine I, in the middle zone of 

parameter space, only FIX firms enter the market, and Proposition 1 does not hold. 

 

We now turn to the relative profitability of FIX and FLEX strategies.  As noted already, 

this can only be judged on an ex-post basis.   

 

The relative profitability of the two strategies varies as we move across the zone, and 

across trajectories.  We first note that, in a neighbourhood of the horizontal axis (i.e. 

where the (c, δ) pair lies close to the line c = ½ ), then FLEX is more profitable on 

almost all trajectories: 

 

Proposition 2:  For any η  > 0, there exists a zone in (c, δ) space such that 

FIXFLEX π  π >  on a fraction ( )η - 1  of all trajectories. 

 

Proof:  Appendix 

 

On the other hand, as we move close to the curve )δ( c~ , the FLEX strategy becomes less 

profitable on all trajectories:  
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Proposition 3: For any η >0, there exists ε > 0 such that for all (c, δ) satisfying 

ε−δ> )(c~c , πFLEX < πFIX  on a fraction (1 –η) of all trajectories. 

 

Proof:  Appendix  

 

The idea that emerges from Propositions 1, 2 and 3 is as follows: 

 

i. The FLEX strategy tends to dominate  FIX over time, so long as we are in the 

middle or right hand zones of parameter space; 

ii. The ex-post profitability of the two strategies varies across these zones.  

Profitability does not go ‘in step’ with survival, but is quite a separate issue.  

Depending on where we are in (c, δ ) space we may find that dominant FLEX 

firms score either higher or lower than FIX firms on overall lifetime profitability. 

iii. In particular, a sharp divergence occurs in a neighbourhood of )δ( c~ .  Here FLEX 

dominates all islands for almost all trajectories; but FLEX is less profitable ex post 

on almost all trajectories.  This extreme case does not arise in the probabilistic 

model.  Irrespective of the value of p, the information possessed by agents, the 

priors they hold on p, or the way in which they update their priors, only FIX is ever 

played in this zone of parameter space under Machine I. 

 

 

Discussion 

 

In the model examined here, there is a sharp divide between profitability and survival.  

The FLEX firm, by investing in capability, enhances its chances of survival; to do this 

may or may not be profitable ex post.  This point is not dependent on the distinction 

between machines I and II; it could be developed by reference to either of these setups 

so long as the parameters c and δ lie in the right hand zone of Figure 2 (b), by 

introducing a wide range of suitably chosen priors.  Moreover, this idea extends beyond 

the present example (‘investing in capability’; see below). 
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So how do machines I and II differ?  The difference is that the divide between 

profitability and survival emerges in a much stronger form under machine II.  

Proposition 2 does not hold in any model of the hidden probability kind, even if we 

introduce such features as bounded rationality, exogenous differences in firms’ attitudes 

to risk or incomplete information.  The key result special to machine II is that FLEX 

firms enter and dominate even when it is almost everywhere less profitable to do so.   

 

The intuition underlying the difference between the two models is as follows: if our 

underlying device is probabilistic (i.e. if we are using machine I), then there is an 

implied link in the likelihood of different trajectories, and as the key trajectory (1, 0, 0 

…) becomes more (or less) likely to occur, so too do other trajectories less favourable to 

the FLEX strategy.  Under machine II, we can have an ‘optimistic’ FLEX firm who 

believes that (1, 0, 0…) will be the outcome.  Under machine I, the most optimistic view 

favouring FLEX is that of an agent who believes some ‘intermediate’ value of p will 

drive outcomes; but the attractiveness of FLEX is lower in this setting.  Hence there will 

be a (‘middle’) zone in parameter space in which some firms play FLEX under machine 

II,  but not under machine I; and once FLEX is played by some fraction of firms, it will 

necessarily come to dominate on almost all islands.  Moreover, this remains the case 

even in the neighbourhood where FIX is almost everywhere more profitable ex-post. 

 

 

 

Welfare 

 

It is natural to ask which strategy is superior in terms of welfare?  Given the setup 

chosen here, a social planner facing the (probabilistic) Machine I, and having access to 

the true value of p, would choose the strategy that yielded the highest N.P.V. of net 

revenue accruing to the full population of firms.  (Consumer surplus is unaffected by the 

choice of FIX versus FLEX).  Now the net present value of a FLEX strategy is the same 

for the planner as for the firm, but this is not true of a FIX strategy.  For the planner, an 

exit event requires the incurring of a cost C = 1 by the ‘replacing’ firm, but the profit 

flow of one unit per period is maintained.  It follows that for any parameter 
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configuration  p) ,δ ,c( , if the FIX strategy is optimal for the firm, then it is a fortiori 

optimal for the planner.  In other words, the zone of dominance of the FIX strategy for 

the planner is a strict subset of the zone of dominance of the FIX strategy for the firm, 

shown in Figure 2 (a). 

 

The payoff from FLEX under the (probabilistic) Machine I is the same for the firm, and 

for the planner.  The firm’s payoff from FIX is given by expression (2) above (where c = 

1).  The planner’s payoff from FIX is 

 

δ1
δ)p1(     p

δ1
δ     

δ1
11     WFIX −

−
=

−
−

−
+−=      (4) 

 

where the last term in the middle expression represents the planner’s need to pay C=1 

when a switch occurs, in order to maintain the unit flow of profit per period.  A 

comparison of (3) and (4) for any p) ,δ( , shows that FIX is superior in welfare terms ex 

ante if it is more profitable ex ante, but not vice versa. 

 

Under machine II, the only form of comparison available is an ex-post comparison along 

a specific trajectory.  Since the welfare score equals the profit score plus the profit (net 

of entry costs) earned by subsequent entrants, it follows that on any trajectory except  

(0, 0, 0 …), the welfare score from FIX exceeds the profit score; while the welfare score 

from FLEX coincides with the profit score on all trajectories.  It follows that, on all 

trajectories except (0, 0, 0 …), FIX is strictly preferred to FLEX on welfare grounds if it 

is more profitable, but not vice versa.  In particular, in a right-neighbourhood of ),δ( c~  

FLEX is (slightly) more profitable than FIX, on, and only on trajectories of the form  

(1, 0, 0, … , 0, . , . , …).  Here FLEX is strictly less preferred to FIX on welfare  

grounds.21, 22 

                                                 
21 To see this, note that on the trajectory (1, 0, 0, …),  =πFIX 0 but the welfare score of FIX is 

0  
δ-1
δ  δ -   WFIX >+=  where the first term in the middle expression denotes the discounted unit entry 

cost of the new entrant and the second term denotes its profit stream. 
22 The bias identified here disappears in the special setting of ‘zero profit’ environments, such as 
‘perfect competition with constant returns, identical firms and free entry’, or ‘monopolistic 
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What these results illustrate is that there is a bias in favour of over-investment in 

capability, that derives from the wedge between the firm’s private return, as against the 

combined return accruing to the population of firms as a whole.  The exit of any one 

firm creates a positive externality for (potential) entrants, and the planner’s calculation 

internalizes this effect, thus leading to an increase in the planner’s return from the FIX 

policy.  The market, in this sense, generates too much ‘investment in flexibility’. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  The minimax agent plays FLEX (resp. FIX) to the right of the schedule 

)δ(c* , which in turn lies to the right of )δ(ĉ .  The zone of interest is where 

2
1

<δ<0 , and c is close to 
2
1

.  Here FLEX is welfare optimal on almost all 

trajectories, but is not played. 

 

A key feature of the present approach is that no uniform restriction of the conventional 

kind is placed on agents’ ‘attitude to uncertainty’ (see remark (ii), page 13).  It is of 

some interest, therefore, to ask: how would these results be altered if all agents followed 

the conventional maximin rule?  Here, the agent assigns a ‘worst case’ payoff to each 

action.  For FLEX, the lowest expected profit occurs on the trajectory (1, 1, 1, …) and 

                                                                                                                                                
competition with identical firms in large markets’.  It is present in such standard settings as 
Hotelling-type models, or markets with vertical product differentiation. 
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takes the value ).δ1/()c1(c2Wπ −−+−==   For FIX, the worst case is reached on any 

trajectory of the form (1, ·, · , …) and takes the value zero.  It follows that a maximin 

agent plays FLEX only to the right of the schedule ),δ23/(1)δ(c* −=  which lies to the 

right of ),δ(c~  (Figure 4).  The zone of interest is that for which 0 < δ < 1/2 and c lies  

close to 1/2.  Here FLEX is not played, yet a simple calculation shows that FLEX is 

superior both in terms of profitability and in terms of welfare on almost all trajectories 

(see Appendix).  In a ‘maximin’ setting, the welfare bias towards excessive FLEX play 

observed in the present model is replaced by a bias towards excessive FIX play. 

 

4.  Summary and Conclusions 

 

The aim of this exercise has been to isolate the relationship between flexibility, 

profitability and survival in a setting of Knightian uncertainty.  The central conclusion is 

that profitability and survival do not in general go together: investing in flexibility 

always favours survival, but it may or may not be the case that it will turn out to be more 

profitable in an ex-post sense.  The second conclusion is normative: firms in this model 

place no weight on survival per se; they are straightforward profit maximizers.  

Nonetheless, the market outcome is biased in favour of an over-investment in flexibility; 

and so in favour of a greater degree of longevity among firms than would be optimal on 

welfare grounds. 

 

A caveat is in order regarding these implications.  The present model has not been 

designed with empirical applications in mind.23   Rather, it has been designed to isolate, 

in the simplest possible setting, two aspects of the profitability-survival nexus that run 

counter to the mechanisms and effects that have been emphasized in the literature: the 

idea that profitability and survival do not as a general rule go in parallel, and the idea 

that a bias towards over investment in capability is necessarily present whenever 

survival is positively affected by such investment.  Empirical investigations in this area 

pose serious challenges in terms of research design, but it would appear appropriate to 
                                                 
23 One particular empirical feature which is abstracted from in the present model relates to 
‘radical shocks’, i.e. the introduction of new products, the know-how for whose production is 
non-overlapping with that of existing products.  ‘Rare’ shocks of this type have played a key role 
in certain industries (Sutton, 1998). 
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attack such issues within a framework that is general enough to incorporate the effects 

noted in the present model. 

 

A second theme of this paper has been to address the ‘Schumpeterian’ claim, that there 

is a fundamental difference between a probabilistic setting, as against one in which the 

firm faces a set of outcomes driven by ‘unique, unrepeatable circumstances’.  To address  

this claim, it is necessary to work in a setting in which the firm is equipped with a fully 

specified model of its environment, and in which we can relax the ‘measurability’ 

assumption, and so the probabilistic character of the setup.   

 

This leads to an approach to the modeling of Knightian uncertainty that differs from the 

now-standard approach of Schmeidler et al. in a number of respects, and it may be worth 

recapitulating the points of difference:  

 

i. The present model is closed (‘objective’) in the sense that it rests on the notion of 

an agent facing a fully specified environment, relative to which actions are 

chosen.  The environment is such that it cannot be described probabilistically; in 

particular, no complete set of subjective probabilities can be attached to the set of 

draws w that lead to outcome 1 (resp. 0) without running into internal 

contradictions.  An (arbitrary) subjective probability can, of course, be attached 

directly to the outcome 1 (resp. 0), but this cannot be updated (via Bayesian or 

other means) in a way that leads to some asymptotic limiting value). 

 

ii. A second distinction can be made between the two approaches by noting that 

there are two routes we might in principle take in departing from a probabilistic 

setup.   Any probabilistic setup requires (i) some listing or classification, and 

some ordering or grouping of states of the world, and (ii) the attachment of 

probabilities to (groups of) states.  In Schmeidler et al., either certain states may 

be omitted at step (i) or else certain sets of states leading to different outcomes 

may not have probabilities attached to them at step (ii).  In the present setup, the 

departure lies in introducing a description of the list of scenarios in step (i) that 

precludes the possibility of attaching probabilities to the sets of states 
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corresponding to each outcome.  Thus the intuition behind the Schmeidler et al. 

approach is that the agent knows that there are some possible states that he or she 

cannot envisage; while the intuition behind the present approach is that the set of 

scenarios is large, and admits of no tidying up which allows a probabilistic 

description.  An exploration of a countable infinity of possible scenarios by an 

agent can lead to no settled view of the likelihood of different outcomes (see the 

discussion in Section 2). 

 

iii. The final difference is one of standpoint, as noted in section 2: while the standard 

subjective approaches focus on decision-theoretic issues, with a view to pinning 

down a specific action for a particular agent by reference to the agent’s objective 

function and ‘attitude to uncertainty,’ the standpoint of the present approach lies 

in using appeals to rationality by (expected) profit-maximizing agents to exclude 

candidate actions whenever possible, while noting that there then remains a set 

of actions that can be chosen. The focus lies, not in showing how a particular 

agent selects an action, but rather in exploring the way in which the operation of 

the market impinges on a population of agents whose actions span the set of 

‘reasonable actions’. 

 

This last point is related to the point made in Section 1 above regarding the division in 

game-theory between the standard ‘Nash’ approach, and the ‘evolutionary game theory’ 

approach. The present approach is in the spirit of the standard ‘Nash’ approach in using 

profit (payoffs) as a criterion of success; yet the focus of the model investigated here is 

concerned with questions of survival.  In evolutionary game theory, the payoff (profit) in 

period t is the driver of survival in period (t + 1) by construction.  It is difficult, in this 

setting, to distinguish between the issues of profitability and survival.  Tackling 

‘profitability and survival’ within the present setup (or some alternative ‘Nash’ type 

setup) offers the advantage of separating ‘survival’ from ‘success’; and this seems 

appropriate, given the dichotomy between the two ideas which the present model has 

been designed to highlight. 
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Appendix:  Proofs 
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1. Characterization of )(ĉ δ  

 

To establish the properties of p( c | )δ , equate expressions (2) and (3) of the text and 

solve for c to obtain  

 

 p( c |
)pδ+δ-1)(pδ+δ2-2(

pδ)δ-2(+)δ-2(δ-1
=)δ   =  

p]δ+)δ-)p][(1δ-(2-[2
)pδ-(2 δ + )δ-1( 2

 

 

Differentiating with respect to p, we find that c (p|δ) is increasing at p = 0 for all δ and is 

strictly increasing on p ∈  [0, 1], if and only if ,2/)5-3(≤δ .  If this condition holds,  

c (p|δ) takes its maximum over p ∈  [0, 1] at p = 1, whence its maximum value  

c=)δ(ĉ (1|δ) = 1/(2 - δ).  For ,2/)5-3(>δ  it is easily verified that )(p c δ takes a 

unique maximum at some p ∈  [0, 1).  Denoting this maximum as )δ( ĉ , this defines the 

schedule shown in Figure 3b.  

 

2.   Proof of Lemma 1: 

 

Without loss of generality we label the time at which the choice is made as t = 0.  Let pt 

denote the probability of a switch at time t, where pt takes the value . xq) - p - (1 + p = p tt   

We write 1 – p – q as θ in what follows. 

   

 

Since 

 

 }∑ pδ{ c -  
δ-1

1
 + 2c -  =  πE

∞

1=t
t

t
FLEX       (*) 

 

it follows that 

 

 c  πE 
dp
d  

δ
1

FLEX
t

t =−  
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Since 

 ...    )p1)...(p1(δ     ...     )p1)(p1(δ  )p - (1δ  πE t1
t

21
2

1FIX +−−++−−+=  (**) 

it follows that 

 

 { })p-(1 )p-(1 δ  )p-(1 δ  1  )p-(1 ... )p-(1  πE 
dp
d  

δ
1

2t1t
2

1t1-t1FIX
t

t +++ ++=−  (***) 

 

and the maximizing sequence (xt) satisfies xt = 1 or 0 according as the r.h.s. expression 

is greater or less than c respectively.   

 

We first note that the maximizing sequence )x( t  must satisfy .1x1 =
24  To see this, note 

that the r.h.s. expression evaluated at t = 1 becomes c.  1   ...  )p- (1 δ1 2 >>++     We next 

note that the sequence (1, 1, 1, … ) can not be maximizing, for if 1, =  x= ... =  x= x T21  

then the r.h.s. must be less than (1 – p – θ)T-1/ (1 - δ), which for T sufficiently large is 

less than c. Finally, we establish that if for any t, )(x then ,1= xand 0=x t1+tt  is not an 

maximizing sequence.  To show this, we consider the modified sequence in which 

,0 xand 1x 1tt == +  and we show that either this leads to an increase in FIXFLEX πE -πE , or 

that reducing xt+1 to 0 increases FIXFLEX πE  - πE .  To see this, we proceed as follows: 

from (*) and (**) it follows that the changes associated with this switch to the modified 

sequence 1= xand 0=x 1+tt  are: 

 
)p- (1 ... )p-(1 θδ-    πE

)δ - (1 δcθ-  πE

1-t1
t

FIX

t
FLEX

=∆

=∆
 

 

whence this switch is strictly improving unless 

 )δ-(1 c ≤ )p-...(1 )p-(1 )p-1( 1-t21      (****) 

 

But in this case, reducing xt+1 to 0 raises FIXFLEX πE  - πE ; to see this, note that the 

associated changes are: 

                                                 
24 For the special case of pure uncertainty, this implies p1 = 1, and so it follows immediately 
from inspection of (***), that the optimal sequence is (1, 0, 0, … ). 
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).δ - (1 / 1 ≤ } • { and  1  < )p - (1  since    c θδ  ≤                

  **)*(* using                                } ... + )p - (1 δ + {1  )p - (1 )δ -c(1 θδ  ≤                

...}+)p - (1 δ + )p - (1 δ + {1  )p - (1 )p-(1 ... )p - (1 θδ  =    πE∆

cδ θ  =  πE∆

t
1+t

2+tt
1+t

3+t
2

2+tt1-t1
1+t

FIX

   1+t
FLEX

  

 

2. Proof of Lemma 2:   

 

To show that the schedule )δ( c~  lies to the left of )δ( ĉ  it suffices to show that for any 

pair  )),δ( c~ ,δ(   

 )δ ),δ(ĉp(π < )δ ),δ(c~p(π FIXFLEX  

for all p.  To see this, note that )δ(c~  is defined by 

 

0 = )δ(c~2 - 
δ-1

1
 

 

whence for c = )δ(c~ , 

 

 (p πFLEX | p(π = 
δp)-(1-1
δ)p-(1

  <   0    =
δ-1

1
+2c-  <  cp 

δ-1
δ

-
δ-1

1
 + 2c-  =  )δ ),δ( c~ FIX | )δ),δ(c~  

 

4. Proof of Proposition 1: 

  

Each ‘island’ can be regarded as a 2-state Markov process, with one absorbing state 

(FLEX). The ‘Non-Degeneracy’ assumption implies that FLEX will be played with 

probability 0>p  whenever an island is in the FIX state, and a switch occurs.  The 

probability that the island remains in the FIX state following η switches is not greater 

than (1-p)n, which is less than ε if ( ) |p1ln|/|εln|η −> . By choosing T sufficiently large, 

we ensure that the number of switches on a fraction η1−  of trajectories exceeds 

( ) |p1ln|/|εln| −  (see, for example, Billingsley (1995) Chapter 1).  
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5.  Proof of Proposition 2:   

 

We first define a critical period T, such that at least a fraction )η1( −  of trajectories have 

at least one switch at or before period T; to do this, choose the smallest T satisfying 

η  
2
1 T

<⎟
⎠
⎞

⎜
⎝
⎛ .  We note that FLEX incurs an initial cost, relative to FIX, of 2c – 1; and, 

letting T denote the time of the first switch, then it earns a profit premium, relative to 

FIX , of c) - 1(δT .  Thus a sufficient condition for FLEX to be more profitable, 

conditional on a switch occurring by time T, is )c1(δ  1 - c2 T −<  or c) - (1 / 1) - c2(δT > .  

This last inequality defines the required zone (which is a neighbourhood of the 

horizontal axis in Figure 2(b)). 

 

6.  Proof of Proposition 3: 

 

We identify a trajectory with a vector 1    where0s and 1s of tt =∆∆  corresponds to a 

switch at period t.  (The initial period is labeled t = 0 and t∆  is defined on t = 1, 2, 3…, 

T).  Denoting the period of the first switch by T′, we note that 

 

t
1t

t
FLEX c δ  -  2c  -  

δ1
1

π ∆
−

= ∑
∞

=

   (A1) 

 

1) = ∆(argmin  =  T'  where
δ-1
δ-1

   δ  =     π t

1-T′

FIX    (A2) 

  

 

 

We first consider trajectories of the form (0, ·, · ), i.e. those with no switch in period 1.  

The fraction of trajectories of this type is one-half.  Here, we define an ε such that πFLEX 

< πFIX  in an ε-neighbourhood of c  (δ).  We have from (A1), (A2), that 
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2c - 
δ-1

1  π and δπ FLEXFIX ≤≥  

whence 

δ-1
1  -  δ  2c    π - π  FLEXFIX +≥    (A3)  

  

We note that the curve c (δ) is defined by the equation 

 

       
)δ)(2δ-(1

1  )δ(c~ 
+

=   

whence  

                               
δ

=δδ+δ
-1
1    )(c~    )(c~2    (A4) 

 

Combining (A3) and (A4) we have 

 

))δ(c~-(1 δ 
2
1

<c-)δ(c~ if  0  ≥                   

)]δ(c~δ + )δ(c~[2 - δ + 2c  ≥ π - π FLEXFIX

 

 

We set ))δ(c~ - (1 δ
2
1ε1 = , which on substituting for c (δ) and rearranging becomes  

)δ2)(δ1(
)δ1(δ1

2
δ

+−
+−

⋅ , whence for all c,δ satisfying  1ε)δ(c~c −>  it follows that FIXFLEX π  π <  

 on all trajectories of this form. 

 

We now consider trajectories of the form (1, · , · ), i.e. those with a switch in period 1.  

Here the FIX firm exits after the initial period and earns net profit zero; whence we have 

from (A1) that 

 

                )c(2  -  
1

1
t

2t

t
FIXFLEX ∆δ+δ+

δ−
=π−π ∑

∞

=
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Denote by T'' the period in which the second switch (if any) occurs, i.e. the next switch 

after that occurring in period 1.  Note that 

 

               )2(c   
-1
1    ''T

FIXFLEX δ+δ+−
δ

≤π−π  

Note from the defining equation of )(c~ δ that 

 

               ))(2(c~    
1

1
δ+δ=

δ−
 

 

and so 

 
''T'

FIXFLEX δc-)δ+c)(2-)δ(c~(  ≤  π-π    (A5) 

 

We note that the fraction of trajectories which have a switch at t = 1 but no switch 

during 0T  ..., ,2t =  constitute a fraction 0T2/1  of all trajectories.  Choose T0 as the 

smallest integer satisfying 0T2/1  < η, and set ε2 = 0Tδc /(2+δ), whence it follows from 

(A5) that FIXFLEX π-π < 0 for all c, δ s.t. c > c (δ) - ε2 .  We now choose ε = min (ε1,  ε2).  

This completes the proof. 

 

7.  The Welfare Properties of the Maximin Model 

 

It suffices to show that FLEX is superior in welfare terms on almost all trajectories.  To 

see this, note that a necessary condition for FIX to be superior is that )1(12 cc t −>− ∑δ  

where the sum is taken over all t where .1=xt   Define an є-neighbourhood of 
2
1

=c , 

viz. set  2c-1 = є, and note that if T denotes the earliest period at which ,1=xt  then FIX 

is inferior on all trajectories except those in which no switch occurs in the first T 
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periods, where T is implicitly defined by =δ
2
1 T є.  (Since TTt δ

2
1c)(1δc)(1δ −>−∑ .  It 

follows that FIX is superior on a fraction of trajectories not exceeding T2
1

. 
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